
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Mesh denoising using
DeltaConv
Sérénic Monté



Mesh denoising
using DeltaConv

by

Sérénic Monté

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday July 2, 2024 at 14:00.

Student number: 4554787
Project duration: November 13, 2023 – July 2, 2024
Thesis committee: Klaus Hildebrandt, TU Delft, supervisor

Jackson Campolattaro, TU Delft
Megha Khosla, TU Delft

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Abstract

Mesh data is widely used in engineering for instance for simulations, CAD engineering and visualiza-
tions. The accuracy and quality of the meshes influence the reliability and validity of these processes.
Besides manual modelling, scanning is becoming increasingly more common due to the increase in
devices that have scanning capabilities. Unwanted noise is often present in scanned models. The
process of mesh denoising is removing the unwanted noise whilst keeping the features of the mesh.
These features are often anisotropic, e.g. sharp edges and corners.

The DeltaConv convolution is an anisotropic convolution, Wiersma et al. [24] show the advantage of
using the anisotropic DeltaConv convolution for anisotropic tasks over other isotropic convolutions. In
this thesis it is investigated if state-of-the-art mesh denoising can benefit from using the DeltaConv
convolution. This is done by integrating the DeltaConv convolution in the Dual-DMP [6] algorithm, and
tuning this network.

In this thesis we found that state-of-the-art mesh denoising can benefit from using the DeltaConv con-
volution. Due to the expressiveness of the DeltaConv convolution, objects with sharp features are
denoised better than the state-of-the-art algorithms and on smooth meshes, DeltaConv works compa-
rable to state-of-the-art algorithms.

i



Contents

Abstract i

Nomenclature iii

1 Introduction 1

2 Related work 3

3 Background 6
3.1 Mesh denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 DDMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 DeltaConv convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Method 9

5 Experiments 12
5.1 Dual-DMP and DeltaConv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 K-NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Smaller DeltaConv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 DDMP and optimized DeltaConv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.7 EdgeConv comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.8 Algorithm comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.9 Real scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Discussion 23

7 Conclusion 25
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

References 27

ii



Nomenclature

Abbreviations
Abbreviation Definition

AAD Average Angular Difference, metric which evaluates
the angle between normals of two meshes

AHD Average Hausdorff Distance, metric which evaluates
the distance between two meshes

CNN convolutional neural networks
DDMP Dual DeepMesh Prior, a state-of-art mesh denoising

algorithm [6]
Dual-DMP Dual Deep Mesh Prior
DIP Deep Image Prior [10]
GCN graph convolutional neural networks or the graph

convolution as described by [9]
GNN graph neural networks
MLP multi layer perceptron

iii



1
Introduction

Meshing is important for engineering and it involves discretizing a spacial domain into a set of cells or
discrete elements. It is widely used for CAD engineering, simulations like fluid dynamics, visualization
of structures and systems, etc. The accuracy and quality of the mesh has a profound impact on the
validity and reliability of the results obtained from these simulations [3].

Another source of obtaining meshes is scanning the objects. 3D scanning capabilities like LiDAR are
added to appliances for everyday use, for instance mobile phones, cars, etc. Scanned objects contain
unwanted noise or distortions introduced by the scanner. This noise negatively influences the results
and denoising is therefore an important step. Denoising is the process of removing the noise and thus
enhancing the quality of the mesh while preserving the features and details of the object. To denoise
with traditional methods, assumptions need to be made about the underlying model or noise distribution
for most methods to work properly [19]. For instance that the noise follows a Gaussian distribution or
that the points are sampled independently and regularly from the surface. However, these assumptions
do not hold for most meshes and therefore the traditional methods are less usefull [3]

Mesh denoising algorithms are influenced by image filtering techniques, since the vertex position and
normals of a mesh can be seen as signals [19]. Mesh denoising algorithms can be subdivided into
three categories: filter-based-, optimization-based- and data driven methods. Filter based algorithms
are often adapted from the image domain. Examples of adapted filters are the Bilateral filter [5] and
Guided normal filter [28].

Optimization-based methods smooth meshes by optimizing a cost function. The cost function is con-
structed with constraints defined by the geometry, prior distribution of the noise and the input data [8].
For instance low-rank optimization, sparsity based optimization and spectral optimization [33].

The last category is the data driven methods. These methods use deep learning to learn the denois-
ing operation on a ground truth models and noisy input. Examples of deep learning algorithms are:
GPDNet [17], DDMP [6], DMRDenoise [15], multiscale facet GCN [1], and GCN-Denoiser [19].

Most meshes contain sharp edges and corners which are called anisotropic features. Preserving these
features when denoising is important. Most convolutions used for denoising are isotropic like GCN [9],
PointNet++ [18] and EdgeConv [23]. DeltaConv [24] is an anisotropic convolution. In the DeltaConv
paper, the authors have tested to see if DeltaConv would outperform other convolutions when mimick-
ing a Perona-Malik filter [16] for images. The test shows the advantages of the use of an anisotropic
convolution for an anisotropic task. We reproduced the results of the task in figure 1.1. As can be seen
in figure 1.1, DeltaConv is able to simulate the anisotropic filter, while the other convolutions tend to

1



2

blur the image too much or generate artefacts [24].

Figure 1.1: Reproduced results from the anisotropy test from the DeltaConv paper

If an anisotropic convolution works better for images it might also be applicable for denoising meshes.
Which often have anisotropic features. In this thesis we will investigate if state-of-the-art mesh de-
noising algorithms can benefit from DeltaConv convolutions. This will be answered using the
following sub-questions:

1. Can DeltaConv be integrated in a state-of-the-art mesh denoising algorithm?
2. Does the network, with DeltaConv integrated, compare to the original network in terms of quality

of results?
3. How important are the different component of the DeltaConv convolution?
4. How does the network compare to other state-of-the-art convolutions and algorithms?

Integrating DeltaConv convolutions in a state-of-the-art algorithm improves the denoising performance.
The main challenge when integrating the convolution is to adapt the hyperparameters of the network
to work well with the more expressive DeltaConv convolution. The DeltaConv convolution consists of
two parts: a vector stream and a scalar stream. For the context of mesh denoising the scalar stream
is the most important component for the convolution. In the comparison with other algorithms and con-
volutions we found that DeltaConv is competitive with state-of-the-art for denoising meshes.



2
Related work

In this section we discuss the different mesh denoising algorithms. Denoising a mesh has two distinct
approaches, deterministic and learning-based. Deterministic approaches can be subdivided into filter-
based and optimization-based denoising algorithms. Learning-based algorithms use neural networks
such as convolutional neural networks (CNNs) and Graph convolutional networks (GCNs) [22, 31].

Filter-based mesh denoising methods are among the first developed denoising techniques like Lapla-
cian based smoothing. These methods were able to remove noise reasonably well, but had the disad-
vantage that the sharp edges also fade with the removal of the noise. To solve this problem, anisotropic
diffusion filters were developed like bilateral filters [21, 5]. Improving on bilateral filter are guided nor-
mals for reliable geometry reconversion. They are suited to handle coarse and fine noise [26, 20]. A
major disadvantage of this technique is that a lot of parameter tuning is required to achieve good de-
noising results. This makes this technique difficult to scale. [21, 5, 26, 20, 22]

Optimization-based mesh denoising methods tackle the problem of denoising by optimizing a cost func-
tion [3]. For instance the L0 norm method [7] or total variation method [27] were adapted from signal
processing on images to be used in mesh denoising. Other optimization based methods use low-rank
optimization [3]. These methods assume that a mesh consists of repetitive patterns. When the similar
patches are converted to vectors they are linearly correlated and this correlation can be used in the
cost function [14, 12].

learning-based denoising methods have also found their origins in the image domain like the deter-
ministic methods. However, the 2D learning based denoising algorithms could not be generalized to
3D without making concessions. This problem was solved with the introduction of graph convolution
networks (GCN). These graph convolution networks were better suited for 3D tasks such as mesh
denoising [25, 2, 4]. There are two different approaches to learning-based algorithms. The first one
is an algorithm that works on the entire mesh. The second approach is where the entire mesh has
been divided into patches. These patches are individually optimized under the assumption that many
patches are similar. This assumption should reduce the complexity of the training objective [19].

Wang, Liu, and Tong [22] created a denoising algorithm that used handcrafted descriptors. They cre-
ated filtered facet normal descriptors (FND) that describe the features around a facet with a series of
either bilateral filters [32] or guided bilateral filters [28]. Since these filters preserve features at specific
scales they are robust to scaling. The facet normal and FND features are used as input for a network
with a single hidden layer. This is not enough to remove all the noise in one go, therefore the authors
used a cascaded regression scheme to remove the noise in repetitive steps.

3



4

NormalNet, proposed by Zhao et al. [30], denoises meshes by converting a local 3D structure into a
regular volumetric form and uses 3D image kernels to denoise the mesh. For every facet a patch,
that consists of the 2-ring neighbourhood, is constructed and the position and direction of the facet is
normalized. The normals of each facet in the patch is recomputed after normalization. Afterwards the
patch is converted into a dense voxel grid and the normals of the facets are used as labels for the grid.
A convolutional neural network, that works with 3D kernels is used to denoise the facet normal. These
denoised facet normals are then used to update the vertex positions of the noisy mesh. This process
is performed iteratively to produce a cleaned mesh.

Li et al. [13] proposed NormalF-Net which emulates low-rank optimization with two cascaded subnet-
works to denoise meshes. The first step in the algorithm is constructing a non-local patch-group normal
matrix. This is a matrix which consists of patch-vectors of patches with similar geometry. The matrix is
denoised with the first subnetwork. The second subnetwork is used to prevent oversmoothing, which
is common with low-rank matrices. The algorithm then outputs the denoised facet normals. The facet
normals are used to update the vertex positions to be consistent with the new normals.

DNF-Net [11] uses a deep neural network to clean the facets normals directly. The first step for this
algorithm is to generate a set of patches from the mesh. The patches are created by selecting a fixed
number of the closest connected facets. The facets normals as well as the neighbour indices are di-
rectly fed into the DNF-Net architecture to produce denoised normals. The network extracts a feature
map from the network input with a multiscale feature embedding unit. The feature maps are in turn
denoised with two cascaded residual learning units.

Armando, Franco, and Boyer [1] propose the first mesh denoising algorithm that uses facet graph con-
volutions to denoise meshes. The network architecture builds on the U-Net architecture. In figure 2.1
an example of a U-Net is shown. Its name is derived from the shape of the network. The red arrows
indicate pooling operations which coarsens the mesh. The yellow arrows indicate upsampling opera-
tions which refine the mesh. The multiscale representation enables the network to capture contexts
at different scales. The algorithm works like most learning based algorithms on facets normals but it
denoises a complete mesh instead of individual patches.

Figure 2.1: Example of U-Net architecture

GCN-denoiser [19] uses graph convolutions to denoise patches extracted from the input mesh. The
patches are aligned into a common embedding to eliminate spatial transformations. The patches are
converted into graphs where every node represents a facet and edges created between adjacent facets.
Every graph is fed into series of GCNs to gradually remove the noise from the facet normals. The de-
noised mesh is recovered by updating the vertex positions to be consistent with the denoised normals.



5

Zhang et al. [29] use two graph networks to denoise both the normal and spatial domains in their dual
graph GeoBi-GNN architecture. From the mesh a facet graph and a vertex graph are constructed. The
vertex positions are pre-denoised by the first network. The facet graph is first enriched with the pre-
denoised vertices before the facet normals are denoised by the second network. The pre-denoised
vertices are then updated to align with the denoised facet normals.

Dual-DMP [6] moves away from the pretraining of neural networks and uses the principles from Deep
Image Prior (DIP) [10]. DIP states that the structure of the network is more important than the pretrain-
ing, because usually the objects consist of mostly structural patterns. The main reason for this is that
a network is able to learn structural patterns faster than random patterns. The denoising parameteriza-
tion for an individual mesh can thus be learned quickly.

Dual DMP implements this idea and therefore does not train on a complete dataset but on the individual
meshes it wants to denoise. The DDMP network consists of two parts, a graph convolution network
(GCN) for the vertices and a GCN for the facet normals. The two networks filter noise in the vertex
position and face normals independently of each other. This may introduce some inconsistencies in
the output. To correct these inconsistencies iterative vertex updating could be used but is expensive
in time and computing power. The authors of DDMP have therefore created a loss function based on
the formulation of iterative vertex updating. This consistency error term ensures that the new vertex
positions remain consistent with the facet normals. The Dual-DMP algorithm consists of 12 convolution
layers and then 2 fully connected layers.



3
Background

3.1. Mesh denoising
Scans of objects are becoming increasingly easier to make and this means it can be applied in more
fields, such as medical treatment, industrial modelling, reverse engineering, etc. The scans that create
these meshes contain noise from various sources. The goal of mesh denoising is to remove the high
frequency noise without removing the underlying features [19, 3]. Typical challenges that arise when
denoisingmeshes is that features tend to degrade, such as blurring and overshapening. Another typical
challenge is shrinkage of the volume. To evaluate if the denoising of the meshes is circumventing these
problems we use two standard metrics. The first metric is the average angular distance. This metric
calculates the mean angle between the facet normals of the denoised mesh and ground truth mesh.
This metric is to ensure the features do not degrade. The second metric is the average one-sided
Hausdorff distance. This metric penalizes shrinkage of the mesh [3].

The first metric is the average normal angular difference (AAD) (3.1)

θ =

∑n
i=0 xi

n
(3.1)

x = arccos(n1 · n2)

The second metric we use is the average one-sided Hausdorff distance (AHD) (3.2). With h(a, b) the
distance between a and b. gtdiag the diagonal length of the bounding box of the ground truth mesh. All
the values of the AHD in this paper are in the unit of 10−3.

d = 0.5 ∗
(
h(m1,m2)

|gtdiag|
+

h(m2,m1)

|gtdiag|

)
(3.2)

3.2. DDMP
The graph convolutions in DDMP consist of a GCN convolution whose output gets normalized before
passing through a Leaky ReLu activation layer. The output of this chain is the input for the next convo-
lution layer. For the Positional filtering network the required inputs are the input features, the position
and the set of neighbouring vertex indices per vertex. The second to last layer is a linear layer with
a Leaky ReLu activation layer. The last layer is a linear layer which outputs the displacement of the
vertex position. The displacement of the vertex position is added to the vertex position at the end of the
forward pass. For the normal filtering network the DDMP network has the same structure, except the
last layer consists of a linear layer followed by a tanh layer. The network outputs a new normal which
is multiplied with the reciprocal of the normalized version of itself. The input is slightly changed since
not the set neighbouring vertex indices is given but the set of neighbouring face indices is used.

The loss function defined by the authors of [6] is:

E = k1Epos + k2ELap + k3Enrm + k4Ebnf + k5Econ (3.3)

6



3.2. DDMP 7

Figure 3.1: Dual-DMP algorithm, adapted from [6]

withK = (k1, k2, k3, k4, k5) a set of hyperparameters to give more or less weight to each individual term
of the loss function.

The first error term Epos is the root mean squared error (RMSE) between the in- and output vertex
positions, (3.4). Np is the number of vertices, xout are the output vertex positions and xin are the input
vertex positions.

Epos (xout,xin) =

√√√√ 1

Np

Np∑
i=1

∥xi
out − xi

in∥22 (3.4)

The second error term is the Laplacian error for vertex positions, (3.5). With Vv (i) the set of neighbour-
ing vertex indices for vertex i

ELap (xout) =

√√√√ 1

Np

Np∑
i=1

∥xi
out − SLap

(
xi
out

)
∥22 (3.5)

SLap

(
xi
out

)
=

1

|Vv (i)|
∑

j∈Vv(i)

xj
out

The first two terms are only applied to the Position filtering network with Epos evaluates the reproducibil-
ity and ELap evaluates the smoothness.

The third error term is the mean absolute error (MEA) which is used on the facet normals, (3.6). With
Nf the number of facets, nout are the output facet normals and nin are the input facet normals. They
choose MEA over RMSE to let the normal filtering network be more sensitive to sharp features in the
mesh.

Enrm (nout,nin) =
1

Nf

Nf∑
i=1

∥ni
out − ni

in∥1 (3.6)

The fourth error term is the MAE between the output facet normals and the normals smoothed with a
bilateral filter, (3.7). With S

(t)
bnf

(
ni
out

)
the bilateral filter applied t times to the normals.

Ebnf (nout) =
1

Nf

Nf∑
i=1

∥ni
out − S

(t)
bnf

(
ni
out

)
∥1 (3.7)



3.3. DeltaConv convolutions 8

The third and fourth error term are only applied to the normal filtering network with Enrm used to eval-
uate the reproducibility and Ebnf for the smoothness.

The final error term is a consistency check for the vertex positions and face normals, (3.8). It is based
on the formulation of iterative vertex updating. This consistency check is used since the network does
not use iterative vertex updating to ensure the consistency between the updated normals and facet
normals.

Econ (xout,nout) =
1

Np

Np∑
i=1

∑
j∈Fv(i)

nj
out ·

(
cjout − xi

out

)
(3.8)

3.3. DeltaConv convolutions
The DeltaConv as described by Wiersma et al. [24] consists of two parallel streams, see the schematic
in figure 3.2. The scalar stream which contains the additional features for every vertex, and a vector
stream which contains tangent vectors which are an orthonormal pair of vectors orthogonal to the nor-
mal of the vertex. To exchange information between the streams and change the information in the
streams the authors describe four different type of operations. The intra stream operations: scalar-to-
scalar and vector-to-vector, and the inter stream operations: scalar-to-vector and vector-to-scalar.

The scalar-to-scalar operations are a combination of an MLP per point followed by a maximum aggre-
gation over a k-NN region. The vector-to-vector operations are a combination of the identity and Hodge
Laplacian.

The scalar-to-vector operations consist of gradient and co-gradient. The gradient represents the largest
rate of change and its directions, whereas the co-gradient is the 90-degree rotation of this function.
These two thus form a basis on the tangential plane. The operations to move from the vector-to-scalar
stream are divergence, curl and norm. These operations analyse the vector field and indicate features
where the field is flowing to, from and around. These inter stream operators form a de Rham complex.
Namely, if you would consecutively apply gradient and curl the output would be zero. The same holds
for consecutively applying co-gradient and divergence. Whereas gradient followed by divergence would
result in the input which also holds for co-gradient followed by curl.

Figure 3.2: DeltaConv convolutions schematic, courtesy to [24]



4
Method

Figure 4.1: Ground truth meshes used in this research left to right top to bottom: fandisk, cube, octa-flower, block, part-lp,
trim-star, sharp sphere, smooth feature, genus3, frog and nut

In this section the method will be discussed that is used to introduce DeltaConv convolution into the
DDMP network. The GCN convolutions that are used in DDMP are isotropic. Because mesh denois-
ing is an anisotropic problem, we want to replace the GCN convolutions with DeltaConv convolutions.
Which are anisotropic.

DeltaConv and GCN are both graph convolutions, so it should be possible to replace one graph con-
volution with another. GCN expects the features and edge index as input parameters. DeltaConv has
a different input format and expects the features, vertex positions and optionally the vertex normals.
Both will output the same data format.

DeltaConv expects a fixed number of neighbours for every element in the graph. GCN on the other
hand does not have any constraints on the number of neighbours selected. Therefore, the neighbour
selection has to be changed from adjacent facets for the NormNet and connected vertices in the PosNet

9



10

to k nearest neighbours. For NormNet the distance between facets is calculated based on the distance
between the centre of the facets, and for PosNet the distance between vertices is used.

The network is a mesh denoising algorithm, scans contain noise but because scans are generally repre-
sented as point clouds we cannot use them, therefore the meshes from the synthetic dataset of Wang,
Liu, and Tong [22] will be used with added artificial noise. This dataset consists mainly of CAD-models.
Most CAD models are piecewise smooth and often contain sharp edges. Examples of the synthetic
models used can be found in figure 4.1. The dataset is used as the ground truth meshes. The noisy
meshes are created by adding white Gaussian noise with a magnitude between 0.1 and 0.4 times the
average edge length. Figure 4.2 shows an example of a mesh with added noise.

Figure 4.2: Left ground truth octa-flower mesh. Right the noisy octa-flower mesh with a magnitude of 0.2

The DDMP algorithm relies on an initial smoothing of the noisy mesh to calculate the displacement of
the vertices. 30 iterations of Laplacian smoothing is used for the initial smoothing, figure 4.3 shows
the ground truth, noisy and smoothed mesh for the sharp sphere model. The network estimates the
displacement which, when added to the smoothed mesh, results in the clean mesh. The network is
underfitting when the output mesh, after the training epochs, is closer to the initial smoothed mesh then
the ground truth mesh. On the other hand it is overfitting if the output mesh is closer to the noisy input
then the ground truth mesh.

Figure 4.3: Left ground truth sharp sphere mesh, middle the noisy mesh and right the smoothed mesh

Apart from visual observation to check if the network is under- or overfitting. The loss function and
evaluation metrics are monitored to determine if the network is under- or overfitting. To monitor the
behaviour of the network every 10 epochs the output of the network is scored using the AAD and AHD
metric. The evaluation scores and loss are saved and plotted. In figure 4.4 an example is shown. The
Blue line is what the metrics are expected to follow when the network is fitted correctly. When the
network is underfitting (orange line) the metric will not reach the minimum. The expected behaviour of
an overfitting network, the network will reach a minimum before the training is over and diverge with
further training.



11

Figure 4.4: Expected graph of metric scores for good fitted (blue), underfitted (orange) and overfitted (yellow)



5
Experiments

The method presented in this paper was implemented on a computer with 128 GB of RAM, an AMD
Ryzen Threadripper 3970X with 32 cores and 2 NVIDIA GeForce RTX 2080 Ti with 11 GB of memory
each. The POSnet and the NORMet of both Dual-DMP and the DeltaConv implementations are trained
for 1000 steps with the default learning rate of γ = 0.01 and decay parameters (β1, β2) = (0.9, 0.999). To
investigate the 3D mesh denoise quality of DeltaConv, we tested different forms of the algorithm. First
we have the standard Dual-DMP algorithm in which only the convolution layers have been adapted to
DeltaConv. Secondly, we tested a reduced network with a lower number of convolution layers. We also
investigated what the best KNN value is and what the best hyperparameters for the loss function for the
DeltaConv network are. In addition, we conducted an ablation study to test the effect of the different
streams in DeltaConv. The last experiment we did was comparing the network with DeltaConv, GCN
and EdgeConv convolutions. The quantitive results are shown in tabular format. The cells contain the
AAD and AHD score of the network for a specific model. The green cells indicate the network that
performs best for a model. Yellow is used if two networks perform (almost) similar. For the qualitative
results the figure consists of three areas on the left side the noisy input is shown, on the right side the
ground truth is shown. The middle area shows the outcome of the networks. Each row is the output
of a single network type. The first image is the shaded output. The second image shows the model
shaded per vertex by the angular distance between the model and the ground truth. The third image is
the models shaded by the distance between the vertices of the model and the ground truth. Both the
coloured variant use a gradient from blue to red via green. With blue a low value and red a high value.

5.1. Dual-DMP and DeltaConv
First, the quality of the denoised meshed produced by the network with the swapped convolution is
determined. Table 5.1 shows that with the same settings as the DDMP network the DeltaConv network
is performing worse. In figure 5.1 (left) the progression of the two metrics is plotted against the loss
function. The graph shows that network is overfitting since the metrics reach their minimum before
the training is over and diverge. The breakdown of the different parts of the loss function can be seen
in figure 5.1 (right). The Ebnf component is set to 0 for the first 100 epochs. It is also noticeable
that the ELap component increases. The overfitting could be due to a number of things, such as the
hyperparameters of the loss function and the size of the network. It may also be due to the selection of
the k nearest neighbours that are used to retrieve the local neighbourhood. As can be seen in figure
5.2, Dual-DMP is a lot better than the DeltaConv network without optimization. The noise is almost
not reduced by the DeltaConv convolution. The zoom out shows one of the more densely triangulated
areas and both algorithms have trouble with this area.

12



5.1. Dual-DMP and DeltaConv 13

AAD/AHD noise Dual-DMP DeltaConv

Block 33.719/4.323 4.568/1.038 15.878/2.287
Cube 20.656/3.117 0.785/0.344 0.626/0.325
Fandisk 28.421/3.231 2.474/0.604 15.735/2.088
Frog 23.268/1.753 4.642/0.624 7.798/0.833
Genus3 22.392/2.248 2.597/0.59 5.157/0.812
Nut 22.231/1.613 3.265/0.466 4.878/0.579
Octa-flower 22.709/1.526 5.471/0.578 11.146/0.911
Part-lp 18.865/2.43 1.923/0.504 5.9/1.094
Sharp-sphere 24.455/1.983 5.469/0.734 13.336/1.25
Smooth-feature 20.581/2.913 1.006/0.408 1.532/0.508
Trim-star 29.362/3.423 5.25/0.94 16.987/2.238

Table 5.1: Quantitive comparison of AAD and AHD values between the original convolutions and DeltaConv convolution in the
DDMP network.

Figure 5.1: Left The progression of the composite loss function for DeltaConv on the original network and the metrics. Right
The individual components of the loss function

Figure 5.2: This is the Block model. Left the input with the more densely triangulated areas marked. Right the ground truth
model. For the middle three models with zoom out the left is the normal shaded model, the middle is the model coloured by

AAD value and right is the model coloured by AHD value. The top row is DeltaConv and the bottom row is DDMP.



5.2. K-NN 14

5.2. K-NN
The neighbours around a vertex are selected using KNN, because this is done in an extrinsic way, it
does not guarantee that all the neighbouring vertices are on the surface surrounding the vertex. To
increase the chance that only points are selected that are on the surface surrounding the point, the
performance was tested with a reduced number of neighbours. The network was tested with 20 (origi-
nal), 10 and 8 neighbours. What is striking about the progression is that the network with 8 neighbours
reaches the lowest minimum with AAD = 3.63 and AHD = 0.705 and suffers the least from overfitting,
see right side of figure 5.3. With 10 neighbours (middle of figure 5.3 right) a lower minimum is achieved
than with 20 neighbours (left side of figure 5.3 left) but the network suffers more from overfitting. The
same can be seen in figure 5.4. The network performs also better with 8 neighbours than with 10 and
20 neighbours. The zoom out shows the transition from the flat bottom part to the cylindrical extru-
sion. The 8 neighbour network is able to recover the flat area better than the other two networks. The
recovery on the cylindrical extrusion is similar for the 8 neighbour and 20 neighbour network.

Figure 5.3: Left evaluation metrics for DeltaConv on the original network with 20 neighbours. Middle with 10 neighbours. Right
with 8 neighbours.

Figure 5.4: This is the part-lp model. Left the input with the more densely triangulated areas marked. Right the ground truth
model. For the middle three models with zoom out the left is the normal shaded model, the middle is the model coloured by

AAD value and right is the model coloured by AHD value. The top row is the network with 8 neighbours, middle row with 10 and
bottom row with 20.



5.3. Smaller DeltaConv 15

5.3. Smaller DeltaConv
Because DeltaConv seems to overfit, as shown in Figure 5.1 (left), the number of convolutional layers
was reduced. The network was tested with 12 (original), 7 and 5 layers. For testing with the different
number of convolutions, the network reaches a minimum with 7 layers AAD = 1.731 and AHD = 0.48
see figure 5.5 (middle). The network with 5 layers is too small with a minimum of AAD = 2.634 and
AHD = 0.598, see figure 5.5 (right). The original 12-layer network has a minimum at AAD = 2.032
and AHD = 0.567, see figure 5.5 (left). Therefore, the network with 7 DeltaConvconvolution layers
was chosen. As can be seen in figure 5.6, the output of the network with 7 layers appears to be best,
however it has some difficulty with the sharp edge between the cylindrical extrusion and the bridging
part. The network with 12 layers has trouble with the same area. The 5 layer network does not have a
region that is worse than the other areas but has more noise across the whole model.

Figure 5.5: Left evaluation metrics with 12 layers. Middle evaluation metrics with 7 layers. Right Evaluation metrics with 5
layers.

Figure 5.6: This is the part-lp model. Left the input. Right the ground truth model. For the middle three models with zoom out
the left is the normal shaded model, the middle is the model coloured by AAD value and right is the model coloured by AHD

value. The top row is the network with 12 layers, middle row with 7 and bottom row with 5.



5.4. Loss function 16

5.4. Loss function
The hyperparameters of the loss function were also tuned. The RayTune framework was used to op-
timize the hyperparameters. The loss function has 5 hyperparameters that can be changed for every
parameter integer values between 0 and 5, both inclusive, were tested. Tthe Optuna search algorithms
was used to guide the search space. The original hyperparameters chosen by Dual-DMP were K = (3,
0, 3, 4, 2), the optimized parameters for models with many sharp features are K = (5, 0, 1, 5, 5) and for
models with more curves the parameters are K = (1, 5, 1, 1, 0).

The major effect of the optimization can be clearly seen in figure 5.7. The top row shows the results of
the network without optimization. The bottom row shows the result for of the optimized network. The
zoom out shows the area the optimized model has the most trouble with.

AAD/AHD noise DeltaConv DeltaConv optimized

Block 33.719/4.323 15.878/2.287 3.594/0.918
Cube 20.656/3.117 0.626/0.325 0.467/0.256
Fandisk 28.421/3.231 15.735/2.088 2.16/0.575
Frog 23.268/1.753 7.798/0.833 4.036/0.675
Genus3 22.392/2.248 5.157/0.812 2.043/0.501
Nut 22.231/1.613 4.878/0.579 3.268/0.459
Octa-flower 22.709/1.526 11.146/0.911 5.026/0.558
Part-lp 18.865/2.43 5.9/1.094 1.898/0.508
Sharp-sphere 24.455/1.983 13.336/1.25 6.254/0.765
Smooth-feature 20.581/2.913 1.532/0.508 0.868/0.362
Trim-star 29.362/3.423 16.987/2.238 6.253/0.962

Table 5.2: Comparison of AAD and AHD values between DeltaConv in the original network and DeltaConv in the optimized
network.

Figure 5.7: This is the fandisk model. Left the input. Right the ground truth model. For the middle three models with zoom out
the left is the normal shaded model, the middle is the model coloured by AAD value and right is the model coloured by AHD

value. The top row is the unoptimized network. Bottom row is the optimized network



5.5. DDMP and optimized DeltaConv 17

5.5. DDMP and optimized DeltaConv
As can be seen in the table 5.3, in most cases the DeltaConv implementation is better than Dual-DMP or
DeltaConv is almost as good as Dual-DMP. In the case of the Nut model DeltaConv and Dual-DMP are
equivalent, this is indicated with yellow. We note that DeltaConv is better at denoising sharp features
than at denoising smooth features. This is clearly visible in, for example, cube and frog. Cube is an
object with only sharp corners and DeltaConv does this better than Dual-DMP. Whilst Frog is an object
with only curves and here Dual-DMP is better than DeltaConv. Another work with sharp features is
Octa-flower, see figure 5.8. It can be seen that the DeltaConv implementation better preserves the
sharp features of Octa-flower. The centre of the flower is better recovered by the DeltaConv network
than the DDMP network as can be seen in the model coloured by AAD value. The zoom out shows
the outer edge of the flower in the shaded image it can be seen that the DeltaConv network recovers
a sharper edge and the edge is more wavy for the DDMP network. Figure 5.9 shows the performance
of both networks on the Fandisk model. The DDMP network scores similar to the DeltaConv network,
the most difference can be seen when the model is coloured by AHD value. Both the Fandisk and
Octa-flower model consist of mostly sharp edges, the nut model consists of combination of both sharp
edges and smooth curves, see figure 5.11. In the zoom out it can be seen that DeltaConv models the
sharp feature better than Dual-DMP and that Dual-DMP models the smooth edges and surfaces better.

AAD/AHD noise Dual-DMP DeltaConv

Block 33.719/4.323 4.568/1.038 3.594/0.918
Cube 20.656/3.117 0.785/0.344 0.467/0.256
Fandisk 28.421/3.231 2.474/0.604 2.16/0.575
Frog 23.268/1.753 4.642/0.624 4.036/0.675
Genus3 22.392/2.248 2.597/0.59 2.043/0.501
Nut 22.231/1.613 3.265/0.466 3.268/0.459
Octa-flower 22.709/1.526 5.471/0.578 5.026/0.558
Part-lp 18.865/2.43 1.923/0.504 1.898/0.508
Sharp-sphere 24.455/1.983 5.469/0.734 6.254/0.765
Smooth-feature 20.581/2.913 1.006/0.408 0.868/0.362
Trim-star 29.362/3.423 5.25/0.94 6.253/0.962
Ccylinder 20.031/2.994 2.278/0.663 2.216/0.655
Coverrear-lp 19.098/2.038 1.664/0.38 2.041/0.425
Cylinder 19.197/5.146 2.6/1.278 2.141/1.014
Icosahedron 18.896/1.749 1.732/0.289 1.159/0.274
Rocker-arm 24.693/1.612 6.676/0.66 6.939/0.817
Sculpt 18.873/2.986 2.904/1.004 3.055/0.952

Table 5.3: Quantitive comparison of AAD and AHD values between the DDMP network optimized DeltaConv network

Figure 5.8: This is the octa-flower model. Left the input. Right the ground truth model. For the middle three models with zoom
out the left is the normal shaded model, the middle is the model coloured by AAD value and right is the model coloured by AHD

value. The top row is denoised by the DDMP network. Bottom row is denoised by the optimized network

The averaged metrics, figure 5.10 (AAD left and AHD right), for the DDMP network, DeltaConv network
and the scalar stream only network. We notice that the three networks follow a similar curve and



5.5. DDMP and optimized DeltaConv 18

Figure 5.9: This is the fandisk model. Left the input. Right the ground truth model. For the middle three models with zoom out
the left is the normal shaded model, the middle is the model coloured by AAD value and right is the model coloured by AHD

value. The top row is denoised by the DDMP network. Bottom row is denoised by the optimized network

converge around the same epoch.

Figure 5.10: The average AAD (left) and AHD (right) value for the DDMP, Optimized DeltaConv and Scalar stream only network



5.6. Ablation study 19

5.6. Ablation study
An ablation study was performed to gain an insight into the importance of the components of the Delta-
Conv convolution. The first test shows the results of either the vector or scalar stream of the convolution
being disabled. In table 5.4 the performance of the full network in relation to the scalar only and vector
only stream are shown. The scalar stream performs better than the vector stream and is close to the
performance of the full network.

AAD/AHD DeltaConv scalar vector

Block 3.594/0.918 3.633/0.974 11.393/2.58
Cube 0.467/0.256 0.33/0.216 1.682/0.643
Fandisk 2.16/0.575 2.139/0.537 8.906/1.701
Frog 4.036/0.675 4.784/0.656 8.703/1.634
Genus3 2.043/0.501 3.238/0.749 7.326/1.303
Nut 3.268/0.459 3.514/0.479 9.171/1.187
Octa-flower 5.026/0.558 5.231/0.585 23.34/3.118
Part-lp 1.898/0.508 1.896/0.534 4.526/1.116
Sharp-sphere 6.254/0.765 5.724/0.7 24.876/3.694
Smooth-feature 0.868/0.362 0.533/0.3 2.567/0.736
Trim-star 6.253/0.962 5.806/0.957 14.179/2.92

Table 5.4: Ablation study to inspect the two streams of DeltaConv on the optimized network

The scalar stream uses fewer features than the vector stream. To check, if the number of features
influence the scalar stream, a comparison is made with the scalar stream with half the number of
features and with double the number of features, see table 5.5 for the quantitive results. There is no
relation between the number of features and the performance of the network.

AAD/AHD scalar fewer features more features

Block 3.633/0.974 3.408/0.887 4.197/1.12
Cube 0.33/0.216 0.577/0.317 0.401/0.239
Fandisk 2.139/0.537 2.902/0.623 2.165/0.554
Frog 4.784/0.656 4.642/0.627 4.818/0.616
Genus3 3.238/0.749 3.276/0.611 4.009/0.841
Nut 3.514/0.479 3.766/0.52 3.48/0.472
Octa-flower 5.231/0.585 5.132/0.554 5.132/0.554
Part-lp 1.896/0.534 2.109/0.583 1.94/0.556
Sharp-sphere 5.724/0.7 6.772/0.87 6.228/0.736
Smooth-feature 0.533/0.3 1.203/0.482 0.599/0.294
Trim-star 5.806/0.957 6.137/0.994 5.65/0.913

Table 5.5: Comparison of the AAD and AHD values for the scalar stream, scalar stream with half the number of features and
scalar stream with double the number of features

The runtime that is measured, is the time it takes the algorithm to complete the training phase of a
1000 epochs. We compare DDMP, the optimized DeltaConv network with only the scalar stream, the
complete network (dynamic) and the network if we precompute the neighbours, gradient, divergence
and no longer update them during the fitting of the network (static). As can be seen in table 5.6, there
is a marginal difference between dynamic and static, the performance is also comparable. The scalar
stream is on average 6.7% slower than the DDMP network. The dynamic and static networks are on
average 5.3 times slower than DDMP.



5.6. Ablation study 20

time in seconds DDMP scalar DeltaConv dynamic DeltaConv static
Block 136 136 750 747
Cube 99 102 504 492
Fandisk 98 107 583 545
Frog 142 162 853 796
Genus3 106 114 566 550
Nut 108 129 620 591
Octa-flower 115 128 678 637
Part-lp 73 72 329 310
Sharp-sphere 145 165 850 808
Smooth-feature 100 107 504 509
Trim-star 102 92 443 400

Average performance 100% 106.7% 539.0% 515.1%

Table 5.6: Runtime in seconds comparison of DDMP, scalar stream, DeltaConv with recalculation of the operators and
DeltaConv without recalculation of the operators.



5.7. EdgeConv comparison 21

5.7. EdgeConv comparison
We performed another experiment to verify if the same results could be reached with another graph
convolution then DeltaConv. For this experiment we used EdgeConv. As can be seen in table 5.7,
the performance of EdgeConv without and with optimization are lower than those of DeltaConv. The
DeltaConv convolution is also outperforming the GCN convolution that is used in the DDMP algorithm.
Figure 5.11 shows the performance of the four networks on the Nut model. The optimized EdgeConv
model is able to recover the model a lot better than the unoptimized EdgeConv model but is still less
than the other models.

AAD/AHD noise Dual-DMP DeltaConv2 EdgeConv∗ EdgeConv2

Block 33.719/4.323 4.568/1.038 3.594/0.918 32.413/4.162 4.301/1.006
Cube 20.656/3.117 0.785/0.344 0.467/0.256 4.566/0.898 1.438/0.449
Fandisk 28.421/3.231 2.474/0.604 2.16/0.575 26.885/3.073 2.449/0.546
Frog 23.268/1.753 4.642/0.624 4.036/0.675 18.028/1.43 5.431/0.659
Genus3 22.392/2.248 2.597/0.59 2.043/0.501 13.666/1.468 4.07/0.652
Nut 22.231/1.613 3.265/0.466 3.268/0.459 21.548/1.574 4.122/0.505
Octa-flower 22.709/1.526 5.471/0.578 5.026/0.558 20.826/1.416 5.283/0.571
Part-lp 18.865/2.43 1.923/0.504 1.898/0.508 8.713/1.363 2.496/0.582
Sharp-sphere 24.455/1.983 5.469/0.734 6.254/0.765 22.318/1.831 7.139/0.801
Smooth-feature 20.581/2.913 1.006/0.408 0.868/0.362 4.844/0.869 1.589/0.393
Trim-star 29.362/3.423 5.25/0.94 6.253/0.962 27.858/3.279 8.151/1.166

Table 5.7: Comparison of AAD and AHD values between DDMP, DeltaConv and EdgeConv in the original network and
DeltaConv and EdgeConv in the optimized network. The * stands for the original implementation without tuning and the 2

stands for the network optimized with tuning

Figure 5.11: This is the nut model. Left the input. Right the ground truth model. For the middle three models with zoom out the
left is the normal shaded model, the middle is the model coloured by AAD value and right is the model coloured by AHD value.
The top row is DDMP, second row is DeltaConv, third row is EdgeConv in the DDMP network and bottom row is EdgeConv in

the optimized network.



5.8. Algorithm comparison 22

5.8. Algorithm comparison
The results from table 5.8 are adapted from the DDMP paper [6]. For the results of the DDMP algorithm
the values were used that were found in this thesis. Both the DDMP and our network perform better
than the other algorithms.

Model noise BNF GNF DNF-Net GCN-D DDMP DeltaConv

Block 33.72/4.32 7.06/1.26 4.11/0.99 4.13/0.99 4.19/0.98 4.57/1.04 3.59/0.92
Fandisk 28.42/3.23 3.49/0.76 2.93/0.68 3.33/0.69 3.28/0.70 2.47/0.60 2.16/0.58
Nut 22.23/1.61 5.70/0.78 4.05/0.55 4.21/0.52 3.64/0.50 3.27/0.47 3.27/0.46
Part-lp 18.87/2.43 2.07/0.66 2.59/0.69 2.84/0.67 2.40/0.62 1.92/0.50 1.90/0.51
Trim-star 29.36/3.42 6.57/1.16 6.95/1.11 5.55/0.93 4.86/0.89 5.25/0.94 6.25/0.96

Table 5.8: comparison with, Bilateral Normal filtering (BNF) [32], Guided normal filtering (GNF) [28], DNF-Net [11],
GCN-denoiser (GCN-D) [19], DDMP [6] and our network (DeltaConv

5.9. Real scan
A final experiment to verify if the network will perform as well with scanned objects as it did with synthetic
models with artificial nose. The input and denoised result are shown in figure 5.12. In the figure is visible
that the surface noise is removed and the shape of the scanned object does not degrade. The surface
of the scan is not as smooth as for CAD models and the algorithm keeps these imperfections well.

Figure 5.12: The input scan (left) and the denoised result (right) for the pyramid scan



6
Discussion

In this section we discuss the results we obtained from running our experiments, at the same time we
examine the results in the light of our research question: can state-of-the-art mesh denoising benefit
from using DeltaConv. The method should preserve features while removing noise.

The first subquestion: is it possible to replace the graph convolution in a state-of-the-art graph con-
volutional mesh denoising algorithm with DeltaConv. After replacing the convolutions of DDMP with
DeltaConv the results were considerably less than the results of DDMP as can be seen in figure 5.2. If
we look at the left plot of figure 5.1 we can see that the network is overfitting, as we would expect from
a more expressive convolution. The loss function is decreasing as expected, but the AAD metric has
a minimum before the network is fully trained. This is typical behaviour when the network is overfitting.

To solve the overfitting it is needed to change the shape of the architecture as well as the hyperparam-
eters this was done for smooth meshes and meshes with a lot of sharp edges. For the tuning of the
shape of the architecture, the number of layers tested were 12, 7 and 5, see figure 5.6. For the tuning
of the hyperparameters the number of neighbours DeltaConv uses were with 20, 10 and 8, see figure
5.4. The loss function was optimized with RayTune. The overfitting was solved with for the following
settings: 7 convolutional layers, 8 neighbours and for the loss function for smooth meshes K = (1, 5, 1,
1, 0) and for meshes with sharp edges K = (5, 0, 1, 5, 5). Table 5.2 shows the results before and after
optimization.

The second subquestion: can the DDMP network with DeltaConv integrated compare to the original
DDMP network (with GCN integrated in it). The expectation was that DeltaConv would produce better
results faster, since it uses more information and is anisotropic compared to the GCN convolution that
is originally used in the DDMP network. After optimization the DeltaConv networks achieved results
that are on par or better than DDMP, but the convergence was at the same rate for both. The comput-
ing time per epoch for DeltaConv took about 5 times as much time. In Figure 5.10 the average AAD
(left) and AHD (right) values are plotted for the DDMP network, the optimized DeltaConv network and
the DeltaConv network with only the scalar stream. The plots show that the three networks converge
at a similar pace. The speed of the algorithm was also tested if it made a difference to calculate the
neighbours, divergence and gradient on initialization instead of in every epoch. This had no significant
effect on neither the timing nor the performance, see table 5.6.

The next subquestion: how important are the different components of the DeltaConv convolutions. The
first thing that was tested were the individual components of the convolutions, i.e. the scalar and vector
stream of the DeltaConv algorithm. The results can be seen in table 5.4. This table shows that the
vector stream performs much worse than the full DeltaConv algorithm, while the scalar stream is similar
to the full DeltaConv algorithm. The scalar stream uses less features than the vector stream. To test
if the number of features influence the results, the scalar stream was tested with double and half the

23



24

amount of features. Table 5.5 shows that scalar stream is robust to the number of features since the
performance of the three variants was similar.

The last subquestion: how DeltaConv compares to other state-of-the-art denoising algorithms. The
DeltaConv is compared to GCN, but also to EdgeConv. We compared to the EdgeConv convolution
both in the original DDMP network as in the optimized network. We also optimized the hyperparame-
ters of the loss function for EdgeConv, but no additional changes were necessary. In the table 5.7 can
be seen that EdgeConv does not perform as well as the other two selected convolutions. The overall
performance between GCN and DeltaConv is similar. Were DeltaConv performs better on meshes with
many sharp features and were on smoother meshes GCN has the edge over DeltaConv. The results
of the DeltaConv network are also compared to the results found by Hattori et al. [6]. The DeltaConv
network performs similar to DDMP and both outperform the other algorithms however the test is only
on a select number of meshes (5) all of which are models with many sharp features.



7
Conclusion

The research question posed at the beginning of this thesis is if“state-of-the-art mesh denoising algo-
rithms can benefit from DeltaConv convolutions”. We have shown that state-of-the-art graph convo-
lutional mesh denoising algorithms can benefit from using the DeltaConv convolution. The research
question was divided into four subquestions.

The first subquestion is: can DeltaConv be integrated in a state-of-the-art mesh denoising algorithm?
It is possible in DDMP to change GCN to DeltaConv. Because the expressiveness of DeltaConv is
greater than that of GCN the hyperparameters as well as the shape of the network had to be adjusted
to get meaningful results.

The next subquestion is: does DeltaConv compare to DDMP in terms of quality of results? After chang-
ing the shape of the network and optimizing the hyperparameters the DeltaConv network performs as
well as or better than DDMP. The convergence rate is identical, but the computing time per epoch is
about 5 times that of DDMP. The DeltaConv network is better at preserving the sharp features of the
mesh, whereas DDMP performs better on smooth curves. This can best be seen with a visual inspec-
tion.

The third subquestion is: How important are the different component of the DeltaConv convolution? In
the ablation study we tested the performance of the vector stream and scalar stream individually. We
noticed that the scalar stream performs almost identical to the full DeltaConv convolution. In the visual
inspection can be seen that the scalar stream generates sharper features then vector stream. Espe-
cially in the areas where there is a transition from a smooth curve to a sharp edge the scalar stream
tends to oversharpens these features.

The final subquestion is: How does the network compare to other state-of-the-art convolutions and
algorithms? DeltaConv results are compared to the results of the 5 overlapping meshes published in
the paper by Hattori et al. [6]. The quantitive results show that the DeltaConv network outperforms the
other algorithms and is similar to DDMP. The DeltaConv convolution was also tested against the Edge-
Conv and GCN convolutions. DeltaConv and GCN perform similar, with the GCN better on smooth
meshes and DeltaConv on meshes with sharp features. EdgeConv does not perform as well as the
two other convolutions.

In this thesis we investigate if state-of the-art mesh denoising can benefit from DeltaConv convolutions.
We have shown that integrating DeltaConv in an existing state-of-the-art architecture is possible. To
get optimal results the network size needed to be reduced and the hyperparameters need to be opti-
mized. The optimized DeltaConv network performs as well as or better than other state-of-the-art mesh

25



7.1. Future work 26

denoising algorithms. Due to the expressiveness of DeltaConv the performance on denoising meshes
with sharper features works best. For smooth meshes DeltaConv performs comparable to the other al-
gorithms. Thus, state-of-the-art denoising algorithms can benefit from the more expressive DeltaConv
convolution.

7.1. Future work
The neighbours for every vertex is currently determined by selecting the K nearest neighbours in an
extrinsic way. It would be interesting to investigate if other strategies for selecting the K nearest neigh-
bours would increase the performance. For instance by selecting the neighbours in an intrinsic way or
selecting connected vertices. We are also interested in what the effect will be on thin structures since
K nearest neighbours is more susceptible to select vertices on the other side of themesh in those cases.

In the ablation study we noticed that the scalar stream by itself performs almost as well as the complete
convolution. It would be interesting to investigate if optimizations of the vector stream could boost the
overall performance of the network.



References

[1] Matthieu Armando, Jean-Sébastien Franco, and Edmond Boyer. “Mesh Denoising With Facet
Graph Convolutions”. In: IEEE Transactions on Visualization and Computer Graphics 28.8 (Aug.
2022). Conference Name: IEEE Transactions on Visualization and Computer Graphics, pp. 2999–
3012. ISSN: 1941-0506. DOI: 10.1109/TVCG.2020.3045490. URL: https://ieeexplore.ieee.
org/document/9296808.

[2] Harold C. Burger, Christian J. Schuler, and Stefan Harmeling. “Image denoising: Can plain neural
networks compete with BM3D?” In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. 2012 IEEE Conference on Computer Vision and Pattern Recognition. ISSN: 1063-
6919. June 2012, pp. 2392–2399. DOI: 10.1109/CVPR.2012.6247952. URL: https://ieeexplo
re.ieee.org/document/6247952.

[3] Honghua Chen, MingqiangWei, and JunWang.Geometric and Learning-based Mesh Denoising:
A Comprehensive Survey. Sept. 2, 2022. DOI: 10 . 48550 / arXiv . 2209 . 00841. arXiv: 2209 .
00841[cs]. URL: http://arxiv.org/abs/2209.00841.

[4] J. R. Diebel, S. Thrun, and M. Brunig. “A Bayesian method for probable surface reconstruction
and decimation”. In: Acm Transactions OnGraphics 25.1 (Jan. 1, 2006). Publisher: ASSOCCOM-
PUTING MACHINERY, pp. 39–59. ISSN: 0730-0301. DOI: 10.1145/1122501.1122504. URL:
https://espace.library.uq.edu.au/view/UQ:385739.

[5] Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. “Bilateral Mesh Denoising”. In: ACM Trans-
actions on Graphics 22 (May 29, 2003). ISSN: 1581137095. DOI: 10.1145/1201775.882368.

[6] Shota Hattori et al. “Learning Self-prior for Mesh Denoising Using Dual Graph Convolutional Net-
works”. In: Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part III. Berlin, Heidelberg: Springer-Verlag, Oct. 23, 2022, pp. 363–
379. ISBN: 978-3-031-20061-8. DOI: 10.1007/978-3-031-20062-5_21. URL: https://doi.
org/10.1007/978-3-031-20062-5_21.

[7] Lei He and Scott Schaefer. “Mesh denoising via L0minimization”. In:ACMTransactions onGraph-
ics 32.4 (July 21, 2013), 64:1–64:8. ISSN: 0730-0301. DOI: 10.1145/2461912.2461965. URL:
https://doi.org/10.1145/2461912.2461965.

[8] Klaus Hildebrandt and Konrad Polthier.Constraint-based Fairing of Surface Meshes. ISSN: 1727-
8384. The Eurographics Association, 2007. ISBN: 978-3-905673-46-3. URL: http://dx.doi.
org/10.2312/SGP/SGP07/203-212.

[9] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolutional Net-
works”. In: International Conference on Learning Representations. July 21, 2022. URL: https:
//openreview.net/forum?id=SJU4ayYgl.

[10] Victor Lempitsky, Andrea Vedaldi, and Dmitry Ulyanov. “Deep Image Prior”. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. ISSN: 2575-7075. June 2018, pp. 9446–9454. DOI: 10.
1109/CVPR.2018.00984. URL: https://ieeexplore.ieee.org/document/8579082.

[11] Xianzhi Li et al. “DNF-Net: A Deep Normal Filtering Network for Mesh Denoising”. In: IEEE Trans-
actions on Visualization and Computer Graphics 27.10 (Oct. 2021). Conference Name: IEEE
Transactions on Visualization and Computer Graphics, pp. 4060–4072. ISSN: 1941-0506. DOI:
10.1109/TVCG.2020.3001681. URL: https://ieeexplore.ieee.org/document/9115285.

[12] Xianzhi Li et al. “Non-Local Low-Rank Normal Filtering for Mesh Denoising”. In: Computer Graph-
ics Forum 37.7 (2018). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13556, pp. 155–
166. ISSN: 1467-8659. DOI: 10.1111/cgf.13556. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1111/cgf.13556.

27

https://doi.org/10.1109/TVCG.2020.3045490
https://ieeexplore.ieee.org/document/9296808
https://ieeexplore.ieee.org/document/9296808
https://doi.org/10.1109/CVPR.2012.6247952
https://ieeexplore.ieee.org/document/6247952
https://ieeexplore.ieee.org/document/6247952
https://doi.org/10.48550/arXiv.2209.00841
https://arxiv.org/abs/2209.00841 [cs]
https://arxiv.org/abs/2209.00841 [cs]
http://arxiv.org/abs/2209.00841
https://doi.org/10.1145/1122501.1122504
https://espace.library.uq.edu.au/view/UQ:385739
https://doi.org/10.1145/1201775.882368
https://doi.org/10.1007/978-3-031-20062-5_21
https://doi.org/10.1007/978-3-031-20062-5_21
https://doi.org/10.1007/978-3-031-20062-5_21
https://doi.org/10.1145/2461912.2461965
https://doi.org/10.1145/2461912.2461965
http://dx.doi.org/10.2312/SGP/SGP07/203-212
http://dx.doi.org/10.2312/SGP/SGP07/203-212
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1109/CVPR.2018.00984
https://doi.org/10.1109/CVPR.2018.00984
https://ieeexplore.ieee.org/document/8579082
https://doi.org/10.1109/TVCG.2020.3001681
https://ieeexplore.ieee.org/document/9115285
https://doi.org/10.1111/cgf.13556
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13556
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13556


References 28

[13] Zhiqi Li et al. “NormalF-Net: Normal Filtering Neural Network for Feature-preserving Mesh De-
noising”. In: Computer-Aided Design 127 (Oct. 1, 2020), p. 102861. ISSN: 0010-4485. DOI: 10.
1016/j.cad.2020.102861. URL: https://www.sciencedirect.com/science/article/pii/
S0010448520300543.

[14] Xuequan Lu et al. “Low Rank Matrix Approximation for 3D Geometry Filtering”. In: IEEE Trans-
actions on Visualization and Computer Graphics 28.4 (Apr. 2022). Conference Name: IEEE
Transactions on Visualization and Computer Graphics, pp. 1835–1847. ISSN: 1941-0506. DOI:
10.1109/TVCG.2020.3026785. URL: https://ieeexplore.ieee.org/document/9210753.

[15] Shitong Luo and Wei Hu. “Differentiable Manifold Reconstruction for Point Cloud Denoising”. In:
Proceedings of the 28th ACM International Conference on Multimedia. Oct. 12, 2020, pp. 1330–
1338. DOI: 10.1145/3394171.3413727. arXiv: 2007.13551[cs]. URL: http://arxiv.org/abs/
2007.13551.

[16] P. Perona and J. Malik. “Scale-space and edge detection using anisotropic diffusion”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 12.7 (July 1990). Conference Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 629–639. ISSN: 1939-3539.
DOI: 10.1109/34.56205. URL: https://ieeexplore.ieee.org/document/56205.

[17] Francesca Pistilli et al. Learning Graph-Convolutional Representations for Point Cloud Denoising.
European Conference on Computer Vision. July 6, 2020. DOI: 10.48550/arXiv.2007.02578.
URL: http://arxiv.org/abs/2007.02578.

[18] Charles R. Qi et al. “PointNet++: deep hierarchical feature learning on point sets in a metric
space”. In: Proceedings of the 31st International Conference on Neural Information Processing
Systems. NIPS’17. Red Hook, NY, USA: Curran Associates Inc., Dec. 4, 2017, pp. 5105–5114.
ISBN: 978-1-5108-6096-4.

[19] Yuefan Shen et al. “GCN-Denoiser: Mesh Denoising with Graph Convolutional Networks”. In:
ACM Transactions on Graphics 41.1 (Feb. 28, 2022), pp. 1–14. ISSN: 0730-0301, 1557-7368.
DOI: 10.1145/3480168. arXiv: 2108.05128[cs]. URL: http://arxiv.org/abs/2108.05128.

[20] Yuzhong Shen and K.E. Barner. “Fuzzy vector median-based surface smoothing”. In: IEEE Trans-
actions on Visualization and Computer Graphics 10.3 (May 2004). Conference Name: IEEE
Transactions on Visualization and Computer Graphics, pp. 252–265. ISSN: 1941-0506. DOI:
10.1109/TVCG.2004.1272725. URL: https://ieeexplore.ieee.org/document/1272725.

[21] Gabriel Taubin. “A signal processing approach to fair surface design”. In: Proceedings of the
22nd annual conference on Computer graphics and interactive techniques. SIGGRAPH ’95. New
York, NY, USA: Association for Computing Machinery, Sept. 15, 1995, pp. 351–358. ISBN: 978-0-
89791-701-8. DOI: 10.1145/218380.218473. URL: https://dl.acm.org/doi/10.1145/218380.
218473.

[22] Peng-Shuai Wang, Yang Liu, and Xin Tong. “Mesh denoising via cascaded normal regression”.
In: ACM Transactions on Graphics 35.6 (Dec. 5, 2016), 232:1–232:12. ISSN: 0730-0301. DOI:
10.1145/2980179.2980232. URL: https://doi.org/10.1145/2980179.2980232.

[23] Yue Wang et al. “Dynamic Graph CNN for Learning on Point Clouds”. In: ACM Transactions on
Graphics 38.5 (Oct. 10, 2019), 146:1–146:12. ISSN: 0730-0301. DOI: 10.1145/3326362. URL:
https://dl.acm.org/doi/10.1145/3326362.

[24] Ruben Wiersma et al. “DeltaConv: anisotropic operators for geometric deep learning on point
clouds”. In:ACMTransactions on Graphics 41.4 (July 22, 2022), 105:1–105:10. ISSN: 0730-0301.
DOI: 10.1145/3528223.3530166. URL: https://dl.acm.org/doi/10.1145/3528223.3530166.

[25] Li Xu et al. “Deep Edge-Aware Filters”. In: Proceedings of the 32nd International Conference
on Machine Learning. International Conference on Machine Learning. ISSN: 1938-7228. PMLR,
June 1, 2015, pp. 1669–1678. URL: https://proceedings.mlr.press/v37/xub15.html.

[26] H. Yagou, Y. Ohtake, and A. Belyaev. “Mesh smoothing via mean and median filtering applied to
face normals”. In:Geometric Modeling and Processing. Theory and Applications. GMP 2002. Pro-
ceedings. Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceed-
ings. July 2002, pp. 124–131. DOI: 10.1109/GMAP.2002.1027503. URL: https://ieeexplore.
ieee.org/document/1027503.

https://doi.org/10.1016/j.cad.2020.102861
https://doi.org/10.1016/j.cad.2020.102861
https://www.sciencedirect.com/science/article/pii/S0010448520300543
https://www.sciencedirect.com/science/article/pii/S0010448520300543
https://doi.org/10.1109/TVCG.2020.3026785
https://ieeexplore.ieee.org/document/9210753
https://doi.org/10.1145/3394171.3413727
https://arxiv.org/abs/2007.13551 [cs]
http://arxiv.org/abs/2007.13551
http://arxiv.org/abs/2007.13551
https://doi.org/10.1109/34.56205
https://ieeexplore.ieee.org/document/56205
https://doi.org/10.48550/arXiv.2007.02578
http://arxiv.org/abs/2007.02578
https://doi.org/10.1145/3480168
https://arxiv.org/abs/2108.05128 [cs]
http://arxiv.org/abs/2108.05128
https://doi.org/10.1109/TVCG.2004.1272725
https://ieeexplore.ieee.org/document/1272725
https://doi.org/10.1145/218380.218473
https://dl.acm.org/doi/10.1145/218380.218473
https://dl.acm.org/doi/10.1145/218380.218473
https://doi.org/10.1145/2980179.2980232
https://doi.org/10.1145/2980179.2980232
https://doi.org/10.1145/3326362
https://dl.acm.org/doi/10.1145/3326362
https://doi.org/10.1145/3528223.3530166
https://dl.acm.org/doi/10.1145/3528223.3530166
https://proceedings.mlr.press/v37/xub15.html
https://doi.org/10.1109/GMAP.2002.1027503
https://ieeexplore.ieee.org/document/1027503
https://ieeexplore.ieee.org/document/1027503


References 29

[27] Huayan Zhang et al. “Variational Mesh Denoising Using Total Variation and Piecewise Constant
Function Space”. In: IEEE Transactions on Visualization and Computer Graphics 21.7 (July 2015).
Conference Name: IEEE Transactions on Visualization and Computer Graphics, pp. 873–886.
ISSN: 1941-0506. DOI: 10.1109/TVCG.2015.2398432. URL: https://ieeexplore.ieee.org/
document/7029103.

[28] Wangyu Zhang et al. “Guided Mesh Normal Filtering”. In: Computer Graphics Forum 34.7 (2015),
pp. 23–34. ISSN: 0167-7055. DOI: 10.1111/cgf.12742. URL: https://doi.org/10.1111/cgf.
12742.

[29] Yingkui Zhang et al. “GeoBi-GNN: Geometry-aware Bi-domain Mesh Denoising via Graph Neural
Networks”. In: Computer-Aided Design 144 (Mar. 1, 2022), p. 103154. ISSN: 0010-4485. DOI:
10.1016/j.cad.2021.103154. URL: https://www.sciencedirect.com/science/article/
pii/S0010448521001639.

[30] Wenbo Zhao et al. “NormalNet: Learning-Based Mesh Normal Denoising via Local Partition Nor-
malization”. In: IEEE Transactions on Circuits and Systems for Video Technology 31.12 (Dec.
2021). Conference Name: IEEE Transactions on Circuits and Systems for Video Technology,
pp. 4697–4710. ISSN: 1558-2205. DOI: 10 . 1109 / TCSVT . 2021 . 3099939. URL: https : / /
ieeexplore.ieee.org/document/9495794.

[31] Zhibo Zhao et al. “A Multi-Stream Network for Mesh Denoising Via Graph Neural Networks with
Gaussian Curvature”. In: 2023 IEEE International Conference on Image Processing (ICIP). 2023
IEEE International Conference on Image Processing (ICIP). Oct. 2023, pp. 1355–1359. DOI:
10 . 1109 / ICIP49359 . 2023 . 10222463. URL: https : / / ieeexplore . ieee . org / abstract /
document/10222463/authors#authors.

[32] Youyi Zheng et al. “Bilateral Normal Filtering for Mesh Denoising”. In: IEEE Transactions on Vi-
sualization and Computer Graphics 17.10 (Oct. 2011). Conference Name: IEEE Transactions on
Visualization and Computer Graphics, pp. 1521–1530. ISSN: 1941-0506. DOI: 10.1109/TVCG.
2010.264. URL: https://ieeexplore.ieee.org/document/5674028.

[33] Lang Zhou et al. “Point cloud denoising review: from classical to deep learning-based approaches”.
In: Graphical Models 121 (May 1, 2022), p. 101140. ISSN: 1524-0703. DOI: 10.1016/j.gmod.
2022.101140. URL: https://www.sciencedirect.com/science/article/pii/S152407032200
0170.

https://doi.org/10.1109/TVCG.2015.2398432
https://ieeexplore.ieee.org/document/7029103
https://ieeexplore.ieee.org/document/7029103
https://doi.org/10.1111/cgf.12742
https://doi.org/10.1111/cgf.12742
https://doi.org/10.1111/cgf.12742
https://doi.org/10.1016/j.cad.2021.103154
https://www.sciencedirect.com/science/article/pii/S0010448521001639
https://www.sciencedirect.com/science/article/pii/S0010448521001639
https://doi.org/10.1109/TCSVT.2021.3099939
https://ieeexplore.ieee.org/document/9495794
https://ieeexplore.ieee.org/document/9495794
https://doi.org/10.1109/ICIP49359.2023.10222463
https://ieeexplore.ieee.org/abstract/document/10222463/authors#authors
https://ieeexplore.ieee.org/abstract/document/10222463/authors#authors
https://doi.org/10.1109/TVCG.2010.264
https://doi.org/10.1109/TVCG.2010.264
https://ieeexplore.ieee.org/document/5674028
https://doi.org/10.1016/j.gmod.2022.101140
https://doi.org/10.1016/j.gmod.2022.101140
https://www.sciencedirect.com/science/article/pii/S1524070322000170
https://www.sciencedirect.com/science/article/pii/S1524070322000170

	Abstract
	Nomenclature
	Introduction
	Related work
	Background
	Mesh denoising
	DDMP
	DeltaConv convolutions

	Method
	Experiments
	Dual-DMP and DeltaConv
	K-NN
	Smaller DeltaConv
	Loss function
	DDMP and optimized DeltaConv
	Ablation study
	EdgeConv comparison
	Algorithm comparison
	Real scan

	Discussion
	Conclusion
	Future work

	References

