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Abstract

This work introduces a new method to deal with design dependent pressure loads in Topology Optimisa-
tion (TO) using the SIMP material model. A pronounced focus is on optimising pressure actuated compliant
mechanisms. The difficulty herein is the interpretation of the pressure boundary in a TO design. In TO the
boundaries are blurry, because of the filtering of the design variables, which is necessary to prevent checker-
boarding. Another reason why the boundary is poorly defined is that the optimisation starts from an equally
distributed grey, where black and white respectively are solid and void, so the boundary is either the domain
boundary or not defined in early iterations of the optimisation. The methods proposed in literature often
try to find the void-solid interface exposed to the pressure source to apply the loading from a pressure line
directly. The method proposed in this work, appropriately called the Darcy method, first calculates the pres-
sure field by using Darcy’s law governing the flow through porous media and the associated pressure drop.
A flow coefficient is introduced that decreases if the virtual element density increases. This results in a de-
sign dependent pressure field that can be solved using the Finite Element Method (FEM), which can then be
translated to consistent nodal forces that are applied to the TO problem. A drainage coefficient has also been
introduced to make sure that the pressure is drained entirely to the environment pressure over the first en-
countered void-solid interface exposed to the pressure source. The Darcy method has proven to function well
in several test cases. The method has been thoroughly tested using several parameter sweeps on a clamp-
ing problem objective. The parameters whose influence is examined are: the initial condition, the density
threshold value, flow coefficient gradient at the threshold, output spring stiffness and the volume fraction.
Subsequently, some alternative TO problems are solved showing the diversity of the method. In perspective
of future research, the Darcy method can function as a great tool to research load sensitivities by tuning the
pressure field control parameters. The extension of the Darcy method to 3D or to several load cases comes
naturally but has not been tested in this work, this is also recommended for future research.

Keywords: Topology Optimisation, design dependent loading, pressure load, Darcy’s law,
compliant mechanisms, soft robotics.
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1
Introduction

1.1. Motivation and goal of this thesis

Nowadays, there is a wide application for pressure driven actuators and mechanisms, either pneumatic or
hydraulic. On a large scale, heavy lifting and digging machines often work with hydraulic cylinders and on
a smaller scale, pneumatics are often used to guarantee the safe interaction with humans. Pneumatic ac-
tuators are by definition less stiff because of the compressibility of air and will naturally operate in a lower
loading range with pressures of about 1×105 Nm−2. Hydraulic actuators can be extremely stiff and work with
pressures in the order of 1×108 Nm−2.

Figure 1.1: Soft gripper de-
signed by Soft Robotics Inc.

A distinction can be made in the group of pressure driven mechanisms between
classic mechanisms, with sliding components like a piston and cylinder, and
compliant mechanisms that bend, deform and/or inflate to perform their task
e.g. the finger like grippers in Figure 1.1. This thesis focusses on the latter. The
pressure driven compliant mechanisms are commonly used in the field of soft
robotics where, among others, they are deployed for the safe interaction with
humans or handling vegetables without bruising them, as shown in Figure 1.1.
However, research to the optimal shape (or topology) of such mechanisms has
only been performed to a limited extend. Optimisation could bring us new de-
signs that are more space and energy efficient. It might also find topologies, not
thought of before and form a source of inspiration for the creative mind.

This thesis aims to construct a Topology Optimisation (TO) method that calculates the optimal design of such
a pressure-driven compliant mechanism. Topology Optimisation is introduced in Section 1.3. A few of such
methods already exist, but, as will be explained in Section 1.2, improvements can be made with respect to
existing methods. The focus of this work is in particular on defining a design dependent and continuous
pressure field p(x, y) in order to improve the optimisation behaviour of a pressure actuated compliant mech-
anism. Additionally, this work shows an interest in finding single-walled design solutions common in the soft
robotics field, like the inflatables in Figure 1.1.

Henceforth, the following research questions are posed:
1) Can a differentiable and globally defined pressure field formulation be used to perform a Topology Opti-
misation of a pressure actuated compliant mechanism?
2) Does this formulation improve the chance of finding a better optimum?
3) Can the parameters in this formulation be tuned such that soft robotic like1 shapes can be extracted?

Optimisation of a pressure loaded structure introduces a few challenges. One being that the surface on which
the pressure load acts is design dependent and not clearly defined in the popular TO method that is used in
this work. In other words, the pressure acts on the unclear and evolving inner boundary of the design. As a

1The field of soft robotics often uses tentacle like structures of a single material, they often comprise of a single enclosing wall (they are
single walled) and deflect by inflation.
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2 1. Introduction

direct consequence, finding the optimal design is for a large part about positioning the pressure boundary to
the ideal location.

The author of this work, J.S. Frouws, conducted a literature review prior to this work, with the title: ‘Topology
Optimisation of compliant mechanisms using design dependent pressure loading’. In this study, the applica-
tion of design dependent pressure loads is investigated. The aim of the literature review was to gather the
available boundary identification methods in literature which identify the inner pressure boundary2 (at each
design iteration) and see how the load is applied in the right location. Consequently, the methods are eval-
uated on their performance. The results and considerations of the literature study are further explained in
Section 1.5.

1.2. History of structural optimisation

The optimisation of the shape of an object to increase its performance is a topic that dates back more than
a century. An early example in the field is the paper by A. Michell, 1904 [21]. He mathematically derived the
stiffest configuration of trusses (or beams) for several load cases3. These configurations are often referred to
as ‘Michell trusses’, one example is shown in Figure 1.2a. It was much later that the field gained more momen-
tum with the rise of modern computers. In 1988, M. Bensøe and N. Kikuchi [3] introduced the homogenisa-
tion method. This method allows holes to be added and removed in a topology as opposed to the (at that time
more commonly known) shape optimisation methods where the amount of holes is prescribed. An example
of using the homogenisation method is shown in Figure 1.2b. Another great benefit is the straightforward
implementation in 3D. Bensøe published a follow-up paper [2] in 1989 and in 1992 in which he introduced
a simplified version of the method, namely the SIMP method, of which an example is shown in Figure 1.2c.
This method has virtual densities on each element that make up the topology.

(a) 1904: A truss configuration optimized
for the stiffest design with load F and
cilindrically fixed at ‘B’, derived by An-
thony (A.G.M.) Michell [21].

(b) 1991: A topology optimized for the
stiffest design using a homogenisation
method with 110 × 80 = 8800 elements
[27]. The method is proposed by M. Ben-
søe and N. Kikuchi [3].

(c) 2017: A self written Matlab imple-
mentation of the SIMP method. The vol-
ume fraction V ∗

max = 0.1, square mesh
with 2202 = 48400 elements and loading
conditions similar to the Michell truss in
(a).

Figure 1.2: Examples of the development from early structural optimisation to the SIMP method.

The SIMP method gained more ground in the 1990’s as can be seen by the steep rise of published papers.
Nowadays, Topology Optimisation is an active field of research where the popular SIMP method plays a key
role.

1.3. Topology Optimisation

A Topology Optimisation (TO) can find the optimal design or distribution of material, given a design domain,
constraints and an objective that describes the performance of the system. The most common objective in
literature is minimisation of compliance and thus maximisation of stiffness. When using a density based
method like ‘Solid Isotropic Material with Penalisation’ (SIMP), the domain is first divided or meshed into ne

2With the inner pressure boundary, the interface between the void and the solid phase is meant which is exposed to the pressure source.
3A load case is a certain collection of forces (or loads) to which a structure is exposed in a given case. For example, an aircraft should be

able to withstand each extreme weather conditions, each weather condition puts other loads on the structure, these are the load cases
for which a structural analysis is performed.
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number of elements. Each element in the domain is then given its own virtual density value ρe , which has
a value between 0 and 1. If ρe = 1 there is material present on the element e and if ρe = 0 there is a void.
Therefore, the Young’s modulus (or Elastic modulus) is related to ρe in the SIMP material model by:

E e (ρe ) = Emin +ρpE
e (E −Emin), ρe ∈ (0,1), (1.1)

where p is a penalisation factor which is chosen to equal p = 3 in this work. For 0 < ρe < 1 there is a continuous
shift in elastic modulus from Emin (required for numerical stability) to E , which is the Young’s modulus of the
modelled material. The minimum compliance objective can now be written as:

min
ρ

C (ρ) = u>F (ρ),

subject to K(ρ)u = F (ρ),
(1.2)

where:
C = compliance, which is the current objective function (Nm),
ρ = vector of virtual densities,
K = global stiffness matrix (Nm−1),
u = displacement field (m),
F = global force vector (N).
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Figure 1.3: The objective plane with several possible optimi-
sation paths. Three different initial conditions, ρi , converge
to different minima.

To determine whether material needs to be added
or removed by the optimiser the TO needs sensitivi-
ties (collected in the vector: S ). The sensitivities are
simply the derivatives of the objective function C to
the vector of design variables ρ: Se = ∂C

∂ρe
(using in-

dex notation, e is the element index). C (ρ) can be
seen as an ne dimensional objective plane4. Imag-
ine ne being 2 here (for ease of imagining), such that
there are two variables that can be changed to opti-
mise the objective C (ρ1,ρ2). Now, the objective sur-
face can for example look like Figure 1.3. The op-
timiser, in search for the minimum objective value,
uses the sensitivities (represented by the arrows on
the C = 0 plane) as a direction to move in. This
means moving the solution in the direction of great-
est descent. Although ne is typically in the order of
tens of thousands, the method remains the same.
Note that starting at different initial conditions, ρi ,
causes the optimiser to converge to different local
minima.

All TO’s start from an initial condition (or design). Often the initial condition is chosen to be an equally dis-
tributed virtual density value ρ of approximately the maximum allowed volume fraction V ∗

max in the domain,
so ρi ≈V ∗

max1 where 1 is a vector of length ne , filled with ones.

A TO uses the Finite Element Method (FEM) to calculate the nodal displacements (and possibly other proper-
ties) of the proposed design or material distribution to evaluate the objective and sensitivities. A more elab-
orate description of the Topology Optimisation method and its implementation is provided in Appendix A.

1.4. Design dependent pressure loads

In this work, the domain is exposed to a pressure source that exerts a hydrostatic pressure load on the design
where the design is defined as a density field between 0 and 1. The difficulty when applying a pressure load
to a design in TO the boundary on which it acts is poorly defined. The void-solid interface needs to be found
that is exposed to the pressure source.

4ne is the amount of elements in which the domain is divided or meshed. It is also the amount of design variables in the vector ρ.
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Γp0

Γp

Γ(1)
pb Γ(2)

pb

Figure 1.4: Illustration indicating the unclear inner bound-
ary on which the pressure acts.

One focal area in the research on TO using the SIMP
method, is the application of design-dependent
loading (DDL). DDL can either mean applying a
point load from which the location depends on the
design or applying a hydrostatic pressure load that
acts on the evolving inner boundary of the design.
Here, the inner boundary is defined as the void-
solid interface exposed to the pressure source. This
seems to be a clear and foolproof description until
this is put in the context of TO. In TO, boundaries
are generally not well defined. The inner pressure
boundary is called Γpb , as depicted in Figure 1.4.
Two other boundary domains are Γp and Γp0 which
respectively are the boundaries where the pressure
is applied (i.e. where p = 1×105 Pa) and the bound-
ary where ambient pressure occurs (i.e. where p =
0Pa). Note that the pressure interface is not clearly
defined when using the SIMP method, the location
of the interface depends highly on the method that
is used to find the boundary, the so called ‘Bound-
ary Identification Method’ (BIM). Some of the BIM’s
use a density threshold value ρT to pinpoint the lo-

cation of the boundary. Depending onρT the interfaceΓpb can for example be atΓ(1)
pb

or atΓ(2)
pb

, for respectively
a low, or a high value. Section 1.2 gives the recent historic background of shape and topology optimisation
and Section 1.5 discusses the BIM’s found in scientific literature.

The sensitivity vector S consists of two contributions: the ‘structural sensitivities’ and the ‘load sensitivities’.
They respectively promote structural improvements to the objective, and improvements to the loading lo-
cation and magnitude. The structural sensitivities are extensively studied and commonly appear in papers.
However, the contribution of load sensitivities in TO is occasionally suppressed5 [33] or, not embraced as an
essential part of the sensitivities. Assume that a method is used to apply the hydrostatic pressure load to the
Γpb boundary and which incorporates load sensitivities. Then the optimiser knows what the contribution
is of moving the Γpb boundary to the objective, and the optimisation path might for example not get stuck
in the minimum located near the ‘saddle point’ but escape that minimum and converge to a better one. In
Figure 1.3, the saddle point is located at the end of the central optimisation path.

1.5. Boundary Identification Methods in literature

Since the first paper on the topic of Boundary Identification Methods (BIM’s) was published by Hammer
and Olhoff, 2000 [14], several methods have been proposed for detecting the pressure boundary Γpb , upon
which the pressure acts. The challenge was in the fact that that the material distribution is poorly defined in
the beginning of the optimization procedure and that the boundary Γpb can change location at every design
iteration.

Most BIM’s look for an iso-density line based on a threshold density value (ρT ). This method basically requires
a starting point on Γpb and starts walking along Γpb using the density threshold to define the iso-density
direction until reaching either another specified point or closing the boundary Γpb . It is very similar to using
a contour line of the virtual density field. This can either be applied on the element boundary as proposed by
Zhang et al., 2008 [33] (see figure 1.5a) or more smoothly using nodal densities (as the average of surrounding
element densities) as proposed by Hammer et al., 2000 [14]. The nodal density method was later revisited
and improved by Du and Olhoff, 2004 [10] (see figure 1.5b). Lee and Martins, 2012 [19] improved on the
start conditions of the boundary search by proposing a method that does not need to define the start and
endpoint of the boundary, but can start somewhere halfway. These methods are scalable to 3D, but not as
straightforward as desired.

5In [33] the pressure boundary Γpb is moved to element boundaries making the load location discontinuous, virtually eliminating the
load sensitivity.
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(a) Element boundary walker method,
[33]

(b) Isodensity line using nodal
densities, [10]

Figure 1.5: Iso-density search algorithms where (b) uses nodal densities (which is the average density of the surrounding
elements) and (a) uses element densities to determine the marching direction to find the iso-density boundary (similar
to the definition of a contour line).

Pushing the boundary Γpb to the edges of the elements makes the ‘load sensitivity’ vanish because the lo-
cation of the loads becomes discrete. Then Γpb is not sensitive to infinitesimal changes in the density field,
unless the threshold value ρT is passed, then the nodal loads ‘jump’ to the next element. This is undesirable
as the very reason that SIMP uses continuous densities is to have differentiability and a greater chance of
finding a better optima (or the global one).

Another group of methods is characterized by the additional variables that need to be solved. Fuchs and
Shemesh, 2004 [11] proposed a method where the Γpb is predefined using an additional set of variables.
These variables are then added to the optimization algorithm and optimized together with the design vari-
ables.

Yet another method sees the density-field (in the SIMP material model) as a grey-scale image. Therefore the
application of image segmentation techniques comes naturally. One of the most recent papers by Wang et
al., 2016 [32] introduced the Distance Regularized Level Set Evolution (DRLSE) (proposed by Li et al., 2010
[20]) to the boundary search problem of TO. They use a level set function (LSF) φ to describe the boundary.
However, the downfall is that there is no analytical load-sensitivity analysis presented (due to the difficult
analytical relation between the LSF and the density distribution) forcing the user to apply the expensive finite-
difference method. The paper greatly reduced the amount of elements that need local sensitivity analysis by
noting that the load sensitivity is only affected by closely oriented elements as observed earlier by [10]6

Finally there are the alternative BIM’s, Zheng et al., 2009 [34] introduces a pseudo electric potential (of
V0|Γp = 1) as analogous to a pressure source and models the material as isolator. On all other boundaries,
the ‘zero pressure’ boundary condition is realised by setting the potential to zero (V |Γp0

= 0). The design de-
pendent pressure loading can now be described as an iso-potential line in the potential-field, the paper uses
a threshold of V = 0.95. The electric field can be found by solving a PDE (very similar to that of the pressure
distribution as described in this work, in Section 3.1) over the same mesh as the mechanics problem. Also in
this paper the pressure boundary is moved to the element boundaries where the load sensitivities vanish.

Where normally the two phases are defined as material and void, Sigmund and Clausen, 2007 [26] model the
void as an incompressible fluid. This allows the pressure to be applied on the designated surface Γp and to
be ‘transferred’ through the incompressible void to the internal material boundary Γpb without any need for
special load surface parametrizations (or load sensitivities). One problem that is introduced, being the pres-
ence of (incompressible) fluid filled cavities, is later avoided by making it a three phase problem: material,
fluid and void, doubling the design variables [26]. The correct discretisation requires a special variational for-
mulation and elements. To have control over the formation of fluid filled cavities, a maximum fluid fraction
is introduced that limits the fluid volume.

The three phase method proposed by Sigmund and Clausen is successfully used by H. Panganiban et al., 2010
and S. Vasista et al., 2012 [22, 31] to solve a compliant mechanism design. It allowed for an easy integration
over the pressure boundary in order to define an alternative ‘input displacement’ constraint for the compliant
mechanism design [22].

6The author would like to emphasize that this highly depends on the BIM.
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After the paper by Sigmund and Clausen [26], several papers appeared on topology optimization of incom-
pressible media [7, 16] and the application to pressure load problems [6]. When using normal displacement
based elements it is numerically difficult to model an incompressible medium. To aid in the numerical solu-
tion, when using this method, a ‘truly-mixed’ variational formulation resulting from the variational principle
of Hellinger-Reissner is used, together with a discretisation based on the Johnson and Mercier finite element
[6].

1.6. The research aim, and a quick glance at the report
A lot of solutions have been proposed for applying the design dependent load (DDL) and these are all tested
on a minimum compliance problem. Only one method is also used in a pressure actuated compliant mecha-
nism design, namely the three phase method in [26]. Although the method showed satisfying results, is stable
and can be extended to 3D, it requires special elements and an adjusted variational formulation[6], and it is
difficult to apply pressure sources inside the domain. Analysing the general concept of a BIM, the used BIM
ideally:

1. offers an explicit formulation of the nodal forces,

2. has stable and reliable execution,

3. provides a high probability of finding the global optimum, and therefore should have load sensitivities
that preferably range further then only elements directly adjacent to the pressure boundary (improving
the convexity of the problem),

4. has not too many tuning parameters,

5. inheres general applicability7 (e.g. 2D, 3D and can naturally be extended to several load cases),

6. is simple to implement (as a non-intervening ‘overlay’ type of solution, not altering the FEM),

7. is computationally cheap.

In literature there has not been a pronounced focus on this, or any, combined set of properties. Every pro-
posed method in the scientific literature has some shortcomings, and that is why in this thesis a new method
is proposed with the focus on the properties listed here. Since the design of a pressure driven compli-
ant mechanism has already been done, the focus of this thesis is narrowed down to finding a boundary-
identification method that stimulates differentiability, more globally present load sensitivities and single
walled structures (like inflatables).

Therefore the research questions are as they are, as described in Section 1.1. In this work a new method is
introduced to define the pressure boundary. Where most other methods try to find a pressure line to calculate
the nodal forces equivalent to the pressure, this work solves a design dependent pressure field using FEM and
then translates the pressure drop to loads on the elements. This two step process allows for a very flexible and
tunable method to apply the pressure loads and, in a satisfactory degree, covers all perks mentioned above.

Chapter 2 introduces the mathematical notation and definitions, together with the names assigned to the
different volumetric domains and boundary domains. It is advised to read this introductory chapter to get
acquainted with the notations. Subsequently, Chapter 3 explains why the Darcy flow can realistically model
the pressure field. It also discusses the relation between the flow parameters and the virtual density ρe on
each element. The chapter ends by deriving the relation between pressure drop and resulting nodal forces.
The proposed BIM is from here on called the Darcy method. Chapter 4 explains the compliant mechanism
objectives that are used for the optimisation of pressure actuated compliant mechanisms. It closes with the
sensitivities of the different objective functions, taking into account the Darcy method. Chapter 5 provides
two additional constraints with their sensitivities to suppress some undesirable design options in the opti-
misation. Then, Chapter 6 contains the results of several different parameter sweeps. Section 6.3.2 to 6.3.5
respectively sweep over several flow coefficient and drainage parameters, several output spring stiffness val-
ues, different initial conditions, different volume fractions. The chapter ends with Section 6.4 which offers
some alternative soft robotic like solutions. Finally, Chapter 7 discusses the results and Chapter 8 offers a
conclusion and recommendations for future research.

7The term ‘inheres’ is used to infer the design of a method with the specific property ‘build-in’ in its basic working mechanism.



2
Mathematical preliminaries

This chapter introduces the equations and notation associated with the Finite Element Analysis (FEA). A full
derivation of a FEA of both a scalar field variable and a displacement field is provided in Appendix B. It is
advised to read this chapter as it will help the reader to become familiar with the notations.

2.1. Notation and definitions

2.1.1. Notation

This section introduces the notation for vectors and matrices used throughout this thesis. First, a scalar value
is indicated as a cursive letter, like t , ξ or x. A column or row vector is indicated as a cursive, bold letter like
F or b and a unit vector has a hat: êi . When indicating a matrix (excluding matrices of the size of a column
or row vector) a bold Capital letter is used like A or K. In some cases the dimension is indicated behind the
equation between straight brackets like:

xe = N(ξ,η)xe
n , [2×8][8×1] (2.1)

where xe =
[

x
y

]
is of the dimension [2×1] which can be directly read from the bracket notation (being the first

and last size indications). The sub or super index e always refers to the element index, often at element level.
In some occasions a sub-index is used behind a bracket:

(
ci Ni fi

)
i=1,...,4 , this indicates that the equation fi

can be evaluated for each i ∈ {1,2,3,4}, making it a set of equations. Finally the comma notation indicates the

derivative to a certain variable like: N1,ξ ≡ ∂N1
∂ξ or ξ,x ≡ ∂ξ

∂x and if the variable to which we differentiate is clear

from context, the apostrophe is used: Se =C ′ = ∂C
∂ρe

.

2.1.2. Set and domain assignments

Γp0

Ωv Ωm

Γu

Γp

Γs

b

Γpb

Figure 2.1: The design domain with indicated
void, material, boundaries and fixtures.

In this section all domains are assigned a name to aid the reader.
Figure 2.1 shows the different domains and boundaries where:

Ωm = Domain with material (ρe ≈ 1),
Ωv = Domain with void (ρe ≈ 0),
Γp = Boundary of applied pressure,
Γp0 = Boundary where outflow pressure is defined as pout,
Γu = Boundary with fixed displacements,
Γs = Boundary with symmetry conditions,
Ω = Ωv ∪Ωm Total domain,
Γ = Γp ∪Γp0 ∪Γu ∪Γs Complete boundary,
b = Body loads (Nm−3).

7



8 2. Mathematical preliminaries

The total domain Ω is divided in ne number of adjacent square (or cubic) elements. On the four corners of
these elements we define the nodes, such that each node is part of four elements. The number of nodes is n.
A physical field can now be expressed on these nodes as discrete nodal values. Then shape functions are used
to interpolate the physical field on the rest of the elements.

If temperature is expressed in nodal values, each node has one temperature value (i.e. a scalar field). But if a
displacement vector is expressed on a node, the node has as many unknowns as it has spatial dimensions it
can move in (i.e. a vector field). So a displacement field in 2D has two unknown Degrees of Freedom (DOF’s)
per node. As such, the DOF’s can be subdivided in the following sets:
Dp = {

1,2, ...,n
}

are all DOF’s indices of a pressure field,
Du = {

1,2, ...,nd
}

are all DOF’s indices of a displacement field (all n nodes have a DOF in d free spatial direc-
tions),
De =

{
1,2, ...,ne

}
consists of all the element indices.

2.2. Finite Element Method

In this thesis, only a rectangular 2D domain is used for simplicity and to cut computational costs (so d =
2). The width and height of the domain and the elements can be adjusted. The division of the domain in
elements (the discretisation) is necessary to derive the finite element (FE) equations. The full derivation is
provided in Appendix B.

2.2.1. Shape functions

The shape functions (or basis functions) interpolate the physical field on the element using the discrete nodal
values. For this work, only bilinear shape functions are used for simplicity 1:

N (ξ) =
[

N1 N2 N3 N4

]
=

[
1
4 (1−ξ)(1+η) 1

4 (1+ξ)(1+η) 1
4 (1−ξ)(1−η) 1

4 (1+ξ)(1−η)
]

. [1×4]

(2.2)
The first of the four shape functions, N1, is displayed in Figure 2.2a. The local numbering of the nodes of a
standard element (of size 2×2 in the ξ,η plane) is shown in Figure 2.2b. Notice that N1 is only one at node 1
and zero on the other three. When N1(ξ) is multiplied by the nodal value of a physical quantity of node 1, the
shape function shows the linear interpolation, and thus the contribution within the element domainΩe .

(a) Shape function: N1.

1: (−1,1) 2: (1,1)

4: (1,−1)3: (−1,−1)

η

ξ

Ωe

0

(b) Standard element domain and node
numbering.

Figure 2.2: (a) The first shape function over a ‘standard’ unit element. (b) indicates the local numbering of the nodes of a
standard element and shows its domain Ωe in the ξ,η plane. If desired, one can look up all the linear shape functions in
Figure B.1 in Appendix B.2.1.

The shape functions can also be organised in a matrix in order to express vector fields on each node instead

1All methods that are proposed in this thesis can handle higher order shape functions.
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of scalar fields. The matrix of shape functions is:

N(ξ) =
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

 [d ×4d ]. (2.3)

This matrix can, for example, be used to express a displacement field or the mapping from the x, y plane
(within an element in the physical domain) to the standard elementΩe in the ξ,ηplane as shown in Figure 2.3.
As the nodal coordinates in the physical (x, y) domain are known from the discretisation, the continuous
description (for d=2) is:

xe (ξ) =
[

x
y

]
= N(ξ)xe

n =
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4





x1

y1

x2

y2

x3

y3

x4

y4


, (2.4)

where xi indicates the x coordinate of the i -th node, the same goes for yi . Sub-index n indicates the vector
of nodal coordinates. Equation (2.4) is valid for −1 ≤ ξ≤ 1 and −1 ≤ η≤ 1.

(x1, y1)

y

x

(−1,1) (1,1)

(1,−1)(−1,−1)

η

ξ

Ωe

0

(x2, y2)

(x4, y4)

(x3, y3)

Mapping: x → ξ

Figure 2.3: Mapping from a deformed element in the x, y plane to the local ξ,η plane (or standard element).

2.2.2. The ‘nabla’ operator: ∇
The nabla operator is used in different operations and is expressed as a vector: ∇ ≡

[
∂
∂x , ∂

∂y , ∂
∂z

]T
for d = 3.

This notation aids in explaining several mathematical concepts like the Gauss theorem and the derivation of
FEA. ∇ can be used, among others, in the following expressions:



∇T = grad T =
[
∂T
∂x , ∂T

∂y , ∂T
∂z

]>
, R →R3

∇>q =∇·q = div q =
(
∂qx
∂x + ∂qy

∂y + ∂qz
∂z

)
, R

3 →R

∇×q = curl q =
[(

∂qz
∂y − ∂qy

∂z

)
,
(
∂qx
∂z − ∂qz

∂x

)
,

(
∂qy

∂x − ∂qx
∂y

)]
R

3 →R3

∆T =∇2T = div
(
grad T

) =
(
∂2T
∂x2 + ∂2T

∂y2 + ∂2T
∂z2

)
, R →R

(2.5)

where q(x, y, z) =
[

qx , qy , qz

]>
is a vector field (e.g. a heat flux) and T (x, y, z) a scalar field (e.g. a temperature

field). These are all continuous expressions of the fields.





3
Pressure boundary identification and

implementation

One of the main problems in this thesis is to obtain the discretised force vector F that results from the pres-
sure load that is applied on the design to actuate the mechanism. This force vector is commonly called the
consistent load vector1 of size [nd × 1] as mentioned in [8]. With the method proposed in this chapter it
takes two steps to obtain the consistent load vector with nodal loads. First, the distribution of pressure, i.e.
the pressure field, is simulated over the domain using a chosen physical model. Second, the nodal forces
are calculated using the obtained pressure field. The first step requires a physical model of the pressure that
depends on the changing topology, i.e. making the pressure drop when it encounters material.

3.1. Modelling the pressure field

To simulate a pressure field in a TO problem, Darcy’s law is chosen. Darcy’s law normally models fluid flow
through a porous medium, like water flow through soil or sandstone. In order to use Darcy’s law in a TO, it is
adjusted to respond to the design. Therefore the porosity is made density dependent. We are free to choose
any other model as long as it models the pressure distribution in a physically correct manner and exhibits the
following properties:

1. the pressure drops from pin to pout = 0 over the boundary or wall when the topology is fully developed,

2. the pressure acts only on a thin layer on the inside of the boundary,

3. results in closed pressure boundaries and prevents leakage,

4. it is easily expandable to 3D, different domains, different boundary conditions (e.g. a symmetry condi-
tion)

5. especially within the context of this thesis, the model should allow the generation of single walled (soft
robotic like) solutions if that is most ideal.

Within these conditions the method can be tuned to behave well in the optimisation. Darcy’s law is chosen
because it offers a tunable differentiability that allows for more optimal solutions (i.e. better decision making)
by allowing more spread out load sensitivities, especially in the early stage of optimisation. In the following
subsection, Darcy’s law is introduced to calculate the pressure field. This calculation is done in each iteration.

1It is called the consistent load vector because in the discretisation its entries are consistent with the integral of the loads on the sur-
rounding elements.

11



12 3. Pressure boundary identification and implementation

3.1.1. Darcy’s law

Darcy’s law can be stated as:

q(x) =−κ
µ
∇p(x) =−K ∇p(x), (3.1)

where K , in m4 N−1 s−1, is introduced here as a flow coefficient2,
and where:

q = Darcy flux (ms−1),
κ = permeability (m2),
µ = fluid viscosity (Pas),
∇p = pressure gradient (Nm−3),

This law states that the flow of (incompressible) fluid through a unit area is proportional to the pressure drop
per unit length and inversely proportional to the resistance of the porous medium on the fluid. Through
Darcy’s law, the pressure will gradually drop from the inner boundary Γpb to the outer boundary Γp0 (where
the prescribed pressure: pout = 0Pa) as illustrated in a 1D example in Figure 3.1a. The flow coefficient K (= κ

µ )
can now be related to the material density: K (ρ). A smooth Heaviside function is chosen to be used that can
be adjusted with two parameters, η and β. This relation, shown in Figure 3.2a, is stated as:

K (ρe ) = kvoid − (kvoid −kmat)
tanh

(
βkηk

)+ tanh
(
βk(ρe −ηk)

)
tanh

(
βkηk

)+ tanh
(
βk(1−ηk)

) , (3.2)

where ηk can be interpreted as a smooth threshold density, analogous to the threshold density used in lit-
erature (as explained in Section 1.2). Hence, ηk can be tuned to alter the position of the step, K (ηk) =
1
2 (kvoid +kmat) and βk to control the slope through: dK

dρe
(ηk) = kmatβk/2. The parameters kvoid and kmat are

used to control the flow coefficient in void (ρe = 0) and full material (ρe = 1) respectively.

The parameter values can be deduced from actual viscosity and permeability values. The permeability of an
impervious material is roughly 1×10−15 m2, and the viscosity of, lets say air, is in an order of magnitude of
1×10−5 Pas. The flow coefficient in material is now chosen to be kmat = 1×10−10 m4 N−1 s−1 and kvoid is then
chosen to be large to mimic a free flow with low resistance in the void region. If kvoid is chosen large enough
there is no significant pressure drop over the void region. kvoid = 1×10−3 m4 N−1 s−1 is generally used in this
work, any variations of this value will be indicated accordingly.

The fact that this model does not allow a pressure drop to occur instantly over a sharp boundary, but over a
finite layer of material, causes the equivalent nodal loads to be present either inside the material as well as
at the very boundary, as shown in Figure 3.1. This penetrating pressure load, caused by the Darcy method,
is a smeared-out version of a pressure on a sharp boundary or interface which is used in most other ‘bound-
ary identification methods’ mentioned in Section 1.2. When all the contributions of the penetrating load
are summed up, it matches the single boundary load3. In other words, it is assumed in this work that local
differences in load application have no significant effect on the global behaviour of the structure, which is
supported by the Saint-Venant principle4.

3.1.2. Similar models, different physics

Using Darcy’s law introduces a weakness in the model which is illustrated in Figure 3.1. When the topology
has more then one ‘wall’ between pin and pout the pressure does not completely drop over the first boundary
as illustrated in Figure 3.1b. To solve this issue we turn to physical models that are directly comparable to
Equation (3.1).

Darcy’s law is similar to Fourier’s law for heat flow (where K ∼ k, the heat conductivity) and Ohm’s law for
electrical conduction (where K ∼ ε, the dielectric coefficient)5.

2The parameter K = κ
µ is introduced here as the ‘flow coefficient’, despite the fact that this terminology is sometimes used in literature

with a different meaning. In this work, K is a measure of the ability to flow, a low K value means a high volumetric resistance, causing a
large pressure drop.

3This is checked by hand with a boundary of a topology that is designed using a self-written TO algorithm in Matlab©.
4The Saint-Venant principle states that the global deformation due to local forces is similar to the global deformation due to the resultant

of the local forces
5Ohm’s law is used by Zheng et al., 2009 [34] to identify the boundary. The main difference between the method introduced in this thesis
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pin

pout

∑
Fi = pin A

x

p
(N

m
−2

)

Nodal forces:

Void: ρ = 0 Object: ρ = 1

(a) Pressure drop over a single boundary without drainage term

pin

pout

∑
Fi = 1

2 pin A

x

p
(N

m
−2

)

∑
Fi = 1

2 pin A

(b) Pressure drop over two boundaries without drainage term

pin

pout

∑
Fi = pin A

x

p
(N

m
−2

)

(c) pressure drop over multiple boundaries with drainage term

Figure 3.1: These illustrations show the behaviour of a one-dimensional pressure field when using Darcy’s law and porous
objects (consisting here of 3 elements). This behaviour is independent of the choice of kvoid and kmat. (a) shows the
pressure drop over a single object. (b) shows an undesirable condition where the pressure drop happens over multiple
objects or walls. In (c) an additional drainage term is used (analogous to a convective term to pout = 0) such that the full
pressure difference acts on the first wall exposed to the pressure source.

To overcome the issue with Darcy’s law when encountering more than one boundary, a phenomena is used
that is better explained using a heat flow analogy. Fourier’s law is:

q =−k ∇T, (3.3)

where:
q = heat flux (Wm−2),
k = heat conductivity (Wm−1 K−1),
∇T = pressure gradient (Km−1).

In a heat flow model, heat can be generated (e.g. inductive heating) or dissipated (e.g. a heat sink) in the
middle of a domain. For example, convective heat loss is governed by: Qconv =

∫
h(T −T0)tdΓ. The effect that

is desired in the Darcy model is a volumetric, material dependent, pressure loss. This would be mathematically
analogous to the inverse of inductive heating, so like volumetric cooling. From here on this is called the

and the method Zheng uses, is that Zheng drives the loads to the edges of the elements which undesirably eliminates load sensitivities.
This thesis promotes the use of a physically correct and intuitive model to define the pressure field and provide the TO with sufficiently
far reaching load sensitivities.
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(b) Drainage coefficient-density relation

Figure 3.2: A smooth Heaviside function is used for K (ρ) and H(ρ). So if the TO converges towards a 0-1 design, the flow
coefficient is almost zero and the drainage very large.

‘drainage’ term and is added as:∫
Ω

Ni Q̃drain dΩ=−
∫
Ω

Ni
(
H(ρe )(p −pout)

)
dΩ, [scalar] (3.4)

where:
H = drainage coefficient (m2 N−1 s−1),
p = continuous pressure field (Nm−2),
pout = external pressure (Nm−2) (in this work pout = 0),
Q̃drain = Volumetric drainage per second per unit volume) (m3 s−1m−3 = s−1).

We can use a density dependent drainage term in our Darcy flux model to make the pressure drop to zero
when ρe = 1, as shown in Figure 3.1c. The relation for H(ρe ) is chosen to be similar to Equation (3.2), being
the smooth Heaviside function. H(ρe ) is plotted in Figure 3.2b and can be written as:

H(ρe ) = hmat
tanh

(
βhηh

)+ tanh
(
βh(ρe −ηh)

)
tanh

(
βhηh

)+ tanh
(
βh(1−ηh)

) . (3.5)

Where again, βh and ηh are chosen similarly to βk and ηk, i.e. to control the location and slope: d H
dρe

(ηh) =
hmatβh/2. The drainage term can be adjusted through the drainage coefficient hmat. With this coefficient one
can adjust the thickness of the pressure-penetration layer. Now, the optimisation algorithm can effectively
control the location, and depth of penetration of the applied pressure.

It is undesirable to have an excessive number of parameters, for that reason we can relate hmat directly to the
desirable penetration depth using:

hmat =
(

lnr

∆s

)2

kmat, (3.6)

where:
hmat = drainage coefficient in material (m2 N−1 s−1),
r = ratio of input pressure to pressure at depth ∆s, i.e.: p(∆s) = r pin,
∆s = penetration depth of pressure (m),
kmat = flow coefficient in material (m4 N−1 s−1).
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This is derived in Appendix C. In this work r = 0.1 and kmat = 1×10−10 m4 N−1 s−1. The value for ∆s can
intuitively be set to the width or height of a few elements, in this work∆s typically is 2∆x = 2mm or two times
the element width. For clarity, Material is defined as the location where ρe = 1.

3.1.3. Deriving the state equation

To solve the pressure field using the Darcy model requires an equation that describes the state of an element.
In this case the law of ‘conservation of mass’ is used. Because the fluid is assumed incompressible, this can
be simplified to a conservation of volume.

qx∆z∆y qx∆z∆y +
(
∂q
∂x ∆x

)
∆z∆y

qy∆z∆y

qy∆z∆x +
(
∂q
∂y ∆y

)
∆z∆x

∆x

∆y
Q̃

Figure 3.3: Equilibrium of incompressible volume flow

Figure 3.3 shows the in- and outflow of a volume element6. The combined inflow and added volume Q̃ should
now equal the outflow, for 2D this is:

Qe
in = Qe

out,

qx∆z∆y + qy∆z∆x + Q̃∆x∆y∆z = qx∆z∆y + qy∆z∆x +
(
∂q
∂x ∆x

)
∆z∆y +

(
∂q
∂y ∆y

)
∆z∆x,

Q̃∆x∆y∆z =
(
∂q
∂x ∆x

)
∆z∆y +

(
∂q
∂y ∆y

)
∆z∆x,

Q̃∆V =
(
∂q
∂x + ∂q

∂y

)
∆V ,

(3.7)

where Q̃ (s−1) is externally added volume per second per unit volume (or removed if negative). This is added
to later operate as a ‘pressure dissipation’ or (more appropriately) ‘drainage’ term and works analogous to a
heat sink (as explained in section 3.1.2). When taking the limit: ∆V → 0, Equation (3.7) can be written as:∫ (

∂qx
∂x + ∂qy

∂y

)
d v −

∫
Q̃ d v = 0,∫

∇·q d v −
∫

Q̃ d v = 0.
(3.8)

Because q contains first derivatives of the pressure, Equation (3.8) requires second spatial derivatives of the
pressure field which is undesirable when using linear shape functions. To overcome this problem the Galerkin
method is used, Equation (3.8) is multiplied by each shape function and integrated over the entire volume:

ne∑
e=1

( ∫
Ωe

(
∇·q −Q̃

)
Ni (ξ)dΩ

)
i=1,..,4

= 0. [scalar] (3.9)

Because the shape function is zero outside the element, the integration is limited to the integration over the
element,Ωe . The next steps are described in Appendix B.3, where the differentiation order is reduced and the
pressure is discretised by using the shape functions contained in N :

p(x) =
ne∑

e=1
N (ξ,η)pe , [1×4][4×1] where pe =


p1

p2

p3

p4

 . (3.10)

6The Darcy flux q is equal to the fluid velocity if there is no porous medium in that volume, if there is, the average fluid velocity would
be higher because there is less area for the volume flow to go through
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Using this the derivation arrives at the FEA equations Equation (B.25), repeated here: Ap = f =

ne∑
e=1

∫
Ωe

Le
p
> (

K Bp
>Bp +H N>N

)
Le

p dΩ︸ ︷︷ ︸
A

p =
ne∑

e=1
Le

p
>

( ∫
Ωe

H N>p0 dΩ−
∫
Γ

N>qΓ ·n dΓ

)
︸ ︷︷ ︸

f

, (3.11)

with p being the global pressure vector of length n and Le
p the index matrix that points to the correct location

of the local element DOF’s in the global DOF vector 7. The variables are defined as:

N (x, y) = vector of shape functions,
Bp (x, y) = matrix of spatial derivatives = N,x (m−1)
n = boundary normal vector,
Le

p = global indexing matrix, [n ×4],
K = flow coefficient, (m4 N−1 s−1)
H = drainage coefficient, (m2 N−1 s−1)
A = global flow matrix, [n ×n] (m5 N−1 s−1)
f = global loading vector, [n ×1] (m3 s−1)
p0 = external drain pressure, here p0 = 0, (Nm−2)
qΓ = prescribed Darcy flux at the boundary. (ms−1)

3.2. Pressure field to consistent nodal loads

Now that the pressure field can be calculated and controlled, it can be translated into consistent nodal loads.
In a FEA, loads can be implemented in two ways. There are the boundary forces that require a surface in-
tegration, and the body forces that require a volume integration. In this section the force resulting from the
change in a pressure field is expressed as an equivalent body force which is easily translated into consistent
nodal loads using standard FEM methods as discussed in Appendix B.4. To find the equivalent body force
vector b, an infinitesimal volume element is considered with pressures acting on it.

p∆z∆y p∆z∆y +
(
∂p
∂x ∆x

)
∆z∆y

p∆z∆x

p∆z∆x +
(
∂p
∂y ∆y

)
∆z∆x

∆x

∆y
b

an equivalent body force (Nm−3)

Figure 3.4: Forces on an infinitesimal volume.

Figure 3.4 shows an element of volume: ∆V =∆x∆y∆z, the pressure loads on the boundaries of the element,
and the body force that we want to set equal to the pressure forces on the volume. From this the following
can be stated:


∑

Fx∑
Fy∑
Fz

=

bx

by

bz

∆V ⇒


p∆z∆y −p∆z∆y −

(
∂p
∂x ∆x

)
∆z∆y

p∆z∆x −p∆z∆x −
(
∂p
∂y ∆y

)
∆z∆x

p∆x∆y −p∆x∆y −
(
∂p
∂z ∆z

)
∆x∆y

=


bx

by

bz

∆V , (3.12)

7The indexing matrix is not specifically described in this work, the reader is referred to [8] for the conversion from the local to the global
frame. The indexing matrix serves here as a mathematical tool and is normally not directly implemented this way due to its high
computational expenses.
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where in the 2D case, ∆z is the thickness t and ∂p
∂z = 0. Equation (3.12) can be simplified to get:

bx

by

bz

∆V =−


∂p
∂x ∆x∆z∆y
∂p
∂y ∆y∆z∆x
∂p
∂z ∆z∆x∆y

=−


∂p
∂x
∂p
∂y
∂p
∂z

∆V , (3.13)

then by taking the limit: ∆V → 0 we can define the relation to be:

bdV =−∇pdV. (3.14)

In discretized form, Equation (3.14) becomes: −∇pdV = −Bp pe dV . The equivalent body force b can now
directly be substituted in the expression for the nodal force vector Equation (B.38), repeated here:

F e =
∫
Γ

N>t (x) d A +
∫
Ω

N>b(x) dV. (B.38)

Because in this work we do not consider boundary tractions t = 0, we can simplify Equation (B.38) to:

F e =−
∫
Ω

N>∇pdV =−
∫
Ωe

N>Bp pe dV , [8×2][2×4][4×1] (3.15)

and in global form:

F =−
ne∑

e=1
Le

u
>

∫
Ωe

N>Bp dV Le
p︸ ︷︷ ︸

H

p , (3.16)

where:
F e = consistent load vector of size [8×1] (N),
N(ξ,η) = matrix of shape functions used to express the displacement field,
Bp (ξ,η) = matrix of spatial derivatives = Np,ξ (m−1),
pe = nodal pressure values on element e (Nm−2),
H = global conversion matrix (m2),
Le

u = indexing matrix [4d ×nd ],
Le

p = indexing matrix [4×n],
Le

u and Le
p are indexing matrices in which every row contains a single entry of value 1. The location of this

entry gives the location of the local DOF in the global displacement vector.

The subscript p in Bp indicates that this matrix of derivatives originates from the pressure field derivation in
Appendix B.3.

To show that this derivation holds correct values, Figure 3.5 shows a ‘minimum compliance’ example with
fixed points at x = [0, 0.2]> and x = [1, 0.2]>. A pressure of 1bar is applied to the bottom, which equals to
1×105 Pa = 1×105 Nm−2. The thickness of the elements are set to: t = 0.01m and the element width is ∆x =
0.1m, as is the element height. The arrows in Figure 3.5b indicate the consistent nodal force vector F . The
three vertical arrows in the centre have labels indicating the horizontal and vertical component ([U, V]) of the
load vector. The sum of these three vectors should (roughly) correspond with the pressure times the element
area. So the vertical nodal loads in the centre column add up to: 0.05+ 0.10+ 0.09+ 0.08+ 10.66+ 49.72+
39.20+0.1 = 100N, now the pressure force contributes: p∆A = pt∆x = 1×105 Nm−2 ×1×10−3 m2 = 100N,
thereby confirming that the pressure field is correctly translated into consistent nodal forces using the global
conversion matrix H.
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(a) Solution of a minimum compliance problem

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

[U,V]: [-0.000539 39.2][U,V]: [-0.007507 49.72]

[U,V]: [-0.02674 10.66]

(b) Consistent nodal load vector representing the pressure field

Figure 3.5: The solution of a minimum compliance problem with few elements to check the translation between pressure
field and consistent nodal force vector.



4
Compliant mechanism objectives

A compliant mechanism objective is some relevant relation between an output port deflection and an input
force. Often, a (virtual) spring is considered at the output port with a certain spring stiffness, and the com-
pression of this spring is part of the objective. There are numerous papers that propose different compliant
mechanism objectives. Deepak et al, 2009, [9] did a comparative study between five methods and concluded
that for a sufficiently high spring stiffness the objectives all converge to more or less the same topology. There-
fore, this work only considers two proposed methods, one aims to optimise the mechanical advantage (MA)
proposed by O. Sigmund, 1997 [24] and the other optimises the energy efficiency (EE) of the load transfer by L.
Howell 2002 [15]. This chapter explains both objectives and derives their sensitivities. If the reader is unfamil-
iar with compliant mechanism objectives, Appendix D offers a more complete introduction and explanation
of the mathematics behind it.

4.1. Types of objectives

The strain energy in a single linear spring is given as 1
2 ku2, with k being the spring constant and u the deflec-

tion. The strain energy (SE) of a deformed linear elastic continuum body can be stated as [15]:

SE = 1

2

∫
V
σεdV. (4.1)

In a finite element format (see Appendix B.4 or [15]) the strain energy is expressed as:

SE = 1

2
u>Ku. (4.2)

In a basic compliant mechanism objective the evaluation of two load cases are required. The first one only
considers a point-load P1 at the input port (port 1) as shown in Figure 4.1b, and the second only considers a
dummy point-load P2 at the output port (port 2), that specifies the location and direction of the output port
as shown in Figure 4.1c. The load cases satisfy:

Ku1 = F1(P1) and Ku2 = F2(P2). (4.3)

These two load cases are necessary to calculate the objective functions, for example the ‘Mechanical Advan-
tage’ (MA) objective [24] that aims to maximise M = Fout/Fin.

At the output port, a virtual spring is considered with spring stiffness ks . It is positioned such that there is a
gap between the solid and the spring of size ∆gap, see Figure 4.1a. To express the displacement at port i due
to load case j , the following can be stated:

∆i j = u>
j êi = u>

j
Fi

Pi
= u>

j Kui
1

Pi
, ∀

{
i ∈ {1,2}
j ∈ {1,2}

}
, (no summation over i , j ), (4.4)

19
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where êi is a unit vector that points to the desired DOFs which designate the direction of port i . The variable
∆i j is clearly illustrated in Figure 4.1b and 4.1c for all combinations of i and j . Note that the final form of
Equation (4.4) is very similar to the SE expression Equation (4.2). Because Fi , by definition, has a total length
of Pi , êi = Fi

Pi
.

FR

Output port Input port Fin

∆in∆gap

∆out

Ω Deformed shape

u

(a) Mechanism configuration with virtual spring, and the input and output port

P1

∆11∆21

Ω

u1

(b) Load case 1 with an input load

P2

∆12
∆22

Ω

u2

(c) Load case 2 with a dummy output load

Figure 4.1: (a) The overall load configuration defined on the design domain Ω consisting of an input load Fin and the
reaction load FR[24]. (b) and (c) show two load cases. A linear superposition of the two displacement fields u1 and u2
resulting from the load cases gives the total displacement field u.

Because of the superposition theorem of linear problems [24], we can state that the spring deflection is:

∆s =∆out −∆gap =∆21 − c∆22 −∆gap, (4.5)

where c is related to the spring force that is present because of the deformation. c is a proportionality constant
that indicates the contribution of the second (dummy) load case to the total displacement field and is derived
in Appendix D. It is repeated here for convenience:

c = ∆21 −∆gap

∆22 + P2
ks

.

In this work, however, the input load F1 is not formed by a single point load P1 but rather by a distributed,
design dependent, pressure field. So F1 is the consistent nodal load vector containing the pressure field p ,
and F2 only contains one or two non-zero entries to indicate the location and direction of the output port. F2

should have a total length equal to P2.

The unit vector êi , from Equation (4.4), is used in the notation for the mechanical advantage. However, ê1

(the unit vector of F1) is poorly defined because P1 does not exist1. Hence,∆11 and∆12 are not defined. Notice
that if we would simply chose some P1 value, ∆11 can be used to express the strain energy:

SEinput = 1

2
∆11P1, (4.6)

where the division by P1 (in∆11) is corrected by the multiplication. This allows the∆i j formulation to be used
in both the mechanical advantage (MA) formulation and the energy efficiency formulation.

The classical MA (that requires maximisation) is given by:

M = Fout

Fin
= ∆s ks

P1
, (4.7)

1ê1 cannot be defined here because the length of F1 depends on the surface area of the interface Γpb it encounters. Besides that, F1 has
non-zero components that act on more than one node, making the existence of the unit vector of F1 arguable.
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where Fin is in our case undefined. Several ways can be concocted to cope with this issue. Two questions are
important here: 1) is a design dependent Fin desired? 2) can the MA objective value M still be an intuitive
value when using a pressure load at the input? Imagine Fin would be chosen as: Fin = p

∫
Γpb

d A, then the

variable p would be a constant and the only design dependent aspect here would be the exposed area A. So
if improvements to the objective are sought by the optimiser, it could choose to minimise the exposed area
which is often undesirable, especially in the perspective of single walled soft robotics like designs. Calculation
of Fin is attempted by using the force vector F1 which contains the integrated pressure field:

Fin =
n∑

k=1

√
F 2

2k−1 +F 2
2k for d = 2,

Fin =
n∑

k=1

√
F 2

3k−2 +F 2
3k−1 +F 2

3k for d = 3,

(4.8)

where Fi , ∀i ∈Du , are components of F1. The derivative of Equation (4.8) to ρ, however, requires the deriva-
tive of each individual component Fi of F1, which requires nd Lagrange multiplier vectors to be solved and
is computationally very expensive. This is explained and derived in Appendix G.

The formulation could be simplified by proposing: Fin = ∑n
e=1 |Fi | = sgn

(
F1

)>F1, where sgn
(
F1

)> is used to
cover the absolute sign. This formulation is easily differentiable, it only requires one Lagrange multiplier
solution per iteration, but it is biased to vertical and horizontal walls of the pressure boundary (Because Fin

is now 1.41 times higher at any 45 degree angle), and it still lacks meaning.

As a result of these considerations, and by lack of meaning in a pressure case, the MA objective will not be
used. Instead, the output force (OF) is used as the objective, defined as the spring deflection times the spring
constant:

Fout =∆s ks , (4.9)

this will promote a maximum use of the pressure.

As an alternative objective, the energy efficiency (EE) is considered, defined as the energy in the spring di-
vided by the input energy. The input energy is equal to the input load vector times the total displacement
field, where the latter is a combination of the displacement fields of both load cases. The value of c from
Equation (4.1) is used to calculate the total displacement field: u = u1 − cu2. The input energy is now given
as:

Ein = u>F1 =
(
u1

>− cu2
>
)

F1 =
(
u1

>− cu2
>
)

Ku1 = u1
>Ku1 − cu2

>Ku1 = (∆11 − c∆12)P1, (4.10)

The output energy can simply be found using the expression for energy in a linear spring, hence:

Eout = 1

2
∆2

s ks . (4.11)

where ∆s is the compression of the spring. Note that this energy is positive for both pulling and pushing, to
correct for this, sgn(∆s ) is used in the EE objective that will give a negative energy for a negative deflection.

The EE objective is given by:

Eout

Ein
=

1
2∆

2
s ks

1
2 (∆11 − c∆12)P1

, ⇒ ψ= sgn(∆s )∆2
s ks

(∆11 − c∆12)P1
, (4.12)

where,
ks = output spring constant (Nm−1),
P1 = the magnitude of the input point-load if used, (N) otherwise set: P1 = 1,
c = proportionality constant,
∆s = spring deflection (m),
∆11, ∆12 = input energy per applied pressure (m3),
∆i j = displacement at port i due to load case j (m),
Ein = strain energy by the pressure load (J),
Eout = strain energy in the output spring (J).
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Notice that OF is not dimensionless while EE is. However, both formulations work properly and give satisfac-
tory results. Both the OF and the EE need to be maximized, therefore a minus sign is added in the objective
function to convert it to a minimization problem.

min
ρ

: C =−Fout(ρ) or C =−ψ(ρ),

subject to : Ap = f ,

Ku1 = F1(ρ) =−H(ρ)p ,

Ku2 = F2,

0 ≤ρ ≤ 1,

g1 =
∑

e ρe

neV ∗ −1 < 0,

(4.13)

where V ∗ is the allowed volume fraction (V ∗ = 0.5 means that a maximum of 50% of the domain may be filled
with material). Both of these expressions require more constraints to achieve a more fail proof optimisation,
this is treated in Chapter 5.

4.2. Sensitivity analysis

Sensitivities are required by the optimization algorithm to give it a sense of direction. The sensitivities are
calculated by taking the derivative of the objective function to each design variable:

Se = dC

dρe
. (4.14)

To achieve this, the derivative ∆′
i j ≡

d∆i j

dρe
is required2 for each combination of i and j ∈ (1,2).

∆i j (ρ) can be differentiated using the adjoint method [30] with four adjoint equations (with Lagrange mul-
tipliers). These four adjoint (algebraic systems of) equations are: the two load cases Equation (4.3), and the
two pressure fields Equation (3.11) for both i and j . The reason why both port i and port j are considered to
possibly have a pressure field is because of two reasons: one, they both are used when calculating ∆′

11, and
two, a pressure field could also be specified to exist on the output port. The derivation of ∆′

i j is provided in

Appendix E, it also contains the expressions of c ′, and ∆′
s .

The derivatives of the three objective functions can now be expressed in terms of ∆′
i j for i , j ∈ (1,2), c ′ and

∆s′.

The derivative of the minimum compliance (MC) objective, Equation (4.6) is:

dC

dρe
= P1∆

′
11, (4.15)

The derivative of the OF, Equation (4.9) is:

dFout

dρe
= ks∆

′
s = ks

(
∆′

21 − c ′∆22 − c∆′
22

)
, (4.16)

The derivative of the EE, Equation (4.12) is:

dψ

dρe
= sgn(∆s )

2∆s∆
′
s

(
∆11 − c∆12

)−∆2
s

(
∆′

11 − c ′∆12 − c∆′
12

)
(
∆11 − c∆12

)2

ks

P1
. (4.17)

Appendix E elaborates on these sensitivities further and offers the full derivation. Every analytically derived
sensitivity is checked using a finite difference method.

2Where the apostrophe notation is introduced in Section 2.1.1.
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4.3. The Topology Optimisation cycle
This section gives a brief explanation of the optimisation cycle. The flow chart displayed below indicates the
required steps for a TO program. Notice that solving the pressure field is a standalone part of the optimisation
cycle and does not invoke radical changes in the work flow. Because density filtering is applied, the new
design (returned by the MMA optimiser) is called ρunfilt.

i+1 , after filtering this becomes ρi+1. To adjust the
sensitivities accordingly, the chain-rule is implicitly applied by filtering the sensitivities in the first filtering
step. Where the bottom four boxes are iterated to update the design and make it converge.

The convergence is implicitly checked by looking at the inf-norm of the design change ||∆ρ||∞ (being the
largest absolute value of ∆ρ) where ∆ρ = ρi+1 −ρi , if this is smaller than a given value the optimization
procedure is assumed to have sufficiently converged and stops.

Loading problem description
Define initial conditions, ρ0,
domain, element sizes, etc.

Post processing results

Prepare the optimization loop
Generate element-to-node index matrix,

stiffness matrix indexing vectors,
Build Ke , etc.

End: while Loop

Enter while Loop ||∆ρ||∞ ≈ 0

Building matrices and vectors
Build K, F , A and f

(if design-dependent)
using the new design ρi .

Show intermediate results
Plot intermediate result and values.

Solve pressure field
Solve: p = A-1 f .

Apply second filtering
Apply (spatial) convo-
lution filter to ρunfilt.

i+1 .

Solve displacement field
Solve: u1 = K-1F1(p),

u2 = K-1F2.

Update the design
Use MMA to find ρunfilt.

i+1 .

Objective and sensitivity analysis
Calculate objective C ,

calculate constraint values g1, g2,...
calculate objective sensitivities: S = ∂C

∂ρi
,

calculate constraint sensitivities:
∂g j

∂ρi
.

Apply first filtering
Apply (spatial) convolution filter to S.

Yes

No (i = i +1)





5
Adding model constraints

In theory, the optimisation problem is completely defined. However, the proposed method still has some
shortcomings which it can exploit. The constraints, introduced in this chapter, aim to suppress these weak-
nesses.

5.1. A hitch in the model

One thing the model does not take care of is the creation of open boundaries as can be seen in Figure 5.1, the
algorithm can exploit open boundaries as they give no mechanical resistance and only leak slightly. Another
example is the extreme input deflection that is sometimes beneficial to the objective. To prevent this, two
additional constraints are proposed. One is the input deflection constraint, for which several varieties are
possible, and the second is to prevent the outgoing volume flow by constraining it.

0

Γp0
Γu

Γp

Γs

0.06

0.2

Ω fpin

(a) Design domain for the clamping problem

0 0.05 0.1 0.15 0.2

0

0.02

0.04

0.06

(b) Density distribution

(c) Pressurefield with design overlay

0 0.05 0.1 0.15 0.2

0

0.02

0.04

0.06

(d) Pressure field

Figure 5.1: The optimisation algorithm exploits the fact that an open boundary allows frictionless bending and that the
design can still realize a large pressure drop. (a) the design space with boundary conditions. In (b) the density distribution
(or design) is given after 800 optimisation iterations. (c) shows combined plot where the design is displayed on top of the
pressure field. (d) the pressure field calculated as a function of the current density distribution.

5.2. Input deflection constraint

In the classical mechanical advantage (MA) objective proposed in [24] the maximum internal stress is indi-
rectly limited by limiting the deflection at the input port. Because this work uses a similar objective: the OF
objective, this section aims to provide the input deflection constraint for pressure load problems.

25
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Using an input deflection constraint in a pressure load problem can have the side effect of limiting the surface
area of the pressure interface Γpb , whilst this is sometimes not desired.

Sigmund [24], uses the following equation for the input deflection:

∆in =∆11 − c∆12 = (u>
1 − cu>

2 )ê1 where : ê1 = F1

P1
, (5.1)

u1 and u2 are the displacement fields of the first and second load case and ê1 is the unit vector indicating
the direction of the input port load. When working with a pressure load, P1 and therefore ê1 are undefined
and cannot simply be replaced as explained in Section 4.1. To circumvent this problem we can use the input
strain energy (SE), Equation (4.6) as a measure for input deflection. The SE of the input loading depends on
pin, n and u, being the pressure load, surface normal and displacement of that element respectively. The
continuous expression of the SE is the integral:

SEin = pin

∫
Γpb

u ·n dA, (5.2)

over the inner pressure interface Γpb , and where the combined, total deformation field: u = u1−cu2. Because
the applied pressure, pin, is constant, the constraint on the SE limits the exposed area and its deformation. A
discretised form of the SE is simply:

SEin = u>F1 =
(
u1 − cu2

)>Ku1 = u>
1 Ku1 − cu>

2 Ku1 =
(
∆11 − c∆12

)
P1, (5.3)

where F1 is the input load vector and in the case of a pressure field, the point-load: P1 = 1 (or any random
value as it cancels anyway). Doing so allows the general use of the ∆ notation. The constraint then takes the
form:

g2 = SEin

SEmax
−1 ≤ 0. (5.4)

SEmax is a parameter to control the maximum input energy. Using Equation (E.10), the sensitivities can be
written as:

dg2

dρe
= P1

SEmax
(∆′

11 − c ′∆12 − c∆′
12)

5.3. Outflow constraint
To prevent the open boundary issue, shown in Figure 5.1, a constraint can be used to limit the volume flux
through the design. This is achieved by limiting the volume flux through the outer boundaries1 Γp0 (where
the prescribed pressure is Pout = 0), the different boundary types were introduced in Section 2.1.2 and the
relevant ones are repeated in Figure 5.2. Since Γp0 is the only location where the volume flow can leave the
domain it is not possible to set the allowed volume flux to zero, this would (in the model) require an infinite
amount of material between the inflow and outflow boundaries or a flow coefficient of zero. If a boundary
does not have a prescribed pressure or outflow, by way of formulation, it automatically satisfies a symmetry
condition which means no outflow is present.

Tuning such a constraint can cause the boundaries to be closed and thin hinges to be thickened and elongated
(to respectively prevent leaking and maintain flexibility). The outflow is the integral:

Qout =
∫
Γp0

q(x) ·n dΓ (5.5)

This is now discritised by substituting the element wise expression for q =−K (ρe )Bp (x)pe , and sum over all
elements:

Qout =
ne∑

e=1

∫
Γp0

((
−K (ρe )Bp (x)pe

)
·n(x)

)
dΓ,

=−
ne∑

e=1
K (ρe )

∫
Γp0

(
n>(x) Bp (x)

)
dΓpe

︸ ︷︷ ︸
k>Gp

.
(5.6)

1This can, theoretically, also be done by integrating over the input boundary or volume flux source and minimizing the inflow from this
source. However, this would have a different effect because the ‘drained’ fluid (using the drainage term) is ’pulled’ from the source,
adding to the inflow, while the outflow would be lower when all volume flow is drained.
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The outflow can be formulated as an integral over the boundary, for this the parametrisation ν is introduced
in the ξ,η domain to integrate over, see Figure 5.2. If the integration goes from node 2 to node 4 (the right
line), ν can be expressed as N (ν) = N (ξ= 1,η). Note that x(ξ) and ξ(ν), using this parametrisation the integral
can be written as:

Qout =−
ne∑

e=1
K (ρe )

∫
Γp0

(
n>(ξ) J-1(ξ)Bp (ξ)

)√√√√(
dx(ν)

dν

)2

+
(

dy(ν)

dν

)2

dνpe ,

=−
ne∑

e=1
K (ρe )

∫
Γp0

(
n>(ν) J-1(ν)Bp (ν)

)√√√√(
dx(ν)

dν

)2

+
(

dy(ν)

dν

)2

dνpe ,

(5.7)

where,
Qout = the volume flow through the boundary Γp0 (m3 s−1),
Γp0 = all boundaries where p is set to zero (so where flow can leave the domain,
n = surface normal vector,
Bp = matrix of derivatives of shape functions (m−1),
pe = vector of nodal pressures on an element (Nm−2).

The integral in Equation (5.7) can be solved using the quadrature rule, with abscissae νi and weights Wi ,

Qout =−
ne∑

e=1

K (ρe )
∑

i

Wi

(
n>(νi ) J-1(νi )Bp (νi )

)√√√√(
dx(νi )

dν

)2

+
(

dy(νi )

dν

)2
pe

 . (5.8)

The unit normal vector n(ξ) has a length of one and in the ξ,η plane it always is in a beneficial, single co-
ordinate, direction (when using a square local element). Because the implementation in this work is that of
a rectangular mesh and rectangular elements, it is possible to find the analytical expressions for each of the
four possible direction and speed up the computations. This way the boundary integral is replaced by the
summation of small areas times the flow that goes through each area. The outflow constraint is given by:

g3 = Qout

Q∗
out

−1. (5.9)

The outflow constraint is very effective in preventing leaking hinges and pressure drops inside the pressurised
domain. Bear in mind, however, that the optimiser will first try to satisfy this constraint before it tries to
optimise the objective. Typically this means that at first, a tight enclosure is formed around the pressure
application (see Figure 6.7i for clarification) before starting to optimise the objective. To prevent this, it is
found to be very effective to start at a high value of Q∗

out ≈ 40 and half this value each 20-30 iterations to a
minimum of about Q∗

out = 1. Doing so allows the optimiser to first find the ideal location of the boundary and
then close down any leakages to the outside. This method is not applied in the first few sections of the results,
when it is used, the additional parameters will be specified.

The sensitivities of this constraint, dg3
dρ , can be calculated by rewriting the integral equation into a matrix mul-

tiplication on global scale. The matrix G is introduced in Equation (5.6) as the global contribution matrix that
contains the Gauss quadrature weights and abscissae to perform the boundary integration. k is defined as
the vector, ke = K (ρe ), of flow coefficients using index notation. Using the flow coefficient vector k , the global
contribution matrix G, and the global pressure vector p , of which G is independent of the design variable ρ,
the outflow is expressed as:

Qout = k(ρ)>Gp(ρ), (5.10)

The reader interested in applying this constraint is referred to Appendix F. The translation from the integral
formulation in Equation (5.6) to the matrix multiplication Equation (5.10) is thoroughly described there. It
also contains the sensitivities which are derived using the adjoint formulation with Lagrange multipliers.
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Design domainΩ divided in local elements.
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Standard element in reference domain
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Figure 5.2: The global design domain is meshed into local element and these can be mapped to the reference domain. The
outflow through the boundary Γp0 , physically present in the global domain, is integrated over the element boundaries
⊆ Γp0 of all adjacent elements. This is done using the mapping to the reference domain in which the integration is
performed.



6
Results

This chapter discusses the method performance and shows resulting designs. The parameters that are used
in the optimisation are introduced in the first section and every deviations from it are noted in the proceeding
examples.

6.1. Baseline for the used parameters
Because there are a lot of parameters that influence the optimisation algorithm, this chapter first introduces
all of the parameters such that only the deviation from this baseline needs to be stated in the proceeding
examples. Table 6.1 lists all used parameters.

The optimiser will stop by default after either 1200 iterations or if the length of the difference-vector (defined
as the difference between two design iterations) is below 0.005, i.e.

if

√ ∑
i

( |ρi |− |ρi−1| )2 < 0.005.

And by default the energy efficiency (EE) objective will be used and no initial design is used, i.e. the design
variables, by default, all start from an unbiased, equally distributed density that satisfies the volume fraction.
Note that hvoid(= 0) is not included, that is because this variable is non-existent because drainage is simply
zero on the void region.

29
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Table 6.1: The baseline with the parameters used in the optimisation examples. Any deviations from it will be specified.

Description Variable Value
Geometric parameters

Width w 200mm
Height h 120mm (symmetric)
Thickness t 10mm
number of elements in W NW 200
number of elements in H NH 60

Material parameters
Young’s modulus E 3×109 Nm−2 (Similar to that of nylon or PET)
Poisson’s ratio ν 0.4

Optimisation parameters
Penalisation (for SIMP) P 3
Filtering radius r f 2mm
Minimum density value ρmin 1×10−5

Minimum Young’s modulus Emin E ×10−5Nm−2

Volume fraction Vmax 35%
Maximum change in density ∆ρe 0.2 per iteration
Maximum # of iterations nmaxIter 1500

Objective parameters
Input pressure load pin 1×105 Nm−2 (1bar of pressure)
Output load pout 10N
Output spring stiffness ks 1×104 Nm−1

Output gap (as in [24]) ∆gap 0m

Darcy model parameters
Allowed leakage Qmax 1m3 s−1

K (ρ) step location ηk 0.4
K (ρ) slope at step βk 10
H(ρ) step location ηh 0.6
H(ρ) slope at step βh 10
Conductivity in material kmat 1×10−10 m4 N−1 s−1

Conductivity in void kvoid 1×10−3 m4 N−1 s−1

Drainage from material hmat given by Equation (3.6) using r and ∆s, and has the unit m2 N−1 s−1

Remainder of input pressure at ∆s r 0.1 (so p(∆s) = 0.1P1 after flowing trough ∆s material)
Depth at which limit r is reached ∆s 2mm

6.2. Minimum compliance solutions

A popular design problem in literature that has a design dependent load is the minimisation of compliance
of a lid, with from the bottom boundary a pressure load as shown in Figure 6.1.

The two results in Figure 6.1 are very similar, a slight difference can be noted at the bottom where the Darcy
approach seems to result in a bit more of a blunt design. The reason for the small difference is probably in
the choice of mesh and the post processing in [6].

Another popular benchmark problem is the piston design also solved in [6]. For this analysis the Darcy ap-
proach is used with [ηk = 0.2, ηh = 0.3] and varying values of βk and βh . Several different results are shown
in Figure 6.2. Notice that the design in Figure 6.2c allows the fluid to go through and equalises the pressure
in the orifices behind the inner boundary, preventing these thin solid layers from taking up the pressure load
while still allowing them to provide bending stiffness.

The values of ηk and ηh control the density threshold (ρT ). If βk and βh are chosen to be very large (say
> 150) the proposed method becomes very similar to the method proposed by Zheng et al. 2009 [34] which
uses an electric potential field to identify the pressurized elements. The load is then applied to the element
boundaries, making the sensitivities discontinuous and not differentiable. This is a strange way of cooping
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(a) Problem definition of pressurized lid.
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(b) Density distribution from [6].
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(c) Result using the Darcy approach. (d) Overlay plot of the Darcy approach.

Figure 6.1: [Vmax = 50%, NW = 200, NH = 100]. Result of the common benchmark problem for design dependent TO.
(a) and (b) show the problem definition and solution by Brugge et al. 2009, similar to a lot of other papers on design
dependent loads. (c) shows the Darcy approach, the outflux constraint is not used here as the MC objective naturally
discourages leakage. (d) shows the pressure field with a transparent design overlay.

with sensitivities because of the following reason. A design dependent optimisation solves two problems, the
first is finding the optimised location to ‘catch’ the pressure load, and the second is finding the stiffest design
to catch that load. By eliminating the load sensitivities the loading location is fully determined by stiffness
considerations, if the optimiser makes a small step towards a stiffer design, it can just as well allow the load
to distribute in a worse way, effectively worsening the solution.
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(a) A symmetric short piston problem with
ηk = 0.4, ηh = 0.6, βk =βh = 20,
C = 1.464×10−3.
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(b) A symmetric ‘long’ piston problem with
ηk = 0.4, ηh = 0.6, βk =βh = 20,
C = 1.059×10−3.
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(c) Pressure field of the design in (b).

(d) βk =βh = 15, C = 1.058×10−3. (e) βk =βh = 20, C = 1.030×10−3. (f ) βk =βh = 40, C = 1.066×10−3.

(g) βk =βh = 80, C = 1.218×10−3. (h) βk =βh = 100, C = 1.234×10−3. (i) βk =βh = 200, C = 1.251×10−3.

Figure 6.2: Two examples of a piston problem and a parameter sweep with a MC objective, C is the compliance.
(a) uses [w = 6cm, h = 4cm, NW = 120, NH = 80] and is similar to examples from literature.
(e) uses [w = 6cm, h = 8cm, NW = 120, NH = 160]. Figures (d)-(i) use [ηk = 0.2, ηh = 0.3] for improved results.
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6.3. Compliant mechanism solutions

First the reader will be introduced to a symmetric design problem for a clamping mechanism. This design
problem is then put to the test by solving this problem using different parameters and objectives. Finally,
some examples are given to proof the broad range of design problems that such a method can solve.

6.3.1. Introducing a clamping problem

A typical design example in compliant mechanism designs is the clamping mechanism. The logical extension
of this example to a design dependent load problem is a pressure actuated clamp or gripper. Figure 6.3 shows
the full design problem with a small ball that is clamped or a walnut that needs to be cracked, the walnut
stiffness is that of the output spring and is brought into the model via the objective. The figure also indicates
the input pressure, the boundary where pout = 0, and the location of the output port with the arrow indicat-
ing the F2 vector. Figure 6.4 shows half the design domain in which the symbols (indicating the prescribed
boundaries) were introduced in Section 2.1.2. Because of symmetry, only half the design domain is consid-
ered in the optimisation. The line (or surface) of symmetry Γs now requires two boundary conditions (BC),
namely a (zero outflow) Neumann BC for the pressure field and a (zero vertical displacement) Dirichlet BC
for the displacement field of which the outflow condition is naturally imposed 1.

pout

F2(P2)pin

Figure 6.3: The symmetric design domain for the clamping problem with indication of the output port and the input
pressure.

Γp0

Γu

Γp

Γs

0.06m

0 0.2m

Ω f

Figure 6.4: Design domain for the clamping problem with fixed void and solid regions Ω f indicated as black and white
areas, the grey area is the free design area. Imposing the void region in the lower left corner allows the pressure, defined
on Γp , to at least cover this small region in every design iteration.

1Prescribing the outflow at a boundary, in the FEM formulation for the pressure field, is done by adding −∫
Γ N>qΓ ·n dΓ to f . The zero

outflow (qΓ = 0) constraint in now imposed by adding zero, hence, it is naturally imposed.
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ρi ρd

Figure 6.5: Illustration of the initial design using a parameter to prescribe the density ρi at this initial shape. The depen-
dence of the optimisation algorithm to the initial design can be tested by changing ρi .

To experiment with initial conditions in a systematic way we also introduce Figure 6.5, where ρi can be
changed to alter the initial design. The program adjusts ρd accordingly to satisfy the volume fraction con-
straint. The design that follows from this default baseline using an initial condition of ρi = 0.6 can be seen in
Figure 6.9f.
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6.3.2. Parameter sweep: flow resistance and drainage parameters

To indicate the behavioural differences of the Darcy method with changing parameters, ten TO’s are executed
using the EE objective. The results are shown in Figure 6.7 along with the used parameters. These figures show
the capability of finding the optimum given different settings, notice that (h) has reached the highestψ value.
These results can be compared with the piston analysis shown in Figure 6.2 where the values [ηk = 0.2, ηh =
0.3 and βk = βh = 20] (used to make Figure 6.2e) resulted in the minimum compliance. It can be concluded
from these two parameter sweeps that it is desirable to choose the η’s slightly under the volume fraction Vmax,
i.e. ηk = 0.2, ηh = 0.3 and the β’s to be around 20, this being a good trade-off between differentiability (having
load sensitivity) and decisiveness in defining the boundary.

The behaviour of the Darcy method is highly dependent on the η and β parameters. Leaking of the inner
boundary, for example, happens in Figure 6.7: a, b, d, e, i and j. Is this a bad thing? In these 2D TO’s an
engineer is simplifying a 3D problem, if the η andβ parameters are chosen such that ‘inner boundary leakage’
exists, we are using the fact that a boundary (in 3D) can both bring structural support and allow fluid to enter
the next chamber, which is simply realised by drilling some holes in the membrane. As such, choosing the
correct parameters provides the user with a method that is trustworthy and finds better and more versatile
solutions than other methods where differentiability is not stimulated.

The behaviour of the optimisation procedure can be seen in Figure 6.6, containing the normalised objective
values at each iteration. The vertical axis shows the ψ/ψmax values, where ψmax is the highest value of ψ
that the optimisation reached. Notice that E and F take-off a lot later that the other optimisation runs, and
E clearly behaves less smoothly. It is unclear what the reason is for the long delay, each optimisation first
starts by blocking and dissipating the pressure to satisfy the outflow constraint (as mentioned at the end of
Section 5.3) and effectively concentrate the forces it can work with. Then, in consequent iterations, the design
rapidly bridges the gap between the pressure source and the output port and it lifts the blockade allowing the
pressure to spread out. This only happens if it is allowed by the input displacement constraint and outflow
constraint(!), this tipping point in the early stage of the design has significant influence on the final design.
Concerning analysis E and F, the blockade appeared and an equally distributed grey area filled the rest of the
domain (till the output port), then the design seems to be on a flat part in the objective plane as it is unable
to decide where to go. Finally, just like the others, after the tipping point it quickly finds a route to satisfy the
objective the most, and updates the design accordingly. It is clear that in most cases the first 40 iterations give
a good indication of the final design.
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Figure 6.6: Convergence plot of all topology optimisations in Figure 6.7. The labels A-I refer to different sets of settings.
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(a) ηk = 0.4, ηh = 0.6, βk = 6, βh = 10, ψ= 45.40%. (b) ηk = 0.4, ηh = 0.6, βk = 10, βh = 6, ψ= 47.37%.

(c) ηk = 0.4, ηh = 0.6, βk = 20, βh = 10, ψ= 53.49%. (d) ηk = 0.4, ηh = 0.6, βk = 10, βh = 20, ψ= 47.41%.

(e) ηk = 0.4, ηh = 0.6, βk = 6, βh = 6, ψ= 45.50%. (f ) ηk = 0.4, ηh = 0.6, βk = 20, βh = 20, ψ= 48.75%.

(g) ηk = 0.4, ηh = 0.6, βk = 50, βh = 50, ψ= 48.75%. (h) ηk = 0.2, ηh = 0.4, βk = 10, βh = 10, ψ= 55.21%.

(i) ηk = 0.6, ηh = 0.8, βk = 10, βh = 10, ψ= 44.04%. (j) ηk = 0.4, ηh = 0.2, βk = 10, βh = 10, ψ= 47.32%.

Figure 6.7: Ten designs resulting from different settings of the Darcy method. The objective solved for is the maximisation
of energy efficiency (ψ).

The outflow constraint introduced in Section 5.3 has a clear effect on the results. Some of the designs still
show the blockade that appears in the beginning which effectively forces a poor initial design to appear before
the actual optimisation of the objective is done. In these examples it would be very beneficial to allow a higher
outflow: Q∗

out ≈ 40, at the beginning as explained in the end of Section 5.3.
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6.3.3. Parameter sweep: output spring stiffness

The output spring stiffness is added via the objective function. The parameter sweep is shown in Figure 6.9
where the EE objective is used that aims to maximise ψ.

The energy efficiency objective aims to minimise mechanical losses, this can be clearly seen in (a) where
the boundary is formed by a very thin balloon like membrane that literally inflates. As the spring stiffness
increases the bulk of material (between 2 < x < 6cm) distributes more evenly to have more input compliance
transferred to strain energy in the spring. High spring stiffness values cause the inner boundary to consist of
segmented parts connected through mechanical hinges. Because the output port is almost held steady, the
algorithm minimises the input compliance in order to still maximise the energy efficiency. In other words,
the EE objective can end up with any mechanical advantage M(= Fout

Fin
), which might be undesired by the user

because a very low M value is very impractical.

The results, using the OF objective and different output stiffness values, are shown in Figure 6.11. Note that
Figure 6.11a shows less of a thin membrane than Figure 6.9a using the same spring stiffness.

In Figure 6.8 the convergence plot of the EE objective spring stiffness sweep is provided. It can be clearly
seen that for two of the ten runs, i.e. B and C, the shape was not quite determined after 40 iterations. Closer
inspection of the behaviour reveals that it mainly is the shaping of the thin balloon like membrane (at x =
8cm) that happens smoothly and thus takes some iterations to converge. Furthermore, Figure 6.8 shows
satisfying behaviour and smooth convergence of all optimisations.
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Figure 6.8: Convergence plot of all topology optimisations in Figure 6.9. They use the EE objective and an initial design
with ρi = 0.6. Lines B and C continue linearly to 2000 iterations, the maximum allowed number of iterations.
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(a) ks = 1×102 Nm−1, ψ= 1.58%. (b) ks = 5×102 Nm−1, ψ= 7.17%.

(c) ks = 1×103 Nm−1, ψ= 13.14%. (d) ks = 4×103 Nm−1, ψ= 35.59%.

(e) ks = 7×103 Nm−1, ψ= 47.37%. (f ) ks = 1×104 Nm−1, ψ= 54.37%.

(g) ks = 5×104 Nm−1, ψ= 70.88%. (h) ks = 1×105 Nm−1, ψ= 68.92%.

(i) ks = 5×105 Nm−1, ψ= 59.75%. (j) ks = 1×106 Nm−1, ψ= 51.83%.

Figure 6.9: The results of the TO using different output spring stiffness values and an initial design with ρi = 0.6. The
energy efficiency ψ is maximised, thus a higher value is a higher load transfer efficiency.
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Figure 6.11 shows the optimised designs for the OF objective as opposed to the designs in Figure 6.9. In Fig-
ure 6.11a the output spring stiffness is very low, ks = 1×102 Nm−1, and the only way to gain output force is by
maximising the output deflection. table 6.2 shows the data that is used, including the output deflection re-
sulting from the division of spring stiffness and force. The deflection barely seems to be effected by the spring
in the first three optimisations. Note however that this is a linear analysis and that deflections simulated here
could overestimate the actual values2. A remarkable result in this parameter sweep is the optimisation for the

Table 6.2: Results of the spring stiffness sweep using the OF objective.

ks in Nm−1 Fout in N ∆s in mm # iter.
1×102 1.09 10.9 1500
5×102 5.27 10.5 1500
1×103 10.0 10.0 1500
4×103 33.0 8.25 1500
7×103 50.1 7.16 1500
1×104 64.5 6.45 1293
5×104 169.2 3.39 241
1×105 241.7 2.42 1136
5×105 488.1 0.98 1500
1×106 583.3 0.58 1500

spring stiffness of 5×104 Nm−1, shown in (i). The optimisation only took 241 iterations to converge, and the
objective was at 99% of the final objective at iteration 33 and does not show a single bump in the convergence
plot. The two adjacent spring stiffness settings also required less iterations.

Figure 6.11(a), (b) and (c) show a ‘fluid’ filled region between 3 < x < 10cm. This often appears when a local
structure is required to be stiff in bending but does not have sufficient material to do so without creating
a large cavity in the middle. If there would be no pressure, the local structure would be stiff in bending but
weak against sideways compression. The final design solves this by leaking the pressure to the inside, allowing
the two walled solution with a significant gap in between to be stiff in bending and preventing the sideways
compression by equalizing the pressure between the inside and the outside of the cavity or chamber.

Throughout these solutions, one can notice the shift between two design types, characterised by the designs
in (d) and (j). The first uses a membrane that is pushed away and pulls the ‘lever’ to crush the ball, and the
other tries to maximise the use of the input load by making a stiffer structure to transfer the load.
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Figure 6.10: Convergence plot of all topology optimisations in Figure 6.11.

2The linear analysis provides a deformation field that is formed by scaling the deformation field that results from an infinite decimal
load.
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(a) ks = 1×102 Nm−1, Fout = 1.09N in 1500 iterations. (b) ks = 5×102 Nm−1, Fout = 5.27N in 1500 iterations.

(c) ks = 1×103 Nm−1, Fout = 10.0N in 1500 iterations. (d) ks = 4×103 Nm−1, Fout = 33.0N in 1500 iterations.

(e) ks = 7×103 Nm−1, Fout = 50.1N in 1500 iterations. (f ) ks = 1×104 Nm−1, Fout = 64.5N in 1293 iterations.

(g) ks = 5×104 Nm−1, Fout = 169.2N in 241 iterations. (h) ks = 1×105 Nm−1, Fout = 241.7N in 1136 iterations.

(i) ks = 5×105 Nm−1, Fout = 488.1N in 1500 iterations. (j) ks = 1×106 Nm−1, Fout = 583.3N in 1500 iterations.

Figure 6.11: Topologies resulting from a parameter sweep over the output spring stiffness values, using ηk = 0.2, ηh = 0.3,
with initial topology of ρi = 0.6 to aid the low stiffness output spring designs.
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6.3.4. Parameter sweep: initial condition

The initial design (so the design the optimisation algorithm starts with) appears to have quite some effect
on the outcome, Section 6.3.1 introduces a method to alter the initial design by altering ρi , this method is
applied here. Figure 6.13 shows the results of various initial designs using both the EE and the MA objective,
the left and right column respectively.

Lowering the η values provides a clearer boundary description in the earlier stage of optimisation but makes
it difficult to ‘sense’ beyond these boundaries because the load sensitivity at ρe = 1 is almost zero for low
η values. Another clear observation is that having an initial condition does not do much good, the highest
objective values can be found at ρi = 0.4 and 0.6. There is a chance that other, more creative, initial conditions
would do a better job.
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Figure 6.12: Convergence plot of all topology optimisations in Figure 6.13.



42 6. Results

(a) ρi = 0.2, ψ= 52.36%. (b) ρi = 0.2, Fout = 63.0N.

(c) ρi = 0.4, ψ= 54.10%. (d) ρi = 0.4, Fout = 63.1N.

(e) ρi = 0.6, ψ= 54.36%. (f ) ρi = 0.6, Fout = 62.1N.

(g) ρi = 0.8, ψ= 47.37%. (h) ρi = 0.8, Fout = 61.6N.

(i) ρi = 1.0, ψ= 48.56%. (j) ρi = 1.0, Fout = 60.4N.

Figure 6.13: Topologies resulting from different initial designs, i.e. different ρi and using ηk = 0.4, ηh = 0.6 and ks =
1×104 Nm−1. At the left hand the solutions of the EE objective are shown and at the right hand the OF objective.
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6.3.5. Parameter sweep: volume fraction

Different allowable volume fractions (Vmax) can give very different results. Figure 6.15 shows the results of this
parameter sweep. It seems in Figure 6.15a that a low volume fraction would allow fluid to flow through more
easily, but comparing to other designs, obtained using the Darcy approach, this largely depends on the used
K and H relations. When a soft robotic, single layer, inflatable kind of design is desired, allowing a low volume
fraction and high input compliance helps. Typically, the design only needs 1 or 2 element thick boundaries to
fully dissipate the pressure field. By tuning the ηk and ηh parameters properly (and maybe theβ parameters),
each of these designs can be tuned to behave like Figure 6.15c, with the highest ψ value.
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Figure 6.14: Convergence plot of all topology optimisations in Figure 6.15.

(a) Vmax = 10%, ηk = 0.30, ηh = 0.50, ψ= 46.77% in 2000 iter. (b) Vmax = 15%, ηk = 0.40, ηh = 0.60, ψ= 47.91% in 2000 iter.

(c) Vmax = 20%, ηk = 0.15, ηh = 0.25, ψ= 54.15% in 1784 iter. (d) Vmax = 25%, ηk = 0.30, ηh = 0.40, ψ= 51.14% in 1433 iter.

(e) Vmax = 30%, ηk = 0.30, ηh = 0.40, ψ= 53.43% in 853 iter. (f ) Vmax = 50%, ηk = 0.30, ηh = 0.40, ψ= 51.49% in 1876 iter.

Figure 6.15: Topologies resulting from different volume fractions, Vmax. The η values are also adjusted accordingly.

The convergence plot of the optimisation procedure is shown in Figure 6.14. Note that three of the six opti-
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misations show the same bump in the beginning around iteration 20, i.e. A, B and D. This has to do with the
decision process whether or not to fill the next chamber and whether or not to preserve the structural internal
boundary.

6.4. Alternative design problems and single walled solutions

In order to show the versatility of the Darcy method, this section offers some alternative solutions. The cover
image of this work is the first example of an alternative problem. In this example, a pressure source is used
in the centre of the bottom half of the page and the objective was to push the frames in place as the arrows
indicate.
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(a) TO problem statement with initial void and solid regions. (b) The pressure field with design overlay.

(c) Displacement field of (b)

Figure 6.16: A rotational motion is requested by four clockwise oriented loads at the middle of each side. The outflow
constraint is imposed slowly, halving Q∗

out every 50 iterations from 40m3 s−1 to a minimum of 1m3 s−1. F2 contains the

four loads of length P2
4 . The EE objective value is ψ= 62.8%.

In Figure 6.16 a rotational output motion is provoked by the four clockwise oriented loads displayed in (a).
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The result is symmetrical and it can be recognised that at x = [x, y]> = [0.06, 0.12]> and x = [0.14, 0.07]> two
wrinkled walls occur, this effectively lowers the resistance against elongation of the wall, which is desired
here. The desired motions at the middle of each side are realised by a pushing action on the top and bottom
boundaries and a pulling action on the left and right ones. The two black blocks, visible in (a), are supported
by roller constraints. In (b) and (c) these blocks are part of the two lumps of material close to the centre. Note
that, because of the roller constraints, these two blocks cannot rotate and the optimiser benefits from that by
having this big lump pull on the arc shapes at the top and bottom.

The deformation field is visualised by plotting the design on transformed coordinates, the new coordinates
are: xd = xg +uu and yd = yg +uv where uu and uv refer to the x- and y-direction components of the total
displacement vector u. The variables xg and yg are the collection of coordinates and xd and yd are the
displaced coordinates of all nodes in the global domain.

0
0.2

0.2

P2

pin

(a) TO problem statement. (b) Pressure field with design overlay.

(c) Displacement field of (b)

Figure 6.17: A motion to the left is sought as a response to a pressure load on the top and bottom. The spring stiffness is
ks = 1×103 Nm−1 and the outflow constraint is imposed where Q∗

out = 1. F2 contains the output load: P2. The final EE
objective value is ψ= 66.62%.

In Figure 6.17 a TO uses a top and bottom pressure to compress a spring of stiffness ks = 1×103 Nm−1 posi-
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tioned on the arrow with length P2 which is the only entry in F2. The environmental pressure, pout, is imposed
on the left and right boundaries. The converged shape uses the right part to block the pressure and the left
part to deform a membrane that pulls the structure to the left. The design reaches a remarkable efficiency of
ψ= 66.62%.

Two separate optimisations using ks = 1×103 Nm−1 and ks = 1×106 Nm−1 are conducted in Figure 6.18.
The problem statement is shown in (a). In (c), the deformation plot, there is at the output ports, barely a
connection visible that transfers the force. There are two reasons for this, first the output stiffness is relatively
low and second the bulk modulus of an element still aids in pushing the mesh outwards at these points.

Figure 6.19 shows two optimisations of a contracting mechanism problem, they both use ks = 1×103 Nm−1.
The first one, displayed in (b) and (c), optimised the EE objective to a value of ψ = 23.40%. The second one,
displayed in (d) and (e), optimised the OF objective to a value of Fout = 35.6N with the help of an added drain
or sink in the centre of the square domain to pout. The first optimisation run closed the top and bottom lid
in an early stage and had difficulty achieving any of the objective at first, a bit later it developed the buck-
ling knees on the top and bottom to satisfy the objective. The moment that the mechanism, through which
motion occurs, is developed, it is unlikely to change. This is the reason why it is easy to find local optima
and near impossible to find the global one. The second optimisation has got some artefacts which do not
seem to add much to the optimisation. It is interesting to note that the MMA optimiser sometimes chose to
completely remove the artefacts and put them back again, removing them had a slightly negative impact on
the objective.
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(a) TO problem statement.

(b) Pressure field with design overlay using ks = 1×103 Nm−1. (c) Displacement field of (b) pushing with 19N on each side.

(d) Pressure field with design overlay using ks = 1×106 Nm−1 (e) Displacement field of (d) pushing with 92N on each side.

Figure 6.18: An expanding motion is requested by four outward loads at the middle of each side. The spring stiffness is in-
dicated in the sub-captions and the outflow constraint is imposed slowly, halving Q∗

out every 50 iterations from 40m3 s−1

to a minimum of 1m3 s−1. F2 contains the four loads: P2
4 .
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(a) TO problem statement.

(b) Pressure field with design overlay. (c) Displacement field of (b) with an efficiency of ψ= 23.40%.

(d) Pressure field with design overlay. (e) Displacement field of (d) pushing with 17.8N on each side.

Figure 6.19: A contracting motion is requested by two inward loads at the middle of the top and bottom side. The spring
stiffness is ks = 1×103 Nm−1 and the outflow constraint is imposed slowly, halving Q∗

out every 50 iterations from 40m3 s−1

to a minimum of 1m3 s−1. F2 contains the two loads: P2
2 . The difference between (b) and (d) is the use of the EE and OF

objective respectively and, in (d), the node in the centre of the square is prescribed to be pout. This is analogous to adding
a sink in the middle.
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Discussion

In the previous chapter the reader is familiarised with the behaviour of the Darcy method using different set-
tings. This chapter will try to put the results and behaviour of the pressure modelling method in perspective
and discusses several trade-off’s.

Figure 7.1: Iso-density bound-
ary search method, [10].

So, what does this method bring to the table? The original aim was to find
a way to explicitly define the pressure field such that it is differentiable and
contained an adjustable amount of wall penetration, meaning that the sharp
pressure interface could be smeared out if the user desires more load sensitiv-
ity. This work offers a new perspective by using Darcy’s law governing the flow
through porous media. Henceforth, the proposed method is called here(x,y,z)
the Darcy’s method. Darcy’s method allows for these features and thus for bet-
ter, more widely defined, load sensitivities that aid the behaviour of the opti-
misation in a satisfactory way. At this point the Darcy method is fully capable
to solve pressure actuated TO problems. It can also be used as a research tool
to investigate the behaviour of the load sensitivities of design dependent loads.

One of the methods proposed in literature used nodal densities to find the iso-
density pressure interface, as shown in Figure 7.1. This iso-density method
also has load sensitivities [10, 14, 19]. In this case, however, the sensitivities are only present on, and directly
adjacent to, the elements where the pressure boundary Γpb is positioned. There is no two phase method in
literature that can sense beyond a boundary, this is where the Darcy method gains ground. When using the
Darcy method, it might be less predictable (at this point in research) whether the solutions are clean and
desirable. It will, however, increase the chance of finding the optimal position to apply the load and allow the
optimiser to remove, build and shift the boundary as it pleases. This is unlike most other methods proposed
in scientific literature, the only method that inherits load sensitivities and the option to remove and build
boundaries is the three phase, (fluid, void, and solid) TO proposed by Sigmund Sigmund and Clausen, 2007.

This work relates both the flow and drainage coefficients, K and H , toρ through a smooth Heaviside function.
Other relations have been attempted in an early stage of development but the smooth Heaviside was the most
stable at that point. It is very interesting to experiment with different relations to expose the optimisation to
different load sensitivities. Different relations for K (ρ) and H(ρ) can be used to stimulate smaller or larger
surface areas Γpb exposed to pressure or to achieve better optima. In 2011, B.S. Lazarov and O. Sigmund
said that ‘Topology optimisation as a design process has matured over the years’ [18]. This paragraph shows
that this cannot be said about the methods to work with design dependent pressure loads. More research is
required to find more about the local and global optima and how load sensitivities can be tuned to find them.

The designs shown in Section 6.4 are all thin and single walled. It thus seems that the Darcy method has
a natural tendency to create soft robotic like designs. Examples in literature of pressure actuated compli-
ant mechanisms show inflating geometries with trusses attached that finally perform the task as shown in
Figure 7.2, where the three phase BIM is used. In the Darcy method, the combination of a pressure field for-
mulation and the outflow constraint increase the chance of finding single walled, largely fluid filled designs.
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Figure 7.2: A pressure actuated compliant
mechanism using same design problem as
in the previous sections, with different do-
main size. Image from [23].

In a compliant mechanism design, the final result often seems to be
determined in the first 30-50 iterations. This is intuitive because a
TO narrows down on a ‘working principle’ (WP), i.e. in Figure 7.2
the WP is inflating a balloon like structure and inverse the outward
motion to a clamping motion using trusses and hinges. When a WP
is found by the optimiser it is locked-on to a local optima, the de-
sign rarely finds a different WP (or a local optima). In general, the TO
still needs a few hundred iterations to actually converge, it makes
the solid parts stiffer and the hinges thinner and longer. The Darcy
method is sometimes able to remove a boundary if leaking the pres-
sure to the next boundary is beneficiary. This way it actually shifts
the focus on one WP and converges to another, which is in this case
desirable.

In some problems, to which the Darcy method in combination with
the EE objective has been exposed behaved undesirably. The EE ob-
jective tries to maximise ψ, the ratio between output and input en-
ergy. Therefore, if it is unable to find a path to satisfy the objective a

little bit, it starts limiting the input compliance. If the boundary where the pressure is applied is also fixed in
the degree of freedom perpendicular to the boundary, the optimiser is likely to generate material against this
boundary. This virtually causes Ein to go to zero and is that way still able to raise ψ a bit to some sort of local
optimum.

Panganiban [23] states that ‘An alternative approach without introducing a pressure as an additional field
variable can be formulated with the use of nonconforming finite elements’, this being the three phase method
of Sigmund [26]. What they do is doubling the design variables instead of adding one pressure DOF per node
which is independent of the displacement DOF’s. The flow matrix that is solved for the pressure field is of
the size [n ×n], while the stiffness matrix is of the size [nd ×nd ]. A common rule of thumb is that solution
time scales quadratic with size[8]. The solution of a pressure field takes approximately d 2 times less time
compared to the displacement field calculation, which, in the cases presented in this work, only took 1-2
seconds. The optimisation step however, using the MMA optimiser, takes longer as the design converges.
This generally takes 0.5-8 seconds per iteration, it takes longer when the design changes become smaller.
Therefore it seems that solving the pressure field even be a computationally cheaper way to go.

One could argue whether the smeared out pressure boundary is similar to the sharp interface used in other
methods. This work does not provide a comparative study to define the difference. It is, however, common
practice to translate the line load Fp (s) to a consistent force vector F by performing an integration over this
line:

F e =
∫
Γpb

N>Fp (s) d A, (7.1)

where s is a location on the line and N is the matrix of shape functions. The position of the line, in this
case, depends on all surrounding element densities and shifts with every change in the density. There is no
method in literature that can make the pressure interface Γpb sharper than this. The Darcy approach can
be configured to have the consistent forces in a smeared out region to have further carrying load sensitivities
but it can also be configured or converge to configurations such that the pressure drops over a single element,
which is about as sharp as the FEM allows an interface to be translated. This, together with the theory of Saint-
Venant (that the resultant of a group of locally acting forces causes the same global deformation as the local
forces would), allows the use of smeared out consistent forces.

When using the smooth Heaviside relations for K and H , the choice of ηk , ηh , βk , and βh determines the
reaction of the pressure field to the material. If the last two are considered constant: βk = 10 and βh = 10,
the response of the pressure field to the material can be tuned by shifting ηk and ηh . In other words, at what
value of ρe does the flow coefficient K decrease (and the resistance of flow in material increase)? Note that
this is analogous to the density threshold, except that it is not a sharp ‘threshold’ line (like a normal Heaviside
function). Low values of ηk and ηh will allow an early and strong definition of the boundary with little chance
of leakage, but limit the sensitivity beyond that boundary. When using higher values of ηk and ηh , the chance
of leakage of the inner boundaries increases but this also means that the optimiser can choose to get rid of
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the inner boundaries as it has more sensitivity beyond the first encountered boundary. Leakage through the
outer boundary is in any case suppressed by the outflow constraint.

One might wonder if the flow coefficient is actually required when the drainage coefficient does most of the
work? If the flow coefficient is kept unaltered or independent of density, such that kmat = kvoid, the only
design dependent parameter is the drainage. When a TO is attempted this way, the design is seen to create
branches to ‘absorb’ the pressure in order to use it. This is very similar to the branches that occur in the TO
of a thermal heat exchanger where the boundary is being maximised by the optimiser to guide away as much
heat as possible. Concluding, the Darcy method requires both these parameters in order to function properly.
This might change is other objectives are used that would not benefit from the creation of branches.





8
Conclusion and recommendations

Research questions
The introduction, Chapter 1, states the goal of the thesis as the development of a method to deal with pressure
loads in the mathematical framework of topology optimisation using SIMP. The method should aid in calcu-
lating the optimal design of pressure actuated mechanisms. To this end, a few research questions were posed,
repeated here: 1) Can a differentiable and globally defined pressure field formulation be used to perform a
Topology Optimisation of a pressure actuated compliant mechanism? 2)Does this formulation improve the
chance of finding a better optima? And 3) Can the parameters in this formulation be tuned such that soft
robotic like shapes can be extracted?

Conclusion
1) An explicitly defined, design dependent pressure field, that is solved using a FEM formulation, can be
used to optimise pressure actuated compliant mechanisms. This follows clearly from the designs shown in
Chapter 6 and Section 6.4. The boundary identification problem is dealt with in two steps: finding a design
dependent pressure field and apply the forces resulting from a pressure drop to the structural problem. This
two-step approach is not yet used in scientific literature. Doing this, however, offers some large advantages:
it inheres generality in its application (can be expanded to 3D or other problems or physics), it supports
different relations between the pressure field and the design (i.e. by altering K (ρ) and H(ρ)), and it can be
extended to locally have different pressures. It might even be possible to optimise a design that attempts to
use an input pressure and convert it to a higher output pressure like a ‘pressure booster’.

2) The performance of the structural optimisation in combination with the Darcy method can be seen to in-
crease if the parameters are set, such that differentiability and smeared out pressure interfaces are promoted,
i.e. by choosing βk = βh ≈ 10. It can thereby be concluded that having control over K (ρ) and H(ρ) allows
for finding better optima. In general, a TO is ran multiple times with different initial conditions to find the
best (local) optimum. The Darcy method allows the user to make significant changes by simply altering the
method parameters. It provides the TO user with the tools to alter the spread of the load sensitivities, which
can be used, instead of altering the initial condition, in the search for the best optimum.

3) The field of soft robotics often uses tentacle like structures of a single material, they often comprise of a
single enclosing wall (they are single walled) and deflect by inflation. In Section 6.4 the reader can find several
soft robotic like designs which are optimised using the Darcy method and varying parameters. At this point
in research it is not clear exactly what parameters are required to promote single walled designs. The method
generates solutions with large pressurised areas as well as smaller ones.

Recommendations
At this point, only one relation for K (ρ) and H(ρ) is tested more thoroughly. The method is very tunable like
changing the penalisation pE in the SIMP method, although, for pE it is clear that pE = 3 is the magic number
while in the Darcy method different parameters offer different solutions. Tuning the parameters can even
control whether flow is allowed to pass through an almost solid wall without a pressure drop. Other pressure
field formulations (than the Darcy method) can be tried as long as they simulate a realistic pressure field that
drops entirely over the outer boundary of the topology.
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The output pressure pout is prescribed at the outer boundaries Γp0 which causes for a naturally decreasing
pressure field in the early iterations where the topology still forms a grey field. The closing of the boundary
is now guaranteed by the outflow constraint, but this seems to work strongly against the convexity of the
problem. When some inner boundary is closed it cannot be opened as easily as one would desire because the
volume flow that flows through the inner boundary is likely not sufficiently blocked by the outer boundary,
as such, the constraint will not be satisfied any more. Solvers tend to optimise tangent to the constraint ‘line’
and will, as such, not open a boundary (cross the constraint line) if that is not immediately allowed by the
constraint. To circumvent this harsh constraint, it can be advised to look into different objective functions
that would benefit from having closed boundaries. Another option is to soften the constraint by inserting it
into the objective function, by adding it with a weight factor or as a multiplication with a certain adjustable
penalisation, automatically stimulating closed boundaries.

Now that a method has been formulated that provides the user with control over the continuity of the pressure
field, it is interesting to investigate the effect of altering the pressure field response and thereby the load
sensitivities. As mentioned earlier, this method lends itself perfectly for a wide study to load sensitivities and
maybe a relation p(ρ) can be concocted that causes the optimisation problem to be (more) convex, allowing
for better, and less bound decision making.
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Appendix: Topology Optimization applied

Topology optimization (TO) is a field in solid mechanics that deals with optimal material distributions for
given physical problems and associated objectives. The objectives are related to the physics which are cal-
culated by a FEA, and the physics depend on some chosen design variable (e.g. a density field). A topology
optimization typically consists of the following elements: A physical problem is formulated in a FEA using
the current design, the design variables differ per element, then the solution of the FEA provides the physical
parameters (over those elements), these are required to evaluate the objective and calculate the direction of
optimal design and then a small change in the material distribution is made in the right direction, this is re-
peated until the optimal design is found. The criteria for optimal design is usually the amount of change in
material distribution, if it falls beneath a threshold the optimization loop will stop [4].

A.1. Objective and material models

There are two material descriptions which are frequently used. One is the level-set-method which uses a Level
Set Function (LSF) φ defined over the entire domain. Material is now defined as the domain where φ> 0 and
the boundary of which is the contour line where φ= 0. The second description is the Solid Isotropic Material
with Penalization (SIMP). Each element e is assigned a density ρ (ranging from zero to one) that determines
its Young’s modulus Ee by

E e (ρe ) = Emin +ρpE
e (E −Emin), ρe ∈ (0,1). (A.1)

Emin is required to prevent the stiffness matrix from becoming singular1 [26], E is the Young’s modulus and pE

is the penalization which pushes the optimal design in the direction of a clear material-void design without
grey regions (where ρe 6= {0,1}) which is usually desired. A penalization of pE ≈ 3 is found to be very effective,
lower will often not give a clear material-void design and higher will drop the chance of finding (or getting
close to) the global optimum. The SIMP material interpolation became much more popular in topology opti-
mization than the level set function approach, the latter is rarely found in articles related to design dependent
load. For that reason we will only consider the SIMP method in this introductory chapter on TO.

For this chapter we will only consider the minimum compliance (is maximum stiffness) objective as described
in equation A.2 because it is the most commonly used objective. In chapter 4 a different objective is treated
with the purpose of designing a compliant mechanism.

1Originally the Ee 6= 0 was assured using a minimum density ρe 6= 0, but this interpretation has some advantages, e.g. in filtering [26]
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min
ρ

: C = u> K(ρ) u =
ne∑

e=1
ue>Ke ue ,

s.t. : K(ρ) u = F (ρ) (Follows from a FEA),

g1 = V

Vmax
−1 =

∑
e ρe

neV ∗ −1 < 0,

0 ≤ρ ≤ 1,

(A.2)

where u is an n dimensional displacement vector, K the global n by n stiffness matrix, g1 the first constraint
function (required to be below zero), ve and ρe the element volume and density respectively.

A.2. How Topology Optimization works

In order to optimize the density distribution we require information about where we should add material and
where to remove it. This is where the sensitivities come in, this is the gradient of the objective function C to
the design variables ρe . From Equation (2.5) one can deduce that it should be of the following form:

dC

dρ
= ∂C

∂ρe

∣∣∣
e=1,...,ne

=
[
∂C
∂ρ1

, ∂C
∂ρ2

, ..., ∂C
∂ρne

]>
.

The sensitivities are here assumed to be known. The typical build-up of a topology optimization is as follows:

Load problem description
Define initial conditions, ρ0,
domain, element sizes, etc.

Post processing results

Prepare the optimization loop
Generate element-to-node index matrix,

stiffness matrix indexing vectors,
Build Ke , etc.

End: while Loop

Start: while Loop ||∆ρ||∞ ≈ 0

Building matrices and vectors
Build K and F (if design-dependent)

using the new design ρi .

Update the design
Use MMA to find ρi+1,

Apply filtering to the density field,
Plot intermediate result and values.

Solve the system of equations
Find the displacement field: u = K-1F

Calculate optimization criteria
Sensitivity analysis: ∂C

∂ρi
,

Calculate objective C ,
Apply filtering to the sensitivities.

Yes

No

Where the bottom four boxes are iterated to update the design and make it converge. The convergence is
implicitly checked by looking at the inf-norm of the design change ||∆ρ||∞ (or the largest absolute value of



A.3. Filtering 57

∆ρ) where ∆ρ =ρi+1−ρi , if this is smaller than a given value the optimization procedure is assumed to have
sufficiently converged and stops.

A.3. Filtering

To prevent instability in topology optimization solutions such as checkerboarding and mesh dependency,
various filtering methods can be employed in the optimization procedure. Here two methods are described
that use a convolution to ‘smooth’ or ‘blur’ the solution. One of these methods, the sensitivity filter, intro-
duced by Sigmund, 1997 [24], is applied to the sensitivities and the other to the densities, which is called
the density filter [4]. Other methods are to restrict the gradient directly (by adding gradient constraints) or
use nodal densities as design variables to effectively prevent checkerboarding, proposed by O. Hammer [13].
Then the element densities are the average of its nodal densities. The density filter directly limits the gradient
of the density (∇ρ ) by limiting the variations in the set of admissible designs. We will only elaborate on the
sensitivity and density filter as they are most commonly applied.

A.3.1. Density filtering

The density filter is described as [4]:

Ee (x) =(ρ∗K )p E where (ρ∗K )(x) =
∫
Ω
ρ(y)K (x − y)d y,

s.t.
∫
Ω
ρ(x)dΩ≤V ; 0 ≤ ρ(x) ≤ 1; x ∈Ω,

(A.3)

where ∗ is the convolution and K (x) a convolution kernel that effectively averages the element density over
directly surrounding elements (weighted through their absolute distance) in a given range or radius. K can
for example be:

K (x) =
{

1− ||x ||
r if ||x || ≤ r

0 otherwise
(See figure A.1)

Where ||x || =
√

x2 + y2 (length of the coordinate vector), when implemented in a discretized domain this,
in fact, is the distance from the evaluated element to a surrounding element that is being looped over. The
kernel function is shown in figure A.1.

(a) Contour plot (b) Surface plot

Figure A.1: The plot shows the convolution kernel (or function) used to average the density distribution using surround-
ing elements within a desired radius (r = 1 is used in this example)

In a more efficient form for application in a discretized domain we can use:

H(x) = Hei (xe , xi ) =

1− ||xe −xi ||
r

if ||xe −xi || ≤ r

0 otherwise
for all : i ∈Der and e ∈De .
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WhereDer is the set of elements in a given radius r of the element e: Der =
{ ∀i ∈De : ||xe −xi || ≤ r

}
for each

e ∈De .

The application could look like (from the 88-line code [1]):

iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for i1 = 1:nelx %

for j1 = 1:nely % Sweeping over all the elements
e1 = (i1-1)*nely+j1; % Element number in the rho or 'design' vector

for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx) %
for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely) % Only loop over surrounding elements

e2 = (i2-1)*nely+j2; % Element number in the rho or 'design' vector
k = k+1;
iH(k) = e1; % Selecting row in H
jH(k) = e2; % Selecting column in H
sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2)); % Weight factors related to spatial coordinates

end
end

end
end
H = sparse(iH,jH,sH);
Hs = sum(H,2); % normalization vector to compensate the weighting factors

A.3.2. Sensitivity filtering

A sensitivity filter works similarly to a density filter, only now the convolution is over the sensitivities. The
expression for the weight factors on a discrete mesh is as follows:

∂̂C
∂ρe

= 1

ρe Hes

∑
i∈Der

Heiρi
∂C
∂ρi

,

Hei =
∑

i∈Der

Hei Which are the rows of H.
(A.4)

It depends on the numbering of the elements and their corresponding location what the matrix H looks like
but it is always symmetric with centre-diagonal and off-diagonal rows of components.

A.4. In-loop solvers
In the article ’A 99 line topology optimization code written in Matlab’ by O. Sigmund [25] and later in the 88
line code [1] a bisection algorithm is used to find the new density distribution while satisfying the volume
constraint (see g1 in eq. A.2).

For problems with more constraints it is common to use a solver that returns the improved design using
the information available each time it is called upon. Such a solver can be fitted inside the loop as it only
does one optimization step allowing the user to recalculate the solver input with the modified design. An
example of such a solver that can handle more then one constraint is the method of moving asymptotes
(MMA) introduced by Svanberg, 1987 [28]. This method solves an equivalent quadratic problem that is build
up using the sensitivities.
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Appendix: Finite Element Method

The finite element method (FEM) is a numerical technique for solving partial differential equations (PDE’s) or
functional minimization problems (e.g. minx f (x), where x is solved). A PDE is often a relation of a physical
variable with space and time. A finite element analysis (FEA) is used to simulate the behaviour of a physical
quantity in a given domain. The term FEM refers to the subdivision of the domain in small elements (finite
elements of the domain). The nodes are located on the (boundary of the) elements. The physical field is
expressed on the element trough discrete values on the nodes, called nodal values. This way a continuous
physical problem is transformed into a discretized finite element problem with unknown nodal values. After
adding the local contribution of every element in a global matrix we can start to solve the matrix problem:
Ax = f , for the unknown nodal values in x . The matrix A is usually sparse, symmetric and, in the case of
a scalar field, of the size n by n where n is the number of nodes with unknown nodal values. This chap-
ter is based on the book by Cook et al. [8] and establishes the equations, variables and their notation used
throughout this thesis.

B.1. FEM in a nutshell

This section will give a brief summery of the steps required to solve a problem using FEM.

1. Discretize the continuum domain

The domain is subdivided into elements and nodes on which we can define local interpolation
functions.

2. Select interpolation functions

Choose how to interpret the physical property locally within an element.

3. Derive the element matrix

Transform the problem to a weak formulation and define locally the influence of connected nodes.

4. Build the global matrix

Now loop over all elements and add their local contributions to the global matrix.

5. Solve the global system of equations

Use for example a dedicated software package to solve the set of equations to find the nodal values.

6. Post-processing of results

Calculate additional parameters and plot results.

In this work, we assume a simple rectangular domain with rectangular quadrilateral elements, therefore lim-
ited attention is paid on deriving bullets 1 and 2. We attend to bullets 3 and 4 by deriving two weak for-
mulations, one from a partial differential equation (PDE) governing a diffusivity problem and one using the

59
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virtual work principle on a elastic deformation problem. The two derivations are treated in Appendix B.3 and
Appendix B.4 respectively. The final two bullets depend on the application and will not be treated here.

B.2. The shape functions

In order to use FEM it is required to rewrite the problem into a minimization problem. When working with a
differential equation, the Galerkin method is the most popular (for e.g. heat problems or other PDE’s). If we
already have a physical problem that can be formulated as a minimization the variational formulation of the
finite element equations are usually used (for e.g. minimization of potential energy for elastic bodies). First,
a continuous scalar field is described using shape functions and the discretized nodal values.

B.2.1. Choosing the element shape and shape function

In this general case we will look at a 2D domain. The element of interest is a rectangle with four nodes at the
corners. We will interpolate this rectangular element using bilinear shape functions (SF) (or basis functions).
A property (1) of SF’s is that each SF has a value of 1 at a single node and is 0 at the other nodes. A second
property (2) is that the sum of the four SF’s should equal a surface at one on the entire element. The latter (2)
is automatically satisfied by using linear SF’s. A more complete list of requirements can be found in [8].

The SF’s are derived here in a general framework. This means that first the SF’s are defined on a standard
element (with fixed dimensions) and second the actual elements are mapped to the standard element to
perform integration and differentiation.

A coordinate transformation is later introduced that maps the physical domain with coordinates x = [
x y

]>
to the standard element domain with coordinates ξ= [

ξ η
]>, i.e. x → ξ, see Figure B.2.

The SF’s for a standard element are found by introducing the unknown coefficients C and solving them for
condition (1). The unknown coefficients are used in the following matrix multiplication where the unit matrix
I satisfies condition (1):

HC = I →


1 ξ1 η1 ξ1η1

1 ξ2 η2 ξ2η2

1 ξ3 η3 ξ3η3

1 ξ4 η4 ξ4η4




a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (B.1)

where H consists of ξi and ηi which are the known and fixed nodal coordinates on the standard element. The
coefficients C are directly found by finding the inverse of the node coordinate matrix H:

C = H-1I →


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

=


1 −1 1 −1
1 1 1 1
1 −1 −1 1
1 1 −1 −1


-1 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= 1

4


1 1 1 1
−1 1 −1 1
1 1 −1 −1
−1 1 1 −1

 . (B.2)

The SF’s can now be written in terms of the local coordinates ξ:

N (ξ) =
[

N1 N2 N3 N4

]
=

[
1
4 (1−ξ)(1+η) 1

4 (1+ξ)(1+η) 1
4 (1−ξ)(1−η) 1

4 (1+ξ)(1−η)
]

, [1×4]

(B.3)
for −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1. Otherwise, outside the element under consideration: N = 0 (the null-vector).
In Figure B.1 the SF’s are plotted on the standard element.

To perform the coordinate mapping, the node coordinates in the real domain xe
n = [x1, y1, x2, y2, ...]> are re-
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(a) Shape function 1 (b) Shape function 2 (c) Shape function 3 (d) Shape function 4

Figure B.1: Shape functions plotted on a standard element. The local node numbering is the same as the shape funcion
numbering.

quired. These are defined in the discretisation of the physical domain. The mapping now becomes:

xe =
[

x =Q(ξ,η)
y = R(ξ,η)

]
= N(ξ)xe

n =
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4





x1

y1

x2

y2

x3

y3

x4

y4


, (B.4)

where the notation ‘N’ is introduced in Equation (2.3). The functions Q and R in Equation (B.4) map x → ξ,
this can be used to evaluate equations in terms of ξ and η (e.g. in Equation (B.9)). The mapping is illustrated
in Figure B.2. The reverse mapping is not easily defined (and often the mapping does not exist in closed form)

(x1, y1)

y

x

(−1,1) (1,1)

(1,−1)(−1,−1)

η

ξ

Ωe

0

(x2, y2)

(x4, y4)

(x3, y3)

Mapping: x → ξ

Figure B.2: The mapping: x → ξ. Left is the real domain and right is the standard element.

[12]. It can however be approximated using a Taylor expansion:

ξ≈ ξ0 + ∂ξ
∂x

∣∣∣
x0

(x −x0)+ ∂2ξ

∂x2

∣∣∣∣
x0

(x −x0)2

2
= ξ0 + Jx0 (x −x0)+Hx0

(x −x0)2

2
,

when evaluated at ξ0 =
[

0
0

]
, and if Hx0 = 0, we get : ξ≈ Jx̃ (x − x̃).

(B.5)

Where x̃ is the average of xi and yi or the centre of the standard element and Hx0 is the Hessian matrix (of
second order partial derivatives) evaluated at x0.

For the transformation to be valid the Jacobian J of the transformation Equation (B.4) must be non-singular
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(detJ 6= 0).

J =
 ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 , J-1 =
 ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

 ,

∂x
∂ξ = 1

4

(
−x1 +x2 −x3 +x4 +η

(−x1 +x2 +x3 −x4
))

,

∂x
∂η = 1

4

(
x1 +x2 −x3 −x4 +ξ

(−x1 +x2 +x3 −x4
))

,

∂y
∂ξ = 1

4

(
−y1 + y2 − y3 + y4 +η

(−y1 + y2 + y3 − y4
))

,

∂y
∂η = 1

4

(
y1 + y2 − y3 − y4 +ξ

(−y1 + y2 + y3 − y4
))

.

(B.6)

We can check the matrix by calculating the determinant of J. Later we will also need this to numerically
integrate over the standard element.

J = det(J) = 1

42

((−x1 +x2 −x3 +x4 + Axη
)(

y1 + y2 − y3 − y4 + Ayξ
)
− (

x1 +x2 −x3 −x4 + Axξ
)(−y1 + y2 − y3 + y4 + Ayη

))
,

where :

Ax = (−x1 +x2 +x3 −x4
)

,

Ay =
(−y1 + y2 + y3 − y4

)
.

(B.7)

B.2.2. Describing physical fields using shape functions

Using the SF’s, which form a continuous description onΩe , we can express the derivative of some field quan-
tity by using the matrix of derivatives. This matrix is commonly named B, but because we will first introduce
a pressure field problem and then a deformation problem, the matrix of derivatives for the pressure field is
called Bp , while the matrix B is used to express the strains due to a displacement field. Because N is expressed
in local coordinates ξ, η we can apply a chain rule to calculate the derivatives with respect to the global co-
ordinates x, y . We can simply use the Jacobian to convert the derivatives from one coordinate systems to the
other, and back.

Bp (ξ) =∇N (ξ) =

 ∂N1
∂ξ

∂N2
∂ξ

∂N3
∂ξ

∂N4
∂ξ

∂N1
∂η

∂N2
∂η

∂N3
∂η

∂N4
∂η

= 1

4

−1−η 1+η −1+η 1−η
1−ξ 1+ξ −1+ξ −1−ξ

 ,

Bp (x) = J-1Bp (ξ) =

 ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y


 ∂N1

∂ξ
∂N2
∂ξ

∂N3
∂ξ

∂N4
∂ξ

∂N1
∂η

∂N2
∂η

∂N3
∂η

∂N4
∂η

 .

(B.8)

A continuous scalar field like pressure, p, can now be expressed using N in the following way:

p(x) = p
(
Q(ξ,η),R(ξ,η)

)= ne∑
e=1

N (ξ,η)pe [1×4][4×1] where pe =


p1

p2

p3

p4

 , (B.9)

where pe are the nodal values of the pressure field on element e. The same can be done for a displacement
field u(x), v(x) which are the displacements in x and y direction respectively. When expressing a vector field
one needs the matrix of shape functions as introduced in Equation (2.3).

B.3. Solving a pressure field
In order to explain Galerkin’s method, it is applied to a PDE that describes a diffusivity problem. In particular
the diffusion of a pressure field through a domain of varying porosity as described by Darcy’s law. This PDE
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is transformed to the weak formulation such that it can be solved using FEM. The static PDE that governs the
Darcy flux Equation (3.8) is derived in Section 3.1.3 and is repeated here:

∇·q −Q = 0, (B.10)

where:
q = Darcy flux (ms−1),
Q̃ = fluid source (s−1).

The Darcy flux is related to the spatial derivative of the temperature as given by Darcy’s law, repeated here:

q =−κ
µ
∇p =−K ∇p, (B.11)

where:
q = Darcy flux (ms−1),
κ = permeability (m2),
µ = fluid viscosity (Pas),
∇p = pressure gradient (Nm−3),
K = conduction coefficient (Nm4 s−1).

If we substitute eq. B.11 into eq. B.10 we will end up with a second order PDE. because we want to use
linear basis functions this is undesirable in a FEA. Therefore we introduce the weak formulation to lower the
order analytically. This is where the Galerkin method comes in to rewrite the PDE as a residual minimization
by multiplying all terms by shape functions and integrating over the domain. The integrated PDE is called
a weak formulation, and requires a lower order derivative to solve. (Or more intuitively, the integral of a
function is a weaker ’function constraint’ than the PDE). Finally, after discretisation, the residual (which is
the interpolation error) is equated to zero forming the minimization problem. So First put everything to one
side:

∇·q −Q̃ = 0. [scalar] (B.12)

Multiply the equation by the shape function Ni (ξ) [scalar] for each shape function on an element (i = 1, ...,4)
and integrate over the entire domain (Ω). Because the shape function is only non-zero on the element under
consideration, the integration is only nonzero over that element domain (Ωe ).

Summed over each element and for each shape function Ni we get:

ne∑
e=1

( ∫
Ωe

(
∇·q −Q̃)

)
Ni (ξ)dΩ

)
i=1,..,4

= 0. [scalar] (B.13)

B.3.1. Weak formulation

Often the expression in the form of a PDE includes higher order derivatives which cannot directly be modelled
using linear shape functions. However, the weak formulation provides numerical benefits as it allows us to
reduce the order of differentiation. This way, simple linear shape functions can be used that are continuous
and only require to be differentiable once.

We will now introduce the divergence theorem or Gauss theorem that applies to any vector field u(x) in a
closed and continuous domain (likeΩ): ∫

Ω
∇·u dΩ=

∫
Γ

u ·n dΓ, (B.14)

where Γ is the boundary of the domain Ω and n is the normal to that boundary defined everywhere on Γ.
Another theorem we have to introduce defines the divergence of the product of a scalar field c(x) and vector
field u(x):

∇· (cu) =∇c ·u + c (∇·u). [scalar] (B.15)
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Integrating eq. B.15 over the whole domain and applying the divergence theorem, eq. B.14, gives us Green’s
theorem [17]: ∫

Ω
c (∇·u) dΩ=−

∫
Ω

(∇c) ·u dΩ+
∫
Γ

c u ·n dΓ. [scalar] (B.16)

We can directly apply this to our problem Equation (B.13), where we substitute for u the Darcy flux q and for
c the individual shape functions Ni . Rewriting Equation (B.13) gives:

ne∑
e=1

( ∫
Ωe

Ni
(∇·q

)
dΩ−

∫
Ωe

Ni Q̃ dΩ

)
i=1,..,4

= 0. (B.17)

After applying Green’s theorem we have:

ne∑
e=1

(
−

∫
Ωe

(∇Ni
) ·q dΩ+

∫
Γ

Ni qΓ ·n dΓ−
∫
Ωe

Ni Q̃ dΩ

)
i=1,..,4

= 0, (B.18)

where q is renamed: qΓ because it only requires to be evaluated at the boundary (as a result of Green’s theo-
rem, and because in the dot-product the rest would become zero) . Now that we have derived the first order
weak form we can back-substitute Darcy’s law Equation (B.11) in Equation (B.18):

ne∑
e=1

( ∫
Ωe

K
(∇Ni (ξ)

) ·∇p(x) dΩ

)
i=1,..,4

=
4∑

i=1

( ∫
Ωe

Ni (ξ)Q̃ dΩ−
∫
Γ

Ni qΓ ·n dΓ

)
i=1,..,4

, [scalar] (B.19)

where the right hand terms Q̃ and qΓ ·n can cover (or house) several different boundary conditions. In this
derivation, a draining term (analogous to a convective heat flow term) is added by making the following re-
placement: ∫

Ω
Ni Q̃ dΩ=−

∫
Ω

Ni
(
H(p −p0)

)
dΩ, [scalar] (B.20)

where:
H = drainage coefficient (m2 s−1 N−1),
p = continuous pressure field (Nm−2),
p0 = external pressure (Nm−2) (in this thesis p0 is set to 0),
Q̃ = volumetric draining term per unit volume (s−1).

Now in the topology optimization, Equation (B.20) can be tuned through H to effectively alter the pressure
field by implementing local (design dependent) drainage. To let the pressure drop to zero, we choose p0 = 0.

B.3.2. Discretisation of the weak form

The weak form still contains the unknown continuous scalar field p(x). To be able to numerically solve the
pressure distribution we will discretize by substituting Equation (B.9) into Equation (B.19).

ne∑
e=1

( ∫
Ωe

K
(∇Ni

) ·∇N pe dΩ

)
i=1,..,4

=
ne∑

e=1

(
−

∫
Ωe

H Ni (N pe −p0) dΩ−
∫
Γ

Ni qΓ ·n dΓ

)
i=1,..,4

, (B.21)

where the gradients are defined as follows:

∇N pe = Bp pe =


∂[p]
∂x
∂[p]
∂y
∂[p]
∂z

=


∂N1
∂x

∂N2
∂x

∂N3
∂x

∂N4
∂x

∂N1
∂y

∂N2
∂y

∂N3
∂y

∂N4
∂y

∂N1
∂z

∂N2
∂z

∂N3
∂z

∂N4
∂z

 pe , [3×4][4×1]

∇Ni =


∂Ni
∂x
∂Ni
∂y
∂Ni
∂z

 . [3×1]

(B.22)

Now for the final step we have four independent equations, one for each evaluated i . To clarify this fur-
ther, notice that evaluating the left hand term in Equation (B.21) for Ni results in a vector multiplication
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of the form: K
∫
Ωe

[1×4]i pe dΩ, when evaluated for each i , this gives the desired local matrix of the size:
K

∫
Ωe

[4×4] pe dΩ, providing four equations for the four unknowns in pe .

(∇Ni ·∇N pe)
i=1,..,4 =



∂N1
∂x

∂N1
∂y

∂N1
∂z

∂N2
∂x

∂N2
∂y

∂N2
∂z

∂N3
∂x

∂N3
∂y

∂N3
∂z

∂N4
∂x

∂N4
∂y

∂N4
∂z

Bp pe = B>
p (x) Bp (x) pe = B>

p (ξ) J-> J-1 Bp (ξ) pe , [4×3][3×4][4×1]

(
Ni q(x) ·n

)
i=1,..,4 = N>

(
qx nx +qy ny +qz nz

)
Γ

, [4×1]

(B.23)
where (J-1)

>
is abbreviated by J->. So that we may arrive at the final form, after bringing the pressure depen-

dent terms to the left, Equation (B.23) becomes:

ne∑
e=1

∫
Ωe

Le>
p

(
K B>

p Bp +H N>N
)

Le
p dΩ︸ ︷︷ ︸

A

p =
ne∑

e=1
Le>

p

( ∫
Ωe

H N>p0 dΩ−
∫
Γ

N>qΓ ·n dΓ

)
︸ ︷︷ ︸

f

, (B.24)

with p being the global pressure vector of length n and Le
p the index matrix that points to the correct location

of the local element DOF’s in the global DOF vector.

Ap = f + fp . (B.25)

Finally, there is a need to prescribe the possible boundary conditions. Γp is the boundary of prescribed (non-
zero) pressures, they are transferred to the load vector using: fp =−App . The now fixed pressure DOF’s (both
∀pp = 0 and ∀pp 6= 0) are excluded from calculations (such that only the free degrees of freedom are solved
for). This boundary condition is called a Dirichlet boundary condition.

When a pressure is not prescribed at the wall, f can pose a Neumann boundary condition trough qΓ, which
is the (Darcy) flux trough the boundary. If qΓ = 0 and p0 = 0 then the right hand side only contains the con-
tribution of the prescribed pressures: fp . In that case we have a simple static problem where the boundaries
without prescribed pressure have zero outgoing flux because qΓ = 0. This way we can satisfy the symmetry
condition at Γs.

B.3.3. Numerical integration

The integrals are often hard to solve analytically so it is common to use numerical integration. We will use
the Legendre-Gauss quadrature rule to evaluate the integrals. Following the method we evaluate the function
at Gauss points or abscissa1 in the domain and then we multiply them by corresponding weight factors. First
let us formulate the transformation of integrals from a global coordinate system to a local coordinate system
using the determinant of the Jacobian.

dV = tdxdy = det(J ) (1)dξdη,∫
Ωe (x)

f (x, y) tdxdy =
∫ 1

−1

∫ 1

−1
f (p(ξ,η),Q(ξ,η)) det(J ) dξdη. (B.26)

In this case most functions are already defined in the local frame or standard element. Now Gauss’s method
goes as follows: ∫ 1

−1

∫ 1

−1
f (ξ,η) det(J ) dξdη=

n∑
i=1

n∑
j=1

f (ξi , η j ) det
(

J(ξi , η j )
)

wi w j . (B.27)

It is worth noticing that the numerical integration by the Gauss quadrature rule of the order n is precise for
functions of the polynomial order n +1. For elements that are only scaled to a width ’a’ and height ’b’ the
application of the Gauss quadrature rule to the right side of eq. B.24 comes down to this:

1These are the roots of n degree Lagrange polynomials
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Table B.1: Abscissae and Weights of Gauss quadrature

n ξi & ηi wi
1 0 2
2 ±1/

p
3 1

3
0

±p3/5
8/9
5/9

4
±0.3400
±0.8611

0.6521
0.3479

%% Jacobian calculation of scaled element
J = [a/2, 0; 0, b/2];
J_inv = [2/a, 0; 0, 2/b];
J_det = a*b/4;

%% Legendre-Gauss integration:
Ae = zeros(4,4);
GaussPoints = [-1/sqrt(3), 1/sqrt(3)]; % Gauss points
Weights = [1, 1]; % Corresponding Weights
for i = 1:size(GaussPoints);

eta = GaussPoints(i);
W_i = Weights(i);
for j = 1:size(GaussPoints);

xi = GaussPoints(j);
W_j = Weights(j);
B = 1/4*[-(1+eta), (1+eta), -(1-eta), (1-eta);

(1-xi), (1+xi), -(1-xi), -(1+xi)];
Ae = Ae+(B'*J_inv')*J_inv*B*J_det*W_i*W_j; % Element matrix for a heat flow problem

end
end

This is already enough to solve the steady Darcy-flux problem.

B.4. Solid mechanics

Solid mechanics is about the static deformations and dynamic motions of an elastic or solid body. In this
section we will only derive the static (or time independent) elastic deformation. Variational calculus is used
to derive the expression of virtual work which, inherited in the method, needs to be minimized to find the
displacement field of our elastic body. For this section the book by Ir. J. Blaauwendraad and Ir. A.W.M. Kok,
1973 [5] and additionally the book by R.D. Cook, 2001 [8] are used as reference.

B.4.1. Principle of virtual work

Lets consider a body of solid isotropic material covering the domain Ω with the domain boundary being the
sub-domain: (δΩ=)Γ. External forces act onΩ in the form of body forces (b) and on Γ as (Cauchy) tractions
(t ). Imagine a virtual motion of the solid inΩ characterised by arbitrary virtual displacements δu which form
a displacement field. Then we can write the external work done by this virtual motion δu as:

δWext (= F ·δu) =
∫
Γ

t ·δu d A +
∫
Ω

b ·δu dV. (B.28)

Note that the external work is zero if the body does not deform. The internal stresses are related to the internal
traction as: t = σn, where σ is the internal stress tensor and n is the unit normal vector of a cross section
inside the material. If we cut the solid we expose an inner surface Γcut that allows us to evaluate the internal
stress, we can write: ∫

Γcut

t ·δu d A =
∫
Γcut

σn ·δu d A. (B.29)
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Because the total internal work is the sum of all these cross sections (proof is omitted) we can write:

δWint =
∫
Ω
δεe>σe dV ,

(for a plane) δWint =
∫
Ω

(
σxδεx +σyδεy +τx yδγx y

)
dV.

(B.30)

The material will always deform such that the energy is minimal, e.g. if there is an abundance of internal
energy somewhere it is intuitive that it will ’flow’ to a place of less energy (or deformation) if physically pos-
sible. This automatically satisfies the stress equilibrium, stress-strain relation and continuity. As a result the
principle of virtual work states that:

δWext −δWint = 0. (B.31)

B.4.2. Discretization

The displacement field can be discretized by using the square elements proposed in section B.2.1 and the
associated shape functions given in equation B.3. The matrix of shape functions required to represent a
vector field or displacement field is given in equation 2.3 and used here for the displacement field u(x, y):

u(x) =
[

u(P,Q)
v(P,Q)

]
=

ne∑
e=1

N(ξ)ue , [2×8][8×1] where ue =
[

u1 v1 u2 v2 u3 v3 u4 v4

]>
,

and (x, y) and (ξ,η) are related through:

xe =
[

x = P (ξ,η)
y =Q(ξ,η)

]
= N(ξ)xe

n where xe
n =

[
x1 y1 x2 y2 x3 y3 x4 y4

]>
. (B.32)

We can now define the strains as derivatives of the displacement field: εx = ∂u(x)
∂x , εy = ∂v(x)

∂y and γx y = ∂u(x)
∂y +

∂v(x)
∂x . This can be expressed in the matrix B of derivatives of shape functions, using the short hand notation:

N1,ξ = ∂N1
∂ξ and u,x = ∂u

∂x , note that the B derived for solid mechanics purposes is different than that for a
pressure distribution problems.

εe (ξ) = B(ξ)ue , [3×8][8×1]

where B can be expressed by combining the following equations:

εe =

 εx

εy

γx y

=

1 0 0 0
0 0 0 1
0 1 1 0




u,x

u,y

v,x

v,y

 ,


u,x

u,y

v,x

v,y

=
[

J-1 0
0 J-1

]
u,ξ

u,η

v,ξ

v,η

 , [4×4][4×1]


u,ξ

u,η

v,ξ

v,η

=


N1,ξ 0 N2,ξ 0 N3,ξ 0 N4,ξ 0
N1,η 0 N2,η 0 N3,η 0 N4,η 0

0 N1,ξ 0 N2,ξ 0 N3,ξ 0 N4,ξ

0 N1,η 0 N2,η 0 N3,η 0 N4,η

ue ,

where B(ξ,η) can be evaluated at the nodes to find the nodal strains (and later stresses) and J is the Jacobian
matrix defined in equation B.6. We can write B now explicitly by combining the last three equations:

B =

1 0 0 0
0 0 0 1
0 1 1 0



ξ,x η,x 0 0
ξ,y η,y 0 0
0 0 ξ,x η,x

0 0 ξ,y η,y




N1,ξ 0 N2,ξ 0 N3,ξ 0 N4,ξ 0
N1,η 0 N2,η 0 N3,η 0 N4,η 0

0 N1,ξ 0 N2,ξ 0 N3,ξ 0 N4,ξ

0 N1,η 0 N2,η 0 N3,η 0 N4,η

 , (B.33)
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or in shorter, but maybe less general formulation,

B =

ξ,x η,x 0 0
0 0 ξ,y η,y

ξ,y η,y ξ,x η,x




N1,ξ 0 N2,ξ 0 N3,ξ 0 N4,ξ 0
N1,η 0 N2,η 0 N3,η 0 N4,η 0

0 N1,ξ 0 N2,ξ 0 N3,ξ 0 N4,ξ

0 N1,η 0 N2,η 0 N3,η 0 N4,η


i

[3×4][4×8]. (B.34)

Now that the strain is expressed in terms of the discrete displacement field we use Hook’s law to find the
internal stresses, were E e is the Young’s modulus that can be chosen to vary over different elements.

σe =

σx

σy

τx y

= E e 1

1−ν2

1 ν 0
ν 1 0
0 0 1

2 − 1
2ν


 εx

εy

γx y

= E e K̂εe , (B.35)

where in topology optimization we have a different ‘density’ (and thus stiffness) for each element. Therefore
we introduce the ‘hat’ (K̂) notation to indicate a unit stiffness matrix (analogous to a unit vector) that requires
multiplication by a Young’s modulus E e .

Now that the quantities are described on each element we can substitute this in the energy balance, equation
B.31 and rewrite it such that only the discrete displacement field remains unknown.

δW e
int =

∫
Ω
δεe>σe dV =

∫
Ω
δεe>

(
E e K̂εe

)
dV = E e

∫
Ω
δue>B>K̂ Bue dV. (B.36)

Notice that the integral is only nonzero on the element in consideration and that ue is independent of spatial
coordinates. We can simplify the expression by defining the stiffness matrix:

δW e
int = δue>Kue

K = E e
∫
Ω

B>K̂ BdV.
(B.37)

For the external work we only have to discretize the virtual displacement field in equation B.28.

δWext =
∫
Γ
δu>t d A +

∫
Ω
δu>b dV ,

W e
ext =

∫
Γ
δue>N>t d A +

∫
Ω
δue>N>b dV = δue>F e ,

F e =
∫
Γ

N>t (x) d A +
∫
Ω

N>b(x) dV ,

(B.38)

where be =
[

bx (x, y)
by (x, y)

]
are the body forces per unit volume acting on the element, like gravitation:

∫
Ωe

N>be dV =
∫
Ωe

N>(ρg e2)dV.

To add the element contributions to the global stiffness matrix and load vector we define a (binary) location
matrix Le

u that reshapes the stiffness matrix and force vector such that it acts upon the correct degrees of
freedom in the global displacement vector u. This allows us to define the element contribution in a global
sense:

Ke
0 = Le>

u Ke Le
u ,

F e
0 = Le>

u F e .
(B.39)

Note that this is rarely the way it is implemented because that would be computationally expensive. We
described the internal and external work in terms of the global discrete displacement field. Substitution in
the energy balance, equation B.31 holds:

δu>
ne∑

e=1

(
Ke

0u −F e
0

)= 0. (B.40)
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Which should equal zero for every virtual displacement field we choose, thus the terms in brackets should be
zero to satisfy the equation.

ne∑
e=1

(
Ke

0u −F e
0

)= 0,

Ku = F .

(B.41)

Notice that the factor E e can be brought out and be multiplied by a unit element stiffness matrix, this is
important for the topology optimization using the SIMP method.

ne∑
e=1

(
E e K̂e

0u −F e
0

)
= 0. (B.42)





C
Appendix: Relation between drainage and

penetration depth

To have a more intuitive grip on the drainage coefficient hmat, the ordinary differential equation (ODE) is
analytically solved for a 1D flow problem trough the wall. The ODE for the adjusted Darcy flow model is:

K (ρe )
d 2p

ds2 = pH(ρe ), (C.1)

where K is the flow coefficient, p the pressure, s the penetration depth and H th drainage coefficient. Because
we are simulating the behaviour of the pressure penetrating material we are only considering ρe = 1. So,
Equation (C.1) can be rewritten to1:

kmat
d 2p

ds2 = phmat. (C.2)

The boundary conditions (BC’s) can be used to express hmat in more intuitive parameters like the penetration
depth ∆s and the ratio ‘r ’ of input pressure that is left there. Two BC’s are required because it is a 2nd order
ODE, so we choose:

lim
s→∞p = pout = 0 BC 1,

p(s = 0) = pin BC 2.
(C.3)

As a trial solution we choose:
p(s) = ae−bs + cebs , (C.4)

where e is Euler’s number and a,b and c are unknown coefficients to be determined. Substituting Equa-
tion (C.4) in Equation (C.2) holds:

kmatb
2(ae−bs + cebs ) = (ae−bs + cebs )hmat,

that is : kmatb
2 = hmat,

(C.5)

such that:

b =
√

hmat

kmat
. (C.6)

Applying both BC’s now gives:

p(s →∞) = lim
s→∞

(
ae−bs + cebs

)
= 0 ⇒ c = 0,

p(0) = a + c = pin ⇒ a = pin.
(C.7)

1The actual value of the flow coefficient kmat depends on the function: K (ρe ) and how it overlaps the curve H(ρe ). However, in this
work, βk and ηk are chosen such that K (ρ) = kmat before the drainage, H(ρ), significantly kicks in. See Figure 3.2 in Section 3.1.2 for an
indication of what the curves may look like and how they could overlap.
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The final form now becomes:

p(s) = pine
−

√
hmat
kmat

s
. (C.8)

We now want to find hmat such that: p(s =∆s) = r pin. Substitution holds:

r pin = pine
−

√
hmat
kmat

∆s
,

r = e
−

√
hmat
kmat

∆s
.

(C.9)

This can be rewritten to get:

hmat =
(

lnr

∆s

)2

kmat, (C.10)

where:
hmat = drainage coefficient in material (m2 N−1 s−1),
r = ratio of input pressure at ∆s: p(∆s) = r pin, (r = 0.1 in this work)
∆s = penetration depth of pressure (m),
kmat = flow coefficient in material (s−1) (kmat = 1 in this work).



D
Appendix: A compliant Mechanism

formulation

A compliant mechanism is a monolithic structure that inherits its degrees of freedom (DOF’s) by removing
material in specifically chosen places. This chapter is based on the work of O. Sigmund, 1997 [24]. We can
design a compliant mechanism by altering the topology optimization objective and finding the associated
sensitivities.

D.1. Objective and constraints
The objective we are interested in is to maximize the "mechanical advantage" M , defined as:

M = Fout

Fin
= FR

Fin
. (D.1)

FR

Output port Input port Fin

∆in∆gap

∆out

Ω Deformed shape

u

(a) Mechanism configuration

P1

∆11∆21

Ω

u1

(b) Load case 1 with an input load

P2

∆12
∆22

Ω

u2

(c) Load case 2 with a dummy output load

Figure D.1: The overall load configuration defined on the design domainΩ can be subdivided into two dummy load cases
[24] that need to be solved. The superposition theorem can be applied here to calculate the mechanical advantage and
input displacement as a result of the load cases.

In Figure D.1a one can see an example of a compliant mechanism set up. For the purpose of generality we
model the output port with a gap and a spring. The output force FR is to be maximized with respect to the
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74 D. Appendix: A compliant Mechanism formulation

input force Fin, while taking into account the spring constant ks and the gap ∆gap. As a constraint of the
design we will also require the input displacement ∆in. To find M and ∆in we define two load cases with
dummy loads P1 and P2 in F1 and F2 respectively, see Figure D.1b and Figure D.1c. And we solve both matrix
equations for the displacement vector:

Ku1 = F1 and Ku2 = F2. (D.2)

Then we define the ’unit load’ displacements ∆i j where i and j are the location and load case respectively as
indicated in Figure D.1b and Figure D.1c.

∆i j = u j
>êi = u j

> Fi

Pi
= u j

>Kui
1

Pi
, ∀

{
i ∈ {1,2}
j ∈ {1,2}

}
(no summation over i , j ). (D.3)

The output force FR can now be expressed as: FR = (∆out−∆gap)ks , assuming the outward deflection is greater

than the gap. Rewriting this holds: ∆out = ∆gap + FR
ks

. We can now use the superposition theorem for linear
systems to add load cases and associated forces linearly.

∆21 − c∆22 =∆out. (D.4)

Which states that the output displacement is the displacement at the output due to a force at the input minus
c times the displacement at the output due to the reaction force FR = cP2, where c is a constant.

c =
∆21 −∆gap − FR

ks

∆22
. (D.5)

FR = P2c = P2(∆21 −∆gap)

∆22
− FRP2

∆22ks
= P2

∆21 −∆gap

∆22 + P2
ks

.

Note that the objective function is: M = FR
P1

, so we can write M as:

M = P2

P1

∆21 −∆gap

∆22 + P2
ks

. (D.6)

The input displacement is the same linear combination as Equation (D.4), defined as follows:

∆in =∆11 − c∆12 =∆11 − ∆12

∆22

(
∆21 −∆gap − FR

ks

)
. (D.7)

Now that the objective function is quantified in terms of the displacement field of two load cases we can start
deriving the sensitivities. Note that, if desired, the gap can be removed by setting ∆g ap = 0 and the outward
deflection can be completely blocked by letting ks →∞, effectively modelling a pressing load on a rigid body.

The minimization problem is now as follows:

min
ρ

: −M(ρ,u1,2,F1,2),

s.t. : g1 = ∆in

∆∗
in

−1 ≤ 0,

g2(ρ) = V (ρ)

Vmax
−1 =

∑Ne
e=1

(
veρe

)
Vmax

−1 ≤ 0,

K u1 = F1, K u2 = F2,

0 ≤ ρi ≤ 1 ∀i ∈De ,

(D.8)

where ∆∗
in is the maximum allowable input displacement and the setDe =

{
1,2, ..., Ne

}
.
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D.2. Sensitivities

The sensitivities are the total derivatives of the objective to the individual design variables, S = dM(ρ,u1,2(ρ),F1,2(ρ))
dρ .

Using the quotient rule on Equation (D.6) gives:

Se = dM

dρe
= P2

P1

 ∂∆21
∂ρe

(
∆22 + P2

ks

)
− ∂∆22

∂ρe

(
∆21 −∆gap

)
∆22 + P2

ks

 , ∀e ∈De , (D.9)

with ks ,∆gap, P1 and P2 constant w.r.t. ρe . The partial derivatives
∂∆i j

∂ρe
can be found using the adjoint method.

Introducing the Lagrange multipliers λi and λ j we can write ∆i j as:

∆∗
i j =

1

Pi
u j

>Kui +λi
> (

K ui −Fi
)+λ j

>
(
K u j −F j

)
. (D.10)

Upon differentiation we get a rather lengthy equation, collecting terms it becomes:

∂∆∗
i j

∂ρe
=

(
1

Pi
ui

>K>+λi K
)
∂u j

∂ρe
+

(
1

Pi
u j

>K+λ j K
)
∂ui

∂ρe
+ 1

Pi
u j

> ∂K

∂ρe
ui−λi

> ∂Fi

∂ρe
−λ j

> ∂F j

∂ρe
+λi

> ∂K

∂ρe
ui+λ j

> ∂K

∂ρe
u j .

(D.11)

Where we can choose the Lagrange multipliers to be: λi = − 1
Pi

u j and λ j = − 1
Pi

ui to extinguish the deriva-

tives: ∂ui
∂ρe

and
∂u j

∂ρe
. We can substitute this and rewrite Equation (D.11) to get:

∂∆∗
i j

∂ρe
= 1

Pi
u j

> ∂K

∂ρe
ui − 1

Pi
u j

> ∂K

∂ρe
ui − 1

Pi
ui

> ∂K

∂ρe
u j + 1

Pi
u j

> ∂Fi

∂ρe
+ 1

Pi
ui

> ∂F j

∂ρe
. (D.12)

Using the fact that ∂K
∂ρe

= ∂K>
∂ρe

because K is symmetric, and the fact that these are scalar terms, we can trans-
pose terms at will and rewrite to the following form:

∂∆∗
i j

∂ρe
= 1

Pi

(
−u j

> ∂K
∂ρe

ui +u j
> ∂Fi
∂ρe

+ui
> ∂F j

∂ρe

)
∀

{
i ∈ {1,2}
j ∈ {1,2}

}
. (D.13)

For the two derivatives required in Equation (D.9), this becomes:

∂∆21
∂ρe

= 1

P2

(
−u1

> ∂K
∂ρe

u2 +u1
> ∂F2
∂ρe

+u2
> ∂F1
∂ρe

)
,

∂∆22
∂ρe

= 1

P2

(
−u2

> ∂K
∂ρe

u2 +u2
> ∂F2
∂ρe

+u2
> ∂F2
∂ρe

)
,

where the derivative ∂K
∂ρe

follows from the chosen material model, which is the SIMP model in this work. In

the absence of design-dependent loads the derivatives
∂F1,2
∂ρe

= 0 and the sensitivities Se simplify to:

Se = d M

dρe
= 1

P1

(
∆22 + P2

ks

) (
u2

> ∂K
∂ρe

u2

(
∆21 −∆gap

)
−u1

> ∂K
∂ρe

u2

(
∆22 + P2

ks

))
, ∀e ∈De (D.14)

where ∆i j is as in Equation (D.3) and u1 and u2 follow from Equation (D.2).

D.3. Actuation by pressure loading

In the history of literature about topology optimization there are very few articles that discuss the topic of
compliant mechanism design with design dependent loading and its associated problems.
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H. Panganiban et al., 2010 [22] used a method proposed by Sigmund [26] (described in Section 1.2) by using
a three phase design problem (fluid, material and void) to design a compliant mechanism. [22] redefined the
input displacement constraint as this displacement is defined in terms of a single point. Instead of constrain-
ing the input displacement at a single point, Panganiban constraints the mean compliance due to the applied
pressure.

U =
∫
Γp

u(x, y) ·pdΓ≤
∫
Γp

umax ·pdΓ=Umax, (where u is a continuous displacement field)

U ≈ u>Finput, (where u are the discritized nodal displacements).

(D.15)

A second article by S. Vasista and L. Tong, 2012 [31] designs pressure actuated cells which, by combining,
form morphing structures (like in plants). Vasista and Tong also use the incompressible medium and the
mixed u/P finite element formulation together with SIMP as described in [26, 35] and additionally together
with the moving isosurface threshold (MIST) topology optimization method [29].



E
Appendix: Sensitivity derivation using the

adjoint method

Sensitivities, are required by the optimization algorithm to give it a sense of direction. The sensitivities are
calculated by taking the derivative of the objective function to each design variable:

Se = ∂C

∂ρe
. (E.1)

The optimisation problem can, without additional1 constraints, be written as:

min
ρ

: C1 =−Fout(ρ) or C2 =−ψ(ρ),

subject to : 1) Ap = f ,

2) Ku1 = F1(ρ) =−H(ρ)p ,

3) Ku2 = F2,

0 ≤ρ ≤ 1,

g1 =
∑

e ρe

neV ∗ −1 < 0,

(E.2)

where first the FEA of the pressure field (1) is solved and then the two load cases (2 and 3) are solved. The
global stiffness matrix K is the same in both load cases (and throughout this work). The global stiffness ma-
trix and conductivity matrix can respectively be split in submatrices containing contributions to free and
prescribed DOF’s, like:

(
Kui = Fi

) ⇒
[

Kff Kfp

Kpf Kpp

][
ufi

upi

]
=

[
Ffi

Fpi

]
,

(
Api = fi

) ⇒
[

Aff Afp

Apf App

][
pfi

ppi

]
=

[
ffi

fpi

]
, (E.3)

where the same goes for sub-index j . The matrix H can also be split, such that the load vector can be given
by the following: (

Fi =−Hpi
) ⇒

[
Ffi

Fpi

]
=−

[
Hff Hfp

Hpf Hpp

][
pfi

ppi

]
,

such that : Ffi =− Hff pfi − Hfp ppi,

(E.4)

where again the same goes for sub-index j and where we can note that the prescribed displacements are zero
(fixed), so upi = 0. The values in the prescribed pressure vector ppi can either be zero or Pin. The derivatives

of both prescribed vectors:
dupi
dρ = 0 and

dppi
dρ = 0 because they do not alter with changes in the design. In the

rest of this appendix, a derivative will be indicated with an ‘apostrophe’: u′
fi
≡ dufi

dρ .

1‘Additional’ refers to the constraints suggested in Section 5. This is the minimal working problem set-up. Adding constraints does not
affect this derivation.
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For the derivation of the sensitivities the tricky part is finding ∆′
i j . If that is derived we can directly formulate

the derivative of the output force (OF) F ′
out, of the Energy efficiency (EE) ψ′ and even the sensitivities of the

minimal compliance (MC) objective: C3 = (u>
1 Ku1).

∆i j = u>
j êi = u>

j
Fi

Pi
= u>

j Kui
1

Pi
, ∀

{
i ∈ {1,2}
j ∈ {1,2}

}
, (no summation over i , j ), (E.5)

where êi is a unit vector that points to the desired DOF that designates the direction of port i .

E.1. Adjoint method

For the derivation we will take the second term of Equation (E.5). Because the derivative u′ and p ′ are explic-
itly defined, we need to use an adjoint equation (indicated by (. . . )∗) to find the derivative. So, ‘zero terms’
are multiplied with Lagrange multipliers and added to the equation. Here, the formulation is kept general by
introducing pressure fields for both an input (i ) and an output ( j ) port, they can always be set to zero if they
are unused.

Introducing the Lagrange multipliersλi ,λ j , µi and µ j we can write ∆i j Equation (E.5) as:

∆∗
i j =

1

Pi
uf j

> Kff ufi +λ>
i

(
Kff ufi − Ffi

)
+λ>

j

(
Kff uf j − Ff j

)
+

µ>i
(

Aff pfi + Afp ppi− ffi

)
+µ>j

(
Aff pf j + Afp pp j− ff j

)
,

(E.6)

in which we now substitute Ffi =− Hff pfi − Hfp ppi, i.e. the pressure loads, note that Hff is of the size [nd ×n]
and the subscripts denote free displacement DOF’s and free pressure DOF’s respectively. Taking its derivative
holds: F ′

fi
=− Hff p ′

fi
, because H does not depend on ρe and ppi

′ = 0. Upon differentiating Equation (E.6) we
get:

d∆∗
i j

dρe
= 1

Pi

(
u′

f j

> Kff ufi + uf j
> K′

ff ufi + uf j
> Kff u′

fi

)
+λ>

i

(
K′

ff ufi + Kff u′
fi
− F ′

fi

)
+λ>

j

(
K′

ff uf j + Kff u′
f j
− F ′

f j

)
+

µ>i
(

A′
ff pfi + Aff p ′

fi
+ A′

fp ppi+ Afp ppi
′− f ′

fi

)
+µ>j

(
A′

ff pf j + Aff p ′
f j
+ A′

fp pp j+ Afp pp j
′− f ′

f j

)
,

(E.7)

where it is assumed 2 that all f ′
f = 0, all fp

′ = 0 and all pp
′ = 0. By collecting the terms in Equation (E.7), it

becomes:

d∆∗
i j

dρe
=

(
1

Pi
uf j

> K′
ff ufi +λ>

i K′
ff ufi +λ>

j K′
ff uf j

)
+

(
µ>i A′

ff pfi +µ>i A′
fp ppi

)
+

(
µ>j A′

ff pf j +µ>j A′
fp pp j

)
+(

1

Pi
uf j

> Kff +λ>
i Kff

)
u′

fi
+

(
1

Pi
ufi

> Kff +λ>
j Kff

)
u′

f j
+

(
µ>i Aff +λ>

i Hff

)
p ′

fi
+

(
µ>j Aff +λ>

j Hff

)
p ′

f j
,

(E.8)

where the last four brackets have to sum to zero in order to extinguish the explicit variables. From this we can
state that:

λi =− 1

Pi
uf j ,

λ j =− 1

Pi
ufi ,

µi =− Aff
-1 Hff

>λi = 1

Pi
Aff

-1 Hff
> uf j ,

µ j =− Aff
-1 Hff

>λ j = 1

Pi
Aff

-1 Hff
> ufi ,

(E.9)

2If the pressure field calculation would be altered, this assumption cannot be made. In this work, the chosen methods allow us to assume
this.
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where we used the fact that K′ = K′> and A′ = A′> because they are symmetric. As all the encountered terms
are scalars we can freely transpose them without transposing the whole equation. Now that the Lagrange
multipliers are known, Equation (E.8) can be simplified by substituting λi and λ j (µi and µ j are kept in
place because they are solved separately):

d∆∗
i j

dρe
= 1

Pi

(
uf j

> K′
ff ufi − uf j

> K′
ff ufi − ufi

> K′
ff uf j

)
+µ>i

(
A′

ff pfi + A′
fp ppi

)
+µ>j

(
A′

ff pf j + A′
fp pp j

)
,

now transposing the third term in the brackets, the final form becomes:

d∆∗
i j

dρe
=− 1

Pi
uf j

> K′
ff ufi +µ>i

(
A′

ff pfi + A′
fp ppi

)
+µ>j

(
A′

ff pf j + A′
fp pp j

)
, (E.10)

comparing this with Equation (D.13), the direct derivation without substituted pressure loads from Section
D.2, we can state the following: (where we substituted µi )

uf j
> 1

Pi
Hff Aff

-1
(

A′
ff pfi + A′

fp ppi

)
= uf j

> F ′
fi

. (E.11)

This comparison shows how the derivative of the load vector can be obtained directly3

Ffi =− Hff pfi − Hfp ppi ⇒ F ′
fi
= 1

Pi
Hff Aff

-1
(

A′
ff pfi + A′

fp ppi

)
. (E.12)

E.2. The sensitivities of different objective functions

Because of the superposition theorem of linear problems [24] we can state that the spring deflection is:

∆s =∆out −∆gap =∆21 − c∆22 −∆gap, (E.13)

where c is related to the spring force that is present because of the deformation. c is derived in Appendix D
and is the contribution of the second load case in the deformation problem. It is repeated here for conve-
nience:

c = ∆21 −∆gap

∆22 + P2
ks

,

c ′ =
∆′

21

(
∆22 + P2

ks

)
−

(
∆21 −∆gap

)
∆′

22(
∆22 + P2

ks

)2 , (E.14)

In this work the reader can encounter three different objective functions, the first is minimisation of compli-
ance (MC):

min
ρ

C = u> K u = P1∆11, (E.15)

the second is maximising the output force (OF):

M = Fout

Fin
= ∆s ks

P1
, (E.16)

the third is maximising the Energy Efficiency (EE) objective is given by:

ψ= Eout

Ein
=

1
2 (∆s )2ks

1
2 (∆11 − c∆12)P1

= sgn(∆s )(∆s )2ks

(∆11 − c∆12)P1
, (E.17)

3Obtaining this derivative directly is discouraged as it would be computationally expansive. Advised is to use Gaussian elimination, as is
the default in MATLAB when using ‘mldivide’ or ‘A/b’, to solve the system of linear equations.
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where,
ks = output spring constant (Nm−1),
P1 = pin = input pressure applied to the system (Nm−2),
c = contribution of the second load case in the system,
∆s = spring deflection (m),
∆11, ∆12 = input energy per applied pressure (m3),
∆i j = displacement at port i due to load case j (m),
Ein = strain energy by the pressure load (J),
Eout = strain energy in the output spring (J).

The derivatives of the three objective functions can now be expressed in terms of ∆′
i j for i , j ∈ (1,2).

The derivative of the MC is:
dC

dρe
= P1∆

′
11, (E.18)

The derivative of the OF is:
dM

dρe
= ks

P1

(
∆′

21 − c ′∆22 − c∆′
22

)
, (E.19)

The derivative of the EE is:

dψ

dρe
= sgn(∆s )

2∆s∆
′
s

(
∆11 − c∆12

)−∆2
s

(
∆′

11 − c ′∆12 − c∆′
12

)
(
∆11 − c∆12

)2

ks

P1

= sgn(∆s )
2
(
∆21 − c∆22 −∆gap

)(
∆′

21 − c ′∆22 − c∆′
22

)(
∆11 − c∆12

)− (
∆21 − c∆22 −∆gap

)2 (
∆′

11 − c ′∆12 − c∆′
12

)
(
∆11 − c∆12

)2

ks

P1
,

(E.20)
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Appendix: Sensitivity of the outflow

constraint

The outflow constraint, as introduced in Section 5.3, limits the outflow of volume flow out of the domain. The
outflow is formulated as follows:

Qout =
∫
Γp0

q(x) ·n dΓ

=
ne∑

e=1

(∫
Γp0

((
−K (ρe )Bp (x)pe

)
·n(x)

)
dΓ

)
,

=
ne∑

e=1

(
−K (ρe )

∫
Γp0

(
n>(x) Bp (x)

)
dΓpe

)
,

=
ne∑

e=1

(
−K (ρe )

∫
Γp0

(
n>(x) Bp (x)

)
dΓ Le

p

)
p ,

= k>
ne∑

e=1

(
−Le>

∫
Γp0

(
n>(x) Bp (x)

)
dΓ Le

p

)
︸ ︷︷ ︸

G

p ,

[1×ne ]
(
[ne ×1] [1×d ] [d ×4] [4×n]

)
[n ×1]

(F.1)

where,
Qout = the volume flow through the boundary Γp0 (m3 s−1),
Γp0 = all boundaries where p is set to zero (so where flow can leave the domain,
n = surface normal vector [d ×1],
d = number of dimensions considered (d = 2 in this work as most examples are in 2D),
n = number of nodes in the total domainΩ,
ne = number of elements in the total domainΩ,
Bp = matrix of derivatives of shape functions [d ×4] (m−1),
pe = vector of nodal pressures on an element [4×1] (Nm−2),
Le

p = indexing matrix [4×n], that relates the local to the global pressure DOF’s,
Le = indexing vector with a single non-zero entry of value 1 e-th row [1×ne ],
k = the vector of flow coefficients: ke = K (ρe ), using index notation [ne ×1] (m4 N−1 s−1),
G = global contribution matrix,(m)
p = global pressure vector [n ×1] (Nm−2),

Which can thus be written as a matrix multiplication:

Qout = k>Gp , (F.2)

The integral in Equation (F.1) can be solved using the quadrature rule. The unit normal vector n(ξ) has a
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length of one and in the ξ,η plane it always is in a beneficial, single coordinate, direction (when using a
square local element). Because the implementation in this work uses a rectangular mesh and rectangular
elements, it is possible to find the analytical expressions for each of the four possible direction and speed up
the computations. This way the boundary integral is replaced by the summation of small areas times the flow
that goes through each area. The outflow constraint is given by:

g3 = Qout

Q∗
out

−1. (F.3)

The sensitivities of this constraint, dg3
dρ , can be calculated by rewriting the integral equation into a matrix

multiplication on global scale. The matrix G is introduced in Equation (F.1) as the global contribution matrix
that contains the Gauss quadrature weights and abscissae to perform the boundary integration. k is defined
as the vector, ke = K (ρe ), of flow coefficients using index notation. The outflow is then calculated by left-
multiplying k> with the global contribution matrix G and then right-multiplying to the global pressure vector
p , of which G is independent of the design variable ρ. The multiplication can take the form:

Qout = k(ρ)>Gp(ρ), (F.4)

The derivative to ρ can now be found using the adjoint method. First the contribution matrix G and the
flow matrix A are divided in sub matrices that are multiplied to the free pressure DOF’s (...)f and prescribed
pressure DOF’s (...)p :

(
Ap = f

) ⇒
[

Aff Afp

Apf App

][
pf

pp

]
=

[
ff

fp

]
,

(
Qout = k>Gp

)
⇒ k>

[
Gf Gp

][
pf

pp

]
=

[
ff

fp

]
. (F.5)

Now, the adjoint form (which is the normal form with an added zero term) can be written as:

Qout =Qa
out = k>Gp +µ> (

Ap − f
)

,

Qa
out = k> Gf pf +k> Gp pp+µ>f

(
Aff pf + Afp pp− ff

)
+µ>p

(
Apf pf + App pp− fp

)
.

(F.6)

Note that the derivative: pp
′ = ∂ pp

∂ρe
= 0, because by definition these pressures are prescribed and do not

change with the design. In this work, the derivative f ′ = 0. Differentiating Equation (F.6) to ρe holds the
following:

Qa
out =k ′> Gf pf +k ′> Gp pp+k> Gf p ′

f +k> Gp pp
′+

µ>f
(

A′
ff pf + Aff p ′

f + A′
fp pp+ Afp pp

′− f ′
f

)
+µ>p

(
A′

pf pf + Apf p ′
f + A′

pp pp+ App pp
′− fp

′
)

.
(F.7)

Eliminating pp
′ and f ′ for they are zero:

Qa
out =k ′> Gf pf +k ′> Gp pp+k> Gf p ′

f+
µ>f

(
A′

ff pf + Aff p ′
f + A′

fp pp

)
+µ>p

(
A′

pf pf + Apf p ′
f + A′

pp pp

)
.

(F.8)

Now, collecting terms, holds:

Qa
out =

(
k ′> Gf +µ>f A′

ff +µ>p A′
pf

)
pf+(

k ′> Gp +µ>f A′
fp +µ>p A′

pp

)
pp+(

k> Gf +µ>f Aff +µ>p Apf

)
p ′

f .

(F.9)

At this point it is clear that only one of the two Lagrange multipliers is necessary to eliminate the last term
between brackets. Notice that µ>p is multiplied with Apf, which, in general, is not a square matrix. There-

fore, µ>p = 0 and the solving µf is done by solving the following system of equations: µ>f Aff = −k> Gf. The
sensitivities now take the form:

∂g3

∂ρe
= 1

Q∗
out

((
k ′> Gf +µ>f A′

ff +µ>p A′
pf

)
pf +

(
k ′> Gp +µ>f A′

fp +µ>p A′
pp

)
pp

)
, (F.10)

in which µ>f is solved from:

µ>f Aff =−k> Gf.

A finite difference analysis confirmed these sensitivities.
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Appendix: Sensitivity derivation of the

input load vector

The sensitivity of the input load vector Fin is derived in this appendix in an effort to proof that the compu-
tational costs are high of calculating the sensitivity of each component of F . F is the consistent global force
vector that contains the pressure load contributions, in this work it is referred to as: F1. First, remember that
the shape of a vector derived to another vector is a matrix of derivatives:

∂Fi

∂ρe
= Pi e P =



∂F1
∂ρ1

∂F1
∂ρ2

· · · ∂F1
∂ρne

∂F2
∂ρ1

∂F2
∂ρ2

· · · ∂F2
∂ρne

...
...

. . .
...

∂F(nd)
∂ρ1

∂F(nd)
∂ρ2

· · · ∂F(nd)
∂ρne


. (G.1)

Therefore, this appendix will use the index notation to aid the reader in following the derivation. The matrix
is divided into sub matrices that are multiplied to the free pressure DOF’s (...)f and prescribed pressure DOF’s
(...)p (where the subscript is reserved for the index notation):

(
Ap = f

) ⇒
[

Aff Afp

Apf App

][
p f

pp

]
=

[
f f

f p

]
,

(
F =−Hp

) ⇒
[

F f

F p

]
=−

[
Hff Hfp

Hpf Hpp

][
p f

pp

]
,

such that: Aff p f + Afp pp = f f , and such that: F f = − Hff p f − Hfp pp,

(G.2)

Now the relation of Fin, as mentioned in Section 4.1, could be chosen to be:

Fin =
n∑

k=1

√
F 2

2k−1 +F 2
2k for d = 2,

Fin =
n∑

k=1

√
F 2

3k−2 +F 2
3k−1 +F 2

3k for d = 3,

(G.3)

where Fi , ∀i ∈Du , are components of F . Deriving Equation (G.3) (for d = 3) to each component ρe in the
vector of design variables ρ holds:

∂Fin

∂ρe
= ∂

∂ρe

n∑
k=1

√
F 2

3k−2 +F 2
3k−1 +F 2

3k , (G.4)

which is composed of:

Fin(Uk ) =
n∑

k=1

√
Uk ,

Uk (Fi ) =F 2
3k−2 +F 2

3k−1 +F 2
3k ,

Fi (ρe ) = Fi (ρe )a =− Hff
i j p f

j − Hfp
i j pp

j +ζi s

(
Aff

s j p f
j + Afp

s j pp
j + f f

s

)
,

(G.5)
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where the index notation is started to be used and an adjoint term is added to differentiate the implicit de-

pendence of p f
j to the design variable ρe . The chain rule can now be used to get:

dFin

dρe
=dFin

dUk

dUk

dFi

dFi

dρe
,

dFin

dUk
=

n∑
k=1

1

2
√

Uk

,

dUk

dFi
=2F3k−2 +2F3k−1 +2F3k ,

such that:

dFin

dρe
=

n∑
k=1

(
F3k−2 +F3k−1 +F3k

)√
F 2

3k−2 +F 2
3k−1 +F 2

3k

Fi ,ρ ,

(G.6)

where ∂Fi
∂ρe

≡ Fi ,ρ . The derivative Fi ,ρ is a bit more difficult to derive. The adjoint equations are already intro-

duced in the function F a
i (ρe ) in Equation (G.5), these are necessary to solve the sensitivities. Note that the

matrix H is independent of the design parameter and that the derivative: pp
,ρ = ∂ pp

∂ρe
= 0, because by defi-

nition these pressures are prescribed and do not change with changes in the design. And in this work, the
derivative f,ρ = 0.

dF a
i

dρe
=− Hff

i j p f
j ,ρ − Hfp

i j pp
j ,ρ +ζi s

(
Aff

s j ,ρ p f
j + Afp

s j ,ρ pp
j + Aff

s j p f
j ,ρ + Afp

s j pp
j ,ρ + f f

s,ρ

)
,

=− Hff
i j p f

j ,ρ +ζi s

(
Aff

s j ,ρ p f
j + Afp

s j ,ρ pp
j + Aff

s j p f
j ,ρ

)
,

=ζi s

(
Aff

s j ,ρ p f
j + Afp

s j ,ρ pp
j

)
+

(
ζi s Aff

s j − Hff
i j

)
p f

j ,ρ .

(G.7)

Note that from the beginning the Lagrange multiplier had to be chosen as a matrix, ζi s (with two indices), in
order to be able to left-multiply it to the adjoint function (that equates to zero) and be added in the original
equation, Equation (G.2). To solve the Lagrange multiplier to find Fi ,ρ , the system of equations is to be solved:

ζi s Aff
s j = Hff

i j , (G.8)

which are nd solutions of linear sets of equations of approximately the size [n ×n]. So, in summery, in order
to find the derivative (or sensitivity) of Equation (G.3) the derivative of each individual force vector compo-
nent Fi ,ρ is required and that is computationally expensive because it requires approximately nd solutions of
algebraic systems of the same size as the flow matrix.
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