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Abstract

Future communication scenarios will require massive Multiple-input multiple-output (MIMO) by
the use of multi-beam antenna systems. Maximizing the number of beams for a given antenna
size is paramount given that the space allocated to the antenna is often limited. This work aims
at evaluating the maximum number of beams by analyzing the SIR in different communication
scenarios for planar antenna structures. The concept of ‘observable field’ is used to quantify the
power received from the desired signal as well as the power associated with the interference. Due
to the planarity of the considered antenna structures, the radiating domains introduce scan loss, an
effect not previously modelled when considering earlier investigations based on spherical domains.
Furthermore, methods of reducing interference in order to improve the SIR were investigated, i.e.,
the use of a tapered current distributions on the radiating apertures and null placement techniques.
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1. Introduction

1.1 Background

Wireless data traffic has been increasing exponentially in recent years, due to the proliferation of
user terminals and bandwidth-greedy services, e.g., the continual use of video streaming and data-
intensive applications. This huge data volume has forced the wireless industry to move to its fifth
generation (5G) of cellular network, to find new techniques to offer unprecedented speeds in wireless
communications.

A key characteristic of future base stations is the possibility to transmit and receive multiple
data streams through directive beams connecting the base station with different users. With the
advent of 5G communications and the planning for future 6G networks, antennas will focus the
radiation in smaller angular regions with the aim to improve the energy and spectral efficiency, while
reducing interference levels. Base station will implement massive Multiple-input multiple-output
(MIMO)[1],[2] by the use of multi-beam antenna systems [3], as usually employed in satellite-based
communication [4–8]. In such systems, the efficient use of the allocated space to the antenna is
of paramount importance. The volume available for the antenna is often limited because several
frequency bands need to be covered, leading to many antennas competing for the same space on the
base station.

One of the challenges for wireless network design is maximizing the number of users simultane-
ously served by the base station with the required Signal to Interference Ratio (SIR), while minimiz-
ing the volume containing the antenna. Recently, the antenna community has started addressing
these challenges by investigating the theoretical limits for the maximum number of independent
beams that can be supported by a platform of a given size. These studies include analyses based
on the degrees of freedom [9],[10], integral equation solvers [11],[12], spherical wave expansions [13],
and circuit theory [14].

The usual future communication scenario considers multiple users transmitting simultaneously to
the base station, each establishing a data stream interfering with each other, as depicted in Fig. 1.1.
When considering a given client’s data stream as the desired signal, all other data streams are

Figure 1.1: Depiction of a multi-beam LoS scenario with Nl simultaneous links, each associated
with an incident beam.

considered to be interferers. Links are assumed independent of each other if the SIR is maintained
above a certain threshold level. Mutual coupling between beams in a communication scenario
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1.2. CONTRIBUTION OF THIS THESIS CHAPTER 1. INTRODUCTION

can limit the maximum number of independent clients a platform can host [15]. Previous works
analyzing satellite-based multi-beam communications rely on the use of the aperture efficiency as
the main parameter for assessing the performance since the structures considered are large in terms
of wavelength. However, when considering structures whose size is comparable to the wavelength,
the concept of the aperture efficiency is no longer useful since for antennas of size comparable
to or smaller than the wavelength the aperture efficiency becomes larger than one. Hence, current
methodologies are not valid for platforms of moderate size. To this aid, the concept of the observable
field derived by using Physical Optics (PO) currents was introduced in [16], which is the part of
the incident field that can be received by an antenna contained in a given volume. In [17], the
observable field was exploited to calculate how much power an antenna with a given radiation
pattern can receive. This was possible by the introduction of coupling coefficients that correlate
the observable field with the pattern of the antenna under analysis. The structures considered in
[16–18] are, however, spherical structures, which are not practical antenna structure realizations.

1.2 Contribution of this Thesis

In this thesis we extend the concept of the observable field, as introduced in [16], to arbitrarily
shaped domains, focusing on the practical relevance of planar domains. In this work the clients are
considered to be Line-of-Sight (LoS) in the far field region for which the beams of the clients are
assumed to be plane waves.

The effective area predicted by the observable field as derived using spherical mode expansions
is compared with the recently introduced PO currents approach, for which the latter provides a
continuous power available to the structure in relation to the size. The derivation of the observable
field using the PO currents is presented for arbitrary structures and the need for an amplification
factor, which ensures the power scattered by the field radiated by the PO currents is the same as the
power available to the antenna, is clarified. The theory derived for arbitrary geometries is applied
to planar rectangular and circular domains.

The observable field derived using the PO currents is used to calculate the SIR in different
communication scenarios, for the case of the two planar domains and in comparison to the case
of the sphere. The extensive SIR analysis for the different communication scenarios requires the
numerical evaluation of multiple integrals. To accelerate the calculation of these, the Gauss -
Legendre quadrature scheme was implemented. Using the SIR, the total number of independent
beams that can be hosted by a given antenna size is calculated.

Furthermore, this work presents two improvement techniques to improve the SIR. By using a
tapered distribution instead of a uniform distribution the resulting radiation pattern, with a lower
sidelobe level, can reduce the interference, and consequently improve the SIR, for structures larger
than a certain size. Secondly, a null placement technique in the antenna pattern is presented to
reduce the contribution of interference by a given user located at a certain angle.

1.3 Thesis Outline

This thesis consists of three main chapters. In Chapter 2, the observable field as derived by the
spherical mode expansions is explained (Sec. 2.2). The observable field using the PO current is
derived for arbitrary structures in Sec. 2.1 and the need for the amplification factor α with its
derivation, are presented. The theory for arbitrary structures is then applied to planar domains,
which are of practical relevance. In Subsec. 2.4.2 a rectangular structure is considered and in
Subsec. 2.4.3 a planar circular structure is considered. Different structure sizes are analyzed and
compared to the previously analyzed spherical case.

In Chapter 3, the number of beams that can be hosted by a given platform is analyzed. This
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1.3. THESIS OUTLINE CHAPTER 1. INTRODUCTION

is done by the introduction of coupling coefficients in Sec. 3.1, that calculate the power available
from a given incident field. The Gauss - Legendre quadrature scheme is presented in Subsec. 3.1.1.
The modelling of the SIR can be found in Sec. 3.2, where the planar structures are compared to the
spherical case. Furthermore, the maximum number of beams allowed for a given antenna size can
be found in Sec. 3.4. The effects on the SIR of randomly distributed clients is analyzed in Sec. 3.3.

In Chapter 4, two techniques are presented to improve the SIR. The use of a tapered distribution
is compared to the use of a uniform distribution in Sec. 4.1. In Sec. 4.2, the use of a null placement
technique in the antenna pattern is compared to the case of using the pattern resulting from uniform
currents radiating the same pattern as the one of the observable field.

Finally, in Chapter 5 conclusions are presented and the future work is discussed.
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2. The Observable Field
This chapter presents the concept of the observable field, i.e. the part of the incident field that can be
received by an ideal antenna having finite dimensions. The importance of thoroughly understanding
the process of receiving antennas is linked to the optimization of the antenna gain, and its physical
bounds [10, 19–21]. However, uncertainties still exist in fundamental characteristics of antennas,
such as the maximum power available to antennas having finite dimensions. To this aim, in [21]
the maximum gain of an antenna of arbitrary size was derived by using the spherical harmonics.
By means of the mode expansion, it was possible to isolate the low-order spherical modes, i.e., the
ones which propagate and that can actually interact with the antenna, and the high-order modes,
that are in cut-off and cannot interact with the given size antenna. However, the discrete number
of modes used to represent the fields implies a non-continuous behavior that creates uncertainty for
resonant-size structures.

In [10], a heuristic approach is used to obtain the maximum antenna gain continuous with respect
to the antenna size. However, [10] presents a model based on the interpolation of powers, making
it inapplicable to the case when multiple plane waves impinge on the structure.

In the present thesis, the approach of [16] is used to model the maximum antenna gain, by means
of the Physical Optics (PO) currents distributed over the domain of interest.

2.1 The Definition of the Observable Field

The observable field is the portion of the incident field that contributes to the power received by the
ideal antenna allocated within a given volume. As such, the incident electric field can be represented
as the superposition of the observable field E⃗obs and the remaining field E⃗rem as

E⃗inc = E⃗obs + E⃗rem. (2.1)

The power Pobs, associated with the observable field E⃗obs, is the maximum power that can be
received by an antenna contained in a finite-size domain. Furthermore, the observable field can be
expressed as the superposition of an inward- and an outward-propagating spherical wave, expressed
as follows

E⃗obs = E⃗ inw
obs + E⃗ out

obs . (2.2)

The inward and the outward component can be written as follows

E⃗
inw/out
obs (r⃗ ) = V⃗

inw/out
obs (k̂)

e±jkr

r
(2.3)

where V⃗
inw/out
obs (k̂) is the far field pattern of the field. Given a body located at the center of the

reference system and a plane wave impinging on it, the inward component of the observable field is a
spherical wave that converges towards the origin and emerges out of it with the outward-propagating
component, leaving the polarization unperturbed. The outward and the inward components are
related as follows

V⃗ out
obs,TM(θ, ϕ) = V⃗ inw

obs,TM(π − θ, ϕ+ π) (2.4a)

V⃗ out
obs,TE(θ, ϕ) = −V⃗ out

obs,TE(π − θ, ϕ+ π) (2.4b)

where the subscripts “TE” and “TM” refer to the transverse electric and the transverse magnetic
components of the field, respectively.

The model of the observable field is connected with the synthesis of the antenna that maximises
the available power for a given incident field. Let us consider the incident electric and magnetic
fields E⃗inc, H⃗inc impinging on an arbitrary antenna, as sketched in Fig. 2.1a, and whose inward
and outward propagating observable field for the electric field are sketched in Fig. 2.1b. The ideal
antenna that maximises the received power must scatter a field E⃗scat which is equal and opposite in
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2.2. THE OBSERVABLE FIELD AS A SPHE . . . CHAPTER 2. THE OBSERVABLE FIELD

(a) (b) (c) (d)

Figure 2.1: Scattering problem of the ideal antenna where (a) a plane wave impinges on an arbitrary
antenna structure, (b) this plane wave has an inward and outward observable field, (c) the ideal
antenna is the one scattering the outward observable field in opposite phase (d) nullifying the
diverging component of the total field.

phase to the outward observable field E⃗out
obs (see Fig. 2.1c), such that the total field E⃗tot = E⃗obs+E⃗scat

has no diverging component (see Fig. 2.1d), [16, 21].
In the case of a plane wave having electric field amplitude E0, the maximum available power can

be related to the maximum effective area Amax
eff with the following expression

Pmax
L =

1

2ζ
|E0|2Amax

eff = Pmax
scat (2.5)

or equivalently to the maximum directivity Dmax

Amax
eff =

λ2

4π
Dmax. (2.6)

Hence, the problem of estimating the maximum effective area is equivalent to estimating the maxi-
mum directivity.

2.2 The Observable Field as a Spherical Modes Expansion

In [21] the maximum directivity of a finite size antenna was derived by means of a spherical mode

expansion. This approach indirectly acknowledged the existence of the observable field E⃗obs, as the
field associated with the Nsp propagating spherical modes, contributing to the available power, and

the remaining field E⃗rem associated with the cut-off modes.
The incident field E⃗inc and H⃗inc, i.e., the field propagating in absence of the structure, is con-

sidered to be a plane wave travelling along the negative ẑ direction, expressed as follows

E⃗inc = E0e
jkzx̂ (2.7a)

H⃗inc = −E0

ζ
ejkz ŷ (2.7b)

where E0 is the electric field amplitude, and ζ is the characteristic impedance of the medium.
One can expand an incident field in terms of spherical harmonics [21, 22] obtaining the following
expressions

E⃗inc = E0

∞∑
n=1

n∑
m=0

(
Ai

qM⃗
(1)
q +Bi

qN⃗
(1)
q

)
(2.8)

H⃗inc =
jE0

ζ

∞∑
n=1

n∑
m=0

(
Bi

qM⃗
(1)
q +Ai

qN⃗
(1)
q

)
(2.9)
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2.2. THE OBSERVABLE FIELD AS A SPHE . . . CHAPTER 2. THE OBSERVABLE FIELD

where M⃗ and N⃗ are the vector harmonic wave functions as defined in [21, 22], the subscripts q are
the compact notation for mn (i.e., the indexes of the two sums) with the addition of “e” or “o” for

even and odd modes respectively, the superscripts are associated with the radial dependence z
(i)
n

corresponding to the spherical Bessel function of the 1st kind jn, the spherical Bessel function of the

2nd kind yn, the spherical Hankel function of the 1st kind h
(1)
n and the spherical Hankel function of

the 2nd kind h
(2)
n for i = 1, 2, 3 and 4, respectively. Outside the domain of the antenna, the scattered

fields can be represented as

E⃗scat = E0

∞∑
n=1

n∑
m=0

(
As

qM⃗
(4)
q +Bs

qN⃗
(4)
q

)
(2.10)

since the scattered field propagates outwardly, the superscript 4, which stands for the spherical
Hankel function of the 2nd kind, is chosen for the radial dependence. The total power delivered to
the load can be written as follows

PL =
∞∑

n=1

n∑
m=0

(
PTE
q + PTM

q

)
(2.11)

i.e., as the sum of the power associated with each order of spherical TE and TM modes, due to
the orthogonality between different modes and orders. The power carried by each order q can be
expressed by the flux of the Poynting vector associated with each mode through the closed surface
S, as follows

PTE
q = Re

{
j|E0|2

2ζ

‹

S

(
Ai

qA
i∗
q M⃗ (1)

q × N⃗ (1)∗
q +Ai

qA
s∗
q M⃗ (1)

q × N⃗ (4)∗
q +

As
qA

i∗
q M⃗ (4)

q × N⃗ (1)∗
q +As

qA
s∗
q M⃗ (4)

q × N⃗ (4)∗
q

)
· r̂dS

} (2.12)

PTM
q = Re

{
j|E0|2

2ζ

‹

S

(
Bi

qB
i∗
q N⃗ (1)

q × M⃗ (1)∗
q +Bi

qB
s∗
q N⃗ (1)

q × M⃗ (4)∗
q +

Bs
qB

i∗
q N⃗ (4)

q × M⃗ (1)∗
q +Bs

qB
s∗
q N⃗ (4)

q × M⃗ (4)∗
q

)
· r̂dS

}
.

(2.13)

Using the orthogonality relationships as described in [21], the total received power can be written
as

PL = −|E0|2

2k2ζ

∞∑
n=1

n∑
m=0

λmn

(
Re{Ai∗

q As
q}+Re{Bi∗

q Bs
q}+ |As

q|2 + |Bs
q |2

)
(2.14)

where

λmn =
2πεm
2n+ 1

n(n+ 1)
(n+m)!

(n−m)!
(2.15)

with εm = 2 when m = 0 and εm = 1 otherwise. By calculating the maximum of (2.14) with respect
to the expansion coefficients of the scattered field As

q and Bs
q , the maximum occurs when

As
q = −1

2
Ai

q (2.16a)

Bs
q = −1

2
Bi

q (2.16b)
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yielding a maximum power Pmax
L expressed as follows

Pmax
L =

|E0|2

8k2ζ

∞∑
n=1

n∑
m=0

λmn

(
|Ai

q|2 + |Bi
q|2

)
. (2.17)

Under the optimum receiving conditions the total field, which is the sum of the incident and scattered
field, takes on the following radial dependence

jn − 1

2
h(2)
n =

1

2

[
h(1)
n + h(2)

n

]
− 1

2
h(2)
n =

1

2
h(1)
n . (2.18)

It can be seen that the total field is a radially converging wave. Hence, in the optimum receiving
scenario the scattered field cancels the outward-propagating component of the incident field.

If the incident field is the one expressed in (2.7a) (2.7b), the coefficients of the modal expansion
can be calculated by resorting to [22], yielding the following result

Ai
omn = δm1j

n 2n+ 1

n(n+ 1)
, Ai

emn = 0 (2.19a)

Bi
omn = 0, Bi

emn = −δm1j
n+1 2n+ 1

n(n+ 1)
(2.19b)

where δm1 is the Kronecker delta. By substituting (2.19) into (2.17), the maximum power becomes
as follows

Pmax
L =

π|E0|2

2k2ζ

∞∑
n=1

(2n+ 1). (2.20)

Due to the infinite number of modes used in (2.20), the maximum power results being unbounded.
This is due to the fact that an infinite number of modes is needed to create a scattered field able
to cancel the incident field. However, as is known [23], the spherical modes of order N > ka decay
rapidly for a domain of size a. Hence, the sum in (2.20) is truncated at the mode N = ⌊ka⌋, and
thus becomes as follows

Pmax
L =

π|E0|2

2k2ζ
(N2 + 2N). (2.21)

The expression (2.21), corresponds to the maximum effective area

Amax
eff =

λ2

4π
(N2 + 2N). (2.22)

In the case of large aperture antennas one can see that N ≈ ka >> 1, which gives a maximum
effective area

Amax
eff ≈ λ2

4π
(ka)2 = πa2 (2.23)

which is the physical area of the aperture. Hence, for electrically large antennas, the effective area
approaches the physical area as expected. In the case of electrically small antennas, only one mode
is retained, therefore, the maximum effective area becomes

Amax
eff =

3λ2

4π
(2.24)

which is the effective area of the Huygens source.
A limitation of this approach is that due to the fact that the fields are represented in terms

of spherical modes, the maximum power that can be received has a quantized behaviour, which
especially in the case of antennas with size in the order of fractions of wavelength is an inadequate
approximation [10, 24], as can be seen from Fig.2.2. Furthermore, the retention of the first Nsp

modes implies radiating currents which are not bounded to the antenna domain [16], yielding a
more difficult synthesis of the antenna patterns from the given size.

8
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Figure 2.2: Maximum effective area of a spherical domain of radius a calculated using the the
spherical modes compared with the physical area of the domain, and the effective area of a Huygens
source.

2.3 The Observable Field Using Physical Optics

An alternative approach to the spherical mode expansion of Sec. 2.2, is to describe the observable
field as the one radiated by the equivalent currents calculated over the domain of interest [16].
Hence, the maximum directivity achievable from the given domain is associated with the antenna
whose radiating currents are equal to the ones radiating the inward observable field. This method
used to calculate those currents is by resorting to the Physical Optics (PO) currents [16–18]. This is
a technique that resorts to the equivalence theorem, replacing a scattering problem by an equivalent
problem using equivalent currents. In the case of a plane wave, an infinite surface would be necessary
to sustain currents that would radiate a plane wave. However, the PO method used here employs
a truncation in space, limited to the illuminated portion of the structure, rendering this a finite
problem. The equivalent currents resulting from the PO method are as follows

J⃗out
PO =

{
−n̂× H⃗inc, if n̂ · k̂inc < 0

0 otherwise
(2.25)

M⃗out
PO =

{
n̂× E⃗inc, if n̂ · k̂inc < 0

0 otherwise
(2.26)

where n̂ is the outwardly-pointing normal vector, as shown in Fig. 2.3. To calculate the currents that
radiate a field with a similar pattern as the inward observable field, the following transformation
can be used

J⃗ inw
PO (r⃗) = −

(
J⃗out
PO (r⃗)

)∗
(2.27a)

M⃗ inw
PO (r⃗) =

(
M⃗out

PO (r⃗)
)∗

(2.27b)

where * represents the complex conjugate.

However, the PO approach does not guarantee that the power radiated by J⃗out
PO and M⃗out

PO is
equal to the one that can be received by the ideal antenna. Hence, in order to calculate the currents

9
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Figure 2.3: Sketch of an incident field impinging from direction k̂inc, into a domain enveloped by a
surface S. The components of the incident field interacting with the structure is represented by an
inward and outward propagating observable field, calculated using PO currents on S.

that give rise to the observable field, the scaling factor α is introduced as follows

J⃗
inw/out
obs (r⃗) = αJ⃗

inw/out
PO (r⃗) (2.28a)

M⃗
inw/out
obs (r⃗) = αM⃗

inw/out
PO (r⃗). (2.28b)

This accounts for the fact that in the case of small antennas in terms of the wavelength their effective
area is much larger than their physical area. The procedure to calculate the amplification factor α
is the topic of Subsec. 2.3.1.

The presented methodology can be applied to any geometry, e.g., a TM plane wave impinging
from θi = 45◦ and ϕi = 45◦ on a cube of edge size λ, as shown in Fig. 2.4. The results of the time
domain PO currents for such a scenario are depicted in Fig. 2.5. It can be seen that, as expected,
the PO currents are non-zero for the illuminated part of the structure while they are zero in the
non-illuminated part.

Even though the derivation of PO currents assumes a plane wave incidence, the methodology is
easily extendable for a generalized incidence by performing a plane wave expansion, as described in
Appendix A.

2.3.1 The Amplification Factor

The procedure to calculate the amplification factor, called α here, has been amply described in
[16] and [18]. In the plane wave incidence case, we can define the amplification factor by using the
directivity. The directivity achieved by the PO currents is

DPO = 4π

1
2ζ

∣∣∣V⃗ out
PO (k̂inc, k̂)

∣∣∣2
max

PPO
, (2.29)

where
∣∣∣V⃗ out

PO (k̂inc, k̂)
∣∣∣2
max

is the maximum of the observable field pattern associated with the structure

under analysis when a plane wave is impinging from k̂inc, and PPO is the power radiated by the PO

10
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Figure 2.4: Cube structure under plane wave incidence.

(a) Electric current, front view (b) Magnetic current, front view

(c) Electric current, back view (d) Magnetic current, back view

Figure 2.5: Electric (a) and magnetic (b) PO currents on the illuminated faces and electric (c) and
magnetic (d) PO currents on the shadow region of a cube of edge λ.
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currents. Equivalently, the associated effective area is

Aeff,PO =
λ2

4π
DPO = λ2

1
2ζ

∣∣∣V⃗ out
PO (k̂inc, k̂)

∣∣∣2
max

PPO
. (2.30)

Therefore, the power radiated by the PO currents can be written as follows

PPO = λ2

1
2ζ

∣∣∣V⃗ out
PO (k̂inc, k̂)

∣∣∣2
max

Aeff,PO
. (2.31)

If the amplification factor is taken into account, the ideal scattered power becomes P ideal
scat = α2PPO.

Recalling that the maximum available power received by an antenna illuminated by a plane wave is

Pmax
rec =

1

2ζ
|E0|2Amax

eff (2.32)

and by using (2.31), the amplification factor α results as follows

α =
|E0|Aeff,PO

λ
∣∣∣V⃗ out

PO (k̂inc, k̂)
∣∣∣
max

. (2.33)

The amplification factor for a generalized incidence can be found in Appendix A.1.

2.3.2 Far Field Radiation

The fields radiated by electric and magnetic currents located in an unbounded, isotropic, homoge-
nous medium can be calculated as follows

E⃗(r⃗ ) = −jωµ

˚

V

Ge(r⃗, r⃗ ′) · J⃗(r⃗ ′)dr⃗ ′ −
˚

V

Gm(r⃗, r⃗ ′) · M⃗(r⃗ ′)dr⃗ ′ (2.34)

H⃗(r⃗ ) = −jωϵ

˚

V

Ge(r⃗, r⃗ ′) · M⃗(r⃗ ′)dr⃗ ′ −
˚

V

Gm(r⃗, r⃗ ′) · J⃗(r⃗ ′)dr⃗ ′ (2.35)

where

Ge(r⃗, r⃗ ′) =

[
I +

∇⃗∇⃗
k2

]
g(r⃗ − r⃗ ′) (2.36)

Gm(r⃗, r⃗ ′) = ∇⃗g(r⃗ − r⃗ ′)× I (2.37)

are the electric and magnetic dyadic Green’s functions, respectively, for an unbounded, isotropic,
homogeneous medium and

g(r⃗ − r⃗ ′) =
e−jk|r⃗−r⃗ ′|

4π|r⃗ − r⃗ ′|
(2.38)

is the scalar Green’s function. Since in telecommunications, the clients are usually located in the
antenna far field, the radiation integrals (2.34) and (2.35) can be approximated as follows

E⃗(r⃗ ) = −jωµ
e−jkr

4πr
(I − r̂r̂) ·

¨

S

J⃗(r⃗ ′)ejk⃗r⃗
′
dr⃗ ′ + jk

e−jkr

4πr
r̂ ×
¨

S

M⃗(r⃗ ′)ejk⃗r⃗
′
dr⃗ ′ (2.39)

H⃗(r⃗ ) =

√
ε

µ
r̂ × E⃗(r⃗ ) (2.40)

12
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(a) (b)

Figure 2.6: PO currents for a spherical surface, defined over (a) the illuminated hemisphere and (b)
the surface currents over the cross-sectional disk radiating the same observable field.

where surface current distributions have been considered. The approximations leading to (2.39) and
(2.40) allow a maximum phase error of π/8 and a maximum amplitude error of 5% if the observation
point r⃗ satisfies the following conditions 

|r⃗ − r⃗ ′| ≫ λ
π

r > 10D

r > 2D2

λ

(2.41)

where D is the diameter of the structure.

2.4 The Observable Field from Specific Shapes

2.4.1 Sphere

In order to establish a comparison with the previous work, the observable field for spherical structures
is repeated in this thesis. This type of structure has been previously analyzed in [16], [18] and [17].
More specifically, the procedure to derive the pattern of the observable field for such a structure
has been presented in [16]. Using the PO approach we can define the currents on a hemispherical
surface, the portion of the sphere that is illuminated by the impinging plane wave. The currents
defined on this domain would necessarily radiate the same field as the currents defined over the
circular surface representing the sphere’s cross-section [16, 18]. When the currents are defined over
the sphere’s cross-section the problem becomes one of solving the radiation from uniform sources
with constant phase defined on a circular domain perpendicular to the direction of the impinging
plane wave as illustrated in Fig. 2.6.

In order to calculate the radiation from such a structure we assume a plane wave impinging from
the k⃗inc direction with polarization p̂inc as follows

E⃗inc = |E0|e−jk⃗incr⃗
′
p̂inc. (2.42)

13
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Therefore, (2.39) can be written as

E⃗ out
obs (r⃗ ) = jωµ

e−jkr

4πr
(I − r̂r̂) ·

¨

S

α
1

ζ
|E0|n̂cs × (k̂inc × p̂inc)e

jk⃗r⃗ ′
dr⃗ ′

−jk
e−jkr

4πr
r̂ ×
¨

S

α|E0|(n̂cs × p̂inc)e
jk⃗r⃗ ′

dr⃗ ′.

(2.43)

By recognizing that ωµ/ζ = k, and by rearranging the terms

E⃗ out
obs (r⃗ ) = jkα|E0|

e−jkr

4πr

¨

S

ejk⃗r⃗
′
dr⃗ ′

[
(I − r̂r̂) · n̂cs × (k̂inc × p̂inc)− r̂ × (n̂cs × p̂inc)

]
(2.44)

where S is the circular surface. Following (2.3) we can write the pattern V⃗ out
obs of the outward

observable field as

V⃗ out
obs (k̂) =

jkα|E0|
4π

¨

S

ejk⃗r⃗
′
dr⃗ ′

[
(I − r̂r̂) · n̂cs × (k̂inc × p̂inc)− r̂ × (n̂cs × p̂inc)

]
. (2.45)

The integral in (2.45) can be closed analytically as follows

¨

S

ejk⃗r⃗
′
dr⃗ ′ = 2πa2

J1(ka sin γ)

ka sin γ
(2.46)

with a being the radius of the sphere and γ = cos−1(k̂ · k̂inc) the angle between the direction of
incidence and the direction of observation. Therefore the pattern of the outward observable field
can be written as

V⃗ out
obs (a, k̂inc, k̂) =

jkα|E0|
4π

2πa2
J1(ka sin γ)

ka sin γ

[
(I − r̂r̂) · n̂cs × (k̂inc × p̂inc)− r̂ × (n̂cs × p̂inc)

]
.

(2.47)
Recalling the property of the observable field as in (2.4a) and (2.4b) we can calculate the pattern
of the inward component of the observable field as

V⃗ inw
obs (a, k̂inc, k̂) = V⃗ out

obs (a,−k̂inc, k̂). (2.48)

Finally, one needs to calculate the amplification factor α in order to evaluate (2.47). The amplifi-
cation factor relates the pattern resulting from the PO currents to the pattern of the actual field in
the following way

V⃗
in/out

obs = αV⃗
in/out

PO . (2.49)

Recalling (2.33) and using (2.47) and (2.49)

α =
|E0|Aeff,PO

λ
∣∣∣V⃗ out

PO (a, k̂inc, k̂)
∣∣∣
max

=
|E0|Aeff,PO

λk|E0|a2

2

=
|E0|Aeff,PO

λ |E0|πa2

λ

=
Aeff,PO

Aph
(2.50)

which is the ratio between the effective area Aeff,PO and the physical area Aph as shown in [16].
The resulting amplification factor has been calculated for this type of structure and is shown in
Fig. 2.7, where α is plotted versus the radius a. As it can be seen, for small structures α → ∞ to
compensate for a vanishing antenna size. However, in the case of larger antenna sizes α → 1 due to
the fact that the effective and physical area of the structure are similar.
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Figure 2.7: Amplification factor α for a spherical structure under plane wave incidence as a function
of the radius in terms of wavelength.

In Fig. 2.8 the directivity of the observable field for three different sizes is presented. Furthermore,
the directivity in the case of broadside incidence, i.e., θi = 0◦, and scanning at θi = 60◦ are
considered. The maximum directivity remains constant when scanning, because the illuminated
surface of the sphere is constant for any incidence. Furthermore, a higher directivity is associated
with a larger size and thus cross-sectional area.

The maximum directivity calculated with the PO currents is compared with the one obtained
with the spherical modes (2.22) in Fig. 2.9. When using the PO approach we can see that the
observable field pattern is dependent on the geometry of the structure. Therefore, the power carried
by the inward/outward observable field is continuous with respect to the size of the structure. This
fact renders the effective area a continuous function, as can be seen from Fig. 2.9. In this figure it can
be seen that for small structures the effective area as calculated using the PO approach converges to
the effective area of Huygens’ source. For larger apertures the effective area approaches the physical
area of the structure as expected.

2.4.2 Rectangular Domain

As previously mentioned, the observable field has been thoroughly analyzed for spherical domains
[16–18]. However, the concept of the observable field is extended also to planar domains, which are
of more practical relevance, since planar antennas are the most common solution for massive MIMO
applications. In this section we consider the observable field for rectangles having sides Sx and Sy

along x and y, respectively, as shown in Fig. 2.10.

Differently from conformal domains, e.g., the case of the sphere treated in Subsec. 2.4.1, the
observable field from a planar domain depends on the direction of incidence. This is because in the
case of non-broadside incidence, the currents on the planar structure have a linear phase, leading
to a reduction in directivity known as scan loss. This was not the case with the sphere since the
portion of the structure illuminated by the plane wave was constant irrespective of the direction
of incidence, thus giving rise to the same observable field. In the case of the planar domain the
projected area is reduced when scanning as can be seen when Fig. 2.11b is compared to Fig. 2.11a.

Similar to the previous section, we consider a plane wave impinging from k⃗inc with polarization
p̂inc as follows

E⃗inc = |E0|e−jk⃗incr⃗
′
p̂inc. (2.51)
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Figure 2.8: (a) Spherical domain of radius a illuminated by a TM plane wave impinging from θi = 0◦

and θi = 60◦, and the resulting directivity patterns for (b) a = 0.5λ, (c) a = λ and (d) a = 7λ.

Therefore, the radiation integrals in (2.39) can be written as

E⃗ out
obs (r⃗ ) = jkα|E0|

e−jkr

4πr

¨

S

e−jk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′

[
(I − r̂r̂) · n̂× (k̂inc × p̂inc)− r̂ × (n̂× p̂inc)

]
.

(2.52)
The integral in (2.52) can be solved by writing the exponent in cartesian coordinates as follows

¨

S

e−jk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′ =

Sx/2ˆ

−Sx/2

ej(kx−kinc,x)x
′
dx′

Sy/2ˆ

−Sy/2

ej(ky−kinc,y)y
′
dy′ (2.53)

For which the analytical solution is as follows

¨

S

e−jk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′ = Sxsinc

(
Sx(kx − kinc,x)

2

)
Sysinc

(
Sy(ky − kinc,y)

2

)
. (2.54)
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Figure 2.9: Maximum effective area of a spherical domain of radius a calculated using the the
spherical modes and the PO currents, compared with the physical area of the domain, and the
effective area of a Huygens source.

Figure 2.10: Planar rectangular structure considered in Subsec. 2.4.2.

Hence, the outward observable field has the following pattern

V⃗ out
obs (k̂inc, k̂) =

jkα|E0|
4π

Sxsinc

(
Sx(kx − kinc,x)

2

)
Sysinc

(
Sy(ky − kinc,y)

2

)
[
(I − r̂r̂) · n̂× (k̂inc × p̂inc)− r̂ × (n̂× p̂inc)

]
. (2.55)

The pattern of the inward observable field is then given by the following expression

V⃗ inw
obs (k̂inc, k̂) =

jkα|E0|
4π

Sxsinc

(
Sx(kx + kinc,x)

2

)
Sysinc

(
Sy(ky + kinc,y)

2

)
[
(I − r̂r̂) · n̂× (k̂inc × p̂inc)− r̂ × (n̂× p̂inc)

]
. (2.56)

A more extensive derivation of the observable field for a rectangular plate can be found in Ap-
pendix B.

To calculate the amplification factor α, the maximum of the PO pattern needs to be calculated,
where we recall that the PO pattern and the observable field pattern have the following relationship
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(a) (b)

Figure 2.11: Structure under analysis in the case of (a) a plane wave impinging from broadside and
(b) a plane wave impinging from θi = 60◦ with reduced projected area.

V⃗obs = αV⃗PO. (2.57)

The evaluation of α is done numerically, since the maximum of (2.56) depends on the size of the
structure. For smaller structures the maximum is dominated by the vectorial part, for which the
maximum occurs in the direction of the normal to the structure. In the case of large structures the
maximum is dominated by the directive pattern and thus occurs when the direction of observation
coincides with the direction of incidence of the plane wave as seen by the structure, or mathematically
k̂ = −k̂inc. In this latter case, the PO pattern attains a maximum value given by∣∣∣V⃗ out

PO (k̂inc, k̂)
∣∣∣
max

=
∣∣∣V⃗ out

PO (k̂inc,−k̂inc)
∣∣∣ = k|E0|

4π
SxSy2 cos θi =

k|E0|
2π

Aph cos θi. (2.58)

Where Aph is the physical area of the structure. By using (2.33) we find

α =
|E0|Aeff,PO

λ
∣∣∣V⃗ out

PO (k̂inc, k̂)
∣∣∣
max

=
|E0|Aeff,PO

λk|E0|
2π Aph cos θi

=
Aeff,PO

Aph cos θi
. (2.59)

It can be seen that the amplification factor α in the case of a rectangular structure is similar to the
previously found α for the sphere. However, in the case of the rectangular structure we see the effect
of a reduction in the projected area due to a skewed angle of incidence, where the physical area is
multiplied by cos θi. The result for the amplification factor in the case of a plane wave impinging
from broadside is shown in Fig. 2.12. As expected, for small structures α → ∞ to compensate for a
vanishing antenna size. However, in the case of larger antenna sizes α → 1 due to the fact that the
effective and physical area of the structure are similar.

In Fig. 2.13 the directivity results for a rectangular structure enveloped by a sphere of radius rmin,
as in Fig. 2.8a, are shown. The structure under analysis is considered in the case of a plane wave
impinging from broadside (i.e., θi = 0◦) and for a plane wave impinging from θi = 60◦ and ϕ = 0◦

for three different rmin: an electrically small structure, i.e., rmin = 0.5λ, in Fig. 2.13b, a medium-
sized structure rmin = λ in Fig. 2.13c, and an electrically large structure rmin = 7λ in Fig. 2.13d.
Furthermore, a comparison is made between the directivity in the case of the rectangular structure
and its enveloping sphere. As can be seen from Fig. 2.13 for all structure sizes, the directivity of
the rectangular plate is smaller than the one of the sphere, due to a smaller area. In fact, the
physical area of the plate is smaller by a factor π/2 than and the cross section of its enveloping
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Figure 2.12: Amplification factor α for a rectangular structure under plane wave incidence as a
function of the radius of the enveloping sphere in terms of wavelength.

sphere. Therefore, the directivity achieved by the sphere is larger. For electrically small plates, the
scanning causes an aberration in the patterns, giving rise to a maximum directivity which does not
coincide with the direction of the impinging plane wave, this can be seen in Fig. 2.13b and Fig, 2.13c,
where the maximum of radiation occurs for smaller angles than the expected 60◦. Moreover, the
scan loss effect is less detrimental for smaller structure due to their non-directive patterns. However,
in the case of larger structures, the maximum radiation is asymptotic to cos θi. This effect is clarified
in Fig. 2.14, where the directivity of a square plate of size rmin = 7λ for plane waves impinging from
θi = 0◦ and θi = 60◦, as in Fig. 2.13d, are compared with cos θ weighted by the maximum directivity
at broadside. As can be seen the maxima follow the trace of the cosine, since the reduction in area
is proportional to cos θi.

An important clarifying consideration is that only patterns in the ϕ = 0◦ plane are shown. This
is sufficient, since the structure considered is symmetric and both magnetic and electric currents are
used to construct the observable field.

2.4.3 Planar Circular Domain

In this section a planar circular structure is considered. This has applications in the case of cir-
cular arrays [25]. In contrast with the sphere where its observable field was calculated using the
cross-sectional disk, in this case we consider an irrotational disk. This means that similar to the
rectangular plate of Subsec. 2.4.2, the structure introduces scan loss when scanning.

The pattern of the observable field in the case of sphere was derived in Subsec. 2.4.1. In that
subsection we assumed a cross-sectional disk, always perpendicular to the direction of incidence of
the incoming plane wave. This causes a constant phase across the structures. However, in this case,
the currents that arise from an incoming plane wave may have a linear phase along the structure.

As previously, we consider a plane wave impinging from k⃗inc with polarization p̂inc as follows

E⃗inc = |E0|e−jk⃗incr⃗
′
p̂inc. (2.60)

Therefore, the radiation integrals in (2.39) can be written as

E⃗ out
obs (r⃗ ) = jkα|E0|

e−jkr

4πr

¨

D

e−jk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′

[
(I − r̂r̂) · n̂× (k̂inc × p̂inc)− r̂ × (n̂× p̂inc)

]
.

(2.61)

19



2.4. THE OBSERVABLE FIELD FROM SPE . . . CHAPTER 2. THE OBSERVABLE FIELD

(a)

-180 -90 0 90 180

-20

-10

0

10

(b)

-180 -90 0 90 180

-10

0

10

20

(c)

-60 0 60 120

0

10

20

30

(d)

Figure 2.13: (a) Rectangular domain of size rmin illuminated by a plane wave impinging from
θi = 0◦ and θi = 60◦, and the resulting directivity patterns for (b) rmin = 0.5λ, (c) rmin = λ and
(d) rmin = 7λ.

Where D is a disk with radius rmin located on the xy-plane, as shown in Fig. 2.15. Recalling that
the pattern of the inward observable field is related to the pattern of the outward observable field
in the following way

V⃗ inw
obs (k̂inc, k̂) = V⃗ out

obs (−k̂inc, k̂) (2.62)

and by writing the structure’s coordinates, r⃗ ′, in polar coordinates the integral in (2.61), can be
written as follows

¨

D

ejk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′ =

aˆ

0

2πˆ

0

e−jkρ′ sin θi cos(ϕ′−ϕi)ejkρ
′ sin θ cos(ϕ′−ϕ)dϕ′ρ′dρ′ (2.63)

where the radius of the enveloping sphere is taken as a. The integral in (2.63) is calculated analyt-
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Figure 2.14: Directivity of the observable field in the case of square plate characterized by rmin = 7λ,
for the case of a plane wave impinging from θi = 0◦ and θi = 60◦, compared with a cosine weighted
by the maximum directivity in the case of broadside incidence.

Figure 2.15: Planar circular structure considered in Subsec. 2.4.3.

ically in Appendix C, and it results into the following expression

¨

D

ejk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′ = 2πa

sin θiJ1(ka sin θi)J0(ka sin θ)− sin θJ0(ka sin θi)J1(ka sin θ)

k(sin2 θi − sin2 θ)
+

+ 4πa

∞∑
n=1

cos(n(ϕ− ϕi))
sin θJn(ka sin θi)Jn−1(ka sin θ)− sin θiJn−1(ka sin θi)Jn(ka sin θ)

k(sin2 θi − sin2 θ)
. (2.64)

The infinite sum in (2.64) is truncated at N = ⌈ka⌉. The radiated field calculated using (2.64) is
validated by a comparison with a numerical evaluation of the integral, implemented by discretizing
the disk into square patches. In Fig. 2.16 the analytical solution is compared to the numerical one,
for a plane wave impinging from θi = 60◦ for rmin = 0.5λ in Fig. 2.16a and for rmin = 7λ Fig. 2.16b.
The calculation of the amplification factor α for a planar disk is similar to previous sections by using
(2.33) in which the evaluation of the maximum value of the PO pattern is implemented numerically.
The results of the amplification factor can be seen in Fig. 2.17. As expected, for small structures
α → ∞ to compensate for a vanishing antenna size. However, in the case of larger antenna sizes
α → 1 due to the fact that the effective and physical area of the structure are similar.

The directivity of the disk is shown in Fig. 2.18 for a plane wave impinging from broadside and
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Figure 2.16: Validation of analytical implementation of the observable field pattern with numerical
results in the case of a plane wave impinging from θi = 60◦ for structures of size (a) rmin = 0.5λ
and (b) rmin = 7λ.

from θi = 60◦ [see Fig. 2.18(a)] for three different electrical sizes, i.e., rmin = 0.5λ0 in Fig. 2.18(b),
rmin = λ0 in Fig. 2.18(c), and rmin = 7λ in Fig. 2.18(d). For the broadside incidence the directivity
of the disk is the same as the one of the sphere, because the observable field from the sphere is
calculated with the cross-sectional disk. However, when scanning, the planarity of the structure
introduces an aberration in the pattern causing the maximum to be located closer to broadside and
not the direction of incidence of the plane wave. For larger structure as in Fig. 2.18d, the maxima
of the directivity traces a cosine pattern, due to the scaling of the projected area when scanning, as
discussed in Subsec. 2.4.2.
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Figure 2.17: Amplification factor α for a planar circular structure under plane wave incidence as a
function of the radius of the enveloping sphere in terms of wavelength.
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Figure 2.18: (a) Planar circular domain of radius rmin illuminated by a plane wave impinging from
θi = 0◦ and θi = 60◦, and the resulting directivity patterns for (b) rmin = 0.5λ, (c) rmin = λ and
(d) rmin = 7λ.

23



This Page Intentionally Left Blank



3. Number of Beams Analysis
As mentioned in the introduction the goal of this study is to investigate the maximum number of
independent beams that can be hosted by a given platform. This depends on the physical size of
the structure. In order to characterize the independence of the beams we accept a given level of
Signal to Interference Ratio (SIR). This chapter demonstrates the methodology used to calculate
the SIR by resorting to the concept of the observable field and introduces the coupling coefficients
to calculate the power available to the antenna under analysis.

3.1 Coupling Coefficients

In a multi-link communication scenario, for a given link its data stream represents the desired
signal while all other data streams contribute to the interference. In order to consider a given link
independent of others, the SIR must remain above a certain threshold. To model the SIR of a
given link in a communication scenario we need to characterize the power received from each client.
In this context, the observable field is used together with the coupling coefficients to calculate the
power that an antenna with a given radiation pattern can receive from an incident field.

Consider an antenna enclosed by a sphere of radius a, with its j-th beam V⃗ j
a pointing to the

k̂j direction. Assume a client located in the antenna far field, generating a plane wave impinging

from the direction k̂i. To calculate the power P ij
rec that can be received from a source located at the

direction k̂i, when the antenna is pointing to the k̂j direction, we can define the reception coupling
coefficient as follows

P ij
rec ≡ P i

obs|C
ij
obs,a|

2 (3.1)

where Cij
obs,a is the coupling between the observable field pattern V⃗ inw

obs,i(k̂), carrying the observable

power P i
obs, associated with the plane wave impinging from k̂i, and the antenna pattern V⃗ j

a (k̂)

pointing to direction k̂j , as summarized in Fig. 3.1. To calculate the coupling coefficient Cij
obs,a, the

power received can be related to the open circuit voltage induced on the terminals of the antenna
and the input current by which the antenna would be fed in transmission. We can write the power
received from the i-th client when pointing to the j-th direction under impedance matched conditions
in the following way

P ij
rec =

1

8

|V ij
oc |2

Rj
a

(3.2)

where V ij
oc is the open circuit voltage induced in the terminals of the antenna by the i-th impinging

field and Rj
a is the radiation resistance when pointing to the j-th direction. As suggested in [26], the

power received can be related to the power radiated by the antenna when operated in transmission
in the following way

P ij
rec =

P ij
r P j

a

P j
a

=
1

8

|V ij
oc |2

Rj
a

1

2

Rj
a|Ija |2

P j
a

=
1

16

|V ij
oc I

j
a |2

P j
a

(3.3)

where P j
a is the power radiated by the antenna in transmission when fed by a current Ija . By using

(3.1) and (3.3) the coupling coefficients can be calculated as follows

|Cij
obs,a| =

|V ij
oc I

j
a |

4
√
P j
aP i

obs

. (3.4)

The product V ij
oc I

j
a can be evaluated by exploiting Lorentz’s reciprocity theorem, which in the case

of a source at a far field distance can be simplified as follows

V ij
oc I

j
a =

2

ζ

¨

4π

V⃗ inw,i
obs (k̂) · V⃗ j

a (k̂)dk̂. (3.5)
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Figure 3.1: Antenna pattern with an inward observable field pattern.

Furthermore, the power radiated by the transmitting antenna and the observable power can also
be related to their patterns in the following way

P i
obs =

1

2ζ

¨

4π

|V⃗ inw,i
obs (k̂)|2dk̂ (3.6)

P j
a =

1

2ζ

¨

4π

|V⃗ j
a (k̂)|2dk̂. (3.7)

Hence, the coupling coefficients can be written as

Cij
obs,a =

˜
4π

V⃗ inw,i
obs (k̂) · V⃗ j

a (k̂)dk̂√˜
4π

|V⃗ inw,i
obs (k̂)|2dk̂

˜
4π

|V⃗ j
a (k̂)|2dk̂

. (3.8)

The maximum coupling, i.e., |Cij
obs,a| = 1, occurs when the pattern of the receiving antenna matches

the pattern of the observable field, V⃗ inw,i
obs (k̂) = V⃗ j

a (k̂). In this case the received power is maximized,
however, this does not guarantee an optimum SIR as will be clarified in Chapter 4.

In Fig. 3.2 the power available, calculated as in (3.1), for rectangular structures of different sizes
is presented. The simulation considers TM plane waves impinging from θi and the frequency of
analysis is 100GHz. As clarified in Fig. 3.2a two scanning directions are considered, for the case
of scanning at θ = 0◦ and θ = 60◦. In the case of small structures as in Fig. 3.2b the power
available from the desired scanning direction is not reduced since the structure is small in terms of
wavelength and therefore has a broad antenna pattern. In the case of larger structure it can be seen
from Fig. 3.2c and Fig. 3.2d that the power available from the scanning direction is reduced due
to the scan loss. In previous works when spherical structures were considered as in [17], the power
available from the scanning direction was not reduced with respect to broadside, since no scan loss
was present.

3.1.1 Integration on the Far Field Sphere

In a given multi-link scenario, as the one shown in Fig. 1.1 where Nl clients are transmitting
simultaneously, the analysis of the SIR when the antenna is pointing in the j-th direction to the
desired user requires the calculation of the coupling coefficient as in (3.8) for each interferer i. This
calculation must be repeated for every pointing direction j and possibly every antenna size in order
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Figure 3.2: Power available in the case of TM plane waves impinging from θi for a (a) planar square
domain while the antenna is pointing to θ = 0◦ and θ = 60◦ for the following sizes: (b) rmin = 0.5λ,
(c) rmin = λ and (d) rmin = 7λ.

to characterize the given scenario. Each evaluation of the coupling coefficient requires the calculation
of multiple integrals, rendering this a computationally intensive problem. This subsection introduces
the Gauss - Legendre quadrature rule as an aid to accelerate the calculation of such integrals.

The integrals considered in this case can be seen as integrals evaluated on the surface of the
unit sphere S2. As an example consider the power radiated by the antenna as in (3.7). In many
cases the solution to such an integral might not be known analytically and thus must be computed
numerically. It is therefore important to calculate an accurate approximation to the integrals of this
form. A common way to approximate such an integral numerically is by the finite sum of weighted
points on the sphere’s surface S2 as follows

ˆ

S2

f(x)dΩ ≈
N−1∑
i=0

wif(xi) (3.9)

where wi are the weights used in the type of quadrature. Before discussing a type of quadrature it
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is important to recall the following property

ˆ

S2

|f(x)|2dΩ < ∞. (3.10)

Functions for which (3.10) is valid are called square-integrable functions. As clarified in [27], square-
integrable function on the unit sphere can be expanded in terms of the spherical harmonics orthonor-
mal basis on the unit sphere. For which the spherical harmonical functions are given as follows

Y m
n (θ, ϕ) =

1√
2π

Pm
n (cos θ)ejmϕ, −n ≤ m ≤ n, n,m ∈ N (3.11)

where Pm
n are the normalised associated Legendre functions, m is the order of the spherical harmonic

and n the degree. Integrating such a function would require solving the following integral

ˆ

S2

ejmϕPm
n (cos θ) sin θ dθ dϕ. (3.12)

Using Fubini’s theorem the integral can be analyzed separately as

2πˆ

0

ejmϕ dϕ (3.13)

and
π̂

0

Pm
n (cos θ) sin θ dθ. (3.14)

As explained in [28, 29], the optimal sample points for (3.13) consists of L+1 equally spaced points,
whereas for (3.14) the optimum sampling is using (L+ 1)/2 Gauss - Legendre points. This ensures
the exact integration of all Y m

n for −n ≤ m ≤ n, 0 ≤ n ≤ L. Recalling that the Gauss - Legendre
scheme guarantees the exact integration of all polynomials pl(x) up until degree l = 2n− 1 over the
interval [−1, 1] as follows

1ˆ

−1

pl(x) dx =

n∑
i=1

wipl(xi) (3.15)

with wi the quadrature weights and xi the nodes, which are the roots of the n-th Legendre polyno-
mial. Hence, in order to employ a uniform sampling scheme along ϕ and Gauss - Legendre on θ the
integrals as in (3.7) can be rewritten as follows

P j
a =

1

2ζ

¨

4π

|V⃗ j
a (k̂)|2dk̂ =

1

2ζ

2πˆ

0

π̂

0

|V⃗ j
a (θ, ϕ)|2 sin θ dθdϕ (3.16)

and introducing a change of variables γ = cos θ, dγ = sin θ dθ allows us to evaluate the integral as
follows

P j
a =

1

2ζ

2πˆ

0

1ˆ

−1

|V⃗ j
a (arccos(γ), ϕ)|2 dγdϕ =

1

2ζ
wϕ

Nϕ∑
j=1

Nθ∑
i=1

wθ
i |V⃗ j

a (arccos(γi), ϕj)|2 (3.17)
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with γi the Gauss nodes, wθ
i Gauss - Legendre weights and

ϕj =
2π(j−1)

Nϕ

wϕ = 2π
Nϕ

Nϕ = L+ 1

Nθ = L+1
2 .

(3.18)

For the case of a structure enveloped by a sphere with minimum diameter D, the number of spherical
harmonics L needed is as follows

L = ⌈kD + 1.8d
2/3
0 (kD)1/3⌉ (3.19)

where d0 is the number of valid decimal digits [28, 30]. The Gauss nodes γi can be found using
the Newton - Raphson method for calculating the roots of the Legendre polynomials, whereas the
weights wθ

j can be calculated as follows [31, p. 887]

wθ
j =

2

(1− θ2i )[P
′
n(θi)]

2
. (3.20)

In Fig. 3.3a the power carried by the inward component of the observable field is calculated using
two different quadrature schemes for the case of a planar square structure with minimum enveloping
sphere of radius rmin = 0.1λ. The case of using a uniform sampling in ϕ and Gauss - Legendre in
θ is compared to the case of the traditional uniform sampling in both dimensions θ, ϕ using the
quadrature rule ∆θ = ∆ϕ. The power, calculated as in (3.6), is plotted as a function of the total
number of points. In the case of using a Gauss - Legendre quadrature the parameter d0 is varied
to increase the total number of sampling points. Furthermore, the relative error with respect to the
final value of the integral, calculated as follows

ϵr =
|Ifinal − Ii|
|Ifinal|

(3.21)

where Ifinal is the final value of the integral as in (3.6), is show in Fig. 3.3b for the case of a planar
square structure with minimum enveloping sphere of radius rmin = 0.1λ. As it can be seen from
these figures, employing a Gauss - Legendre quadrature scheme has a clear advantage of using fewer
points. This accelerates the calculation of each integral which in turn facilitates the analysis of the
SIR. In the case of a structure with rmin = 0.1λ the calculation time to achieve a relative error
of ϵr < 10−4 is 0.47 s in the case of the sampling scheme ∆θ = ∆ϕ and 0.021 s in the case of a
uniform sampling along ϕ and Gauss - Legendre along θ. These results are also shown in the case
of a large structure in terms of wavelength characterized by a minimum enveloping sphere of radius
rmin = 10λ in Fig. 3.3c and Fig. 3.3d.

3.2 Signal-to-Interference Ratio Modelling

As explained in Sec. 3.1, the coupling coefficients can be used to calculate the total power received
when the antenna is pointing to direction j from all clients in a certain communication scenario as
follows

P j
rec =

Nl∑
i=1

P i
obs|C

ij
obs,a|

2 (3.22)

where Nl is the number of links present in the communication scenario. Using the definition of the
coupling coefficients we can calculate the signal power. This is the power captured from the j-th
direction when the antenna is pointing to the j-th direction. The signal power is then

Sj = P j
obs|C

jj
obs,a|

2 (3.23)
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(a) (b)

(c) (d)

Figure 3.3: Power results from integration using two different quadrature schemes in the case of
structures with size (a) rmin = 0.1λ and (b) their relative error, (c) power in the case of rmin = 10λ
and (d) their relative error.

and thus the interference is the power contributed by the other clients, which is calculated as follows

Ij =

Nl∑
i=1
i̸=j

P i
obs|C

ij
obs,a|

2. (3.24)

Using the signal and interference we can calculate the SIR of the communication scenario when the
antenna is pointing to the j-th client as

SIRj =
Sj

Ij
=

P j
obs|C

jj
obs,a|2

Nl∑
i=1
i̸=j

P i
obs|C

ij
obs,a|2

. (3.25)

In Fig. 3.4, a communication scenario consisting of three TM polarized plane waves impinging
from θi = 0◦, θi = 30◦ and θi = 60◦ is analyzed for the case of three different structures, when
the antenna is pointing to broadside. The frequency considered for this analysis is of 100GHz. In
Fig. 3.4a a square plate is considered, in Fig. 3.4b a circular planar structure and in Fig. 3.4c a
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Figure 3.4: (a) Square structure, (b) circular planar structure, (c) spherical structure in the presence
of three TM plane waves impinging from θi = 0◦, θi = 30◦ and θi = 60◦ and (d) the SIR for each
structure in case the antenna is pointing to broadside.

sphere. The resulting SIR versus the antenna size for all three structures is shown in Fig. 3.4d. In
this analysis the antenna pattern V⃗ j

a is taken to be the one of the observable field V⃗ j
obs in the case

of broadside. If the results of the sphere are compared to the disk it can be seen that they are
similar, this is because the sphere was represented by a disk always perpendicular to the direction
of incidence. The differences arise because of the scan loss present in the case of the disk but not
in the case of the sphere. Therefore, the disk captures less interference while capturing the same
signal power as the disk and hence improving the overall SIR. In the case of the square plate, the
lower SIR can be attributed to the smaller aperture area. The maxima of the SIR occurs when the
angle of incidence of a plane wave coincides with a null in the antenna pattern. This is clarified by
the antenna pattern for the case of the sphere or disk and the square plate in Fig.3.5a and Fig.3.5b,
respectively, where the size is taken to be the one at the first maxima of the SIR in Fig. 3.4d. It
can be seen that in both cases the nulls of the antenna pattern V⃗ j

a , chosen to be equal to the one

of the observable field in the case of broadside V⃗ j
obs, has nulls close to the angles of incidence of the

interferers.

In Fig. 3.6a three TM plane waves are impinging on a square plate from θi = 0◦, θi = 30◦, and
θi = 60◦, and the resulting SIR is shown in Fig. 3.6b, when the antenna beam is pointing towards
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Figure 3.5: Directivity of antenna with size characterized by the minimum enveloping sphere with
radius rmin at the maximum SIR for (a) a sphere or disk pointing to broadside and (b) a square
plate pointing to broadside.
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Figure 3.6: (a) Square plate, enveloped by a sphere having minimum radius rmin in the presence of
three TM plane waves impinging from θi = 0◦, θi = 30◦ and θi = 60◦ and (b) the SIR evaluated
when each plane wave is the signal and the remaining two are interferers.

0◦, 30◦, and 60◦ for a frequency of operation of 100GHz. For each of these three cases, the signal is
aligned with the antenna pattern, and the remaining two are interferers. When scanning, the SIR
results to be deteriorated, also influenced by some aberrations in the patterns. In Fig. 3.7a a disk
is considered in the same situation as the plate in Fig. 3.6a. The SIR corresponding to the disk
is presented in Fig. 3.7b, similar as in the case of the square plate, the SIR is deteriorated when
scanning.

3.3 Randomly Distributed Clients

In a realistic communication scenario the users will not be located equispaced of each other. Fur-
thermore, antenna’s scanning are limited to a certain Field of View (FoV). This section evaluates
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Figure 3.7: (a) Disk of radius rmin in the presence of three TM plane waves impinging from θi = 0◦,
θi = 30◦ and θi = 60◦ and (b) the SIR evaluated when each plane wave is the signal and the
remaining two are interferers.

the SIR performance for an antenna with a FoV of 120◦. The FoV is divided equally in angular
sectors ∆θ in which each interferer can be located. The desired signal is limited to be located within
∆θ/2, around broadside, since otherwise the desired signal’s location and an interferer’s location
could overlap rendering the SIR analysis futile. In Fig. 3.8a 5 users are considered, each uniformly
located within each sector ∆θ and the resulting SIR, taking 250 realizations, are shown in Fig. 3.8b.
The blue curve highlights the average SIR taken from all realizations, while the gray area bounded
by the red line highlights the 90% confidence interval (C.I.). From Fig. 3.8b it can be seen that
the SIR can vary significantly depending on the exact position of the interferer. This is due to the
matching between the pattern of the observable field of the interferer and the antenna pattern. In
this case the antenna pattern is taken equal to the observable field pattern of the desired signal.

In Fig. 3.8c a similar scenario with 9 clients is considered. As can be seen from Fig. 3.8d,
where the resulting SIR curves are presented, when considering larger structures and thus directive
antennas the C.I. of 90% is narrower since ∆θ ≈ 13.3◦, which is smaller than ∆θ = 24◦ which was
considered in Fig. 3.8b. This restricts the position of the interferers, causing a narrower 90% C.I..
Furthermore, since we are considering more interferers, the antenna size needed to achieve the same
SIR is larger. It can be seen that the average SIR is reduced in the case of 9 clients with respect to
5 clients.

3.4 Maximum Number of Beams

This section presents a study on the relation between the SIR when scanning, and the number of links
present on the FoV of the antenna. The present study only focuses on the characterization of the SIR
in different communication scenarios. However, when considering interference and other forms of
noise in the system it is possible to relate the Signal to Noise Ratio (SNR) to the bit error rate (BER),
which is the main parameter used to quantify the performance of digital communication systems
[32]. As previously mentioned, this study only focuses on the characterization of the interference.
Future studies can use the SIR analysis to relate it to a corresponding BER depending on the
modulation used, as clarified in [32, Ch. 7], and therefore quantify the maximum number of beams
for a desired BER.

In Fig. 3.9 we analyze a square plate of size rmin = 5λ0 where we consider a varying number
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Figure 3.8: (a) Square plate of size rmin with 5 randomly distributed clients, (b) SIR 250 realizations
including the average SIR and 90% C.I. considering the signal around broadside and 4 interferers.
(c) Square plate of size rmin with 9 randomly distributed clients (d) SIR 250 realizations including
the average SIR and 90% C.I. considering the signal around broadside and 8 interferers.

Nl of links, angularly equispaced over a FoV of 120◦ as shown in Fig. 3.9a. The SIR is shown in
Fig. 3.9b as a function of the number of links. The different points for each Nl refer to the SIR when
the desired signals is coming from one of the considered directions and all other users are assumed to
be interferers. This plot allows estimating the number of links communicating with the antenna for
which a certain SIR level can be guaranteed. From Fig. 3.9b we see that depending on the number
of links the spread of the variation in SIR can differ. Moreover, it can be noted that the maximum
SIR is not necessarily when the desired signal points to broadside, but can differ depending on the
number of links. This can be explained by the distribution of the nulls in the antenna pattern
with respect to observable field pattern of the interferers. In Fig. 3.10a we consider the case of 7
interferers, angularly equispaced on the FoV. From Fig. 3.9b we can see a large variation in the SIR,
which achieves a maximum of 21.6 dB and a minimum of 10.6 dB. The maximum SIR is achieved
when the antenna is pointing to the client at broadside and the minimum when pointing to the
furthest client located at θscan = 51.4◦. The difference in SIR can be explained with the aid of
Fig. 3.10b, where the antenna pattern in the case of pointing to broadside and the case of pointing
to θscan = 51.4◦ are shown. The vertical dotted lines represent the location of the clients. It can be
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Figure 3.9: (a) Square plate of size rmin = 5λ0 with Nl interferers evenly distributed over the FoV.
(b) Variation of SIR when scanning to each client for a given number of links.
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Figure 3.10: (a) Square plate with size rmin = 5λ0 with 8 TM plane waves as clients, evenly
distributed over a FoV of 120◦ and (b) antenna patterns for scanning to broadside and θscan = 51.4◦.

seen from Fig. 3.10b that when pointing to broadside the interferers are conveniently located at the
nulls of the pattern. However, in the case of scanning, the interferers are located on the sidelobes
of the antenna pattern, thus allowing the antenna to better couple to the interferers and ultimately
degrade the SIR.
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4. SIR Improvement Techniques

The coupling coefficients introduced in Sec. 3.1 can be used to calculate the coupling between the
observable field of a certain incident field and the antenna pattern V⃗ j

a . By choosing the antenna

pattern V⃗ j
a to be equal to the one of the observable field V⃗ j

obs, the coupling coefficient is equal to
unity, and the received signal power is maximized. However, this does not ensure the optimum
SIR, since it does not necessarily minimize the interference captured. This chapter presents two
strategies to improve the SIR, in Sec. 4.1 the effect of applying a taper to the current distribution
is investigated and in Sec. 4.2 a null placement technique is investigated.

4.1 Tapered Distribution

A technique used to reduce interference is a tapered aperture distribution. This technique reduces
the sidelobe level at the cost of a lower main beam efficiency. The introduction of the taper causes
a loss of directivity, broadening the main beam while suppressing the sidelobes. The introduction
of a taper in the aperture distribution of the antenna gives rise to a pattern different than the one
of the observable field. Therefore, the coupling coefficient has a value lower than one, however, the
reduction in sidelobe level reduces the interference captured and thus overall improves the SIR.

The taper is applied to a rectangular domain, and its implementation is analogous to the one
described in [33] for circular feeds. In a rectangular domain, the edge tapers along x and y can be
applied to the aperture distribution, independently of each other. Let us now consider a Gaussian
taper applied along x, but the explanation is analogous for y. The edge taper in linear scale TE,lin

is defined as follows

TE,lin =
E(xedge)

E(0)
= e−(

xedge
wx

)
2

(4.1)

where xedge is −Sx/2 and Sx/2 as shown in Fig. 4.2a. To synthesize the targeted taper, the weight
wx in (4.1) has to be determined. Since the taper is usually mentioned in decibels, (4.1) can be
manipulated as follows

e−(
xedge
wx

)
2

= 10−
TE,dB

20 (4.2)

where TE,dB is the edge taper expressed in dB. Finally wx can be calculated as follows

wx =
Sx

2
√

TE,dB

20 ln(10)
. (4.3)

Recalling from Sec. 2.4.1 that the field radiated by uniform sources with a linear phase can be
calculated as follows

E⃗(r⃗ ) = jk|E0|
e−jkr

4πr

¨

S

ejk⃗scanr⃗
′
ejk⃗r⃗

′
dr⃗ ′

[
(I − r̂r̂) · n̂× (k̂scan × p̂scan)− r̂ × (n̂× p̂scan)

]
(4.4)

where k̂scan is the desired scan direction and p̂scan is the polarization of the electric field on the
aperture. Now by applying an edge taper along x and y the integral in (4.4) becomes as follows

¨

S

e
−
(

x′
wx

)2

e
−
(

y′
wy

)2

ejk⃗scanr⃗
′
ejk⃗r⃗

′
dr⃗ ′. (4.5)
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Figure 4.1: Validation of analytical implementation of the pattern radiated by a 10 dB tapered
aperture distribution along x and y for the case of scanning at 60◦.

By splitting the double integral into the x′ and y′ variables we can write

¨

S

e
−
(

x′
wx

)2

e
−
(

y′
wy

)2

ejk⃗scanr⃗
′
ejk⃗r⃗

′
dr⃗ ′ =

Sx/2ˆ

−Sx/2

e
−
(

x′
wx

)2

ej(kscan,x+kx)x
′
dx′

Sy/2ˆ

−Sy/2

e
−
(

y′
wy

)2

ej(kscan,y+ky)y
′
dy′.

(4.6)

The solution of these integrals has been derived in Appendix D and takes the following form

ˆ Sx/2

−Sx/2

e
−
(

x′
wx

)2

ej(kscan,x+kx)x
′
dx′ =

wx

2

√
πe−

w2
x(kscan,x+kx)

4

[
erf

(
j (kscan,x + kx)w

2
x + Sx

2wx

)
− erf

(
j (kscan,x + kx)w

2
x − Sx

2wx

)] (4.7)

where the error function erf(x) is used. A similar solution holds for the case of the integral in y′.
This solution is compared with the results acquired from numerical integration and are shown in
Fig. 4.1.

In Fig. 4.2, the directivity patterns of a 10 dB Gaussian taper are compared with a uniform
distribution, i.e., the one radiating the observable field, for three different structure sizes as in
Fig. 4.2a. In Fig. 4.2b where a structure of size rmin = 0.5λ0 is considered it can be seen that
the taper has minimal effect for small structures. In Fig. 4.2c and more clearly in Fig. 4.2d, where
structures of size rmin = λ0 and rmin = 7λ0 are considered, respectively, the effect of tapering can
be seen on the sidelobe level. However, in both cases it can be seen that the sidelobe suppression
comes at the cost of a broader main beam and reduced directivity. In Fig. 4.3 the SIR is assessed for
the use of such a taper, where 10 dB Gaussian tapering is used along both dimension of the square
structure. The structure considered is the one in Fig. 4.3a where rmin is the radius of the minimum
enveloping sphere and the structure is under illumination of three TM plane waves impinging from
θi = 0◦, θi = 30◦ and θi = 60◦. The resulting SIR versus the size in terms of the wavelength is
shown in Fig. 4.3b, when the antenna is scanning to θscan = 0◦ and θscan = 60◦. The frequency
of simulation is of 100 GHz. From Fig. 4.3b it can be seen that in the case of small structures as
expected the use of a taper does not provide an improvement in the SIR due to the loss of directivity.
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Figure 4.2: Comparison of directivity patterns between (a) a square plate for a 10 dB Gaussian
taper and a uniform distribution in the case of (b) rmin = 0.5λ0, (c) rmin = λ0 and (d) rmin = 7λ0.

However, in the case of larger structures, starting from rmin ≈ 2λ0, the reduction in sidelobe level
provides an overall better SIR.

4.2 Nulling

The capability of placing a null for a specific direction in an antenna pattern can help reduce the
interference in a given communication scenario. The method consists of using a correction pattern
in superposition with the original antenna pattern resulting from the observable field to place a null
in the direction of an interferer. In order to assess the SIR improvement from this technique we
first present a case where no nulling is used. As depicted in Fig. 4.4a, a square plate enveloped by
a minimum sphere of radius rmin is considered, with two clients at θi = 0◦ and θi = 40◦, where the
signal is the client at broadside. The SIR versus the size of the structure for such a configuration
can be seen in Fig. 4.4b. As can be seen from Fig. 4.4b, the SIR achieves its local maxima when
the size of the structure is characterized by rmin ≈ 1.16λ0 this can be explained with the aid of
Fig. 4.5a, where the antenna pattern and the pattern of the observable field of the interferer, located
at θi = 40◦, are shown. From Fig. 4.5a, it can be seen that for this specific antenna size, the antenna
pattern naturally has a null at the maximum of the observable field pattern of the interferer. Since
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Figure 4.3: SIR analysis in the presence of three TM plane waves impinging from θi = 0◦, θi = 30◦

and θi = 60◦ for a (a) square plate antenna enveloped by a sphere having minimum radius rmin and
(b) the resulting SIR when the antenna is pointing to broadside and scanning at 60◦ for a uniform
and 10 dB Gaussian taper.

the power received depends on the coupling between the patterns, as clarified by the use of the
coupling coefficient as in (3.8), the null of the antenna pattern located at the maximum of the
observable field’s pattern of the interferer greatly reduces the power received from the interferer,
therefore improving the SIR. Furthermore, for medium-sized antennas, it can be seen from Fig. 4.4b
that the local minimum happens for rmin ≈ 1.64λ0, which can be explained by Fig. 4.5b where it
can be seen that for this antenna size, the antenna pattern has its first sidelobe coinciding with the
maximum of the observable field’s pattern of the interferer, therefore providing a better coupling to
the interference and thus degrading the SIR.

To improve the SIR, a simple null placement strategy is presented. In this case, we consider
the same scenario as presented in Fig. 4.4a, where the signal is located at broadside, and a single
interferer is considered, located at θi = 40◦. In Fig. 4.6a the antenna pattern can be seen in the
case where it is taken to be the pattern of the observable field of the signal. To place a null, we
first synthesize a pattern that points to the desired null location as in Fig. 4.6b. This pattern is
then weighted by the value of the original pattern at the desired null location as shown in Fig. 4.6c.
By subtracting the two patterns, the targeted pattern with a null at the desired location can be
obtained, as shown in Fig. 4.6d.

Now we consider the same situation with the signal at θi = 0◦ and the interferer at θi = 40◦ as
shown in Fig. 4.7a for which we apply the null placement strategy for every antenna size in order
to improve the SIR, the results are shown in Fig. 4.7b. It can be seen that the SIR is improved
overall, except at the local maxima, this can be explained by other nulls that occur in the original
pattern which further reduces the interference at this specific antenna size.
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Figure 4.4: SIR analysis for a (a) square plate with minimum enveloping sphere of radius rmin with
two clients at θi = 0◦ and θi = 40◦ with the antenna pointing to broadside. In (b) the resulting
SIR.
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Figure 4.5: Antenna pattern and pattern of the observable field of the interferer located at θi = 40◦

in the case of (a) a structure with size when the maximum SIR occurs and (b) when the minimum
SIR occurs.
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Figure 4.6: Antenna patterns for (a) pointing to broadside without null placement, (b) scanning to
the desired null position, (c) original pattern and weighted scanning pattern and (d) final pattern
with null placed at desired angle.
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Figure 4.7: SIR analysis for (a) a structure using nulling at the interferers angle. In (b) resulting
SIR using the null placement strategy compared to the case of a uniform distribution.
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5. Conclusions and Future Work

5.1 Summary and Conclusions

In this thesis a fundamental study on the number of independent beams that can be supported
by radiating apertures characterized by planar domains was presented. Antennas with rectangu-
lar and circular domains were considered. This study is relevant to determine, in a multi-beam
communication scenario, the maximum number of links supported by the antenna, for a given size
and geometry. The independence between beams, and in turn the number of supported links, was
quantified in terms of the SIR.

In order to calculate the SIR, the concept of the observable field was presented. The observable
field allows us to calculate the maximum power available to structures contained in a finite volume.
It was shown that using the PO currents to calculate the observable field renders the power available
continuous with the size of the structure. A comparison was made with older methods resorting to
the spherical modes. Unlike the method proposed here, spherical mode expansion results in discrete
values of the estimated power available, because of the integer number of modes that are considered.

The PO currents were used to derive the formulas for the patterns of the observable field for
planar structures. The derivation of the closed-form Fourier transform of the current distributions
allowed for a faster implementation when calculating the power associated with the fields. The
results obtained with planar rectangular and circular distributions were compared with results for
the case of spherical domains. The directivity patterns of the rectangular and circular structure
showed a scan loss, which does not occur for spherical structures. The estimation of scan loss is
relevant for realistic base station antennas, that are typically implemented as planar phased arrays.

Once the framework of the observable field theory was established, an analysis on the interfer-
ence between different beams was presented. Coupling coefficients were introduced, defined as the
coupling between an antenna pattern and the pattern of the observable field. These coefficients are
convenient because they can be used to evaluate both the power associated with the desired signal
and the interference. The coupling coefficient also allows to define the efficiency of antennas or
arbitrary size. The efficiency is 1 is the antenna receives the entire observable power and less than 1
otherwise. This definition is a more suitable figure of merit for antenna performance, as compared
with the aperture efficiency, which is known to exceed 1 for electrically small antennas.

Calculating the power received by an antenna communicating with multiple clients requires the
calculation of multiple double integrals, i.e., the coupling between the antenna pattern and the
observable field of each client and the power associated with the observable field of each client.
This poses a numerically intensive task, to this aid the Gauss - Legendre quadrature was used in
combination with a uniform quadrature to accelerate the calculation of the integrals.

Using the coupling coefficients the SIR in the case of multiple plane waves was calculated for a
square plate, a disk and compared with the sphere. It was seen that the disk and the sphere achieve
similar SIRs, the disk performing slightly better due to the scan loss limiting the contribution of
the interferers. Furthermore, the SIR achieved by the square plate is lower when comparing the
same structure size in terms of the radius of minimum enveloping sphere. This is due to the smaller
aperture area associated with the square plate with respect to the disk when considering the same
minimum enveloping sphere.

The SIR was analyzed in different scenarios, considering scanning to different clients and ran-
domly located interferers. Furthermore, the number of links possible for a given SIR was presented.

Finally, two techniques were researched to improve the SIR. To reduce the contribution of the
interferers a Gaussian taper can be applied on the aperture distribution. This decreases the signal
received slightly, but due to the reduction in sidelobe level, the reduced interference captured overall,
improves the SIR for a certain antenna dimension. Furthermore, in order to reduce the interference
from a given direction an antenna pattern can be synthesized with a null placed at such direction.
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5.2 Future Work

The work described in this thesis opens the possibility of future developments and research activities:

• A Graphical User Interface (GUI) is being developed in order to ease the analysis of different
antenna geometries in certain communication scenario, allowing for a systematic comparison
between different cases.

• The results shown in the thesis referred to ideal continuous current distributions. The appli-
cation of the findings to real antenna arrays was not addressed. However, wideband antenna
arrays with different size have been designed and manufactured in the group. Thus, these
prototypes can be used to experimentally validate the results presented in this thesis.

• A study on the optimization of the SIR over large bandwidths is also of interest. The present
work considers antennas with a certain size at a specific frequency. On the contrary, the
above mentioned wideband antenna arrays have varying electrical size within the large band
of operation.

• Relating the observable power to the different beamforming architectures is also an interesting
topic for future investigation. Base station phased array can use analog, digital or hybrid
beamformers. The different choices of the beaforming strategy could be compared in terms of
observable power.
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A. Observable Field for Generalized Incidence
The procedure presented in Sec. 2.3 can also be generalized for non plane wave incidences. In this
case the incident field, in the absence of the antenna, can be decomposed into a superposition of
homogeneous plane waves in the following way

E⃗inc(r⃗) =

‹

S

E⃗PWS
inc (k̂inc)e

−jk⃗inc·r⃗dk̂inc (A.1)

where r⃗ is the observation point on the antenna domain. Furthermore, E⃗PWS
inc is the Plane Wave

Spectrum (PWS) associated with the incident field. The magentic field can then be calculated as

H⃗PWS
inc =

1

ζ
k̂inc × E⃗PWS

inc . (A.2)

In this case, for each component of the PWS in (A.1), the set of equivalent currents resulting
from the PO can be calculated as

J⃗out
PO,i(k̂inc, r⃗) =

{
−n̂× H⃗PWS

inc (k̂inc)e
−jk⃗inc·r⃗, if n̂ · k̂inc < 0

0 otherwise
(A.3)

M⃗out
PO,i(k̂inc, r⃗) =

{
n̂× E⃗PWS

inc (k̂inc)e
−jk⃗inc·r⃗, if n̂ · k̂inc < 0

0 otherwise.
(A.4)

The observable field can then be calculated as the field radiated by the superposition of all these
current distributions as follows

J⃗out
PO,tot(r⃗) =

‹

S

J⃗out
PO,i(k̂inc, r⃗)dk̂inc (A.5)

M⃗out
PO,tot(r⃗) =

‹

S

M⃗out
PO,i(k̂inc, r⃗)dk̂inc. (A.6)

As an example consider two TM polarized plane waves impinging from θi = 30◦ and θi = −30◦

on a square plate characterized by the size rmin = 2
√
2λ0 as depicted in Fig. A.1. The time domain

PO currents, both electric and magnetic, are presented in Fig. A.2a and Fig. A.2b, respectively.
Using these currents the observable field pattern can be calculated, this is shown in Fig. A.3.

A.1 The Generalized Amplification Factor

In Subsec. 2.3.1 the amplification factor α, for the case of plane wave incidence was presented.
However, when dealing with a generalized incidence the procedure presented in Subsec. 2.3.1 is no
longer valid.

Consider a generalized incident field f⃗inc, which can be related to the field radiated by the PO
currents, the amplification factor α and the remaining field as follows

f⃗inc = αf⃗PO + f⃗rem. (A.7)

In order to calculate α we can resort to the field reaction integral. The reaction integral between

the incident field f⃗inc =

[
E⃗inc

H⃗inc

]
and a testing field f⃗t =

[
E⃗t

H⃗t

]
, is defined as follows

⟨f⃗inc, f⃗t⟩ ≡
‹

S∞

[
1

ζ
E⃗inc · E⃗t − ζH⃗inc · H⃗t

]
dr⃗∞ (A.8)
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Figure A.1: Square plate of size rmin = 2
√
2λ0 illuminated by two TM polarized plane waves

impinging from θi = ±30◦.

(a) (b)

Figure A.2: (a) Electric and (b) magnetic PO currents in the time domain.

where the integral is evaluated in the far field of the antenna, E⃗ represents the electric field and
H⃗ represents the magnetic field. By multiplying (A.7) with a testing field we can write (A.7) as
follows

⟨f⃗inc, f⃗t⟩ = α⟨f⃗PO, f⃗t⟩+ ⟨f⃗rem, f⃗t⟩. (A.9)

A convenient choice of a testing field is the one radiated by the antenna with equal pattern to the
inward observable field. This field f⃗tx, radiated by the antenna when operated in transmission, has
the following properties

E⃗tx (r⃗ ) = V⃗ inw∗
PO (k̂)

e−jkr

r
(A.10a)

H⃗tx (r⃗ ) =
1

ζ
k̂ × E⃗tx (r⃗ ) . (A.10b)

Since the field f⃗tx has the same pattern as the inward observable field, the reaction integral between
the remaining field and f⃗tx can be approximated as ⟨f⃗rem, f⃗tx⟩ ≈ 0. Therefore, (A.9) can be rewritten
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Figure A.3: Far-field pattern of the observable field in the case of two TM plane waves impinging
from θi = ±30◦.

to calculate α as follows

α ≈ ⟨f⃗inc, f⃗tx⟩
⟨f⃗PO, f⃗tx⟩

. (A.11)

As described in [18] the denominator in (A.11) can be demonstrated to be ⟨f⃗PO, f⃗tx⟩ = 4PPO, where
PPO is the power radiated by the PO currents.
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B. Radiation from a Rectangular Aperture
This appendix presents the derivation of the electric and magnetic far field radiated by a uniform
current distribution with linear phase on a rectangular aperture. This is the case when calculating
the observable field from a plane wave impinging on a rectangular antenna structure from a particular
incidence angle.

First, we consider a plane wave described by its electric field with polarization p̂inc and magnitude
|E0| as

E⃗inc = |E0|e−jk⃗incr⃗
′
p̂inc (B.1)

and its magnetic field as

H⃗inc =
1

ζ
k̂inc × E⃗inc. (B.2)

where k⃗inc is the propagation vector of the incident field, which can be written as

k⃗inc =

kinc,xkinc,y
kinc,z

 = −k0

sin θi cosϕi

sin θi sinϕi

cos θi

 (B.3)

with θi and ϕi the angles of incidence.
Using the PO currents method explained in Section 2.3, the currents that give rise to a field with

the same pattern as the inward observable field have the following distribution on the rectangular
surface

J⃗ inw
obs = α

1

ζ
|E0|ejk⃗incr⃗

′
n̂× (k̂inc × p̂inc) (B.4a)

M⃗ inw
obs = α|E0|ejk⃗incr⃗

′
n̂× p̂inc. (B.4b)

Where the transformations explained in (2.27a) and (2.27b) have been taken into account.
Recalling the radiation integral in (2.39) for the electric far field and substituting (B.4a) and

(B.4b) we can write (2.39) as follows

E⃗(r⃗ ) = −jωµ
e−jkr

4πr
(I − r̂r̂) ·

¨

S

α
1

ζ
|E0|ejk⃗incr⃗

′
n̂× (k̂inc × p̂inc)e

jk⃗r⃗ ′
dr⃗ ′

+jk
e−jkr

4πr
r̂ ×
¨

S

α|E0|ejk⃗incr⃗
′
(n̂× p̂inc)e

jk⃗r⃗ ′
dr⃗ ′.

(B.5)

By rearranging the terms in (B.5) it can be rewritten as

E⃗(r⃗ ) = −jωµ
1

ζ
α|E0|

e−jkr

4πr
(I − r̂r̂) · n̂× (k̂inc × p̂inc)

¨

S

ejk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′

+jkα|E0|
e−jkr

4πr
r̂ × (n̂× p̂inc)

¨

S

ejk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′.

(B.6)

Recognizing that ωµ 1
ζ = k we can rewrite (B.6) as follows

E⃗(r⃗ ) = −jkα|E0|
e−jkr

4πr

¨

S

ejk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′

[
(I − r̂r̂) · n̂× (k̂inc × p̂inc)− r̂ × (n̂× p̂inc)

]
. (B.7)

In order to solve the integral, the observation propagation vector k⃗ can be written in its cartesian
components as

k⃗ =

kxky
kz

 = k0

sin θ cosϕsin θ sinϕ
cos θ

 . (B.8)
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Furthermore, the domain of integration can be represented by the vector r⃗′ as follows

r⃗ ′ =

x′

y′

0

 . (B.9)

Moreover, considering that the antenna structure has size Sx along the x direction and Sy along the
y direction, the integral in (B.7) can be rewritten as

¨

S

ejk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′ =

Sx/2ˆ

−Sx/2

Sy/2ˆ

−Sy/2

ej(kinc,xx
′+kinc,yy

′)ej(kxx
′+kyy

′)dx′dy′

=

Sx/2ˆ

−Sx/2

Sy/2ˆ

−Sy/2

ej(kinc,x+kx)x
′
ej(kinc,y+ky)y

′
dx′dy′

=

Sx/2ˆ

−Sx/2

ej(kinc,x+kx)x
′
dx′

Sy/2ˆ

−Sy/2

ej(kinc,y+ky)y
′
dy′.

(B.10)

For which the solution is known and can be written as follows
¨

S

ejk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′ = Sxsinc

(
Sx(kinc,x + kx)

2

)
Sysinc

(
Sy(kinc,y + ky)

2

)
. (B.11)

It is important to realize that SxSy = Aph is the physical area of the structure. Hence, the electric
far field radiated by uniform current with linear phase can be written as

E⃗(r⃗ ) =− jkα|E0|
e−jkr

4πr
Aphsinc

(
Sx(kinc,x + kobs,x)

2

)
sinc

(
Sy(kinc,y + kobs,y)

2

)[
(I − r̂r̂) · n̂× (k̂inc × p̂inc)− r̂ × (n̂× p̂inc)

]
.

(B.12)
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C. Radiation from a Circular Aperture
This appendix presents the derivation of the electric and magnetic far field radiated by a uniform
current distribution with linear phase on a circular aperture. This is the case when calculating
the observable field from a plane wave impinging on a planar circular antenna structure from a
particular incidence angle.

First, we consider a plane wave described by its electric field with polarization p̂inc and magnitude
|E0| as

E⃗inc = |E0|e−jk⃗incr⃗
′
p̂inc (C.1)

and its magnetic field as

H⃗inc =
1

ζ
k̂inc × E⃗inc. (C.2)

where k⃗inc is the propagation vector of the incident field, which can be written as

k⃗inc =

kinc,xkinc,y
kinc,z

 = −k0

sin θi cosϕi

sin θi sinϕi

cos θi

 (C.3)

with θi and ϕi the angles of incidence.

Using the PO currents method explained in Section 2.3, the currents that give rise to a field
with the same pattern as the inward observable field have the following distribution on the circular
surface

J⃗ inw
obs = α

1

ζ
|E0|ejk⃗incr⃗

′
n̂× (k̂inc × p̂inc) (C.4a)

M⃗ inw
obs = α|E0|ejk⃗incr⃗

′
n̂× p̂inc (C.4b)

where the transformations explained in (2.27a) and (2.27b) have been taken into account.

Recalling the radiation integral in (2.39) for the electric far field and substituting (C.4a) and
(C.4b) we can write (2.39) as follows

E⃗(r⃗ ) = −jωµ
e−jkr

4πr
(I − r̂r̂) ·

¨

D

α
1

ζ
|E0|ejk⃗incr⃗

′
n̂× (k̂inc × p̂inc)e

jk⃗r⃗ ′
dr⃗ ′

+jk
e−jkr

4πr
r̂ ×
¨

D

α|E0|ejk⃗incr⃗
′
(n̂× p̂inc)e

jk⃗r⃗ ′
dr⃗ ′

(C.5)

where D is a disk, with radius a, representing the aperture in question. By rearranging the terms
in (C.5) it can be rewritten as

E⃗(r⃗ ) = −jωµ
1

ζ
α|E0|

e−jkr

4πr
(I − r̂r̂) · n̂× (k̂inc × p̂inc)

¨

D

ejk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′

+jkα|E0|
e−jkr

4πr
r̂ × (n̂× p̂inc)

¨

D

ejk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′.

(C.6)

Recognizing that ωµ 1
ζ = k we can rewrite (C.6) as follows

E⃗(r⃗ ) = −jkα|E0|
e−jkr

4πr

¨

D

ejk⃗incr⃗
′
ejk⃗r⃗

′
dr⃗ ′

[
(I − r̂r̂) · n̂× (k̂inc × p̂inc)− r̂ × (n̂× p̂inc)

]
. (C.7)

53



APPENDIX C. RADIATION FROM A CIRC . . .

In order to solve the integral, the observation propagation vector k⃗ can be written in its cartesian
components as

k⃗ =

kxky
kz

 = k0

sin θ cosϕsin θ sinϕ
cos θ

 . (C.8)

Furthermore, since the domain of integration is a disk, it is convenient to represent the vector r⃗ ′ in
polar coordinates as follows

r⃗ ′ =

x′

y′

0

 =

ρ′ cosϕ′

ρ′ sinϕ′

0

 . (C.9)

The integral in (C.7) can be written as

¨

D

ejkinc,xx
′
ejkinc,yy

′
ejkxx

′
ejkyy

′
dx′dy′. (C.10)

The integral can be simplified in the following way

ejkinc,xx
′
ejkinc,yy

′
= e−jkρ′ sin θi(cosϕ

′ cosϕi+sinϕ′ sinϕi)

= e−jkρ′ sin θi cos(ϕ′−ϕi)
(C.11)

and
ejkxx

′
ejkyy

′
= ejkρ

′ sin θ(cosϕ′ cosϕ+sinϕ′ sinϕ)

= ejkρ
′ sin θ cos(ϕ′−ϕ).

(C.12)

Therefore, considering a disk of radius a, (C.10) becomes

aˆ

0

2πˆ

0

e−jkρ′ sin θi cos(ϕ′−ϕi)ejkρ
′ sin θ cos(ϕ′−ϕ)dϕ′ρ′dρ′. (C.13)

In order to solve the integral in (C.13), first recall that

e±jz cos∆ = cos(z cos∆)± j sin(z cos∆). (C.14)

Recalling [31, Eq. (9.1.44)] and [31, Eq. (9.1.45)], respectively

cos(z cos∆) = J0(z) + 2

∞∑
k=1

(−1)kJ2k(z) cos(2k∆) (C.15)

sin(z cos∆) = 2

∞∑
k=0

(−1)kJ2k+1(z) cos((2k + 1)∆) (C.16)

allows us to rewrite (C.14) as follows

e±jz cos∆ = J0(z) + 2

∞∑
k=1

(−1)kJ2k(z) cos(2k∆)± 2j

∞∑
k=0

(−1)kJ2k+1(z) cos((2k + 1)∆). (C.17)

Using 2k = n in the first sum and 2k + 1 = n in the second sum leads to

e±jz cos∆ = J0(z) + 2

∞∑
n=2
even

(−1)
n
2 Jn(z) cos(n∆)± 2j

∞∑
n=1
odd

(−1)
n−1
2 Jn(z) cos(n∆). (C.18)
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Furthermore, using j = (−1)
1
2 , we can rewrite (C.18) as follows

e±jz cos∆ = J0(z) + 2

∞∑
n=2
even

(−1)
n
2 Jn(z) cos(n∆)± 2(−1)

1
2

∞∑
n=1
odd

(−1)
n−1
2 Jn(z) cos(n∆)

= J0(z) + 2

∞∑
n=2
even

(−1)
n
2 Jn(z) cos(n∆)± 2

∞∑
n=1
odd

(−1)
n
2 Jn(z) cos(n∆).

(C.19)

Two cases are considered. Firstly,

ejz cos∆ = J0(z) + 2

∞∑
n=2
even

(−1)
n
2 Jn(z) cos(n∆) + 2

∞∑
n=1
odd

(−1)
n
2 Jn(z) cos(n∆)

= J0(z) + 2

∞∑
n=1

(−1)
n
2 Jn(z) cos(n∆) = J0(z) + 2

∞∑
n=1

jnJn(z) cos(n∆)

(C.20)

ejz cos∆ = J0(z) + 2

∞∑
n=1

jnJn(z) cos(n∆). (C.21)

Secondly,

e−jz cos∆ = J0(z) + 2

∞∑
n=2
even

(−1)
n
2 Jn(z) cos(n∆)− 2

∞∑
n=1
odd

(−1)
n
2 Jn(z) cos(n∆)

= J0(z) + 2

∞∑
n=1

(−1)n(−1)
n
2 Jn(z) cos(n∆) = J0(z) + 2

∞∑
n=1

(−j)nJn(z) cos(n∆)

(C.22)

e−jz cos∆ = J0(z) + 2

∞∑
n=1

(−j)nJn(z) cos(n∆). (C.23)

Using (C.21) and (C.23) in (C.13) results in

aˆ

0

2πˆ

0

e−jkρ′ sin θi cos(ϕ′−ϕi)ejkρ
′ sin θ cos(ϕ′−ϕ)dϕ′ρ′dρ′ =

aˆ

0

2πˆ

0

[
J0(kρ

′ sin θi) + 2

∞∑
n=1

(−j)nJn(kρ
′ sin θi) cos(n(ϕi − ϕ′))

]
[J0(kρ

′ sin θ)

+2

∞∑
m=1

jmJm(kρ′ sin θ) cos(m(ϕ− ϕ′))

]
dϕ′ρ′dρ′ =

aˆ

0

2πˆ

0

[
J0(kρ

′ sin θi)J0(kρ
′ sin θ) + 2J0(kρ

′ sin θi)

∞∑
m=1

jmJm(kρ′ sin θ) cos(m(ϕ− ϕ′))

+2J0(kρ
′ sin θ)

∞∑
n=1

(−j)nJn(kρ
′ sin θi) cos(n(ϕi − ϕ′))

+4

∞∑
n=1

∞∑
m=1

jmJm(kρ′ sin θ) cos(m(ϕ− ϕ′))(−j)nJn(kρ
′ sin θi) cos(n(ϕi − ϕ′))

]
dϕ′ρ′dρ′.

(C.24)
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Noting that

2πˆ

0

cos(n(ϕi − ϕ′))dϕ′ = 0 ∀ n ∈ Z+ (C.25)

implies that the second and third term in (C.24) vanish, simplifying as follows

aˆ

0

2πˆ

0

[J0(kρ
′ sin θi)J0(kρ

′ sin θ)

+4

∞∑
n=1

∞∑
m=1

jmJm(kρ′ sin θ) cos(m(ϕ− ϕ′))(−j)nJn(kρ
′ sin θi) cos(n(ϕi − ϕ′))

]
dϕ′ρ′dρ′.

(C.26)

Moreover, the integral of a product of two cosines can be written as follows

2πˆ

0

cos(m(ϕ− ϕ′)) cos(n(ϕi − ϕ′))dϕ′

=

2πˆ

0

1

2
[cos(mϕ+ nϕi − (m+ n)ϕ′) + cos(mϕ− nϕi + (n−m)ϕ′)]dϕ′.

(C.27)

It can be seen that all terms equate to zero, except for the case when m = n, for which the integral
has the following solution

2πˆ

0

cos(m(ϕ− ϕ′)) cos(m(ϕi − ϕ′))dϕ′ = π cos(m(ϕ− ϕi)). (C.28)

Recognizing that jn(−j)n = 1, we can rewrite (C.26) as follows

ˆ a

0

[
J0(kρ

′ sin θi)J0(kρ
′ sin θ)2π + 4

∞∑
n=1

Jn(kρ
′ sin θ)Jn(kρ

′ sin θi)π cos(n(ϕ− ϕi))

]
ρ′dρ′ =

ˆ a

0

[
J0(kρ

′ sin θi)J0(kρ
′ sin θ)2π + 4π

∞∑
n=1

Jn(kρ
′ sin θ)Jn(kρ

′ sin θi) cos(n(ϕ− ϕi))

]
ρ′dρ′ =

2π

ˆ a

0

J0(kρ
′ sin θi)J0(kρ

′ sin θ)ρ′dρ′ + 4π

∞∑
n=1

cos(n(ϕ− ϕi))

ˆ a

0

Jn(kρ
′ sin θ)Jn(kρ

′ sin θi)ρ
′dρ′.

(C.29)

Recalling the following property [34, Eq. (6.521)]ˆ 1

0

Jn(αρ)Jn(βρ)ρdρ =
βJn−1(β)Jn(α)− αJn−1(α)Jn(β)

α2 − β2
[α ̸= β, n > −1] (C.30)

and using the substitution ρ′ = aρ along with the following property [31, Eq. (9.1.5)]

J−n(ρ) = (−1)nJn(ρ) (C.31)

results in the final expression

2πa
sin θiJ1(ka sin θi)J0(ka sin θ)− sin θJ0(ka sin θi)J1(ka sin θ)

k(sin2 θi − sin2 θ)
+ 4πa

∞∑
n=1

cos(n(ϕ− ϕi))

sin θJn(ka sin θi)Jn−1(ka sin θ)− sin θiJn−1(ka sin θi)Jn(ka sin θ)

k(sin2 θi − sin2 θ)
.

(C.32)
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D. Radiation from a Tapered Distribution
This appendix presents the derivation of the electric and magnetic far field radiated by a Gaussian
tapered current distribution with linear phase on a rectangular aperture.

First, we recall uniform currents on the aperture which can be described as follows

J⃗ =
1

ζ
|E0|ejk⃗scanr⃗

′
n̂× (k̂scan × p̂scan) (D.1a)

M⃗ = |E0|ejk⃗scanr⃗
′
n̂× p̂scan. (D.1b)

Recalling the radiation integral in (2.39) for the electric far field and substituting (D.1a) and
(D.1b), while applying a Gaussian taper, we can write (2.39) as follows

E⃗(r⃗ ) = −jωµ
e−jkr

4πr
(I − r̂r̂) ·

¨

S

1

ζ
|E0|ejk⃗scanr⃗

′
n̂× (k̂scan × p̂scan)e

jk⃗r⃗ ′
dr⃗ ′

+jk
e−jkr

4πr
r̂ ×
¨

S

|E0|ejk⃗scanr⃗
′
(n̂× p̂scan)e

jk⃗r⃗ ′
dr⃗ ′.

(D.2)

By rearranging the terms in (D.2) it can be rewritten as

E⃗(r⃗ ) = −jωµ
1

ζ
|E0|

e−jkr

4πr
(I − r̂r̂) · n̂× (k̂scan × p̂scan)

¨

S

ejk⃗scanr⃗
′
ejk⃗r⃗

′
dr⃗ ′

+jk|E0|
e−jkr

4πr
r̂ × (n̂× p̂scan)

¨

S

ejk⃗scanr⃗
′
ejk⃗r⃗

′
dr⃗ ′.

(D.3)

Recognizing that ωµ 1
ζ = k we can rewrite (D.3) as follows

E⃗(r⃗ ) = −jk|E0|
e−jkr

4πr

¨

S

ejk⃗scanr⃗
′
ejk⃗r⃗

′
dr⃗ ′

[
(I − r̂r̂) · n̂× (k̂scan × p̂scan)− r̂ × (n̂× p̂scan)

]
. (D.4)

In order to solve the integral, the observation propagation vector k⃗ can be written in its cartesian
components as

k⃗ =

kxky
kz

 = k0

sin θ cosϕsin θ sinϕ
cos θ

 . (D.5)

Furthermore, the domain of integration can be represented by the vector r⃗′ as follows

r⃗ ′ =

x′

y′

0

 . (D.6)

Moreover, considering that the antenna structure has size Sx along the x direction and Sy along the
y direction, the integral in (D.4) can be rewritten as follows

¨

S

e
−
(

x′
wx

)2

e
−
(

y′
wy

)2

ejk⃗scanr⃗
′
ejk⃗r⃗

′
dr⃗ ′ =

Sx/2ˆ

−Sx/2

e
−
(

x′
wx

)2

ej(kscan,x+kx)x
′
dx′

Sy/2ˆ

−Sy/2

e
−
(

y′
wy

)2

ej(kscan,y+ky)y
′
dy′.

(D.7)
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For the sake of simplicity we will only look at one of the integrals, the one along the x direction,
the results are applicable for the integral in y. In order to solve the integral we can separate it in
two parts as follows

Sx/2ˆ

−Sx/2

e
−
(

x′
wx

)2

ej(kscan,x+kx)x
′
dx′ =

0ˆ

−Sx/2

e
−
(

x′
wx

)2

ej(kscan,x+kx)x
′
dx′

+

Sx/2ˆ

0

e
−
(

x′
wx

)2

ej(kscan,x+kx)x
′
dx′.

(D.8)

If we introduce the coordinate transformation x′ = −x in the first integral can be written as follows

0ˆ

Sx/2

e−(
(−x)
wx

)
2

e−j(kscan,x+kx)x(−dx) +

Sx/2ˆ

0

e
−
(

x′
wx

)2

ej(kscan,x+kx)x
′
dx′

=

Sx/2ˆ

0

e−(
x

wx
)
2

e−j(kscan,x+kx)xdx+

Sx/2ˆ

0

e
−
(

x′
wx

)2

ej(kscan,x+kx)x
′
dx′.

(D.9)

These two integrals can be combined as follows

Sx/2ˆ

0

e−(
x

wx
)
2 (

ej(kscan,x+kx)x
′
+ e−j(kscan,x+kx)x

)
dx′

=

Sx/2ˆ

0

e
−
(

x′
wx

)2

2 cos ((kscan,x + kx)x
′) dx′.

(D.10)

This integral is known and its solution involves the error function as follows

Sx/2ˆ

−Sx/2

e
−
(

x′
wx

)2

ej(kscan,x+kx)x
′
dx′ =

wx

2

√
πe−

w2
x(kscan,x+kx)

4

[
erf

(
j (kscan,x + kx)w

2
x + Sx

2wx

)
− erf

(
j (kscan,x + kx)w

2
x − Sx

2wx

)]
.

(D.11)

The derivation in the case of y is similar.

58



Acronyms
BER bit error rate. 33

C.I. confidence interval. 33

FoV Field of View. 32–34

GUI Graphical User Interface. 46

LoS Line-of-Sight. 2

MIMO Multiple-input multiple-output. III, 1

PO Physical Optics. 2, 9, 10, 12–15, 17, 18, 21, 45, 47, 49, 51, 53

PWS Plane Wave Spectrum. 47

SIR Signal to Interference Ratio. III, 1–3, 25, 26, 29–35, 37–40, 45, 46

SNR Signal to Noise Ratio. 33
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