
The Effect of State-visitation Mismatch on
Off-policy Performance in Behaviour-agnostic

Reinforcement Learning

Kevin Yi Chen1

Supervisor(s): Frans Oliehoek1, Stephan Bongers1
1EEMCS, Delft University of Technology, The Netherlands

June 23, 2024

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Name of the student: Kevin Yi Chen
Final project course: CSE3000 Research Project
Thesis committee: Frans Oliehoek, Stephan Bongers, Catholijn Jonker



Abstract
Off-policy evaluation has some key problems with one of them being the “curse of

horizon”. With recent breakthroughs [1] [2], new estimators have emerged that utilise
importance sampling of the individual state-action pairs and reward rather than over
the whole trajectory. With the difference between behaviour and target policy, the
state-visitation mismatch occurs. This paper is interested in answering the question
how the degree of state-visitation mismatch affects the overall target policy perfor-
mance. The approach is to calculate the state-visitation mismatch with the KL diver-
gence, which consists of the state-visitation distribution of the behaviour policy and
the distribution correction ratio of the DICE estimator. The state-visitation mismatch
can be quantified in way. Furthermore, the effect on the target policy performance is
quantified by the MSE between the estimated, empirical cumulative reward and the
estimated reward by the DICE estimator. By analysing the KL divergence and MSE
value, one may argue that the state-visitation mismatch does impact the performance
of the target policy but further research needs to be conducted.

1 Introduction
Reinforcement learning is a section of AI that has demonstrated notable successes in various
domains such as robotics, games and recommendation systems [3]. A key problem within
reinforcement learning is policy evaluation, which aims to estimate the agent’s reward based
on the actions it took given the target policy in an environment. While the data the agent
is trained on could be generated by interacting directly with the environment, this is not
always possible due to high costs/risks. Behaviour-agnostic reinforcement learning provides
a solution by having agents learn based on off-policy data where they do not know the be-
haviour policies that generated said data [4].

Behaviour-agnostic reinforcement learning presents numerous challenges with one significant
challenge known as the “curse of horizon” [1]. This refers to the problem of using importance
sampling to accurately estimating the value of a target policy over a long time period using
off-policy evaluation methods. The value of a policy is estimated by summing the rewards
obtained over a sequence of visiting states and taking actions in the environment. As the
time horizon increases, the variance of the estimated value also increases. This variance
poses challenges, particularly in behaviour-agnostic reinforcement learning scenarios, where
the data collected by the behaviour policy may not accurately represent the long-term re-
wards of following the target policy.

Existing research has made significant advancements in off-policy evaluation and behaviour-
agnostic reinforcement learning. Firstly, researchers have found a way to break the “curse
of horizon” by using importance sampling on the average visitation distribution of state-
action pairs, reducing the estimator’s variance [1]. Furthermore, researchers have been able
to develop estimators that model the ratio between the state-visitation distributions of the
behaviour and target policy. These estimators are called and categorised as the DIstribution
Correction Estimation (DICE) family with examples being DualDICE [4], AlgaeDICE [5],
GenDICE [6] and GradientDICE [7]. In addition, researchers have created a unified frame-
work that reduces the estimators’ variance and bias by formulating the off-policy evaluation
problem as a linear program [8]. This approach combines the strengths of various DICE
estimators by optimising a linear objective function, resulting in more accurate estimations.
However, there remains a knowledge gap regarding how state-visitation mismatches, arising
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from differences between the behaviour and target policies, affect the performance of the
target policy.

The objective of this research is to investigate how state-visitation mismatches affect target
policy performance in behaviour-agnostic reinforcement learning scenarios. First, the degree
of state-visitation mismatch and target policy performance is identified and quantified using
various metrics. Afterwards, an empirical study is carried out to examine how the degree
of state-visitation mismatch may influence the performance of the target policy in multiple
experimental configurations. With a focus on high-risk and/or high-cost applications, this
research attempts to enhance the development of greater reinforcement learning techniques
and methods.

2 Understanding Off-policy Evaluation
This section provides the background necessary to understand the concept of off-policy
evaluation in reinforcement learning. First of all, the Markov Decision Process (MDP) is
introduced, which describes the environment and how an agent interacts with it. Subse-
quently, the performance of a policy is quantified by the normalised expected cumulative
discounted reward, providing a measure of the agent’s performance. Thereafter, the concept
of the state-visitation mismatch, importance sampling and curse of horizon are explained,
emphasising the challenges in off-policy evaluation. Last of all, the application of DICE es-
timators in off-policy evaluation helps to address the state-visitation mismatch and provide
better evaluations.

2.1 Markov Decision Process (MDP)
A Markov Decision Process (MDP) is an abstraction of the environment in reinforcement
learning and describes how an agent interacts with the environment to generate the training
data under a policy π. An MDP is defined by a tuple (S,A,R, T, µ0, γ), where [9]:

• S represents the state space;

• A represents the action space;

• R is the reward function R(s, a), which gives the reward after transitioning from state
s by taking action a;

• T is the transition probability function T (s′|s, a), which defines the probability of
transitioning to state s′ from state s after taking action a;

• µ0 is the initial state distribution;

• γ is the discount factor where γ ∈ (0, 1].

Starting at an initial state s0 ∼ µ0, a behaviour policy π interacts with the environment to
produce a probability distribution π(·|st) across the action space A. An action at is sampled
from this distribution and applied to the environment at each step t ≥ 0. Afterwards, the
environment generates a reward rt based on the reward function R(st, at) and transitions
to a next state st+1 based on the transition probability function T (st+1|st, at).
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2.2 Policy Evaluation
The value of a policy π is defined as the normalised expected cumulative discounted reward
[8]:

ρ(π) = (1− γ)E

[ ∞∑
t=0

γtR(st, at) | s0 ∼ µ0,∀t, at ∼ π(st), st+1 ∼ T (st, at)

]
, (1)

• π is the strategy the agent follows in the environment, mapping states st to actions
at;

• ρ(π) represents the long-term expected reward (value) of following policy π, normalised
by the factor 1 - γ;

• γ is the discount factor that determines the present value of future rewards. A smaller
γ values future rewards less, while a larger γ values them more;

• E represents the expected value or average over all possible sequences of state and
actions (trajectories) the agent could take;

•
∑∞

t=0 γ
tR(st, at) is the sum of rewards after taking action at in state st where time

step t goes from 0 to infinity;

• s0 ∼ µ0 indicates that the initial state s0 comes from the initial state distribution µ0;

• ∀t, at ∼ π(st) indicates that for each time step t, the action at is chosen according to
the policy π based on the current state st;

• st+1 ∼ T (st, at) indicates that the next state st+1 is determined by the transition
probability function T (st+1|st, at).

To summarise, the equation describes the cumulative reward that an agent could expect by
following a specific policy π from any initial state while taking the entire future trajectory
and discounted rewards into account. A trajectory is a sequence of states and actions an
agent experiences while interacting with an environment. In reinforcement learning the
policy being evaluated is referred to as the target policy.

2.3 State-visitation Mismatch
State-visitation mismatch occurs when the state distribution visited by the behaviour pol-
icy differs from the state distribution visited by the target policy [9]. A larger mismatch
could lead to inaccurate estimates in off-policy evaluation since the data collected under
the behaviour policy may not accurately reflect the performance of the target policy. The
mismatch is quantified by comparing the state-visitation distributions of the two policies
and is defined by:

∆SV =
∑

s∈S,a∈A

|dπ(s, a)− dµ(s, a)|, (2)

• ∆SV represents the state-visitation mismatch;

• dπ(s, a) is the state-action pair probability under the target policy π;
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• dµ(s, a) is the state-action pair probability under the behaviour policy µ;

• S represents the finite state space;

• A represents the finite action space.

2.4 Importance Sampling
Importance sampling is a method to adjust the collected data to account for the differences
between the behaviour and target policy by re-weighting the data using importance weights
[1]. An importance weight is the density ratio between the probability of selecting an
action under the target policy π and the probability of selecting the same action under the
behaviour policy µ. The importance weight/density ratio is defined by:

βt =
π(at|st)
µ(at|st)

, (3)

• βt represents the importance weight/density ratio at time step t;

• π(at|st) is the probability of selecting action at in state st under the target policy π;

• µ(at|st) is the probability of selecting action at in state st under the behaviour policy
µ.

2.5 Curse of Horizon
The curse of horizon refers to the difficulty of applying importance sampling to estimate the
value of a target policy over long time horizons [1]. The density ratio of a trajectory is the
product of density ratios of all the state-action pairs in the trajectory and is defined by:

w0:T (τ) =

T∏
t=0

βt, (4)

• w0:T (τ) represents the density ratio of trajectory τ up to time step T ;

•
∏T

t=0 βt is the product T density ratios.

Since the trajectory density ratio is the product of T density ratios, the variance may grow
exponentially with T . However, researchers have developed an approach that significantly
lowers the variance of the density ratio and makes it independent of the time horizon [1].
This is achieved by importance sampling on the average state-visitation distribution of single
steps of state-action pairs instead of the distribution of whole trajectories.

2.6 Off-policy Evaluation Using the DICE Estimators
The goal of off-policy evaluation is to estimate the performance of a target policy using
training data generated by a different behaviour policy. The behaviour policy could be ei-
ther partially or fully unknown. This separation of policies is important in many real-life
situations, such as autonomous driving and robotics, where deploying the target policy di-
rectly could raise safety concerns [10].
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The Distribution Correction Estimation (DICE) family is a group of estimators, including
DualDICE [4], AlgaeDICE [5], GenDICE [6] and GradientDICE [7]. These estimators es-

timate ρ(π) by utilising a fixed, finite dataset D =
{(

s
(i)
0 , s(i), a(i), r(i), s′(i)

)}N

i=1
, where

[8]:

• s
(i)
0 ∼ µ0, indicating that the initial state s

(i)
0 comes from the initial state distribution

µ
(i)
0 ;

• (s(i),a(i)) ∼ dD, indicating that the state-action pair is sampled from some unknown
distribution dD;

• r(i) is the reward obtained by the reward function R(s(i), a(i));

• s
′(i) ∼ T (s(i), a(i)), indicating that the next state is determined by the transition

probability function T (s(i), a(i)).

The DICE estimators estimate ρ(π) as follows [8]:

ρ(π) = E(s,a,r)∼dD [ζ∗(s, a) · r] , (5)

• (s, a, r) ∼ dD is shorthand notation for (s, a) ∼ dD, r(i) = R(s(i), a(i)), s
′(i) ∼

T (s(i), a(i));

• ζ∗(s, a) := dπ(s,a)
dD(s,a)

is the distribution correction ratio, also known as the per-step
density ratio, where:

– dπ(s, a) is the probability of selecting action a in state s under the target policy
π;

– dD(s, a) is the probability of selecting action a in state s in the dataset D.

• E(s,a,r)∼dD is the expected state-action-reward triplets from the datasetD.

Overall, ρ(π) is calculated by summing the distribution correction ratios multiplied by the
corresponding rewards and then averaging the sum over all samples in the dataset D. The
correction ratio ζ∗(s, a) represents the differences between the state-visitation probability
distributions of the behaviour and target policy (state-visitation mismatches), and helps
with reducing the estimator’s variance in order to provide more reliable policy estimations.
The DICE estimators approximate this ratio without knowledge of dπ or dD.

3 Related Work
Although off-policy evaluation has been extensively researched in contextual bandits [11]
[12], recent discoveries within off-policy reinforcement learning indicate extended research to
improve state-of-the-art off-policy evaluation methods and estimators will not stop any time
soon. The recent breakthrough of tackling the curse of horizon by calculating the importance
weights based on the state-visitation distributions rather than the cumulative product of
the whole trajectory [1], has been the foundation for new off-policy estimators and methods.
First of all, a new estimator based on double reinforcement learning [13] was created that
utilises both importance sampling and q-functions [2]. Q-functions are directly estimated
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in the direct method approach to estimate the target policy performance. Moreover, the
estimators of the DICE family, such as [4], [5], [6] and [7], all model the ratio between the
state-visitation distributions of the behaviour and target policy to estimate the value of
the target policy. In addition, a Lagrangian-type estimator similar to the DICE estimators
was developed that is doubly robust and reduces bias [14]. However, this estimator is not
suitable for the behaviour-agnostic setting. Lastly, an off-policy policy optimisation method
was developed that corrects for the difference in state-visitation distributions between the
behaviour and target policy by minimising the KL divergence between the two probability
distributions [15]. However, this paper focusses more on the effect of the state-visitation
mismatch on the target policy performance (off-policy evaluation) rather than using the
state-visitation mismatch for off-policy policy optimisation. Furthermore, the action space
is discrete as opposed to the continuous action space of the policy optimisation paper.

4 Methodology
This section describes the methodology used to answer the research question: How does
the degree of state-visitation mismatch impact the performance of target poli-
cies in behaviour-agnostic off-policy evaluation? Firstly, three metrics are discussed
to quantify the state-visitation mismatch between the behaviour and target policy, the eval-
uated performance of the target policy and the effect of the state-visitation mismatch on
the target policy performance respectively. Afterwards, a novel approach is introduced to
conduct the empirical analysis of the effect of the state-visitation mismatch on the target
policy performance by creating datasets based on the behaviour policy, running the DICE
estimator on the datasets and visualising the results. More details about the algorithms and
choice of DICE estimator are provided later on in Section 4.2.2.

4.1 Quantifying Metrics
Before running the algorithms, the metrics necessary to quantify the effect of state-visitation
mismatch on the target policy performance are provided. First of all, the KL divergence
is considered to measure the state-visitation mismatch between the behaviour and target
policy. Secondly, the target policy performance evaluated by the cumulative reward is
explained. To conclude, the mean squared error (MSE) is discussed to quantify the difference
between the empirical performance of a policy and the estimator’s approximation.

4.1.1 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is a metric to quantify the difference between two
probability distributions [16]. It is used to measure the degree of state-visitation mismatch
between the behaviour and target policy. It quantifies the difference between two distribu-
tions P and Q, where P represents the empirical probability distribution of the dataset while
Q represents an approximate probability distribution of the dataset. The KL divergence is
defined as:

DKL(P |Q) =
∑
x

P (x) log
P (x)

Q(x)
(6)

• x is an instance of a state-action pair (s, a) where s comes from a finite state space S
and a comes from a finite action space A;
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• P represents the empirical probability distribution, which is calculated by iterating
over the dataset created from the environment, counting the occurrences of each state-
action pair (s, a) and dividing each state-action pair count by the total number of
state-action pairs;

• Q represents the approximate probability distribution, which is retrieved by running
the DICE estimators. The DICE estimators estimate the distribution correction ratio
ζ(s, a) between the state distributions of the behaviour and target policy in order to
estimate the value of the target policy ρ(π) as mentioned in equation 5.

The distribution correction ratio ζ∗(s, a) is calculated by dπ(s,a)
dD(s,a)

, with the probability dis-
tribution under the target policy as the nominator and the probability distribution under
the behaviour policy as the denominator. However, looking at equation 6, the inverse of
ζ∗(s, a) is needed to calculate the KL divergence. Therefore, the equation to calculate the
state-visitation distribution is defined by:

DKL(P |Q) =
∑
(s,a)

P (s, a) log
1

ζ(s, a)
(7)

4.1.2 Cumulative Reward

The cumulative reward is the normalised expected reward discounted over time. However,
instead of the time approaching infinity, the summation is bound by the length of the
trajectory, which is sampled from the dataset. The equation is given by equation 5 and
is estimated by the DICE estimators when the datasets are run. Combined with the fact
that the DICE estimators reduce their variance by using the distribution correction ratios
to correct for differences between the behaviour and target policy, the cumulative reward is
chosen as the parameter of interest to reflect the target policy performance.

4.1.3 Mean Squared Error (MSE)

The mean squared error (MSE) measures the difference between the actual and estimated
values and is selected to quantify the difference between the empirical performance and the
estimated performance of the target policy. The MSE is defined as:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (8)

• n is the number of values used to calculate the MSE;

• Yi represents the empirical performance of the target policy, which is calculated by
iterating over the episodes of the dataset and calculating the reward obtained in each
step while taking the discount factor into account;

• Ŷi represents the estimated performance of the target policy, which is obtained by
running the DICE estimator on the dataset.

It should be mentioned that the empirical performance is only approximated and used as
a baseline. By calculating the MSE between the empirical and estimated performance, the
effect of the state-visitation mismatch becomes apparent. A lower MSE means the difference
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between the empirical and estimated performance is small, suggesting the state-visitation
mismatch has a minimal or no effect on the target policy performance while a higher MSE
indicates that the state-visitation has some effect on the target policy performance.

4.2 Calculating the Effect of State-visitation Mismatch on the Tar-
get Policy Performance

The proposed approach is separated into three algorithms. The first algorithm creates the
datasets based on the behaviour policy and calculates the empirical probability distribution
needed to calculate the KL divergence. The following algorithm runs a DICE estimator
on the datasets and obtains the distribution correction ratios and cumulative reward. The
last algorithm combines the values from the previous two algorithms to visualise the results
in various plots. The algorithms to create the datasets and run the DICE estimator are
enhancements of existing algorithms from the DICE estimator repository1. The pseudocode
of all the algorithms are located at the end of the subsections and the lines marked in red
are the adjustments made to the original algorithm.

4.2.1 Generating the Datasets

Executing the algorithm below creates the datasets needed to run the DICE estimator. The
core component of the algorithm is the creation of the on-policy and off-policy datasets based
on the behaviour policy in addition to the state-visitation distribution of the behaviour pol-
icy.

The on-policy dataset µ is created using the environment env, environment size s, boolean
indicating whether to use the default environment map def and α. The environment env,
size s and default value def clearly play a role in the creation of the on-policy dataset.
The size s and default value def decide the dimensions of the environment. The “Frozen
Lake" environment is considered and further details can be found in Section 5.1. The α also
plays a important role in dataset creation. In the DICE estimator repository, the ϵ-greedy
policy is utilised for the Frozen Lake environment. The ϵ determines the probability of
the agent taking an arbitrary action instead of the greedy action, which is the best action
considered by the agent in a given state. A higher ϵ means the agent explores more by
taking arbitrary actions while a lower ϵ means the agent exploits more by taking the action
the agent considers the best. The ϵ is calculated by 0.2 ∗ (1.0−α). Thus, a higher α results
in a lower ϵ and vice versa. However, the choice was made to modify the equation to allow
the datasets to contain a wider/narrower range of state-action pairs, resulting in different
values for the KL divergence and MSE. The modified equation is defined by:

ϵ = 1.0 ∗ (1.0− α). (9)

The off-policy dataset π starts as an empty dataset, which is iteratively updated by sampling
trajectories from µ and adding them to π. Due to the nature of how the off-policy dataset
is created, the choice was made to consider multiple datasets per α since each dataset may
differ in their trajectories due to sampling.

The state-visitation distribution of the behaviour policy is calculated by creating a dictio-
nary d and adding all the state-action pairs of the µ as keys to d. Afterwards, the occurrences

1DICE: The DIstribution Correction Estimation Library, https://github.com/google-research/dice_rl.
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of each state-action pair p is counted by iterating through the episodes as well as the total
number of pairs k. Lastly, each state-action pair occurrence count is divided by k to obtain
the state-visitation distribution. This distribution is saved to the repository for later usage.

Algorithm 1 Creating the Datasets
Require: Environment name env, environment size s, boolean indicating to use the default

environment map def , list of α indicating how close the behaviour policy is to the target
policy A, number of datasets to create for each α value m, number of trajectories to
collect n and maximum length of a trajectory l,

1: for each s in S do
2: for each α in A do
3: for i = 1 to m do
4: Create an on-policy dataset µ based on env, s, def and α
5: Create an off-policy dataset π based on n and l
6: Create an empty dictionary d ▷ The state-visitation distribution
7: k = 0 ▷ The total number of state-action pairs
8: for i = 1 to n do
9: Sample a batch of trajectories b from µ

10: for each trajectory t in b do
11: for each step j in t do
12: Create a state-action pair pj
13: if pj not in d then
14: Add pj as a key to d
15: end if
16: Increment the value of key pj in d and k
17: end for
18: end for
19: for each pj in d do
20: Divide the value of key pj by k
21: end for
22: Add the sampled trajectories to π
23: end for
24: end for
25: end for
26: end for

4.2.2 Running the DICE Estimator

After creating all the datasets, the DICE estimator runs over the datasets to estimate the
target policy performance ρ(π). The DICE estimator of choice is Neural DICE. The choice
was made due to its usage of neural networks to iteratively approximate the cumulative
reward during training and it is the default estimator of the DICE estimator repository.

A higher number of training steps n results in more accurate and reliable estimations of
ρ(π). In each training step, the neural network calculates the training step and losses
in order to improve the accuracy the off-policy evaluation. Besides the training losses, it
also calculates and stores the distribution correction ratio ζ(s, a). Due to the iterative and
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optimising nature of the neural network, the ζ(s, a) of the last training step is stored in a file
to calculate the KL divergence later. Furthermore, the cumulative reward cr is estimated
and stored alongside the empirical performance (ground truth). Lastly, the cumulative
reward over the training steps is logged and stored in order to observe the convergence of
the cumulative.

Algorithm 2 Running the DICE Estimator
Require: Off-policy dataset π, state-visitation distribution d, environment name env, en-

vironment size s, boolean indicating to use the default environment map def , list of α
indicating how close the behaviour policy is to the target policy A, number of datasets
to create for each α value m, number of trajectories to collect n, maximum length of a
trajectory l and number of training steps k

1: for each s in S do
2: for each α in A do
3: for i = 1 to m do
4: C = [ ] ▷ List of reward estimations over time for the convergence
5: Retrieve the off-policy dataset π based on env, s, def , α, n and l
6: Create an empty copy d′ of d ▷ For the distribution correction ratios
7: for step i in k do
8: Sample a batch of transitions T from π
9: Calculate the training loss and update the neural network based on T

10: Calculate the distribution correction ratios ζ
11: if i == k − 1 then
12: Update d′ with ζ
13: end if
14: if i == 500 or i == k − 1 then
15: Estimate the cumulative reward c
16: Add c to C
17: end if
18: end for
19: end for
20: end for
21: end for

4.2.3 Visualising All the Results

Due to the size of the algorithm, it is located in Appendix A. The algorithm collects all
the files that were stored earlier, meaning the state-visitation distribution d, distribution
correction ratio ζ, cumulative reward cr and cumulative reward convergence crc.

First, the KL divergence is calculated with d and ζ. For each α, multiple datasets were
created, which may lead to different KL divergences. Therefore, the KL divergences per α
are averaged and appended to a new list kl_divergence_values to use in the plot later on.

Afterwards, cr is used to calculate the MSE. For each dataset per α, cr is split up into the
ground truth g and last estimated reward ler, which are appended to their respective list,
ground_truths and last_estimated_rewards. When all the g’s and ler’s are appended,
the average ground truth tg over all the datasets is calculated. This value is used as the

10



empirical performance of the target policy Y and the elements of last_estimated_rewards
are the estimated performance of the target policy Ŷ . The MSE values mse_values are
calculated per dataset per α and stored in a nested list. A list is created for each α and
contains the MSE values for each individual dataset with the same α.

Thereafter, the average cumulative reward convergence is calculated. For each dataset per
α, the crc is retrieved and appended to a list. Each crc is a list of the cumulative reward at
time step t where t goes from 0 to the maximum length of a trajectory l. To calculate the
average cumulative reward convergence, all the crc’s are averaged per t.

Lastly, the kl_divergence_values and mse_values mentioned earlier are extracted and
used to plot the KL divergence against the MSE in a double box plot. Each box plot
corresponds to a specific α’s MSE values calculated from the datasets.

5 Evaluation of the Datasets

5.1 Experimental Configuration
This section explains the set-up used to conduct the experiments. First of all, a modified
version2 of the DICE estimator repository is used. Also, as mentioned earlier, the choice of
environment is ’Frozen Lake’. Frozen Lake is a discrete environment from OpenAI’s Gym
API3 that involves crossing a frozen lake from start to goal without falling into any holes
by walking over the frozen lake.

Figure 1: OpenAI’s Default Frozen Lake Environment

In addition, the estimator of choice to approximate the target policy’s value is the Neural
DICE estimator. Besides, the number of training steps for the DICE estimator is set to
twenty-five thousand due to the observed convergence towards the average ground truth in
Figure 2.
Additionally, the ϵ is determined by the alpha α with the interval [0.0, 1.0]. A higher α
means the behaviour and target policy are very similar while the opposite is true for a
lower α. Therefore, several values for α are used to create the datasets, specifically the
values (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). Furthermore, the values [4, 10, 50] are considered for the
environment size. Also, the number of datasets per α is set to five due to the scope of the
research and time constraints, resulting in a total of thirty datasets per environment size.
Lastly, the number of trajectories sampled per dataset is two hundred and maximum length
of a trajectory is set to fifty steps.

2Modified dice_rl repository: https://github.com/kevin966/dice_rl
3Frozen Lake environment, https://www.gymlibrary.dev/environments/toy_text/frozen_lake/
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Figure 2: The cumulative reward convergence plotted for different alpha values in the default
Frozen Lake environment

5.2 Results
In all four of the plots, it can be observed that the MSE is the highest for the α = 0.0. For
the default environment size, the box plots for the other α values are very flattened to the
point same data points overlap. For the environment of size 4, the MSE values are quite
low for the other α values as well. It is the same story for the environment sizes of 10 and
50 but there is a small box plot in the environment size of 10 for α = 0.4.
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Figure 3: The KL divergence plotted against the MSE for different alpha values and envi-
ronment sizes

6 Responsible Research
Transparency is ensured by reporting the experimental set-up and elaborating on the method-
ology. The environments used in this research are simple toy examples free of social biases
and discriminations. The repository for the environments is open-source and is continu-
ously developed by OpenAI. All the datasets were created using these environments and
are readily available as well. The repository contains detailed documentation including the
parameter settings and approach.

7 Discussion
The lack in trends in the plots could be due to the limitations of this experiment since only
one estimator and environment were considered. While there were perturbations within the
datasets of the Frozen lake environment due to the variations in environment size and α
values, these were not enough to show any significant trends in the plots. Furthermore, the
simplicity of the Frozen Lake environment might have played a role as well. The size of the
environment was taken into account by customising the dimensions of the environment, the
task itself remained unchanged. In addition, the lack in variation of the estimator might
have had some impact as well since the estimator chosen for this experiment is more suitable
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for continuous policies rather than discrete ones.

8 Conclusions & Future Work

8.1 Limitations
There are certain limitations to this experiment. First of all, the KL divergence metric used
for the state-visitation mismatch only works on probability distributions of discrete policies.
Furthermore, only one environment was used in this experiment, which could influence the
results. Besides, only one estimator was used, which specialises in continuous policies.

8.2 Conclusion
Based on the plots, one could see a trend in the KL divergence lowering the more the α
approaches 1.0. However, the plots are not significantly enough to draw any conclusions on
the affect of the state-visitation mismatch on the target policy performance. There are no
clear trends to be observed that could argue that there is an effect visible.

8.3 Future Work
Future work can be done by selecting different or multiple, more complex environments and
estimators to minimise the bias and influence it can have on the results. Furthermore, differ-
ent metrics for the state-visitation mismatch and the effect of the state-visitation mismatch
on the target policy performance could be considered and looked into.
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A Algorithm

Algorithm 3 Visualising the Results
Require: State-visitation distribution d, distribution correction ratio ζ, cumulative reward

cr, cumulative reward convergence crc environment name env, environment size s,
boolean indicating to use the default environment map def , list of α indicating how
close the behaviour policy is to the target policy A, number of datasets to create for
each α value m, number of trajectories to collect n, maximum length of a trajectory l
and number of training steps k

1: for each s in S do
2: kl_divergence_values = [ ]
3: for each α in A do
4: kl_divergence_values_per_alpha = [ ]
5: for i = 1 to m do
6: Retrieve the d and ζ based on env, s, def , α, n and l
7: Calculate the KL divergence kl based on d and ζ
8: Append kl to kl_divergence_values_per_alpha
9: end for

10: Append the alpha and average KL divergence per alpha kl_divergence_values
11: end for
12: end for
13: for each s in S do
14: mse_values = [ ]
15: ground_truths = [ ]
16: last_estimated_rewards = [ ]
17: for each α in A do
18: for i = 1 to m do
19: Retrieve the cr based on env, s, def , α, n and l
20: Append the ground truth g to ground_truths
21: Append the last estimated reward ler to last_estimated_rewards
22: end for
23: end for
24: Calculate the average ground truth tg based on ground_truths
25: for each α in A do
26: for i = 1 to m do
27: Calculate the MSE mse based on the tg and last_estimated_rewards
28: Append the α and mse to mse_values
29: end for
30: end for
31: end for
32: for each s in S do
33: reward_convergences = [ ]
34: for each α in A do
35: reward_over_time_peralpha = [ ]
36: for i = 1 to m do
37: Retrieve the crc based on env, s, def , α, n and l
38: Append crc to reward_over_time_peralpha
39: end for
40: Append the average cumulative reward over time per alpha to

reward_convergences
41: end for
42: Plot the cumulative reward convergences
43: end for
44: for each s in S do
45: Plot the KL divergences against the MSE
46: end for
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