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ABSTRACT: 
 
The application of terrestrial laser scanning to the study of rock surface roughness faces a major challenge: the inherent range 
imprecision makes the extraction of roughness parameters difficult. In practice, when roughness is in millimeter scale it is often lost 
in the range measurement noise. The parameters extracted from the data, therefore, reflect noise rather than the actual roughness of 
the surface. In this paper we investigate the role of wavelet de-noising methods in the reliable characterization of roughness using 
laser range data. The application of several wavelet decomposition and thresholding methods are demonstrated, and the 
performances of these methods in estimating roughness parameters are compared. As the main measure of roughness fractal 
dimension is derived from 1D profiles in different directions using the roughness length method. It is shown that wavelet de-noising 
in general leads to an improved estimation of the fractal dimension for the roughness profiles. The choice of the decomposition 
method is shown to have a minor effect on the de-noising results; however, the application of hard or soft thresholding mode does 
have a considerable influence on the estimated roughness measures. The presented results suggest that hard thresholding yields more 
accurate de-noised profiles for which the estimated roughness measures are more reliable. 
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1. INTRODUCTION 

The measurement of the surface roughness of rock masses has 
been traditionally based on manual measurement tools such as 
carpenter’s comb and compass and disc clinometers. The 
manual measurements are limited to small samples at accessible 
parts of the rock. Terrestrial laser scanning is an attractive 
alternative measurement technique, which offers large coverage, 
high resolution, and the ability to reach inaccessible high rock 
faces. A fundamental limitation of this technique, particularly in 
the characterization of rock surface roughness in millimeter 
scale, is the measurement noise inherent in laser scanner data. 
In general, error in laser scanner data may originate from three 
main sources: the imprecision of the scanning mechanism and 
the ranging technique (Dorninger et al., 2008), environmental 
conditions (Borah and Voelz, 2007) and the physical and 
geometric properties of the scanned surface itself 
(Soudarissanane et al., 2009). Normally, the systematic 
components of the error are eliminated or modeled through a 
proper calibration procedure (Lichti, 2007). The remaining 
random error is in the order of a few millimeters for a typical 
medium-range (1-150 m) terrestrial laser scanner, and is 
commonly referred to as measurement noise. 
 
The effect of laser scanner measurement noise on roughness 
characterization has been pointed out in a few previous studies. 
Fardin et al., (2004) reported that the fractal dimension obtained 
from raw laser data of a rock face is larger than the expected 
range (according to Kulatilake and Um (1999) 1.2-1.7 for 1D 
profiles, and 2.2-2.7 for 2D patches). They attributed the 
overestimated roughness to the irregular distribution of the 
points in the original point cloud, and performed an 
interpolation of the points into a uniform distribution to reduce 
the fractal dimension to within the expected range. Rahman et 
al., (2006) suggested that the overestimation of surface 

roughness obtained from raw laser data is due to the fact that 
roughness measures reflect more noise in the data than the 
actual roughness of the surface. They used radial basis functions 
to interpolate the data into a smooth surface, which resulted in 
roughness measures within the expected range. Although data 
smoothing by interpolation has been the common approach to 
reduce the influence of noise on roughness characterization, it is 
generally not considered an adequate noise reduction method 
(Gonzalez and Woods, 1992). The basic assumption in data 
smoothing is that the measured surface is actually smooth and 
so by smoothing one can reduce the noise without degrading the 
data related to the actual surface. As this assumption is not valid 
when dealing with rough surfaces, the result of data smoothing 
is the loss of roughness information. Thus, a careful treatment 
of noise in laser range data is of great significance if a realistic 
characterization of rock surface roughness is of concern. In this 
paper we investigate the influence of range measurement noise 
on roughness characterization of rock surfaces using the 
roughness length method (Malinverno, 1990). We demonstrate 
the application of wavelet transform (Hardle et al., 1998; Strang 
and Nguyen, 1996) to removing noise from roughness profiles 
derived from laser scanner point clouds, and compare the 
performance of various wavelet decomposition and thresholding 
methods in the context of surface roughness characterization. 
 
The paper proceeds with an overview of the laser scanning 
technique and the derivation of roughness profiles from laser 
range data in Section 2. In Section 3, the principles of wavelet-
based de-noising are presented along with a description of 
various decomposition and thresholding methods. Section 4 
reports the experimental analysis of the influence of noise on 
roughness characterization and the results of wavelet de-noising 
of roughness profiles. The paper concludes with some remarks 
in Section 5.   
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2. ROCK SURFACE ROUGHNESS FROM LASER 
RANGE DATA 

Laser scanning is an active measurement technique based on 
emitting laser beams to a surface of interest and recording the 
reflections. A scanning mechanism, usually a rotating mirror, 
deflects the emitted beam towards the surface in such a way that 
the entire surface is scanned at regular horizontal and vertical 
angular intervals. The range measurement principle in medium-
range terrestrial laser scanners is most often based on the phase 
difference between the emitted and received waveforms. From 
the measured range and horizontal and vertical scan angles, 3D 
coordinates are computed for each point in a Cartesian 
coordinate system with its origin at the centre of the scanner. 
Today’s laser scanners can measure more than a hundred 
thousand points per second at an angular resolution smaller than 
0.01 degrees (see for instance Faro (2009)). By scanning at such 
high resolution from a few tens of meters distance to a rock face 
one can acquire a dense point cloud that represents the 
geometry of the scanned surface in great detail.  
 
Before roughness information is derived from a point cloud it is 
convenient to rotate the point cloud such that surface roughness 
corresponds to variations in the direction of Z axis. Based on 
the assumption that the point cloud represents a more or less flat 
surface, the rotation can be computed simply by performing the 
principal components analysis (Jolliffe, 2002). The eigenvectors 
and eigenvalues of the covariance matrix of the points describe 
the axes of maximum and minimum variation in the point cloud, 
and provide a transformation of the points to these principal 
axes. By fitting a smooth (usually planar) surface to this rotated 
point cloud a representation of the roughness as the residual 
height of the points can be obtained. 
 
A common method for roughness characterization, which is also 
adopted in this paper, is the fractal-based roughness length 
method (Malinverno, 1990). In this method, roughness is 
characterized by two measures: fractal dimension and 
amplitude. Both measures can be derived from a 1D profile or a 
2D patch extracted from the point cloud. In either case, the 
roughness measures are estimated based on a power law relation 
between the standard deviation of the residual height of the 
points, s, and the length of a sampling window w: 

( ) Hs w Aw=  (1) 

where parameters A and H are called amplitude and the Hurst 
exponent respectively. These parameters are estimated from the 
intercept and slope of a log-log plot of s versus w for several 
lengths of the sampling window. The main measure of 
roughness is the fractal dimension, which is derived from the 

Hurst exponent as D = 2-H for a 1D profile, and D = 3-H for a 
2D patch. A large fractal dimension indicates a very rough 
surface with abrupt changes of the residual height whereas a 
small fractal dimension implies a smooth surface without much 
roughness. More details on the estimation of fractal dimension 
for 1D profiles can be found in Kulatilake and Um (1999), and 
for 2D patches in Fardin et al., (2004). In the rest of the paper 
we focus on the characterization of roughness in 1D profiles.  
 
3. WAVELET DE-NOISING OF ROUGHNESS 

PROFILES 

Wavelet de-noising is based on the wavelet transform (Strang 
and Nguyen, 1996) for decomposing a signal into several 
components of different scale and resolution. The basic 
principle is that high-frequency components are more likely to 
contain noise than low-frequency components that contain the 
general trend of the signal. The purpose of wavelet 
decomposition in de-noising laser range data is to remove noise 
only from the high frequency components so as to preserve the 
low frequency content of the data as much as possible. The 
procedure for the wavelet de-noising of a roughness profile 
consists of several steps as shown in Fig. 1. The first step is the 
decomposition, which can be done by the discrete wavelet 
transform or by the wavelet packet method. The actual de-
noising is performed by applying a threshold to the high-
frequency components. The value of the threshold depends on 
an estimation of the level of noise in the data and the threshold 
selection method. The application of the threshold can also be 
done in the hard as well as soft mode. The final step involves 
the reconstruction of the thresholded components to yield the 
de-noised profile. The following sections provide a more 
detailed description of the wavelet de-noising procedure. 
 
3.1 Wavelet decomposition and reconstruction 

The wavelet decomposition process consists of two operations: 
filtering and downsampling. Filtering separates the signal into 
components of different scale: convolution with a low-pass 
filter generates the low-frequency components known as 
approximation coefficients, and convolution with a high-pass 
filter results in the high frequency components known as detail 
coefficients. The downsampling operation reduces the 
resolution of the coefficients to one-half. The decomposition 
process may be iterated in several levels. In multi-level 
decomposition we distinguish between two decomposition 
principles. In the discrete wavelet transform (DWT), the 
decomposition is applied to approximation coefficients only. In 
the wavelet packet method (WP) both the approximations and 
the details are decomposed.  
 

Fig. 1. Wavelet de-noising procedure. 
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Wavelet reconstruction is the process of recovering the original 
profile from its components. The reconstruction process 
consists of two operations: upsampling and filtering. The 
components are upsampled by inserting zeros between the 
samples and then convolved with the reconstruction filters. The 
approximation coefficients are convolved with a dual low-pass 
filter, and the detail coefficients are convolved with a dual high-
pass filter. The reconstructed approximations and details are 
then summed up to yield the reconstructed profile. The 
decomposition and reconstruction filters should meet certain 
requirements in order to guarantee a perfect reconstruction of 
the data from the coefficients. A detailed description of the 
design of wavelet filters can be found in Strang and Nguyen 
(1996). 
 
3.2 Thresholding of wavelet coefficients 

De-noising by the thresholding of wavelet coefficients is based 
on an important property of wavelet decomposition that 
transforms white noise into white noise (Donoho and 
Johnstone, 1995). Since normally systematic errors are 
eliminated from the laser scanner data it is prudent to assume 
that the remaining error is white noise with Gaussian 
distribution. The thresholding is usually applied to the detail 
coefficients to ensure the preservation of the actual data. There 
are several methods for the estimation of the threshold value. In 
this paper, we compare two main threshold estimation methods: 
fixed-form thresholding and penalized thresholding. 
 
The fixed-form thresholding method was proposed by Donoho 
and Johnstone (1994). For the detail coefficients of a profile 
obtained by the discrete wavelet transform the fixed-form 
threshold is estimated as: 

2 log( )f
nt dσ=  (2) 

where d is the length of the detail coefficients at the first level 
of decomposition, and σn is the standard deviation of noise. For 
the wavelet packet decomposition of a profile the fixed-form 
threshold is estimated as: 

( )2 log log( ) / log(2)f
nt d dσ=  (3) 

To estimate the standard deviation of noise from the data the 
median absolute deviation (MAD) of the coefficients has been 
proposed by Donoho and Johnstone (1995): 

1
Median( )

0.6745n kwσ =  (4) 

where 
kw are the detail coefficients at the first level. 

 
The penalized thresholding method was proposed by Birge and 
Massart (1997). This method is based on minimizing a penalty 
function defined as: 

2 2

1,...,

arg min ( , ) 2 ( log( ))k n
t n

n
t w k t t

t
σ α∗

=

 = − < + +  
∑  (5) 

where α is a sparsity parameter and n is the number of detail 
coefficients wk sorted in descending order. The penalized 
threshold for both the discrete wavelet transform and the 
wavelet packet is then estimated as:  

p

t
t w ∗=  (6) 

The sparsity parameter α can be tuned to obtain different 
threshold values. Three levels of penalized thresholding are 
common: penalized low (α = 1.5); penalized medium (α = 2); 
and penalized high (α = 5). 
 
The application of the threshold can also be done in two modes. 
The standard hard thresholding criterion is defined as: 

, ,

,

,

ˆ
0

j k j kh
j k

j k

w if w t
w

if w t

 ≥= 
〈

 (7) 

where t is the threshold and wj,k are wavelet coefficients. The 
soft thresholding criterion is defined as: 
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 (8) 

The soft thresholding criterion for wavelet de-noising was 
suggested by Donoho (1995). In contrast to hard thresholding, 
which can result in discontinuities (sharp drops) in the de-
noised profile, soft thresholding yields a smooth output. Fig. 2 
demonstrates the difference between the hard and soft 
thresholding modes. In the hard thresholding mode data beyond 
the threshold are preserved, but discontinuities are inevitable. 
Soft thresholding on the other hand shrinks the entire profile in 
order to prevent the occurrence of discontinuities.  
 

 
Fig. 2. The concept of hard and soft thresholding. 

 
4. EXPERIMENTS AND RESULTS 

The wavelet decomposition and thresholding methods were 
applied to roughness profiles extracted from a laser point cloud 
of a rock surface with millimeter-scale roughness. Fractal 
dimension was estimated for the de-noised profiles as well as 
the original laser profiles, and also for the manually measured 
roughness profiles to serve as reference. The following sections 
describe the experimental setup followed by the results and 
comparisons. 
 
4.1 Study area 

The scanned rock is situated in Tailfer, about 20 km south of 
the city of Namur and on the east side of the Meuse River in 
southern Belgium. The geological character of the scanned rock 
is a slightly metamorphosed limestone that is part of Lustin 
formation of carbonate mounts. 
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4.2 Data description 

The rock surface was scanned with a Faro LS880 terrestrial 
laser scanner (Faro, 2009). The scanner was positioned at 
approximately 5 meters distance to the rock surface, and 
operated at the highest possible angular resolution, i.e. 0.009 
degrees.  The resulting point cloud contained about 1.2 million 
points on the rock surface with a point-spacing of 1 mm on 
average. According to the technical specifications of the laser 
scanner, the nominal range precision at a perpendicular 
incidence angle, which was roughly the case in our scan, is 
between 0.7 mm and 5.2 mm respectively for objects of 90% 
and 10% reflectivity at a distance of 10 m.  
 
Roughness data were also collected manually along three 
profiles on the rock surface by using a carpenter’s profile gauge 
with metallic rods at 1 mm intervals. These profiles were 
marked with white chalk and were visible in the reflectance 
image of the laser scanner data. Fig. 3 shows the profiles along 
which manual measurements were made, and their traces in the 
reflectance data of the point cloud.  
 
The principal components were computed for a cutout of the 
point cloud that contained the profiles. The transformation 
parameters were then applied to rotate the point cloud into a 
more or less horizontal surface. Guided by the chalk traces in 
the reflectance image, three corresponding roughness profiles 
were extracted from the point cloud with samples interpolated at 
regular 1 mm intervals. The results of this procedure were three 
pairs of roughness profiles derived correspondingly from the 
manual and laser measurements with the same length and spatial 
resolution. We refer to these as the horizontal, diagonal and 
vertical profiles. Fig. 4 depicts the corresponding manual and 
laser roughness profiles in the horizontal direction. 
 
4.3 Results 

Using the roughness length method the fractal dimension was 
estimated for roughness profiles from both the laser scanner 
data and the manual measurements. The unit of profile length 
was chosen as 1 cm for all profiles to guarantee an appropriate 
density of 10 points per unit length. The power law relation was 
determined for each profile by calculating the standard 
deviation of the profile height within windows of 8 different 
sizes ranging from 3% to 10% of the profile length. Fig. 5 
illustrates the power law relation between the window size and 
the standard deviation of the profile height for the laser and 
manual profiles in the horizontal direction. Here, the fractal 
dimension is estimated at 1.17 for the manual profile, and 1.96 
for the laser profile. Considering the expected range of 1.2-1.7, 
the laser profile yields a clearly overestimated measure of 
roughness, while the fractal dimension of the manual profile is 
also slightly below the expected range. 
 

To study the role of wavelet de-noising, different wavelet 
decomposition and thresholding methods were applied to the 
laser profiles and the estimated fractal dimensions for the de-
noised profiles were compared with those of the manual 
profiles. For all profiles the decomposition was performed in 3 
levels using a Daubechies wavelet of order 3 (db3). The 
standard deviation of noise was estimated at 1.8 mm, 1.3 mm, 
and 1.5 mm, respectively for the laser profile in the horizontal, 
diagonal and vertical direction. From these estimated noise 
levels thresholds were computed using the methods described in 
Section 3.2, and were applied to the detail coefficients globally 
at all decomposition levels. Table 1 summarizes the fractal 
dimensions estimated for the de-noised profiles obtained by 
using the discrete wavelet transform as the decomposition 
method. The same measures estimated for the de-noised profiles 
obtained by using the wavelet packets are summarized in Table 
2. It can be seen that the fractal dimensions of the de-noised 
profiles vary across different thresholding methods; the 
variation is however smaller across different decomposition 
methods.  

Fig. 3. A. manual measurement of roughness profiles; B. cutout 
of the rotated point cloud of the rock surface 
visualized with reflectance values. 
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Fig. 4. Manually measured and laser scanned roughness profiles in the horizontal direction. 
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Fig. 6 depicts the variation in the fractal dimension of the de-
noised profiles in the horizontal direction across different 
decomposition and thresholding methods. As it can be seen, the 
choice of the decomposition method has a minor impact on the 
fractal dimension of the de-noised profiles: the fractal 
dimensions pertaining to the discrete wavelet transform are only 
slightly larger than those of the wavelet packets. This can be 
verified also for the diagonal and vertical profiles from Table 1 
and Table 2. 
 
A noticeable difference in the performance of the de-noising 
methods can be seen in the application of hard and soft 
thresholding modes. Fig. 7 shows the influence of hard and soft 
thresholding on the fractal dimension obtained for the de-noised 
profiles in the horizontal direction. Soft thresholding results in 
too smooth de-noised profiles for which the estimated fractal 
dimensions are smaller than that of the manually measured 
profile and below the expected range. On the contrary, the de-
noised profiles obtained by hard thresholding yield fractal 
dimensions that are within the expected range, except when 
penalized-high thresholding method is used. The fractal 
dimensions corresponding to the penalized high thresholding 
with both decomposition methods are in fact smaller than 1. 
The difference between the performances of hard and soft 
thresholding methods can be seen also for the diagonal and 
vertical profiles in Table 1 and Table2.  
 
An examination of the results of different thresholding methods 
suggests that the fixed-form threshold applied in hard mode to 
the coefficients obtained by the wavelet packet decomposition 
yields fractal dimension values that are closer to those of the 
manually measured profiles and are also within the expected 
range. With the discrete wavelet transform as the decomposition 
method the penalized low thresholding method applied in soft 
mode seems to be an appropriate choice. Fig. 8 shows the result 
of penalized-low soft thresholding applied to the DWT 
coefficients of the horizontal laser profile, which compares well 
with the corresponding manually measured profile.  
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Fig. 5. The log-log plot of the standard deviation of profile 

height against window length for the laser and 
manually measured profiles in the horizontal 
direction. 

5. CONCLUDING REMARKS 

We investigated the role of wavelet de-noising of laser range 
data in reliable characterization of rock surface roughness. It 

was shown that fractal dimension values estimated for profiles 
derived from laser scanner data are generally larger than the 
expected values. The role of wavelet de-noising was 
investigated through the comparison of fractal dimensions 
estimated for the de-noised profiles with those of the 
corresponding manually measured profiles. The results of 
wavelet de-noising methods in general led to an improvement of 
the roughness measures estimated for the laser profiles. The 
fractal dimensions obtained for most of the decomposition and 
thresholding methods were within the expected range. The 
choice of the decomposition method was not found to affect the 
de-noising result; however, the application of hard or soft 
thresholding mode did have an impact on the estimated 
roughness measures. The presented results suggest that hard 
thresholding yields more accurate de-noised profiles for which 
the estimated roughness measures are more reliable.  
 
In this research, the de-noising methods were applied to 1D 
profiles extracted from the laser scanner point cloud. Future 
research will focus on 2D wavelet de-noising of a range image, 
which is the fundamental data structure of terrestrial laser 
scanners. Other topics for further research include an 
investigation of the role of point density and profile length, and 
an analysis of the de-noising results using other roughness 
characterization methods. 

Table 1. Fractal dimension values estimated for the de-noised 
profiles using discrete wavelet transform as the 
decomposition method. 

 

Table 2. Fractal dimension values estimated for the de-noised 
profiles using wavelet packets as the decomposition 
method. 
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Fig. 6. Effect of decomposition method on the fractal dimension 

of de-noised profiles. 
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Fig. 7. Effect of hard and soft thresholding on the fractal 

dimension of de-noised profiles. 
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Fig. 8. De-noised laser profile obtained by penalized-low soft thresholding of the DWT coefficients compared with the 

corresponding manually measured profile. 
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