
0.3

Bringing Formal Verification
into Widespread Programming

Language Ecosystems

Sára Juhošová

to obtain the degree of Master of Science
in Computer Science

at the Delft University of Technology

to be defended publicly on
Thursday 29 June 2023 at 9:00

Student number: 4906330
Thesis committee: Dr. Christoph Lofi thesis advisor

Dr. Jesper Cockx daily supervisor
Lucas Escot daily co-supervisor

Preface

This thesis is the result of five years of studies at theTUDelft. I have
had a wonderful time throughout the entire journey and I cannot
imagine a better-suited study for myself. The topic of this thesis
combinesmany of the things I love about computer science, includ-
ing writing beautiful code, diving into the confusingly interesting
world of programming languages, and helping others understand
how to use a tool that I find interesting.
Iwould like to thankmy supervisors, JesperCockx andLucasEscot,
who always found the time to help me and who motivated and en-
couraged me to share the work I did. I would also like to thank
Christoph Lofi, who took the time to lead small discussions with
me whenever I knocked on his door. Those discussions greatly in-
fluenced the design andflowof this thesis and ledme to thinkmore
deeply about the purpose of this thesis.
I would also like to thank Jelco Köhlenberg, Wouter Polet, and
MarkoMatušovič for being there throughoutmy thesis journey and
calling coffee breaks when I needed to clear my mind. My thanks
also goes to Cédric Willekens and Jonathan Brouwer, who were
great study companions and kept me on track throughout all my
master’s courses, toHanka Jirovská, whowas the best project team-
mate, and to Ruben Backx, who was always ready to help me with
anything. Finally, and perhaps most importantly, I would like to
thank my family for all the support they gave me throughout my
educational career.

Sára Juhošová
Delft, June 2023

Abstract

Formal verification is a powerful tool for ensuring program correct-
ness but is often hard to learn to use and has not yet spread into the
commercial world. This thesis focuses on finding an easy-to-use
solution to make formal verification available in popular program-
ming language ecosystems. We propose a solution where users can
write code in an interactive theorem prover and then transpile it
into a more popular programming language. We use agda2hs as
a case study to determine what challenges users find in using such
a tool, improve selected features, and then conduct a user study to
evaluate the usability. We find that detailed documentation, sup-
port for commonly-used features in the target programming lan-
guage, features that facilitate verification, integration of the tool
into the target ecosystem, and user studies are necessary for the
accessibility of such a tool.

keywords: formal verification, theoremproving, programming lan-
guage ecosystems, transpilation, usability

Contents

Preface i

Abstract ii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Methodology & Contributions 3
1.3 Thesis Overview . 3

2 RelatedWork 5

3 agda2hs 10
3.1 Current Challenges in using agda2hs 10
3.2 The Hypothesis . 16

4 Implementation 18
4.1 Supporting the newtype Definition 18
4.2 Supporting Standalone deriving 21
4.3 Adding Witnesses to Flow Control 24
4.4 Adding Lawful Type Classes to Prelude 29

5 User Study Setup 33
5.1 Sources of Inspiration . 33
5.2 The Goals . 34
5.3 Recruitment . 34
5.4 The Programming Assignments 34
5.5 The Questionnaire . 40

6 Results 43
6.1 Lessons Learned . 44

7 Discussion 50
7.1 Threats to Validity . 51
7.2 Future Work . 51
7.3 Recommendations for Future User Studies 52

8 Conclusion 54

References 56

Appendix 60
A Lawful Eq . 60
B User Study: Recruitment Leaflet 62
C User Study: Informed Consent Statement 63
D User Study: Participation Email 64
E User Study: Solutions Compiled to Haskell 66
F User Study: Questionnaire . 67
G Results: Participants’ Skill Levels 74

Chapter 1

Introduction

As software in all forms creeps into every part of the modern world, “the de-
veloper community no longer needs to argue about the importance of software
testing” [1]. Making sure that your software is correct has become increas-
ingly more important with every financial, personal, and societal catastrophe
caused by a tiny bug in someone’s code. Many techniques, tools, and strategies
for software testing have been developed and are widely used in the industry,
allowing us to have higher confidence in the programs we write and use. Un-
fortunately, as Dijkstra once famously said, “program testing can be used to
show the presence of bugs, but never to show their absence”.

Luckily, there is somethingwe can use to prove that our programs are 100%
bug-free, i.e. correct: formal verification. Formal verification is the process of
mathematically proving that our programs behave the way they were specified
to. There are many methods and techniques of formal verification, including
model-checking [2] and abstract interpretation [3], but in this thesis, we fo-
cus on interactive theorem provers (or “proof assistants”). This is an approach
where computers and human users “work together interactively to produce a
formal proof” [4], essentially allowing users to reason about their programs
and use the computer to verify their specifications. Examples of existing inter-
active theorem provers include the Agda [5], Coq [6], and Idris [7] program-
ming languages.

While interactive theorem provers seem like the perfect solution, “the rel-
ative complexity of the theories underlying theorem provers makes them inac-
cessible to a wide range of software engineers who are not experienced math-
ematicians” [8]. This is naturally also reflected in the theorem provers them-
selves, creating steep learning curves for programmers trying to use them. Be-
cause theorem provers are so inaccessible, their respective user communities
are not big enough to create an ecosystem that eases their use. Thismeans that
there are no beginner-friendly libraries, frameworks, or even question forums

1

MSc Thesis Sára Juhošová

to ease the learning curve of the developers. If a language does not allow de-
velopers to create the things they want, the language becomes a lot less attract-
ive.

The truth is, not every part of the code base needs to be so rigorously veri-
fied. Tests are much cheaper and easier to write and can often achieve the
desired level of confidence. This means that maybe the answer is not to create
an ecosystem for a complex formal verification language. After all, that kind of
complex thinking is not needed for the entire code base. Maybe it is enough to
bring formal verification into the existing ecosystems andmake it just another
tool in the arsenal.

1.1 Problem Statement
To understand the problem addressed in this thesis, we recall and refine three
concepts introduced earlier:

1. Formal verification is a powerful tool for ensuring program correctness
and it allows us to have a high confidence in the code we write.

2. Existing interactive theorem provers are often hard (to learn) to use and
thus do not have big communities contributing to their ecosystems.

3. Developers want to use languages that have all the tools theymight need
available in their ecosystems.

All of these together create the unfortunate situation in which we have
powerful software verification tools already available, yet unable to spread into
the commercial world. This is the problem that we focus on in this thesis, by
finding away to bring formal verification into existing, widespread ecosystems.
We use the following research question to address it:

How can we make formal program verification accessible within
ecosystems of widespread programming languages?

To better understand the choice of this question, let us look at theword “ac-
cessible”. In its simplest form, it tells us that we want to make formal verifica-
tion available within widespread programming languages. There are already
many ways in which this has been done and we can draw from previous work.
However, we also aim to interpret accessible in its other form: wewant tomake
the solution easy to understand and use.

2

MSc Thesis Sára Juhošová

1.2 Methodology & Contributions
We use the following steps to answer the research question defined above:

1. We examine previous work in this field and identify a tool that allows us
to reap the benefits of both formal verification and a large programming
language ecosystem: agda2hs [9]. We compare the suitability of the
idea behind the tool with other approaches in the field.

2. We explore the challenges that come with using agda2hs by analysing
previous work and identifying issues in the tool’s repository. This step
also includes analysing the situations in which these challenges occur
and studying the solutions and work-arounds that have been used to get
past them.

3. We form a hypothesis for our research question based on the challenges
identified earlier and select several features wewant to implement in the
hopes of making agda2hs more usable.

4. We identify and implement solutions for the selected features.

5. We evaluate the validity of our hypothesis by conducting a small-scale
user study where users are asked to use and reflect on the improved ver-
sion of agda2hs.

In the process of answering the research question, we provide the following
contributions:

• We present solutions to and implementations for selected challenges as
contributions to the online public repository of agda2hs. We also cre-
ate and improve the documentation of these features on the agda2hs
documentation website.

• We describe the design and execution of a user study focused on the us-
ability of agda2hs, and provide recommendations for any consecutive
user studies.

• We present the findings from the user study and identify usability re-
quirements for formal verification tools.

1.3 Thesis Overview
To explain the storyline of this thesis, we provide an overview of its chapters.
In Chapter 2, we look into related work and search for existing solutions to

3

https://github.com/agda/agda2hs
https://agda.github.io/agda2hs/
https://agda.github.io/agda2hs/

MSc Thesis Sára Juhošová

making formal verification available in widespread programming language
ecosystems. During Chapter 3, we explore the current challenges with us-
ing agda2hs, a tool chosen as a case study, and from them formulate a hy-
pothesis for our research question. We continue by explaining the selection of
certain agda2hs features to improve based on the hypothesis in Chapter 4 and
present the solutions and implementations of those improvements. We take
Chapter 5 to focus on the purpose and setup of the user study, defining helper
research questions and explaining the goal of each component. In Chapter 6,
we present the results of the user study and answer the helper research ques-
tions. During Chapter 7, we discuss the results and provide recommendations
for future work. Finally, we conclude the thesis in Chapter 8 by reflecting on
what we learned in the previous chapters to answer the main research ques-
tion.

4

Chapter 2

RelatedWork

In order to find a way to make formal verification available in widespread
programming language ecosystems, we look towards previous work and exist-
ing solutions. Most of the tools discussed here have the approach of transpil-
ing1 between a language with a widespread ecosystem and a proof assistant,
thereby giving to formal verification in the form of a theorem prover. We dis-
cuss them below based on which direction they transpile in and whether the
transpilation is automated or manual. We also discuss Liquid Haskell [10], a
framework which allows developers to verify Haskell code in Haskell.

Manual Transpilation to a Proof Assistant
In the past decades, there have been multiple works whose aim was to verify
a library in a widespread programming language by porting its source code
to a proof assistant and proving certain properties about it. One of the earli-
est works was done by Dybjer et al. [11], who ported Haskell programs to
Agda/Alfa and used a combination of techniques to verify their correctness.
They recognised the value of other tools in the Haskell ecosystem, and they
implemented a version of QuickCheck [12] in Agda/Alfa to be the first step
of verification before any expensive proofs were written. Similarly, in a re-
cent paper by Carr et al. [13], the authors focus on verifying their Haskell
library for Byzantine Fault Tolerant (BFT) consensus protocols by also porting
it to Agda. There has also been work on using other proof assistants to verify
Haskell code, such as by Christiansen et al. [14], who reason about effectful
Haskell programs in monadic Coq.

A benefit of this approach is that it might seemmore natural to developers
1Transpilation is the process of translating a program from one language into another lan-

guage with a similar level of abstraction.

5

MSc Thesis Sára Juhošová

working in the widespread ecosystems, since they start out by writing their
programs in exactly the sameway as they always do. Even themanual transpil-
ation to a new language might become easier due to this, especially if we are
dealing with languages such as Haskell and Agda, which share many design
decisions and features.

On the other hand, these approaches all transpile the programs manually,
so the two code bases need to bemaintained side-by-side. To address this issue,
Carr et al. write that in the majority of cases, “[the Agda code] mirrors the
Haskell code so closely that side-by-side review requires virtually no mental
overhead in our experience” [13]. Despite that, this is still a major drawback,
since the code being verified is not actually linked to the code being run and
errors will appear on a case-by-case basis.

Additionally, verifying code after it has beenwritten severely limits the cap-
abilities of interactive theorem provers since powerful techniques such as in-
trinsic verification, where proofs become part of the code itself and thus make
the programs inherently safe, are not accessible to the developer. As Allais
noted in his recent work, using only a subset of such powerful languages as
Agda or Coq can lead to “awkward encodings when the unrefined inputs force
the user to consider cases which ought to be impossible” [15]. He claims that
such an approach “completely misses the point of type-driven development”,
since the extra information available during interactive editing can provide
many advantages.

Finally, it is important to consider that many of the libraries being verified
rely on functions and types fromother libraries. Consider, for example, higher-
order functions such as map and filterwhich are an indispensable part of any
functional programming language. This means that the proof assistant used
for verification must have equivalent library functions available, in order to
make the transpilation even possible. Additionally, there are certain properties
and assumptions that should hold about them in Haskell, and those might be
important for proving properties of the programs that use them.

Automatic Transpilation to a Proof Assistant
A step that can solve many of the drawbacks of the approaches in the section
above is to make the transpilation process automated. This problem was ad-
dressed by Abel et al. [16], who present an approach to automatically trans-
pile Haskell programs into Agda. The GHC compiler is utilised to translate
the Haskell code into Haskell Core (a System F-like subset of Haskell) and
then a “monadic translation” is applied to transpile the code to Agda. The
monadic translation allows for a representation of total programs using the

6

MSc Thesis Sára Juhošová

Identity monad as well as partial programs (which are not supported in Agda)
using the Maybe monad.

Similarly, hs-to-coq is a tool for automatically transpiling Haskell code
to the Coq proof assistant. This tool also uses the GHC compiler to parse and
rename the written Haskell code, but stops before the type checking and de-
sugaring phase to transpile the program to Coq. Unlike with Agda, Haskell
actually has many structural and design differences with Coq, and the bulk of
the work on hs-to-coq was figuring out how to overcome them.

A significant challenge with automated transpilation is to make sure that
the generated code is actually readable by the user. This is important, because
while the user can trust that “[the process] does translate programs to a faith-
ful representation of their semantics” [16], they might still have a hard time
reasoning about and verifying an unreadable implementation. Readability is
also why hs-to-coq (unlike the approach by Abel et al.) does the transpila-
tion before any of the Haskell code is desugared, even though “translating [to]
GHC’s intermediate language, Core, would certainly simplify the translation”
[17].

With automated transpilation, we avoidmany of the drawbacks seen in the
solutions where the translation had to be done manually. Most significantly,
it is no longer necessary to maintain two versions of the code side-by-side —
a huge advantage, especially if the codebase that needs to be verified is big
or often changing. Additionally, since the translation is automatic and thus
less expensive, existing libraries that are often reused in code can be obtained
for free by simply running them through the transpiler. This also applied to
features such as derived instances of type classes (which we address later in
this thesis), which are translated by “simply [taking] the instance declarations
synthesized by the compiler and [translating] them just as [they] do for user-
provided instances” [17].

Unfortunately, an automated approach does not resolve the issue of us-
ing only partial capabilities of the interactive theorem provers. The process of
verification is still the same once the transpilation is done, and as such, the
drawbacks we saw earlier still apply here.

Automatic Transpilation from a Proof Assistant
An alternative approach to the ones discussed above is to allow developers to
write and verify their code in a proof assistant and then transpile it to a more
widespread programming language. An example of this can be found in the
program extraction of Coq [18]–[20], which allows Coq users to extract their
programs into ML-like languages (currently supporting OCaml, Haskell and

7

MSc Thesis Sára Juhošová

Scheme). It allows users to export their verified Coq code and use it within
projects in the other languages.

More recently, Cockx et al. have introduced agda2hs, “a tool that trans-
lates an expressive subset of Agda to readableHaskell, erasing dependent types
and proofs in the process” [9]. agda2hs leans on the syntactic similarity
between the two languages to formulate a common subset language which
allows for “faithful” translations from Agda to Haskell. The Haskell code is
generated by adding compilation pragmas [21] directly into the Agda code.
agda2hs aims tomake formal verification accessible to Haskell programmers
—meaning that it also wants to provide access to the libraries and frameworks
that are normally available in Haskell.

Themost important benefit with this direction of transpilation is that users
can write their programs with the unconstrained help of an interactive the-
orem prover. The tools then simplify their programs by erasing the parts that
are only used for verification, and produce the minimal version of the code
needed for its execution. This means that developers can benefit from the
proof assistant’s stronger type system as well as its interactive features (e.g.
holes and automatic case splitting [22]). This also means that programs can
be intrinsically verified and inherently correct instead of doing all the checks
post-hoc.

A challenge and drawback that returns with this solution is the necessity
for replicating the existing libraries of the target language in the proof assist-
ant. This is an important thing to consider, because these libraries are an es-
sential part of the ecosystems we are aiming to integrate in. There is an op-
tion to simply postulate the existence of these methods and types within the
proof assistant. This will bring it into scope for development and type check-
ing, which are the relevant phases for the proof assistant in this setup. Unfor-
tunately, a function without an implementation is hard to reason about and
would thus make verification of the programs using it more challenging. As a
result, agda2hs contains an Agda version of the Haskell Prelude, a “trusted
codebase” with implementations matching those in Haskell. In the rest of this
thesis, we will refer to this library as the “agda2hs Prelude”.

Liquid Haskell
While the solutions above do have their merits, there is always the question of
the correctness of the transpilation to consider. The automated tools can aim
to form a “trusted” translation process, but a simpler solution requiring no
transpilation has less space for unwanted bugs. Liquid Haskell is a tool being
developed by Vazou et al. [10], [23] which extends Haskell with refinement

8

MSc Thesis Sára Juhošová

types to allow formal reasoning about Haskell in Haskell. It uses an external
SMT solver to check the correctness of the refinements meaning that some
simple proofs can be done automatically, while others require users to supply
the full reasoning themselves.

Unlike the solutions we discussed above, Liquid Haskell does not require
users to learn a new language—everything iswritten inHaskell. This solution
removes all the complications with unifying language features and making
equivalent libraries available in both. The tool has recently been extended to
include Liquid proofmacros [24], aDSL that uses TemplateHaskell to generate
additional proof terms in order to automate inductive proofs. However, this
DSL is still embedded in Haskell and is works as part of the language.

Liquid Haskell does, however, come with its own drawbacks. Haskell was
not designed to be a proof assistant and as such, does not include the more
complex features found in languages such as Agda or Coq. These include
strategies such as intrinsic verification, but also interactive editing features
which help guide users through writing proofs (e.g. by providing the context
and scope of the missing proof). Additionally, tools like Agda already have
large proof libraries, whereas this is something that still needs to be developed
for Liquid Haskell.

9

Chapter 3

agda2hs

For the remainder of this thesis, we focus on agda2hs as a case study. We
chose to work with agda2hs for a variety of reasons, among which access
to the implementors team and previous student work play a significant role.
However, we believe that agda2hs is a good candidate, since its target audi-
ence are Haskell developers wanting to use verification in their projects and its
design allows them to take full advantage of the capabilities of an interactive
theorem prover.

To better understand the challenges with accessibility of agda2hs and
similar tools, we take a look at previouswork and conduct our own exploration
to determine the current challenges with using it. At the end of this chapter,
we form a hypothesis about what is necessary to make such a tool accessible
and easy to use.

Since this thesis contains code snippets from both Agda and Haskell code,
coloured backgrounds are used to create clarity and distinction. Snippets of
Agda code are displayed on a blue background and snippets of Haskell code
are displayed on a red background:

Agda Haskell

3.1 Current Challenges in using agda2hs
Aswith all new tools thatwish tomake it in the realworld, there are challenges
to using agda2hs that need to be overcome. However similar Agda might be
to Haskell, there are still core differences that require developers to learn new
paradigms and forget old habits. Furthermore, agda2hs is still in its infancy,
and thus has many features that might be incomplete, missing, or somewhat
awkwardly designed.

10

MSc Thesis Sára Juhošová

Since agda2hs was first created, there have been multiple bachelor stu-
dent projects exploring the capabilities and limitations of agda2hs. Posters
and papers explainingd these projects can be found on the website of the TU
Delft Research Project1 under “Practical Verification of Functional Libraries”
(2021) and “Practical Verification of Functional Programs” (2022). The theses
are also available on the Educational Repository of the TU Delft2.

During these projects, as well as during the design process of agda2hs,
the various limitations and challenges of working with this tool have been
discovered and rediscovered. They are listed and explained in the following
sections.

3.1.1 Incomplete Standard Library
agda2hs is a project in its early stages, and there are a lot of functions and
typesmissing in the “trusted codebase” of the agda2hs Prelude. This includes
things from the Haskell Prelude (which does not need any explicit imports),
but also from the base package3, which is an essential part of Haskell devel-
opment.

Additionally, an Agda implementation of a Haskell library needs some-
thingmore: the proofs andproperties that the exportedmethods should satisfy,
available to the user to use in their own verification. Take the simple proofs
about the && construct displayed in Figure 3.1. While these are very intuit-
ive rules and look concise when written out, Agda cannot infer them on its
own. As you can imagine, though, they will most likely be needed for quite a
few proofs by many potential users. Therefore, they should be included in the
standard agda2hs library.

1 &&-leftAssoc : ∀ (a b c : Bool) → (a && b && c) ≡ ((a && b)
&& c)

2 &&-leftAssoc False b c = refl
3 &&-leftAssoc True b c = refl
4
5 &&-leftTrue : ∀ (a b : Bool) → (a && b) ≡ True → a ≡ True
6 &&-leftTrue True True h = refl

Figure 3.1: Proofs about the && construct

1https://cse3000-research-project.github.io/
2https://repository.tudelft.nl/islandora/search/cockx?collection=

education&f%5B0%5D=mods_genre_s%3A%22bachelor%5C%20thesis%22
3https://hackage.haskell.org/package/base

11

https://cse3000-research-project.github.io/
https://repository.tudelft.nl/islandora/search/cockx?collection=education&f%5B0%5D=mods_genre_s%3A%22bachelor%5C%20thesis%22
https://repository.tudelft.nl/islandora/search/cockx?collection=education&f%5B0%5D=mods_genre_s%3A%22bachelor%5C%20thesis%22
https://hackage.haskell.org/package/base

MSc Thesis Sára Juhošová

3.1.2 Missing Haskell Constructs
While agda2hs has support for many Haskell constructs, there are still a few
missing that Haskell programmers wouldmost likely find indispensable, espe-
cially when considering readability of the generated Haskell code. The most
notable constructs are listed and explained here.

Guards

Guards in Haskell are an extension to pattern matching function parameters.
They establish properties about the parameters and act as “guards” to which
cases can pass into the implementation. Figure 3.2 contains a code snippet
with guards which determines whether a student has received a passing grade.

1 passed :: Double -> Either String Bool
2 passed grade
3 | grade >= 5.75 && grade <= 10 = Right True
4 | grade >= 1 && grade < 5.75 = Right False
5 | otherwise = Left "Not␣a␣valid␣

grade!"

Figure 3.2: Haskell function with guards

Guards make Haskell code readable and clear but, unfortunately, there is
no Agda equivalent to this construct. Therefore, just like in Figure 3.3, they
have to be replaced with if_then_else_ expressions, resulting in more com-
plex code. These are still manageable on a small scale, but can quickly clutter
the code if the logic is more complex.

Type Class Deriving

Another important constructmissing in agda2hs is type class deriving. This
construct allows Haskell programmers to skip writing boilerplate code and
generates straightforward implementations for them (such as for the Eq and
Show type classes). An example of its use can be seen in Figure 3.4. It also ex-
tends the type class instance automatically when a new constructor is added
to the type.

In the current version of agda2hs, the programmer needs to define every
instance by hand in order tomake the instance available within the Agda code.
Figure 3.5 illustrates just how much more verbose our Haskell code ends up
looking.

12

MSc Thesis Sára Juhošová

1 passed : Double → Either String Bool
2 passed grade =
3 if grade >= 5.75 && grade <= 10 then
4 Right True
5 else
6 if grade >= 1 && grade < 5.75 then
7 Right False
8 else
9 Left "Not a valid grade !"
10
11 {-# COMPILE AGDA2HS passed #-}

1 passed :: Double -> Either String Bool
2 passed grade
3 = if grade >= 5.75 && grade <= 10 then Right True else
4 if grade >= 1 && grade < 5.75 then Right False else
5 Left "Not␣a␣valid␣grade!"

Figure 3.3: Function implementation without guards

1 data Tree = Leaf | Branch Int Tree Tree
2 deriving (Eq)

Figure 3.4: Haskell datastructure deriving the Eq type class

Despite Agda not having an explicit notion of type classes, it is actually
possible tomimic the deriving construct in Agda using data-type generic pro-
gramming [25]. While this might be a viable approach in the future, it is cur-
rently under development and still missing support for important constructs
in Haskell (e.g. nested inductive types). Since we do not actually have to run
the generated code on the Agda side, it should be enough to find a solution
that brings the instances into scope. The Agda code will, after all, not be able
to influence the generated Haskell code - the verification of that generation
should be done within the implementation of the generator.

Single-Constructor Types

Finally, there is no support for the newtype declaration in agda2hs. This is
an alternative to the data declarationwith some extra restrictions which allow
for runtime optimisations. Though this feature might not be crucial, it is one
of the more often-used Haskell features and as such should be included in
agda2hs.

13

MSc Thesis Sára Juhošová

1 data Tree : Set where
2 Leaf : Tree
3 Branch : Int → Tree → Tree → Tree
4
5 eqTree : Tree → Tree → Bool
6 eqTree Leaf Leaf = True
7 eqTree (Branch x ll lr) (Branch y rl rr)
8 = x == y && eqTree ll rl && eqTree lr rr
9 eqTree _ _ = False
10
11 instance
12 iEqTree : Eq Tree
13 iEqTree ._==_ = eqTree
14
15 {-# COMPILE AGDA2HS Tree #-}
16 {-# COMPILE AGDA2HS eqTree #-}
17 {-# COMPILE AGDA2HS iEqTree #-}

1 data Tree = Leaf
2 | Branch Int Tree Tree
3
4 eqTree :: Tree -> Tree -> Bool
5 eqTree Leaf Leaf = True
6 eqTree (Branch x ll lr) (Branch y rl rr)
7 = x == y && eqTree ll rl && eqTree lr rr
8 eqTree _ _ = False
9
10 instance Eq Tree where
11 (==) = eqTree

Figure 3.5: Datastructure with implementation of Eq type class instance

3.1.3 Witnesses in Flow Control Constructs
As of the current state of agda2hs, the flow control constructs (case_of_
and if_then_else_) do not contain witnesses of their branching condition.
Consider, for example, the code snippet in Figure 3.6. If we were to navigate
to either of the two holes and ask Agda to provide us the context, we would get
the following:

Int (Goal) i : Int j : Int

In neither of the holes do we get any information about whether i and j
are equal, even though we have just established it with the case match. This
is usually not a problem when writing production code, but can make certain
types of proofs as well as intrinsic verification impossible.

14

MSc Thesis Sára Juhošová

1 flow : Int → Int → Int
2 flow i j = case (i == j) of 𝜆 where
3 True → {! !}
4 False → {! !}

Figure 3.6: Case match with no witnesses

3.1.4 Lawful Type Classes
Many type classes being commonly used in Haskell carry with them an as-
sumption of some laws which should hold for their instances. A prime ex-
ample is the Monad type class, with its three monad laws [26]. Being able to
safely assume that an instance follows the laws of its type class can allow for
simplifications and optimisations in the code being written. Unfortunately,
these laws are not enforced in Haskell - it is the developer’s responsibility to
design their instances correctly.

agda2hs is a very natural tool to help us enforce (and prove) these laws
about the instances we define. Currently, lawful type classes are not included
in the agda2hs standard library, though there is an issue on GitHub4 regard-
ing their addition. If the instances defined in the standard library were to have
proven, lawful implementations, user-defined instances could benefit from
these proofs.

3.1.5 Haskell Booleans vs. Agda Propositions
Boolean equality and other operations are an important part of development
in almost every language: they control the programflow and they assert truths
about the variables being used. However, this equality does not automatically
translate into the propositional equality that is such a significant part of Agda.
This means that, unfortunately, all the library methods and automatic things
Agda can infer using the standard propositional library are not directly applic-
able to the boolean expressions of agda2hs.

As an example, take the implementation of the transitivity law of Eq in
Figure 3.7. The transitivityBool’ proof (lines 1-3) is defined in terms of the
built-in equivalence. To finish the proof, Agda can resolve the only valid case
match for you and the proof can easily be concluded with a simple refl. On
the other hand, the transitivityBool proof (lines 6-10) is defined in terms of
our Haskell boolean equality. Agda has to match on the constructors of Bool
to be able to use refl. While that might seem like a small increase in lines of

4https://github.com/agda/agda2hs/issues/108

15

https://github.com/agda/agda2hs/issues/108

MSc Thesis Sára Juhošová

1 transitivityBool ’ : ∀ (x y z : Bool)
2 → (x ≡ y) → (y ≡ z)
3 → (x ≡ z)
4 transitivityBool ’ x .x .x refl refl = refl
5
6 transitivityBool : ∀ (x y z : Bool)
7 → (x == y) ≡ True → (y == z) ≡ True
8 → (x == z) ≡ True
9 transitivityBool False False False _ _ = refl
10 transitivityBool True True True _ _ = refl

Figure 3.7: An implementation for the transitivity law of Eq

code, Bool only has two possible constructors with no parameters. With larger
data definitions, these can quickly explode into a large case match that needs
to be repeated for every proof.

3.1.6 The Idiosyncrasies of Agda
While these are out of the scope of this thesis, there were multiple complaints
within the bachelor projects about some things that are idiosyncratic to Agda.
A significant one which was mentioned often was the termination checker.
While the problem of terminating programs is undecidable [27] and thus has
no existing general solution, many of the students struggled with how strict its
implementation is in Agda. Agda is, of course, a crucial part of agda2hs,
meaning that any usability issues with Agda will be reflected in agda2hs.
However, this thesis aims to tackle the accessibility of these kinds of tools in
general, and so we leave this for future work.

3.2 The Hypothesis
Based on the challenges identified in the previous sections, we hypothesise
over what is necessary for a tool such as agda2hs to be accessible and easy to
use:

1. The tool has to support the usage of all commonly-used language
features of the language being transpiled to. This is to ensure that
the tool remains accessible to programmers used to working in the pop-
ular language.

2. The toolhas tohave allmethods and types of thepopular language
implemented and accessible within the formal verification lan-

16

MSc Thesis Sára Juhošová

guage. The standard library is a core feature of each language, and hav-
ing implementations of them allows users towrite proofsmore easily but
also to verify that they work in the expected way.

3. The tool has to have basic proofs for all methods and types of the
popularprogramming languageaccessiblewithin the formal veri-
fication language. Many proofs of new code require proofs about the
existing code used within. To make the usage of the tool easier, it is ne-
cessary to provide these basic proofs about the existing code base. This
also has the added benefit of making the expected properties of the code
clearer to the developer.

Another very important point to consider is the validity of the translations
and transpilations. For such a tool to be accessible, users need to trust that (a)
the standard functions of the popular language are correctly re-implemented
in the formal verification language and that (b) the transpilation is done cor-
rectly. After all, an incorrectly transpiled piece of code is useless no matter
how confident we are in the correctness of the original implementation.

However, this is something that will not be considered within this thesis
since trust in the codebase is necessary in every tool. We hope that by increas-
ing accessibility, we increase the community able to contribute to the quality
of agda2hs and develop trust in the codebase.

17

Chapter 4

Implementation

Based on the identified challenges, we settled on four features to improve, at-
tempting to cover as many issues as possible while still being able to test the
hypothesis. In the following sections, we go into more detail about the chal-
lengewith each of themand present the solution and its implications. For each
solution, we also improved and updated the relevant documentation. We link
to it throughout the following chapters.

4.1 Supporting the newtype Definition
Implemented in Pull Requests #141 and #167 of the agda2hs repository.

According to the Haskell Wiki, “the syntax and usage of newtypes is virtually
identical to that of data declarations” [28]. There are, however, two extra re-
strictions:

1. A newtype declaration must have exactly one constructor.
2. The newtype construtor must have exactly one field.

Additionally, there is one crucial benefit that a newtype definition has over
a data one: the new type and the type of its field can be treated as the same at
runtime. In mathematical terms, they are isomorphic. Using newtype essen-
tially allows for less overhead during runtime. What this means for practical
matters is that undefined values will cause different behaviour for a data and
newtype definition at runtime (examples can be viewed on the Haskell Wiki).
However, since agda2hs currently does not support dealing with undefined
values [9], we leave the behaviour for future work.

18

https://github.com/agda/agda2hs/pull/141
https://github.com/agda/agda2hs/pull/167

MSc Thesis Sára Juhošová

The Solution
Because the newtype definition is so similar to data, we can implement this
construct very easily: by adding a newtype compilation pragma. This pragma
can be used on data and record definitions which adhere to the single con-
structor and single field rules, throwing a relevant error in case they are viol-
ated. To compile a definition to a newtype, the developer needs to explicitly
append the newtype keyword to the compilation pragma.

1 data Indexed (a : Set) : Set where
2 MkIndexed : Int × a → Indexed a
3
4 {-# COMPILE AGDA2HS Indexed newtype #-}
5
6 record Identity (a : Set) : Set where
7 constructor MkIdentity
8 field
9 runIdentity : a
10 open Identity public
11
12 {-# COMPILE AGDA2HS Identity newtype #-}
13
14 record Equal (a : Set) : Set where
15 constructor MkEqual
16 field
17 pair : a × a
18 @0 proof : fst pair ≡ snd pair
19 open Equal public
20
21 {-# COMPILE AGDA2HS Equal newtype #-}

1 newtype Indexed a = MkIndexed (Int , a)
2
3 newtype Identity a = MkIdentity{runIdentity :: a}
4
5 newtype Equal a = MkEqual{pair :: (a, a)}

Figure 4.1: The definition of single-field data types compiled to newtype

Figure 4.1 demonstrates the definition and compilation of newtypes using
agda2hs, as simple data, as a simple record, and as a record with all but one
field erased. These will all successfully compile when the newtype pragma
is used. The three incorrect definitions in Figure 4.2 will yield the following
error messages:

19

MSc Thesis Sára Juhošová

Choice: “Newtype must have exactly one constructor in definition: Choice”
Duo: “Newtype must have exactly one field in constructor: MkDuo”

RecordDuo: “Newtype must have exactly one field in constructor: MkRecordDuo”

1 -- does not have exactly one constructor
2 data Choice (a b : Set) : Set where
3 A : a → Choice a b
4 B : b → Choice a b
5
6 {-# COMPILE AGDA2HS Choice newtype #-}
7
8 -- constructor does not have exactly one field
9 data Duo (a b : Set) : Set where
10 MkDuo : a → b → Duo a b
11
12 {-# COMPILE AGDA2HS Duo newtype #-}
13
14 -- constructor does not have exactly one field
15 record RecordDuo (a b : Set) : Set where
16 constructor MkRecordDuo
17 field
18 left : a
19 right : b
20 open RecordDuo public
21
22 {-# COMPILE AGDA2HS RecordDuo newtype #-}

Figure 4.2: Wrong definitions of newtype data types

Constructor Naming
The one drawback of this solution is that the constructor name cannot be the
same as the name of the new type (which is also the case with data declara-
tions). This is something that is possible in Haskell but not allowed by Agda
- hence we cannot replicate it directly in the Agda code. However, there is a
workaround available in agda2hs for record newtypes: using the record con-
structor. This will automatically convert it to the same name constructor in
Haskell. Figure 4.3 displays this transpilation.

20

MSc Thesis Sára Juhošová

1 record Identity (a : Set) : Set where
2 field
3 runIdentity : a
4 open Identity public
5
6 {-# COMPILE AGDA2HS Identity newtype #-}
7
8 makeIdentity : a → Identity a
9 makeIdentity a = record { runIdentity = a }
10
11 {-# COMPILE AGDA2HS makeIdentity #-}

1 newtype Identity a = Identity{runIdentity :: a}
2
3 makeIdentity :: a -> Identity a
4 makeIdentity a = Identity a

Figure 4.3: Obtaining the same type and constructor name

4.2 Supporting Standalone deriving
Implemented in Pull Request #161 of the agda2hs repository.

The existing solution to instance derivation in agda2hs (displayed in Figure
4.4) was to add the deriving expression to the pragma. This approach, how-
ever, has a very unfortunate limitation: Agda is not aware that these instances
exist. This means that using the methods of the instances in any of the Agda
code is not possible. While there are some scenarios in which that might not
be necessary (such as instances only needed at runtime), there is actually a
very good alternative which does not have this problem: using postulates.

The Solution
According to the Agda docs, “a postulate is a declaration of an element of some
type without an accompanying definition” [29]. It essentially makes Agda’s
type checker believe that the element in the postulate exists, even though we
have not defined it. Since we never execute the code in Agda, this is a reas-
onable solutions to make derived type classes available in both versions of the
code.

To be able to achieve the exact Haskell syntax as in Figure 4.4, agda2hs
would need an awareness of the entire program being compiled (which is cur-
rently not the case). This is because while the deriving clause is part of the
data definition in Haskell, postulates can be located anywhere in the Agda

21

https://github.com/agda/agda2hs/pull/161

MSc Thesis Sára Juhošová

1 data Direction : Set where
2 North : Direction
3 South : Direction
4 East : Direction
5 West : Direction
6
7 {-# COMPILE AGDA2HS Direction deriving (Eq, Show) #-}

1 data Direction = North
2 | South
3 | East
4 | West
5 deriving (Eq , Show)

Figure 4.4: Adding a deriving expression to the agda2hs pragma

code. Luckily, standalone deriving declarations are also possible in Haskell.
Thus, Figure 4.5 demonstrates how agda2hs is now able to deal with deriving
type class instances.

1 postulate instance
2 iEqDirection : Eq Direction
3 iShowDirection : Show Direction
4
5 {-# COMPILE AGDA2HS iEqDirection #-}
6 {-# COMPILE AGDA2HS iShowDirection #-}

1 {-# LANGUAGE StandaloneDeriving # -}
2
3 deriving instance Eq Direction
4
5 deriving instance Show Direction

Figure 4.5: Using postulates to derive type class instances

There are two things to note about this solution:

1. There is no need to add anything to the pragma, since agda2hs can
automatically discover whether the instance is implemented or only a
postulate. However, there might be some cases in which the developer
might want to implement the instance on the Agda side (e.g. to make
a proof simpler) but turn it into a derivation on the Haskell side. For
this case, there also exists a derive pragma, discussed in the following
subsection.

22

MSc Thesis Sára Juhošová

2. Since standalone deriving is only available since GHC2021, a language
flag is automatically added on top of theHaskell file to enable the feature
for older GHC versions (seen in Line 1 of the Haskell code in Figure 4.5).

1 instance
2 iEqDirection : Eq Direction
3 iEqDirection ._==_ North North = True
4 iEqDirection ._==_ South South = True
5 iEqDirection ._==_ East East = True
6 iEqDirection ._==_ West West = True
7 iEqDirection ._==_ _ _ = False
8
9 {-# COMPILE AGDA2HS iEqDirection derive #-}
10
11 record Clazz (a : Set) : Set where
12 field
13 foo : a → Int
14 bar : a → Bool
15
16 open Clazz {{...}} public
17
18 {-# COMPILE AGDA2HS Clazz class #-}
19
20 postulate instance iDirectionClazz : Clazz Direction
21
22 {-# COMPILE AGDA2HS iDirectionClazz derive anyclass #-}

1 {-# LANGUAGE StandaloneDeriving , DerivingStrategies ,
DeriveAnyClass

2 #-}
3
4 deriving instance Eq Direction
5
6 class Clazz a where
7 foo :: a -> Int
8 bar :: a -> Bool
9
10 deriving anyclass instance Clazz Direction

Figure 4.6: Using the derive pragma

The derive Pragma
While a simple postulate is easy for agda2hs to recognise and compile, there
are some cases inwhich the pragmamight needmore configurations to achieve

23

MSc Thesis Sára Juhošová

the desired runtime behaviour on theHaskell side. One such scenario (already
mentioned above) is the ability to compile implemented instances into deriva-
tions. The other important scenario is the use of deriving strategies [30] which
tell the Haskell compiler how to generate the derived instances.

Consider the code in Figure 4.6. Without the derive keyword, the pragma
onLine 17wouldhave compiled the actual instance implementation toHaskell.
Now, theHaskell code is clean and readable, while theAgda code has a specific
implementation for proofs to rely on. The pragma on Line 30 tells agda2hs to
compile the postulate to a derivation which uses the anyclass strategy. Since
Clazz is not one of the type classes for which GHC can generate a derivation
natively, the Haskell code would not compile without this specification.

Since deriving strategies are not included in the GHC compiler by default,
agda2hs sets the necessary language flags. They are included if and only if
they are needed.

4.3 AddingWitnesses to Flow Control
Implemented in Pull Request #156 of the agda2hs repository.

Unlike in the previous two improvements, this featuremostly required changes
to the agda2hs Prelude instead of to the actual compilation logic of agda2hs.
This is also the point where it started to become apparent that while a Haskell
library contains data definitions and functions, an equivalent in Agda should
also contain the relevant proofs. The original definitions of the control flow
constructs in Agda are shown in Figure 4.7.

1 infix -1 case_of_
2 case_of_ : a → (a → b) → b
3 case x of f = f x
4
5 infix -2 if_then_else_
6 if_then_else_ : {@0 a : Set 𝓁} → Bool → a → a → a
7 if False then x else y = y
8 if True then x else y = x

Figure 4.7: The original definitions of the control flow constructs

24

https://github.com/agda/agda2hs/pull/156

MSc Thesis Sára Juhošová

The Solution
We present the two possible options of solving the problem of witnesses in
flow control. Both of these allow for a “witnessed” usage as well as a simple
one, meaning that branching operations which do not require a witness of
their condition retain the same simple syntax as they did with their original
implementation.

Option 1: Using a Witness datatype within the simple construct.

The key idea here would be to match on the “witnessed” cases of the condi-
tion. For this, we require the definition of a Witness data type (also known as
a “singleton” type [31]), which would be able to transparently wrap the con-
dition and the proof of its result. Figure 4.8 displays the definition of such a
type.

1 record Witness (A : Set) (a : A) : Set where
2 constructor _<>
3 field
4 el : A
5 @0 {{ pf }} : a ≡ el
6 open Witness public
7
8 {-# COMPILE AGDA2HS Witness unboxed #-}
9
10 pattern _<_> el pf = _<> el {{ pf }}
11
12 witness : {A : Set} → (a : A) → Witness A a
13 witness a = a <>
14
15 {-# COMPILE AGDA2HS witness transparent #-}

Figure 4.8: The definition of the helper Witness data type

The Witness data type is compiled using the unboxed pragma, which tells
agda2hs that it is isomorphic to its single visible field. This means that in
Haskell, we would see any Witness replaced by its el field. Similarly, the ac-
companying witness function is compiled using the transparent pragma,
letting agda2hs know that the function should not appear in theHaskell code
(it is “transparent”).

Figure 4.9 contains a simple branching examplewhere a Witness is used to
obtain the necessary equality proof. On the Agda side, the proofs are available
whenever needed and allow for the intrinsic verification of the EqPair data
type, which is meant to store two elements for which we can provide a proof

25

MSc Thesis Sára Juhošová

of equality. On the Haskell side, we see that it compiles to a simple case match
with no complicated leftover constructs.

1 data EqPair (a : Set) : Set where
2 MkEqPair : ((a’ , a’’) : a × a) → @0 {{ a’ ≡ a’’ }} →

EqPair a
3
4 {-# COMPILE AGDA2HS EqPair newtype #-}
5
6 postulate bool2prop : ∀ (i j : Int) → (i == j) ≡ True → i ≡ j
7
8 makeEqPair : Int → Int → Maybe (EqPair Int)
9 makeEqPair i j =
10 case (witness (i == j)) of 𝜆 where
11 (True < h >) → Just (MkEqPair (i , j) {{ bool2prop i j h

}})
12 (False <>) → Nothing
13
14 {-# COMPILE AGDA2HS makeEqPair #-}

1 newtype EqPair a = MkEqPair (a, a)
2
3 makeEqPair :: Int -> Int -> Maybe (EqPair Int)
4 makeEqPair i j
5 = case i == j of
6 True -> Just (MkEqPair (i, j))
7 False -> Nothing

Figure 4.9: A simple branching function requiring the use of a Witness

While this solution works, there are two big problems with it. Firstly, the
Agda code is wordy and does not resemble standard Haskell code at all. Keep-
ing in mind that agda2hs is meant to be a tool for Haskell programmers, this
might not be an ideal solution to providing a usable feature. Secondly, it is
not applicable to if-statements. The type of the condition becomes a Witness
of the actual condition and while this is no problem for case matches, an if-
statement explicitly requires a boolean. We could, of course, add a version of
the if_then_else_ definition into the standard library which decomposes the
Witness for us. By then, though, we might as well make it simpler since we
are adjusting the code in agda2hs anyway.

Option 2: Building the constructs with intrinsic proofs.

The alternative to Option 1 is to actually change the signatures of the flow
constructs in the agda2hs Prelude. The original definitions have a simple,

26

MSc Thesis Sára Juhošová

Haskell-like signaturewith very straightforward implementations. Figure 4.10
displays the new type signatures of the flow control constructs (the implement-
ations stay the same).

1 case_of_ : (a’ : a) → ((a’’ : a) → @0 {{ a’ ≡ a’’ }} → b) → b
2
3 if_then_else_ : {@0 a : Set 𝓁} → (flg : Bool)
4 → (@0 {{ flg ≡ True }} → a) → (@0 {{ flg ≡ False }} → a)
5 → a

Figure 4.10: The new type signatures of the control flow constructs

With this redesign, it is possible to carry the witness of the control flow as
an instance [32] - meaning Agda can sometimes use and resolve themwithout
the developer needing to explicitly worry about them. An example of this can
be seen in Figure 4.11: the MkRange constructor needs an instance of an order-
ing proof to construct the Range. The then branch of the expression on Line
18 automatically brings such an instance into scope - meaning that there is no
need to explicitly pass it, and the code looks almost identical to the generated
Haskell.

1 data Range : Set where
2 MkRange : (low high : Int)
3 → {{ @0 h : ((low <= high) ≡ True) }}
4 → Range
5
6 {-# COMPILE AGDA2HS Range #-}
7
8 createRange : Int → Int → Maybe Range
9 createRange low high = if low <= high then Just (MkRange low

high) else Nothing
10
11 {-# COMPILE AGDA2HS createRange #-}

1 data Range = MkRange Int Int
2
3 createRange :: Int -> Int -> Maybe Range
4 createRange low high
5 = if low <= high then Just (MkRange low high) else Nothing

Figure 4.11: if with the proof instance automatically brought into scope

If the automatic passing of the proof instance is not enough, it is also pos-
sible to explicitly bring the witnesses into scope of the branch. This can be

27

MSc Thesis Sára Juhošová

useful when, for example, the witness needs to be transformed or combined
with another proof before it can be used in the branch. An example can be
found in Figure 4.12

1 ifEqPair : Int → Int → Maybe (EqPair Int)
2 ifEqPair i j =
3 if (i == j) then
4 (𝜆 {{ h }} →
5 Just (MkEqPair (i , j) {{ bool2prop i j h }}))
6 else Nothing
7
8 {-# COMPILE AGDA2HS ifEqPair #-}
9
10 caseEqPair : Int → Int → Maybe (EqPair Int)
11 caseEqPair i j =
12 case (i == j) of 𝜆 where
13 True {{ h }} →
14 Just (MkEqPair (i , j) {{ bool2prop i j h }})
15 False → Nothing
16
17 {-# COMPILE AGDA2HS caseEqPair #-}

1 ifEqPair :: Int -> Int -> Maybe (EqPair Int)
2 ifEqPair i j
3 = if i == j then Just (MkEqPair (i, j)) else Nothing
4
5 caseEqPair :: Int -> Int -> Maybe (EqPair Int)
6 caseEqPair i j
7 = case i == j of
8 True -> Just (MkEqPair (i, j))
9 False -> Nothing

Figure 4.12: Flows with explicit usage of the witness proofs (using the EqPair
type from Figure 4.9)

The Consequences
The change of type signature of the two flow control constructs had some
design implications on agda2hs. Both changes were due to the change in
type signature affecting the correct behaviour of these features. However, both
were deemed redundant and have been removed tomake room for the new im-
plementation. Detailed explanations can be seen in the description of the Pull
Request.

28

https://github.com/agda/agda2hs/pull/156
https://github.com/agda/agda2hs/pull/156

MSc Thesis Sára Juhošová

Inline functions in case_of_ are no longer supported.

It is no longer possible to use simple inline functions such as length as a
second parameter in case_of_. This feature was arguably redundant though,
since the generated Haskell can be achieved (much more straightforwardly)
without using case_of_ (i.e. case xs of length inAgda compiles to length
xs in Haskell - which can be achieved bywriting length xs on the Agda side).

Support for partially applied if_then_else_ and case_of_ is removed.

While Haskell does offer infix operators for user defined data types, it does
not do so for if_then_else_ and case_of_, which are native constructs. This
requires a user to explicitly write a lambda if they wish to partially apply it,
which is now also the case in agda2hs.

4.4 Adding Lawful Type Classes to Prelude
Implemented in Pull Requests #160 and #165 of the agda2hs repository.

Just like with flow control witnesses, this is a challenge that had to be ad-
dressed at the level of the agda2hs Prelude rather than in the actual codebase
of agda2hs. It is obvious that the relevant laws need to be added to the type
classes, but there are multiple decisions to make in the design.

The Solution
The first thing to determine is whether to include the laws in the base type
class. In this case, the laws are part of each instance definition and are erased
during the transpilation to Haskell. The alternative approach is to create an
IsLawful definition for each type class which users can choose to implement
when necessary.

The solution that we went for in this case is to keep the two type classes
separate. If we included the laws within the default type classes, users would
always have to provide the proof. With the second approach, the logic is di-
vided and the laws are present only when they are necessary. This decision
actually led us to separate the Haskell.Prelude library into two packages:
the existing Prim package, containing the data and method definitions of the
agda2hs Prelude, and the Law package, containing the proofs and laws about
the definitions in Prim.

The second decision we had to make was about bundling versus paramet-
erising [33] - two ways in which to relate type classes to each other. Consider

29

https://github.com/agda/agda2hs/pull/160
https://github.com/agda/agda2hs/pull/165

MSc Thesis Sára Juhošová

the Eq and Ord type classes. In order to be able to implement an Ord instance,
there already needs to exist an Eq instances for that type. There are two ways
to implement this, demonstrated in Figure 4.13: make Eq a field in Ord (Lines
1-5) or make Eq a parameter in Ord (Lines 7-10). The same two options are
available to relate Eq with IsLawfulEq.

1 -- Eq bundled in Ord
2 record Ord (a : Set) : Set where
3 field
4 overlap {{ super }} : Eq a
5 ...
6
7 -- Eq parameterised in Ord
8 record Ord (a : Set) {{ super : Eq a }} : Set where
9 field
10 ...

Figure 4.13: Bundling vs. Parameterising

The design we settled on is illustrated in Figure 4.14: prerequisite type
classes are bundled in other type classes (this was already the implementa-
tion) and parameterised in their lawful variants. The best way to explain why
this was the choice is to demonstrate the results.

Eq ⟹ Ord

↓ ↓

IsLawfulEq ⟹ IsLawfulOrd

⟹ is bundled in
⟶ is a parameter in

Figure 4.14: Bundling vs. Parameterising of Type Classes

Consider the code snippet in Figure 4.15. There is no need to pass an Eq
instance to the minimum function because Eq is already bundled in Ord. This
makes the function look very similar to theHaskell one. On the other hand, the
makeEqual function needs both an Eq and an IsLawfulEq instance. While this
might seem like unnecessary verbosity, we argue that it brings clarity. There
is a clear division between the part of the type signature that will be translated
to Haskell and the part that will be erased.

Unlike the previous three features we implemented, this one is more of
a guideline than an implementation. We have implemented example lawful

30

MSc Thesis Sára Juhošová

1 minimum : {{ Ord a }} → a → a → a
2 minimum i j = if i < j then i else j
3
4 {-# COMPILE AGDA2HS minimum #-}
5
6 makeEqual : {{ iEqA : Eq a }} → @0 {{ IsLawfulEq a }}
7 → a → a → Maybe (EqPair a)
8 makeEqual i j =
9 if i == j then (𝜆 {{ h }} →
10 Just (MkEqPair (i , j) {{ equality i j h }}))
11 else Nothing
12
13 {-# COMPILE AGDA2HS makeEqual #-}

1 minimum :: Ord a => a -> a -> a
2 minimum i j = if i < j then i else j
3
4 makeEqual :: Eq a => a -> a -> Maybe (EqPair a)
5 makeEqual i j =
6 if i == j then Just (MkEqPair (i, j)) else Nothing

Figure 4.15: Using Lawful Type Classes

type classes as well as some of their instances for other agda2hs developers
to follow. While this separation of transpiled code from erased code might not
be the way Agda developers are used to working, we believe that it provides
clarity for Haskell developers and will hopefully make the transition easier for
them.

Lawful Eq
During the implementation of lawful type classes, we also touched upon the
problem of boolean and propositional equality. To model the relationship that
they have, we used the Reflects idiom (used in Line 3 of Figure 4.16) used in
the IsLawfulEq type class. This allows users to tell Agda that the two equalit-
ies “reflect” each other.

With this implementation, users only have to prove the isEquality field
for type they are working with. Figure 4.17 shows an example of this for Bool.
With this short implementation, we get the conversion between boolean and
propositional equality for free and are even able to prove the laws for boolean
equality generically. The boolean equality proofs and the definition of the
Reflects idiom are included in Appendix A).

31

MSc Thesis Sára Juhošová

1 record IsLawfulEq (e : Set) {{ iEq : Eq e }} : Set 1 where
2 field
3 isEquality : ∀ (x y : e) → Reflects (x ≡ y) (x == y)
4
5 equality : ∀ (x y : e) → (x == y) ≡ True → x ≡ y
6 equality x y h = extractTrue {{ h }} (isEquality x y)
7
8 nequality : ∀ (x y : e) → (x == y) ≡ False → (x ≡ y → ⊥)
9 nequality x y h = extractFalse {{ h }} (isEquality x y)
10
11 -- contrapositive of nequality
12 equality ’ : ∀ (x y : e) → x ≡ y → (x == y) ≡ True
13 equality ’ x y h with x == y in eq
14 ... | False = magic (nequality x y eq h)
15 ... | True = refl
16
17 -- contrapositive of equality
18 nequality ’ : ∀ (x y : e) → (x ≡ y → ⊥) → (x == y) ≡ False
19 nequality ’ x y h with x == y in eq
20 ... | True = magic (h (equality x y eq))
21 ... | False = refl
22
23 open IsLawfulEq {{ ... }} public

Figure 4.16: The Definition of IsLawfulEq

1 instance
2 iLawfulEqBool : IsLawfulEq Bool
3 iLawfulEqBool .isEquality False False = ofY refl
4 iLawfulEqBool .isEquality False True = ofN 𝜆()
5 iLawfulEqBool .isEquality True False = ofN 𝜆()
6 iLawfulEqBool .isEquality True True = ofY refl

Figure 4.17: An instance of IsLawfulEq for Bool

32

Chapter 5

User Study Setup

To evaluate the usability of the improved version of agda2hs, we conduc-
ted a user study, where we asked participants to complete two small program-
ming assignments in agda2hs and then evaluate their experience by filling in
a questionnaire. This chapter describes the setup for the user study, explaining
the goals and means of conducting it.

5.1 Sources of Inspiration
As all the user-oriented work in formal verification so repetitively states, there
has not been much user-oriented work done in formal verification. Despite
these circumstances, there are two works which we used as inspiration for our
user study.

Firstly, the work by Gamboa et al. [34] on usability-oriented design of li-
quid types in Java helped uswith the design of the goals and assignments in our
user study. Their paper describes the process of designing liquid types based
on user feedback and then evaluating their design by conducting a user study.
We adopt their approach in defining research questions for the user study and
designing the assignments and questionnaire to answer those.

Secondly, we took inspiration for our questionnaire from the paper byBeck-
ert and Grebing [35] where they evaluate the usability of interactive verific-
ation systems. They recommend a source of questions to evaluate software
and provide tips on how to convert closed questions to more informative open
questions. They also warn that many participants create different scales when
answering questions (e.g. for evaluating their skill levels with a certain tool),
so clarity and specific instructions are important when designing a user study.

33

MSc Thesis Sára Juhošová

5.2 The Goals
The goals of this user study are to, of course, evaluate the work done during
this thesis, but also to take a first structured look at the usability of agda2hs.
Since the resources of a user study done as a small part of a master thesis are
quite limited, this study is meant more as a prototype which will hopefully
lead to both insights and future user studies.

Taking inspiration from the user study of Gamboa et al. [34], we define
research questions which this user study will attempt to answer:

1. What are the challenges with using agda2hs?
2. Under which circumstances are developers open to using agda2hs? In

which cases do they think such a tool is useful?
3. Which constructs and features are necessary to make agda2hs access-

ible and easy-to-use?

5.3 Recruitment
To recruit participants for the study, we posted an announcement with a leaf-
let (attached in Appendix B) in a channel of the Programming Languages re-
search group meant for discussing verification tools, in the off-topic channel
of the teaching assistants, and on the course page of CSE3100 Functional Pro-
gramming 2022/20231. By these means we hoped to acquire participants with
diverse experience with both Haskell and Agda as well as with diverse back-
grounds and interests. Obviously, participants from industry were not present,
but such recruitment was not possible within the scope of our prototype user
study.

Candidates were asked to fill in a sign-up form, where they had to agree
with the consent statement (attached in Appendix C), provide their e-mail ad-
dress, and indicate which operating system they use. E-mail addresses were
never exported and they were used only to communicate information regard-
ing the user study prior to its execution. Operating systemswere only reviewed
and used to set up an easy-to-use programming environment.

5.4 The Programming Assignments
For participants to be able to evaluate the usability and potential of agda2hs,
they had to receive the opportunity to work with the tool itself. In order to do

1https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=61501

34

https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=61501

MSc Thesis Sára Juhošová

this in as simple a way as possible, two tailored assignments were designed to
let them explore the most relevant parts of the tool. The general idea was that
they would be able to complete the assignments on their own with only the
help of the agda2hs docs, the agda2hs Prelude, and the examples available
in the agda2hs repository.

The Environment Setup
To ensure that participants could directly dive into implementing the program-
ming assignments, we set up a coding environment using a virtual machine
(VM) and a prepared project. The virtual machine was running a Debian in-
stance with access to the internet and had all the necessary tools preinstalled:
the correct version of Agda, the latest version of agda2hs in its build path,
and Visual Studio Code.

The project2 that the participants would be working in during the study
was setup in the following way:

app: The directory containing the executable Haskell app which, when run,
executes QuickCheck tests for the specified assignment.

lib: The directory containing theAgda solutionfiles. This is the only directory
that the participants are supposed to edit.

lib/Help: A directory containing helper methods for the exercises.
src: A git-ignored directory into which agda2hs generates theHaskell code.
default: : A helper directory for this particular project setup which contains

partial Haskell implementations of all the exercises. They are used to
make the Haskell code compile even when the exercise has not been im-
plemented yet. The are notmeant to serve as inspiration.

A Makefile was included to let participants build their solutions and ex-
ecute the tests, allowing them to verify their solutions. The README contained
this project structure explanation as well as the assignments that the parti-
cipants were to complete. It also included an example assignment with an
example solution in the lib directory. The example defines a reverse func-
tion for which certain properties are extrinsically verified. To build and run
the tests for this example assignment, participants simply had to run make
A=reverse.

2Publicly available at the following GitHub repository: https://github.com/
sarajuhosova/agda2hs-user-study

35

https://github.com/sarajuhosova/agda2hs-user-study
https://github.com/sarajuhosova/agda2hs-user-study

MSc Thesis Sára Juhošová

After signing up for the user study, the participants received an email (in-
cluded in Appendix D) explaining the steps they can take before they arrive
in order to ensure a smooth start. This included explaining how to either in-
stall and run the VM or setup the environment on their own machines. The
email also linked to an “example” project, which they could use to verify that
everything was setup and running correctly. This project was a minimal ver-
sion of the actual user study project, having the same structure and including
the reverse example, but excluding the instructions to the actual assignments.

Assignment 1: The All Type
The first assignment asked the participants to “implement the Haskell All
type - the boolean monoid under conjunction”. It was divided into eight sub-
assignments, the solutions for which can be found in Figure 5.13 (the relevant
lines are mentioned below):

1. Define the All type. [Lines 1 and 8-13]
The All type in Haskell is defined as a record newtype. Participants
could search the documentation for how to achieve this. TheQuickCheck
tests also required the type and constructor name to be the same, which
is normally not possible in Agda. A workaround for this problem is also
explained in the documentation. An All type is already defined in the
agda2hsPrelude, so an extra challengewas to learnhow tohide imports
(this could have been copied from the reverse example assignment).

2. Create an instance for Eq, Ord, Show, and Bounded. These should all
be available on the Agda side. [Lines 16-20 and 38-41]
This part of the assignmentwas aimed at postulating instances to achieve
standalone derivations, since this is how they are implemented in the
source code on Hackage. It is possible to define and compile the Eq type
class easily, but the rest become very complicated if the participant did
not use postulates and deriving.

3. Create an instance for Semigroup that is available on theAgda side.
[Lines 22-24 and 42]
This instance has to actually be implemented, since there is no way for
Haskell to derive that this is a conjunction associativity function. The
participant can choose to either implement the _<>_ function logically
(as in our example solution) or attempt to copy the use of an imported
coerce function, as done in the source code on Hackage.

3To view the Haskell version of this code, see Appendix E.

36

https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-Monoid.html#t:All
https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-Monoid.html#t:All
https://agda.github.io/agda2hs/features.html#newtypes
https://agda.github.io/agda2hs/features.html#deriving-type-class-instances
https://agda.github.io/agda2hs/features.html#deriving-type-class-instances

MSc Thesis Sára Juhošová

1 open import Haskell.Prelude hiding (All)
2
3 {-# FOREIGN AGDA2HS
4 {-# LANGUAGE DeriveGeneric #-}
5 import GHC.Generics
6 #-}
7
8 record All : Set where
9 field
10 getAll : Bool
11 open All public
12
13 {-# COMPILE AGDA2HS All newtype deriving (Read , Generic) #-}
14
15 instance
16 postulate
17 iAllEq : Eq All
18 iAllOrd : Ord All
19 iAllShow : Show All
20 iAllBounded : Bounded All
21
22 iAllSemigroup : Semigroup All
23 iAllSemigroup ._<>_ a b =
24 record { getAll = (getAll a && getAll b) }
25
26 iAllLawfulSemigroup : IsLawfulSemigroup All
27 iAllLawfulSemigroup .associativity
28 record { getAll = False } b c = refl
29 iAllLawfulSemigroup .associativity
30 record { getAll = True } b c = refl
31
32 iAllMonoid : Monoid All
33 iAllMonoid .mempty = record { getAll = True }
34 iAllMonoid .mappend = _<>_
35 iAllMonoid .mconcat [] = mempty
36 iAllMonoid .mconcat (x :: xs) = x <> mconcat xs
37
38 {-# COMPILE AGDA2HS iAllEq #-}
39 {-# COMPILE AGDA2HS iAllOrd #-}
40 {-# COMPILE AGDA2HS iAllShow #-}
41 {-# COMPILE AGDA2HS iAllBounded #-}
42 {-# COMPILE AGDA2HS iAllSemigroup #-}
43 {-# COMPILE AGDA2HS iAllMonoid #-}

Figure 5.1: The intended solution for Assignment 1 of the user study

37

MSc Thesis Sára Juhošová

4. Prove that the Semigroup instance is lawful (you can see which
laws should hold in the Haskell documentation). [Lines 26-30]
At the moment of the user study, there was actually no documentation
on lawful type classes, which the participants might have used in this
sub-assignment. There were examples available in the agda2hs repos-
itory (which they were encouraged to use). It was also possible to define
and prove the associativity themselves in anyway theywanted, since this
is code that should not be compiled to Haskell.

5. Create an instance for Monoid that is available on the Agda side.
[Lines 32-36 and 43]
While very similar to the Semigroup instance, this instance could ac-
tually be defined using a default field implementation. Unfortunately,
at the time of the user study, there was a bug with imports when using
default field implementations (explained in Issue #169), so the easier
solution was to just define all the fields (as in our example solution).

6. (Optional) Create an instance for Read. This instance does not
need to be available on the Agda side. [Line 13]
Since this instance did not need to be available on the Agda side, it was
enough to just add a deriving clause to the compilation pragma. It was
optional because it tested an alternative to a feature added during this
thesis, not the feature itself.

7. (Optional) Create an instance for Generic. This instance does not
need to be available on the Agda side. [Lines 3-6 and 13]
This sub-assignment was similar to the instance for Read, but it required
the foreign pragma with an import and a language flag. The error mes-
sages should have been sufficient for participants to figure this out.

The general idea of this assignment was to get acquainted with agda2hs.
The participants were only asked to prove a simple associativity law, and so
could mostly get by with only Haskell programming logic. The assignment
was designed in such a way, that if the participants opened the Haskell source
available on Hackage, they could reverse-engineer the entire implementation
by consulting the agda2hs documentation.

The QuickCheck tests verified that the following held for the solution:

• That an Eq instance exists such that
(a == b) == (All a == All b).

• That an Ord instance exists such that
compare a b == compare (All a) (All b).

38

https://hackage.haskell.org/package/base-4.18.0.0/docs/Data-Semigroup.html
https://agda.github.io/agda2hs/features.html#default-typeclass-field-implementations
https://github.com/agda/agda2hs/issues/169
https://agda.github.io/agda2hs/features.html#haskell-language-extensions
https://hackage.haskell.org/package/base-4.18.0.0/docs/src/Data.Semigroup.Internal.html#All
https://hackage.haskell.org/package/base-4.18.0.0/docs/src/Data.Semigroup.Internal.html#All

MSc Thesis Sára Juhošová

• That a Show instance exists such that
("All getAll = " ++ show a ++ "") == show (All a)
(this is what the standardly derived Show instance does).

• That a Bounded instance exists such that
(minBound == All False) && (maxBound == All True).

• That a Semigroup instance exists such that
All a <> (All b <> All c) == (All a <> All b) <> All c.

• That a Monoid instance exists such that:

– mempty == All True,
– mappend (All a) (All b) == All a <> All b,
– mconcat (map All xs) == All (foldl (&&) True xs).

Assignment 2: Safe lookup
The second assignment asked the participants to “implement a lookupSafe
function which looks up a value in a list of key-value pairs”. The compiled
Haskell signature of this method was to be:

lookupSafe :: Eq a => a -> [(a, b)] -> b

The participants were asked to include a guarantee in their Agda code of
the lookup action happening only if the list contains the key. The QuickCheck
tests verify that if a key is in a list, the lookupSafe function will find it. They
were given two helper functions in the lib/Help directory (displayed in Fig-
ure 5.2). To complete this assignment, it was necessary to use the agda2hs
features more tailored to Agda itself: flow control constructs with witnesses,
(possibly) the IsLawfulEq type class, and erasure.

The intended solution can be seen in Figure 5.34 It is not possible on Line
13 to recursively call the lookupSafe function without providing a proof that
that tail of the list contains the key. To construct this proof, the witness of the
fst x == key ≡ False condition in the else branch is needed. This boolean
equality then needs to be converted into the Agda propositional equality fst
x == key → ⊥, which can be done using the IsLawfulEq type class.

Unfortunately, lawful type classes were not yet documented during the
user study, and so it was only possible to complete this assignment with suffi-
cient exploration of the agda2hs Prelude.

4To view the Haskell version of this code, see Appendix E.

39

MSc Thesis Sára Juhošová

1 contains : {{ Eq a }} → a → List (a × b) → Bool
2 contains key [] = False
3 contains key (x :: xs) =
4 if fst x == key then True else contains key xs
5
6 {-# COMPILE AGDA2HS contains #-}
7
8 postulate
9 containsTail : {{ iEqA : Eq a }}
10 → ∀ (key : a) (x : a × b) (xs : List (a × b))
11 → IsTrue (contains key (x :: xs))
12 → (fst x ≡ key → ⊥)
13 → IsTrue (contains key xs)

1 contains :: Eq a => a -> [(a, b)] -> Bool
2 contains key [] = False
3 contains key (x : xs)
4 = if fst x == key then True else contains key xs

Figure 5.2: The helper functions for Assignment 2

1 open import Haskell.Prelude
2
3 open import Help.Contains
4
5 lookupSafe : {{ iEqA : Eq a }} → @0 {{ IsLawfulEq a }}
6 → (key : a) → (xs : List (a × b))
7 → @0 {{ IsTrue (contains key xs) }}
8 → b
9 lookupSafe key (x :: xs) {{ hc }} =
10 if fst x == key then
11 snd x
12 else
13 𝜆 {{ neq }} → lookupSafe key xs {{
14 containsTail key x xs hc (nequality _ _ neq)
15 }}
16
17 {-# COMPILE AGDA2HS lookupSafe #-}

Figure 5.3: The intended solution for Assignment 2 of the user study

5.5 The Questionnaire
After completing the programming assignments to any degree of completion,
participants were asked to complete a questionnaire. In combination with

40

MSc Thesis Sára Juhošová

an inspection of the programming solutions, the aggregated responses to this
questionnaire would hopefully answer the research questions defined above -
and thus also evaluate the work done during this thesis.

Many questions were drawn from the Software Usability Measurement In-
ventory (SUMI), “a rigorously tested and proven method of measuring soft-
ware quality from the enduser’s point of view” [36]. SUMI is an inventory of 50
questions to which participants can reply with Agree, Undecided, or Disagree.
It was decided during the development, that adding Strongly (dis)agree options
only made it harder for participants to make a judgement. SUMI is meant to
evaluate user experience of any software, meaning that some questions are not
directly relevant. An example of this is the statement “the organisation of the
menus seems quite logical” which might be applicable to software with a UI,
but is not applicable to agda2hs.

To also get some insight into concrete future work, the SUMI questions
were complemented with open questions. These will be used to evaluate not
only the general opinions, but also to get specific insights and recommenda-
tions.

The questionnaire was divided into seven sections whose content and pur-
pose we describe below:

1. Welcome! The welcome page was used to kick off the session, giving
participants useful links to documentation, as well as a link to down-
load the actual project. It contained instructions on where to find the
assignments and how to begin.

2. Your Solution. This sectionwas used to sort the submissions. Each par-
ticipant was given a unique identifier when they started the user study
and they were asked to compress their lib folder into a ZIP archive, re-
name it to that identifier, and upload it to the SURF drive linked in the
questionnaire. They were then asked to input the identifier into a field
in this section, such that we would be able tomatch solutions to answers
(this was the only mandatory field in the entire questionnaire).
This section also asked participants to mark which assignments they
completed fully and to indicate the time spent per assignment. They
were also asked whether they had read any agda2hs documentation
before arriving to the session.

3. Your Skills. To be able to understand where the feedback was com-
ing from, we asked users to indicate their experience with Haskell and
Agda respectively. This was done using multi-select choice questions,
where users were asked to indicate in which scenarios they had used the

41

MSc Thesis Sára Juhošová

given language before and which language features they are comfort-
ably familiar with. The features listed out for Haskell were taken from
this comprehensive Haskeller Competency Matrix.

4. Your Experience. This section was design to answer the first research
question, by asking participants to agree, not decide on, or disagree with
statements relating to the complexity of using agda2hs. These included
statements such as “once I have a clear idea of how I want to implement
something, it is easy to achieve it using Agda2HS” as well as “the docu-
mentation was very clear” or “error messages provided by Agda2HS are
adequate”. These statements were complemented with two open ques-
tions which asked for participants’ opinions about the best aspects and
most needed improvements with regard to ease-of-use and understand-
ing of agda2hs.

5. Your Impressions. This section aimed to answer the second research
question, asking participants to react to statements about recommend-
ingagda2hs to others or liking / dislikingworkingwithagda2hs. They
were also asked to give their thoughts on the cases in which agda2hs
would or would not be useful in two open questions.

6. Some Technical Reflection. The section hopes to provide answers to
the third research questions using three different tactics. Firstly, parti-
cipants were asked to indicate which of the four new features they had
used in their code andwhich they thought are necessary for the accessib-
ility and ease-of-use of agda2hs. Next, they had space to indicatewhich
Haskell or Agda features they were missing in the tool by answering two
separate open questions. Lastly, they were asked to agree, not decide on,
or disagree with the three hypotheses that we determined were neces-
sary for the accessibility and ease-of-use of tools such as agda2hs.

7. Anything Else? In case there was something else participants wanted
to mention about their experience with agda2hs, this section had one
open text field that let them do so.

A copy of the full questionnaire can be found in Appendix F.

42

https://gist.github.com/graninas/833a9ff306338aefec7e543100c16ea1

Chapter 6

Results

In the following chapter, we present the aggregated results of the user study
based on the code submissions and questionnaire answers1.

The user study was attended by a total of 9 participants, all students from
various study levels (i.e. bachelor, master, and PhD) and with varying degrees
of experience in bothHaskell andAgda. To evaluate their experience, we asked
participants to indicate which features in each language they are “comfortably
familiar with”. We used this information to determine each participant’s level
of Haskell and Agda skills. The results can be viewed in Figure 6.1 (for more
details on how this was computed, see Appendix G).

Figure 6.1: The participants’ skill levels

1The results are available under an MIT License at: https://doi.org/10.4121/
611fd9e6-a7bb-47d7-9afe-34efe890ddd7

43

https://doi.org/10.4121/611fd9e6-a7bb-47d7-9afe-34efe890ddd7
https://doi.org/10.4121/611fd9e6-a7bb-47d7-9afe-34efe890ddd7

MSc Thesis Sára Juhošová

6.1 Lessons Learned
The participantswere asked to complete asmany assignments to asmuch com-
pletion as they prefer. Figure 6.2 displays an overview of completion for each
exercise. We discuss the numbers and common “mistakes” (i.e. where the
solutions diverged from the expected solution) for each assignment.

Figure 6.2: The amount of participants that completed each exercise

Assignment 1: The All Type

The first assignment (with all sub-assignments included) took participants an
average of 80minutes to complete. Except for the twooptional sub-assignments,
this assignmentwas completed by almost every participants in its entirety. The
most common mistakes were the following:

• Not compiling All to newtype. This was not a breaking issue.
• Defining a specific constructor name, different from the type name. This
actually caused the Haskell tests to fail, since they expected the same
name.

• Implementing the Eq instance by hand and only at the more complex
type classes realising that derivingmight be an option.

• Not using the built-in IsLawfulSemigroup type class to prove that their
Semigroup instancewas lawful. Manyparticipants just defined andproved
this on their own.

44

MSc Thesis Sára Juhošová

Even though the expected solution did not do it (since the feature was
buggy at the time of the user study), twoparticipantsdiduse the defaultmethod
type class implementations for defining Monoid. Unfortunately, imports were
broken and their code did not compile, despite them following the document-
ation and examples.

The two optional assignments were only completed by two participants
(and one implemented Exercise 1.6 accidentally).

Assignment 2: Safe lookup

Participants spent an average of 53minutes trying to implement the second as-
signment, but only three managed to actually complete it. Among the others,
there were several partial solutions which were missing the following:

• Using the nequality function of the IsLawfulEq type class (or a similar
one) to convert between boolean and propositional equality.

• Knowing when and how to use erasure to achieve the correct type sig-
nature.

• Attempting to use a helper function but not being able to transpile it to
Haskell correctly.

• Not knowing how to include contains in the type signature.

There was some concern that this exercise was not representative of how
Agda would be used on its own.

6.1.1 The Experience
To understand what challenges come with using agda2hs, participants were
asked to fill in the best and in-need-of-most improvement aspects that they
found about the tool. We present the things that they mentioned below:

The Idea. Multiple participants mentioned that they found the concept of
agda2hs “great” and “neat”.

The Design. Thereweremany comments in relation to the design of agda2hs.
Participantsmentioned the simplicity of the compilation pragmas aswell
as the clearness of the generated Haskell code and praised them as the
best aspects of agda2hs. It was noted that Agda knowledge transfers
well into working with agda2hs. There was also a specific mention of
the use of postulates to support instance deriving as a good aspect.

45

MSc Thesis Sára Juhošová

On the other hand, therewere complaints about “hacky” solutionswhen
there is no 1-to-1 mapping between an Agda and a Haskell concept. The
specific examplementionedwas the encoding needed to obtain the same
constructor and type name when creating a newtype declaration. There
were also requests for support for more Prelude methods and concerns
about the difficulty of knowing how and when to apply erasure.

The Documentation. Manyof the answersmentioneddocumentation as the
most important point of improvement. There were concerns about the
completeness as well as comprehensibility. Many participants sugges-
ted not only better documentation, but also things such as more detailed
explanations, tutorials, and more involved examples.
Only one participantmentioned that the documentation was decent and
helpful if the user is already familiar with both programming languages.

The Environment. Although the studywas not focused on this, a participant
did mention that they would like to see more integration of the tool
with other programming environments. The example they provided was
propagating errors specific to agda2hs to the integrated development
environment (IDE) and showing them interactively.

Figure 6.3: How easy participants found agda2hs to use

As seen in Figure 6.3, there was a lot of scepticism about the ease of use of
agda2hs. Many participants were undecided about the issue and the answers

46

MSc Thesis Sára Juhošová

were very evenly distributed. We postulate that this is due to the fact thatmany
people were not familiar with all the Agda concept necessary to complete the
programming assignments and so were not able / willing to make an informed
judgement.

6.1.2 The Impressions
To answer the second research question, we asked participants questions dir-
ected at determining under which circumstances they would find agda2hs
useful. The primary feeling that appeared within these answers was the con-
cern that in many cases, the cost of using agda2hs might not be worth the
benefit.

Participants listed two reasons for this concern. Firstly, it takes a long time
to actually write proofs that verify your code. This is both because learning
to use Agda takes a long time, but also because the proofs themselves can be-
come tedious and long. Secondly, using agda2hs requires an understanding
of not one, but two programming languages. Not only is this quite a big con-
sideration on its own, but participants also pointed out the combined usage
affects developers with background in both programming languages. Haskell
developers need to go through the steep learning curve of Agda, and Agda
developers have to depart (to a certain extent) from the usual usage of the lan-
guage.

Figure 6.4: Who should use agda2hs

47

MSc Thesis Sára Juhošová

When asked specifically who they would recommend agda2hs to (visu-
alised in Figure 6.4), the general consensus was that it is great for academic
researchers but definitely not a tool for everyone. There was a certain degree
of agreement on agda2hs as a tool for developers of critical components and
standalone libraries, but many of the participants were not sure about their
opinion in this matter. Fortunately, as seen in Figure 6.5, no participant dis-
agreed with the fact that agda2hs is a useful tool. This shows that if some of
the big costs of using agda2hs can be overcome, the tool might spike interest
in more domains than is currently apparent.

Figure 6.5: Is agda2hs useful

6.1.3 The Technical Reflection
To evaluate the validity of our hypothesis as well as the implementation work
done in this thesis, participants were asked to give opinions on the features
necessary tomake agda2hs usable and accessible. The results of this are visu-
alised in Figures 6.6 and 6.7.

What we see from these graphs is that most participants agree with the hy-
pothesis on thenecessity of the chosen features. Theywanted to see commonly-
used Haskell features made available, especially those which significantly re-
duce the workload of the developer (such as deriving type class instances).

48

MSc Thesis Sára Juhošová

Figure 6.6: General features necessary for the success of agda2hs

Figure 6.7: Specific features necessary for the success of agda2hs

More than half of the participants also agreed that the methods, types, and
proofs of the Haskell Prelude are an essential part of agda2hs. In the open
questions, we did not see any significant Haskell or Agda features missing
other than the with abstraction which allows you to use intermediate com-
putations to control the flow of your program.

The one outlier is the newtype feature, where participants were divided on
its necessity. We assume this is because the newtype is an alternative to the
data declaration and is thus not crucial to the success. However, we believe
that when efficiency and other metrics start coming into play, newtype will
become necessary due to its reduction in constructor overhead at runtime.

49

Chapter 7

Discussion

Based on the results of the user study, we identify three main requirements for
the usability of agda2hs:

1. Common Haskell language features and features that facilitate
verification should be available. This was reflected throughout the
results of the user study, with participants reacting positively to features
that made using agda2hs easier - whether by offering default solutions,
such aswith using postulates for deriving of type class instances, or by of-
fering simple ways to obtain information necessary to complete a proof,
such as with flow control witnesses. Making common Haskell language
features available allows users to carry over their expertisewhile features
that facilitate verification can help guide them into new territory. Both
of these ease the transition to using a new tool.

2. Documentation should be complete, searchable, and progressive.
Even though we did not hypothesise about documentation, its import-
ance became evident during the user study. Participants performedworse
on implementing features that were less documented, and it was clear
that they were often unsure of where to look for features they might
need to solve a problem. Especially with the complexity of using all the
components of agda2hs, providing users with documentation, tutori-
als, and guiding them to good solutions is a crucial part of making this
tool usable.

3. The tool should be integrated into the ecosystemof the target lan-
guage. Though thismight not be relevant before the previous two points
are addressed to a sufficient degree, it is important to start considering
how agda2hs will work within the ecosystems it wants to be a part of.

50

MSc Thesis Sára Juhošová

This refers to all sorts of development operations, such as how to in-
clude the code in a repositories and existing workflows, how to combine
code generated by agda2hs with pure Haskell code, how to incorporate
agda2hs into IDEs, etc. It also refers to the ease with which users can
install and begin working with the tool. The more we can pave the way
for developers to be able to use it out of the box, the more accessible it
will become.

7.1 Threats to Validity
Especially because this was a prototype user study, there are some threats to
validity to consider. Perhaps the most significant of those is the number and
distribution of participants. This study was conducted on a very small scale
with a population of students from a single university. Many of these took the
same course on both Haskell and Agda programming and have worked with
the same tools. This indicates that the results are probably not representative
of the general target population, which includes developers in industry as well
as academic researchers.

The second thing to consider were the assignments. First of all, they were
tailored to the features that have been added and so were largely biased to-
wards evaluating what was already improved rather than the tool as a whole.
Secondly, they are small assignments of the like that one might find in course
materials with a usage of limited library methods. agda2hs is meant to be
used within large ecosystems and as such a more valid user study would in-
clude assignments where participants are asked to use it within a larger project
context with more dependencies.

Finally, since this user study was a sort of “pilot”, we were not sure what
to expect and so we were present in the room with participants, helping with
errors that hindered their progress (e.g. installation issues). This can seriously
affect the validity of a large-scale study and so the results here should be taken
with a grain of salt, being considered as a first step in the right direction.

7.2 Future Work
As with all research, there is plenty to be explored and solved in the future.
We would like to take this section to indicate the most interesting trajectories
to explore.

Firstly, we believe conducting research about the best ways to provide doc-
umentation for formal verification toolswould be a great next step for this field.

51

MSc Thesis Sára Juhošová

As was also noted so often during the user study, not only is documentation
important, it can provide support in overcoming the challenge of learning to
workwith formal verification tools. Therefore, finding the least overwhelming
and most helpful form of tool presentation would be a logical next step for ac-
cessibility. We imagine that this research could take inspiration from existing
research on software engineering practices as well as educational tools.

Secondly, we suggest future work in integration with the existing ecosys-
tems. This is not only applicable to tools such as agda2hs that use a com-
bination of programming languages, but also to formal verification languages
themselves. The usability of a tool is limited if collaboration within developer
teams becomes overly complex due to it. Important things to consider here
are installation, versioning, version control, and continuous integration. First
steps could include conventions and guidelines for how to work with these
tools within their ecosystems.

We already touched upon integrating agda2hs into a larger project during
the design of the user study, whenmaking the assignments. Creating a project
that always compiles and works well with version control was quite a chal-
lenge, since agda2hs generates code. The solutionwe ended upwith required
default solution files and a bash script which only worked on Linux-based sys-
tems. This is quite problematic, since collaboration amongmultiple platforms
would be impossible. Providing a project structure and default environment
for such projects is therefore an import aspect to consider and design.

Lastly, more technical futurework could focus on the transpilation process.
agda2hs does not remember the state of its transpilation, instead resolving
each pragma separately. This is why, for example, it is only possible to transpile
postulates into standalone derivations instead of being able to attach them to
the data definition. Preserving the state and remembering the context and
scope of the transpilation could offer interesting possibilities for tools such as
agda2hs.

7.3 Recommendations for Future User Studies
To conclude this section, we would like to suggest a more user-oriented ap-
proach to creating “accessible” designs for tools such as agda2hs. Even while
wewere preparing the assignments for the user study, we noticed crucial docu-
mentations and features missing and updated the tool accordingly. We believe
that user studies and a user-driven approach are key in making agda2hs ac-
cessible to a wider audience. To that end, we would like to provide a few re-
commendations for future user studies:

52

MSc Thesis Sára Juhošová

• Do not underestimate your own knowledge of the tool. The as-
signments that we designed turned out to be far more complex and took
muchmore time thanwe expected. Even if somethingmight seem simple
to you as the developer, it might not be the case for someonewho has not
implemented the needed features.

• Make sure the skill level of your participants matches the goal of
your study. Complementary to the point above, having the correct par-
ticipants can help with the quality of your results. While our user study
was only a small prototype, it was already obvious that some questions
were too hard for participants with less skill to answer objectively.

• Assume that people will not read instructions and documenta-
tion carefully. Especially in an environment where you are short on
time, make sure that there is not an overload of things for participants to
read and understand before they can participate. Create a list of things
participants should open and have available for reference while they are
workingwith your tool andmake sure they canfind everything theyneed
easily.

• Ask open questions with short answers. While choice questions are
quicker to answer, they will always have a bias towards only answering
questions about things you have already thought about. Giving parti-
cipants the option to express some of their own thoughts might bring
new insights that you did not even consider. Be sure to keep the ques-
tions specific enough that participants do not lose motivation to answer
them.

• If your tool has a complicated installation process, provide your
own machine with a correct setup. Even though we provided users
with a virtual machine as well as instructions for a personal installation,
many still took a long time to set everything up correctly. To ease the
experience, make sure to have a setup where a participant can arrive
and start programming immediately. (This is only applicable, of course,
if the installation process is not part of what you want to study.)

53

Chapter 8

Conclusion

In this thesis, we aimed to find a way to make formal verification accessible in
widespread programming language ecosystems. We studied agda2hs, a tool
that transpiles Agda to Haskell, and determined what challenges users face
when working with it. We implemented four features meant to improve the
usability of agda2hs, among which the most notable was a solution to wit-
nessing flow control branch conditions when their proof is necessary. Tomake
sure that these features were accessible, we added detailed documentation for
them to the agda2hs documentation page.

In order to evaluate the usability of the improved agda2hs, we designed
and conducted a pilot user study - the first of its kind for Agda. This user study
is a first step towards user-driven design for tools such as agda2hs, providing
initial insight, but also recommendations and designs for future user studies.
Its results also show that there is still a long way to go and we hope to motivate
future work in the area.

To conclude this thesis, we answer the general research questions based
on our findings from the agda2hs usability study. To make formal verifica-
tion accessible within ecosystems of widespread programming languages, we
studied a tool that allows users to write their code in a formal verification lan-
guage and then transpiles it into a widespread programming language with a
big ecosystem. This allows the user to harness the full powers of formal veri-
fication, while still being able to reap the benefits of popular frameworks and
libraries. To make such a tool accessible, we find that the following things are
necessary:

• detailed documentation, with accompanying tutorials and involved ex-
amples,

• support for features commonly used in the widespread programming
language,

54

MSc Thesis Sára Juhošová

• a library of proofs for the standard library methods and other tools to
facilitate verification,

• the integration of the tool into the ecosystem it aims to benefit from,
• and a user-driven development based on future user studies.

55

References

[1] M. Aniche, Effective Software Testing: A developer’s guide. Shelter Island:
Manning Publications Co., 2022.

[2] E. M. Clarke, “Model checking,” in Foundations of Software Technology
andTheoreticalComputer Science, Springer BerlinHeidelberg, 1997, pp. 54–
56, isbn: 978-3-540-69659-9.

[3] P. Cousot andR.Cousot, “Abstract Interpretation:AUnifiedLatticeModel
for Static Analysis of Programs by Construction or Approximation of
Fixpoints,” ser. POPL ’77, Association for Computing Machinery, 1977,
pp. 238–252, isbn: 9781450373500. doi: 10.1145/512950.512973.

[4] J. Harrison, J. Urban and F. Wiedijk, “History of Interactive Theorem
Proving,” in Dec. 2014, vol. 9, pp. 135–214, isbn: 9780444516244. doi:
10.1016/B978-0-444-51624-4.50004-6.

[5] A. Bove, P. Dybjer and U. Norell, “A Brief Overview of Agda – A Func-
tional Language with Dependent Types,” in Theorem Proving in Higher
Order Logics, Berlin,Heidelberg: Springer BerlinHeidelberg, 2009, pp. 73–
78, isbn: 978-3-642-03359-9.

[6] TheCoqTeam. “Early history ofCoq.” (1995), [Online]. Available: https:
//coq.inria.fr/refman/history.html#id1.

[7] E. Body, “Idris, a general-purpose dependently typed programming lan-
guage:Design and implementation,” Journal of Functional Programming,
vol. 23, Sep. 2013. doi: 10.1017/S095679681300018X.

[8] G. F. Kadoda, R. G. Stone and D. Diaper, “Desirable features of educa-
tional theorem provers - a cognitive dimensions viewpoint,” in Annual
Workshop of the Psychology of Programming Interest Group, 1999.

[9] J. Cockx, O. Melkonian, L. Escot, J. Chapman and U. Norell, “Reason-
able Agda is Correct Haskell:Writing VerifiedHaskell Using Agda2HS,”
in Proceedings of the 15th ACM SIGPLAN International Haskell Sym-
posium, ser. Haskell 2022, Association for Computing Machinery, 2022,
pp. 108–122, isbn: 9781450394383. doi: 10.1145/3546189.3549920.

56

https://doi.org/10.1145/512950.512973
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://coq.inria.fr/refman/history.html#id1
https://coq.inria.fr/refman/history.html#id1
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1145/3546189.3549920

MSc Thesis Sára Juhošová

[10] N. Vazou, J. Breitner, R. Kunkel, D. Van Horn and G. Hutton, “Theorem
Proving for All: Equational Reasoning in Liquid Haskell (Functional
Pearl),” SIGPLANNot., vol. 53, no. 7, pp. 132–144, Sep. 2018, issn: 0362-
1340. doi: 10.1145/3299711.3242756.

[11] P. Dybjer, Q. Haiyan and M. Takeyama, “Verifying Haskell programs by
combining testing, model checking and interactive theorem proving,”
Information and Software Technology, vol. 46, no. 15, pp. 1011–1025,
2004, Third International Conference on Quality Software: QSIC 2003,
issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2004.
07.002.

[12] K. Claessen and J. Hughes, “QuickCheck: A Lightweight Tool for Ran-
domTesting ofHaskell Programs,” SIGPLANNot., vol. 35, no. 9, pp. 268–
279, Sep. 2000, issn: 0362-1340. doi: 10.1145/357766.351266.

[13] H. Carr, C. Jenkins, M. Moir, V. C. Miraldo and L. Silva, An approach
to translating Haskell programs to Agda and reasoning about them, 2022.
doi: 10.48550/ARXIV.2205.08718.

[14] J. Christiansen, S.Dylus andN.Bunkenburg, “VerifyingEffectfulHaskell
Programs in Coq,” ser. Haskell 2019, Association for Computing Ma-
chinery, 2019, pp. 125–138, isbn: 9781450368131. doi: 10.1145/3331545.
3342592.

[15] G.Allais,BuiltinTypes viewedas Inductive Families, 2023. doi: 10.48550/
ARXIV.2301.02194.

[16] A. Abel, M. Benke, A. Bove, J. Hughes and U. Norell, “Verifying Haskell
Programs Using Constructive Type Theory,” in Proceedings of the 2005
ACM SIGPLAN Workshop on Haskell, ser. Haskell ’05, Association for
Computing Machinery, 2005, pp. 62–73, isbn: 159593071X. doi: 10 .
1145/1088348.1088355.

[17] A. Spector-Zabusky, J. Breitner, C. Rizkallah and S.Weirich, “TotalHaskell
is Reasonable Coq,” in Proceedings of the 7th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, ser. CPP 2018, Asso-
ciation forComputingMachinery, 2018, pp. 14–27, isbn: 9781450355865.
doi: 10.1145/3167092.

[18] C. Paulin-Mohring and B. Werner, “Synthesis of ML programs in the
system Coq,” Journal of Symbolic Computation, vol. 15, no. 5, pp. 607–
640, 1993, issn: 0747-7171. doi: https://doi.org/10.1016/S0747-
7171(06)80007-6.

57

https://doi.org/10.1145/3299711.3242756
https://doi.org/https://doi.org/10.1016/j.infsof.2004.07.002
https://doi.org/https://doi.org/10.1016/j.infsof.2004.07.002
https://doi.org/10.1145/357766.351266
https://doi.org/10.48550/ARXIV.2205.08718
https://doi.org/10.1145/3331545.3342592
https://doi.org/10.1145/3331545.3342592
https://doi.org/10.48550/ARXIV.2301.02194
https://doi.org/10.48550/ARXIV.2301.02194
https://doi.org/10.1145/1088348.1088355
https://doi.org/10.1145/1088348.1088355
https://doi.org/10.1145/3167092
https://doi.org/https://doi.org/10.1016/S0747-7171(06)80007-6
https://doi.org/https://doi.org/10.1016/S0747-7171(06)80007-6

MSc Thesis Sára Juhošová

[19] P. Letouzey, “A New Extraction for Coq,” in Types for Proofs and Pro-
grams, Springer Berlin Heidelberg, 2003, pp. 200–219, isbn: 978-3-540-
39185-2.

[20] TheCoqTeam. “Programextraction.” (2002), [Online]. Available: https:
//coq.inria.fr/refman/addendum/extraction.html.

[21] TheAgdaTeam. “Pragmas.” (2019), [Online]. Available: https://agda.
readthedocs.io/en/v2.6.0.1/language/pragmas.html.

[22] The Agda Team. “Automatic Proof Search (Auto)¶.” (2023), [Online].
Available: https://agda.readthedocs.io/en/v2.6.3/tools/auto.
html.

[23] N. Vazou, “Liquid Haskell: Haskell as a Theorem Prover,” Ph.D. disser-
tation, University of California, San Diego, 2016.

[24] H. Blanchette, N. Vazou and L. Lampropoulos, “Liquid Proof Macros,”
in Proceedings of the 15th ACM SIGPLAN International Haskell Sym-
posium, ser. Haskell 2022, Association for Computing Machinery, 2022,
pp. 27–38, isbn: 9781450394383. doi: 10.1145/3546189.3549921.

[25] L. Escot and J. Cockx, “Practical Generic Programming over a Universe
of Native Datatypes,” Proc. ACM Program. Lang., vol. 6, no. ICFP, Aug.
2022. doi: 10.1145/3547644.

[26] P. Wadler, “Monads for functional programming,” in Program Design
Calculi, Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 233–
264, isbn: 978-3-662-02880-3. doi: 10.1007/978-3-662-02880-3_8.

[27] A.Abel, “foetus - TerminationChecker for Simple Functional Programs,”
1998. [Online]. Available: https://www.cse.chalmers.se/~abela/
foetus.pdf.

[28] “Newtype.” (2016), [Online]. Available: https://wiki.haskell.org/
Newtype.

[29] The Agda Team. “Postulates.” (2023), [Online]. Available: https : / /
agda.readthedocs.io/en/v2.6.0.1/language/postulates.html.

[30] GHCTeam. “6.6.7.Deriving strategies.” (2023), [Online]. Available: https:
//ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/deriving_
strategies.html.

[31] D. Aspinall, “Subtyping with Singleton Types,” in Selected Papers from
the 8th International Workshop on Computer Science Logic, ser. CSL ’94,
Springer-Verlag, 1994, pp. 1–15, isbn: 3540600175.

58

https://coq.inria.fr/refman/addendum/extraction.html
https://coq.inria.fr/refman/addendum/extraction.html
https://agda.readthedocs.io/en/v2.6.0.1/language/pragmas.html
https://agda.readthedocs.io/en/v2.6.0.1/language/pragmas.html
https://agda.readthedocs.io/en/v2.6.3/tools/auto.html
https://agda.readthedocs.io/en/v2.6.3/tools/auto.html
https://doi.org/10.1145/3546189.3549921
https://doi.org/10.1145/3547644
https://doi.org/10.1007/978-3-662-02880-3_8
https://www.cse.chalmers.se/~abela/foetus.pdf
https://www.cse.chalmers.se/~abela/foetus.pdf
https://wiki.haskell.org/Newtype
https://wiki.haskell.org/Newtype
https://agda.readthedocs.io/en/v2.6.0.1/language/postulates.html
https://agda.readthedocs.io/en/v2.6.0.1/language/postulates.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/deriving_strategies.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/deriving_strategies.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/deriving_strategies.html

MSc Thesis Sára Juhošová

[32] D. Devriese and F. Piessens, “On the Bright Side of Type Classes: In-
stance Arguments in Agda,” in Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP ’11, As-
sociation forComputingMachinery, 2011, pp. 143–155, isbn: 9781450308656.
doi: 10.1145/2034773.2034796.

[33] M. Al-hassy, J. Carette and W. Kahl, “A Language Feature to Unbundle
Data at Will (Short Paper),” in Proceedings of the 18th ACM SIGPLAN
International Conference on Generative Programming: Concepts and Ex-
periences, ser. GPCE 2019, Association for Computing Machinery, 2019,
pp. 14–19, isbn: 9781450369800. doi: 10.1145/3357765.3359523.

[34] C. S. T. CatarinaGamboaPaulo Santos andA. Fonseca, “Usability-Oriented
Design of Liquid Types for Java,” ICSE 2023 at Conf Researchr, 2023.
[Online]. Available: https://catarinagamboa.github.io/papers/
icse-preprint-964.pdf.

[35] B. Beckert and S. Grebing, “Evaluating the usability of interactive veri-
fication systems,” CEUR Workshop Proceedings, vol. 873, pp. 3–17, Jan.
2012.

[36] J. Kirakowski. “The Use of Questionnaire Methods for Usability Assess-
ment.” (2021), [Online]. Available: https://sumi.uxp.ie/about/
sumipapp.html.

59

https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/3357765.3359523
https://catarinagamboa.github.io/papers/icse-preprint-964.pdf
https://catarinagamboa.github.io/papers/icse-preprint-964.pdf
https://sumi.uxp.ie/about/sumipapp.html
https://sumi.uxp.ie/about/sumipapp.html

Appendices

A Lawful Eq

1 eqReflexivity : {{ iEq : Eq e }} → {{ IsLawfulEq e }}
2 → ∀ (x : e) → (x == x) ≡ True
3 eqReflexivity x = equality ’ x x refl
4
5 eqSymmetry : {{ iEq : Eq e }} → {{ IsLawfulEq e }}
6 → ∀ (x y : e) → (x == y) ≡ (y == x)
7 eqSymmetry x y with x == y in eq
8 ... | True = sym (equality ’ y x (sym (equality x y eq)))
9 ... | False = sym (nequality ’ y x (𝜆 qe →
10 (nequality x y eq) (sym qe)))
11
12 eqTransitivity : {{ iEq : Eq e }} → {{ IsLawfulEq e }}
13 → ∀ (x y z : e) → ((x == y) && (y == z)) ≡ True
14 → (x == z) ≡ True
15 eqTransitivity x y z h
16 = equality ’ x z (trans
17 (equality x y (&&- leftTrue (x == y) (y == z) h))
18 (equality y z (&&- rightTrue (x == y) (y == z) h)))
19
20 eqExtensionality : {{ iEq : Eq e }} → {{ IsLawfulEq e }}
21 → {{ iEq : Eq a }} → {{ iLawfulEq : IsLawfulEq a }}
22 → ∀ (x y : e) (f : e → a) → (x == y) ≡ True
23 → (f x == f y) ≡ True
24 eqExtensionality x y f h =
25 equality ’ (f x) (f y) (cong f (equality x y h))
26
27 eqNegation : {{ iEq : Eq e }} → {{ IsLawfulEq e }}
28 → ∀ { x y : e } → (x /= y) ≡ not (x == y)
29 eqNegation = refl

Figure A.1: The Laws for the Eq Type Class

60

MSc Thesis Sára Juhošová

Figure A.1 displays the boolean equality proofs for the Eq type class. It uses
the conversions from boolean to propositional equality that we obtain from
the IsLawfulEq type class. These are in turn obtained by using the Reflects
idiom (defined in Figure A.2) to define the relationship between boolean and
propositional equality.

1 data Reflects {p} (P : Set p) : Bool → Set p where
2 ofY : (p : P) → Reflects P True
3 ofN : (np : (P → ⊥)) → Reflects P False
4
5 private
6 variable
7 p : Level
8 P : Set p
9
10 of : ∀ {b} → if b then P else (P → ⊥) → Reflects P b
11 of {b = False} np = ofN np
12 of {b = True } p = ofY p
13
14 invert : ∀ {b} → Reflects P b → if b then P else (P → ⊥)
15 invert (ofY p) = p
16 invert (ofN np) = np
17
18 extractTrue : ∀ { b } → {{ true : b ≡ True }}
19 → Reflects P b → P
20 extractTrue (ofY p) = p
21
22 extractFalse : ∀ { b } → {{ true : b ≡ False }}
23 → Reflects P b → (P → ⊥)
24 extractFalse (ofN np) = np

Figure A.2: The Definition of the Reflects Idiom

61

MSc Thesis Sára Juhošová

B User Study: Recruitment Leaflet

When? April 25
for 1-3 hours
between 9:00 – 17:00

Where? 4.W950 Shannon
Building 28
Van Mourik Broekmanweg 6

What?

We are conducting a (small) user study on how
accessible Agda2HS is to Haskell programmers.

We will ask you to:
1. Implement a few exercises in Agda,
2. Use Agda2HS to compile the code to Haskell,
3. Fill in a questionnaire to rate your experience.

You can check out Agda2HS at here:
https://github.com/agda/agda2hs

What skills do I need?

- Some experience in Haskell programming
- Limited experience with Agda

If you've taken the CSE3100 Functional Programming
course, you are the perfect candidate.

Contact: s.juhosova@student.tudelft.nl

Sign up here:

h
t
t
p
s
:
/
/
f
o
r
m
s
.
o
f
f
i
c
e
.
c
o
m

/
e
/
J
j
M
7
L
k
T
C
n
VCome prove

your Haskell
skills!

62

MSc Thesis Sára Juhošová

C User Study: Informed Consent Statement
You are being invited to participate in a research study titled “AUsability Study
of Agda2HS”. This study is being done by Sára Juhošová (MSc student) from
the TU Delft under the leadership of Dr. Jesper Cockx.

The purpose of this research study is to determine how easy-to-use and use-
ful potential users find tools such asAgda2HS, andwill take you approximately
120 minutes to complete. The data will be used for the evaluation section of
a Master’s thesis, and to further improve Agda2HS. We will be asking you to
complete a few small programming exercises in Agda2HS and then rate your
experience in an anonymous survey.

As with any online activity the risk of a breach is always possible. To the
best of our ability your answers in this study will remain confidential. We
will minimize any risks by (a) not asking for any personal information in the
questionnaire where you will rate your experience and (b) using MS Office
Forms for the collection, a tool recommended and approved by the TU Delft.
The sign-up form will ask you for your e-mail address, but this data will only
be used to communicate information closer to the date of the study and will
not be linked to the answers given during the study. The e-mail addresses will
be deleted after the study is complete.

Your participation in this study is entirely voluntary and you can withdraw
at any time. You are free to omit any questions. Since the questionnaires will
be anonymous, it will not be possible to remove your answers within a given
timescale.

For more information, please contact Sára Juhošová (<e-mail>).
By agreeing to the informed consent statement, you are willing to proceed

with the user study and allow for the anonymised data to be archived and
shared publicly under an MIT License.

You will now be asked to fill in your contact information. This inform-
ation is only collected for contacting you with the details of the user
study and setting up a proper programming environment.

63

MSc Thesis Sára Juhošová

D User Study: Participation Email
Dear participant,

Thank you for participating in the Agda2HS user study!

Date: 25 April 2023
Time: Arrival anytime between 9:30 and 15:00 (the entire study will take
about 1-2 hours)
Building: Building 28 (Van Mourik Broekmanweg 6)
Room: 4.W950 Shannon

In case you would like to already read something about Agda2HS, you can
check out the following documents:

1. The original paper aboutAgda2HS: https://dl.acm.org/doi/10.1145/
3546189.3549920

2. TheAgda2HSGitHub repository: https://github.com/agda/agda2hs
3. The Agda2HS docs page: https://agda.github.io/agda2hs/

To speed up the process, you can already prepare the coding environment. You
may also do so once you arrive on location. We have prepared a Virtual Ma-
chine (running Debian) which has everything necessary pre-installed. This is
to avoid any problems with installation, especially since installing and com-
piling Agda can take a long time. Instructions on how to prepare the virtual
machine are below.

In case you wish to use your own machine, there are instructions included on
how you can set everything up. We recommend doing this only with Linux-
based operating systems, since we make use of make files.

Using the Virtual Machine

1. Download the virtual machine prepared for this study here: https://
surfdrive.surf.nl/files/index.php/s/8OXGrqv8100rlKP

2. Import it into your virtualisation software (probably VirtualBox)
3. Start the machine and login to the Agda2HS profile (password: a2hs)
4. In case your resolution is weird, you can try changing your VM graphics

controller. In VirtualBox, you can do this by navigating to Settings >
Display and selecting “VBoxVGA”.

64

https://dl.acm.org/doi/10.1145/3546189.3549920
https://dl.acm.org/doi/10.1145/3546189.3549920
https://github.com/agda/agda2hs
https://agda.github.io/agda2hs/
https://surfdrive.surf.nl/files/index.php/s/8OXGrqv8100rlKP
https://surfdrive.surf.nl/files/index.php/s/8OXGrqv8100rlKP
https://www.virtualbox.org/wiki/Downloads

MSc Thesis Sára Juhošová

5. Open Visual Studio code. This should already open into the example
project. If not, you can open the agda2hs-user-study-minimal project
in the Documents directory.

6. Open the lib/Reverse.agda file and press Ctrl + c, Ctrl + l - this
should successfully type-check the Agda file.

7. Run make - this should successfully execute the QuickCheck tests.

Preparing the environment on your ownmachine

1. Follow the instructions on theAgdawebsite to install the latest Agda ver-
sion: https://agda.readthedocs.io/en/v2.6.3/getting-started/
installation.html

2. Follow the installation procedure forAgda2HS: https://agda.github.
io/agda2hs/introduction.html#installation (install it using themas-
ter branch of the GitHub repository)

3. Run make in the Agda2HS repository.
4. Make sure you have an editor ready to allow you to work with Agda2HS

during the user study. The recommendation is to use Visual Studio Code
with the agda-mode extension.

5. Verify that everything is working by downloading the example project of
this study: https://tinyurl.com/a2hs-study

(a) Run cabal new-install –overwrite-policy=always in the re-
positoryOpen the project in your editor. Open the lib/Reverse.agda
file and press Ctrl + c, Ctrl + l - this should successfully type-
check the Agda file.

(b) Run make - this should successfully execute the QuickCheck tests.

Looking forward to seeing you!

65

https://agda.readthedocs.io/en/v2.6.3/getting-started/installation.html
https://agda.readthedocs.io/en/v2.6.3/getting-started/installation.html
https://agda.github.io/agda2hs/introduction.html#installation
https://agda.github.io/agda2hs/introduction.html#installation
https://tinyurl.com/a2hs-study

MSc Thesis Sára Juhošová

E User Study: Solutions Compiled to Haskell
This appendix contains the intended solutions of the user study compiled to
Haskell. Figure E.3 displays the compiled version of Figure 5.1 and Figure E.4
displays the compiled version of Figure 5.3.

1 {-# LANGUAGE StandaloneDeriving # -}
2 {-# LANGUAGE DeriveGeneric # -}
3
4 module All where
5
6 import GHC.Generics
7
8 newtype All = All{getAll :: Bool}
9 deriving (Read , Generic)
10
11 deriving instance Eq All
12 deriving instance Ord All
13 deriving instance Show All
14 deriving instance Bounded All
15
16 instance Semigroup All where
17 a <> b = All (getAll a && getAll b)
18
19 instance Monoid All where
20 mempty = All True
21 mappend = (<>)
22 mconcat [] = mempty
23 mconcat (x : xs) = x <> mconcat xs

Figure E.3: User Study Assignment 1 Haskell Solution

1 module Lookup where
2
3 lookupSafe :: Eq a => a -> [(a, b)] -> b
4 lookupSafe key (x : xs)
5 = if fst x == key then snd x else lookupSafe key xs

Figure E.4: User Study Assignment 2 Haskell Solution

66

MSc Thesis Sára Juhošová

F User Study: Questionnaire
This appendix contains a copy of the questions asked in the “Agda2HS Usab-
ility Study” questionnaire, used on April 25, 2023.

67

MSc Thesis Sára Juhošová

68

MSc Thesis Sára Juhošová

69

MSc Thesis Sára Juhošová

70

MSc Thesis Sára Juhošová

71

MSc Thesis Sára Juhošová

72

MSc Thesis Sára Juhošová

73

MSc Thesis Sára Juhošová

G Results: Participants’ Skill Levels
To evaluate the participants’ skill levels in Haskell, we used the Haskell Com-
petency Matrix available online. We created a multi-select question with all
the features from the matrix and asked participants to indicate which features
they were “comfortably familiar with”.

We assigned a certain level to the participant if they were familiar with at
least 50% of the features in that level as well as at least 80% familiar with all
features from the lower levels.

For Agda, we designed our own classification based on known features. A
competency matrix such as the one for Haskell was not available, so we sor-
ted participants into four categories based on the total percentage of features
theywere comfortably familiarwith. Participants thatwere familiarwithmore
than 85% of all featuresweremarked asExpert, participants familiarwithmore
than 50% of all features were marked as Advanced, and participants familiar
with more than 30% of all features were marked as Intermediate. Participants
familiar with less than 30% of all features were marked as Beginner.

74

https://gist.github.com/graninas/833a9ff306338aefec7e543100c16ea1
https://gist.github.com/graninas/833a9ff306338aefec7e543100c16ea1

	Preface
	Abstract
	Introduction
	Problem Statement
	Methodology & Contributions
	Thesis Overview

	Related Work
	agda2hs
	Current Challenges in using agda2hs
	The Hypothesis

	Implementation
	Supporting the newtype Definition
	Supporting Standalone deriving
	Adding Witnesses to Flow Control
	Adding Lawful Type Classes to Prelude

	User Study Setup
	Sources of Inspiration
	The Goals
	Recruitment
	The Programming Assignments
	The Questionnaire

	Results
	Lessons Learned

	Discussion
	Threats to Validity
	Future Work
	Recommendations for Future User Studies

	Conclusion
	References
	Appendix
	Lawful Eq
	User Study: Recruitment Leaflet
	User Study: Informed Consent Statement
	User Study: Participation Email
	User Study: Solutions Compiled to Haskell
	User Study: Questionnaire
	Results: Participants' Skill Levels

