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1 I N T R O D U C T I O N

In this chapter, Section 1.1 introduces a problem context in the public transport field and
how network studies dealt with. Section 1.2 describes the related works to the struc-
tural network studies and highlights the research gap. Section 1.3 states the research goal
translated into the main research question and sub-research questions in Section 1.4. An
overview of methodology is presented in Section 1.5. The chapter concludes with the
outline of this thesis in Section 1.6.

1.1 context of study

Due to the considerable investment cost and societal impacts of public transport (PT)
projects, the planning of the system becomes essential. Planners need to understand the
current situation of the system before planning any extension or modification. Moreover,
they may also want to learn from other system operations in different places by conduct-
ing comparative studies. For example, a planner may want to compare his system to
those in Japan to identify how they can build on-time train systems. A network study
is employed to facilitate those planning purposes. A PT system is viewed as a network,
a combination of nodes connected by links. With this simplification, the properties or
complex inter-relation in the system can be analysed easily.

There are two lines of research for transportation network studies: structure and dynam-
ics of transportation networks (Ducruet and Lugo, 2013). The former aims to characterize
the network structure by network indicators. There are several approaches, including
topology, geometry, morphology and traffic flow, to calculate those indicators. Besides,
the latter explores changes in the network, identify evolution patterns and the mechanism
behind such changes. This thesis aims to contribute to the structural studies of transporta-
tion network, specifically public transport networks (PTNs).

1.2 research motivations

Comparative study is an approach in structural network studies. They compare different
networks to identify similarities or differences. There is much empirical evidence that
PTNs in different places share common statistical characteristics (Von Ferber et al., 2009;
Derrible and Kennedy, 2010b; XU et al., 2013; Lin and Ban, 2013; Zhang et al., 2013; Haz-
nagy et al., 2015; Wan et al., 2018). For instance, Lin and Ban (2013) found many railway,
subway and bus networks in several countries exhibit small-world (Watts and Strogatz,
1998) and scale-free structure (Barabási and Albert, 1999). Since both properties are the
significant breakthrough in the complex network studies, more details are in Chapter 2.

1



2 introduction

Moreover, those mentioned studies adopted a similar approach to characterize the PTNs.
They employed graph theory and complex network indicators calculated via a topological
approach. Network topology is the abstraction of the real network into only the connection
of nodes and links. For PTNs, nodes represent stations while links show the connection be-
tween stations. Although this approach leaves out many details, it still leads to progress in
understanding collective phenomena in PTNs (e.g. network vulnerability) and identifying
important network parts by adapting node centrality concept (de Regt et al., 2017). More-
over, it required a little amount and easily gathered data. The data can be extracted from
the network map and timetable usually provided publicly by PT authority or operators.
Therefore, analysts can include several networks in their studies.

After the similarities between network were identified, creating classification is a subse-
quent step. Classification groups similar objects while keeping ones with different proper-
ties to other groups. The resulting groups will reveal the pattern of many complex PTNs
structure and facilitate further PTNs studies. For example, analysts can lower the number
of networks incorporate in the studies because they can still maintain a variety of network
structure by selecting a few from different groups. Moreover, it will pave the way for
studying each class of PTNs, adding value to the previous comparative studies.

Despite the accumulation of comparative PTNs studies, there were a few attempts to
create a classification. Gattuso and Miriello (2005) classified 13 metro networks using
combined network indicator scores to rank networks. The scores were calculated from
the multi-criteria analysis. However, it is difficult to identify a distinct property of each
network as they all combined into a single value. Derrible and Kennedy (2010b) adopted
a 2-D graph where each network indicator is on the axis. A few network indicators de-
scribed each characteristic. They were able to classify 33 metro networks into different
groups according to the state of development, interaction with the built environment, and
intrinsic structure. Besides, STOILOVA and STOEV (2015) adopted hierarchical clustering
to classify 22 European metro networks adopting six network indicators. However, both
studies (Derrible and Kennedy, 2010b; STOILOVA and STOEV, 2015) only consider the
physical infrastructure side of the PTNs and include a single mode of PT. In their studies,
it is assumed that a direct service line always exists connecting a station to any stations;
however, that is not always the case. PT operators usually provide several service lines
to serve nodes, and the transfer is made at the node where the service line overlapped.
Consequently, service lines network is another vital aspect to describe PTNs. Moreover, as
only metro networks are considered, the classification result is mode-dependent. In other
words, they assume that transport modes influence the network structure.

In summary, few studies classified PTNs and most of them were based on a single PT
mode representing on infrastructure networks. Based on such criteria, they assume no
similarities between different PT modes and omit the service lines from analysis.

1.3 research objectives

This thesis aims to classify PTNs employing topological network indicators. PT networks
consisting of multiple modes will be considered to explore the similarities across the
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modes. In addition to the infrastructure networks, the service aspects will also be taken
into account. A quantitative classification will be employed to cluster PTNs because this
approach is automatic, scalable and reproducible. Besides, the result of this research can
be used by PT network planners to understand their existing PT system and compare to
other PT systems. Moreover, the system can further be improved by learning the lessons
from the similar successful networks.

1.4 research questions

The research objectives are translated into the main research question as follows:
“How can public transport networks be quantitatively characterized and clustered from

a topological perspective?”
To deal with this question, the main research question is broken down into following

sub-research questions:

1. How can the PTNs’ structure be quantitatively characterized by network indicators
from a topological approach excluding mode-specific properties?

This question aims to identify a set of network indicators to describe structural char-
acteristics of the public transport network without mode-specific properties.

2. What are the topological clusters of public transport networks and which topological
characteristics influence the result?

This question aims to identify set of clusters of PTNs and which characteristics affect
the result.

1.5 approach

In this section, a brief overview of the thesis methodology is described. First, the literature
study is used to explore suitable network characteristics to characterize PTNs . Network
indicators are then selected to operationalize those characteristics. Subsequently, a selec-
tion of PTNs will be characterized by those topological network indicators. The result data
set is the compilation of each PTN with their corresponding network indicator values.

The second step is performing classification of the dataset. As there is little prior infor-
mation of PTNs classification (from structural characteristics), clustering analysis is chosen.
From the clustering result, the clustering groups are realized, and the influence of each
topological characteristic will be verified.

1.6 overview

The remaining of this thesis consists of five chapters. Chapter 2 presents a literature re-
view on the characterization of PTNs and its related network indicators. Moreover, it also
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includes the typical approach for topological analysis and related works on PTNs classifi-
cation. For Chapter 3, the methodology framework of the thesis is presented. It elaborates
on the acquisition of PTNs data, network characterization, and network classification. The
analysis is conducted and all the results and discussion are presented in Chapter 4. Fi-
nally, Chapter 5 concludes the thesis by summarizing and synthesizing main findings and
contributions. Additionally, it includes the limitations and recommendations for future
research.



2 L I T E R AT U R E R E V I E W

This chapter reviewed relevant literature two parts in the main research question: PTNs
characterization and PTNs classification. First, Section 2.1 identifies relevant structural
characteristics of PTNs from complex and spatial network properties. Section 2.2 describes
how to operationalize characteristics topologically. Finally, this chapter concludes with the
review of previous attempts on PTN classification Section 2.3.

2.1 public transport network structural characterization

The network characterization depends on the network types. From the literature review
on the complex topology of transportation networks (Lin and Ban, 2013), several railway,
and urban networks are empirically found to exhibit complex network properties such
as small-world, scale-free, etc. This gives rise to several recent studies (Wei et al., 2019;
Wu et al., 2018; Cao et al., 2018; Pagani et al., 2018; Zhang et al., 2018b,a; Bangxang and
Jarumaneeroj, 2018; Zanin et al., 2018; Wan et al., 2018; Wang et al., 2017; Cheng et al.,
2017) employing complex network properties to analyse PTNs. Moreover, PTNs are also
considered as spatial networks because their network nodes position and links related to
the geographical position governed by Euclidean distance. Also, the concept of planarity
is usually applicable to infrastructure networks such as road, rail, and many other types of
transportation networks. A planar graph is a graph in which the intersection of link results
as a new node (Barthelemy, 2010). For instance, the transfer station connects different
service lines. Therefore, PTNs are complex and planar spatial network.

Complex networks usually display non-trivial topological features meaning that they
are neither purely regular or purely random network. The two prominent works in com-
plex network field are small-world (Watts and Strogatz, 1998) and scale-free networks
(Barabási and Albert, 1999) with a wide range of applications to several fields including
technological, biological and social network. The small-world network known as ’six de-
grees of separation’ is highly clustered network with small characteristics path (shortest
path) while the vertex connectivity in scale-free networks follows a power-law distribu-
tion. Newman (2003) compiled a list of complex network properties as shown in Table 2.1.
Derrible and Kennedy (2010c) found that 33 metro networks systems possess both small-
worlds and scale-free structure and proposed that highly clustered networks are highly
robust. Similarly, in addition to those two properties, bus systems in 330 Chinese cities
were found to be degree assortativity, and 30 urban rail transits also possess similar cen-
trality properties (Zhang et al., 2013; XU et al., 2013). Von Ferber et al. (2009) extended the
characterization of 14 PTNs in different cities by incorporating property (1)-(3) and (5) -(6)
in Table 2.1, but those PTNs show diverse characteristics that classification could not be
derived. For the rest of the characteristics, resilience has been explored quite extensively

5



6 literature review

in many PTNs due to its significance to real operational performance (Zhang et al., 2018c).
Many studies (Zhang et al., 2011; von Ferber et al., 2012; Zhang et al., 2018b) found that
PTNs are robust against random attack compared to malicious attack.

No.
Network
properties

Interpretation Network indicators

1

Small-world
effect

The network is highly clustered
and has short characteristic path length.

Average shortest path,
Clustering coefficient

2

Transitivity or
Clustering

If vertex A is connected to vertex B and
vertex B to vertex C, there is a heightened
probability that vertex A will also be
connected to vertex C.

Clustering coefficient

3

Scale-free
networks

The network has a power-law degree
distribution.

Degree distribution

4 Resilience

The extent to which network maintains
its connectivity, i.e., the existence of a path
between pairs of vertices, when
subject to removal of network components.

Average shortest path
, Network efficiency
, Size of the largest
component

5

Mixing
patterns

The tendency to which vertices pair up with
certain vertices.

Assortative mixing
coefficient

6

Degree
correlations

Mixing patterns according to vertex degree
Pearson correlation
coefficient of the
degrees

Table 2.1: Complex network properties (Adapted from Newman 2003)

For spatial networks, Barthelemy (2010) compiled network indicators for characteris-
ing spatial networks and divided them into two categories: basic and mixing space and
topology type. The basic indicators include adjacency matrix, clustering coefficient, assor-
tativity coefficient, average shortest path, discrete Laplacian, and betweenness centrality.
For the latter type, strengths, α index, γ index, ringness, route factor, network cost, net-
work efficiency, and modularity were used. Note that since several indicators are the same
as those already discussed for the complex network, only non-complex network indicators
will be further elaborated.

To see the applications of those indicators to PTNs, related studies will be explored.
γ index was used to describe network connectivity in terms of links’ density (Garrison,
William L and Marble, 1962) while network robustness was quantified by α index (Derrible
and Kennedy, 2010c). Since α index counts the number of cycles or alternative routes,
it can explain the extent to which a network remains functioning under the disruption
when some routes are disconnected. Moreover, Ding et al. (2015); Cats (2017) employed
the γ and α index to quantify the connectivity and robustness of the railway network
in Kuala Lumpur and Stockholm. Additionally, essential stations can be interpreted as
the critical spots in the system because many trips are expected to pass through those
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stations. It is crucial to handle them properly. The concept of node centrality, including
betweenness, degree, and closeness centrality can identify such stations (Tu, 2013; To, 2015;
Chen et al., 2018; Cao et al., 2018). Besides, strength centrality is the extended concept of
degree centrality with weighted links. Note that weight can depict the travel distance or
travel time between nodes. Cao et al. (2018); Chen et al. (2018) characterized the traffic
intensity of Chinese high-speed rail stations by adopting strength centrality. Route factor
compared the route provided by a system to the crow flies route between a pair of nodes. It
was used to measure the directness of Stockholm metro (Cats, 2017) and the accessibility
of stations (Barthelemy, 2010). Similarly, network efficiency is also related to network
directness because more direct network tends to provide a shorter and more efficient trip.
For instance, (Latora and Marchiori, 2002) employed network efficiency to evaluate Boston
network. For the other two indicators, ringness is used to characterize the arterial roads
(Xie and Levinson, 2007) while network cost is similar to γ in the sense that it compares the
network current to the desired state. In other words, network cost often refers to the total
length in the current network compared to the ideal minimum network length, minimum
spanning tree network.

In conclusion, PTNs can be characterized by complex and planar spatial network per-
spectives. Their characteristics can be divided into two groups: complex and spatial prop-
erties. Complex properties include small-world, transitivity, scale-free, resilience, mixing
pattern, and degree correlations. Moreover, network connectivity, robustness, node cen-
trality, service intensity, network accessibility, and efficiency are spatial network proper-
ties.

2.2 topological analysis of public transport networks

Network topological analysis studies the arrangement and connectivity of network nodes
and links (Xie and Levinson, 2007). The basic representation is on a graph consisting of
nodes and links. Several graph types can be distinguished depending on link types and
network models. For link types, there are two aspects to consider: link direction and
links weight. For the link direction, a graph with unidirectional links is a directed graph
while the graph with bidirectional links is an undirected type. Moreover, the weighted
graph has weighted links. For network models, they refer to what the nodes and links are
represented. Although there are several network model available in the literature, only
common types for PTNs studies are further investigated.

L-space and P-space are standard network models in PTNs studies (Lin and Ban, 2013).
L-space graph illustrates stations as nodes while a link connecting nodes exists if there
is at least a service line connecting those two consecutive nodes (Von Ferber et al., 2009).
In other words, L-space representation depicts the infrastructure side of the PTNs, de-
scribing the stations and their interconnection. Sometimes, it is referred to as space-of-
infrastructure (Luo et al., 2019) or space-of-stations (Kurant and Thiran, 2006). It is usually
applied in work regarding the physical network structure such as the vulnerability of sub-
way network (Zhang et al., 2011; von Ferber et al., 2012), the centrality of stations (Derrible,
2012; Tu, 2013), etc. However, L-space lacks information on the service lines.
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To incorporate service line details, P-space representation is adopted. A node in this
graph still represents a station, but a link exists if there is at least a direct service line
linking the pair of nodes (Von Ferber et al., 2009). This implies that a neighborhood of a
node is all stations reachable without changing service lines. P-space is often referred to
as space-of-service (Luo et al., 2019) or space of transfers (Kurant and Thiran, 2006). For
simple visualization, Figure 2.1 illustrate both the L-space and P-space derived from the
same network map. Numerous studies employed P-space to investigate different network
properties such as accessibility of Chinese high-speed rail network (Chen et al., 2018),
hierarchical network property (Wei et al., 2019), structural characteristics of PTNs in 330

Chinese cities (XU et al., 2013). Based on network indicators and their space representation,
network characteristics can be operationalized.

Figure 2.1: Schematic diagram of a typical representation for PTNs (Adapted from Von Ferber et
al. 2009)

2.3 public transport networks classification

Early studies classified metro networks according to their geometric form of networks
with their quantitative measures. The metro lines were classified as radial, diametrical,
tangential, circumferential, trunk, and irregular lines (Musso and Vuchic, 1988; Vuchic
and Musso, 1991).Figure 2.2 shows each line type. Based on the line types, the whole
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network can be identified in three geometric forms: radial, rectangular, and modified grid.
Each type was roughly defined according to its line types. For example, a radial network
consisted of radial and diametrical lines intersecting in the city center. As the definition
was vague, the geometrical forms were complemented with network indicators value. The
proposed networks indicators were grouped into five information categories as follows
(Musso and Vuchic, 1988):

1. Measures of network size and forms

2. Indicators of network topology

3. Measures of relationship between network and city

4. Quantity and quality of offered service

5. Measures of service use

Figure 2.2: Transit line types (Adapted from Musso and Vuchic 1988)

Gattuso and Miriello (2005) distinguished network indicators according to the required
input data. There were three types of data: topological, geographical, and operative data.
The topological was at the graph level dealing with nodes and links while geographical
data includes the information about territory such as length of links, etc. Operative data is
the data on operational performance, including commercial speeds and frequencies. More-
over, 13 metro networks were classified or ranked by the multi-criteria score. The score
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is the weighted average of all selected network indicators. Although the result describes
which network performed best in the chosen criteria, it could not explain or identify simi-
larities or difference among networks.

The network indicators were enriched by adopting space representation.Zhang et al.
(2013) employed L-space representation to calculate six global spatial network indicators.
They are composed of average degree, average node betweenness, average betweenness of
edge, average shortest path, average unit degree betweenness, and clustering coefficient to
analyze the urban rail networks in 30 cities around the world. Moreover, they found that
any stations in urban rail network directly connect to 2 up to 2.45 stations and between 10

and 16 stations were required when one makes a trip on average. However, this analysis
is not useful because their network indicators were not normalized. This implies that
the comparison does not consider the difference in network size. For instance, smaller
networks tend to require a fewer number of intermediate stations on average. Additionally,
Von Ferber et al. (2009) broadens the analysis by incorporating many network indicators
in multiple space representations, including L-space, P-space, and C-space. However, they
could not identify PTNs division or classification group as there was more diversity in
structure than expected.

Derrible and Kennedy (2010a) contribute significantly to PTN classification in their work
of classifying 33 metro networks around the world. State, form, and structure are three
main characteristics in their study. For each characteristic, a metro network is represented
as a coordinate point on a graph where one indicator is on the x-axis, and the other is on
the y-axis. Based on the 2-D graph, Derrible and Kennedy (2010a) can classify networks
simultaneously considering two network indicators. The final classification result is, as
shown in Figure 2.3.

According to Figure 2.3, the order of classification was from the state, structure, and
form. State is the current development phase describing by complexity and degree of
connectivity indicators. The three-phase state is identified from starting a network (phase
1), gradually expanded (phase 2) to significantly expanded (phase 3). Besides, structure
refers to intrinsic properties from connectivity and directness indicators. Similarly, three
zones are identified as directness-oriented, connectivity-oriented and integrated. Direct-
ness refers to a network providing a fewer number of transfers, while connectivity is the
opposite. Last but not least, form shows how the network integrates with surrounding
and is quantified by inter-station spacing and average line length. Their analysis result
specified three forms: regional accessibility, local coverage, and regional coverage. For re-
gional accessibility, the network focuses more on connecting to the outer layers of the city,
while local coverage focuses on servicing the city core. The regional coverage is in between
the previous two. After acquiring all sub-groups for each characteristic, they were merged
to form the complete classification. However, Derrible and Kennedy (2010a) predefined
the groups for each characteristic and classified the metro networks into them. Since their
analysis is on the 2-D graph, they arbitrarily drew the boundary lines to define predefined
groups. This approach relies heavily on the analyst’ insight to identify the number of
groups for each characteristic.

Quantitative classification is a systematic approach to alleviate such issue. In this ap-
proach, the number of groups is mathematically identified based on the chosen similarity
matrix. STOILOVA and STOEV (2015) adapted a hierarchical clustering, one of the quan-
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titative classification approaches, to classify 22 European metro networks. They employed
ten network indicators which are five newly proposed routing network indicators and the
rest from Derrible and Kennedy (2010a). Moreover, they can identify three-cluster groups:
complex, simple, and only one metro line. These groups show the stage of development
for this sample set of the metro. The network indicators specifying the state and the
structure of a network are found to be essential for this grouping.

Figure 2.3: An example of metro classification in different cities (Adapted from Derrible and
Kennedy 2010a)
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2.4 literature gaps

In summary, the main research gaps are in the PTNs classification. Although PTNs are
characterized by several types of network indicators from graph theory (Musso and Vuchic,
1988; Gattuso and Miriello, 2005; Derrible and Kennedy, 2010b), complex network (Von Fer-
ber et al., 2009; Haznagy et al., 2015; Zhang et al., 2013) and spatial network (Barthelemy,
2010), few went beyond comparison to classify PTNs. Comparison is usually performed
per single network indicator even though they were characterized by many indicators.
Gattuso and Miriello (2005) employed multi-criteria analysis to combine various network
indicators value into a single score, so the networks were ranked by the combined score.
However, their result could not identify any similarities or difference among networks.
Moreover, Derrible and Kennedy (2010a) adopted a 2-D graph where each indicator is
on the axis. They were able to classify metro network into different groups according to
the state, form, and structure, but their classification was solely based on the analysts’ in-
sight to predefined cluster groups. To alleviate such issue, STOILOVA and STOEV (2015)
adopted hierarchical clustering to classify European metro networks and found 3 clusters:
simple, complex, and one line network. However, both studies (Derrible and Kennedy,
2010a; STOILOVA and STOEV, 2015) only included metro networks and adapted only
space-of-infrastructure. The classification failed to address the variety of PT modes and
does not consider the service aspect of the network. Table 2.2 summarize the related
research and indicates what this thesis will tackle.

Study PTN types
Network
Level

Network
model

Classification
method

Gattuso & Miriello, 2005 metro Urban L-space
Multi-criteria
analysis

Von Ferber et al., 2009

bus, ferry, subway
tram, urban train

Urban
L-space,
P-space,
C-space

Single criteria
comparison

Derrible & Kennedy, 2010b metro Urban L-space* 2-D graph

STOILOVA & STOEV, 2017 metro Urban L-space*
Hierarchical
clustering

This thesis
metro, tram
train, light-rail

Urban,
National

L-space,
P-space

k-means,
Hierarchical
clustering

Table 2.2: Overview of studies on PTNs classification and how this work fits in. Note * refers to
the special type of L-space in which only terminal and transfer stations are included in
the analysis.



3 M E T H O D O LO GY

This chapter details the approach of this thesis. First, Section 3.1 provides the overview
of the methodology and outlines detailed steps in the flowchart. Section 3.2 describes
the selected topological approach and details the network characteristics along with their
network indicators. Finally, Section 3.3 explains how to classify PTNs by quantitative
approach.

3.1 analysis framework

As a brief overview of the thesis’ methodology, Figure 3.1 shows two sub-processes: net-
work characterization and network classification. Network characterization builds a net-
work data set, a collection of PTNs with their corresponding network indicator values.
The first step is selecting the desired network characteristics. Each network indicator
calculated on an appropriate space representation quantifies each characteristic. After ac-
quiring all network indicators values, the correlation between network indicators is tested.
The highly correlated network indicators will be filtered out before storing the rest as the
network data set.

The second sub-process is classifying the data set acquired from the network characteri-
zation. First, check if the data set is clusterable, otherwise re-select the network indicators.
Next, all network indicator values are normalized to ensure they will be weighted equally
in the analysis. Then, perform K-means and hierarchical clustering to partitioning the
data set into different clusters and identify the matching pattern inside each cluster. After
that, evaluate clusters to ensure the quality of the result. Moreover, principal component
analysis (PCA) facilitates cluster result visualization. Finally, create radar diagrams and
L-space graphs of all networks for further result interpretation. Note that a radar diagram
is a circle chart illustrating all network indicator values for each network.

13
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Figure 3.1: Thesis methodology flowchart. *PCA: Principal component analysis

3.2 networks characterization

This section elaborates on each step for network characterization as specified in Figure 3.1.
The first subsection introduces a brief PTNs representation used in this thesis. Next, net-
work characteristics selection is described and followed by the discussion of each selected
network characteristic and their corresponding network indicators. The section concludes
with how to determine the correlation between the network indicators.

3.2.1 Network representation

A PTN is represented as a directed graph G representing by G = (N, E) where N is the set
of nodes and E is the set of links. A node n ∈ N represents a station while a link e ∈ E is
defined by an ordered pair of nodes (u, v) in which u and v (u, v ∈ N) denote the source
and sink nodes, respectively. Note that | N | and | E | denote the number of stations and
links, respectively.

In this thesis, L-space and P-space graphs are employed to enrich network characteriza-
tion. The former addresses the infrastructure side of the network while the latter models
service side of the network. Moreover, the graph’s links have no weight, so all links have
identical properties. Since PTNs in this thesis are the combination of different modes such
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as metro, tram, and train, the resulting graph does not differentiate the transportation
modes.

3.2.2 Network characteristics selection

Since the thesis aims to create PTNs classification considering the combination of PT
modes, the selected network characteristics should be relevant to all types of PT. More-
over, they will be assessed when the network is in a normal operation state (without any
disruption). The network analysis will take into account all the nodes and links. In a
well-functioning network, this is supposed to be a crucial period illustrating the quality of
PTNs to facilitate the trips. Besides, this state lasts much longer than the disruption state
in most cases. Last but not least, this network characteristic set includes both the infras-
tructure and service layer properties as the PTNs relied on both layers for functioning.

Based on the above selection criteria, centralization, accessibility, robustness, transitivity,
and directness are five selected network characteristics. The first three will be assessed in
the infrastructure layer, while the service layer is employed for the last two. The following
subsections detail each characteristic and its networks indicator with mathematical formu-
las. Note that every formula will be in normalized formulation for comparison purpose
between different PTNs as this eliminates the dependence of indicators on network size,
i.e., a number of stations or links (Zanin et al., 2016).

3.2.3 Centralization

Centrality describes how central a node is in the network. The central notion can be
defined up to the application types. For PTNs, an important function of stations (nodes)
is to facilitate the trips between any origins and destinations. In other words, they act
as intermediate stations in which many trips passed through them. This notion is in line
with betweenness centrality from the graph theory.

Node betweenness centrality

Node betweenness centrality is defined by total number of shortest path passing through
that node compared to the total number of shortest paths in the network. The node with
high betweenness centrality value is more likely to involve in higher number of shortest
paths and has a greater control power for any trips in the network. The node betweenness
centrality (Cl

B(v)) can be calculated by following equation:

Cl
B(v) = ∑

s∈N
∑
t∈N

σst(v)
σst

(3.1)

where σst denotes the total number of shortest paths between node s and t and σst(v) is
number of shortest path between node s and t containing node v. The range of node
betweenness centrality is between 0 (no shortest path passed through) and 1 (all shortest
paths passed through). Moreover, this indicator will be calculated in L-space representa-
tion of the network as specified by the superscript, so the shortest path can be interpreted
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as the selected route between any pair of nodes with fewest number of stations in between.
In other words, betweenness centrality of nodes in L-space indicates the proportion of the
shortest path in a sense of fewest intermediate stations from infrastructure perspective
because of the L-space representation.

Betweenness centralization

The node betweenness centrality only concerns at node level. To explore this property at
the network level, an extension concept is required. Freeman (1978) proposed the concept
of centralization to analyse the distribution of node centrality in a network. The general
notion of centralization is that network with high value of centralization is likely to have
a single powerful centrality node with most others in the network with low centrality
and vice versa. It gives insight to network structure if it resembles the hub-and-spoke
(high centralization) or more like regular network (low centralization). Note although this
can also be applied to other centrality measures, our focus will be on the betweenness
centrality. Betweenness centralization (Cl

B) can be realized as follows (Freeman, 1978):

Cl
B =

∑
v∈N

(Cl
B(v)

∗ − Cl
B(v))

| N |3 − 4| N |2 + 5| N | − 2
(3.2)

where Cl
B(v)

∗ is the maximum betweenness centrality among nodes in the network. The
numerator in Equation 3.2 is the sum of the difference between the most central nodes
and all the other nodes while the denominator is the sum of the maximum possible dif-
ference between the most central nodes and all other nodes. The denominator derived
by (Freeman, 1978) as in Equation 3.2 varies according to the number of nodes in the net-
work. As the value in numerator is normalized by the maximum possible value, Cl

B varies
between 0 (all nodes with equal value of betweenness centrality) and 1 ( few nodes with
high betweenness centrality).

3.2.4 Accessibility

After realizing the underlying stations types from centralization, their connection between
nodes is assessed. As stations acts as the origin, intermediary and destination in the PTNs,
these spots are to be reached or accessed. To evaluate the network options to reach any
stations, accessibility property is analysed. In this sense, accessibility referred to ”the
ease with which any land-use activity can be reached from a location using a particular
transport system” (Dalvi and Martin, 1976). For this thesis, the land-use activity only
limited to the destination within the PTNs. To quantify the ease to reach a station, node
closeness centrality(Cl

C(v)) is employed and calculated as in Equation 3.3.

Cl
C(v) =

| N | −1
∑

i∈N
dvi

(3.3)

where dvi is the shortest topological distance between node v to node i. As Cl
C(v) is

calculated in L-space graph, dvi is the number of stations needed for trans-versing from
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node v to node s. Closeness centrality of node v is the inverse sum of shortest path
length from all other nodes to node v normalized by the number of stations. In other
words, it is the inverse of the mean shortest path from node v to all other nodes. The best
closeness value is derived from the case where a node is directly connected to all other
nodes (Cl

C(v) = 1) while the farthest nodes from others possess Cl
C of nearly 0. However,

this measure only allows the comparison at node level. Therefore, the global indicators for
closeness centrality are derived by finding average value as follows:

Al =
| N | −1
| N | ∑

v∈N

1
∑

i∈N
dvi

(3.4)

where Al is the Accessibility. The indicator is calculated in L-space in which the shortest
path between nodes represents the number of intermediate stations passed along the route.
Al can vary from 0 to 1. The closer the value of Al to 1 indicates the better accessibility of
all nodes in the network to each other nodes and vice versa.

3.2.5 Robustness

It is unlikely that the disruption to PTNs can be completely prevented. To cope with that,
PTNs should be designed to have a robust structure. In other words, the network is able
to maintain its functionality to certain extent while the mitigation process is on going. A
simple indicator is the number of redundant routes existed in the network because they
will become an alternative routes to the disrupted one. This redundancy route concept is
related to cycle concept in graph theory. Cycle is the sequence of paths returning to its
origin or starting position. In the context of PTNs, a cycle is a series of paths one could
take from any stations back to the same station without repeating the same links twice. To
quantify number of redundancy routes, alpha index or network meshedness (αl) is used
and can be calculated as:

αl =
| E | − | N | +1

2 | N | −5
(3.5)

i.e. the ratio between number of network cycles or loops in a single connected graph
and maximum number of network loops in a planar graph with the same number of
nodes. Alpha index ranges from 0 for a tree network (| E |=| N | −1) to 1 for completely
connected graph (| E |= 3 | N | −6).Note that the denominator is derived for the planar
network which are for PTNs. The higher value of alpha indicates the more robust the
network structure in a sense that network provide greater number of alternative path.
In other words, if some links are disrupted, there are more likely to have an alternative
paths. Focusing on the infrastructure robustness, αl is calculated in L-space to reflect the
redundant routes from the infrastructure perspective.

3.2.6 Service connectivity

Service connectivity (SC) measures how well the service lines are linked. It compares
the current link connection relative to the best connection scenario, which is usually the
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complete graph (Derrible and Kennedy, 2010a). Note that the complete graph is a network
in which every pair of nodes is connected. The high SC network offers a large number
of direct routes between nodes. In PTNs, a direct service route does not require any
transfers when transversing between a pair of stations. Moreover, it implies that network
nodes cluster together as service lines directly connect them. This concept is in line with
a clustering coefficient (cP) in the space-of-serviceP. Let Nbh(u) is the neighbourhood of a
node u (Nbh(u) = {v ∈ N | (u, v) ∈ E}) and du is the degree of a node u (du =| Nbh(u) |).
The clustering coefficient can be defined as in Equation 3.6 (Von Ferber et al., 2009):

cP =
∑u∈N | {{i, j} ⊆ Nbh(u) | (i, j) ∈ E} |

∑u∈N du(du − 1)/2
(3.6)

cP measures the whole network service connectivity through the connectivity within the
neighbourhood. The denominator in the Equation 3.6 is the maximum number of links in
the neighbourhood for node u given the node degree du. The range of cP is between 0 and
1. The closer cP is to 1, the higher SC level network is.

3.2.7 Directness

For PTNs, it is desirable as a commuter to have a direct route between any pairs of origin
and destinations. However, that is not usually possible in most PTNs. The need to transfer
is inevitable. To quantify the extent of PTNs directness, number of transfers can be used
as a proxy to describe the directness of potential route. PTNs required lower number of
transfers are more likely to provide more direct service route. To gain insight for the whole
network, an average number of transfers calculated for any pair of nodes is employed. The
shortest path length between node i and j in P-space representation (dp

ij) can be interpreted
as the lowest number of transfers required between node i and j. Based on that concept,
the inverse of dp

ij could be interpreted as the directness of the route between node i and
j. Moreover, to analyse the whole network directness, the average value for all pairs of
nodes is calculated. The mathematical formulas of the network directness is quantified by
network efficiency (Ep) as in Equation 3.7 (Latora and Marchiori, 2002).

Ep =
1

| N | (| N | −1) ∑
i∈N

∑
j∈N
i 6=j

1
dp

ij
(3.7)

where dp
ij is the shortest path length from node i to j. The indicator value range from 0 (the

most inefficient or direct) to 1 ( the most direct network).

3.2.8 Summary of network characterisation

Table 3.1 summarize all the network characteristics, corresponding network indicator, no-
tation and network model.
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Network
Characteristics

Network indicators Notation Network model

1 Centralization
Betweenness
centralization

CB L -Space

2 Accessibility
Average Closeness
centrality

Al L -Space

3 Robustness Alpha index αl L -Space

4

Service
Connectivity

Clustering
coefficient

cp P-Space

5 Directness Network efficiency Ep P-space

Table 3.1: Summary of network characterization

3.2.9 Network indicators correlation analysis

To verify the relation between network indicators, correlation analysis is employed. The
interpretation is made based on the rigorous standard proposed by Jawlik (2016). The
criteria are as shown in Table 3.2 and also applied to the negative correlation in the same
manner.

Evidence of correlation Pearson’s r (r)

very strong 0.81 - 1.00

strong 0.61 - 0.80

moderate 0.41 - 0.60

weak 0.21 - 0.40

none 0.00 - 0.20

Table 3.2: Threshold for the evidence of correlation with the Pearson’s r (adapted from Jawlik 2016)

3.3 networks classification

This section describes the network classification procedures as specified in Figure 3.1. First,
Section 3.3.1 describes how to test if the data set is clusterable. Next, Section 3.3.2 describes
data pre-processing steps to ensure the quality of network clusters. After transforming the
data set into a suitable format, Section 3.3.3 elaborates on the two clustering methods,k-
means, and hierarchical clustering, employed in this thesis. Section 3.3.4 details on how to
evaluate the quality of the clusters and visualize the cluster groups. Finally, ?? describes
radar diagram and L-space graph to facilitate the result interpretation.
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3.3.1 Testing data clusterability

The clustering tendency indicates whether there is a non-random structure in the data set
to test whether such data set contains cluster structure. For example, a data set generated
from a uniform distribution does not contain any distinct clustering structure. To check
whether a given data set is generated from a uniform data distribution, Hopkins statistics
can be used. As a basis for the analysis, the null hypothesis is that the data set, D, is
a sample of data generated from uniformly distributed random variable U (i.e. does
not contain meaningful clustering structure). The alternative hypothesis is thus D is not
generated from the uniform random variable. Let P = {pi | i = 1, 2, 3, ..., n} and Q = {qi |
i = 1, 2, 3, ..., n} are samples of n points drawn from D. The Hopkins statistics, H, can be
calculated as follows:

H =

n
∑

i=1
yi

n
∑

i=1
yi +

n
∑

i=1
xi

(3.8)

where xi = minv∈D d(pi, v) and yi = minv∈D,v 6=qi d(qi, v). Both xi and yi are the distance
measured from point v to their corresponding nearest neighbor. The interpretation is that

if D is uniformly distributed, both
n
∑

i=1
xi and

n
∑

i=1
yi have similar value on average, so H is

nearly 0.5. Moreover, in the case that D is highly skewed, H would be close to 0.
However, H value can be sensitive depending on the data sampling process. Alternative

approach is to test hypothesis assuming that with H follows the beta distribution with both
parameter equal to the number of points selected Adolfsson et al. (2019). The number of
points selected are usually around 5-10 % of the raw data set.

3.3.2 Data pre-processing

To classify an unlabelled multi-attribute data set, clustering analysis will be employed. A
cluster is a group containing similar data objects which are dissimilar to objects in other
clusters. The similarity between objects can be quantified by different measures depending
on the type of data. Euclidean distance is selected because all object attributes are numeric
types, measurable quantity. Let i = (xi1, xi2, ..., xip) and j = (xj1, xj2, ..., xjp) be two objects
containing p numeric attributes. The Euclidean distance between objects i and j (d(i, j)) is
calculated as:

d(i, j) =
√
(xi1 − xj1)2 + (xi2 − xj2)2 + ... + (xip − xjp)2 (3.9)

Moreover, each attribute value is normalized, so it is equally treated in the clustering
process. Min-max normalization is employed and can be calculated as follows:

x′1p =
x1p −minp

maxp−minp
(new maxp − new minp) + new minp (3.10)

i.e. a value of data object 1 attribute p (x1p) is mapped to a new value x′1p in the new
value range from new minp to new maxp. This normalization keeps the relation among



3.3 networks classification 21

the raw dataset values. After completing data pre-processing, k-Means and agglomerative
hierarchical clustering methods are applied to uncover the underlying clusters of the data
set. The former method aims to find the inter-relation between clusters while the latter
focus on the intra-relation within the cluster itself.

3.3.3 Clustering analysis

k-means clustering

k-means clustering is a partitioning clustering method. For a given data set, D, of n objects,
k-Means arranges objects into k mutually exclusive clusters. To assess the partitioning
quality, k-means used the following objective function:

min
k

∑
i=1

∑
p∈Ci

d(p, ci)
2 (3.11)

i.e. the sum of squared distance between all object p in cluster Ci (p ∈ Ci) and the centroid
of the cluster Ci (ci) is minimized. In other words, the distances between each object in clus-
ter and its cluster centroid are squared and summed. The resulting clusters is supposed
to be compact and well-separated. Note that centroid of clusters can be defined in several
ways such as the mean or medoid of the objects in the cluster. However, the formulation is
NP-hard in general Euclidean space, so the problem will be tackled by k-mean algorithm
instead. The step by step algorithm is presented as in Figure 3.2. The implementation
is done by Python library named Sci-kit (Pedregosa et al., 2011). Additionally, k-means
results will describe the relation of the clusters as a whole. However, they do not contain
any information about the relation within the groups, so hierarchical clustering is applied
to fill in this gap.

Agglomerative hierarchical clustering

Agglomerative hierarchical clustering provides information within the cluster group as
data objects in each cluster are arranged into different levels . Agglomerative refers to
a bottom-up strategy when performing clustering. In other words, the method begins
with each data point in its own cluster and it is paired up with others in every iteration
round until a single cluster is left. Note that there exist divisive approach (top-down
strategy) which is the reverse process of agglomerative approach; however, it is not a
common approach due to the result accuracy and efficiency (Han et al., 2012). Moreover,
this method is flexible because there are a few linkage criteria to choose form yielding
different results . In this thesis, three types of linkage measures are applied including
ward’s method, maximum and average distance. Let | i − j | be the distance between
object i and j, mi is the center of the data points in cluster, Ci and ni is the number of
data points in cluster i. The criteria can be calculated as in Equation 3.12 - Equation 3.14.
Furthermore, the result of hierarchical clustering is plotted on the dendrogram or the tree
diagram to show the matching order of data objects. The more similar objects tend to
gather first according to their shorter distance. While the x-axis of the diagram will be
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Figure 3.2: k-means algorithm (adapted from (Han et al., 2012))

each network, the y-axis shows the distance between clusters. The diagram will be dissect
at the certain distances when it yields the desired number of clusters.

dmax(Ci, Cj) = max
i∈Ci ,j∈Cj

{| i− j |} (3.12)

davg(Ci, Cj) =
1

ninj
∑

i∈Ci ,j∈Cj

| i− j | (3.13)

dward(Ci, Cj) =
ninj

ni + nj
| mi −mj |2 (3.14)

3.3.4 Result evaluation and visualization

Evaluation of clustering

It is argued that any clustering methods always yield clustering groups however, not all
data sets are clusterable. In other words, the clustering result can be random and unre-
liable with no meaningful interpretation. To evaluate clustering result, both feasibility of
the data set and quality of generated result are investigated. In this thesis, three evaluation
tasks are performed: assessing clustering tendency, determining the number of clusters,
and measuring the clustering quality.
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Determining the number of clusters

The number of clusters are important to both compressibility and accuracy of clusters. For
example, the maximum compressibility can be achieved by having all data points in a
sole cluster while separately differentiate data points into their own clusters will result in
the highest accuracy group. However, both cases would not yield reliable or meaningful
results. To gain deeper insights about the potential number of clusters a data set possess,
two methods are applied: rule of thumb and elbow method. Given that a data set contains
n points, the rule of thumb suggests that the number of clusters are

√ n
2 and each cluster

has
√

2n . Moreover, the elbow method compares the sum of within-cluster variance
(Equation 3.11) and the number of clusters. This is based on the observation that the sum
of within-cluster variance is inversely proportional to the number of clusters. The optimal
number of clusters are found to be the turning point in the curve (Han et al., 2012).

Measuring the clustering quality

To measure the quality of clustering, there are 2 method: extrinsic and intrinsic method.
The intrinsic method is chosen since the ground truth or data labels are not available.
Therefore, the intrinsic method mainly assessed the quality of clusters in two aspects:
their separation between groups and the compactness of clusters.

The silhouette coefficient is selected to assess the clustering quality. Supposed a data set,
D, is partitioned into k clusters C1, C2, ..., Ck. For each object v ∈ D, silhouette coefficient
of v is then defined as:

s(v) =
b(v)− a(v)

max{a(v), b(v)} (3.15)

where a(v) is the average distance between v and all other object in the cluster v belongs
to and b(v) is the minimum average distance from v to all clusters v does not belong to
(see Equation 3.16).

a(v) =
∑

v′∈Ci ,v 6=v′
d(v, v′)

| Ci | −1
, b(v) = min

Cj :1≤j≤k,j 6=i
, {

∑
v′∈Cj

d(v, v′)

| Ci |
} (3.16)

The value of the silhouette coefficient for each object v varies between -1 and 1. While
a(v) reflects the compactness of the cluster, b(v) describes the distance between clusters.
Therefore, when s(v) is close to 1, the resulting clusters containing object v is compact
and far away from other clusters. On the other hand, the negative value of s(v) suggests
that object v is closer to objects in other clusters more than objects in its own cluster. The
average value of the silhouette coefficient from all objects in the data set can be used to
compare different clustering methods.

Result visualization

To facilitate the result visualization, data objects are usually represented on the graph. In
general, a graphical representation either in 2-D or 3-D is used in which PTNs will be
plotted as coordinate points. Based on such graph, a network comparison can be shown
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according to their network characteristics. However, each PTN is described by five indica-
tors, so the data set is a multi-dimension type. For visualization purpose, a radar diagram
for each PTN can be plotted to show the overall network features; however, this is still
hard for the comparison of the whole data set. Moreover,it is not possible to plot all di-
mensions in an interpretative form such as 2-D or 3-D representation. Therefore, a data
reduction technique is needed to do dimensionality reduction while ensuring that most of
initial information is retained.

Principal components analysis (PCA) reduces the dimensions of the data set while retain-
ing the variances in the data set as much as possible. To reduce the dimensions, original
data set are normalized and projected on a much smaller space. This new space is com-
posed of the principal axes formed by the linear combination of the existing dimension
from the initial data set. In addition, the principal axes are the eigenvectors of the covari-
ances matrix of the data set. The axes will be ranked in terms of important for providing
high variances comparing the eigenvalue of the axes. Normally, the axes may not specifi-
cally represent any specific feature, but correlation analysis helps to indicate the relation
between the new axes and the previous data objects features.



4 R E S U LT S

This chapter presents the analysis result of the thesis. In Section 4.1, provides the network
characterization result showing each selected networks and their network characteristics
values. Moreover, the correlation analysis is performed on network indicators to identify
the relation between selected network indicators. Next, Section 4.2 describes the network
classification result from both K-means and hierarchical clustering method. Finally, Sec-
tion 4.3 interprets the classification results.

4.1 network characterization

This section starts with describing the networks data set compiled for the case study. Based
on the identified network list, network indicator values are calculated for each network.
Before proceeding to the Section 4.2, relation between indicators is investigated via corre-
lation analysis.

4.1.1 Network data set

A network data set is gathered to test the methodology described in Chapter 3. Networks
are selected in terms of availability of General transit feed specification (GTFS) data set
and the varieties of places. The availability of data depends on the providers such as
PT operators, PT authorities. Moreover, several urban PTNs share similar PTNs structure
across cities (Lin and Ban, 2013). Additionally, national networks will also be included to
explore if they would share similarities with urban networks. All available rail-bound PT
modes are selected to represent the PT system of the place because they are mass transit
modes, usually carrying a significant number of passengers.

A set of selected PTNs and their corresponding number of stations and edges in directed
L-space representation are as shown in Table 4.1. The table provides general information
regarding the size and selected structural characteristics of each network. To facilitate the
analysis, a set of descriptive statistics is derived as in Table 4.2. Also, a variety of network
size ranges from a few stations in Toulouse (37 stations) to many stations in Melbourne
(805 stations). Besides, the chosen places are from different continents, including Europe,
Australia, North America, and South America, to incorporate more network structure
varieties (see Figure 4.1). Note that The Hague and Rotterdam is a metropolitan area
which is recently merged for economic cooperation and has a connecting public transport
line between the cities (Haag, 2019).

25
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results

Figure 4.1: Locations of the selected PTNs on the world map
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4.1.2 Network indicators result and analysis

All selected PTNs and their corresponding network indicators values are as shown in Ta-
ble 4.1. Each indicator is analyzed across the networks to gain deeper insights for the
selected PTNs and their network characteristics. Moreover, the correlation analysis will
identify the relationship between indicators. This relation is essential for network classifi-
cation to help select important features.

No. Place Mode #stations #edges Cl
B Al αl cp Ep

1 Adelaid Metro & Tram (M+T) 118 247 0.36 0.08 0.56 0.81 0.6
2 Amsterdam Metro & Tram (M+T) 196 467 0.1 0.11 0.7 0.56 0.58

3 Bacelona Metro (M) 131 298 0.15 0.1 0.65 0.76 0.57

4 Brisbanne Rail & Light rail (R+L) 176 367 0.28 0.07 0.55 0.7 0.62

5 Budapest Tram (T) 237 470 0.2 0.05 0.5 0.72 0.47

6 Calgary Tram (T) 46 81 0.23 0.1 0.41 0.77 0.82

7 Melbourne Tram (T) 805 1676 0.14 0.03 0.54 0.62 0.51

8 Milan Tram (T) 335 693 0.15 0.05 0.54 0.61 0.52

9 New Jersey Rail & Light rail (R+L) 184 351 0.2 0.04 0.46 0.78 0.33

10 Santiago Metro (M) 413 1050 0.12 0.11 0.95 0.83 0.55

11 Sydney Rail & Light rail (R+L) 136 388 0.2 0.05 0.54 0.67 0.49

12

The Hague
&Rotterdam

Metro & Tram (M+T) 307 634 0.26 0.05 0.6 0.61 0.46

13 The Netherlands Rail (R) 424 929 0.2 0.1 0.78 0.51 0.4
14 Toulouse Metro & Tram (M+T) 37 72 0.27 0.12 0.52 0.95 0.76

15 Valencia Metro & Tram (M+T) 134 240 0.21 0.06 0.41 0.71 0.62

16 Victoria Rail (R) 220 449 0.27 0.05 0.53 0.48 0.56

17 Vienna Tram (T) 385 815 0.13 0.05 0.56 0.58 0.48

18 Warsaw Tram (T) 271 509 0.14 0.06 0.45 0.48 0.68

19 Washington Metro (M) 91 186 0.23 0.09 0.54 0.79 0.67

20 Zurich Tram (T) 190 400 0.18 0.07 0.56 0.6 0.6

Table 4.1: Structural characteristics of the selected network. Cl
B: Centralisation,Al : Accessibility, αl :

Robustness, cp: Service connectivity and Ep: Directness

Trend of network indicators

Before investigating each indicator, the overall indicator trends are analysed using descrip-
tive statistics (see Table 4.2) and histogram (Figure 4.2). Next, PTNs are further analyzed
per characteristic.

Each indicator is in different value ranges and roughly non-overlapping. From Table 4.2,
while both Cl

B and Al vary in low scale of value (0.03 - 0.36), αl , cp and Ep are in the high
value range (0.33 -0.95). Also, this is reflected in the different range for all indicators.
Moreover, the low-value group (Cl

B and Al) also has lower standard deviation when com-
pared to the rest of network indicators. Consequently, both centralization and accessibility
values are similar among the selected PTNs and vary in low-value range. On the other
hand, more variety of robustness, service connectivity, and directness are found across
these networks.
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#stations #edges Cl
B Al αl cp Ep

mean 241.80 516.10 0.20 0.07 0.57 0.68 0.56

median 193 424.50 0.20 0.06 0.54 0.68 0.57

SD 174.78 378.06 0.06 0.03 0.13 0.13 0.12

min 37 72 0.10 0.03 0.41 0.48 0.33

max 805 1676 0.36 0.12 0.95 0.95 0.82

range 768 1604 0.26 0.09 0.54 0.47 0.49

Table 4.2: Descriptive statistics of network data set. Cl
B: Centralisation,Al : Accessibility, αl : Ro-

bustness, cp: Service connectivity and Ep: Directness

Figure 4.2: Histogram for all selected network characteristics
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To further analyse network indicators trend across networks, histograms of all indica-
tors are plotted as in Figure 4.2. There are three distribution patterns for this data set.
Both the distribution of accessibility and robustness are skewed right. This implies the
network data set contains mostly low-level of accessibility and robustness PTNs. Besides,
the centralization and directness resemble the bell-shaped curve, which equally separates
the low and high performing network groups. This data set maintains the balance number
of networks when considering the centralization and directness. Finally, the service con-
nectivity is found to exhibit bi-modal distribution separating networks into two groups.
Surprisingly, this finding is unexpected because the service connectivity (number of direct
paths) and directness (average number of transfer) seems to be related so that one would
expect similar distribution.

For more specific observations on each network, PTNs are ranked per characteristic as
shown in Table 4.3. There are three crucial observations. First, the less centralized network
likely results in both highly accessible and robust network as in the case for Amsterdam
and Santiago network. In other words, the network accessibility increase when the well-
connected nodes are evenly spread in the networks. Besides, the network is also highly
robust in the easily accessible network because the connection of nodes in the directed
graph generates cycles. Second, the robustness is inversely related to the directness as
for the case for The Netherlands and Calgary. This is possible because a network with
more cycles will likely require number of transfer (less direct network). Finally, service
connectivity and directness are sometimes inversely related. This is surprising since the
network with more number of direct routes should result in fewer number of transfers;
however, the exception is Warsaw. It is likely possible that although there is fewer direct
route, the provided routes do not require that many transfers.

Centralization Accessibility Robustness
Service

connectivity
Directness

Top
Three

Adelaide
(M+T)

Toulouse
(M+T)

Amsterdam
(M+T)

Adelaide
(M+T)

Calgary
(T)

Brisbane
(R+L)

Santiago
(M)

Santiago
(M)

Santiago
(M)

Warsaw
(T)

*
Amsterdam

(M+T)
The Netherlands

(R)
Toulouse

(M+T)
Toulouse

(M+T)

Bottom
Three

Amsterdam
(M+T)

Melbourne
(T)

Warsaw
(T)

Warsaw
(T)

New Jersey
(R+L)

Santiago
(M)

New Jersey
(R+L)

Calgary
(T)

Victoria
(R)

The Netherlands
(R)

Vienna
(T)

*
Valencia
(M+T)

The Netherlands
(R)

The Hague
& Rotterdam

(M+T)

Table 4.3: Network ranking by each structural characteristics. * indicates that there are various
networks sharing the same rank. M: Metro, T: Tram, R: Rail
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Correlation of network indicators

The goals of the correlation analysis are twofold: correlation between indicators and
network size and correlation among network indicators themselves. The former is to
evaluate the extent to which network indicators are independent of the network size quan-
tified by either the number of stations and edges. A low level of correlation could facilitate
the fair comparison as not only the more extensive network should perform better but also
the small well-connected network. Moreover, the latter verifies the correlation among in-
dicators because strongly correlated indicators tend to reveal information. Note that the
following discussion only include the statistically significant correlation.

The correlation among the chosen network indicators and both network size indicators,
number of edges and stations are as shown in Table 4.4. The blank part of the table
(excluding the principal diagonal of one) are elements identical to those in the bottom
left part because a correlation matrix is symmetric. Accessibility (Al), service connectivity
(cP) and directness (EP) are moderately and negatively correlated to both the number of
stations and edges. This is because those indicators’ formulas contains the number of
stations in the denominator. In other words, all three indicators are smaller as the network
grows larger. Since the number of stations and edges are very strongly correlated, the
relation also applied to the number of edges. However, it is assumed that these indicators
could still provide the acceptable comparisons between PTNs with different sizes as the
correlation is moderate.

Cl
B Al αl cp Ep #stations #edges

Cl
B

Al
0.06

αl -0.32 0.47*
cp

0.32 0.42 0.002

Ep
0.23 0.51* -0.28 0.31

#stations -0.34 -0.60** 0.08 -0.54* -0.53*
#edges -0.35 -0.51* 0.20 -0.54* -0.56* 0.99**

Table 4.4: Pearson’s r correlation result. Note * indicates the statistical significance at the level
of 0.05 and ** for the level of 0.01 (two-tailed). Cl

B: Centralisation,Al : Accessibility, αl :
Robustness, cp: Service connectivity and Ep: Directness

In addition, the inter-correlation between network indicators are identified. The central-
ization is positively and moderately correlated to service connectivity and directness. In
a high centralized network, the network is comparable to hub and spoke network. Under
such network, the service connectivity is high as the network can be viewed as several
clusters which are well-connected within the group and weakly link to inter clusters. Also,
the directness is also high since most nodes are in cluster even though extra number of
transfers are required when tranversing between groups. On the other hand, the robust
network (αl) tends to be less direct (Ep) and low centralized (Cl

B) network as referring to
the negative correlation. This is logical since a robust network has many cycles creating
longer path between nodes while restricting the occurrence of very centralized nodes. Al-
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though this relation reveal insight of how the indicators correlated, they are not statistically
significant in this data set.

The only two statistically significant inter-correlation between indicators include acces-
sibility. They are accessibility - robustness and accessibility - directness. The former pair
suggests that the nodes in highly accessible network which are closer together (few links
between nodes) are likely to create cycles (high robust network) in the context of the di-
rected graph. Moreover, the latter pair suggest that the network will result in lower num-
ber of transfers (high directness) if nodes are closer together. These relations confirms the
observation found in previous discussion regarding the Trend of network indicators.Note
that although pearson’s r implies that both pairs are linearly and positive relation, it is not
the case here. From Figure 4.3, it can be seen that the relation seems to be similar to an
exponential growth curve. In other words, as Al increases, both αl and EP also increase
exponentially , so the relations are not linear. Although the extent of correlation is not
strong or very strong, the classification process will performed in two cases,including and
excluding Al , to test whether this correlated indicator could make the difference to the
realized groups.

Figure 4.3: Scatter-plot between accessibility (Al) and robustness (αl) and directness (Ep)
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To summarize, in this section , structural network characteristics are calculated for all
network in the data set. To assess the indicators, both the trend testing and correlation
analysis are used.

• Although the indicator formulas are normalized for the comparison between net-
works, their scale and range of values are crucially different. This implies another
normalization is required to ensure the clusters are based on all indicators, not influ-
enced by one with greater range of values.

• Accessibility is found to moderately correlate to robustness and directness. Cluster-
ing analysis will be separated into two cases: including or excluding accessibility.

4.2 network classification

4.2.1 Data pre-processing

Before performing data clustering, three evaluation methods are applied to ensure the
quality of clusters. Those three analysis are composed of assessing clustering tendency,
determining number of clusters and data normalization.

Assessing clustering tendency

The raw data for clustering analysis is as shown in Table 4.1. Hopkins statistics (H) is mea-
sured to analyse if this data set is clusterable. As discussed in Section 3.3, H is compared
with the beta quantile value with the number of sampling data as the parameter and the
data is clusterable when H value is lower. Moreover, another metric assessing clusterabil-
ity is the Hopkins value (Adolfsson et al., 2019). This counts the number of times when H
value is lower than beta quantile.

The calculation result are shown in Table 4.5. As the data set is quite small, the hop-
skins value is calculated based on several percentage of sample points to investigate the
clustering pattern in the data set. Since the Hopkins value from all simulations is equal to
1, this indicate that the data set is clustable when adapting the statistical significant level
of 0.05 for the beta quantile distribution.

Percentage of
sample points

Beta quantile
Hopkins

value

10 0.865 1.00

15 0.811 1.00

20 0.77 1.00

Table 4.5: Clustering tendency of data set
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Determining number of clusters

To ensure the quality of clustering analysis result, a number of clusters in the considered
data set is predetermined by two methods: rule of thumb and elbow method.

From rule of thumb, a set of data containing 20 data points, the number of clusters is√
20
2 or 3.16 and the number of elements in each clusters is expected to be

√
2 ∗ 20 or 6.32.

Moreover, the graph from the elbow method is shown in Figure 4.4. According to
Figure 4.4, the point where the slope of the points change are between three and four.
Therefore, the expected number of clusters can be three or four which is in line with the
rule of thumb. Therefore, both k-means and hierarchical clustering are performed with
the condition of having 3 or 4 clusters.

Figure 4.4: Elbow curve

Rule of thumb method Elbow method

Number of clusters 3.16 3 - 4

Table 4.6: Summary of predetermined number of clusters

Data normalization

As all selected indicators have different value ranges, this can affect the clustering analy-
sis. The large value-range indicator tends to influence the cluster groups and outweigh
other indicators. Min-max normalization (Equation 3.10) is employed to ensure that all
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indicators are equally weighted in the clustering analysis. In addition, the new minimum
value is 0.05 because this is the smallest value based on the raw data set (see Table 4.1)
and 0 would provide misleading interpretation. The processed data set is as shown in
Table 4.7. After normalization, all indicators range from 0.05 to 1 while preserving the re-
lationship among the original data values. Both K-means and hierarchical clustering will
be performed based on the normalized indicators.

No. Place Mode Cl
B Al αl cp Ep

1 Adelaide Metro & Tram (M+T) 1.00 0.61 0.32 0.72 0.58

2 Amsterdam Metro & Tram (M+T) 0.05 0.84 0.57 0.22 0.54

3 Barcelona Metro (M) 0.23 0.77 0.48 0.61 0.53

4 Brisbane Rail & Light rail (R+L) 0.69 0.42 0.31 0.49 0.62

5 Budapest Tram (T) 0.40 0.29 0.21 0.55 0.33

6 Calgary Tram (T) 0.51 0.78 0.06 0.63 1.00

7 Melbourne Tram (T) 0.19 0.05 0.29 0.34 0.40

8 Milan Tram (T) 0.23 0.30 0.28 0.31 0.42

9 New Jersey Rail & Light rail (R+L) 0.41 0.17 0.15 0.66 0.05

10 Santiago Metro (M) 0.11 0.84 1.00 0.76 0.48

11 Sydney Rail & Light rail (R+L) 0.40 0.25 0.28 0.43 0.37

12

The Hague
&Rotterdam

Metro & Tram (M+T) 0.62 0.25 0.39 0.32 0.31

13 The Netherlands Rail (R) 0.42 0.81 0.70 0.11 0.20

14 Toulouse Metro & Tram (M+T) 0.67 1.00 0.25 1.00 0.89

15 Valencia Metro & Tram (M+T) 0.45 0.34 0.05 0.51 0.63

16 Victoria Rail (R) 0.69 0.28 0.26 0.05 0.50

17 Vienna Tram (T) 0.13 0.27 0.33 0.26 0.34

18 Warsaw Tram (T) 0.20 0.37 0.12 0.05 0.74

19 Washington Metro (M) 0.52 0.70 0.29 0.68 0.72

20 Zurich Tram (T) 0.33 0.47 0.32 0.29 0.58

Table 4.7: Normalized Structural characteristics of the selected network. Cl
B: Centralisation,Al :

Accessibility, αl : Robustness, cp: Service connectivity and Ep: Directness

4.2.2 K-means and principal component analysis (PCA) result

K-means result

The resulting clusters from k-means are as shown in Table 4.8. As Al moderately correlated
with robustness and directness (see Table 4.4), four different cases are derived based on
a predetermined number of clusters and the data set with or without Al . Brisbane and
Valencia are assigned to different clusters when comparing the pair of 3-cluster cases
while five more networks, including Barcelona, Milan, Victoria, Melbourne and Vienna,
are added to the list in the case of 4-cluster pairs. There seem to be distinct differences
when excluding accessibility from the data set. Therefore, another measure is needed to
compare different clustering cases.
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The clustering quality for each case can be compared through average silhouette coef-
ficient as shown in Table 4.9. The ”Mean” in the last column is the average silhouette
coefficient considering all samples for each case. The 3-cluster case, including Al performs
best while 4-cluster group without Al performs worst based on the ”Mean” value. Surpris-
ingly, the cluster containing many same modes of transportation network has high average
silhouette value such as the cluster 2 in 3-cluster. This could imply that network mode in-
fluences the network characteristics. In the excluding accessibility case, both 3-cluster and
4-cluster result in low silhouette coefficient, because some clusters are not compact as
shown by either very close to zero or negative silhouette coefficient. The negative value
usually suggests that the assignment of PTNs to that cluster is not suitable because they
are more similar to other clusters. Therefore, Al will be kept for further analysis as it
seems to influence the clustering result.

No. Place Mode 3-cluster
3-cluster
omit Al 4-cluster

4-cluster
omit Al

1 Adelaide Metro & Tram (M+T) 1 1 1 1

2 Amsterdam Metro & Tram (M+T) 3 3 3 3

3 Barcelona Metro (M) 3 3 3 4

4 Brisbane Rail & Light rail (R+L) 2 1 4 1

5 Budapest Tram (T) 2 2 4 4

6 Calgary Tram (T) 1 1 1 1

7 Melbourne Tram (T) 2 2 2 4

8 Milan Tram (T) 2 2 2 4

9 New Jersey Rail & Light rail (R+L) 2 2 4 4

10 Santiago Metro (M) 3 3 3 3

11 Sydney Rail & Light rail (R+L) 2 2 4 4

12

The Hague
&Rotterdam

Metro & Tram (M+T) 2 2 4 4

13 The Netherlands Rail (R) 3 3 3 3

14 Toulouse Metro & Tram (M+T) 1 1 1 1

15 Valencia Metro & Tram (M+T) 2 1 4 1

16 Victoria Rail (R) 2 2 4 2

17 Vienna Tram (T) 2 2 2 4

18 Warsaw Tram (T) 2 2 2 2

19 Washington Metro (M) 1 1 1 1

20 Zurich Tram (T) 2 2 2 2

Table 4.8: K-means clustering result for 3 and 4 clusters case when include and exclude accessibil-
ity. Note the number denotes the cluster number.
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Cluster1 Cluster2 Cluster3 Cluster4 Mean

3-cluster 0.36 0.40 0.25 - 0.34

4-cluster 0.25 0.31 0.09 0.29 0.23

3-cluster
omit Al 0.29 0.31 0.004 - 0.20

4-cluster
omit Al -0.06 0.28 0.10 0.26 0.15

Table 4.9: Average silhouette coefficient of each cluster for 3 and 4 clusters cases when include and
exclude accessibility

In addition to clustering quality evaluation, the physical interpretation for each cluster
is another essential aspect as this was not a part of the clustering process. However, the
k-means result in tabular form as in Table 4.8 is difficult to interpret, so a graphical repre-
sentation is adopted. On this graph, each network is plotted according to their properties
to analyse their relative position to other networks, yet there are too many dimensions to
take into account. Therefore, PCA analysis is adopted to reduce the number of dimensions
(network properties) to two or three, which are visually interpretative, and would allow
for further interpretation.

Principal component analysis result

Principal component analysis is a dimensional reduction process in which data points are
projected on to new axes while maximizing the variance of the projected points. In the
following paragraphs, PCA is carried out step-by-step along with the intermediate results.
After acquiring principal components (PCs), all 20 networks with k-mean group labels will
be plotted on a new axis or PC to illustrate the relationship between PTNs.

PCA is carried out as the following steps. First, compute the eigenvectors and eigenval-
ues of the covariance matrix (Table 4.10) of all network indicators. The result is shown in
Table 4.11. Note these eigenvectors are then called PCs and are ranked according to their
eigenvalue (variance as in Table 4.11 ). The first PC is the one holding the most variance
of the data. Second, project the normalized network data (Table 4.7) on PCs and their
transformed value are as shown in Table 4.12.

Cl
B Al αl cp Ep

Cl
B 0.0548 0.0036 -0.0161 0.0188 0.0116

Al
0.0036 0.0728 0.0272 0.0285 0.0304

αl -0.0161 0.0272 0.0466 0.0001 -0.0135

cp
0.0188 0.0285 0.0001 0.0621 0.0172

Ep
0.0116 0.0304 -0.0135 0.0172 0.0482

Table 4.10: Co-variance matrix of all network indicators. Cl
B: Centralisation, Al : Accessibility, α:

Robustness,cp: Service connectivity ,Ep: Directness



4.2 network classification 37

Cl
B Al αl cp Ep Variance

PC1 0.24 0.68 0.12 0.53 0.43 0.42

PC2 -0.58 0.38 0.65 -0.20 -0.22 0.29

PC3 -0.35 0.17 -0.34 -0.53 0.67 0.15

PC4 0.69 0.24 0.27 -0.62 -0.06 0.11

PC5 0.08 -0.55 0.61 0.09 0.56 0.03

Table 4.11: Principle component ranking according to their variance or eigenvalue. Note PC de-
note principal component and the number signifies the importance of the component.
Cl

B: Centralisation, Al : Accessibility, α: Robustness,cp: Service connectivity ,Ep: Direct-
ness

No. Place PC 1 PC 2 PC 3 PC 4 PC 5

1 Adelaide 0.389 -0.371 -0.273 0.263 0.036

2 Amsterdam 0.070 0.539 0.244 0.038 -0.084

3 Barcelona 0.259 0.274 -0.016 -0.123 -0.054

4 Brisbane 0.082 -0.237 -0.050 0.135 0.107

5 Budapest -0.182 -0.127 -0.164 -0.141 -0.058

6 Calgary 0.494 -0.268 0.342 -0.080 -0.030

7 Melbourne -0.464 -0.020 0.003 -0.195 0.129

8 Milan -0.294 0.051 0.064 -0.095 -0.001

9 New Jersey -0.330 -0.181 -0.411 -0.231 -0.172

10 Santiago 0.401 0.687 -0.249 -0.139 0.200

11 Sydney -0.241 -0.084 -0.103 -0.061 0.022

12 The Hague, Rotterdam -0.264 -0.106 -0.199 0.192 0.062

13 The Netherlands -0.047 0.494 -0.104 0.411 -0.158

14 Toulouse 0.852 -0.203 -0.013 -0.085 -0.056

15 Valencia -0.043 -0.301 0.105 -0.131 -0.018

16 Victoria -0.303 -0.203 0.094 0.369 0.054

17 Vienna -0.394 0.147 0.045 -0.121 -0.015

18 Warsaw -0.275 -0.036 0.490 0.004 0.011

19 Washington 0.377 -0.104 0.033 -0.048 0.002

20 Zurich -0.087 0.049 0.164 0.036 0.024

Table 4.12: Normalized network indicators values projected on Principal components (PC)

For the graphical purpose, not more than three PCs will usually be selected. Moreover,
each PC retains a different amount of data quantified by eigenvalue of the PC. For simple
visualization, Figure 4.5 shows the amount of variance kept by their corresponding num-
ber of principal components (PC). Note that y-axis shows the cumulative percentage of
the variance. Besides, two or three PCs would retain 70.94 and 86.16 percent of amount of
information, respectively. Both percentages are acceptable because they retain a significant
amount of information.
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Figure 4.5: Fraction of the variance captured by the principal components

In addition to the amount of information, correlation analysis is applied to identify
the relation between PCs and the network indicators. In other words, the analysis aims
to investigate the extent to which the first two to three PC can describe or substitute
the previous five network indicators. The correlation is indicated by Pearson’s statistical
significance as shown in Table 4.13. Note that the following observation will only consider
the statistically significant correlation. The first PC is strongly correlated to three network
indicators: accessibility, service connectivity and directness. Moreover, the second PC is
very strongly correlated to the robustness and centralization of the network. The third PC
has a strong correlation with directness. For the rest of the PC, they are either moderately
or weakly correlated to the network indicators. Since the first two PCs can capture all five
network indicators, they are enough to represent this data set for further interpretation.

The projected values on the first and second PC (Table 4.12) for all networks are plotted
as in Figure 4.6 and Figure 4.7. Moreover, k-means results from Table 4.8 are integrated
into the graph to label each network according to their cluster. Besides, the silhouette
coefficient for each network is plotted as a horizontal bar or stripped in its cluster group
along with the PCA plotted.



4.2 network classification 39

PC 1 PC 2 PC 3 PC 4 PC 5

Cl
B 0.35 -0.71** -0.31 0.53* 0.03

Al
0.87** 0.40 0.13 0.16 -0.18

αl
0.19 0.86** -0.33 0.22 0.24

cp
0.74** -0.23 -0.44 -0.45* 0.03

Ep
0.68** -0.29 0.64** -0.05 0.22

Table 4.13: Correlation analysis between network indicators and principal components.Note * in-
dicates the statistical significance at the level of 0.05 and ** for the level of 0.01 (two-
tailed). Cl

B: Centralisation, Al : Accessibility, α: Robustness,cp: Service connectivity ,Ep:
Directness
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Figure 4.6: 3- cluster group: (a) PTNs plotted on PCA axis with 3-cluster K-mean labels (b) the
corresponding silhouette coefficient for this case (The red dotted line show the average
value of the silhouette coefficient across all clusters.).Note R: Rail, T:Tram, L: Light-rail,
and M: Metro
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Figure 4.7: 4- cluster group: (a) PTNs plotted on PCA axis with 4-cluster K-mean labels (b) the
corresponding silhouette coefficient for this case (The red dotted line show the average
value of the silhouette coefficient across all clusters.). Note R: Rail, T:Tram, L: Light-rail,
and M: Metro
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According to Figure 4.6 (a) and Figure 4.7 (a), the points seems to be organized in either
3 or 4 groups as predetermined in Table 4.6. Cluster 2 in 3-cluster case splits into 2 groups
in 4-cluster case, cluster 2 and 4. Interestingly, all network in a new cluster 2 consists of
tram networks while the cluster 4 contains the combination of modes, including metro-
tram and rail-light rail. Although the average silhouette of 3-cluster group is higher than
the 4-cluster case, the number of networks are more evenly spread when compare the
silhouette plot for the two-case (see Figure 4.6 and Figure 4.7 (b)). Therefore, the analysis
focuses on the 4-cluster case.

For interpretation, the meaning of each axis or PC is required. Each PC is meaningless
in the sense that it is the linear combination of all the indicators. However, the correlation
analysis between PC and network indicators (Table 4.13) infer the meaning of PC. From
the correlation analysis result, the first principal component (PC1) is likely to explain the
combination of accessibility, service connectivity and directness while the second principal
component (PC2) describes robustness and centralization.

According to Figure 4.7 (a), cluster 1 situates in the lower right quadrant of the graph
with positive PC1 value and negative PC2 value. Cluster 2 and 4 stay quite close to each
other. While most of cluster 2 networks, excluding Brisbane, are in the lower-left quadrant
with both negative PC values, cluster 4 seems to situate in the upper left quadrant. Besides,
cluster 1 outperforms cluster 2 and 4 in the combination of three aspects: service connec-
tivity, accessibility and directness (CAD) since the whole group have higher score on PC1

than cluster 2 and 4. Toulouse is the best network while Melbourne is the farthest left
when considering CAD aspect. Also, cluster 3 has middle level of CAD which is higher
than cluster 2 and 4, but lower than cluster 1.

The data set contains three level of PC2 which describes the robustness and network
centralization. Note that the centralization is negatively correlated with PC2, so the net-
work with negative PC2 has high network centralization. As cluster 3 has the highest level
among the clusters, their networks have high robustness and low centralization. Cluster 1

and 4 illustrate relative level of PC2 and they are considered to exhibit low robustness and
high centralization. Finally, cluster 2 situates in the middle of the high and low group.

Apart from the network characteristics, k-means clusters indirectly differentiate net-
works according to the size of the network and mode of transportation. From Table 4.14,
most large networks belong to cluster 2 while the small ones are in the cluster 1. The rest
clusters are similar size and in between those two. In addition, cluster 2 consists of only
tram networks (Figure 4.7 (a)). Moreover, all networks except Victoria rail contains either
tram or light rail, another form of tram modes. The rest two are the mix of metro and
tram modes.

Even though networks are classified into clusters which possess similar network charac-
teristics, there are some varieties inside the cluster. For example, one cluster in the 3-cluster
case split into two clusters for the 4-cluster case (see Figure 4.6 and Figure 4.7 (a)). Sur-
prisingly, the new group only consists of tram networks.Therefore, to further investigate
the characteristic within each cluster, hierarchical clustering is employed.
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Number of station Modes

Min Max Average
Cluster 1 37 118 73 Metro + Tram
Cluster 2 190 805 397.2 Tram
Cluster 3 131 413 219 Metro + Tram
Cluster 4 134 424 240.3 Tram-related

Table 4.14: 4-cluster characteristics summary

To summarize, in this subsection, k-means algorithm is used to find clusters for this PTNs
data set. The suitable ’k’ (number of clusters) is found to be 3 and 4. From the combination
of this fact with accessibility correlation findings, four cases are derived which are 3 and
4-cluster (with accessibility) and 3 and 4-cluster (without accessibility). For visualization
purpose, principal component analysis is adopted. The main findings are as follows:

• Although the 3-cluster group has the highest average silhouette coefficient, 4-cluster
seems to have a well-spread number of networks among clusters.

• Cluster 1 is a metro-tram group consisting of small networks. All networks perform
best on the combination of service connectivity, accessibility and directness (CAD)
compared to other clusters. They also have low robustness level ( and high central-
ization).

• Cluster 2 is a tram group and most networks are large in size when compared to
other clusters. The group performs the worst on CAD, but has high centralization
and low robust level.

• Cluster 3 is a mixed group where most networks are medium in size. They all have
high robustness level ( and low centralization) while their CAD is in between those
of cluster 1 and 2.

• Cluster 4 is a tram-related group which also have CAD similar to cluster 2, but has
lower robustness level than cluster 2.

4.2.3 Agglomerative hierarchical clustering

Hierarchical clustering is adopted to identify the similarities or difference within clusters.
These are identified when networks are matched during the agglomerative hierarchical
process. Besides, there are several methods for pairing up data objects, so three linkage
methods composed of ward, complete and average are chosen to compare which would
yield the best clustering quality and provide an insightful classification. In addition, the
stopping criteria for all methods are when four clusters are formed because the results
will be compared with those in Section 4.2.2. In other words, the hierarchical tree is cut
when four clusters formed.
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Figure 4.8: The comparison of silhouette plots for all three linkage methods: average, complete
and ward (arranged from top to bottom). Note the red dotted line show the average
value of the silhouette coefficient across all clusters.
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For linkage method comparison, the silhouette plot for each method is illustrated in
Figure 4.8. Based on the average silhouette coefficient (as shown by dotted line), the
average method has the highest value (0.31) while complete and ward value are 0.23 and
0.22, respectively . However, both average and complete linkage method result in an
undesirable result. The networks are unevenly distributed in the average case as cluster 3

contain most networks. Moreover, only three clusters are formed with the average linkage.
On the other hand, the complete linkage managed to form four clusters containing equally
number of networks, but some of the networks in cluster 2 has the negative silhouette
coefficient values suggesting that they were classified in a false cluster. Therefore, although
ward method has the lowest average silhouette coefficient value among others, it performs
better in equally classifying equally number of networks in each cluster. This linkage
method case will be further explored.

The hierarchical results based on ward linkage algorithm are presented in dendrogram
shown in Figure 4.9. The tree result is cut to yield four clusters because of the interpretabil-
ity of the result. Surprisingly, the resulting clusters are identical to the 4-cluster from the
K-means result (see Figure 4.7). This allows investigation on each cluster to analyse how
each network member is related to each other. For comparison with previous 4-cluster
case, each cluster will be referred to as color in the dendrogram with the cluster group
number in the parentheses.

According to Figure 4.9, in each cluster network is paired up in an ascending order of
their distinct cluster characteristics identified in Section 4.2.2. In other words, network
within cluster are situated higher in the tree if it possess higher value of cluster character-
istic. For instance, the yellow cluster (cluster 3) networks are all highly robust network and
the pairing in the dendrogram shows the rank of the robustness level. Barcelona metro
and Amsterdam metro-tram are paired up first since their robustness level are 0.65 and 0.7,
respectively. Next, they are matched with the Netherlands train of which robustness level
is 0.78. Finally, the three merged with Santiago metro which has the highest robustness
level among all networks in this data set. In addition, this pattern is also in other three
cluster. The blue cluster (cluster 1) shows the rank of centralization while both the red
(cluster 4) and green cluster (cluster 2) exhibit the rank for service connectivity.

To summarize, in this subsection, hierarchical clustering is employed to identify the sim-
ilarities or differences under each cluster. Three common linkage method, average, com-
plete and ward, are adapted. The main findings are as follows:

• Ward linkage method yields the best clustering quality when considering the forma-
tion of four clusters containing similar amount of networks.

• Surprisingly, the result clusters are identical to the result from k-means cluster for
the 4-cluster case.

• The resulting tree (dendrogram) illustrates how networks in their clusters are ranked
in ascending order according to the cluster distinct characteristic.

• The distinct characteristics can be identified as follows: service connectivity for green
(cluster 2) and red (cluster 4) clusters, centralization for blue (cluster 1) cluster and
robustness for yellow (cluster 3) cluster.
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Figure 4.9: Dendrogram of hierarchical clustering adapting ward criteria linkage method. (R: Rail,
T:Tram, L: Light-rail, and M: Metro) Note the black horizontal dotted line show the
point where the tree is cut to give four clusters.

4.3 result interpretation

Previously, in Section 4.2, k-means and hierarchical clustering classified the PTNs data set
into four clusters. PCA illustrates the former’s result on 2-D graphs while dendrogram
from the latter method exhibits both the clusters and the ranking of networks within the
cluster according to the cluster key properties. However, we do not investigate how the
networks are strong in one property, not others. One of the reasons is its network structure.
Radar diagram and L-space graph are employed to serve as visual aids describing overall
network indicators value and its corresponding infrastructure representation. Note that
for comparison purposes, the radar diagram is plotted based on min-max normalization
(Table 4.7) to ensure that all indicators span the same whole value range. The radar di-
agram and its L-space network are as shown in Figure 4.10. Moreover, in the following
paragraphs, each cluster will be analysed to identify network features and its characteris-
tics.
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For cluster 1 (C1), most members are small-size metro-tram networks. Since the distinct
cluster characteristic is centralization as identified in Section 4.2.3, all networks are quite
highly centralized because they share similar network structure, radial line structure. They
consist of several infrastructure connection lines with very few numbers of overlapping
stations or hubs. Consequently, each network possesses very few stations with many links
connection, and most of the stations connect to the other two neighbors. Also, the cluster
contains Adelaide (M+T), the most centralized network for all networks in this data set.

Network in cluster 2 (C2) are all large-size tram network. They seems to have low
value on all the network characteristics. From the L-space graph, every network seems to
contain many cycles but it is not enough to compensate for larger number of stations. On
the other hand, cluster 4 (C4) seems to score better in overall characteristics (bigger shade
region on radar diagram) compared to cluster 2. Cluster 4 (C4) is a tram (or light-rail)
related group which refer to the combination of tram with other modes. For those rail and
light combination, the networks have higher centralization since their L-space show the
radial line structure similar to those in cluster 1.

For cluster 3 (C3), most members are medium-size mixed modes, including metro, tram
and rail. They are highly robust and easily accessible compared to other clusters. The for-
mer can be realized via the number of cycles in their L-space graph. Moreover, these cycles
add extra links or connection to the nodes which describes the high level of accessibility
of the networks. Note that although cluster 3 seems to show two distinct characteristics,
robustness and accessibility, their level of accessibility is similar to each other. This explain
why they were ranked by robustness in Section 4.2.3.
To summarize, in this section, radar diagram describes the overall characteristics of the
networks and confirms the findings in the previous section. Moreover, L-space facilitate
the visualization of networks and identification of network features contributing to their
characteristics. The main findings are as follows:

• Cluster 1 consists of mostly highly centralized networks as their L-space graph looks
similar to the radial line structure.

• Cluster 2 and 4 contain similar network size while the latter seems to outscore the
former on most characteristics. The combination of rail and light rail results in a
high centralized network as in Brisbane and New Jersey.

• Cluster 3 consists of mixed modes with high robustness due to the present of number
of cycles in the networks.
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Figure 4.10: Radar diagram and its L-space network for all networks.Cl
B: Centralisation, Al : Ac-

cessibility, α: Robustness,cp: Service connectivity ,Ep: Directness. Note C1,C2,C3 and
C4 indicates the cluster for each network referred to the K-means result in 4-cluster
case (see Table 4.8)
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Figure 4.10: (cont.) Radar diagram and its L-space network for all networks.Cl
B: Centralisation, Al :

Accessibility, α: Robustness,cp: Service connectivity ,Ep: Directness. Note C1,C2,C3

and C4 indicates the cluster for each network referred to the K-means result in 4-
cluster case (see Table 4.8)





5 C O N C L U S I O N S A N D R E C O M M E N DAT I O N S

5.1 key findings

In this section, main findings of the thesis are discussed. After revisiting the main research
question, the sub-research question is introduced with its answer one by one.

The overarching research question is as follows:
”Which clusters of public transport networks can be identified using the topological characteris-

tics of those networks excluding mode-specific properties? All rail modes (tram, metro, train) are
considered.”

To dissect this question, two sub-research questions were posed as followed:

1. How can the PTNs’ structure be quantitatively characterized by network indicators from a
topological approach excluding mode-specific properties?

PTNs characterization from a topological approach requires two components: graph
type and structural characteristics.

Since PTNs were represented on a graph, the first component is to select graph
type. It refers to the properties of the links, including direction and weight. While
direction specifies whether the links are uni-directional or bi-directional, weight can
refer to the importance of links such as distance, frequency, time, etc. In this thesis,
a directed unweighted graph was chosen because it will not impose mode-specific
properties on the network and also model the link direction in detail. For example,
if the distance were weighted on the links, the railway and tram network would
behave differently since the two systems usually cover different area scale. For the
direction, we want to model PTNs more realistically based on the data gathered
without assuming that the links are bi-directional.

The second component is the structural characteristics. The thesis aims to classify
PTNs according to their spatial infrastructure and service connection in the normal
network state. Consequently, five characteristics were chosen: centralization, accessi-
bility, robustness, service connectivity and directness. The first three dealt with the
infrastructure side while the last two focus on the service network. Centralization
assessed the distribution of hub nodes throughout the network while accessibility
measured how far node is from other nodes. Robustness measures the network’s
potential to deal with the disruption. For the service network, service connectivity
quantifies the number of direct service route and directness investigates the average
number of transfer in the system. Based on these five characteristics, network indi-
cator and their corresponding network models are selected, as shown in Table 3.1.

The indicators are standard graph theory indicators which often used to characterize
spatial networks while two standard network models were employed in this thesis: L-
space and P-space Lin and Ban (2013). The network indicators include betweenness

50
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centralization, closeness centrality, alpha coefficient, global efficiency, and clustering
coefficient. For the network model, L-space represents the infrastructure connection,
while P-space refers to the service connection. Based on these models, the network
indicators are enriched in its interpretation. For instance, global efficiency (Ep) is
calculated in P-space to exhibit the network directness. The interpretation is differ-
ent from the case where Ep is calculated in L-space because that would show the
directness provided in the infrastructure network instead of service one.

2. What are the classification groups of PTNs based on structural characteristics

Two clustering techniques, k-means, and hierarchical clustering, were employed to
classify the network data set. While the former partition PTNs into non-overlapping
groups, the latter also reveal the level in the cluster. Moreover, the dendrogram
shows the rank of PTNs according to the cluster’s key characteristic in ascending
order. This is to say the PTNs with lower scores of such a characteristic situate in the
base and vice versa. For both types of clustering, the desired number of clusters is
four which were confirmed based on the distribution of silhouette coefficient, elbow
method, and rule of thumb. The list of networks for each cluster is as shown in
Table 5.1. The k-means results plotted on PCA coordinates are as shown in Figure 4.7
and the dendrogram from hierarchical clustering is in Figure 4.9. Besides, the key
observations are as follows:

• The first cluster is a group of small size combination of metro and tram sys-
tem. The network size ranges from 37 stations for the smallest network to 118

networks for the largest one. All members exhibit a high level of service con-
nectivity, accessibility, and directness (CAD). On the other hand, these networks
are highly centralized but low level of robustness. The dendrogram shows the
ranks of network centralization in which networks with larger sizes seem to
have high value. Moreover, their L-space graph looks similar to radial lines
structure.

• The second cluster is composed of only tram whose network size is large (av-
erage of 397.2 stations). However, this cluster possesses low level of CAD. For
the level of robustness, they situate between both the combination of metro and
tram cluster (cluster 1 and cluster 3). Centralization ranked the networks in this
cluster as shown in the dendrogram.

• The third cluster is a mixed group of transportation modes including metro,
metro-tram, tram, and train. These networks are larger than the first cluster but
still smaller than the tram clusters (cluster 2 and 4). All networks are highly
robust, but their CAD is in between the first and the rest clusters. From L-space
representation, they contain several numbers of cycles in the network. The
dendrogram illustrates the cluster ranking for robustness. Moreover, Barcelona
metro is more similar to Amsterdam metro and tram than the Dutch national
railway, but Santiago metro differs from all others. Also, Santiago is the most
robust networks.

• The fourth cluster is a tram-related group whose network size is similar to
second cluster. Tram-related mode refers to the combination of tram modes
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with other modes, railway, and metro. They have higher level of centralization
compared to the second cluster. Their CAD level is lower than cluster 2 but
higher than cluster 1. Centralization ranked the networks in this cluster as
shown in the dendrogram.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Adelaide
(M+T)

Melbourne
(T)

Amsterdam
(M+T)

Brisbane
(R+L)

Calgary
(T)

Milan
(T)

Barcelona
(M)

Budapest
(T)

Toulouse
(M+T)

Vienna
(T)

Santiago
(M)

New Jersey
(R+L)

Washington
(M)

Warsaw
(T)

The Netherlands
(R)

Sydney
(R+L)

Zurich
(T)

The Hague & Rotterdam
(M+T)

Valencia
(M+T)

Victoria
(R)

Table 5.1: Lists of PTNs in each cluster. M: metro, T: tram, R: Rail and L: Light rail

In summary, apart from each cluster distinct characteristics, they are differentiated by
the mode of transportation and the size of the networks. Figure 4.10 shows that network
in the same clusters share similar features as illustrating in the L-space graph. Moreover,
the similar modes network tends to share similar structure pattern such as the radial lines
for the cluster 1 group. For the size of the network, it is implicitly from the network
indicators formulas. Although the min-max normalization is used to adjust its range
before clustering, the normalization did not include the size of network normalization.

5.2 scientific contribution

This thesis filled the literature gaps in applying quantitative approach to classify PTNs
according to various structural network properties. Previous studies, such as that of Von
Ferber et al. (2009); Barthelemy (2010); Haznagy et al. (2015) employed several indicators
to characterize PTNs to extract more information from the network. However, their anal-
ysis and interpretation were only based on single indicator comparison at a time. This
means that analysts lack a clear overview of network properties and cannot see how each
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characteristic is related. Moreover, this limits the number of indicators in the analysis as it
is no use including many.

Few studies try to alleviate this gap. Gattuso and Miriello (2005) adopted a multi-
criteria analysis to combine all indicator values into a single score to rank metro networks.
However, this method cannot facilitate the comparison or identifying distinct features
between networks. Moreover, Derrible and Kennedy (2010b) qualitatively classify metro
networks adapting 2-D graph in which network indicator is on each axis, but this analysis
is subjected to the analyst’s bias. Therefore, this research alleviates the gap by adapting
qualitative approach to both network characterization and classification.

For network characterization, five main structural characteristics are selected. Those
are centralization, accessibility, transitivity, directness and robustness. Moreover, several
transportation modes are included unlike the previous studies (Gattuso and Miriello, 2005;
Derrible and Kennedy, 2010b; STOILOVA and STOEV, 2015) which restricted themselves
only metro networks. Including only metro networks could not explain the major trans-
portation part of the cities. The considered modes in this work are train, metro, tram and
light rail system at both city and national level. Unlike Von Ferber et al. (2009) in which
they claim too much diversity in the urban area network and could not derive classifica-
tion, we found that the network structure can be distinguished according to the mode of
transportation and their network size. Our findings suggest that tram, metro and train fun-
damentally possess distinct structural properties even though the modes label and their
related properties such as station spacing were not included. The general properties for
each mode are as follows:

• Tram networks perform worse in infrastructural accessibility and both service con-
nectivity and directness. However, they are highly centralized which causes the low
level of robustness.

• The tram and train combination modes result in a more centralized network.

• The tram and metro combination can result in two different type of networks. One
can be highly robust network or vice versa.

Moreover, this thesis exhibits quantitative classification with an appropriate set of features
adding to finding of the previous STOILOVA and STOEV (2015) which only realize the
cluster group via size of the networks.

5.3 practical implication

As public transportation evolves overtime, the set boundary between modes is becoming
blurred. For newer version of tram system, the term ’light rail’ is adopted instead as can
be seen in New Jersey or Sydney. This prompts the question of whether the traditional
definition is still relevant in the present context. To refine the current transportation mode
concept, the distinct network characteristics can also be tied to the current physical con-
cept. For example, a low level of transitivity, accessibility and directness tends to exist
in tram network. On the other hand, metro-tram seems to outperform PTNs of all types
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in TAD aspects. These structural network characteristics could serve as supplementary
information describing how certain modes usually become. Based on such information,
planners have a clearer idea of the mode characteristics. This could be supplementary
information to gain more insights on each rail mode.

5.4 limitations

The main limitations are in the data set and clustering method. In general, clustering
analysis is usually applied to a large data set with more than 50 data objects. To achieve
that, GTFS data format seems to be the solution as it set the ground for all PT authority
and operators to publish the data set in similar formats. However, the standard itself is
quite flexible and changes overtime. This creates difficulty to convert and extract data
into usable format. Moreover, the available data set are mostly in Europe and both North
and South America, but none are in Asia. It would be interesting to study the extensive
networks in China, Japan and Korea.

Clustering results are not so robust and dependent on the sample set. Depending on
similarity measures and clustering techniques, data set can be grouped into clusters. In
addition, the result will be varying depending on the number of data objects and their
corresponding features. However, the finding from this thesis would be some guidance
for further analysis when performing clustering results. The findings will be preliminary
exploratory result to the bigger data set of PTNs. For example, the pre-assumption from
this findings are that same physical transportation modes are confirmed to have similar
properties.

5.5 future research

5.5.1 Indicators selection

Since this thesis focuses on PTNs structural characteristics, indicators were picked to re-
veal network insights. However, PTNs can be evaluated in different stages: normal and
under disruption. Since this thesis only selected the former categories of indicators, it is
interesting to also the disrupted states when calculated indicators such as resilient or ro-
bustness. Moreover, if possible, it is interesting to include as many indicators as possible
and adapt the PCA to help picking several significant ones.

5.5.2 Networks selection

In this thesis, the comparison is made based on several rail related modes in different cities
and countries. However, it is interesting to include all available PTNs modes to truly assess
the city mobility structure. Since city evolution is very complex, these classification may
reveal insight suggesting mobility planning in different places. Although, this research
indicates that national network is quite different from those urban network, it is interesting
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to see how it is comparable to other national networks and how they could be in the same
group of urban networks.
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in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PE-
DREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. Journal of Machine
Learning Research, 12:2825–2830.

STOILOVA, S. and STOEV, V. (2015). An application of the graph theory which examines
the metro networks. Transport Problems, 10(2):35–48.

To, W. M. (2015). Centrality of an Urban Rail System. Urban Rail Transit, 1(4):249–256.

Tu, Y. (2013). Centrality characteristics analysis of urban rail network. In IEEE ICIRT
2013 - Proceedings: IEEE International Conference on Intelligent Rail Transportation, pages
285–290. IEEE.

von Ferber, C., Berche, B., Holovatch, T., and Holovatch, Y. (2012). A tale of two cities:
Vulnerabilities of the London and Paris transit networks. Journal of Transportation
Security, 5(3):199–216.

Von Ferber, C., Holovatch, T., Holovatch, Y., and Palchykov, V. (2009). Public transport
networks: Empirical analysis and modeling. European Physical Journal B, 68(2):261–
275.

Vuchic, V. and Musso, A. (1991). Theory and practice of metro network design. Public
Transport International, 40(3):298.

Wan, D., Huang, Y., Feng, J., Shi, Y., Guo, K., and Zhang, R. (2018). Understanding Topo-
logical and Spatial Attributes of Bus Transportation Networks in Cities of Chongqing
and Chengdu. Mathematical Problems in Engineering, 2018:1–14.
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This section contains the paper illustrating the key concept from this thesis.
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Topological characterization and clustering of public transport networks

Krissada Tundulyasaree1 ,Ding Luo1, Maaike Snelder1,2, Yilin Huang3, Oded Cats1

Abstract— Numerous comparative network studies adopted
topological indicators to characterize networks. They were
able to identify similar properties between public transport
networks (PTNs) such as small-world and scale. However,
few studies attempted to create classification. This study
proposed methodology to quantitatively characterize and
cluster the PTNs. The selected characteristics are centralization,
accessibility, robustness, service connectivity and directness.
For the clustering part, hierarchical clustering adapting ward
linkage criteria is adopted. The proposed method was applied
to classify 20 rail-based PTNs worldwide. Apart from the
indicator properties, network are distinguished by their mode
of transportation and network size.

I. INTRODUCTION

Comparative study is an approach in structural network
studies. They compare different networks to identify
similarities or differences. There is much empirical evidence
that PTNs in different places share common statistical
characteristics [1]–[7]. For instance, Lin and Ban [4] found
many railway, subway and bus networks in several countries
exhibit small-world [8] and scale-free structure [9].

Despite the accumulation of comparative PTNs studies,
there were a few attempts to create a classification. Gattuso
and Miriello [10] classified 13 metro networks using
combined network indicator scores to rank networks. The
scores were calculated from the multi-criteria analysis.
However, it is difficult to identify a distinct property of
each network as they all combined into a single value.
Derrible and Kennedy [2] adopted a 2-D graph where each
network indicator is on the axis. A few network indicators
described each characteristic. They were able to classify
33 metro networks into different groups according to the
state of development, interaction with the built environment,
and intrinsic structure. Besides, Stoilova and Stoev [11]
adopted hierarchical clustering to classify 22 European metro
networks adopting six network indicators. However, both
studies [2, 11] only consider the physical infrastructure side
of the PTNs and include a single mode of PT. In their
studies, it is assumed that a direct service line always
exists connecting a station to any stations; however, that is
not always the case. PT operators usually provide several
service lines to serve nodes, and the transfer is made at
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the node where the service line overlapped. Consequently,
service lines network is another vital aspect to describe
PTNs. Moreover, as only metro networks are considered, the
classification result is mode-dependent. In other words, they
assume that transport modes influence the network structure.

In summary, few studies classified PTNs and most of
them were based on a single PT mode representing on
infrastructure networks. Based on such criteria, they assume
no similarities between different PT modes and omit the
service lines from analysis.

This paper aims to classify PTNs employing topological
network indicators. The proposed methodology consists of
two parts: network characterization and network clustering.
For the former part, five network characteristics are chosen
and quantified by global network indicators from graph
theory and network science. The latter part makes use the
hierarchical clustering method. Moreover, this method is
applied to 20 networks derived from the general transit feed
specification (GTFS) data.

The reminder of this paper is organized as follows. Section
II details the proposed methodology consisting of two parts.
The first part is focused on characterizing five selected
PTN features quantified by topological indicators, while the
second shows how PTNs are clustered into groups based
on the these indicators. Then case study networks, which
contain 20 rail-based PTNs worldwide, are introduced in
section III-A, followed by the presentation of results and
discussion in section III. Section IV concludes the study with
main findings, contributions and recommendations for future
research.

II. METHODOLOGY

First, we describes the selection of network representation
along with the network indicators to characterize PTNs. The
second part details how to classify PTNs by hierarchical
clustering analysis.

A. Network Characterization

The first subsection introduces a brief PTNs representation
used in this thesis. Next, network characteristics and its
indicator selection is described.

1) Network representation: A PTN is represented as a
directed graph G representing by G = (N,E) where N is
the set of nodes and E is the set of links. A node n ∈ N
represents a station while a link e ∈ E is defined by an
ordered pair of nodes (u, v) in which u and v (u, v ∈ N )
denote the source and sink nodes, respectively. Note that
| N | and | E | denote the number of stations and links,
respectively.
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In this paper, L-space and P-space graphs are employed
to enrich network characterization. L-space graph illustrates
stations as nodes while a link connecting nodes exists if there
is at least a service line connecting those two consecutive
nodes [1]. For P-space, a node in this graph still represents
a station, but a link exists if there is at least a direct
service line linking the pair of nodes. Apart from the space
representation, the graphs links have no weight, so all links
have identical properties. Since PTNs in this thesis are
the combination of different modes such as metro, tram,
and train, the resulting graph does not differentiate the
transportation modes.

2) Network characteristics selection: To characterize
PTNs, five network features, including centralization,
accessibility, robustness, service connectivity and directness,
are chosen. These characteristics were proposed in previous
PTN studies and used to characterized different PT modes.
The first three features will be assessed in the infrastructure
layer, while the service layer is employed for the last two.
The following subsection detail each characteristic and its
networks indicator with mathematical formulas.

3) Centralization: Centralization measures how nodes
with different levels of centrality values in a network are
distributed [12]. A network with high value of centralization
is likely to have a few powerful nodes with high node
centrality, while others with low centrality, vice versa. In
this study, the centralization based on nodes’ betweenness
centrality in the L-space is applied. It is defined as follows.

Cl
B(v) =

∑

s∈N

∑

t∈N

σst(v)

σst
(1)

where σst denotes the total number of shortest paths from
node s and t and σst(v) is number of those paths that pass
through v. The global indicator of centralization, denoted as
Cl

B , is further defined as follows.

Cl
B =

∑
v∈N

(Cl
B(v)

∗ − Cl
B(v))

| N |3 − 4| N |2 + 5| N | − 2
(2)

where Cl
B(v)

∗ is the maximum betweenness centrality
among nodes in the network. N is the number of nodes.

4) Accessibility: The feature of accessibility measures the
ease of reaching all stations on average. Characterized in the
L-space, it is determined based on local nodes’ closeness
centrality. The closeness centrality of a node ci is defined as
follows.

Cl
C(v) =

| N | −1∑
i∈N

dvi
(3)

where dvi is the shortest topological distance (i.e., the
number of links needed to be traversed) between node v
to node i. The nodes are close to others if there exist the
direct link connection to it.

According to this definition, node closeness centrality
increases for lower travel impedance to other nodes in the

network and hence reflects the accessibility of each node to
the rest of the network. The average closeness centrality of
all the nodes in the network can thus be used as the global
indicator of accessibility, denoted as Al since it reflects the
average number of nodes that are passed when travelling
between any pair of nodes [13].

Al =
| N | −1
| N |

∑

v∈N

1∑
i∈N

dvi
(4)

5) Robustness: Robustness describes the extent to which
networks can cope with the disruption event. A more robust
network has higher number of alternative physical paths
to maintain the network connectivity while the mitigation
process is on-going. To measure this feature, we use the alpha
index (or network meshedness) in L-space representation
[14]. It quantifies alternative routes existed in the network,
which implies that there are more than a single path between
node pairs. The global indicator of robustness, denoted as α,
is thus defined as follows.

αl =
| E | − | N | +1

2 | N | −5 (5)

where | E | and | N | represent the number of links
and nodes in a graph, respectively. The higher value of α
indicates the more robust the network structure in a sense
that network provide greater number of alternative paths.

6) Service connectivity: Service connectivity (SC)
measures how well the service lines are linked. It compares
the current link connection relative to the best connection
scenario, which is usually the complete graph [15]. Note that
the complete graph is a network in which every pair of nodes
is connected. The high SC network offers a large number of
direct routes between nodes. In PTNs, a direct service route
does not require any transfers when transversing between
a pair of stations. Moreover, it implies that network nodes
cluster together as service lines directly connect them. This
concept is in line with a clustering coefficient (cP ) in the
P-space. Let Nbh(u) is the neighbourhood of a node u
(Nbh(u) = {v ∈ N | (u, v) ∈ E}) and du is the degree of
a node u (du =| Nbh(u) |). The clustering coefficient can
be defined as follows: [1]

cP =

∑
u∈N | {{i, j} ⊆ Nbh(u) | (i, j) ∈ E} |∑

u∈N du(du − 1)/2
(6)

cP measures the whole network service connectivity through
the connectivity within the neighbourhood. The denominator
is the maximum number of links in the neighbourhood for
node u given the node degree du. The range of cP is between
0 and 1. The closer cP is to 1, the higher SC level network
is.

7) Directness: Directness measures the extent to which
network can provide direct service between any node pairs.
In the context of PT, we characterize this feature based on
the number of transfers required between node pairs. High
directness would imply a lower average of required number
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of transfers. Thus, we use the average of shortest path lengths
in the P-space representation for this feature.

Ep =
1

| N | (| N | −1)
∑

i∈N

∑

j∈N
i6=j

1

dpij
(7)

B. Network Clustering
Agglomerative hierarchical clustering groups data objects

into different cluster levels. It refers to a bottom-up strategy.
Each data point starts in its own cluster and is paired with
others in every iteration round until every points in the same
cluster. Before any clustering is performed, it is required
to determine the proximity matrix containing the distance
between each point based on a distance function. Then, the
matrix is updated to display the distance between clusters.
Let | i−j | be the distance between object i and j, mi is the
center of the data points in cluster, Ci and ni is the number
of data points in cluster i. In this study, we apply the ward
linkage algorithm to compute the distance between clusters
as follows:

dward(Ci, Cj) =
ninj
ni + nj

| mi −mj |2 (8)

To measure the quality of clustering, the silhouette
coefficient there are 2 method: extrinsic and intrinsic method.
The intrinsic method is chosen since the ground truth or
data labels are not available. Therefore, the intrinsic method
mainly assessed the quality of clusters in two aspects: their
separation between groups and the compactness of clusters.

The silhouette coefficient is selected to assess the
clustering quality. Supposed a data set, D, is partitioned into
k clusters C1, C2, ..., Ck. For each object v ∈ D, silhouette
coefficient of v is then defined as:

s(v) =
b(v)− a(v)

max{a(v), b(v)} (9)

where a(v) is the average distance between v and all other
object in the cluster v belongs to and b(v) is the minimum
average distance from v to all clusters v does not belong to
(see Equation 10,11).

a(v) =

∑
v′∈Ci,v 6=v′

d(v, v′)

| Ci | −1
, (10)

b(v) = min
Cj :1≤j≤k,j 6=i

, {

∑
v′∈Cj

d(v, v′)

| Ci |
} (11)

The value of the silhouette coefficient for each object v
varies between -1 and 1. Note that silhouette value for the
cluster contain a member is defined as 0.While a(v) reflects
the compactness of the cluster, b(v) describes the distance
between clusters. Therefore, when s(v) is close to 1, the
resulting clusters containing object v is compact and far away
from other clusters. On the other hand, the negative value
of s(v) suggests that object v is closer to objects in other
clusters more than objects in its own cluster. The average
value of the silhouette coefficient from all objects in the data
set can be used to compare different clustering methods.

III. RESULT & DISCUSSION

A. Studied Networks

20 rail-bound networks were employed for the case study.
These networks were generated using up-to-date GTFS data.
Table I shows the location and modes of these networks,
along with the number of nodes and links. Various rail-bound
modes ranging from rail to tram are included in this analysis.

TABLE I: Overview of the studied rail-bound networks worldwide.

Place Mode #nodes #links
Adelaide Metro & Tram (M+T) 118 247
Amsterdam Metro & Tram (M+T) 196 467
Barcelona Metro (M) 131 298
Brisbane Rail & Light rail (R+L) 176 367
Budapest Tram (T) 237 470
Calgary Tram (T) 46 81
Melbourne Tram (T) 805 1676
Milan Tram (T) 335 693
New Jersey Rail & Light rail (R+L) 184 351
Santiago Metro (M) 136 388
Sydney Rail & Light rail (R+L) 307 634
The Hague & Rotterdam Metro & Tram (M+T) 424 929
The Netherlands Rail (R) 413 1050
Toulouse Metro & Tram (M+T) 37 72
Valencia Metro & Tram (M+T) 134 240
Victoria Rail (R) 220 449
Vienna Tram (T) 385 815
Warsaw Tram (T) 271 509
Washington Metro (M) 91 186
Zurich Tram (T) 190 400

B. Network characterization

We computed the five global indicators for all the
case study networks, with the histograms of the resulting
(original) values first presented in Figure 1. Different
distributional patterns can be observed. For instance, the
distribution of centralization is skewed with the majority
lying on the left side. This means that most studied
networks do not exhibit a high degree of centralization. The
distribution of efficiency somehow shows values on both left
and right sides with a gap in the middle, though there are
more networks falling onto the left part. The robustness one
displays a skewed distribution again, with the majority lying
on the left between 0.5 and 0.6. The service connectivity
of all the networks is relatively more evenly distributed
compared with the rest, while the directness is most similar
to a normal distribution.

Since all selected indicators have different value ranges,
this can affect the clustering analysis. The large value-range
indicator tends to influence the cluster groups and outweigh
other indicators. Min-max normalization is employed to
ensure that all indicators are equally weighted in the
clustering analysis. In addition, the new minimum value
is 0.05 because this is the smallest value based on the
raw data set (see Table I) and 0 would provide misleading
interpretation. The normalization can be calculated as
follows:

x′1p =
x1p −minp
maxp−minp

(new maxp−new minp)+new minp

(12)
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Fig. 1: Distributions of five topological indicators for all the studied
networks.

i.e. a value of data object 1 attribute p (x1p) is mapped to
a new value x′1p in the new value range from new minp
to new maxp. This normalization keeps the relation among
the raw dataset values. After normalization, all indicators
range from 0.05 to 1 while preserving the relationship among
the original data values. Subsequently, hierarchical clustering
will be performed based on the normalized indicator values.

C. Network clustering

The hierarchical results based on ward linkage algorithm
are presented in dendrogram shown in Figure 3. The number
of clusters are determined by the silhouette plot as in
Figure 2. These sub graphs illustrate the silhouette coefficient
value for every member in the cluster group as specified
by the label. The four cluster case is the most appropriate
because the number of members in each cluster are equally
distributed and no member has negative silhouette value.

Hence, the tree result is cut to yield four clusters. Note
that for the following discussion, the cluster group will be
referred to as position in the dendrogram (see Figure 3) and
the cluster number in parentheses correspond to those in
cluster label in Figure 2. The cluster groups are identified
as follows:
• The green group (Cluster 2) is a tram group and most

networks are large in size when compared to other
clusters. Apart from high centralization, the group has
low level on all other quality.

• The red group (Cluster 4) is a tram-related group
which refers to the combination of trams with other
modes xuch railway or metro. This group exhibit

higher centralization than green group while the
other characteristics remain low. The network size is
comparable to cluster 2.

• The blue group (Cluster 1) is a metro-tram group
consisting mostly of small networks. All networks
perform best on the combination of service connectivity,
accessibility and directness (CAD) compared to other
clusters. They also have low robustness level ( and high
centralization).

• The yellow group (Cluster 3) is a mixed group where
most networks are medium in size. They all have high
robustness level ( and low centralization) while their
CAD is in between those of cluster 1 and 2.

In addition to the general characteristics for each cluster,
Figure 3 shows the ranking of network according to their
important properties in an ascending fashion. In other words,
network within cluster are situated higher in the tree if it
possess higher value of cluster characteristic. For instance,
the yellow cluster (cluster 3) networks are all highly robust
network and the pairing in the dendrogram shows the rank
of the robustness level. Barcelona metro and Amsterdam
metro-tram are paired up first since their robustness level are
0.65 and 0.7, respectively. Next, they are matched with the
Netherlands train of which robustness level is 0.78. Finally,
the three merged with Santiago metro which has the highest
robustness level among all networks in this data set. In
addition, this pattern is also in other three cluster. The blue
cluster (cluster 1) shows the rank of centralization while both
the red (cluster 4) and green cluster (cluster 2) exhibit the
rank for service connectivity.

Fig. 2: Comparison of silhouette coefficient value for different
number of clusters from two to seven. Note the red dotted line
show the average value of silhouette coefficient for all clusters.
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Fig. 3: Dendrogram of hierarchical clustering adapting ward criteria
linkage method. (R: Rail, T:Tram, L: Light-rail, and M: Metro) Note
the black horizontal dotted line show the point where the tree is
cut to give four clusters.

IV. CONCLUSIONS

Clustering PTNs based on multiple features has not been
well studied in the literature, although such research can
bring more insights to the strategic planning of PTNs. In
this study, we employed five network features: centralization,
accessibility, robustness, service connectivity and directness
to cluster rail-bound PTNs. We are able to empirically
confirm that highly centralization will result in lower robust
network. Moreover, under this set of indicator, network
are also distinguished by their mode of transportation and
network size. Surprisingly, when metro was combined with
tram network, they can result in two distinct group which
are highly robust or highly centralized.
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