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Some Developments in the Theory of
Shape Constrained Inference
Piet Groeneboom and Geurt Jongbloed

Abstract. Shape constraints enter in many statistical models. Sometimes
these constraints emerge naturally from the origin of the data. In other situ-
ations, they are used to replace parametric models by more versatile models
retaining qualitative shape properties of the parametric model. In this paper,
we sketch a part of the history of shape constrained statistical inference in a
nutshell, using landmark results obtained in this area. For this, we mainly use
the prototypical problems of estimating a decreasing probability density on
[0,∞) and the estimation of a distribution function based on current status
data as illustrations.

Key words and phrases: Isotonic regression, Grenander estimator, inverse
problem, monotonicity, interval censoring, current status regression, single
index model, bootstrap, Chernoff’s distribution, Airy functions.

1. INTRODUCTION

In the 1950s, research groups around the world
started working on order restricted statistical inference.
Interestingly, people started to work around the same
time on parametric as well as nonparametric problems
of this type. The standard parametric model is that
of isotonic regression, where in its simplest form one
observes n independent normally distributed random
variables with nondecreasing expectations and known
variances. Early references on isotonic regression in-
clude Ayer et al. (1955) and van Eeden (1956). In
1956, Ulf Grenander in Grenander (1956) studied the
problem of estimating a decreasing probability density
function, without imposing parametric assumptions.

In Section 2, it will be seen that the isotonic regres-
sion problem can be solved elegantly. Its solution can
be constructed graphically, as derivative of the great-
est convex minorant of a data-dependent diagram of
points. Interestingly, it will be seen that the maxi-
mum likelihood estimator for a decreasing density as
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well as for the distribution function in the current sta-
tus model, can be computed via similar constructions.
While shape constrained statistical inference started off
with a number of these “monotone problems” (where
the constraint on the function to be estimated was
monotonicity), many other shape constrained problems
have emerged since. Some of these will also be men-
tioned in Section 2.

Section 3 discusses the maximum likelihood estima-
tor of a decreasing density function in more detail, re-
viewing many results that have been obtained during
the past decades. Asymptotic properties of the estima-
tor, local as well as global, will be stated with special
attention for the role that is played by the so-called
switching relation.

In Section 4, related issues for interval censoring
models are reviewed, with special attention for the cur-
rent status model. Ayer et al. (1955) derives the non-
parametric MLE of the distribution function for the
current status model and proves that it is consistent.
Peto (1973) considers the MLE for interval censoring,
case 2. There it is suggested that pointwise standard er-
rors for the survival curve can be estimated from the in-
verse of the Fisher information, which, however, is not
correct (we owe this observation to Peter Sasieni). In
fact, the beginning of the theory of interval censoring
was hampered by many mistakes, due to false analo-
gies with the theory of right censoring and an expected
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pointwise normal limit behavior of the MLE. The lo-
cal asymptotic distribution of the MLE in the current
status model is, just as in the case of decreasing den-
sities, governed by the so-called Chernoff distribution.
Sometimes, for example, when considering bootstrap
procedures, it is important to also study estimators that
apart from monotonicity properties, also possess some
smoothness. The asymptotic pointwise distribution of
the smoothed maximum likelihood estimator is nor-
mal and its rate of convergence is faster than that of
the MLE. Methods to derive these asymptotic results
are local versions of the so-called smooth functional
approach that can be used to derive asymptotic distri-
butions of functionals of the MLE that depend on the
underlying distribution in a smooth way. For the case
2 interval censoring model, such results are available,
but still many questions remain unsolved within this
model. Another extension of the current status model to
be considered in Section 4 is a regression model where
the response variables are of current status type.

For the limiting Chernoff distribution, first encoun-
tered in Chernoff (1964), that is omnipresent in mono-
tone problems, analytical results as well as tabulated
quantiles are available; see Groeneboom and Wellner
(2001). Also in the development of the analytical rep-
resentation of the distribution, the so-called switch re-
lation is an important tool. In Section 5, the analyti-
cal representation of the local limit distribution is dis-
cussed and some properties are stated.

In principle, asymptotic distributions can be used as
starting point for the construction of confidence inter-
vals for monotone functions of interest. Alternatively,
one can use a bootstrap procedure to obtain such inter-
vals. For decreasing densities and the distribution func-
tion within the current status model, there are various
approaches that seem natural. A lot of recent research
has recently been done on these issues. This will be re-
viewed in Section 6. Open problems will be discussed
in Section 7.

2. ISOTONIC REGRESSION AND EXTENSIONS

Order constraints on functions in statistical models
often originate from the nature of the problem. One
can, for example, measure the height of a sample of
children of various ages to estimate the average pop-
ulation heights depending on age. These average pop-
ulation heights can naturally be assumed monotone in
age. In its simplest form, isotonic regression is about
estimating a nondecreasing regression function r on R

based on data from the model

(2.1) Yi = r(xi) + εi,

where x1 < x2 < · · · < xn and the εi’s are i.i.d. with
expectation zero and finite variance. The values of r at
the points xi can be estimated via least squares:(

r̂(x1), . . . , r̂(xn)
)

(2.2)

= argmin
r(x1)≤r(x2)≤···≤r(xn)

1

2

n∑
i=1

(
Yi − r(xi)

)2
.

This minimizer is well defined and can be constructed
graphically. The construction follows from the Fenchel
optimality conditions related to optimization problem
(2.2).

LEMMA 2.1. Define the points Pi = (i,
∑i

j=1 Yj ),

i = 1, . . . , n and P0 = (0,0). Let R̂ be the greatest con-
vex function on [0, n] lying completely below the set of
points {Pi : 0 ≤ i ≤ n}. Then r̂(xi) as defined in (2.2)
is the left derivative of R̂ evaluated at i.

Sometimes, the characterization is given in a rescaled
diagram where the coordinates are divided by n to fit
the diagram on the interval [0,1], but on the slope
of the convex minorant this does not have any effect.
Order restricted estimators for more general types of
partial ordering also exist; see Chapter 2 in Barlow
et al. (1972) or Robertson, Wright and Dykstra (1988).
A widely used and efficient algorithm to compute iso-
tonic regressions for a range of orderings is the Pool
Adjacent Violators Algorithm (PAVA).

Apart from the situations where monotonicity is a
natural modeling assumption, many other models lead
to shape constraints on sampling densities. Problems
with indirect observations (e.g., in stereology) or cen-
soring (e.g., in survival analysis) lead to inverse prob-
lems where the sampling density depends in some way
on the distribution of interest. Imposing no assump-
tions on the distribution of interest still leads to a re-
stricted class of possible sampling distributions. It is
the monotonicity of the distribution function of interest
that then imposes a shape constraint on the sampling
distribution.

One example is related to the aforementioned prob-
lem studied in Grenander (1956). Instead of observing
a sample from a distribution function of interest G on
(0,∞) with finite mean, one observes uniform random
fractions of a sample from the length-biased distribu-
tion corresponding to G. More precisely, in the back-
ground there is a sample Z1, . . . ,Zn from the length-
biased distribution function Gw given by

Gw(z) =
∫ z

0 y dG(y)∫ ∞
0 y dG(y)

= 1

μG

∫ z

0
y dG(y), z ≥ 0
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and independent of this there is a standard uniformly
distributed sample U1, . . . ,Un and one observes Xi =
UiZi . As can be seen from Section 2.2, page 23 in
Groeneboom and Jongbloed (2014), the sampling den-
sity of the Xi’s is then given by

f (x) = 1 − G(x)

μG

.

Monotonicity of G immediately implies f to be
bounded and monotone. Also note that f (0) = 1/μG,
leading to the following relation for the survival func-
tion:

(2.3) 1 − G(x) = f (x)

f (0)
, x ≥ 0;

see also Exercise 2.4 in Chapter 2 of Groeneboom and
Jongbloed (2014).

Using this relation, an estimate of the decreasing
sampling density leads to an estimate of the under-
lying distribution function G of interest. This model
is encountered in many situations; see, for example,
Keiding et al. (2012), Watson (1971), Vardi (1982) and
Vardi (1989).

Another model where monotonicity is a key ingre-
dient comes from survival analysis. Suppose X1,X2,

. . . ,Xn is a sample from a 1-dimensional distribution
with distribution function F0 on (0,∞). Instead of ob-
serving the Xi ’s, one only observes for each i whether
or not Xi ≤ Ti for some sample T1, . . . , Tn from a dis-
tribution with distribution function G and independent
of the Xj ’s,

So, instead of observing the Xi ’s, one observes pairs

(Ti,�i) = (Ti,1{Xi≤Ti}), 1 ≤ i ≤ n.

Regarding Xi as event time of subject i and Ti as in-
spection time for this subject, (Ti,�i) represents the
current status of subject i at time Ti in the sense that
if �i = 0 the event has not yet occurred to subject i at
time Ti whereas if �i = 1, the event has already oc-
curred at Ti . This model is also called the interval cen-
soring, case 1 model. Interval censoring because the
information in the data indicates to which interval Xi

belongs ([0, Ti] if �i = 1 and [Ti,∞) if �i = 0) and
case 1 because there is only one inspection time per
subject.

The data take their value in the set {(t, δ) : t ≥ 0, δ ∈
{0,1}} and the sampling density is given by

(2.4) h(t, δ) = F(t)δ
(
1 − F(t)

)1−δ

with respect to the dominating measure μ×dG, where
μ denotes counting measure on {0,1} and G the distri-
bution function of the inspection time. This means that
the sampling density can be represented by means of
an underlying distribution function F , which by defi-
nition is monotone. This imposes some structure, say
shape, on the density h. The current status model will
be considered in more detail in Section 4.

Yet another motivation for using shape constrained
models is that many of the well known parametric
models satisfy shape constraints. Exponential densities
are decreasing, bounded Gamma densities and (also
multivariate) normal densities are unimodal. Replacing
a parametric assumption by a shape constraint on the
densities therefore yields more versatile models being
able to let the data speak more for themselves. An in-
teresting example of this approach is the model of log
concave densities. Log concavity of a function, more
so than monotonicity, can readily be defined in arbi-
trary dimensions. The problem of estimating a density
only based on the assumption that it is log concave
was introduced in Walther (2001) and further stud-
ied in Balabdaoui, Rufibach and Wellner (2009). The
multivariate problem is studied in Cule, Samworth and
Stewart (2010) and Cule and Samworth (2010).

3. THE GRENANDER ESTIMATOR

3.1 Characterization and Basic Properties

The log likelihood of a density f on [0,∞) of
a distribution which is absolutely continuous w.r.t.
Lebesgue measure is given by

�(f ) = 1

n

n∑
i=1

logf (Xi)

(3.1)
=

∫
logf (x) dFn(x),

where Fn is the empirical distribution function of the
sample X1, . . . ,Xn. The following theorem, due to
Grenander, characterizes the maximum likelihood es-
timator as maximizer of this function over all decreas-
ing densities f on [0,∞). The resulting estimator is
called the Grenander estimator. It is the prototype of a
nonparametric isotonic estimator.
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FIG. 1. Left: the empirical distribution function Fn and its least concave majorant F̂n (red) and right: its left derivative f̂n (the Grenander
estimator), for a sample of size n = 100 generated from a standard exponential distribution.

THEOREM 3.1 (Grenander, 1956). The maximum
likelihood estimator f̂n, maximizing (3.1) over all de-
creasing densities f , is the left derivative of the least
concave majorant F̂n of the empirical distribution
function Fn.

Figure 1 shows the functions F̂n and f̂n based on a
sample of size 100.

A classical lemma from Marshall (1969) shows that
using the information that the underlying distribu-
tion function F0 is concave leads to a better estima-
tor of F0 than the empirical distribution function that
does not take the monotonicity of the density into ac-
count.

LEMMA 3.1 (Marshall’s lemma). Using the nota-
tion of Theorem 3.1 and denoting by F0 the underlying
concave distribution function of X1, . . . ,Xn,

‖F̂n − F0‖∞ ≤ ‖Fn − F0‖∞.

Another classical result states that, though in supre-
mum distance the least concave majorant of the empir-
ical distribution function estimates the underlying con-
cave distribution more closely than the empirical distri-
bution function itself, the difference between the two
estimators is negligible with respect to the estimation
error of rate n−1/2. Indeed, in Kiefer and Wolfowitz
(1976) the following theorem is proved.

THEOREM 3.2 (Kiefer–Wolfowitz). Suppose the
underlying distribution function F0 attains the value
one and is strictly concave on the set [0,F−1

0 (1)]. Then

n2/3

logn
‖F̂n − Fn‖∞ → 0 almost surely.

Hence, the superiority of F̂n as estimator for F0
stated by Marshall’s lemma is asymptotically not
impressive. Using the shape constraint of concav-
ity therefore seems not to make a huge difference
asymptotically. However, for estimating the true un-
derlying density f0 the situation is of course differ-
ent. The derivative of F̂n can be defined and turns out
to be the well-behaved (Grenander-) estimator. Dif-
ferentiating Fn does not lead to a sensible estima-
tor. Of course, taking a histogram estimator (deriva-
tive of linear interpolation of Fn on a well-chosen grid
0 = t1 < t2 < · · · < tm) does yield a consistent estima-
tor for f0.

The Grenander estimator also has an interpretation
as a least squares estimator. Let f̂n be the Grenander
estimator. Then f̂n minimizes

(3.2)
∫ ∞

0
f (x)2 dx − 2

∫
[0,∞)

f (x) dFn(x)

over all decreasing densities f on [0,∞). From a (cer-
tain) minimax point of view, the least squares estimate
provided by the Grenander estimator cannot be im-
proved. For details, see Cator (2011). In this sense, the
Grenander estimator is pointwise fully adaptive to the
smoothness of the underlying distribution.

3.2 Local Limit Distribution

The Grenander estimator has a nonstandard limit be-
havior. It is given by the following theorem.

THEOREM 3.3 (Prakasa Rao, 1969). Let f̂n be the
Grenander estimate of the density f0 under the mono-
tonicity restriction. Then, if f0 has a strictly negative
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FIG. 2. Left: Z and t �→ W(t) − t2, right: Z and t �→ W(t).

derivative f ′
0 at the interior point x,

n1/3{
f̂n(x) − f0(x)

}
/
∣∣4f0(x)f ′

0(x)
∣∣1/3

D−→ Z, n → ∞,

where
D−→ denotes convergence in distribution, and

Z = argmaxt {W(t) − t2}, that is, Z is the (almost
surely unique) location of the maximum of two-sided
Brownian motion minus the parabola y(t) = t2.

A picture of the perhaps somewhat mysterious ran-
dom variable Z = argmaxt {W(t)− t2} is shown in Fig-
ure 2, for a path of the simulated two-sided Brownian
motion W . In Section 5, we will go into more details
of the distribution of Z, known as the Chernoff distri-
bution.

3.3 The Switch Relation

A different proof of Prakasa Rao’s result was given
in Groeneboom (1985). The key observation in this pa-
per is the following switch relation:

f̂n(x) ≥ a

⇐⇒ x ≤ Un(a) = argmax
{
t ≥ 0 : Fn(t) − at

}
,

a ∈ (
0, f̂n(0)

)
, x > 0,

where we take in argmax the last time that the max-
imum is attained if there are several locations for the
maximum, and consider the process {Un(a),

a ∈ (0, f̂n(0))}. The left-continuous slopes of lines be-
come the time variable of the process Un. See Figure 3.

So we have, if a = f0(x) and Un(a) = argmax{t ≥
0 : Fn(t) − at},

P
{
n1/3{

f̂n(x) − f0(x)
} ≥ t

}
= P

{
f̂n(x) ≥ a + n−1/3t

}
switch relation= P

{
Un

(
a + n−1/3t

) ≥ x
}
.

This combined with the “Hungarian embedding” leads
to the proof of Prakasa Rao’s result in Groeneboom
(1985).

3.4 An Application of the Grenander Estimator in
Fertility Studies

In Slama et al. (2012) an interesting data set of
current durations of pregnancy in France is studied.
The aim is to estimate the distribution of the time it
takes for a woman to become pregnant after having
having started unprotected sexual intercourse. For 867
women, the current duration of unprotected intercourse
was recorded and this is the basis of part of the re-
search, reported in Slama et al. (2012).

Given that the woman in the study is currently trying
to become pregnant, the actual recorded data (current
duration) can be viewed as uniform random fraction of
the true, total duration. So we have another instance
of model (2.3) for the survival function. The left panel
of Figure 4 shows a part of the empirical distribution
function of 618 recorded current durations, kindly pro-
vided to us by Niels Keiding, where the data are trun-
cated at 36 months and are of a similar nature as the
data in Slama et al. (2012). Based on the least con-
cave majorant, the right panel of Figure 4 is computed,
showing the resulting MLE of the decreasing density
of the observations together with its smoothed version,

FIG. 3. The switch relation.
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FIG. 4. The left panel shows the empirical distribution function and its least concave majorant for the values between 10 and 20 months of
the 618 current durations ≤ 36 months (we give this on a smaller observation interval to highlight the difference between the EDF and the
least concave majorant). The resulting Grenander estimate (the MLE) of the observation density on the interval [0,36] is shown in the right
panel, together with its smoothed version (dashed, the SMLE).

the smoothed maximum likelihood estimator (SMLE),
defined by

(3.3)
f̃nh(t) = −

∫
K

(
t − x

h

)
df̂n(x),

K(x) =
∫ ∞
x

K(u)du,

where f̂n is the MLE and K is a symmetric kernel, for
which we took the triweight kernel

K(u) = 35

32

(
1 − u2)31[−1,1](u), u ∈R.

Note that −df̂n(x) corresponds to a nonnegative
atomic measure, since the jumps df̂n(x) are downward
jumps.

The bandwidth h was chosen by least squares cross
validation. Near the boundary point 0 we use a local
linear boundary correction, to avoid the inconsistency
at the boundary

(3.4)

f̃nh(t) = −
∫

K

(
h − x

h

)
df̂n(x)

+ (t − h)

∫
h−1K

(
h − x

h

)
df̂n(x),

and near the endpoint 36 we use a similar correction.
The 95% confidence intervals for the survival func-

tion at the 99 equidistant points 0.36,0.72, . . . ,35.64,
are constructed from 1000 bootstrap samples T ∗

1 , . . . ,

T ∗
n , also of size n, drawn from the original sample, and

in these samples we computed

(3.5)
f̃ ∗

n,hbootstrap
(t)/f̃ ∗

n,hbootstrap
(0)

− f̃n,horiginal(t)/f̃n,horiginal(0),

where f̃nh and f̃ ∗
nh are the SMLEs in the original sam-

ple and the bootstrap sample, respectively. That this
procedure will work is nontrivial, but can be argued
along the lines of Groeneboom and Hendrickx (2017b)
(see also Section 6). The bandwidths were chosen by
least squares cross validation, both in the original and
in the bootstrap samples. The 95% asymptotic confi-
dence intervals are given by[

f̃nh(t)/f̃nh(0) − U∗
0.975, f̃nh(t)/f̃nh(0) − U∗

0.025
]
,

where U∗
0.025 and U∗

0.975 are the 2.5% and 97.5% per-
centiles of the bootstrap values (3.5), and h is the band-
width in the original sample. The result is shown on the
left of Figure 5 and should be compared with the con-
fidence intervals in part A of Figure 2, page 1495 of
Slama et al. (2012), based on a parametric (generalized
gamma) model. Note that our treatment is for two rea-
sons different from that in Groeneboom and Jongbloed
(2014) and Groeneboom and Jongbloed (2015):

1. Least squares cross validation is used to make the
procedure fully automatic.

2. The local linear boundary correction is used (3.4) to
deal with the inconsistency at zero.
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FIG. 5. Left: 95% confidence intervals, based on the SMLE, for the data in Slama et al. (2012), at the points 0.36,0.72, . . . ,35.64. The
bandwidth was determined by cross validation, both in the original sample and in the bootstrap samples. Right: Banerjee–Wellner type 95%
confidence intervals, based on LR test for the (restricted) MLE’s, as proposed in Groeneboom and Jongbloed (2015).

In Groeneboom and Jongbloed (2015) also a pro-
cedure is discussed to compute confidence intervals,
as suggested by Banerjee and Wellner (Banerjee and
Wellner, 2001). It is proved in Groeneboom and Jong-
bloed (2015) that this method can also be applied to the
Grenander estimator and this method is also used to an-
alyze the present data there. One has to avoid dividing
by an inconsistent estimate at zero, and can condition
the Grenander estimate to have a value at zero which is
consistent.

We took the value produced by the boundary-cor-
rected SMLE for determining the density estimate at
zero. To this end, one has to solve a nonlinear equa-
tion, for which Brent’s algorithm was used. For the
likelihood ratio test, on which the Banerjee–Wellner
method is based, one also has to fix the value of the
Grenander estimate at the point where one constructs
a confidence interval, and for this purpose one has to
solve two nonlinear equations (see Lemma 3.4 on page
2045 of Groeneboom and Jongbloed, 2015). To this
end, we presently use the Hooke–Jeeves method; the
corresponding code is given in Groeneboom (2015).
The result is shown on the right of Figure 5.

3.5 Limits of Global Functionals

The Grenander estimator has also been studied from
a more global perspective. How well does the estimator
approximate the underlying density in global measures
of distance? The first result on this was the following
limit relation, proved in Groeneboom and Pyke (1983)
and Groeneboom (1983).

Let f0 be the uniform density on [0,1] and let f̂n be
the Grenander estimator, based on a sample of size n

from f0. Then

(3.6)
1√

3 logn

{
n‖f̂n −f0‖2

2 − logn
} D−→ N(0,1).

Noting that

1√
3

{√
n‖f̂n − f0‖2 −

√
logn

}

=
√

logn

3

{√
n

logn
‖f̂n − f0‖2 − 1

}

we get by the delta method, using the square root trans-
formation:

(3.7)
2√
3

{
n1/2‖f̂n − f0‖2 −

√
logn

} D−→ N(0,1).

For a strictly monotone density f0, the following
result was stated in Groeneboom (1985) for the L1-
distance, with a sketch of proof:

(3.8)
n1/6{

n1/3‖f̂n − f0‖1 − μ
}

= n1/2‖f̂n − f0‖1 − n1/6μ
D−→ N

(
0, σ 2)

,

for constants μ and σ , depending on the inverse pro-
cess

(3.9) V (c) = sup
{
t : W(t) − (t − c)2 is maximal

}
.

In fact, μ = 2E|V (0)| ∫ 1
0 |1

2f ′(t)f (t)|1/3 dt , and

(3.10) σ 2 = 8
∫ ∞

0
covar

(∣∣V (0)
∣∣, ∣∣V (c) − c

∣∣)dc.
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A rigorous proof is given in Groeneboom, Hooghiem-
stra and Lopuhaä (1999) and this result is also dis-
cussed in Groeneboom and Jongbloed (2014); see The-
orem 13.1 on page 379. The result has been generalized
to more general Lp-distances by Durot, Kulikov, Lop-
uhaä and the paper of Cécile Durot and Rik Lopuhaä
in this issue gives detailed information on these devel-
opments. Note that

√
n‖f̂n − f0‖p after centering by

a constant which increases with n, is Op(1), both in
(3.7) and (3.8). Also note that, by (3.10), the variance
σ 2 in (3.8) is independent of f0.

Relations (3.7) and (3.8) were the first results on the
limit distribution of Lp-norms of the distance of the
Grenander estimator to the true density.

4. INTERVAL CENSORING

4.1 The Model

In interval censoring models, there is a sample
X1,X2, . . . ,Xn from a distribution with distribution
function F0 in the background. Instead of observing
this sample, one observes a set of n intervals I1, . . . , In

with the information on the Xi’s that Xi ∈ Ii . In Sec-
tion 2, current status model was introduced. There the
intervals are all of the form [0, Ti] or (Ti,∞).

In the interval censoring case 2 model, one only ob-
serves for each i whether Xi ≤ Ti or Xi ∈ (Ti,Ui]
or Xi > Ui , for some random pair (Ti,Ui), where
Ti < Ui , where the (Ti,Ui)’s are independent of the
Xi’s, yielding intervals of the form [0, Ti], (Ti,Ui] or
(Ui,∞).

The data can be represented as

(Ti,Ui,�i1,�i2) = (Ti,Ui,1{Xi≤Ti},1{Xi∈(Ti ,Ui ]}).

The analysis of the case 2 model is much more com-
plicated than the analysis of the current status model.
Already in computing the MLE, the difference is ap-
parent. While the MLE in the current status model can
be constructed explicitly, as will be seen below, for the
interval censoring case 2 problem iterative procedures
are needed to compute it. In this paper, we concentrate
on the current status model.

We want to estimate the unknown distribution func-
tion F0 of Xi , based on the data (Ti,�i) =
(Ti,1{Xi≤Ti}). If the Xi are independent of the Ti , using
density (2.4), the log likelihood function in F (condi-
tional on the Ti’s) is given by

�(F ) =
n∑

i=1

{
�i logF(Ti) + (1 − �i) log

(
1 − F(Ti)

)}
.

The (nonparametric) maximum likelihood estimator
(MLE) F̂n of F0 maximizes �(F ) over the class of all
distribution functions F .

Again, just as in the case of the Grenander estimator,
the MLE F̂n has an interpretation as a least squares
estimator. Writing yi = F(T(i)), 1 ≤ i ≤ n, the MLE
F̂n minimizes the sum

n∑
i=1

{�(i) − yi}2

over (y1, . . . , yn) such that 0 ≤ y1 ≤ · · · ≤ yn ≤ 1
where �(i) denotes the indicator variable correspond-
ing to the order statistic T(i). Using Lemma 2.1, the so-
lution (y1, . . . , yn) is given by the isotonic regression
of (�(1), . . . ,�(n)).

4.2 Limit Distribution of (Smoothed) Maximum
Likelihood Estimator in the Current Status
Model

The following result gives the limit distribution of
the MLE F̂n in the current status model.

THEOREM 4.1 (Groeneboom, 1987). Let F0 and
G be differentiable at t with strictly positive derivatives
f0(t) and g(t). Let F̂n be the MLE of F0. Then, as n →
∞,

n1/3{F̂n(t) − F0(t)}
{4F0(t)(1 − F0(t))f0(t)/g(t)}1/3

D−→ Z,

where Z = argmaxt {W(t) − t2}.
Note the similarity with Theorem 3.3. Proofs, us-

ing the switch relation (see Section 3.3 that are given
in van der Vaart and Wellner, 1996, Section 3.2.15,
and Groeneboom and Jongbloed, 2014, Section 3.8 and
Figure 6).

As is clear from the construction of the MLE, and
from Figure 7, the MLE is a discrete distribution func-
tion. If one assumes the underlying distribution func-
tion to be smooth, one can use the MLE to define a
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FIG. 6. The switch relation; Gn is the empirical dis-
tribution function of the Ti , Vn(t) = n−1�i1{Ti≤t} and
Un(a) = argmin{t : Vn(t) − aGn(t)}.

smooth estimator of F0. This smoothed maximum like-
lihood estimator (SMLE) F̂

(SMLE)
n,h is (modulo a bound-

ary correction), defined by

(4.1)
F̂

(SMLE)
n,h (t) =

∫
K

(
t − x

h

)
dF̂n(x),

K(y) =
∫ y

−∞
K(u)du,

where K is (for example) the triweight kernel

K(u) = 35

32
{1 − u2)31[−1,1](u).

One generally takes h � n−1/5 (the usual bandwidth in
density estimation). The SMLE simply smoothes the
MLE, preserving the monotonicity. As will be seen in
Section 6, the SMLE also plays an important role in
the bootstrap approach to finding confidence sets for
F0(t).

For the SMLE, we have the following limit result.

THEOREM 4.2 (Groeneboom, Jongbloed and Witte,
2010). Let F0 be differentiable at t with second
derivative f ′

0(t) �= 0 and let g(t) > 0 and have a
bounded derivative at t . If hn = cn−1/5, for some c > 0,
then

n2/5(
F̂

(SMLE)
n,hn

(t) − F0(t)
) D−→ N

(
μ,σ 2)

,

where

μ = 1

2
c2f ′

0(t)

∫
u2K(u)du,

σ 2 = F0(t){1 − F0(t)}
cg(t)

∫
K(u)2 du.

4.3 Smooth Functionals and Current Status
Regression

The SMLE of Theorem 4.2 is an example of a local
smooth functional, which converges at a faster rate than
the MLE. We now turn to smooth functionals of the
MLE which attain the

√
n-rate. The following result is

the first of this kind for the current status model, proved
during a summer course given in Stanford in 1990
(Groeneboom, 1991) and also given in Groeneboom
and Wellner (1992) (the second part of this book is in
fact virtually the same as the lecture notes of the Stan-
ford course, but contains more misprints).

THEOREM 4.3 (Groeneboom, 1991). Let F0 be
differentiable on [0,B] and let the density g of the in-
spection times stay away from zero on [0,B]. Then

√
n

{∫
x dF̂n(x) −

∫
x dF0(x)

}
D−→ N

(
0, σ 2)

,

FIG. 7. Left: the cusum diagram with points ( i
n , 1

n

∑i
j=1 �(j)) and its greatest convex minorant. Right: the MLE (dotted), the SMLE (solid)

and the real distribution function (dashed).



482 P. GROENEBOOM AND G. JONGBLOED

where

σ 2 =
∫

F0(x){1 − F0(x)}
g(x)

dx.

The mapping F �→ K(F) = ∫
x dF(x) is a smooth

functional for the current status model. On the other
hand, F �→ F(t) is, for example, not a smooth func-
tional in the current status model and cannot be ex-
pected to have estimators that converge at

√
n rate (see

van der Vaart, 1991).
Proving results of the type of Theorem 4.3 for the in-

terval censoring, case 2, model is however much more
difficult. The reason for the increased difficulty is the
fact that the behavior has to be deduced from the qual-
itative properties of solutions of integral equations for
which no explicit solutions are known.

The general pattern for the proof of the
√

n rate and
efficiency of a smooth functional of the MLE is as fol-
lows, which we demonstrate here for the current status
model:

• Show that the nonlinear aspect of the functional is
negligible. This means

√
n
{
K(F̂n) − K(F0)

}
= √

n

∫
κF0 d(F̂n − F0) + op(1),

for some “score” κF0 .
• Transformation to the observation space measure∫

κF0 d(F̂n − F0) = −
∫

θ
F̂n

(t, δ) dQ0(t, δ),

where Q0 is the probability measure of (Ti,�i),

θ
F̂n

(t, δ) = kF0(t)
δ − F̂n(t)

g(t)
,

and kF0(t) = κ ′
F0

(t). As an example, for the mean
function, κF0(t) = t and kF0 ≡ 1. More generally
(e.g., in the interval censoring, case 2, case) θ

F̂n
(t, δ)

is the solution of a particular integral equation (see
Groeneboom, 2013).

• Use that F̂n is the MLE. Replace θ
F̂n

by

θ̄
F̂n

(t, δ) = k̄F0(t)
(
δ − F̂n(t)

)
/ḡ(t),

where k̄F0 and ḡ are constant on the same intervals
as F̂n. Then

(4.2)
∫

θ̄
F̂n

(t, δ) dQn = 0,

and∫
κF0 d(F̂n − F0)

preceding step= −
∫

θ
F̂n

dQ0

(4.2)=
∫

θ̄
F̂n

d(Qn − Q0) −
∫

{θ
F̂n

− θ̄
F̂n

}dQ0.

• Asymptotic variance equals information lower
bound. Show∫

θ̄
F̂n

d(Qn − Q0)

=
∫

θF0 d(Qn − Q0) + op

(
n−1/2)

,

where

θF0(t, δ) = kF0(t)
δ − F0(t)

g(t)
,

and show∫
{θ

F̂n
− θ̄

F̂n
}dQ0 = op

(
n−1/2)

.

Instead of the completely nonparametric current sta-
tus model, one can also consider the current status re-
gression model, where the observations are of the form
(Xi , Ti,�i), and where

�i = 1{Yi≤Ti}, Yi = X′
iβ0 + εi,

where Xi is a k-dimensional covariate and εi an ob-
servation error with expectation α0 (the intercept), in-
dependent of the Ti and Xi . In this case, we cannot
observe Yi and only have the indirect information via
(Xi , Ti,�i). Then the (relevant part) of the log likeli-
hood becomes

n∑
i=1

{
�i logF

(
Ti − X′

iβ
) + (1 − �i)

· log
{
1 − F

(
Ti − X′

iβ
)}}

,

where F0 is the distribution function of εi . Here and in
the following, we will denote the parameters by bold-
face letters is they are higher dimensional, but not if the
are just 1-dimensional.

The following 1-dimensional example is taken from
Groeneboom and Hendrickx (2018b): Xi and Ti are
uniform on [0,2], β0 = 1/2, α0 = Eεi = 1/2, and εi

has a density which is a rescaled version of the den-
sity 6x(1 − x) on [0,1]. We rescale it to a density on
[3/8,5/8].
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One can compute the profile log likelihood. Pick a
β: maximize for this β the log likelihood

(4.3)
�β(F ) =

n∑
i=1

{
�i logF(Ti − Xiβ) + (1 − �i)

· log
{
1 − F(Ti − Xiβ)

}}
over F , this gives F̂n,β via one step (convex minorant)
algorithm. Now find an argmax for β over all F̂n,β so
obtained. Note that �β(F̂n,β) is piecewise constant and
can only change if there is a change of ordering of the
observations Ti −βXi as a consequence of a change of
β . A picture of the profile log likelihood is shown on
the left of Figure 8.

What are the properties of the MLE of β0 so ob-
tained? This is still unknown, although estimators of
this type have been studied for at least 25 years. It
is, for example, unknown whether the MLE of β0 is√

n-consistent. Li and Zhang (1998) conjecture that the
MLE will give a

√
n-consistent but inefficient estimate.

Murphy, van der Vaart and Wellner (1999) prove that,
in a 1-dimensional model in which one only has obser-
vations from a part of F0 where F0 stays away from 0
and 1, the MLE gives a n1/3-consistent estimate of β0.

Returning to the general case where the regression
parameter is a vector, it is still not completely clear
whether it really helps in the estimation of β0 to use an
isotonic estimator of F0. Groeneboom and Hendrickx
(2018b) show that it is possible to use the isotonic esti-
mate for constructing

√
n-rate estimates of the regres-

sion parameter which are arbitrarily (depending on a

truncation parameter) close to an efficient estimate. But
they also show this for a nonisotonic Nadaraya–Watson
plug-in estimate of F0, which is similar to the estimates
used in the econometric literature for the binary choice
model (e.g., Klein and Spady, 1993, Cosslett, 2007),
and is defined as the Nadaraya–Watson estimator

(4.4)

Fnh,β

(
t − β ′x

)
=

∑n
i=1 �iKh(t − β ′x − Ti + β ′Xi)∑n

i=1 Kh(t − β ′x − Ti + β ′Xi)
,

where Kh = h−1K(·/h) is a scaled version of a prob-
ability density function K . Note the smoothness of the
log likelihood function in Figure 9 (also for a simulated
sample of size n = 1000) in comparison with Figure 8.

Figure 9 shows the derivative w.r.t. β of the log like-
lihood, if F is of the form (4.4), and for these estima-
tors the maximization of the likelihood gives the same
result as the root of the score equation. This is com-
pletely different for the estimators which use the MLE
F̂n,β , where we cannot differentiate in this way. Never-
theless, Groeneboom and Hendrickx (2018b) define in
this case also a “score function” (see the right picture
in Figure 8) and show that the root of this score func-
tion produces

√
n consistent estimates of the regres-

sion parameter. But the relation between log likelihood
and the score as its derivative is no longer there. In this
case, it is also not clear that the maximizer of the log
likelihood is

√
n-consistent.

The conditions used in the econometric literature
are much stronger than the conditions in Groeneboom

FIG. 8. Left: the profile log likelihood function β �→ �β(F̂n,β), where �β is as in (4.3) and F̂n,β is the MLE for fixed β . Right: the “score

function” β �→ n−1 ∑n
i=1 Xi{F̂n,β(Ti − Xiβ) − �i}. The vertical line denotes the location of the maximum of �β(F̂n,β), respectively, the

crossing of zero of the score function. The sample size n = 1000.
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FIG. 9. Left: the function β �→ �β(Fnh,β), where �β is as in (4.3) and Fnh,β is the plug-in estimator for fixed β . Right: the “score

function” β �→ ∂
∂β

�β(Fnh,β). The vertical line denotes the location of the maximum of �β(Fn,β), respectively, the location of the zero of the
score function. The sample size n = 1000.

and Hendrickx (2018b) and also use heavier smooth-
ing (e.g., Klein and Spady, 1993 use higher-order ker-
nels and bandwidths h of order n−1/6 � h � n−1/8).
The corresponding result using the Nadaraya–Watson
estimator in Groeneboom and Hendrickx (2018b) only
uses the existence of second derivatives and a band-
width of order n−1/5 (the usual bandwidth order in den-
sity estimation).

A typical result, based on the score function of the
type shown in Figure 8, runs as follows. Let, for ε ∈
(0,1/2), the function ψ

(ε)
n be defined by defined by

ψ(ε)
n (β)

def=
∫
F̂n,β (t−β ′x)∈[ε,1−ε]

x

· {
δ − F̂n,β

(
t − β ′x

)}
dPn(t,x, δ),

(4.5)

where F̂n,β is the MLE based on the order statistics of
the values Ti − β ′Xi , i = 1, . . . , n for chosen β . Then
we have the following.

THEOREM 4.4. Under the regularity assumptions
in Groeneboom and Hendrickx (2018b), we have:

(i) (Existence of a root) For all large n, a crossing of
zero β̂n of ψ

(ε)
n exists with probability tending to

one.
(ii) (Consistency)

β̂n

p→ β0, n → ∞.

(iii) (Asymptotic normality)
√

n{β̂n − β0} is asymp-
totically normal with mean zero and variance

A−1BA−1, where

A = Eε

[
f0

(
T − β ′

0X
)

Cov
(
X|T − β ′

0X
)]

,

and

B = Eε

[
F0

(
T − β ′

0X
){

1 − F0
(
T − β ′

0X
)}

· Cov
(
X|T − β ′

0X
)]

,

defining Eε(w(T ,X,�)) = E1{F0(t−β ′
0x)∈[ε,1−ε]} ·

w(T ,X,�) for functions w, and assuming that A

is nonsingular.

Probably the ε-truncation in Theorem 4.4 is not re-
ally necessary (i.e., we can take ε = 0) and only con-
cerns a technical point. Simulations in Groeneboom
and Hendrickx (2018b) show that the simple estima-
tors which use the isotonic MLE F̂n,β might generally
have a better behavior for ordinary sample sizes (e.g.,
in the range n = 100 to n = 1000) than the estimators,
based on the nonisotonic Nadaraya–Watson estimators
of F0.

Theorem 4.4 is a first result showing that one can
construct

√
n-consistent estimators on the basis of the

isotonic MLE’s, using the “score” (4.5). Note that a
similar result is still unknown to exist for the corre-
sponding profile likelihood estimate. One will need a
better insight in how the process β �→ �β(F̂n,β) [see
(4.3) and the left picture in Figure 8] changes as a func-
tion of the order changes of T1 − β ′X1, . . . , Tn − β ′Xn

with varying β .
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5. ANALYTIC CHARACTERIZATION OF THE
DISTRIBUTION OF Z

In Theorem 3.3, the random variable Z was defined
as the location the maximum of two-sided Brownian
motion minus a parabola. The first step in the analytic
characterization of this distribution was done by Cher-
noff in a paper on an estimate of the mode of a distri-
bution.

We sketch the line of argument in that paper, leading
to the characterization.

(i) Define u(s, x) by

u(s, x) = P
{
W(t) > t2 for some t > s|W(s) = x

}
.

Then for x < s2 fixed,

u(s, x)

= P
{
W(t) > t2 for some t > s + ε|W(s) = x

}
+ P

{
W(t) > t2 for some t ∈ (s, s + ε],

W(t) ≤ t2 for all t > s + ε|W(s) = x
}

= E
{
u
(
s + ε,W(s + ε)

)|W(s) = x
} + o(ε)

= u(s, x) + ∂

∂s
u(s, x)ε + 1

2

∂2

∂x2 u(s, x)ε

+ o(ε), ε ↓ 0.

Hence

∂

∂s
u(s, x) = −1

2

∂2

∂x2 u(s, x)

and

u(s, x) = 1, ∀x ≥ s2,∀s ∈R,

∀s ∈ R : u(s, x) → 0, x → −∞.

(ii) Define

Mh = max
t∈[s−h,s]W(t).

Then, given W(s),W(s −h) and Mh, the maximum
value of W(t)− t2 over the range [s −h, s] is Mh −
s2 + O(h), and, using the spatial homogeneity of
Brownian motion, we obtain [for notational clarity
writing W ′ for Brownian motion, starting at s2 +
W(s) − Mh, in the second line]:

P

{
max
t≥s

{
W(t) − t2}

> Mh − s2|

W(s),W(s − h),Mh

}
= P

{
max
t≥s

{
W ′(t) − t2}

> 0|

W ′(s) = s2 + W(s) − Mh

}
= u

(
s, s2 + W(s) − Mh

)
= u

(
s, s2)

(= 1) + {
W(s) − Mh

}
∂2u

(
s, s2)

+ Op(h).

Similarly,

P

{
max
t≤s−h

{
W(t) − t2} ≥ Mh − (s − h)2|

W(s),W(s − h),Mh

}
= u

(−s, s2)
(= 1)

+ {
W(s − h) − Mh

}
∂2u

(−s, s2) + Op(h).

(iii) From this, it follows that

P
{
Z ∈ [s − h, s]}
∼ E

{
P

{
max

t /∈[s−h,s]
{
W(t) − t2}

< Mh − s2|

W(s),W(s − h),Mh

}}
∼ E

{
Mh − W(s)

}
· {

Mh − W(s − h)
}
∂2u

(
s, s2)

∂2u
(−s, s2)

∼ hE
(

max
x∈[0,1]B(x)

)2
∂2u

(
s, s2)

∂2u
(−s, s2)

(B = Brownian Bridge)

∼ 1

2
h∂2u

(
s, s2)

∂2u
(−s, s2)

, h ↓ 0.

This leads to the following.

THEOREM 5.1 (Chernoff, 1964). The density fZ

of Z = argmax{W(t) − t2} is given by

fZ(s) = 1

2
∂2u

(−s, s2)
∂2u

(
s, s2)

,

where u(s, x) solves the heat equation

∂

∂s
u(s, x) = −1

2

∂2

∂x2 u(s, x)

subject to

u(s, x) = 1, x ≥ s2, u(s, x) → 0, x → −∞.

The original computations of this density were based
on numerically solving Chernoff’s heat equation. This
was done by Chernoff himself (personal communica-
tion), with the help of people from numerical mathe-
matics, and by Groeneboom in 1982 at the Mathemati-
cal Centre, Amsterdam (now CWI), also with the help
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of the Numerical Mathematics Department. The latter
mathematicians (in particular, Ben Sommeijer) noticed
the instability of the solutions in the region where the
time argument s is negative, if the then rather fashion-
able “multigrid method” for the solution of partial dif-
ferential equation was used. This phenomenon was ex-
plained by Groeneboom (1984):

∂2u
(−s, s2) ∼ c1 exp

{
−2

3
s3 − cs

}
, s → ∞,

where c ≈ 2.9458 and c1 ≈ 2.2638. This fast decay en-
tails that a numerical solution of this partial differen-
tial equation on a grid will not give a really accurate
solution. Theorem 5.2 provides a representation of the
density of Z = argmaxW(t) − t2 in terms of the Airy
function.

THEOREM 5.2 (Groeneboom, 1984, Daniels and
Skyrme, 1985). The probability density f of the lo-
cation of the maximum of the process t �→ W(t) − t2,
t ∈ R, is given by

f (s) = 1

2
g(s)g(−s),

where

g(s) = 1

22/3π

∫ ∞
−∞

e−ius

Ai(i2−1/3u)
du,

where Ai is the Airy function Ai.

Using this theorem, the density can be computed ef-
ficiently by two lines in Mathematica; see Figure 10.

Theorem 5.2 is also given in Janson (2013) and
Groeneboom, Lalley and Temme (2015). The proof in

the latter paper seems at present the easiest way to ob-
tain the result and is based on the maximum principle
for parabolic partial differential equations. The distri-
bution of the maximum itself, maxt W(t) − t2, was
studied in Janson, Louchard and Martin-Löf (2010),
Groeneboom (2010) and Groeneboom and Temme
(2011).

Another interesting result is the following:

var(Z) = 1

3
Emax

t

{
W(t) − t2}

.

This is proved in Groeneboom (2011) and Janson
(2013), and (not using the relation with Airy functions)
in Pimentel (2014).

The Airy functions enter via the Cameron–Martin–
Girsanov formula and the Feynman–Kac or Itô for-
mula. The proof of Chernoff’s result (Chernoff, 1964)
and an exposition of how the Airy functions enter and
of the recent proof of Theorem 5.2 in Groeneboom,
Lalley and Temme (2015) is given in Groeneboom
(2018).

6. CAN WE USE THE BOOTSTRAP?

For the Grenander estimator, the following negative
result holds.

THEOREM 6.1 (Kosorok, 2008). The nonparamet-
ric bootstrap, where one resamples with replacement
from the (Ti,�i) and recomputes the Grenander esti-
mator for the bootstrap sample, is inconsistent, that is,

n1/3{
f̂ ∗

n (t) − f̂n(t)
} D−→ ∣∣4f ′(t)f (t)

∣∣1/3
Z

FIG. 10. Density of Z = argmax{W(t) − t2}.
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does not hold (in probability), conditionally on the
data, where

Z = argmax
{
W(x) − x2 : x ∈ R

}
.

The result has a rather interesting proof by contra-
diction.

(i) Suppose n1/3{f̂ ∗
n (t)− f̂n(t)} D−→ |4f ′(t)f (t)|1/3Z

(in probability), conditionally on the data. Then

n1/3{
f̂ ∗

n (t) − f (t)
}

= n1/3{
f̂ ∗

n (t) − f̂n(t)
} + n1/3{

f̂n(t) − f (t)
}

D−→ ∣∣4f ′(t)f (t)
∣∣1/3{Z1 + Z2},

where the Zi are independent copies of
argmax{W(x) − x2}.

(ii) On the other hand,

n1/3{
f̂ ∗

n (t) − f (t)
}

D−→ ∣∣4f ′(t)f (t)
∣∣1/3

· argmax
x

{
W1(x) + W2(x) − x2}

.

The right-hand side [with smaller variance than
the limit in (i)] comes from

F
∗
n

(
t + n−1/3x

) − F
∗
n(t)

− (
Fn

(
t + n−1/3x

) − Fn(t)
) + Fn

(
t + n−1/3x

)
− Fn(t) − f (t)n−1/3x,

where the first line corresponds with x �→ W1(x)

and the second line with x �→ W2(x) − x2.

Sen, Banerjee and Woodroofe (2010) show that gen-
erating bootstrap samples for the Grenander estimator
itself also does not work. In this case, we have

(6.1)

n1/3{
f̂ ∗

n (t) − f (t)
}

→ ∣∣4f ′(t)f (t)
∣∣1/3

· argmax
x

{
W1(x) + V2(x)

}
,

where W1 is two-sided Brownian motion and V2 is the
least concave majorant of the drifting two-sided Brow-
nian motion W2(x)−x2, independent of W1. The right-
hand side of (6.1) comes from

F
∗
n

(
t + n−1/3x

) − F
∗
n(t) − (

F̂n

(
t + n−1/3x

) − F̂n(t)
)

+ F̂n

(
t + n−1/3x

) − F̂n(t) − f (t)n−1/3x,

and F̂n is the least concave majorant of the empirical
distribution function Fn.

It is suggested in Groeneboom and Jongbloed (2015)
however, that one can use the nonparametric boot-
strap with a smoothed Grenander estimator. Results of
this type for the nonparametric bootstrap are proved
in Groeneboom and Hendrickx (2017b) for the current
status model.

In the current status model, one can perform a boot-
strap experiment in which one only resamples the in-
dicators �i and keeps the observation times Ti fixed.
This idea is used by Sen and Xu (2015) who resample
the indicators �i as Bernoulli random variables with
success probability F̃nh(Ti), where F̃nh is for example
the SMLE, based on the original sample. This gives a
bootstrap sample(

T1,�
∗
1
)
, . . . ,

(
Tn,�

∗
n

)
,

for which one can compute the MLE F̂ ∗
n . They then use

the following result.

THEOREM 6.2 (Sen and Xu, 2015). Suppose Fn is
any estimate of F0 such that, almost surely,

(6.2) lim
n→∞ sup

x∈R
∣∣Fn(x) − F0(x)

∣∣ = 0.

Moreover, assume that f0(t0) > 0, g(t0) > 0, where g

is the density of the Ti and, almost surely,

(6.3)
lim

n→∞n1/3∣∣Fn

(
t0 + n−1/3t

)
− Fn(t0) − f0(t0)n

−1/3t
∣∣ = 0.

Then the smooth bootstrap from Fn is consistent, that
is, n1/3{F̂ ∗

n (t0) − Fn(t0)} converges, conditionally on
the data, in distribution to the same (nonnormal) limit
distribution as n1/3{F̂n(t0) − F0(t0)}.

Note that the problem of resampling from a non-
differentiable distribution function, such as the MLE,
is removed locally in condition (6.3). Next, one con-
structs the bootstrap confidence intervals:[

F̂n(t0) − U∗
1−α/2, F̂n(t0) − U∗

α/2
]
,

where U∗
α is the αth percentile of the bootstrap values

F̂ ∗
n (t0) − F̃nh(t0), F̃nh being (e.g.) the SMLE which

satisfies condition (6.2) locally, and where F̂n is the
(discrete) nonparametric maximum likelihood estima-
tor. This gives a consistent bootstrap, (remarkably) re-
producing the nonnormal limiting distribution of the
MLE. Figure 11 shows the result for a sample of size
n = 1000, where F0 is the standard truncated exponen-
tial distribution function on [0,2] and the Ti are uni-
form on [0,2]. Notice that the confidence intervals are
not monotone in the time variable.
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FIG. 11. Sen–Xu 95% confidence intervals for the (truncated
exponential) distribution function F0, n = 1000, observations
are (Ti ,�i), where Ti is Uniform(0,2). Construction uses 1000
(smooth) bootstrap samples of indicators �∗

i , using the SMLE (red)
of the original sample. Dashed curve: truncated exponential distri-
bution function.

However, if one assumes the extra smoothness, as in
(6.3), it may be more natural to construct confidence
intervals around the SMLE instead of the MLE. For
the current status model, one can do that in two ways:
either by only resampling the �∗

i in the way discussed,
but now using the bootstrap values

(6.4) n2/5
{
F̃ ∗

nh(t0) −
∫

K
(
(t0 − u)/h

)
dF̃nh(u)

}
,

where K and F̃nh = F̃
(SMLE)
nh are defined as in (4.1);

here, F̃ ∗
nh is the SMLE in the bootstrap sample, based

on the MLE F̂ ∗
n in the bootstrap sample, using band-

width h. Next, one constructs the bootstrap confidence
intervals

(6.5)
[
F̃nh(t0) − U∗

1−α/2, F̃nh(t0) − U∗
α/2

]
,

where U∗
α is the αth percentile of the bootstrap val-

ues (6.4). This also leads to a consistent bootstrap, as
proved in Groeneboom and Hendrickx (2018a). One
can also use a Studentized version of (6.4). Note that
to attain the n2/5 convergence in (6.4) we need to pos-
tulate the existence of a second continuous derivative
of F0 at the point of the interval, as in Theorem 4.2 of
Groeneboom, Jongbloed and Witte (2010).

Another possibility is to use the nonparametric boot-
strap and to resample with replacement the values

FIG. 12. 95% confidence intervals produced by the R pack-
age curstatCI for the (truncated exponential) distribution
function F0, n = 1000, observations are (Ti ,�i), where Ti is
Uniform(0,2). The construction uses 1000 nonparametric boot-
strap samples, as described in the text. The locally optimal band-
width h (in principle different for each evaluation point) is also
computed by a bootstrap experiment. Dashed curve: truncated ex-
ponential distribution function, solid curve: SMLE. A boundary
correction is used in neighborhoods of 0 and 2.

(Ti,�i). In this case, one uses the bootstrap values

(6.6) n2/5{
F̃ ∗

nh(t0) − F̃nh(t0)
}
,

where F̃nh is the SMLE in the original sample and
F̃ ∗

nh the SMLE on the basis of a bootstrap sample
(T ∗

1 ,�∗
1), . . . , (T

∗
n ,�∗

n), with bandwidth h of order
n−1/5, drawn with replacement from the original sam-
ple. Next, one computes again (6.5). As in the pre-
ceding method, one can use Studentized values in-
stead of (6.6). The latter method is implemented in the
R package curstatCI Groeneboom and Hendrickx
(2017a). That this also give a consistent bootstrap is
proved in Groeneboom and Hendrickx (2017b).

Figure 12 shows the result for a sample of size n =
1000, where F0 is the standard truncated exponential
distribution function on [0,2] and the Ti are uniform
on [0,2].

7. DISCUSSION

In this paper, we review problems and results from
shape constrained statistical inference. Using the ex-
amples of estimating a decreasing density and inter-
val censoring, estimators were considered, character-
ized and computed. Also asymptotic distributions were
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discussed. In this section, we will put these results in
a somewhat broader context and state some interest-
ing (sometimes long time) open questions. Moreover,
some problems and approaches not mentioned in this
paper will be briefly touched upon.

The computations of the Grenander estimator and
the MLE in the current status model are somewhat spe-
cial. The estimators can be computed via an explicit ge-
ometric construction based on necessary and sufficient
optimality conditions. In many other problems, like
the convex and log concave density estimation prob-
lem and interval censoring case 2, such explicit con-
structions do not exist. Iterative algorithms can be em-
ployed to approximate the MLEs. Popular algorithms
developed within the field of statistics can be used in
many examples. For instance, the Expectation Maxi-
mization (EM) algorithm (Dempster, Laird and Rubin,
1977) when there is a missing data interpretation of the
model, the Iterative Convex Minorant (ICM) algorithm
(Groeneboom and Wellner, 1992 and Jongbloed, 1998)
in case one wants to maximize over a cone of monotone
functions, and Vertex Direction algorithms (Böhning,
1986) for mixture models can be used in many exam-
ples. Sometimes these algorithms can be combined to
even yield faster algorithms (Wellner and Zhan, 1997,
Jongbloed, 2001). Also more general approaches from
optimization theory, such as interior point methods
(Wright, 1997) and active set algorithms (Dümbgen
and Rufibach, 2011) have been applied.

The idea that estimators using shape constraints are
better than those not using the information as seen for
the estimation of a concave distribution function in
Lemma 3.1 arises in more situations. In particular in
the situation of convex density estimation (Dümbgen,
Rufibach and Wellner, 2007) and in a discrete convex
estimation setting (Balabdaoui and Durot, 2015), at the
cost of a (sharp) factor 2 at the right hand side.

The asymptotic distribution theory of the two mod-
els focused in this paper has been quite well stud-
ied. For the convex and log concave density estima-
tors, much less is known. In Groeneboom, Jongbloed
and Wellner (2001a), the asymptotic (pointwise) dis-
tribution of convex least squares and maximum likeli-
hood estimators is derived, which is further character-
ized in Groeneboom, Jongbloed and Wellner (2001b).
The limit is characterized as the second derivative of
the “invelope” of integrated Brownian motion +t4 (the
terminology is due to the first author of the present pa-
per; the envelope is in fact a cubic spline lying inside
and touching the integrated Brownian motion +t4). So,
instead of an “envelope” of Brownian motion with a

parabolic drift, we have the “invelope” of integrated
Brownian motion +t4.

The limit distribution of the log concave densities
has a similar characterization, see Balabdaoui, Ru-
fibach and Wellner (2009), but the finite sample char-
acterization is somewhat different, since in this case
the changes of slope are at the observation points, in
contrast with the situation for the convex densities and
least squares estimators where the changes of slope
are never at the observation points (see Groeneboom,
Jongbloed and Wellner, 2001a). Recently, global rate
of convergence results for log concave density esti-
mation in higher dimensions have also been derived
in Kim and Samworth (2016). Much less is known
about this limiting distribution, even in dimension 1,
than for the Chernoff distribution. No analytic repre-
sentation of the limit distribution is known, one only
has a construction based on cubic splines. It seems that
the limit density is not symmetric, in contrast with the
Chernoff density. Asymptotic properties and also an R
package logcondiscr for constructing confidence
intervals are discussed in Balabdaoui et al. (2013) and
Azadbakhsh, Jankowski and Gao (2014).

Another long standing open problem is that of the
asymptotic distribution of the MLE in the interval cen-
soring case 2 model, for the so-called nonseparated
case, where the observation intervals [Ti,Ui] can be ar-
bitrarily small. The conjecture for the limit distribution
in Groeneboom and Wellner (1992) still stands. For
the separated case, the limit distribution was derived
in Groeneboom (1996). Simulations for both the sepa-
rated and nonseparated case are given in Groeneboom
and Ketelaars (2011). It is conjectured that the rate of
convergence of the MLE is (n logn)1/3 for the non-
separated and proven in Groeneboom (1996) that it
is n1/3 for the separated case. Birgé (1999) has con-
structed a histogram-type estimator for which the rate
can be proven to be of order (n logn)1/3 in the non-
separated case, a rate that also was expected on the ba-
sis of a minimax calculation (see, e.g., Theorem 2.1 in
Groeneboom and Ketelaars, 2011).

The current status model has also been studied in the
context of the competing risk model; see, for exam-
ple, Groeneboom, Maathuis and Wellner (2008a) and
Groeneboom, Maathuis and Wellner (2008b). This is
also a situation where an analytic characterization of
the limit distribution is not known.

The methods used for the current status regression
model in Groeneboom and Hendrickx (2018b) have
also been applied to construct estimators of the regres-
sion parameter based on the least squares estimators
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in the single index model, converging at
√

n-rate, in
Balabdaoui, Groeneboom and Hendrickx (2017). Here
again, a “score function” is used instead of an argmin
functional. Whether the full profile least squares esti-
mator of the regression parameter is

√
n-consistent is

still an open problem. In any case, even if it would be√
n-consistent, its behavior in simulations is not very

good; this bad behavior even inspired Tanaka (2008) to
conjecture that the rate is n0.45.

The situation is better for the profile least squares es-
timator in the single index model with a convex link
function instead of a monotone link function. It is
proved in Kuchibhotla, Patra and Sen (2017) that this
estimator is

√
n-consistent and efficient if the LS es-

timators are constrained by a uniform Lipschitz con-
dition. It is conjectured, on the basis of simulations,
that this even will be true without the uniform Lips-
chitz condition. Of course, in this case we have differ-
entiability of the criterion function, which is missing in
the case of the monotone link function.

As a side effect of the proof of relation (3.6), it was
proved in Groeneboom (1983) that Brownian motion
can be decomposed into its concave majorant, gener-
ated by an inhomogeneous Poisson process, and Brow-
nian excursions on intervals between jumps. This has
generated a lot of interesting probabilistic research,
beginning with Pitman (1983) (interpretation in terms
of Bessel processes and path decomposition results of
David Williams). We further mention: Çinlar (1992)
(connection with queueing systems), Carolan and Dyk-
stra (2001) [marginal joint densities of Brownian mo-
tion and (slope) of concave majorant], Balabdaoui and
Pitman (2011) (maximal difference between Brown-
ian bridge and its concave majorant), Pitman and Ross
(2012) (greatest convex minorant of Brownian mo-
tion, meander, and bridge) and Pitman and Uribe Bravo
(2012) (the convex minorant of a Lévy process).
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