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"It’s a dangerous business..., going out of your door,” ... “You step into the

Road, and if you don’t keep your feet, there is no knowing where you might
be swept off to.”

J.R.R. Tolkien
(Bilbo Baggins in The Lord of the Rings)
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Summary

Social humanoid robots are complex intelligent systems that in the near future
will operate in domains including healthcare and education. Transparency of what
robots intend during interaction is important. This helps the users trust them and
increases a user’s motivation for, e.g., behaviour change (health) or learning (ed-
ucation). Trust and motivation for treatment are of particular importance in these
consequential domains, i.e., domains where the consequences of misuse of the sys-
tem are significant. For example, rejecting treatment can have a negative impact
on the user’s health. Transparency can be enhanced by having the robot explain
its behaviour to its users (i.e., when the robot provides self-explanations). Self-
explanations help the user to assess to what extent he or she should trust the
decision or action of the system.

Self-explanations of humanoid robots are typically based on how people explain
their own and each other’s behaviour amongst each other (i.e., human behaviour
explanations). When people explain a person’s (their own or someone else’s) be-
haviour then they do so by referring to that person’s beliefs, desires, and emotions.
Humans make intuitive, split second decisions to decide what elements are best
suited to explain behaviour in a situation to a particular receiver. In contrast, work
on self-explanations by robots has mainly focused on referring to desires and some-
times beliefs, and in a non-personalised manner. The main question of this thesis
is: *Which aspects of human behaviour explanation can be used in the construction
of social humanoid robot self-explanations and how should we generate such ex-
planations?’ In this thesis, we focus on two aspects of this question: 1) attuning
explanations to the receiver; and 2) using emotions as part of the explanations.

In the introduction we give an overview of social robots, discuss how humans
amongst each other explain behaviour, and how this inspired the design of ex-
planations of autonomous agent behaviour (like social robots or virtual artificial
characters). Furthermore, we discuss the European project affiliated with this the-
Sis.

In chapter two, we discuss design principles and a resulting implementation for a
system with a social humanoid robot. Issues were reaching long-term, personalised
interaction, for different groups of users, in complex consequential and real-world
application domains. We implemented a cloud-based, modular, social-robot system
which provides personalised behaviour change support. The system is developed
to autonomously interact with its users for a prolonged period of time (2 periods of
2.5 — 3 months). The context within which the system is developed is supporting
diabetes management of children (aged 6-14). However, the system’s architecture
and principles are designed to provide health-support and education in a more
general way. This chapter discusses the type of social robot system that serves as
context for which we develop the explanations.

Xi



xii Summary

In chapter three, we aim to get a better understanding of whether and how
robot self-explanations should be attuned to the receiver of the explanation. We
look at user preferences and the differences between children and adults who re-
ceive explanations from a robot. We implemented a humanoid robot as a belief-
desire-intention (BDI)-based agent and explained its actions using two different
explanation styles. One based on the robot’s beliefs that give context information
on why the agent performed the action. The other based on the robot’s goals that
inform the user of the agent’s desired state when performing the action. We inves-
tigated the preference of children and adults for goal- versus belief-based action
explanations. From this, we learned that adults have a significantly higher tendency
to prefer goal-based action explanations. Providing insight in preferences for BDI
elements in explanations is an important preliminary step in the challenge of provid-
ing more personalised explanations in human-robot and human-agent interaction.

In chapter four, we address whether and how humans use emotions in their
explanations of robot behaviour. Answering this question is important for two main
reasons. First, it helps us design ways in which social robots can explain their
own actions. Second, it gives insight into human attribution of mental states to
robots. To study this, we presented filmed behaviours of a social humanoid robot
coping with a distressing situation to MTurk participants. Coping was done in several
styles drawn from literature. As a between subject control, we also presented
all behaviours performed by a human actor. We asked participants to rate their
recognition of these coping styles and how they would explain the behaviour (by
typing this in an open text box). Results show that overall participants recognised
the coping styles and used emotions in their explanations for both the robot and
the human actor. Participants used significantly less emotions when explaining
robot behaviour; however, with a very small effect size. Finally, for participants that
were shown videos of human behaviour, we found that the recognised coping style
correlated with the emotionality used in the explanations. We did not see this for
participants that were shown videos of robot behaviour. We discuss implications of
our findings for our understanding of human perception of robot behaviour. Finally,
our analysis shows that emotions are often a part of the explanations; however,
it is still unclear when emotions are a part of the explanations. We found that
this is different for robots versus humans. The recognition of certain coping styles
correlates with emotionality of the explanation when explaining human behaviour,
but not when explaining robot behaviour. With this we identify an important line
of future work. The main conclusion of this study is: if we intend to explain robot
behaviour like a human would have, then we often need emotions as part of the
explanation.

In the previous chapter, we looked at human explanations of robot behaviour.
In chapter five, we look at the simulation of intelligent agent (e.g., robot) emo-
tions. This is important because if the robot must use emotions in the explanations
then it must be able to represent and generate them. Furthermore, we argue this
should be done in such a way that the simulation stays close to emotion theory
of how people understand and use emotions because people must understand the
meaning of the emotion as used in the explanation. There are many computa-
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tional models of emotion, all with their own specific value. However, these models
typically simulate emotions based on cognitive appraisal theory. Which introduces
a large set of appraisal processes not specified in enough detail for unambiguous
implementation. This is particularly difficult for belief-desire-intention based (i.e.,
cognitive) agent programming. We present a framework based on the belief-desire
theory of emotions (BDTE). This framework enables the computation of emotions
for cognitive agents. In this paper, we bridge the remaining gap between BDTE
and cognitive agent programming frameworks.

Chapter six presents two styles of robot self-explanations in our social robot sys-
tem tested in a long-term in the wild study. Research in e-health support systems
and human-robot interaction stresses the need for studying long-term interaction
with users. We propose the effects of robot self-explanations should thus also be
tested in prolonged interaction. We report on an experiment in which we tested
the effect of cognitive, affective and lack of explanations on children’s motivation
to use an e-health support system. Children (aged 6-14) suffering from type 1 dia-
betes mellitus interacted with our system over a period of 2.5 - 3 months. Children
alternated between the three conditions. Agent behaviours that were explained to
the children included why 1) the agent asks a certain quiz question; 2) the agent
provides a specific tip (a short instruction) about diabetes; and, 3) the agent pro-
vides a task suggestion, e.g., play a quiz, or, watch a video about diabetes. Their
motivation was measured by counting how often children would accept the agent’s
suggestion, how often they would continue to play the quiz or ask for an additional
tip, and how often they would request an explanation from the system. Surpris-
ingly, children proved to follow task suggestions more often when no explanation
was given, while other explanation effects did not appear. This is not in line with
literature on related work and pedagogy and serves as an important lesson learned
for developing explanations in long-term interaction. This is (to our knowledge) the
first long-term study to report empirical evidence for an agent explanation effect,
challenging future studies to uncover the underlying mechanism.

The work in this thesis shows that self-explanation algorithms should indeed
consider more aspects of how humans amongst each other explain behaviour. (1)
We show explanations must take the receiver of the explanation into account. Con-
text like user type is essential. Furthermore, (2) we show people indeed use emo-
tions themselves when explaining robot behaviour. Future work includes analysing
how such personalised and emotion laden explanations would influence trust in
the system. Furthermore, chapter six shows that an explanation effect on moti-
vation occurred in long-term interaction. However, these effects were not in line
with the expectations based on literature, showing the need for also more work on
this. In this thesis, we designed and tested the explanations in a real-world (in
the wild") system in a consequential domain (helping children aged 6-14 to become
more self-manageable with regards to their illness). Our research already shows
that it is possible to address research questions in complex consequential domains,
even with limited groups of users and over prolonged periods of interaction time.
Overall, we conclude that work in explainable artificial intelligence, both in the so-
cial sciences as well as in human computer interaction, should consider individual
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preferences and should consider emotions in addition to beliefs and desires when
explaining robot or avatar behaviour.



Samenvatting

Sociale humanoide robots zijn complexe intelligente systemen die in de nabije toe-
komst zullen opereren in domeinen zoals zorg en onderwijs. Transparantie van
wat de robots nastreven tijdens de interactie is belangrijk. Dit maakt dat men ze
eerder zal vertrouwen en verhoogt daarmee de gebruiker zijn motivatie tot, bij-
voorbeeld, gedragsverandering (zorg) of leren (educatie). Vertrouwen en motivatie
zijn inderdaad belangrijke onderwerpen in deze domeinen. Transparantie kunnen
we versterken door de robot zijn gedrag uit te laten leggen aan de gebruiker (dit
noemen wij hier ‘zelf-verklaringen”). Zelf-verklaringen helpen de gebruiker om in te
schatten in welke mate hij/ zij beslissingen en gedragingen van het systeem moet
vertrouwen.

Zelf-verklaringen van humanoide robots zijn typisch gebaseerd op hoe mensen
onderling hun eigen en elkaars gedrag verklaren (dit noemen we hier mens-op-
mens gedragsverklaringen). Wanneer mensen het gedrag van een persoon (zich-
zelf of iemand anders) verklaren doen ze dit door te refereren naar de persoon
zijn gedachtes, verlangens, en emoties. Mensen maken binnen een fractie van
een seconde, intuitieve beslissingen om te bepalen welke elementen het best pas-
sen om gedrag in een specifieke situatie uit te leggen aan een specifiek persoon.
Daarentegen is onderzoek aangaande zelf-verklaringen van robots tot nu toe voor-
namelijk gefocust op het gebruik van verlangens, en soms gedachtes, op een niet-
gepersonaliseerde wijze. De hoofdvraag van deze thesis is: ‘Welke aspecten van
mens-op-mens gedragsverklaringen kunnen gebruikt worden in het ontwikkelen
van sociale humanoide robot zelf-verklaringen en hoe kunnen we zulke verklarin-
gen genereren?’ In deze thesis focussen we op twee aspecten van deze vraag: 1)
verklaringen afstemmen op de ontvanger van de verklaring, en 2) het gebruik van
emoties als onderdeel van de verklaringen.

In de introductie geven we een overzicht van sociale robots, bespreken we
mens-op-mens verklaringen, en bespreken we hoe zulke verklaringen het ontwik-
kelen van verklaringen in autonome agent systemen (zoals sociale robots of virtuele
artificiéle karakters) hebben geinspireerd. Ten slotte bespreken we het Europese
project geaffilieerd met deze thesis.

In hoofdstuk twee bespreken we de ontwikkelprincipes en een implementatie
van een systeem met een sociale robot. De uitdaging was om lange-termijns-,
gepersonaliseerde interactie te bewerkstelligen voor verschillende gebruikers groe-
pen en in een complex zwaarwegend domein uit de samenleving (‘real-world’ in
plaats van een verzonnen ‘lab’ domein). We hebben een ‘cloud-based’ (over het
internet), modulair systeem ontwikkeld dat gedragsverandering en ondersteuning
bied. Het systeem is ontwikkeld om autonoom met zijn gebruikers te interacteren
over een langdurige periode (2.5 - 3 maanden). De context van het systeem is
het ondersteunen van diabetes management van kinderen (leeftijd 6-14). Maar de
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xvi Samenvatting

ontwikkelprincipes en de architectuur van het systeem zijn dusdanig opgezet dat
het gedragsondersteuning op een generieke wijze kan ondersteunen. Het systeem
besproken in dit hoofdstuk is ook het type sociale humanoide robot systeem waar
wij de uitleggingen voor ontwikkelen in deze thesis. Het dient dus ook als context
voor de hierop volgende hoofdstukken.

In hoofdstuk drie onderzoeken we of en hoe robot zelf-uitleggingen aan de ge-
bruiker moeten worden afgestemd. We kijken naar gebruikers voorkeuren voor
verschillende type uitleggingen en testen op het verschil in voorkeur tussen vol-
wassenen en kinderen. We hebben een robot geimplementeerd als een BDI-based
agent (dit is een term voor systemen die redeneren op basis van hun ‘gedachtes’,
‘verlangens’, en ‘intenties’; of in het Engels ‘beliefs’, ‘desires’, en ‘intentions’; BDI).
De robot gaf zelf-verklaringen voor zijn gedrag in twee verschillende stijlen. Eén
gebaseerd op zijn ‘gedachtes’ welke contextuele informatie omvatten over waarom
de robot het gedrag vertoonde. En één gebaseerd op zijn verlangens welke tonen
wat de robot wilde bereiken met het gedrag. We onderzochten de voorkeuren van
kinderen en volwassenen voor deze verklaringen. We hebben hiervan geleerd dat
volwassenen een sterkere voorkeur hebben voor verlangen-gebaseerde uitleggin-
gen dan kinderen. Inzicht verkrijgen in voorkeuren voor uitlegstijlen is een belang-
rijke stap om gepersonaliseerde zelf-verklaringen te kunnen bieden.

In hoofdstuk vier onderzoeken we of en hoe mensen emoties gebruiken in hun
uitleggingen van robot gedrag. Deze vraag is belangrijk om twee hoofdredenen.
Ten eerste helpt het ons voor het ontwikkelen van robot-zelfverklaringen. Ten
tweede verschaft het ons inzicht over hoe mensen denken over robot gedrag en
welke mentale concepten (zoals bijvoorbeeld verlangens en emoties) ze attribueren
aan het gedrag. Om dit te onderzoeken hebben we participanten van een MTurk
studie gefilmde gedragingen laten zien van een sociale humanoide robot welke
omgaat (met de term uit het Engels: ‘coping’) met een stressvolle situatie. Coping
werd in verschillende stijlen gedaan, gebaseerd op de literatuur. Ter controle wer-
den anderen participanten een menselijke acteur getoond welke de coping stijlen
vertoonde. Participanten gaven aan welke stijlen ze herkenden in het gedrag en we
vroegen participanten om een uitleg te geven voor het gedrag (door deze te typen
in een open tekstvak). Resultaten tonen dat de participanten in het algemeen, voor
zowel de menselijke acteurs als voor de robot, de coping stijlen konden herkennen
en dat ze emoties gebruikten in hun uitleggingen. Participanten gebruikten wel
significant minder emoties bij het uitleggen van robot gedrag, maar met een zeer
kleine effect grootte. We vonden dat voor onze set gedragingen 80% van de uit-
leggingen van menselijk gedrag emoties bevatte, en 75% van de uitleggingen van
robot gedrag emoties bevatte. In dit hoofdstuk bespreken we de implicaties van
onze resultaten voor ons begrip van hoe mensen robot gedrag waarnemen. Ten
slotte toont onze analyse dat emoties vaak een deel zijn van uitleggingen, maar,
het is nog steeds onduidelijk wanneer emoties een deel van de uitleg moeten zijn.
Onze resultaten laten zien dat dit verschild voor mensen en robots. Onze resultaten
tonen dat bij verklaringen van menselijk gedrag dit correleert met het toedichten
van bepaalde coping stijlen aan het gedrag, maar bij robots niet. Hiermee iden-
tificeren wij een belangrijke vraag voor toekomstige studies. De hoofdconclusie
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van deze studie is: als we robot gedrag willen verklaren zoals een mens dat doet,
moeten we regelmatig emoties gebruiken als onderdeel van de uitleg.

In het hoofdstuk vier bekeken we menselijke uitleggingen van robot gedrag. In
hoofdstuk vijf kijken we naar de simulatie van emoties van intelligente artificiéle
agenten (zoals robots). Als de robot emoties moet gebruiken in uitleggingen dan
moet de robot deze emoties kunnen representeren en genereren. Verder bear-
gumenteren we dat dit dusdanig moet dat de simulatie overeenkomt met emoties
theorién over hoe mensen emoties gebruiken en begrijpen zodat mensen de emotie
in de uitleg ook inderdaad kunnen begrijpen. Er zijn vele computationele modellen
van emotie, allen met hun eigen specifieke waarde. Maar deze modellen zijn typisch
gebaseerd op ‘appraisal theory’. Dit introduceert een grote set aan processen welke
in onvoldoende detail zijn gedefinieerd om ze ondubbelzinnig te implementeren. Dit
is met name lastig wanneer we een BDI-based agent programmeer taal gebruiken.
Wij presenteren daarom een framewerk gebaseerd op de ‘gedachte’-'verlangen’
theorie (BDTE) van emotie. Dit framewerk maakt het mogelijk om emoties voor
deze programmeer talen te berekenen. In deze paper sluiten we de kloof tussen
BDTE en BDI-based agent programmeer framewerken.

Hoofdstuk zes presenteert twee stijlen van robot zelf-verklaringen in ons sociale
robot systeem getest in een lange-termijn studie. Onderzoek aangaande e-health
support systemen en mens-robot interactie benoemt vaak dat het belangrijk is om
lange-termijn studies te doen. Wij argumenteren daarom dat onderzoek aangaande
uitleggingen ook gedaan moet worden in lange-term studies. We rapporteren hier
een experiment dat het effect van cognitieve, affectieve, en geen uitleggingen test
op de motivatie van kinderen om een e-health support systeem te gebruiken. Kin-
deren (leeftijd 6-14) met diabetes type 1 hebben 2.5 tot 3 maanden geinteracteerd
met ons systeem. Kinderen alterneerden tussen de drie condities. De gedragingen
van de artificiéle agent die werden verklaard waren: 1) waarom de agent een speci-
fieke quizvraag stelt; 2) waarom de agent een specifieke tip (een korte informatieve
instructie aangaande diabetes) geeft; en 3) waarom de agent een taakvoorstel doet
zoals bijvoorbeeld een quiz spelen, of een video over diabetes kijken. De motivatie
van de kinderen werd gemeten door te tellen hoe vaak kinderen de taaksugges-
tie opvolgen, hoe lang ze de quiz blijven spelen dan wel volgende 'tips’ vragen,
en hoe vaak kinderen zelfstandig om een uitleg vragen. Tegen de verwachting in
volgde kinderen taaksuggesties vaker op wanneer er geen uitleg was gegeven. We
vonden geen verdere effecten van uitleggingen. Dit is niet in lijn met literatuur
aangaande gerelateerd werk en pedagogie en dit dient als een belangrijke les voor
het ontwikkelen van uitleggingen in lange-termijnsinteractie. Dit is bij ons weten
de eerste lange-termijn studie die een empirisch bewijs opvoert dat uitleggingen
inderdaad een effect hebben op de interactie. Het is nu aan toekomstige studies
om te achterhalen wat het onderliggende mechanisme is.

Het werk in deze thesis toont aan dat zelf-verklaringen van robots inderdaad
meer aspecten moeten meenemen van hoe mensen onderling gedrag verklaren. (1)
Uitleggingen moeten de ontvanger van de uitleg in beschouwing nemen. Context
zoals gebruikers type is van belang. (2) we tonen dat mensen emoties gebruiken bij
het verklaren van robot gedrag. Toekomstige studies moeten analyseren hoe per-
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sonalisatie en emoties vertrouwen in het systeem beinvioeden. Verder toont ons
zesde hoofdstuk dat uitleggingen een effect hebben op motivatie in lange-termijn
interactie. Deze effecten waren alleen niet zoals verwacht gegeven literatuur op
het onderwerp. Wat toont dat meer werk nodig is in dit gebied. In deze thesis
hebben we verklaringen ontworpen en getest in een ‘real-world” systeem in een
zwaarwegend domein (kinderen met diabetes type 1 helpen om zelfstandig met
hun ziekte om te kunnen gaan). Ons onderzoek toont dat het mogelijk is om on-
derzoeksvragen te adresseren in complexe domeinen, met een relatief kleine groep
gebruikers, en over een lange interactie periode. We concluderen dat onderzoek
naar zelf-verklarende artificiéle agenten, zowel in de sociale wetenschappen als in
mens-computer interactie, moet kijken naar individuele voorkeuren en moet kijken
naar het gebruik van emoties als onderdeel van uitleggingen bij het verklaren van
robot of avatar gedrag.
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1.1. Self-Explanations by Robots

Transparency of intelligent systems helps users to assess whether to trust decisions
or actions of the system, to prevent misuse, and to increase motivation to use the
system. Social robots are complex intelligent systems that in the near future will
operate in domains including healthcare and education where trust in the system,
understanding of the system, motivation to use the system and misuse of the sys-
tem are important issues [2, 3]. As a result, transparency of robot behaviour is
getting increasing attention [4].

EXplainable Artificial Intelligence (XAI) is a field that studies developing compre-
hensive and trustworthy systems [4—8]. This is studied by explaining the Artificial
Intelligence (AI) algorithms themselves (a pressing topic also in the machine learn-
ing community [9]), by focusing on the human computer interaction, and analysing
explanations in human communication [10]. In the present work, our main focus
is on humanoid robots and avatars thereof that self-explain why they do the things
they do.

Self-explanations of these robots are typically based on how humans amongst
each other explain behaviour [4]. Humans typically explain behaviour based on
the person’s beliefs, desires, and emotions that caused the person to choose to act
[11, 12]. Furthermore, human intuitively decide what beliefs, desires, and emotions
to communicate in a particular situation and to a particular receiver. In contrast,
work on self-explanations by robots has mainly focused on referring to desires and
sometimes beliefs, and in a non-personalised manner. It seems there are aspects of
how humans explain behaviour that are so far not thoroughly considered for design-
ing robot self-explanations. The main question addressed in this thesis therefore is:
‘Which aspects of human behaviour explanation can be used in the construction of
social humanoid robot self-explanations and how should we generate such expla-
nations?’. Where for human behaviour explanations, we consider both how humans
explain their own behaviour as how humans explain someone else’s behaviour. In
particular, we focus on two aspects of this question: 1) attuning explanations to the
receiver of the explanation; and 2) using emotions as content of the explanations.

In this introduction, we first discuss how humans explain behaviour amongst
each other, i.e., folk psychology. Folk psychology is the most commonly used
framework underpinning robot self-explanations [4] and also the framework we
adopt for identifying and generating types of explanations in this thesis. Second,
we discuss related work in XAIL. Then, we aim to formulate a definition for what we
mean with an explanation of agent behaviour, which we will use throughout the
thesis. Finally, we discuss the thesis outline and research questions addressed.

1.2. Background: Explanations and Folk Psychol-
08y

People explain their behaviour to find meaning and to manage interactions [13].
When someone observes behaviour and attempts to explain that behaviour, the

Parts of this chapter have been published in [1]
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observer might take the intentional stance. Which means the observer makes the
assumption that the agent intended the action and rationally chose to do it [14].
Resulting explanations are then based on folk psychology [14-16]. In this section,
we discuss the concept of folk psychology and how it relates to explanations.

Churchland [15] divides folk psychology in two classes: 1) fully intentional con-
cepts like beliefs and desires; and 2) quasi-intentional concepts like, e.g., emotions,
hunger and pain. He mentions that these quasi-intentional concepts regularly sup-
port simple explanations, of a more causal character (e.g., I was trembling because
I was scared).

Malle [13, 16] calls fully intentional concepts reasons, and identifies a third type
of reasons (besides beliefs and desires), which he calls valuings. In his own words:
“Valuings directly indicate the positive or negative affect towards the action or its
outcome” (p. 94 [13]). Examples of valuings are: like, enjoy, fear, or thrilling (one
might recognize these as emotions, moods, and attitudes). Valuings are not beliefs
(one can not have a false valuing), nor are they desires (desires are always directed
at unachieved states, valuings can also be directed at already achieved states, e.g.,
one can value having a roof over ones head). Valuings combine features of both
beliefs and desires, but can be subsumed under neither [13].

Doring [17] states that beliefs and desires are often unsatisfying when explaining
an action; emotions are required. She divides actions in two subtypes, expressive
actions (e.g., kicking a chair at home because you are angry about something that
happened at work) and rational actions (e.g., crossing the street to get to the other
side).

Expressive actions often require emotions for satisfactory explanations. Kicking
the chair is intelligible by explaining you were angry. However, rational actions
can also require emotions to satisfactory explain (rationalize) the action [17]. For
example, quickly crossing the street can be explained by mentioning that you were
scared of a dangerous looking person that was staring at you.

When provided in a social setting, emotions and motivations increase the ac-
ceptance of human action explanations [18]. They make actions more intelligible
because they explain underlying values of the agent [19]. Humans use emotions
to communicate intentions [20]. Emotions are an integral part of folk psychology.

1.3. Related Work

EXplainable Artificial Intelligence (XAI) is a sub-field of human agent interaction. It
has its roots in Artificial Intelligence (AI), human-computer interaction (HCI), and
the social sciences [10]. Much knowledge has already been accumulated with the
study of expert systems [21]. From there, we can already consistently find that ex-
planations are vital for acceptance and trust in the system’s decisions, particularly
in domains where decisions are judgemental and consequential (e.g., health-care)
[22, 23]. Results that were later again verified by studies involving more modern
intelligent systems [2, 24, 25]. In the present age, it has again become a pressing
topic for the human-agent interaction community [4] and for the machine learn-
ing community [9]. This direction is further strengthened by political and societal
awareness, for example, shown by the appearance of the new General Data Regu-




4 1. Introduction

lation Law (GDPR) which underlines that users have the right to explanation when
they are subjected to automatic decision-making [26]. In this thesis, we focus on
agent self-explanations in human-agent interaction.

Current work in EXplainable AI (XAI) typically focuses on giving users some
notion of the Al’s reasoning in a reduced complexity form. Common approaches
in human-agent interaction are to query a system’s reasoning process [18, 27].
That information is then presented to the user. Most approaches applied to in-
telligent agents focus on the use of cognitive constructs such as beliefs, desires,
intentions and goals. Which naturally links to the reasoning and decision making
of the intelligent agents since this is often implemented using a BDI (belief-desire-
intention)-based structure [7, 27]. These constructs are used to explain the actions
of the agent in natural language [7, 11, 28-30].

In many Al applications involving intelligent agents, users require insight into
the motivations behind a system’s decisions [2, 31]. For example, in scenario-based
training (e.g. disaster or military training), the agents in the training should be able
to explain the rationale for their actions so that students can understand why the
training unfolds as it does [6]. In tutor and pedagogical systems, natural dialog be-
tween the user and system has been shown to increase the training effect of such
systems [32]. Debugging tools for BDI agent programs might benefit from a natural
way of interaction involving asking why agents perform certain actions instead of
looking at execution traces and internal mental states [33]. In human-agent team-
work [34, 35], explanations help to inform the other about the relevant individual
and shared goals and intentions so that actions can be coordinated properly. In
gaming and interactive storytelling [36, 37], having mechanisms to generate ex-
planations of agent actions (the "story”) could enhance the flexibility and appeal of
the storyline.

XAI systems often use question lists, allowing the user a limited set of questions
to ask [6, 8]. Such a question list then contains different types of questions. Sim-
pler questions that require short factual answers, but also more nuanced questions
that aim to find underlying motives of an Al system’s decisions. Another approach
focusses on the generation of explanations from beliefs and desires [7, 38]. One
should then take special care in designing the reasoning of the agent [11]. If a
good design is in place, then the XAI system can automatically choose the best
explanation, based on the structure of the agent design, and characteristics of the
user [11, 29].

1.3.1. Emotions Simulation for Intelligent Agents
In this thesis, we discuss robot self-explanations. One element of this is using
emotions as content of the explanations. If the robot must use emotions in the
explanations then it must be able to represent and generate them. Here, we briefly
introduce emotion simulation for intelligent artificial agents.

Intelligent agents can simulate emotions via a computational model of emotion.
A computational model of emotion describes the eliciting conditions for emotions,
often including corresponding intensity of the emotions. They are typically based
on cognitive theories of emotion [39]. A cognitive theory suggests that your emo-



1.4. Definitions and Terminology S

tions are the result of thoughts and mental activity. For example, seeing emotions
as consequences of cognitive evaluations (appraisals), relating the event to an in-
dividual’s desires. For example, one is happy because one believes something to
be true, and desires this to be true. Such models can be used in intelligent agent
simulation to allow the agent to simulate and express emotions [39-43].

1.4. Definitions and Terminology

Here we provide definitions for the concepts used in this work. We are explaining
the behaviour of intelligent agents. For intelligent agent we adopt the definition of
Russel and Norvig [44].

Definition 1. (Intelligent Agent)

An intelligent agent is an entity that perceives its environment through sensors,
autonomously decides how to act upon that environment, and then does so using
actuators.

An intelligent agent, in our work, is embodied as a humanoid robot or a virtual
avatar thereof. It chooses its actions based on its mental state, and updates its
mental state based on what it perceives. A mental state can consist of, e.g., beliefs,
desires, and emotions. An event is anything that happens in, and changes the state
of the environment that the agent is situated in. An event can influence the agent’s
mental state when perceived by the agent’s sensors. An action is a special type
of event, directly caused by an agent by means of its actuators. If the action is
performed by the agent itself, then it can perceive this by simply monitoring its own
decision making.

When we talk about agent behaviour, then we mean one or more agent actions
and/or reasons. Where a reason is a single belief, desire, or emotion, present in
the mental state of the agent. We can now provide a definition for explanation of
agent behaviour in our context.

Definition 2. (Explanation of Agent Behaviour)
Any number of reasons and events (but at least one of either) formulated in natural
language, with the aim of communicating the agent’s underlying intentions.

1.5. The PAL project

The context of our thesis is the PAL (a Personal Assistant for a Healthy Lifestyle)
project. The PAL project helps children (aged 7-14) to cope with Type 1 Diabetes
Mellitus (T1DM). The amount of children suffering from type 1 diabetes mellitus
(T1DM) has doubled in less than 20 years. The growing burden of chronic illnesses
on health and health-care has led to health policy responses increasingly referring
to self-management. Becoming self-manageable requires long-term motivation for
change. Which is especially difficult when the patient is a child.

There are several challenges. The child needs to learn to deal with medical
issues like the proper use of an insulin pump, or eating regularly, but also with
psychological issues like feeling different from one’s classmates. The caregivers and
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Figure 1.1: An example of an explanation given by a (mobile) avatar of the NAO robot in an application
that children can play at home.

parents cannot always be there to help the child and will always have a different
relationship with the child than that of a peer.

In the PAL project, there is human-robot interaction in hospitals and camps
with scientists present, and continued long-term interaction with the children at
home. We developed an elaborate system to educate the child on- and support the
child with his/her diabetes whilst continuing to be a peer of the child (a pal). The
system consists of a social robot, its (mobile) avatar, an expandable set of (mobile)
health applications (diabetes diary, educational quizzes, sorting games, etc.) for
interaction with the children. Additionally, there is a monitor app that allows parents
to oversee the child’s progress and a control app that allows caregivers to oversee
and adjust how the system is configured.

In this complex Al system it is vital that the users understand and trust the
system. For example, if the application keeps asking questions about hypos to the
child, then it should be able to explain its underlying motivations. E.g., the system
might explain that its aim is to educate the child, and it beliefs that playing a quiz
about hypos is currently the best way to do so; or, the system might say it hopes that
the child will increase its knowledge on hypos by answering quiz questions about
hypos. We are developing an XAI module capable of generating such explanations.

1.6. Research Questions And Thesis Structure

Our main research question is:



1.6. Research Questions And Thesis Structure 7

Main Research Question

Which aspects of human behaviour explanation can be used in the construction of
social humanoid robot self-explanations and how should we generate such expla-
nations?

We focused on two aspects of this question: 1) attuning explanations to the re-
ceiver; and 2) using emotions in the explanations. We derived five research ques-
tions from this main question and addressed these in the respective chapters.

Before we study explanations themselves, in chapter 2, we specify the type of
system and interaction that we are designing self-explanations for. We focus on so-
cial humanoid robots that interact with their users over prolonged periods of time.
Challenges were reaching long-term, personalised interaction, for different groups
of users, in complex consequential and real-world application domains. This system
is used to support the children with their diabetes in the PAL-project. For designing
and implementing this system, we addressed the following question:

Research Question 1; Chapter 2
What are the design principles for a social robot system that must autonomously
run for several months?

In chapter 3, we work towards attuning explanations to the receiver of the expla-
nation. Two common explanations styles in folk psychology are goal-based and
belief-based explanations [13-16]. However, explanations based on folk psychol-
ogy change as humans mature [13, 18]. For example, young children (4 years
old) have trouble realising someone may have a belief that is false [45]. Second,
children and adults alike are inclined to belief that others have similar beliefs and
knowledge as they do [18]. However, adults have accumulated a vast amount of
knowledge to which they can link new information [46]. Third, adults strongly de-
sire (more than children) to know the goals you are pursuing when educating them
[46, 47]. Our second research question is:

Research Question 2; Chapter 3
What are the differences in preference for goal-based versus belief-based social
robot explanations between adults and children?

In the previous question, we address an important element of making explanations
more attuned to the end-users. However, is still very much in line with traditional
work in XAI which primarily focuses on beliefs, goals, and desires for explanations
[4]. However, our discussion of the literature pointed out that emotions might play
a role as well for explaining robot behaviour. In chapter 4, we study human ex-
planations of robot behaviour and whether humans use emotions when explaining
robot behaviour. Self-explanations and other person explanations are both typi-
cally based on folk psychology [13]. If people use emotions when explaining robot
behaviour themselves, then this is a strong indicator that robot self-explanations
benefit from the use of emotions as well. Our third research question is:
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Research Question 3; Chapter 4
To what extent and in what way do humans use emotions in their explanations of
robot behaviour?

Addressing this question, we found that people indeed use emotions in their ex-
planations of robot behaviour. This is strong motivation to model emotions for
the robot’s behaviour and explanations thereof. First we must model the emotions
themselves. Our social robot system uses a BDI-based agent programming for its
high-level decision making. In chapter 5, we address the following question:

Research Question 4; Chapter 5
How can we incorporate emotion theory into BDI-based agent programming?

Finally, we argued that emotions may play a role in robot self-explanations. From
literature, we found that humans often use emotions in their explanations [15, 17].
They increase the acceptance of explanations [18]. Citing only beliefs and desires
in action-explanations is often insufficient, emotions can be required for construct-
ing an explanation that is perceived as satisfying by the receiver of the explanation
[17]. In addition, our own work concerning research question 2 shows people
themselves indeed use emotions when explaining robot behaviour. In chapter 6,
we address the following question:

Research Question 5; Chapter 6
What are the effects of cognitive and affective explanations on motivation to use a
social robot/ avatar system during long-term interaction?

Finally in chapter 7, we present overall conclusions. We discuss the limitations
of our work and potential directions for future continued work. Finally, we discuss
some more general contributions from the thesis as a whole.
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Making the transition to long-term interaction with social-robot systems has
been identified as one of the main challenges in human-robot interaction.
This paper identifies four design principles to address this challenge and
applies them in a real-world implementation: cloud-based robot control, a
modular design, one common knowledge base for all applications, and hy-
brid artificial intelligence for decision making and reasoning. The control
architecture for this robot includes a common Knowledge-Base (ontologies),
Data-Base, Hybrid Artificial Brain (dialogue manager, action selection and
explainable Al), Activities Centre (Timeline, Quiz, Break & Sort, Memory, Tip
of the Day, ...), Embodied Conversational Agent (ECA; i.e., robot and avatar),
and Dashboards (for authoring and monitoring the interaction). Further, the
ECA is integrated with an expandable set of (mobile) health applications.
The resulting system is a Personal Assistant for a healthy Lifestyle (PAL)
which supports diabetic children with self~-management and educates them
on health-related issues (48 children, aged 6-14, recruited via hospitals in the
Netherlands and in Italy). It is capable of autonomous interaction ‘in the wild’
for prolonged periods of time without the need for a ‘Wizard-of-Oz’ (up until
6 months online). PAL is an exemplary system that provides personalised,
stable and diverse, long-term human-robot interaction.

This paper is submitted to ACM Transactions on Human-Robot Interaction (THRI). The author of this
thesis is the main author of this chapter and the corresponding submitted paper. However, in a number
of sections different co-authors have taken the lead.

Specifically, different co-authors have taken the lead in writing sections: 2.4.1 - 2.4.4, 2.4.6, 2.4.7 except
for the part about explainable AI, and section 2.7. In these sections, different co-authors were also the
main developers of the corresponding software design and implementations.
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of Technology, Netherlands), BERND KIEFER (Deutsches Forschungszentrum fiir Kiinstliche Intelligenz,
Germany), ANTOINE CULLY (Imperial College London, United Kingdom), OYA CELIKTUTAN (King’s Col-
lege London, United Kingdom), BERT BIERMAN (Produxi, Netherlands), RIFCA PETERS (Delft University
of Technology, Netherlands), JOOST BROEKENS (Leiden University, Netherlands), WILLEKE VAN VUGHT
(TNO, Netherlands), MICHAEL VAN BEKKUM (TNO, Netherlands), YIANNIS DEMIRIS (Imperial College
London, United Kingdom), MARK A. NEERINCX (Delft University of Technology, Netherlands).
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2.1. Introduction

There is an increasing interest in long-term human-robot interaction. Social robots
are commonly applied to education, health-care, public spaces, work environments,
and home environments [1]. These systems often need to interact with several
users and user groups at the same time and require interaction over prolonged
periods of time in order to achieve their individual goals [1].

Current social robot systems have their own specific value, but remain simple
and scripted in nature and miss the required comprehensive, prolonged, and per-
sonalised support. For example, in EU project ALIZ-E (www.aliz-e.org) a social
robot was developed for children to support them in the self-management of dia-
betes [2, 3]. However, much of the implemented functionality remained scripted
and required a ‘Wizard of Oz". Furthermore, the children interacted with the robot
‘only’ in a limited number of subsequent sessions [4, 5].

To establish long-duration pervasive human-robot interaction, our approach is
to develop a personalised social-robot with its avatar that allows the user to always
and anywhere engage in a divers set of activities over a prolonged period of time
(cf. [6]). We propose four principles for the implementation of such a system. It
must: (1) have a connection to the cloud to delegate parts of the computational
problems to external computers; (2) be modular to support parallel and incremental
development of functionality; (3) have a common knowledge-base and vocabulary
in the different parts of the system and for the human-agent interaction; and (4)
have hybrid artificial intelligence solutions (e.g., agent-based and machine learning)
that all have their own contribution to the problem. We discuss these principles
separately and we discuss how they were incorporated in the system’s development.

This paper presents the PAL system (a Personal Assistant for a healthy Lifestyle),
an exemplary system of human-robot interaction that enables long-term support for
health education and care. The robot autonomously interacts with children (aged 6-
14)‘in the wild’ over a period of several months. The PAL system is a fully integrated
and autonomous system that interacts with the children, their parents, and the
health-care professionals for prolonged periods of time. It is composed of a social
robot, its (mobile) avatar, and an expandable set of (mobile) health applications
(diabetes diary, educational quizzes, sorting games, etc.). The system allows for
adaptation to the patient’s condition and activities on the fly. It ran robustly during
the duration of the experiment, i.e., more than half a year (single users interacted
for 2.5 to 3 months but started at different moments)

First, we discuss the related work in human-robot long-term interaction systems
and discuss the context of our work in section 2.2. Then, we discuss and motivate
the four design principles of our system in section 2.3. The system architecture, as
well as how the principles led to certain decisions is described in section 2.4. We
also describe the process of development and testing (i.e., decisions we made to
streamline development in such a large scale project with several project partners)
in section 2.5. We analyse the performance of our system (usage statistics and
stability) in section 2.6. Finally, we discuss and conclude upon our efforts in sections
2.8 and 2.9.
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2.2. Related Work and Context

This section first describes the state-of-the-art for robot systems in long-term in-
teraction. Then we discuss our context, the PAL (a Personal Assistant for a healthy
Lifestyle) project. We argue that state-of-the-art robot systems all have their own
specific value, but miss the required prolonged, comprehensive, and personalised
support to successfully apply a robot system in health-care & education. Finally,
we present important technical requirements for such a system.

2.2.1. Related Work

Leite et. al. [1] surveyed existing social robot systems, identifying four domains
for such systems: Health Care, Education, Work Environments and Public Spaces,
and Home. It is possible for a system to fit in multiple domains simultaneously, for
example, a robot might have a health support function as well as a health education
function. Only in more recent work, social robot systems have been investigated
in long-term studies (in EU projects like PAL, ALIZ-E, LIREC, L2TOR, UPA4SAR,
WYSIWYD and PATRICIA). This is because long-term interaction requires a degree
of robustness, versatility, and autonomy. Something that technology only more
recently is starting to provide.

Animal-like companion robots such as Pleo [7, 8], Paro [9, 10], and the AIBO
robotic dog of SONY [11] have been used for some time in health-care and show
potential with respect to treatment [12] and in maintaining adherence during pro-
longed interaction [13]. Such robots can provide comfort to their (elderly) users
[9, 10], and develop social skills of the users (autistic children, 4-12 years old)
[8]. However, such systems are limited in the richness and personalisation of the
interaction because they lack dialogue capabilities and direct educational functions.

Humanoids may have a harder time in maintaining long-term interaction with
users. The embodiment of a robot influences the expectations we have of the
robot’s capabilities [14]. For example, we might expect a humanoid robot to com-
municate using natural language. Managing those expectations is challenging when
attempting to maintain interaction with (especially child) users [15].

Several long-term studies have taken place where a social robot attempts to
educate and/or support a user’s health [3, 16, 17]. To maintain a prolonged inter-
action with a robot it becomes vital that the robot truly has added value compared
to the other technology available to the users, i.e., the robot must by functionally-
relevant [18], or provide unique experiences to the user [19]. This seems quite
challenging when the robot is applied to health-care and/or education. Still, a well
designed robotic system can help in the execution of educational and health-related
tasks [3, 20].

2.2.2. Context: a Personal Assistant for a Healthy Lifestyle

The context of our system is the PAL project. The PAL project helps children (48
children, aged 6-14, recruited via hospitals in the Netherlands and in Italy) to cope
with Type 1 Diabetes Mellitus (T1DM). The amount of children suffering from T1DM
has doubled in less than 20 years. The growing burden of chronic illnesses on
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health and health-care has led to health policy responses increasingly referring to
self-management. Becoming self-manageable requires long-term motivation for
change, which is especially difficult when the patient is a child.

There are several challenges. The child needs to learn to deal with medical
issues like the proper use of an insulin pump, or eating regularly, but also with
psychological issues like feeling different from one’s classmates. The caregivers
and parents cannot always be there to support the child and their relationship will
always be different than that of a peer.

In the PAL project, we developed a system to educate the child on- and support
the child with his/her diabetes whilst continuing to be a peer of the child (a pal). The
system consists of a social robot, its (mobile) avatar, an expandable set of (mobile)
health applications (diabetes diary, educational quizzes, sorting games, etc.) for
interaction with the children. Additionally, there is a monitoring dashboard that
allows parents to oversee the child’s progress and an authoring tool that allows
caregivers to oversee and adjust how the system is configured. For example, a
caregiver could increase the difficulty for a certain learning goal when the child
shows good progress, or select a new goal to work on altogether.

There is interaction in hospitals and camps with scientists present, and continued
long-term interaction at the children’s homes. In the hospitals and camps, the PAL
agentis a NAO robot. In the home interactions, there is an avatar impersonating the
robot on a tablet screen. During all interactions, the PAL agent makes decisions and
proposes activities to the child. It makes these proposals based on the configuration
and progress of the child’s personal learning goals.

In the PAL project we have both a robot and an avatar as possible embodiments
of the PAL agent. Robots have been shown to have a positive impact on motivation
and learning [21]. For example, the NAO robot developed by Softbank (formerly
Aldebaran) has already been used successfully in ALIZ-E, where children learn and
are supported by the (robot-based) health-care system [2, 3]. However, a pragmatic
problem with any sufficiently advanced humanoid of good quality is that it is an
expensive device. This means that it is not feasible to provide a large group of
users with their own personal robot. However to make developing content for an
interactive robot attractive, a large user base is necessary. Perhaps this is a problem
that will become less relevant in the future if humanoids become more affordable.
Still, it may be a long time before owning a robot is as common as owning a car.
Meanwhile virtual avatars are needed to support the development of human-robot
interaction. In our context, the children can have an avatar of the robot on the tablet
where the mobile health applications are installed. In the hospitals and camps, the
children can interact with the physical robot.

2.3. Principles for a Social Robot System for Long-

term Interaction

In this section, we provide four main principles for developing a personalised long-
term social robot system. Our vision is that such a system 1) should have a cloud-
based implementation to distribute heavy computations and allow real-time adap-
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tation of the system'’s functionality; 2) should be developed in @ modular way to
facilitate parallel development; 3) must contain a common knowledge-base and
terminology for the different project partners, the different parts of the system,
and the human-agent interaction; and 4) have hybrid artificial intelligence solutions
(e.g., agent-based and machine learning) to contribute to the different (sub-) parts
of the complexity. We discuss these four principles separately.

2.3.1. Principle 1: Cloud-based Robots
The first principle for a social robot system in long-term interaction is that the system
should be cloud-based.

Cloud-based computing offers several advantages over stand-alone robot sys-
tems [22]. It allows the use of (1) external libraries for machine learning approaches
to, for example, generate sentences for dialogue. It enables using (2) external com-
puters to delegate complex computational tasks, e.g., a statistical analyses of previ-
ous behaviours and their outcomes. Enables the (3) sharing of data and outcomes
of behaviours amongst different robots. So, when one robot learns that playing the
quiz is a great way of teaching children to count carbohydrates, then it can share
this knowledge with the other robots. Finally, Kehoe et. al. [22] also mention
that cloud robots enable (4) Human Computation, i.e., using crowd-sourcing for
analysing, e.g., images and error recovery. However, we have not investigated this
in our context since we strove for a more autonomous system.

In addition to the advantages of cloud-based robots as stated in [22], we would
specifically state that it facilitates (5) Personalisation and Adaptability of the system.
The different users of the robot system can adapt parameters online and thereby
steer the robot’s behaviour in desired directions. In this way, the human expert (the
health-care professional within the context of PAL) can personalise the robot to the
specific patient. Finally, (6) integration with internet services has sparked interest in
the development of social robot systems. For example recently (in 2018), AIBO was
relaunched with improved artificial intelligence. It uses cloud-based techniques to
apply deep learning for its reasoning and to develop a unique personality, depending
on the behaviour of the owner. Another example is the ALEXA chatbot, which can
be seen as a object shaped robot. ALEXA’'s main functionality is to easily provide
internet services to the users.

There are risks associated with cloud-based computing that involved data se-
curity and privacy. However, cloud-based computing as a system design principle
does not automatically exclude usage of this principle in health-care or education.
For example in the PAL project, the servers doing the computation were managed
by the hospitals or university and one can easily envision dedicated servers for
cloud-based health applications with sophisticated data security and privacy man-
agement.

2.3.2. Principle 2: Modular System

The second principle is that the system must be modular. Handling complexity
in software development is facilitated by developing (nearly) modular components
that are responsible for providing particular aspect of such a system [23]. Different
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techniques are built by software developers from different organisations at different
locations (countries). For example, one German project partner provided a dialogue
framework and another British partner an action selection framework. Setting up
the architecture in a modular way allows to connect these frameworks and facilitates
parallel development of them. The concerning functions need to be addressed as
building blocks for intelligence, much like a ‘society of mind’ [24] and in line with
recent virtual agent architectures [25].

2.3.3. Principle 3: Common Knowledge-base and Terminology

The third principle is that the system must have a common terminology and knowledge-

base that: (1) provides an unambiguous vocabulary in communication between
stakeholders; (2) supports system implementation of knowledge-based reasoning
functionality; and (3) serves as a basis for interoperability in human-agent interac-
tion.

A common way of defining a knowledge-base is by means of an ontology. An
ontology clarifies the structure of knowledge [26]. It contains explicit, formal spec-
ifications of terms in the domain and of the relations among them [27]: it is used to
represent real-world objects and concepts, and to specify properties of and relations
between those objects.

2.3.4. Principle 4: Hybrid Artificial Intelligence

Finally, the fourth principle is that the system must be comprised of several artificial
intelligence techniques that all have their own contribution to the interaction. For
example, machine learning (ML) techniques excel at learning optimal policies when
given large amounts of data. Within the context of PAL this may mean that ML can
learn what activities the robot should propose to a child in order to teach the child
something about a specific issue (like, measuring blood sugar levels). On the other
hand, agent-based techniques allow to implement expert knowledge on a human-
understandable manner. For example, when the definition of a good blood sugar
level differs per hospital, then an agent system can easily change a single belief
without having to change anything in the implementation and logic or having to
re-train.

2.4. System Implementation for a Social Robot in
Health Education & Care

Here, we provide a technical description of the architecture of the PAL system.
Figure 2.1 shows an overview of the architecture. This section will discuss the
sub-parts of this picture individually. First, we discuss the ontology with the knowl-
edge and content. Second, we discuss the database. Then, we discuss the user
interfaces. Finally, we discuss the brain and its individual elements.

2.4.1. The Ontology
This section specifically describes our work on developing a common knowledge-
base and terminology (i.e., principle 3). The ontology represents concepts related
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Figure 2.1: The high level architecture of the PAL system. On the top of the picture the user interfaces
are shown. The child interface consists of a tablet application that connects to a physical nao robot
or an avatar thereof (which is then shown on the screen of the tablet application). On this application
several mobile health applications are connected, like, an educational quiz or a timeline where the child
can keep track of his/ her blood sugar values, activities, and food regime. The health-care professional
and parents can both see the child’s progress on the learning objectives in the web-page interface. Only
the health-care professional (in PAL control) can also adjust the robot’s behaviour, i.e., steer the support
to best fit the current state of the child’s treatment. ‘The brain’ is responsible for making the actor’s
behaviour intelligent and lifelike. For every child that logs in the system, a "brain” instance is started
on the cloud. This allows the complex computations for the actor (robot or avatar) to happen on a
more powerful, external computer. All elements of the system connect to the common database and
communicate to the database by means of API functions. The database is structured by the ontology,
which is developed in cooperation with the health-care professionals.

to diabetes, actors and tasks involved in self-management, and emotions involved
in human-agent interaction. It defines the definitions and relations between these
concepts.

Developing such an ontology requires close collaboration with experts in the
field, in this case the health-care professionals. This section gives an overview of
some of the main decisions made and how they underpin the system’s workings.

Ontology Frames

The entire ontology in the PAL project is constructed by integrating separate on-
tologies, linking them by means of a top-level ontology. These separate models
function as high-level building blocks for smaller, more specific areas of interest
(frames) [28].
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e An ontology of human/machine roles and actors and locations involved in
self-management.

* a generic ontology of tasks for actors (human and/or artificial), associated
with goals and roles.

» An ontology of learning objectives, defining learning goals and tasks (activi-
ties) specific to the diabetes self-management domain, and child specific sta-
tus of these learning objectives.

 Abstract ontologies that define notions of events and processes and various
properties of time.

¢ A dialogue management ontology that contains dialogue acts and some se-
mantic frames, based on the DIT++ taxonomy of dialogue acts (ISO standard
24617-2) and FrameNet, respectively

* An episodic memory ontology as a system responsible for capturing specific
events, or episodes, in order for the PAL system to interact with a human user
in a meaningful manner over prolonged periods of time.

» An ontology for storing and reasoning over the affective process and state of
a child, that allows the PAL system to estimate the emotions experienced by
the child.

We have reused existing ontologies to cover the various frames wherever pos-
sible. Although the frames of interest mentioned above are typically generic in
nature, pre-existing models for these frames may differ (slightly) in scope and/or
intention and may thus be a partial fit to the intended scope of the frame in the
context of PAL. Whereas e.g. self-management activities of diabetes are a relevant
topic, the entire professional medical diagnosis and treatment model of diabetes is
out of scope. We have adapted some of the existing models by either extending
them with additional concepts or by taking a profile (part) from the model when-
ever there are details/concepts in the model that are irrelevant to the scope of PAL.
An example of reuse is displayed in the adoption of the well-known ontology for
task world models [29] in the frame for tasks/goals and learning objectives. These
objectives steer the behaviour of the robot and the treatment of the child.

PAL Objectives Model (POM) One important part of the ontology is the frame
of learning objectives that covers most relevant aspects that the children (aged
7-14) with T1IDM encounter in their daily lives and must learn to become self-
manageable. These objectives steer the behaviour of the robot and the treatment
of the child. Prior to (and during) the usage of the PAL system, the health-care
professional, the parents, and the child together choose a subset of relevant learn-
ing objectives, based on the child’s individual needs, interests and knowledge. The
learning objectives consist of achievements, goals and tasks. Achievements de-
fine a set of goals that are required to enable the user to carry out an real world
challenge represented by the achievement. An achievement does not define new
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Figure 2.2: Child playing the Break & Sort game with the NAO robot using the integrated PAL system.

knowledge or skills but groups together goals with a similar level and related to a
specific challenge to make goal setting easier. Vice versa; goals are specified that
describe the end state of knowledge, skills or attitudes that a child should have to
accomplish an achievement. Learning goals are hierarchically structured by diffi-
culty level (i.e., novice to master) and level of complexity based on the Taxonomy
of Educational Objectives of Bloom et. al. [30]. An example of an achievement
within our context is: 'I can go to a sleepover’ which contains goals as: ‘I know
when to ask for help’, 'I know what to take with me to a sleepover’, and 'I know
that I should take extra insulin when I eat extra carbohydrates’. To attain these
goals, children have to do activities (and thereby complete tasks) within the my-
PAL application. The robot has several tasks/activities in its database that educate
the child on these subjects. For example, the child might do a quiz together with
the social robot, play a memory game, or the robot may simply explain something
about the subject (a tip of the day).

Learning objectives can be attuned to a child’s developmental stage and the
child’s personal and environmental context. Learning objectives are labelled with
a knowledge level, difficulty level and prerequisite knowledge. Additionally they
can be linked to a device (pen, pump, sensor) or a hospital. In this way, the
ontology facilitates intelligent personalisation of interaction and learning process
which enhances motivation and learning gain [31].

2.4.2. The Database

The central data hub of the PAL system is based on an extended Resource De-
scription Framework (RDF) storage component and reasoner (HFC) [32]. Its spe-
cial features allow putting the terminological knowledge (the ontology of diabetes
knowledge, the definition of user and agent model, and static knowledge for lan-
guage and dialogue processing) as well as the dynamic knowledge that is produced
and consumed in the running instances of the myPAL app into one data reposi-
tory, thereby fostering principle 3 the need for a common knowledge-base. The
database plays a pivot role for principle 1 cloud computing, because it helps the dif-
ferent computers to use the same data, have customised reasoning rules together
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with a streaming reasoning approach, and allows to infer new data in real-time.

The database allows connecting different sub-ontologies (frames) by using equiv-
alence statements. This fosters principle 2 (modularity) in the knowledge building
process and facilitates re-usability of the work. Another advantage of structured
databases, like RDF-based or graph databases, is the flexibility when it comes to
adding or changing data structures. In general, this is much easier to achieve than
for relational databases (RDBs), especially because the knowledge representation,
i.e., the specification of the data, and the (dynamic) data itself are in the same
format. This allows quite simple checking consistency by custom reasoning rules.

The PAL system is based on a very particular implementation for RDF storage
and reasoning that allows using n-tuples instead of the usual triples. This makes
it possible to directly attach time and confidence information to every data chunk
in a more efficient way than with currently available RDF storage solutions [33—
35]. As a consequence, the database can contain a flow of events and data that is
susceptible to temporal and probabilistic reasoning.

One price to pay for this increased flexibility can be an increased resource foot-
print, especially when it comes to memory consumption. Every user that starts the
tablet application starts a reactive system that frequently reads from and writes to
the database. This, in turn, unconditionally triggered computations that need to be
synchronised between the several instances. With many users simultaneously us-
ing the system, this can put a large burden on the server’s CPU. We found out that
many computations were unnecessarily triggered since their computation did not
depend on the changed data. Therefore, HFC was extended with stream reasoning
functionality that reduces computations using highly efficient filters.

Technical Description

The database itself is an enhanced version of the aforementioned HFC. HFC is an
RDF in-memory storage with a forward chaining reasoning engine. The reasoner
comes with predefined sets of reasoning rules for different OWL dialect, but it also
permits to add custom reasoning rules for specific purposes, e.g., temporal or prob-
abilistic reasoning. For the PAL project, a server / client communication layer, an
object synchronisation layer, and a persistence layer were added.

The communication layer is based on the event-based middleware TECS. Event-
based middleware developed at DFKI' which allows to easily extend the server API
with special functionality, e.g., executing complicated or cascaded queries directly
in the server and providing the result as a return value to improve performance.
This is used by the modules in the PAL system and provides a clean separation
between database functionality and the module specific requirements.

In addition, this layer is used to enforce access control rules, which are based
on a user hierarchy specified in the ontology, and secret security tokens that are
internally exchanged between the web proxy and the database when a user logs
in. These tokens are also used to encrypt the data stream between the app and
the server functionality, allowing for safe data exchange.

Thtet p://www.dfki.de
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The object synchronisation layer implements an efficient and correct exchange
of data between the local user interfaces (the myPAL app and the PAL Control &
Inform web application) and the central database on the cloud. Here, connected
parts of the RDF storage are treated like data objects, e.g., the data for a child
consists of a unique reference (a uniform resource identifier, i.e.,, URI) and the
properties (and values) that are connected to that reference. When some (possibly
embedded) value of such a data object changes, the app needs to know at least
the relation down to the object reference to integrate this change into its internal
program state.

To achieve that, the classes in the ontology that can be synchronised in this way
are marked in the ontology, and local graph search in the ontology guarantees to
deliver complete data chunks that the app can process. This process works in both
directions, in the sense that the database gets complete chunks, but only stores
those data bits that have actually changed.

Finally, the persistence layer guarantees that all changes to the database are
efficiently reflected in background storage, such that the database can be backed
up safely, and be restored to the current state in case of server shutdown or crash.

2.4.3. PAL Control & Inform

To be able to author the behaviour of the system, personalise the system towards
the child and monitor how the child uses the system, we have developed a web-
application with two dashboard modules and associated interfaces accessible de-
pending on user role.

The monitoring dashboard, pallnform, is the software module and associated
interface that enables care takers to get an insight into how their children use
the system, their progress, and what nutritional and medical values they fill in. It
provides a timeline of the most important events, based on system activity and the
data the child enters, in an aggregated manner. The monitor displays glycemic,
insulin, nutritional, activity and emotion-related data for a child, as entered by the
child via the timeline in the myPAL app. Further, it displays goal attainment data in
relation to time. The monitor is available for both health-care professionals (HCP)
and the parent(s). To ensure data is shared with parents in a way that respects the
child’s privacy, the child and parent can set agreements on what information will or
will not be available. Agreement options are used to balance between the conflicting
values of privacy and medical safety. Requirements were developed together with
the hospitals in the PAL project.

The authoring dashboard, palControl, is a tool to enable health-care profession-
als to set learning objectives (i.e., achievements, goals and tasks) for children during
or in between meetings. It further enables the HCP to enter child data including
personal data and preferences such as sports and hobbies and whether the child
uses a pen or a pump for insulin intake. Two issues were leading in its design: 1)
how to formalise the learning objectives based on the medical protocols and infor-
mal expertise of HCPs and 2) how to design the interface (and mechanisms behind)
to facilitate easy personal goal selection and progress monitoring during the intake
meeting and further guidance of the education process ([31] and covered in the



2.4. System Implementation for a Social Robot in
Health Education & Care 25

Play the 1 player memory
game and learn how to

u
least to complete level 2 to
achieve this task!

Answer the questions correctly.
‘about your biood glucose level
during exercises (e.g. during
cycling).

T e 1 want you to leam how to deal
e ol vilh eaing (oxa) snacks ke
's do the

first activity.
Play the 1 player memory game and
lll.gl how to. EYBIIII‘ carbs. You need
at least to complete level 2 to
achiove this task!

CATEGORY

I hope that you learn when you
should ask for help re?ardlng 'your
diabetes. Therefore, | am asking
you this question.

N Drag the food inside the rigth :}
basket. If it's the wrong one,
you loose a life

You only have a few
seconds to do this. When
time is up, you'll lose a life
-19
| | Sportsuaing  Deal wihteasing  Tak at school

FNONL N

(e) Sorting Game (f) Goal Progress Screen

Figure 2.3: Six screen-shots of the myPAL application used by the children.

ontology section 2.4.1, 2.4.1).

Both modules allow real-time changes to specified learning objectives (content
& display) and personalised learning goal setting through the ontology, with the
reasoning system. The modules thus most strongly link to principle 1 using cloud
techniques and to principle 3 using a common knowledge-base, i.e., the modules
facilitate real-time adaptation of the system’s configuration and thereby its reason-
ing. It allows a HCP to adapt to system’s functioning to the different phases of the
treatment plan. The health-care professional can review the progress and tweak
the systems behaviour accordingly. In line with the learning objectives discussed
in section 2.4.1, this can simply mean that the health-care professional updates the
set of learning objectives the child and robot should currently work on.
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Figure 2.4: Communication between the modules in the brain and with the child interface. All messages
go through a common messaging board called the nexus. Modules individually decide to subscribe
to types of messages and can themselves send messages of a particular type. Modules in this way
individually implement what to do when a particular message is sent.

2.4.4. Activity Centre

The activity centre is an application comprised of several activities that the Con-
versational Agent (CA) can perform with the user (shown on the top-left part of
figure 2.1). In our context this is a tablet application (myPAL) connected to a phys-
ical (nao) robot or an avatar thereof. myPAL contains health-related activities that
support the child’s treatment and that educate the child on diabetes.

MyPAL contains several games, i.e., educational quizzes, sorting games, and
memory games. The activities in the application have been set-up in a modular way
(principle 2). Allowing to add new games by implementing the required interfaces.
In addition to the educational games, the PAL actor can provide a ‘Tip of the day’,
where it provides the child with some information concerning diabetes. myPAL also
provides a list of videos about several diabetes-related topics and a list of real-
world tasks that the child must perform his-/ herself. Finally, myPAL contains a
timeline where the child can keep track of his/her blood sugar values, glycemic
corrections, activities (sport and other), and food regime. All these activities are
related to the child’s current set of learning objectives. myPAL shows the child
his/her progress on the learning objectives and provides ‘task suggestions’, i.e.,
proposes particular educational activities to work on the learning objectives in a
targeted manner. Figure 2.3 shows some screen-shots of the different components
of myPAL.

2.4.5. Communication Between Modules

The activity centre, conversational agent, and the separate modules in the hybrid
brain all connect to a global communication platform, the 'nexus’ (see figure 2.4).



2.4. System Implementation for a Social Robot in
Health Education & Care 27

These modules can all subscribe to types of messages and send those message
types. In this way different modules can individually decide what information is
relevant for them and how they should respond to new information.

For example, the child may click the quiz which is then send around on the
nexus. The action selection module must respond to this message by choosing
different quiz topics, the dialogue manager wants to know so that a dialogue act
about starting a quiz can be initiated. The behaviour manager, on the other hand,
might not need to know this at all. It will generate a movement only after the
dialogue manager sends a high level ‘speech-and-movement’ message.

This greatly fosters modularity (principle 2) of the system. A nhew module canim-
plement its own workings independently of the rest of the system. It can subscribe
to messages that carry information relevant to the module. Of course, integration
of the module still requires coordination amongst developers. The other modules
should subscribe to new messages sent by the new module and should implement
protocols on how to use this data for the human-agent interaction.

Modules can be independently maintained and improved as long as the interface
contract is unchanged. The modularity also improves flexibility and reusability when
requirements change. Even when the functionality of some module is extended,
only modules that will profit from these enhancements have to be changed.

2.4.6. Multimodal Behaviour Manager

The robot-movement manager converts gesture specifications (‘commands send
over the nexus’) into values about joints and times to be send to the robot or its
avatar (i.e., it can communicate gesture & posture commands to both the robot
and its avatar). The current framework meets two important challenges for cross-
platform social human-agent interactions. First, the behaviours of the virtual and
physical NAO have completely the same foundation and expression mechanisms,
so that they can be perceived as really similar. Second, modulation of these ges-
tures is possible to adapt affective (emotion, style) expressions conveyed in these
behaviours.

The task of the robot-movement manager can be divided into two parts: 1, ex-
ecuting the multimodal utterances on the (virtual) NAO; and 2, making the (virtual)
NAO appear lively.

Executing a multimodal utterance (1) is done when another module in the brain
sends a specific message type over the nexus. Such a utterance consists of the
name of the gestures to execute and the text to be spoken as well as an (optional)
emotional (mood) modulation. From this content it constructs the necessary values
to move the joints of the (virtual) NAO which results are then published to the
messaging board. From the gesture name the robot-movement manager calculates
the position of the joints of the (virtual) NAO and the time available for the joints
to reach that position. When the execution of multimodal utterance is finished, the
robot-movement manager sends this information the other modules.

Making the (virtual) NAO look lively (2) makes the interaction more engaging
for the users. It is done by implementing continuous autonomous moves. These
autonomous moves need to be carefully combined with the multimodal utterances
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Figure 2.5: Graphical representation of relations between the robot-movement manager and the em-
bodiments.

sent by other modules of the PAL system. Furthermore, style adaptation in au-
tonomous move is challenging because these motions are not pre-designed and
thus require real-time modulation which is less controllable and predictable.

The physical NAO The implementation for the real NAO is a wrapper which con-
verts the data received (from the robot-movement manager) into the commands
which can be send to the NAO’s own execution system. The majority of the mes-
sages originate from the autonomous move system. The main issue to solve is
handling all messages in parallel without blocking the processes.

The virtual NAO The implementation for the virtual NAO is embedded in the
Unity environment in which the tablet application (the activity centre) is developed
and the task is to execute the moving of the avatar according to the values received.
Since there was no implementation available it needed to be developed.

A 3D Model was developed composed of virtual objects connected through a
series of junctions, which are meant to take the place of real NAQ’s gears, as
displayed in Figure 2.6. Next, an algorithm was developed to translate the rotations
of the real NAQ’s gears in rotations of the NAO avatar’s junctions around their
three axis’s (x, y, z), so that we can obtain the same movements using the same
commands from the robot-movement manager.

Making the avatar’s leg movement realistic and correct in regards to the message
send, was the most difficult part of the implementation here. We developed a hybrid
solution which allows calculating only a portion of the parameters required to apply
a simulated gravity to some parts of the 3D model.

The implementation discussed in this section allows to have all complex com-
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Figure 2.6: The real NAO on the left with the joint indicated and the avatar on the right with the junctions
indicated which were implemented.

putations concerning what behaviours the robot should do on external computers
(principle 1, using cloud techniques) while the embodiment specific computations
(transferring joints and times to actual movement) are done on the device itself.
In the PAL project, the NAO robot was the target platform. However, the system
could easily be applied to different types of robots (again linking to the principle of
modularity 2). When a new robot platform would be introduced then high-level ges-
tures like ‘wave arm’ are still sent in the same way over the nexus. The behaviour
manager and robot connectors, however, would require extension to support the
new embodiment.

Stylised Behaviours Humans (often unconsciously) use social signals to inform
others about their affective stance or attitude; based on observations we evalu-
ate someone as, among other things, warm or cold, competent or incompetent,
friendly or hostile, and dominant or submissive (e.g., [36, 37]). For artificial agents
(both virtual and robotic), to engage in meaningful interactions with humans, the
importance of social intelligence is widely acknowledged [38, 39]. On top of that,
communication style is important in educational settings: teachers should use ap-
propriate styles when interacting with students and this is not different for robots
that teach [40]. Although previous work is available on the expression of affect
by robots and agents [41—44]) and rapport building between agents and humans
[45], there was no clear way of modulating expressive style of robots in an implicit
way (with notable exceptions being some work on virtual agents [46, 47]). With
implicit we mean that the base behaviours and scenario of the robot are the same,
but the style of the robot differs. In several works, we have shown that it is possi-
ble to manipulate style in a subtle manner. We were able to manipulate children’s
perception of warmth and competence of a robot [40], the perception of warmth
[48], and the perception of dominance [49]. In general we found that different
gestures as well as parameter-based modulation enabled us to express style in a
recognisable manner.

Based on the theories from educational sciences, we defined three interaction
styles for the PAL Actor: friendly, direct, and neutral. These styles are defined
by the factors warmth, competence, and dominance, for which we designed and
evaluated non-verbal behavioural patterns [40, 49, 50]. The factors define the
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Figure 2.7: Definitions of Yaw, Roll, and Pitch as used here to define robot joint manipulation
Table 2.1: NAO joints and adjustment values for the stand posture per style

Original Neutral Friendly Direct

HeadYaw -0.1 0.0 changing changing
HeadPitch -9.6 0.0 -10 -20
LShoulderPitch 80 80 60 70
LShoulderRoll  10.4 8.0 20 35

styles as follows: friendly, high warmth, low competence and low dominance; di-
rect, low warmth, high competence and high dominance; neutral, low warmth, low
competence and low dominance. Verifying how well these factors implement the
style (as friendly, direct, and neutral) is future work. Definitions of each style, and
the mapping of a specific style to each activity, have been stored in the common
knowledge-base.

We defined a minimal set of NAO joint adjustments to express each style.
Some parameters are directly mapped to a specific joint (e.g., head tilt vertical
with HeadPitch). Other parameters require adjustment of multiple joints (e.g.,
gesture openness requires adjustment of ElbowYaw and ElbowRol1 relative to
SholderRoll). See figure 2.7 for the meaning of the words yaw, roll and pitch.
These adjustment were applied to the original ‘stand’ posture as designed by Soft-
Bank (Alderbaran) to create a start and end pose for each style (see Figure 2.8),
and these joint adjustment values (see Table 2.1) were used to calculate the rela-
tive joint adjustment for each key frame of each gesture in each style. Additionally,
manual adjustments have been applied to distinctive motions for specific gestures in
each style to avoid exceeding joint limits and/or creating jerky, unnatural motions.

During child-PAL Actor interactions the PAL system selects the appropriate in-
teraction style based on the child model and the ongoing activity. Whenever the
Behaviour Manager receives a nexus behaviour message (see Section 2.4.6) it uses
a ‘'mood’ value to determine the selected style, and selects behaviours accordingly.

2.4.7. ‘The Hybrid Brain’

The brain is responsible for the decision making and managing the content of the
behaviour of the PAL actor (i.e., the NAO robot or avatar). The brain runs on
the cloud (principle 1) which allows the use of more powerful computers for com-
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Figure 2.8: Example of a base-pose for the styles implemented in PALY3 resp. Direct, Friendly, and
Neutral.

puting the context dependent optimal behavioural strategies. The brain uses the
communication mechanism described in section 2.4.5 to support easily connecting
additional (sub-)modules (principle 2). Finally, the brain consists of several artifi-
cial intelligence techniques (principle 4, hybrid). The action selection module uses
mainly machine learning optimisation of protocols, while the explainable AI module
uses BDI structures and ontology querying for its implementation, and the dialogue
management uses a mixture of rule-based processing and statistical selection for
the optimal strategy. In this section, we describe the different modules that support
the human-agent interaction.

Action Selection and User Models

The PAL system uses an action selection module in conjunction with user models
in order to personalise the behaviour of the system. Personalising the application
to the particularities of each user is essential for two reasons: 1) it increases the
engagement of the user to the PAL system, and 2) it allows the user to reach more
effectively its personal goal(s) by adapting to his/her preferences.

The action selection is based on a hierarchical action selection architecture,
HAMMER [51] [52], which uses multiple models to generate and evaluate multiple
action possibilities. It takes place at two different levels in the PAL system. The
first level is when multiple options are available during a dialogue. For instance,
when the avatar can suggest to start one of the three games of the application,
the action selection module will select the one that the user models predict as most
beneficial for the user. An action is deemed beneficial if it increases the knowledge
level of the user or if it increases its (predicted) happiness (typically, winning in a
game increases happiness). The second level of decision making is within the quiz
game in order to select the topic of the questions that are asked. Here again, a user
model is used to predict the knowledge level of the users on the different topics
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covered by the PAL system. This information is to select of topics that are not too
difficult nor too easy, but just with the right level of difficulty. Such a topic selection
approach allows the user to remain in his “zone of proximal development”, which is
known to provide optimal educational path[53] [54].

One of the main challenges in the action selection and user modelling is to pro-
duce accurate predictions from few data. Typically, a large amount of interactions
is required to make an accurate estimation of the difficulty level of the child on
one particular topic. This comes from the fact that each question returns only a
limited amount of information: it only informs the system if the child managed to
respond correctly to the question or not. This binary information is not enough to
infer the actual knowledge level on a topic and the system needs to accumulate
several dozens of responses in order to make an accurate assessment that is not
biased by non-knowledge related factors (e.g., random guess, mistakes caused by
distraction or ambiguous formulation of questions). For instance, 10 data points
only provide a rough approximation of the user level, while 100 data points provide
a more accurate estimation. This difficulty is amplified by the number of topics on
which we would like an estimate of the knowledge level. For instance, if twenty
questions are used to make an (potentially inaccurate) estimate on one topic, then
more than 580 questions are required to form a global estimate of the user’s knowl-
edge level on each of the individual topics. The level estimations are made per topic
to allow a child to excel in one topic, while progressing more slowly, or not at all,
in others. This large amount of questions most of the time represents a limitation
for intelligent tutoring systems, as they may be unable to provide a personalised
educational path as long as the estimation of the knowledge level of the user is
not completed. Designing a model that can account for sparse data and, therefore,
provide accurate estimate with only a little amount of data is of crucial importance.
In the PAL system this is partly overcome by the manual estimation of the child’s
entry level by the HCP via goal setting as described in section 2.4.3.

Technical Description

In the PAL system, we have introduced a novel user model that leverages data
from previous users of the application in order to bootstrap the predictions made
by the user model. This user model is also able to track, in real-time, the evolution
of the children’s difficulty levels. Tracking this is important to continuously provide
adequate level of difficulty for the users.

The realisation of this model is centred around three main features: 1) the model
relies on Gaussian Processes to track online the evolution of the student’s knowl-
edge level over time, 2) it uses collaborative filtering to rapidly provide long-term
predictions by leveraging the information from previous users, and 3) it automat-
ically generates abstract representations of knowledge components via automatic
relevance determination of covariance matrices. The model has been evaluated on
three datasets, including data from real users and the results demonstrate that the
model converges to accurate predictions in average 4 times faster than the com-
pared methods. A detailed evaluation of the model’s technical characteristics can
be found in [55].
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Dialogue Management

The PAL actor needs verbal and non-verbal communication skills to support the child
in his/her learning process and to become a real companion. Dialogue is present
in almost all activities of the app, guiding the child, or giving feedback to current
and past performance in games, or to her/his treatment, in which case the data is
provided by entries in the timeline.

The dialogue manager (DM) is responsible for multimodal generation (language
and gestures) and, currently to a lesser part, multimodal interpretation. In section
2.4.6, we discussed how a multimodal utterance should be processed causing the
PAL actor (robot or avatar) to actually output the utterance. During idle phases,
the robot-movement manager makes the actor to appear lively by constantly ex-
ecuting ‘autonomous moves’. The DM, on the other hand, chooses the particular
(deliberate) movements, like gesturing to something on the screen or waving to
the child.

To be an interesting partner for conversation over a longer period of time, the
communication strategy must be adaptive to the user. The DM takes a long-term
perspective (using a user model) and takes short-term aspects into account, such
as the current user mood or recent important events, as well as the parameters
from the stylised behaviour model described earlier to modulate the interactions.
This already points to the importance of a world model and a memory for the agent,
which enables it to reason about past events and interactions, and subsequently
uses its knowledge in the conversation. This, together with a high variability in
dialogue strategies and a rich repertoire of verbal and non-verbal expressions to
choose from, helps to make the artificial agent more appealing.

Dealing with children requires high reliability concerning the content and the way
things are presented. This makes it difficult to use pure machine-learning based
methods, because the results will never be fully predictable, not to mention the
problem of collecting enough data for dialogue strategies in the first place. Together
with the need for very flexible dialogue that was mentioned earlier, we decided to go
for a rule-based approach with statistical selection, provided by the Action Selection
unit described in section 2.4.7. The long-term dialogue memory is implemented by
a specialised RDF/OWL knowledge-base (described in section 2.4.2), enabling us
to use world knowledge and temporal reasoning in the dialogue management.

Rule-based dialogue systems are in between learning-based approaches and
hierarchical state machines concerning flexibility and implementation complexity.
For the PAL system, which already needs fairly complicated dialogue management,
state machines would be unmanageable in size. Machine learning approaches on
the other hand lack the predictability that is essential for an application in the health
sector. Given this set of requirements, we decided to develop a rule-based dialogue
management framework which is tightly connected to the specialised reasoning
engine and the statistical action selection.

A central achievement of the PAL project concerning dialogue processing is the
development of the dialogue framework VOnDA [56], which facilitates creating re-
active dialogue management engines. In the case of PAL, the DM follows the In-
formation State/Update tradition [57]. The framework is unique in that it uses a
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specialised RDF reasoner which allows to attach temporal information to the RDF
triples as implementation for the information state. This has the advantage that
a long-term memory is directly build into the architecture of the dialogue system.
Figure 2.9 shows a schematic view of the module.
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Figure 2.9: A schematic VOnDA agent

If information changes, the previous state is still kept inside the database, which
allows to additionally use information from the past for dialogue strategies. Further-
more, the RDF store also provides a flexible specification layer for domain knowl-
edge, including knowledge about natural language concepts, such as dialogue acts
and semantic frames, but also for domain-specific data structures that are used in
the rule base. Since RDF/OWL is a well-established standard, there is plenty of tool
support to create the ontologies which serve as basis for the dialogue management.
With VOnDA , we have created a framework that tackles the following design goals:

 Flexible and uniform specification of dialogue semantics, knowledge and data
structures

e Scalable, efficient, and easily accessible storage of interaction history and
other data, resulting in a large information state

¢ Readable and compact rule specifications, facilitating access to the underlying
RDF database, with the full power of a programming language

e Transparent access to underlying programming code for simple integration
with the host system

The dialogue management of PAL itself is implemented mostly as VONnDA rules,
with supporting Java code to hook it up to the communication hub (the nexus), or
when specialised functionality is needed, e.g., for complex data base queries and
computations.
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Figure 2.10: A schematic VOnDA agent

Technical Description

VONDA consists of a compiler that turns rule descriptions into programming code,
using data structure specifications from an ontology, and a run-time library that
is used in the agent implementation and executes the rule code produced by the
compiler. The compiler uses the class and property definitions in the ontology for
type inference and type checking.

The rule language itself strongly resembles by Java/C++ if/then/else statements
and expressions. Access to the database is modelled after field access, where RDF
URIs are treated like references to objects, and properties like fields. Figure 2.11
shows a small example with a tiny part of the ontology and some code using objects
from this class hierarchy.

user = new Animate; Agent

usir.name - Jeen name: xsd:string

set _age: _

if (user.age <= 0) { gn:emated.. .
user.age = 15; g .-xs :in

} Inanimate

Figure 2.11: Ontology and VOnDA code

During run-time, the set of reactive rules is executed whenever there is a change
in the information state. These changes are caused by incoming sensor or appli-
cation data, intents from the speech recognition, or expired timers. The incoming
data is put into the database, which hereupon triggers a notification event. For ef-
ficiency, the rules work on cached database content. Any change produced by rule
applications is put back into the database, re-triggering the rules until a fixpoint is
reached. The event-based nature of the system allows to create a very responsive
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system that is able to react to external stimuli in real-time.

Apart from the main dialogues, there are interaction modules that are tightly
connected to the dialogue manager and cover particular parts of the dialogue func-
tionality, namely targeted feedback to timeline entries, an episodic memory reason-
ing about past events, and a module for off-activity talk, which uses self-disclosure
to engage the child in a conversation whose goal is not to increase his or her knowl-
edge, but to increase the bond to the virtual agent. This again shows the modularity
(principle 2) of our implementation. The modules subscribe to and send messages
over the nexus. They can be activated or deactivated without impairing the rest of
the system’s functionality. In a scientific project this has the additional benefit of
allowing additional experiments and pilots to test the effects of specific parts of the
system.

Targeted Feedback

The targeted feedback module is active during the timeline activity of the child
interface. It first determines how close the child is following the routine of entering
data into the timeline, and subsequently praises or encourages the child, depending
on the frequency of the entries, and the data itself. If alarmingly high or low values
are reported, the child is advised to talk to her/his parents to prevent a critical
situation.

Episodic Memory

In contrast to the targeted feedback, the episodic memory module aggregates data
from the past to detect events like the recent completion of a task or an achieve-
ment, exceptionally disciplined behaviour, and the like. These events are then sub-
ject to remarks and questions during the welcome phase directly after log-in. In
this way, the agent encourages positive behaviour and shows that it takes interest
in the child’s daily activities.

Off-Activity Talk / Self-Disclosure

The goal of the off-activity talk (or social talk) module is to improve the virtual
agent’s social connection to the user, and make it more likeable. As a consequence,
it should increase the user’s inclination to follow the agent’s advice and guidance.
The current module is in large parts based on the study in [58] enhanced with
additional introductory dialogue moves and more elaborate prompts. Based on an
estimate of ‘intimacy’ between the user and the agent, which is based on general
usage parameters, like the frequency of proper reactions to prompts by the agent,
the agent reveals personal secrets of its habits or former encounters with other
robots or persons.

Explainable Artificial Intelligence
EXplainable Artificial Intelligence (XAI) is the capability of a system to explain/ justify
its behaviour to its users. The General Data Protection Regulation (GDPR) law states
that users have the right to explanations [59]. It has been a significant topic during
the development of the PAL system.
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Figure 2.12: Two screen-shots of explanations given in the PAL system. Screen-shot (a) shows an
explanation for a task suggestion, screen-shot (b) shows the quiz.

XAl is of particular importance in applications where the system makes conse-
quential decisions, like, in health-care [60, 61] and is of particular importance in
long-term interaction since lack of trust in a behaviour change systems causes the
users to not rely on the given advice [62]. Lack of trust can cause users to misuse
or even abandon the system altogether [1, 63]. XAI has been shown to increase a
user’s trust in and understanding of the system’s behaviour [60, 64—67].

Within the context of the PAL system, XAI is the capability of the actor to provide
utterances that serve to make the system'’s behaviour intelligible. We implemented
XAI for three different activities, quiz questions, tip of the day, and task proposals.
These activities have already been discussed in the child interface section 2.4.4. The
XAI module monitors the system state by monitoring the messaging board. The
module can provide an explanation during one of these activities by monitoring what
goal the action selection is currently pursuing. It generates the explanation partly by
using annotations and partly by generating the sentences. A goal has a description
annotated to it. For example, ‘ask for help regarding your diabetes’. Then there is
a set of preceding sentences and following sentences that can be put in front and
behind this description. The XAI module works together with the dialogue manager
to produce the complete explanations and integrate them into the dialogue. For
example, ‘I hope that you learn when you should ask for help concerning your
diabetes. Therefore, I am asking you this (quiz) question’. See figure 2.12 for two
examples of such explanations given during activities. Explanations could be given
on the initiative of the PAL agent or of the child’s own accord. In the later case,
the child could request an explanation by pressing a question mark visible on the
screen (see also figure 2.12 b showing the question mark during the quiz).

2.5. Development and Test procedures

Creating an integrated system requires far more solid software engineering ap-
proaches than commonly applied in scientific projects, i.e., it is required to program
the modules ‘defensively’ so that they can continue (to their best of capabilities)
when other modules break. Furthermore, it requires rigorous development cycles
with plenty of time to test all the new features in systematic and thorough ways
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using, e.g., unit testing [68], integration testing [69], system testing [70] and per-
formance testing [71]. Research projects need to be aware of this and have the
necessary resources and knowledge available. For example, have commercial com-
panies involved in the project.

We used git for code sharing and version management. The master branch
was always running on the main server. For every feature, all modules had a branch
with the features name to develop it. Usually, multiple features were simultane-
ously implemented. Each on had a lead developer. Additionally, a global lead
developer oversaw the larger process. When a feature was implemented then the
separate modules had unit tests as a first check of code validity and the feature’s
lead developer tested the system manually for face validity. Next, the feature was
merged to a common developer branch. The goal of this was to merge in parallel
developed features before they were merged to the master branch. Next, an inde-
pendent developer tested the system, including rerunning the unit tests. Finally, a
test-module was run that automatically acted as a user of the system. The goal of
that test-module was to test all aspects of the system and see whether things run
as they were supposed to. Then, finally, the master branch was updated. There the
automatic tests were run again. Additionally, two more types of tests were done
in this stage before the system was deployed. First, a stress test was done where
10 to >20 user accounts (controlled by the developers) logged into the system
simultaneously and actively interacted with the conversational agent and did the
activities. This was needed to find and repair potential synchronisation errors and
to test whether our non commercial servers were able to handle the complexity.
After the stress test non-developer researches had to use and test the system. If
all those tests were successful, then a new short-term experiment or pilot could be
done. These served also as a final test where our target (child) users interacted with
the system under supervision of researchers. This development procedure, over a
course of three years, resulted in the system presented in this paper and used by
children for a period of 2.5 to 3 months. The socio-cognitive engineering activities
that focused on continuous stakeholder involvement, domain analyses, integration
of human factors theories and claims analyses to validate the design rationale (in
formative and summative evaluations) are described in a separate paper [72].

2.6. Analyses of Performance

In total there were 48 (25 Dutch and 23 Italian) children with Type 1 Diabetes
Mellitus (T1DM) aged 6-14 that used the final system. The children were recruited
via two hospitals in the Netherlands and one in Italy. There were no consequences
to dropping out intermediately. 47 children had an average of 19 log-ins (STD =
12.9, minimum = 1, maximum = 55). One child was excluded from analyses due
to a glitch in the data caused by a system error. The Randomized Controlled Test
that compared the knowledge, performance and health conditions of these children
with children who had “casual care” will appear in a separate paper [73]).

There were a total of 756.667 lines of code with over 7500 commits. More than
95 branches. The system was up and running more than 95% of the time. One
of the stress tests had more than 20 user accounts (controlled by the developers)



2.7. Future Extensions 39

simultaneously log-in and actively use the system running on one small-to-mid size
virtual machine. Neither the stress test nor the test with real users showed any
signs of performance issues. Nevertheless, the system is still a research prototype
and would have to be hardened to adhere to commercial standards and possibly
host thousands of users simultaneously. This was beyond the scope of the current
project and will require further development and testing.

2.7. Future Extensions

Several extensions are possible in this system. It would be beyond the scope of
this paper to provide an exhaustive list. However, we briefly discuss a few modules
that were developed during the project, but did not yet reach the status of full
integration in the system.

GPS tracking

Behavioural adaption to individual differences (context awareness) is compulsory
for achieving good outcomes in health education and care through social robotics.
One aspect is modelling social context (e.g., home vs. hospital) through collecting
and processing global positioning system (GPS) data. We have successfully im-
plemented a module that tracks a user’s location. The pending future work is to
integrate this with dialogue management and action selection so that conversations
and activities are shaped to this context.

GPS data was collected with a frequency of 1 sample per minute. To deal with
potential inaccurate GPS estimations, we applied an averaging filter over time, us-
ing a window size of about 10 minutes. Prior to real-time interactions, we saved
pre-defined fixed locations (e.g., hospital locations) in the database. During the in-
teractions, once a location was estimated, we first compared the estimated location
with the saved locations in the HFC database. To do so, we computed the distance
between two points on the earth, where we set the earth radius to 6371.0 in km.
If the distance between the estimated location and each of the saved locations was
greater than a threshold (3 km, in our case), then we saved the estimated location
in the database as a new location. Otherwise, the estimated location was not saved
in the database. This procedure was repeated for each estimated location until the
user logged off.

Eye-gaze tracking
A second form of context awareness was implemented through eye-gaze tracking.
We attempted to infer aspects of a user’s mental state using eye gaze, which has
been shown to be useful in training contexts [74]. Interaction logs and verbal
protocols are generally not adequate for genuine cognitive and social profiling [75].
However, nonverbal cues such as eye gaze have been frequently studied for inferring
user internal states in this context, as eye movements directly reflect what is at the
centre of an individual’s visual attention, and are linked to cognitive processes in
the mind [76].

To address this, we pushed the limits of the state-of-the-art, and implemented
a Convolutional Neural Network based method for accurate gaze tracking, which
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runs on a GPU-enabled tablet, and takes users’ face images captured via the front
facing camera as an input and predicts users’ gaze fixations on the tablet screen in
real-time (approximately 10 fps) [77]. We further developed a classification scheme
to predict users’ mental states, i.e., knowledgeability, from the estimated gaze fixa-
tions while they were playing an educational game with the robot/avatar [77]. Our
ultimate goal was to benefit from mental state predictions to better personalise quiz
guestions and make the avatar exhibit user-aware behaviours. For example, if the
avatar senses that a particular user is having difficulties answering the question,
the avatar can offer a hint to support the user.

The eye-gaze tracking was not fully evaluated in the version of the PAL system
used in the current round of hospital evaluations because it required real-time on-
device processing (to preserve the privacy of the user) and the mobile devices used
did not have sufficient computational power available for this.

Automatic Speech Recognition

We considered Automatic Speech Recognition (ASR) to enhance interaction with our
users. ASR could be a way to add more convenient conversational capabilities to
the system, or add a dictation mode to the timeline, and possibly improve real-time
emotion estimation for an even more empathic companion ([78]). At that time,
however, solutions based on openly available resources like software tools and pre-
trained acoustic models turned out not to achieve the necessary recognition quality
for such a project. On the other hand, cloud-based solutions posed a severe data
and personality protection issue since speech data are classified as biometric data
and therefore on the highest protection level of the European Union Data Protection
Guidelines. Therefore, we used ASR only for prototypical demonstration, as an
outlook towards future extensions. Still, with the current advent of large coverage
embedded solutions, and cloud ASR that explicitely guarantees adherence to the EU
guidelines, integrating ASR would be a beneficial future extension for these types
of systems.

2.8. Lessons Learned and Discussion

This paper presented a social robot system architecture that facilitates long-term
human robot interaction. The four primarily important aspects of our architecture
were: using cloud based techniques (principle 1); having a modular architecture
(principle 2); having a common knowledge-base to support development and sup-
port the human-agent interaction (principle 3); and, using hybrid artificial intelli-
gence (principle 4). This section discusses the global lessons learned concerning
the development of such a system and concerning the four principles.

Building an integrated system in a research project poses unique challenges,
which are usually avoided implementing small, isolated prototypes that exhibit the
behaviour which is under investigation. In an integrated system, the functionality
of the modules must be synchronised to achieve the intended overall performance.
This needs more consultation and arrangements between the implementing groups,
joint definition of interfaces, down to the functional level, and thorough develop-
ment cycles and testing procedures ([70]). For these requirements, resources have
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to be allocated that are usually avoided in projects conducting basic research. Con-
sidering this, PAL is among the few research projects that created an integrated
system that was used successfully by real, untrained users over a longer time and
also has the potential to be commercially exploited in an extended and consolidated
form.

The cloud-based system architecture (principle 1) we presented facilitates long-
term interaction. Firstly, it enables access to external libraries (Big Data, for ex-
ample used in the dialogue of this system); secondly, it allows for more complex
computations by using external computational power (cloud-computing). In this
way the robot can provide a more stable and believable interaction with more di-
verse behaviours. Thirdly, it facilitates version management which is particularly
important for research where functionality is incrementally added. Fourthly, it helps
the health-care professional to seamlessly personalise and adapt the system’s be-
haviour based on the patient’s individual development.

Furthermore, modularity (principle 2) reduces complexity, both for the develop-
ment and application phase. However, we found that there are limits to the amount
of modularity one should strive for. For example, it seems attractive to separate
the agent’s non-communicative behaviour (the application logic, so to say) and the
(possibly multi-modal) communication layer. This, however, turns out to be chal-
lenging, because both parts heavily depend on each other to create a believable
and consistent persona for the agent. For example, an ongoing dialogue can not
simply be stopped at any point to perform some task, but has to be properly brought
to an end for the robot not to be perceived as impolite or untrustworthy. On the
other hand, the urgency of the task might require a more or less elaborate form of
shutting down an ongoing conversation. We found that there is a delicate balance
between modularity and coordination.

Another important aspect is that the system allows to plug in a virtual avatar
of the robot. Modularity is maintained since other modules do not need to know
whether the avatar or the physical robot is connected. This implementation could
be extended by implementing controllers for other embodiments like a (physical
and/or virtual) Pepper robot. Having a avatar of the robot is important because
many robots (like the nao robot) are used for educational and/or health-care related
support, but are too expensive for commercial use. The conversational agent (CA) is
meant to ‘bind’ the user to the application. Having a robot present during meetings
in the hospital and an avatar when using the application at home allows to make
use of the motivational gains of a CA without having to buy a robot for every child
with diabetes.

For a common knowledge-base (principle 3), we chose to develop an ontol-
ogy in the context domain of diabetes type 1. By working closely together with
health-care professionals, we believe to have created a reusable knowledge-base
that can be profitable for further research on combining health-care and artificial in-
telligence. For example, the formalised T1DM self-management learning goals and
achievements are available as ontology as well as in an online co-creation tool” to
allow for further specification and usage. We believe that reasoning over this expert

2htt ps://confluence.ewi.tudelft.nl/display/PO 2\
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knowledge is best done by applying agent-based or expert system implementations.
The symbolic Al proposes several possible learning paths to support the children to
become self-manageable. However, machine learning can then optimise the pos-
sible learning paths to the specific children. We show in our architecture how such
hybrid techniques (principle 4) can work together successfully. It is beyond the
scope of this paper to discuss the performance of the system on the children their
diabetes-control and well-being. For this we refer to [72] and [73].

2.9. Conclusion

The PAL system architecture is a cloud-based, modular, long-term human-robot in-
teraction framework that uses hybrid artificial intelligence and a common knowledge-
base to shape the interaction. This system has run with over 40 users for two peri-
ods of two and a half to three months. The system remained stable and continued
to show (more and more) behaviours and support in health education & care. This
work can serve as a blueprint for future long-term human-avatar and human-robot
interaction studies and thereby facilitate incremental research.
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3. Personalised Self-Explanation by Robots: The Role of Goals versus
50 Beliefs in Robot-Action Explanation for Children and Adults

A good explanation takes the user who is receiving the explanation into ac-
count. We aim to get a better understanding of user preferences and the
differences between children and adults who receive explanations from a
robot. We implemented a Nao-robot as a belief-desire-intention (BDI)-based
agent and explained its actions using two different explanation styles. Both
are based on how humans explain and justify their actions to each other.
One explanation style communicates the beliefs that give context information
on why the agent performed the action. The other explanation style com-
municates the goals that inform the user of the agent’s desired state when
performing the action. We conducted a user study (19 children, 19 adults)
in which a Nao-robot performed actions to support type 1 diabetes mellitus
management. We investigated the preference of children and adults for goal-
versus belief-based action explanations. From this, we learned that adults
have a significantly higher tendency to prefer goal-based action explanations.
This work is a necessary step in addressing the challenge of providing per-
sonalised explanations in human-robot and human-agent interaction.

Parts of this chapter have been published in [1]
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3.1. Introduction

Explainable Artificial Intelligence (XAI) is the capability of a system to explain its
own behaviour. XAI is known to have a positive influence on user trust in and
understanding of the intelligent systems [2—4]. Intelligent systems are becoming
increasingly complex, which makes it difficult for the users to understand the sys-
tem’s actions [5]. XAI is important in areas such as medical support [2], fire-fighting
[6, 7], and education [4].

A theoretical approach towards explaining actions is the intentional stance.
When adopting the intentional stance, one assumes that actions result from in-
tentions of the actor (i.e., the human or agent performing the action) [8]. In every-
day human communication, two common explanation styles for intentional actions
are goal-based and belief-based explanations [9]. A goal-based explanation com-
municates the actor’s desired outcome of the action. A belief-based explanation
provides information about the context and the circumstances that caused the ac-
tor to choose one action over another. How humans explain an actor’s actions in
everyday communication is referred to as folk psychology [10, 11], and has been
used in developing XAl for BDI-based (belief, desire intention) agents [7, 12—14].

A good explanation is personalised, i.e., it takes the user that is receiving the
explanation into account. As we mature, we develop our capabilities to create
and understand explanations for someone else’s actions [9, 15, 16]. Furthermore,
different educational strategies are required for adults and children [17, 18]. There-
fore, self-explaining robots and agents that educate their users are likely to need
different explanation strategies for children and adults.

To address this challenge of personalising explanations, we compared two dif-
ferent explanation styles on two different user groups. We constructed goal-based
and belief-based robot-action explanations. We then asked both children and adults
what explanation best helped them to understand the different actions. We tested
whether these different explanation styles significantly differ on this metric, taking
user group into account as a factor.

The context of this thesis and of this chapter is the PAL (a Personal Assistant for
a Healthy Lifestyle) project. This project helps children (aged 7-14) to cope with
type 1 diabetes mellitus. In this project, we develop an agent controlling a Nao-
robot or its virtual avatar. The system autonomously interacts with the children and
their parents for prolonged periods of time. It helps the children to cope with their
medical health issues. Therefore, it is important that the different users trust and
understand the actions of the PAL-agent. To facilitate this, we develop the capability
to explain these actions to the different users. Consider the following robot action:
‘the PAL-robot tells the child that one has a hypo when one’s blood glucose level is
below 4.0 millimoles per litre. We may explain this by saying the robot wants to
teach the child how to detect and treat a hypo (goal); or, that it thinks the child
does not know what blood measurements indicate that one has a hypo (belief).

We will first review related work in the field of XAI, and, in particular, work that
focuses on self-explaining agents in Section 3.2. Then, in Section 3.3, we describe
a generally applicable representation of a BDI-based agent’s decision making and
how we derive belief-based and goal-based explanations from this. We explain the
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set-up of our experiment in Section 3.4. Finally, we present the results and discuss
them.

3.2. Motivation for Research Conducted

When developing intelligent agents, one should consider enhancing them with self-
explaining capabilities. Previous studies have shown that XAI enhances user trust
in and understanding of intelligent systems [2—4, 19, 20]. This is especially im-
portant for intelligent agents because they are often designed to operate semi-
autonomously, and they often operate in consequential domains like medicine or
military [21].

Recent work on XAI for intelligent agents used automatically generated folk
psychology based explanations [7, 12, 13]. A folk psychology based explanation
communicates the beliefs and goals that led to the agent’s behaviour. One adopts
the intentional stance, meaning one explains the agent'’s action by explaining the
reasons (beliefs and goals) for the agent’s intention [8]. Example folk psychology
based explanations are, ‘I proposed to play a sorting game together because I
thought that you liked that game’ (belief); or, ‘I proposed to play a sorting game
together because I wanted to play a game with you’ (goal). Folk psychology based
explanations provide concise, human-like explanations of an agent’s actions. They
are mainly directed at the end-users of the intelligent system (see, e.g., [14, 22]
for explanations more directed towards agent developers).

Previous work on XAI took user knowledge into account [23, 24]. These studies
classified a user as a beginner or expert and used this to provide explanations
that better fit the individual user’s preferences. However, we belief more elaborate
user models are required for good personalised explanations. In this chapter, we
compare two common explanation styles for two distinct user groups: children and
adults.

3.2.1. Goal-based and Belief-based Explanations

Folk psychology is how humans in everyday communication explain and predict in-
tentional actions [9, 10]. Two common explanations styles in folk psychology are
goal-based and belief-based explanations [8-11]. A goal-based explanation com-
municates the actor’s desired outcome of the action. It provides an answer to the
questions, ‘To what end?’ or ‘For what purpose?’ A belief-based explanation pro-
vides information on why the actor chose a certain action over another. It provides
information about the context and the circumstances. Goals are easier to infer from
the action itself, whereas beliefs provide information specific to the particular actor
that performed the action and context in which the action was performed. Malle
[9] writes that to infer an actor’s belief, one needs to take the perspective of this
particular actor.

3.2.2. Hypothesis
In this chapter, we define two explanation algorithms: one that always provides
the triggering condition (belief) that caused the agent to perform the action and
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one that always provides the parent goal that the agent is trying to achieve. We
test which explanation algorithm is preferred by adults and children by presenting
them example actions explained by these algorithms. Our hypothesis is:

Hypothesis. Adults have a stronger preference than children for goal-based over
belief-based social robot explanations.

There is psychological support for this hypothesis. First, a difference in itself
is likely because explanations based on folk psychology change as humans mature
[9, 16]. For example, young children (4 years old) have trouble realising someone
may have a belief that is false [15]. Second, children and adults alike are inclined
to belief that others have similar beliefs and knowledge as they do [16]. Howeuver,
adults have accumulated a vast amount of knowledge to which they can link new
information [18]. Third, adults strongly desire (more than children) to know the
goals you are pursuing when educating them [17, 18].

3.3. Goal Hierarchy Trees

Previous work on XAI showed how one can use an agent’s beliefs and goals for
generating action explanations [13, 25]. However, this means that one should
take special care in designing and formulating the beliefs and goals of the agent
[13, 26]. Previous work proposed the use of a goal hierarchy tree (GHT) to develop
a high level design of the agent’s reasoning [7, 12] and provides guidelines for their
development [13]. GHTs are based on hierarchical task analysis, a technique from
cognitive psychology used to specify complex human tasks [27]. In this section,
we describe the structure of a GHT, and how we can construct explanations from
it. We adopt GHTs as agent design and use these to test how one can personalise
explanations for different users.

, Belief - al\ ( Belief - a2 \
j k
Bellef bll) Belief - b12 Bellef b21 kBellef b22j Belief - b23\

‘ Action 1 ‘ ‘ Action 2 ‘ | ActlonS ‘ ‘ Action 4 ‘ ‘ Action 5 |

Figure 3.1: The square nodes are goals the agent adopts. The top node is the agent’s main goal. When
following the edges, sub-goals are represented that the agent adopts to achieve the main goal. Actions
to achieve (sub-)goals are shown as shaded square nodes (the leaves) of the tree. Conditions (beliefs)
that cause an agent to adopt a sub-goal or perform a particular action are shown as rounded nodes.
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3.3.1. The Structure of a Goal Hierarchy Tree

Figure 3.1 shows the structure of a GHT. A BDI-based agent that runs in accordance
with a GHT chooses actions as follows. Based on the agent’s current goals and
beliefs, it chooses an action to perform. If multiple actions are applicable, then
the agent randomly chooses one. When no actions are applicable then the agent
remains idle until its beliefs change, which can cause it to adopt new goals and can
make new actions become applicable.

A GHT does not model what external events can occur and how events and
agent-actions cause the agent to update its beliefs. Rather, the GHT shows a high-
level design of the agent’s reasoning, i.e., what action it should perform given a
current state of beliefs and goals. This is sufficient for our purpose of generating
explanations based on an agent’s reasoning. However, if one wants to run a BDI-
based agent that acts in accordance with the GHT, then this additional modelling is
required.

3.3.2. Goal-based and Belief-based Agent-action Explanations
One can explain an action by means of the goal one aims to achieve, or by explaining
why it was possible to perform the action (belief) [9, 11]. Explanations should
not be too long [13, 16]. We need to be selective in what beliefs and goals we
communicate. In this chapter, we use the following explanation algorithms.

The belief-based explanation algorithm selects the belief directly above the
action (triggering condition). For example, action-2 is explained by Belief-b12 and
action-3 by Belief-b21 (Figure 3.1).

The goal-based explanation algorithm selects the goal directly above the
action (parent goal). For example, action-2 is explained by Goal-B1 and action-3
by Goal-B2 (Figure 3.1).

We use these algorithms for the sake of testing the hypothesis of Section 3.2.2.
Both explanation algorithms consist of one element (one belief or one goal) in the
goal hierarchy tree. The goal-based explanation provides the most direct response
to the question, ‘What is your purpose?’ The belief-based explanation provides the
most direct answer to why the agent chose a particular action over another. Thus,
they closely resemble how humans explain their actions as discussed in Section
3.2.1. Furthermore, they are short and thus unlikely to flood the receiver of the
explanation with too much information [13, 16]. Therefore, we can use these
algorithms to determine a preference for belief-based or goal-based agent-action
explanations in a general way.

3.4. User Study

We developed a GHT within the context of the PAL-project and set up an experiment
using the explanation algorithms from Section 3.3.2. We tested whether goal-based
or belief-based action explanations are better received by the participants (children
and adults). We tested for a significant difference in preference within and between
these user groups.

We belief the PAL-project is a good domain for testing XAI. Firstly, it provides
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Table 3.1: Distribution of children and adults over the 4 conditions

Random Seed of Scenarios
Normal Order of Explanations | Reversed Order of Explanations
Normal Reversed Normal Reversed
Order of Order of Order of Order of
Scenarios Scenarios Scenarios Scenarios
Children | 6 5 4 4
Adults 5 4 5 5

us with both children and adults that interact with the agent; and secondly, it is
an exemplary, consequential domain were the agent interacts with its users for
prolonged periods of time (the type of domains where XAl is especially important

[21]).

3.4.1. Participants

The participants were recruited from a diabetes camp for children. Children di-
agnosed with type 1 diabetes mellitus were recruited by the Dutch Diabetes As-
sociation DVN. These children and their parents were invited to participate in our
experiment. Rejecting this had no influence on participation in other activities dur-
ing the camp.

Participants with diabetes were a good choice for testing our hypothesis. First,
diabetes is a use case within the health domain which is of particular relevance to
explainable AI [21]. Second, the transparency provided by personalised explana-
tions can help children trust and understand how the system tries to help them
[2—4, 19, 20], which is in line with the societal- and research goals within the PAL
project.

In total, there were 21 children and 20 adults (parents of the children) present
at the camp. One child did not participate in the experiment. One child participated,
but was looking over his friend’s shoulder while filling in answers. One adult did
not fill in the initial sheet asking for data like age, gender, and education. This left
us with 19 children (12 male, aged 8-11) and 19 adults (8 male, aged 35-48).

3.4.2. Designing a Goal Hierarchy Tree

Figure 3.3 presents our design of a GHT for our agent. This GHT is a translation
from its Dutch counterpart, since the experiment was performed in the Netherlands.
Based on this GHT, the agent chose different actions to support a child in diabetes
management.

The GHT specifies two styles of support. The agents aims to educate the child
when the child is in a good mood to learn new things. The agent aims to cheer up
the child when the child is sad. We call this cognitive support, and affective support,
respectively. The way that this agent provides these types of support is defined by
ontologies that were developed in cooperation with health-care professionals [28].
The here developed GHT resembles the treatment plan provided by these experts.
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Figure 3.2: Set-up of the experiment. The Nao-robot verbally presents example scenarios and provides
two explanations for each of these. The screen textually shows what the Nao-robot is saying, so the
child can always read-back on the screen what happened. The child then puts a mark at the most
preferred explanation.

3.4.3. Set-up & Materials

The GHT shown in Section 3.4.2 has nine different robot actions. These actions
can all be explained by using the belief-based explanation algorithm or by using
the goal-based explanation algorithm. A Nao-robot presented all the actions to the
participants. For each action, it proposed two explanations obtained from the algo-
rithms. The participants had a forced choice to prefer either one of the proposed
explanations.

The robot was located in front of the participants and next to a laptop screen
(Figure 3.2). For every action and corresponding explanations presented by the
Nao-robot, the laptop screen showed the action performed and explanations pro-
vided. In this way, the participants could read back what the robot said. For
example, the screen could look like:

Action: 'I tell Jimmy to take dextrose when he is having a hypo.’

Explanation 1: ‘Jimmy does not yet know how to correct his blood-sugar when he
has a hypo.

Explanation 2: ‘I want to teach Jimmy how to successfully cope with hypos.’

By using the robot, the children experience the experiment as a fun activity
rather than a chore. Robots have been shown to have a positive impact on moti-
vation and learning [29]. We chose to also use a screen, since Nao-robots do not
always pronounce words very well. By using a screen, the participants can always
read back what the robot said.
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3.4.4. Variables & Design

The presentation of an action including the two explanations is henceforth referred
to as a scenario. A scenario starts with the robot saying: ‘I performed action
a'. With a being one of the actions in the GHT and phrased exactly as shown in
the GHT (Figure 3.3). Then, the robot says: ‘How should I explain this? One:
explanation-1; or two, explanation-2'. Where explanation 1 and 2 are the belief-
based explanation and the goal-based explanation as explained in section 3.3.2.
The exact texts are thus also depicted in the GHT.

A participant is shown nine scenarios, one for each action, in random order.
Whether the participant was shown the belief-based explanation first or the goal-
based explanation first was also chosen randomly for every scenario. After the ex-
periment, we counted the percentage of scenarios where the participant preferred
a goal-based explanation. So, if the participant preferred the belief-based explana-
tion in six scenarios and the goal-based explanation in the other three scenarios,
then this variable is 33% for the participant.

Due to the camp setting, we were not able to do the experiment with every
user separately. We were forced to have the participants do the experiment in
small groups (group size of 2-3 for the children, 4-5 for the adults). The individuals
in the groups were not allowed to discuss amongst each other nor look at each
other’s answers before the experiment was over. However, a consequence of hav-
ing groups was that participants in the same group also saw the same order of
actions and the same order of explanations. Thus, we counterbalanced the con-
ditions. We produced a single random seed of scenarios. The actions were first
put in random order. For every action separately, the system then randomly chose
explanation 1 to be belief-based and explanation 2 goal-based, or vice versa. We
counterbalanced this among the participants. I.e., the participants saw the actions
in this randomly chosen order, or they saw the actions in reversed order. Fur-
thermore, they saw the order of the explanations in this randomly chosen order,
or they saw the explanations for these actions in reversed order. The participants
were evenly distributed over these 4 conditions (see Table 3.1).

3.4.5. Procedure

In small groups, the participants were asked to enter the room and were seated
in front of the robot and laptop. The researcher informed the participants that he
would remain present during the experiment but that the robot would guide the
experiment. Additional questions could be directed to the researcher.

The Nao-robot started the experiment with a small presentation. Here, it told
the participants that it wants to learn how to explain its behaviour to them and that it
needs their input. It explained that it will provide example scenarios where it helped
a fictional child Jimmy’ to deal with diabetes. In this starting presentation, the robot
said it sometimes plays a game with Jimmy and sometimes tries to educate Jimmy
concerning diabetes management. The robot said that in all the example scenarios
it wants to explain its action and always considers two possible explanations. The
participants were then asked to select the explanation that best helped them to
understand why the PAL-robot performed that action.
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Figure 3.4: A box plot showing the distribution of preferring goal-based explanations over belief-based
explanations. On the x-axis the two user types (children and adults) are depicted. The y-axis shows the
percentage of scenarios where the subject preferred the goal-based explanation over the belief-based
explanation. Adults have a significantly higher preference for goal-based action explanations (Median =
0.778) than children (Median = 0.667).

After the presentation the robot verbally presented the nine scenarios, one for
each action, and the screen showed the scenarios in text. With the children, the
researcher paid special attention to prevent them from looking over each other’s
shoulder while choosing the best explanation. Once the experiment was finished
the robot and researcher thanked the participants for their help.

3.5. Results

To test the preference towards the different explanation styles, we counted the
percentage of scenarios where the participants preferred a goal-based explanation.
A one-sample Wilcoxon signed rank test shows that the median of preferring goal-
based explanations, rather than belief-based explanations, is significantly above
50% for children (med = 0.667,95% CI = [0.667,0.778], p = .007) and adults
(med = 0.778,95% CI = [0.667,1.0], p < .000). So, both user groups significantly
prefer goal-based explanations over belief-based explanations. Figure 3.4 shows
the distributions of preferring goal-based explanations for children and adults.

Furthermore, a Mann-Whitney test indicated that the preference towards goal-
based explanations, rather than belief-based explanations, was greater for adults
(med = 0.778) than for children (med = 0.667), U = 112.5, p = .042, r = .33.
Adults prefer goal-based explanations significantly more than children.
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3.6. Discussion

The results in the previous section show that there is a significant preference for
goal-based explanations in both user groups. However, it would be premature to
state that goal-based explanations are always preferable. Previous studies have
shown contradicting findings on this subject. The work in [13] analyses three stud-
ies that provide explanations based on a goal hierarchy tree. Two studies in a
firefighting domain [6, 7], (one with experts and one with laymen) and one in a
cooking domain [12] (where users were perceived as experts, since they all knew
how to cook). In the non-expert domain, the participants showed a preference for
belief-based explanations. In the expert domains, goal-based explanations were
preferred. It is hypothesized in [13] that this difference may be due to the expert
level. Since both the children (who have diabetes mellitus themselves) and the
adults (their parents) are familiar with the domain, it can be expected that these
users would prefer goal-based explanations. Future work should further explore this
by testing this domain on layman (adult & child) users and comparing the results
with the here presented findings.

Another finding in the results is that adults significantly prefer goal-based ex-
planations more than their children. This has two possible explanations. First,
according to adult learning psychology, adults need to know the objectives of the
instruction [17, 18]. They are goal-oriented learners that rely on their vast per-
sonal experience. They prefer to know how instructions help them to enhance their
existing abilities, rather than children who learn under the assumption that all in-
structions will help them sometime in the future [17]. Adults thus prefer knowing
the objectives (goals) that the robot is pursuing when performing actions to educate
its user.

The second explanation is that children are more motivated to understand a
robot character. To infer an agent’s belief, one needs to take the perspective of this
particular agent [9]. Children and adults alike are better at perspective taking when
their motivation to do this is high [30]. A higher motivation then correlates with a
better understanding of belief-based explanations. On the other hand, adults are
better adapted to perspective taking than children. Adults are faster at adjusting
when they learn their initial perspective is incorrect [30]. Being an adult then also
suggests a better understanding of belief-based explanations, since the adult is
more flexible at adjusting her perspective to match that of the agent. In conclusion,
if perspective taking is the explanation for these results, then motivation of the
children must have had a stronger influence than the flexibility of the adults.

There are three sources that potentially limit the generalisability of our results.
First, the chosen scenarios depicted in the GHT (Figure 3.3) potentially have traits
that we are unaware of but that influence the preference for an explanation style.
Second, the PAL-agent aims to educate its users on type 1 diabetes mellitus and
maintain a positive mood in the user. A domain that resembles this type of system
behaviour may be more likely to find similar preferences for explanation styles.
Third, the children and adults may also have traits that are not representative for the
entire population (e.g., culture) and that influence the preference for an explanation
style. There are, however, many similarities between our user groups (i.e., they
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both face the problem of managing diabetes, they work with the same caregivers
at the same hospitals, they even share the same genes). Within our sample space,
we therefore belief that child/ adult is the only factor responsible for this difference
in preferred explanation style. However, to address this issue of generalisability,
future work includes replicating our study with more divers scenarios, contexts,
and users.

The presented experiment was a start. In future work, we will systematically
expand the design space. For example, individual user preferences and differences
in the context in which the agent performed the action can also have an influ-
ence on how one should construct the explanation. Furthermore, one can combine
goal-based and belief-based explanations providing the user with more information.
However, explanations should not become too long [16]. The explainer should thus
be careful with when and how to add further information to an explanation. Finally,
we tested the subjective preference towards the explanation styles. A next step is
to test how this influences user behaviour and trust in the system.

3.7. Conclusion

In this chapter, we compared the preference for goal-based versus belief-based so-
cial robot action explanations between two user groups. We presented children and
adults with a set of example robot actions and provided two possible explanations
for these. Belief-based explanations communicated the context (a belief) preceding
the decision to perform an action. Goal-based explanations provided the agent’s
purpose (a goal) of the action. The users were asked to choose the explanation
that best helped them to understand why the Nao-robot performed this action.

We found that adults have a significantly higher preference for goal-based expla-
nations than children. This is the first evidence that self-explanations of intelligent
agents are perceived differently by children and adults. This work is a necessary
step towards providing personalised explanations in human-robot and human-agent
interaction.
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The main question addressed in this chapter is whether and how humans
use emotions in their explanations of humanoid robot behaviour. Addressing
this is important because it: (1) helps us design how robots can explain their
own actions; and (2) gives insight into human attribution of mental states to
robots. We presented filmed behaviours of a human or a (humanoid) robot
coping with a distressing situation to MTurk participants. Between-subjects,
behaviours were shown in different coping styles (based on literature), per-
formed by the human or robot actor type, and in a health or museum scenario.
Participants rated their recognition of these coping styles and provided a tex-
tual explanation for the behaviour. Results show that participants recognised
most coping styles (two were not recognised properly, one style was recog-
nised in humans but not in robots). Furthermore, participants used emotions
in their explanations for both the robot and human actor, and the recognition
of the coping style correlated with the emotionality of the explanations for the
human actor type, but not for the robot. These results, for the first time, show
that emotions are used in the explanation of robot and human behaviour, and
that coping styles are recognised in robot behaviour.

This paper is submitted to ACM Transactions on Human-Robot Interaction (THRI), special issue on
explainable AL
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4.1. Introduction

In the near future robots will perform support functions that involve interaction
with humans in domains including education, health care and hospitality [1]. The
behaviour and decision making of these robots will become complex. A key problem
related to this complexity is that if a user does not understand how a system or robot
makes a decision, that user’s trust in the system is impacted as well, which can lead
them to misuse and abandonment of the interaction [1, 2]. A common approach to
increase a robot’s intelligibility and user’s trust in the robot is by providing users with
explanations of the behaviour [3-9]. This is referred to as eXplainable AI (XAI).

A common way to develop XAI for intelligent agents (like humanoid robots and
avatars), is by basing it on how humans explain behaviour amongst each other
[9], (i.e., folk psychology [10, 11]). For example, you see a man running to cross
a busy street. If you are asked to answer the question "why?” then you tend to
explain that by "the man does not want to be run over by a car”, explaining the be-
haviour with the goal of staying alive. Folk psychology can be used in human-agent/
human-robot interaction in two ways. First, one can use folk psychology as a basis
to generate self-explanations of behaviour by humanoid robots [3, 5, 7]. Second,
one can use folk psychology as a framework to analyse people’s explanations of
robot behaviour as a proxy for the user’s perception of the underlying intentional
structure [8]. Both approaches can provide insight into how self-explanations by
robots should, in principle, be designed. The former by testing the effects of expla-
nations on the users (e.g., the effect on trust); the latter by analysing the structure
of people’s explanations and using that as input to generate more human-like self-
explanations.

The majority of the research in self-explanation and people’s explanation ignores
the role of emotion in the explanation of behaviour and instead focuses on beliefs,
desires, goals and other more “cognitive” constructs [3, 6-8, 12, 13]. However, it
has been argued that emotions play an essential role in human explanations [14].
Also for robots and virtual agents, it has been argued that emotions might play an
important role in the generation of self-explanations for robot behaviour [15].

The main question addressed in this chapter is whether and how humans use
emotions in their explanations of robot behaviour and how these explanations differ
for similar human behaviour. To study this question, we focus on behaviour resulting
from coping strategies for the following reason. Coping strategies are triggered by
emotion and are aimed at emotion regulation [16]. The use of emotion in the
explanation of the resulting behaviours can serve as existence proof. If people do
explain robot behaviour using emotions, then this should be observed in behaviours
resulting from coping strategies. If people do not use emotions for explanations of
this behaviour then that is a strong indicator that they also won't use it when the
robot shows other types of (semi-)intentional behaviour.

We presented filmed behaviours of either a robot or a human actor coping with a
distressing situation to Amazon Mechanical Turk participants. The actors applied a
coping style in their behaviour from the set of styles that the literature distinguishes,
alternating the style over participants. We asked participants to rate their recogni-
tion of coping styles in this behaviour and how they would explain the behaviour.
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We further investigated the extend to which emotions are used in the participant’s
explanations of the behaviour, and whether this depends on the coping style and
actor type (robot versus human).

4.2. Background and Related Work

EXplainable Artificial Intelligence (XAI) is a sub-field of human-agent interaction. It
has its roots in Artificial Intelligence (AI), human-computer interaction (HCI), and
the social sciences [17]. Early studies in expert systems suggest that explanations
are important for acceptance of, and trust in the system’s decisions, particularly
in domains where decisions are judgemental and consequential (e.g., health-care)
[2, 18, 19]. These findings have been replicated in studies with modern intelligent
systems [4, 20, 21]. With the introduction of even more advanced artificial intel-
ligence, transparency and explanation have again become increasingly important
topics in human-agent interaction [9] and machine learning [22]. This importance
is further emphasised by the General Data Regulation Law (GDPR) [23].

Current work in EXplainable AI (XAI) in artificial agents and robots typically
presents the Al's reasoning in a reduced complexity form. First, the system’s rea-
soning process is queried, then that information is presented to the user[3, 24, 25].
Most approaches in human-agent interaction use cognitive constructs such as be-
liefs, desires, intentions and goals to explain the actions of the agent [6, 7, 12, 13,
26].

4.2.1. Explanations and Folk Psychology

Most of the work in XAI for robots and (other) agents is based on folk-psychology
[9]. Folk-psychology proposes that humans explain each others’ behaviour in terms
of mental constructs like beliefs and goals [10, 11, 27]. People use folk psychology
to explain behaviour when they assume the behaviour comes from an intentional
agent [10]. For example, your colleague took some days off from work (the action
to be explained) because he thought (belief) there were no immediate deadlines
and he wanted (goal) to take some time to relax and recuperate. XAI based on folk
psychology typically explains behaviour based on the system’s beliefs and goals.

Previous work in XAI confirms that folk-psychology provides a solid basis for
agent explanations. Several early studies showed that humans are able to identify
which beliefs and goals should be used by an intelligent agent [13], and that humans
use beliefs and goals to explain robot behaviour [8, 28]. In addition, several studies
have investigated people’s mental state ascriptions to robots [8, 17, 28-32]. For
example, in [8] participants were shown textual descriptions of robot behaviour.
Participants used beliefs and goals when explaining the described behaviour; and,
participants sometimes referred to the robot as a programmed machine. Usage
of emotions in the explanations was not reported. Wortham et. al. [32] showed
people video's of human-robot interaction. They found that robot explanations
indeed improved the user’s mental model’s accuracy, but did not test the occurrence
of mental constructs (beliefs, goals, emotions) in the participant’s explanations.
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4.2.2. Emotions and Coping Styles

In affective computing, the field that uses emotion in technology [33], there are
three main views on emotion that are used most frequently: a categorical view, a
dimensional view and an appraisal view. The categorical view proposes to organ-
ise emotions into groups of distinct emotion types (e.g., [34]). The dimensional
view proposes that all emotions share a common base called core affect, usually
expressed in one or more continuous scales, for example valence, arousal, and
dominance [35]. Appraisal theory proposes that emotions are the result of an as-
sessment of the situation in terms of consequences for the individual [36-38].

Emotions play an important role in coping. In essence, coping is a response to
deal with situations that are appraised as personally relevant and taxing, aimed at
reducing the resulting distress [16, 39]. Coping is a response to emotions and can
mitigate emotions [16, 40]. A prominent view on coping styles including their link
to emotions is proposed by Folkman and Lazarus [16, 41]. They define 8 styles
of coping in the ‘Ways of Coping’ (WoC) and designed a questionnaire to measure
their prevalence in ones behaviour [41]. Table 4.1 shows the questions per style in
that questionnaire.

Because we use these coping styles in the construction of the videos that par-
ticipants view in our study, we explain these in more detail here. When using the
confrontive style (C), one tries to solve the problem by confronting the respon-
sible agent. For example, one tries to change the responsible agent’s mind and/or
expresses anger. When using distancing (D), one tries to deal with the distress on
a more internal level. One tries to mentally distance oneself from what happened.
When using self-controlling (S-C), one tries to solve the problem by first of all
keeping ones feelings to oneself and by thinking before acting. When using seeking
social support (Soc-S), one tries to seek help from an external party. When using
accepting responsibility (A-R), one seeks the fault by oneself and tries to make
up for this. When using escape avoidance (E-A), one wishes that the situation
would simply go away and tries to get away from it. When using planfull prob-
lem solving (P-S), one aims to solve the underlying problem by making changes in
the situation, When using positive reappraisal (P-R), one changes ones thinking
about the situation and reappraises it more positively.

4.3. Research Questions

In the related work section we showed that many of the agent-based explanation
approaches use beliefs and goals to construct explanations. However, it has been
argued that humans use emotions when explaining behaviour amongst each other
('T quickly crossed the street out of fear for the angry looking man’) [14]. It has
also been proposed that expressing emotions can play a role in robot transparency
[42]. Beliefs and goals may be insufficient for generating explanations. Agent self-
explanations may also need to consider emotions of the agent and of the agent’s
user [15, 43].

Because coping strategies are triggered by emotion and are aimed at emotion
regulation, the resulting behaviours are a good candidate to investigate whether and
how people use emotions for the explanations thereof. If people do explain robot
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Table 4.1: The Ways of Coping questionnaire [41]

Coping Style Description

Confrontive (C) . Stood my ground and fought for what T wanted.

. Tried to get the person responsible to change his or her mind.

. I expressed anger to the person(s) who caused the problem

. I let my feelings out somehow.

. Took a big chance or did something very risky.

. I did something which I didn't think would work, but at least

I was doing something

Distancing (D) 1. Made light of the situation; refused to get too serious about it.

2. Went on as if nothing had happened.

3. Didn't let it get to me; refused to think too much about it.

4. Tried to forget the whole thing.

5. Looked for the silver lining, so to speak; tried to look on the

bright side of things.

. Went along with fate; sometimes I just have bad luck.

. I tried to keep my feelings to myself.

. Kept others from knowing how bad things were.

. Tried not to burn my bridges, but leave things open somewhat.

. I tried not to act too hastily or follow my first hunch.

. I tried to keep my feelings from interfering with other things too much.
. I thought about how a person I admire would handle this situation and
sed that as a model.

I tried to see things from the other person’s point of view.

. Talked to someone to find out more about the situation.

. Talked to someone who could do something concrete about the problem.
. I asked a relative or friend I respected for advice.

. Talked to someone about how I was feeling.

. Accepted sympathy and understanding from someone.

. I got professional help.

. Criticized or lectured myself.

. Realized I brought the problem on myself.

. I made a promise to myself that things would be different next time.
. I apologized or did something to make up.

. Wished that the situation would go away or somehow be over with.
. Hoped a miracle would happen.

. Had fantasies or wishes about how things might turn out.

. Tried to make myself feel better by eating, drinking, smoking, using drugs or
edication, etc.

. Avoided being with people in general.

. Refused to believe that it had happened.

. Took it out on other people.

Slept more than usual.

I knew what had to be done, so I doubled my efforts to make things work.
I made a plan of action and followed it.

. Just concentrated on what I had to do next — the next step.

. Changed something so things would turn out all right.

. Drew on my past experiences; I was in a similar situation before.
Came up with a couple of different solutions to the problem.
Changed or grew as a person in a good way.

I came out of the experience better than when I went in.

Found new faith.

. Rediscovered what is important in life.

I prayed.

. I changed something about myself.

. I was inspired to do something creative.

UThA WN

Self-Controlling (5-C)

COUThWNHO

Seeking social-support (Soc-S)

Accepting-responsibility (A-R)

Escape-Avoidance (E-A)

Planful problem-solving (P-S)

Positive-reappraisal (P-R)
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behaviour using emotions, then this should be observed in behaviours resulting from
coping strategies. If people do not use emotions for explanations of this behaviour
then that is a strong indicator that they also won't use it when the robot shows
other types of (semi-)intentional behaviour.

The main question addressed in this chapter is therefore whether and how hu-
mans use emotions in their explanations of robot behaviour, and how these expla-
nations differ for similar human behaviour. To study this question, we presented
M-Turkers filmed behaviours of a (humanoid) robot or human actor, coping with a
distressing situation using different coping styles. The construction of these videos
and styles is explained in the material section (4.4.4) and more thoroughly in Ap-
pendix B.

We are studying emotionality of explanations for human and robot behaviour,
where behaviour is in one of several coping styles. If people do not recognise
different coping styles then we should not expect coping style to influence the
explanations.

It might be that people recognise coping styles in human behaviour but not in
robot behaviour. Literature suggests that people do often ascribe human character-
istics to nonhuman agents (like, robots) [30]. However, people might not be able
to recognise some of the more complex characteristics [29]. The mental model
people have of the robot may differ from the mental model they have of the human
(even if the behaviour is similar) [29, 44, 45]. Furthermore, people often ascribe
multiple coping styles simultaneously to behaviour [16, 39, 41] (which could be the
case for both human and robot behaviour). Our first sub-question is:

Research Question 1. Do people recognise coping styles in the behaviours of
the actors, and what are the similarities and differences for human and robot be-
haviours?

Secondly, we study the emotionality of people’s (natural language) explanations
of robot behaviour. Studying people’s explanations has been argued to provide
subtle insights in people’s mental models of the robots [8]. In our case, ascribing the
human characteristic to have emotions as motivation for behaviour. The different
coping styles discussed in this section differ in the way the one deals with the
distressful situation. Some are very much objective and problem oriented, others
aim more specifically at dealing with the negative emotions one experiences [16,
39, 41]. Our second research question is:

Research Question 2. Does coping style influence emotionality of the explana-
tion, and what are the similarities and differences for human and robot behaviours?

Finally, we expect that certain coping styles may be natural and appropriate
when humans portrait them, but might seem very strange when a robot does it (or
the other way around). For example, people may experience more discomfort with
a confrontive robot than with a confrontive human. Or, people might find escape-
avoidance unnatural for a human health coach, but appropriate for a robot. Our
third question is:
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Actor Male, Setting Museum Actor Female, Setting Health Actor Robot, Setting Museum Actor Robot, Setting Health

Figure 4.1: Snapshots of the videos of the conversations. The four on the top show snapshots of the
initial part of the conversation. After the actor playing Bob distresses Robin, Robin copes with that
behaviour in one of the four styles. The four pictures below show snapshots of the coping response by
the male actor, female actress, and robot that take the role of Robin.

Research Question 3. 3. Does coping style influence the perception of the be-
haviour in terms of naturalness, appropriateness, warmth, competence, and dis-
comfort, and what are the similarities and differences for human and robot be-
haviours?

4.4. Experiment

4.4.1. Designing Conversations in Coping Styles

We designed several conversations between two individuals. The content of the
conversations is such that in all of them one does something that is distressing for
the other. The other then copes with that in one of the styles discussed in the
previous section. For convenience, we refer to the person causing the distress as
‘Bob’, and the person coping with that as ‘Robin’.

We chose to exclude the ‘seek social support’ style in our study because we focus
on a conversation between two individuals to avoid additional complexity in perspec-
tive taking for the participants. Seeking social support would require an additional
actor in the scenario. Furthermore, the behaviour is framed within a health-care or
public museum scenario (two common human-robot interaction scenarios [1]). In
appendix B, we discuss the design and validation of these conversations at length.

Using the validated conversations, we continued to translate them into videos
where they were played out by actors. We wanted videos of the conversations
rather than textual descriptions to make sure that people have the same men-
tal image of the robot. A textual description like ‘the Robot did X’ might invoke
different mental state images for different participants. Furthermore, non-verbal
characteristics and movements might have an influence on the perception. We
chose a Pepper robot from Softbank as embodiment. Pepper is a humanoid robot
which makes having dialogue with it seem natural. In addition, its size makes it
reasonable to have it in @ museum or hospital giving guidance to users.
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Professional actors (one male, one female) played out the coping styles in the
(validated) conversations. Then, we animated a Pepper robot to move similar to
the actor. Figure 4.1 shows eight snapshots of the resulting videos. The initial
part of the conversation shows both actors in the conversation (see the upper four
pictures). The part where the character ‘Robin’ copes is filmed as close-up (see the
lower four pictures). In appendix B, we discuss the design of the videos in more
detail.

4.4.2. Participants

We recruited participants via Amazon Mechanical Turk. We required them to have
a 95% or higher acceptance rate and to have some number of previous studies
completed in the past. Because participants had to understand the content for
the conversations, and because participants had to write down an explanation in
English, we only accepted participants that were located in the US. Participants
got a 1.1 Dollar monetary compensation for their time. In total, 577 participants
participated in our study. Twelve were excluded because they did not pay suffi-
cient attention to the videos (see below). Eight participants were excluded due to
giving out of context answers to the explanation question such as referring to the
actor ‘Robin Williams'. Finally, ten more participants were excluded from analyses
because their answers were written in incomprehensible English, or because they
did not really answer the question (e.g., if they answered I don't know"). (These
participants did get a monetary compensation for their time.) This left us with a
total of 547 participants (244 female, 299 male) used for analyses. Of these, 532
were native speakers and the remaining 15 indicated their English was at a good
professional level.

4.4.3. Experimental Design

We had a between-subjects design. Participants were randomly assigned to one
of the 42 different stimuli (two scenarios, i.e., health/ museum; three actors, i.e.,
male/ female/ robot; and seven coping styles (from ways of coping as discussed
in section 4.4.1). Note that with actor, we refer to the agent that played the role
of *Robin’ in our videos. The two human actors were chosen to control for effects
induced by human actor. The two scenarios were used to control for a context
effect imposed by scenario. Actor type (human versus robot) and coping style
(7 styles) are the main independent variables, resulting in a 2x7 between subject
setup. Participants were equally distributed over these 2x7 conditions and randomly
distributed over the control variables context and male-female actor.

4.4.4. Materials and Measures
The experiment involved viewing the video and clipped video as explained above,
and some questionnaires to measures the participant’s perception of Robin’s be-
haviour.

In the full video, the entire conversation (see section 4.4.1) was shown. In the
clipped video only the close-up part of the video was shown where Robin shows
the coping response itself. The full videos lasted for about one minute. The clipped
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Table 4.2: Example participants’ explanations of Robin’s behaviour analysed by the LIWC sentiment
miner

Emotionality by LIWC | Text

0 He wants him to develop a healthier way.

0 She was diffusing the issue

0 She was programmed to respond in that way.

5.9 Maybe she felt that she had overstepped purpos-
ing this

8.3 To try and calm the man and retain him as a cus-
tomer.

14.3 Robin is programmed to respond this way to cus-
tomers frustrations when they are lost.

15.4 He was trying to calm down the customer and en-
sure he was happy

25 She was frustrated with him for being stubborn

videos lasted for about 20 seconds.

For the experiment, we use several questionnaires. First, we ask the participant
to give an explanation in natural language for Robin’s behaviour by answering the
question: ‘Why did Robin respond in that way?’. Participants were shown an open
text-box in which they had to type their explanation. They had to type at least
three words. We refer to this as the participant’s explanation of Robin’s behaviour.

We measured the emotionality of a participant’s explanation of Robin’s behaviour
using a state of the art sentiment miner LIWC [46] on the full text explanation given
by the participants. LIWC counts words in psychologically meaningful categories
(for example, emotions) [46]. We use the affect outcome of the algorithm. Which
is a function of the count of different emotion words in the explanation.

Furthermore, we measure what coping styles participants recognised in the be-
haviour. For this purpose, we designed an adapted version of the ways of coping
(WoC) questionnaire (i.e., the adjusted WoC). The original questionnaire is some-
what long for an Amazon Mechanical Turk study and was initially designed for recog-
nising coping styles in ones own behaviour. The questions are not all referring to
attributes recognisable in someone else. To account for this, we developed an ad-
justed Ways of Coping questionnaire specifically for our purposes. For every coping
style, there are three questions on a 4-point Likert scale (coded as [0-3]) that mea-
sure to what extent a participant perceived the style in the behaviour. We count
the values per style to get seven variables (copingstyierypeCount), where style
type is one of the seven coping styles). We use these variables as a measure for
the recognition of the coping styles. Please note the difference between the depen-
dent measure (recognised coping style) and the independent variable coping style
as intended, modelled, and validated by the authors (modelled coping style). We
will use these terms in the remainder of this chapter. For a full description of the
content and design of this questionnaire, we refer to appendix A.

Naturalness and appropriateness of the coping behaviour is measured as two
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separate items both on a 5-point Likert scale.

To measure Warmth, competence, and discomfort we use the RoSAS question-
naire [47]. This is an 18-item, 9-point Likert scale which measures participants’
judgements of social attributes of Robin with three underlying dimensions: warmth,
competence, and discomfort (6 questions per dimension). We average over the 6
items per scale.

Finally, we administered an affinity/ attitude-towards-robots questionnaire which
was only shown to people in robot conditions. This was done via nine multiple choice
questions (5-point Likert scale) in total. This last questionnaire is not used in the
analyses reported in this chapter, so we do not discuss it further here.

4.4.5. Procedure

Participants had to finish the survey within 3 hours after accepting the hit. Aver-
age completion time of the survey was about 8 minutes. Participants were not in
any way informed on what the different coping styles looked like or even that the
behaviour of the actor was in a style. Nor were they informed that there were dif-
ferent possible responses versions of the scenario. We consciously primed them as
little as possible. We asked them to explain the behaviour before asking any other
questions so that the explanations gotten are unbiased as we could make them.
The complete procedure was as follows.

When participants accepted the hit on Amazon Mechanical Turk they were di-
rected to the online experimentation environment. There, participants gave their
consent to use their data and were then directed to the demographics form (age,
gender, language proficiency, education, and employment). Language proficiency
was the only required field. The other questions were requested but not obligatory.
Still, all participants answered all demographic questions.

Next, participants were shown a message asking them to unmute their speakers/
headphones. If they declared that they had done so, they were shown the full video
corresponding to their assigned condition. Every time a video was shown, the
display was automatically put to full-screen. Participants could not fast forward. If
participants closed the full screen then they were shown a message asking them
to not do that and they had to watch the video from the start. Participants could
pause the video.

After watching the full video, participants replied to two simple questions about
the content to check if they paid attention to the video. If the participants answered
incorrectly, then they were forced to re-watch the video and were given a second
attempt to answer the test-questions. If they answered incorrectly again, then they
were excluded from the experiment.

After correctly answering the test questions, participants were shown the clipped
video. After watching the clipped video, they had to provide their explanation for
Robin’s behaviour and answer the questions about the naturalness and appropri-
ateness of the behaviour.

Following this, the participants had to watch the clipped video again and answer
the questions to the adjusted WoC questionnaire.

Then, participants had to watch the clipped video for the third and final time,
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followed by the RoSAS questionnaire [47]. For participants assigned to a human
actor condition, this was the end of the questionnaire. Participants in the robot con-
ditions were additionally shown the affinity and attitude questions after the RoSAS
questions.

4.5. Results

4.5.1. Recognition of the Coping Styles

In this section, we analyse what coping styles participants actually perceived/ recog-
nised within our modelled styles. An initial 7x2x2 MANOVA examined the recognition
of the coping styles as dependent variables (the variables copings¢yerype Count).
Independent variables were: (1) the seven modelled coping styles, (2) the actor
type (human versus robot) and (3) the scenario (to check for a potential influence
of settings health versus museum).

Significant main effects were found for modelled coping style (Wilks’ lamba =
p < 0.0005), actor type (Wilks’ lamba = p < 0.0005), and scenario (Wilks’ lamba =
p < 0.0005). There was also a significant effect for coping style x actor type (Wilks’
lamba = p < 0.0005) and coping style x scenario (Wilks’ lamba = p < 0.0005).

We put the significance level of the following between-subject effects at
p=0.05/7 ~ 0.007 using a Bonferonni correction for the seven dependent variables
(one for the recognition of each style, i.e., the variables copingstyierype Count).
Modelled coping style significantly influenced the recognition of all seven cop-
ing styles (p < 0.0005 for all seven dependent variables). Actor type signif-
icantly influenced the recognition of escape avoidance (p<0.0005) and of self-
controlling (p=0.006). Scenario significantly influenced the recognition of confron-
tive (p=0.006) and of problem-solving (p<0.0005). Finally, there was an interac-
tion effect of actor type and modelled coping style for the recognition of escape-
avoidance (p=0.002); and, there was an interaction effect of modelled coping
style and scenario on the recognition of confrontive (p<0.0005), self-controlling
(p=0.003), accepting-responsibility (p<0.0005) and problem-solving (p=0.006).
There were no further significant effects.

For the remainder of this section, we first provide an extensive post-hoc analyses
of how the modelled styles were recognised across the actor types. Then, we
discuss how the different human actors influenced the recognition as a test for the
reliability of our findings across different actors. Then, we discuss the differences
between the different scenarios (health versus museum).

Coping Style Recognition Across the Modelled Coping Styles

For every modelled coping style, we gather the fingerprint it has with regards to the
recognition (copingseyierype Count). For every modelled style, and for every style
type (7x7), we test whether the perception of the style type is significantly higher
than the average perception of the other 6 style types. In addition, we do this for
both actor types (human/ robot) individually. This results in tables 4.3.4.3a (human
actor) and 4.3.4.3b (robot actor). We use a paired samples t-test to compare the
perception of a particular style with the average perception of the other 6 styles as
baseline. Table 4.3 shows the results of this analyses. Dark green coloured cells are
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Figure 4.2: Histograms of the means of the recognition of the different coping styles in the differently
modelled styles.

Recognition
Modelled Style Confrontive Distancing Self-Controlling | Accepting- Escape- Problem- Possitive-
Responsibility |Avoidance  [Solving Reappraisal
Confrontive
Distancing
e ROl R e i
Self-Controlling
T r e
Accepting-
Resznsiiility e B | . | -’\_ . . [ B
Escape-Avoidance
Problem-Solving .
H el - e -
Possitive-
Reappraisal e B IR ™ =l BN

Note: Rows show the differently modelled styles. Columns show the extent to which participants recog-
nised a style in the modelled style. The blue bars show the extent to which the style was recognised
for the human behaviour, the red one for the robot behaviour. The orange/ red symbol (—) means
there is a significant difference between the actor types. (I.e., the recognition of escape-avoidance in
the styles modelled as distancing, accepting-responsibility, and escape-avoidance is significantly higher
for the human versus the robot actor type.)

significantly above, and dark red cells are significantly below the respective base-
lines. Light green and red cells are not significant when considering a Bonferonni
correction (significance level at p = 0.05/7 ~ 0.007), but would be when testing as
LSD (significance level at p = 0.05) *. Grey cells are not significant. Tables showing
the exact t and p values can be found in appendix C of this chapter.

When looking at table 4.3.4.3a, we see that five of the seven modelled styles are
properly recognised. In addition, participants often perceived one additional style
simultaneously (i.e., recognised another style in the modelled style). For example,
the confrontive style is significantly recognised as such. In addition, it is also recog-
nised as problem-solving. The table further shows that the positive-reappraisal
style is not recognised and distancing is poorly recognised (borderline not signifi-
cant for human conditions and borderline significant for robot conditions). When
we look at table 4.3.4.3b, then we see that for the robot actor conditions four of the
seven styles are significantly recognised as such. Besides positive-reappraisal and

IThroughout the chapter, we report when an analyses was significant at the LSD level; however, we
only consider correlations significant when they are so also after a Bonferonni correction.
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distancing, participants were not able to recognise escape-avoidance in the robot
conditions.

Table 4.3: Means and Standard Deviations for style recognition.

(a) Human Actor: Means and Standard Deviations

Recognition

Modelled Style c- " b """ "sC”"""AR"TT"EATT"PS T TPR ™"
] M=3.2,
Confrontive (C) STD=2.4
i , M=2.5, M=3.6, M=2.5, M=2.6, M=2.2,
Distancing (D) STD=2.0  STD=1.9 STD=2.1 STD=2.5 STD=2.2
Self-Controlling (5-C) M=3.8, M=3.0, M=2.9,
STD=1.7 STD=2.0 STD=2.1
Accepting- M=3.5,
Responsibility (A-R) STD=2.3
Escape-Avoidance M=1.9, M=1.6,
(E-A) STD=2.0 STD=2.3
Problem-Solving (P- M=3.2, M=3.8, M=3.2,
S) STD=1.9 STD=2.2 STD=2.5
Possitive-Reappraisal M=3.2, M=2.1,
(P-R) STD=2.6  STD=2.1
(b) Robot Actor: Mean and Standard Deviation
Modelled Style Recognition_

c- -~~~ ~"b" """ "sC"""AR T "EA " "PS T PR ™"
Confrontive (C) 1

Distancing (D)
elf-Controlling

Accepting-
Responsibility (A-R)
Escape-Avoidance
(E-A)
Problem-Solving (P-
S)
Possitive-Reappraisal
(P-R)

Note: grey cells are not significant, light red and green cells are significant as LSD (p < 0.05) but not
after a Bonferonni correction (p <~ 0.007), dark red and green cells are significant. Green cells show a
mean above-, and red cells show a mean below the baseline. Where baseline is the average of the other
styles. E.g., the confrontive style is significantly recognised as confrontive compared to the average of
the other six styles.

To get a clearer view on the specific interaction effects of coping style and actor
type (human versus robot), we did some final t-tests. For every modelled style, we
conducted seven independent-samples t-tests to compare copingsiyierype Count
for the human actor conditions and the robot actor conditions. The recognition of
escape-avoidance was influenced by actor type in the distancing (D), accepting-
responsibility (A-R), and escape-avoidance (E-A) conditions. These styles were all
perceived to have less escape-avoidance in them in the robot compared to the hu-
man conditions. These results indicate that escape-avoidance as coping style was
not perceived in the robot behaviour. Or in other words, robot behaviour was signif-
icantly less attributed with escape-avoidance as underlying behavioural motivator.
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Moderating Variable; Human Actor

In our following test, we ignore the participants assigned to a robot condition
and focus on those assigned to one of the two types of human actor conditions.
We test whether the human actor variable influences the recognition. We did a
7x2x2 MANOVA using the seven copinggeyierypeCount as dependent variables;
and, coping style, human actor, and scenario as independent variables. Human
actor showed no significant main effect nor a significant interaction effect with one
of the other variables. This gives us confidence that results regarding coping style
recognition from our study are stable across different human actors and thus reli-
able.

Moderating Variable; Scenario

Next, we tested the effects of scenario (health versus museum; see table 4.4). We
do not go through all differences individually but rather focus on the differences
that we believe most noteworthy. Scenario has an effect on the results in many of
the conditions (C, A-R, E-A, P-S). It is clear that context needs to be considered
when testing the subjective recognition of the different styles. Arguably the most
critical biases are when scenario influences the extent to which the modelled style
itself is recognised (e.g., style C recognised as C or style A-R recognised as A-R).
The style C and A-R were less well recognised in the museum conditions.

Table 4.4: Scenario Influences for Coping Style Recognition

Modelled Style C- "~ "D~ " 75C "~ ‘R%ggmtlgn‘ EA~""PS " "PR "~

Confrontive (C) - - - - - -
Distancing (D)
Self-Controlling (S-C)
Accepting-
Responsibility (A-R)
Escape-Avoidance
(E-A)
Problem-Solving (P-
S)
Possitive-Reappraisal
(P-R)

Note: grey cells are not significant, light red cells are significant as LSD (p < 0.05) but not after a

Bonferonni correction (p <~ 0.007), dark red cells are significant and show what conditions score a

higher recognition

4.5.2. Emotionality of Explanations

In the previous section, we discussed the recognition of coping styles in the be-
haviours. In this section, we discuss the participant’s explanation of the behaviour.
Particularly, we discuss the emotionality of the explanations given (research ques-
tion 2). We did a 7x2x2 ANOVA using emotionality as dependent variable; and,
coping style, actor type and scenario as independent variables. The main effect for
modelled coping style was not significant. The main effect for actor type was signif-
icant (F(1,519) = 10.134,p = 0.002). The main effect for scenario was significant
(F(1,519) = 11.477,p = 0.001). Furthermore, the interaction of modelled coping
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Table 4.5: Emotionality of Explanations per Actor Type

Emotionality score (by LIWC) Percentage of explanations

Human actor type | Robot actor type
0 21.3% 27.6%
>0, <=8 27.6% 29.7%
>8, <=15 29.1% 33.7%
>15 22% 9%

style and scenario was significant (F(6,519) = 2.795,p = 0.011). First, we discuss
the main effect of Actor Type more thoroughly. Then, we discuss the coping styles
where scenario had an significant effect.

An independent-samples t-test was conducted to compare emotionality of expla-
nation in the human actor type conditions and the robot actor type conditions. There
was a significant difference in the means for human actor type (M = 9.44,5D =
8.08) and robot actor type (M = 7.37,SD = 6.78); t(545) = 3.256,p = 0.001. In
general, participants explained the behaviour of human actor types with significantly
more emotionality than the behaviour of the robot actor type. The Cohen’s d effect
size measure is 0.278, i.e., humans are explained with ~ 0.28 deviations more emo-
tionality than robots. Table 4.5 shows some further descriptives. These statistics
can be compared with the example explanations in table 4.2 for interpretation.

Secondly, several independent-samples t-tests were conducted to compare emo-
tionality of explanation in the health scenario conditions and the museum scenario
conditions across the coping styles. The effect of scenario was significant in the
confrontive, escape-avoidance, and problem-solving conditions. In the confron-
tive conditions, there was a significant difference in the means for health sce-
nario (M = 5.95,5D = 6.97) and museum scenario (M = 10.90,SD = 7.10);
t(79) = —3.158,p = 0.002. In the escape-avoidance conditions, there was a
significant difference in the means for health scenario (M = 6.26,SD = 7.18)
and museum scenario (M = 11.37,SD = 8.80); t(69) = —2.692,p = 0.009. In
the problem-solving conditions, there was a significant difference in the means for
health scenario (M = 3.89,SD = 4.71) and museum scenario (M = 9.10,SD = 7.98);
t(76) = —3.465,p = 0.001. For these three modelled coping styles, participants ex-
plained the behaviour in the museum scenario with significantly more emotionality
than the behaviour in the health scenario. The Cohen’s d effect size measure is
0.278, i.e., museum scenarios were explained with ~ —0.29 deviations more emo-
tionality than health scenarios.

Moderating Variable; Human Actor

In our following test, we ignore the participants assigned to a robot condition and
focus on those assigned to one of the two types of human actor conditions. We
test whether the human actor variable influences the recognition. We did a 7x2x2
ANOVA using emotionality as dependent variable; and, coping style, human actor,
and scenario as independent variables. Human actor showed no significant main
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effect nor a significant interaction effect with one of the other variables. This gives
us confidence that results regarding emotionality from our study are stable across
different human actors and thus reliable.

Correlation Between Recognised Coping Styles and Emotionality
There was no main effect of modelled coping style on emotionality of explanations.
However, from our findings in the previous section 4.5.1, we can conclude that
the modelled styles generally are perceived as several coping styles simultaneously.
Note also that people indeed often cope in several styles simultaneously [16, 39,
41] as discussed in the related work section 4.2.2. For example, the conversation
modelled to have a confrontive coping response is also perceived to have a problem-
solving coping response (see tables 4.3a and 4.3b). In this subsection, we show that
perceived coping style does significantly correlate with emotionality of explanation.
A simple linear regression was calculated to predict emotionality of explana-
tions based on copingstyierype Count (With all seven coping style types). We used
the backward elimination method. A significant regression was found (F(2,544) =
7.590,p = .001, with an R%0£0.027). Participant’s emotionality of explanation in-
creases when copingy_,Count increases and decreases when copingp_gCount
increases. Note that R? is only 0.027. This means that only 2.7% of the variance in
emotionality can be explained by this model. This is not much. However, we will
discuss in section 4.6 that we can not expect too large effect sizes for this test.
Next, we did two separate linear regressions to predict emotionality of expla-
nations based on copinggtyierype Count controlling for actor type, i.e., one for the
human- and one for the robot actor type. A simple linear regression considering only
cases with a human actor type was calculated to predict emotionality of explanations
based on copingstyierype Count. Just like before, we used the backward elimina-
tion method. A significant regression was found (F(3,264) = 7.071,p < .000, with
an R?0f0.074). Table 4.6 shows the model. Participant’s emotionality of expla-
nation increases when copingg_,Count increases and when coping,_gCount in-
creases. Participant’s emotionality of explanation decreases when copingp_gCount
increases. We can see that when focusing solely on human actor type conditions,
the model could explain more variation in the emotionality of explanations (i.e., the
value of R? which was 7.4%). In contrast, a simple linear regression (considering
only cases with a robot actor type) was calculated to predict emotionality of expla-
nations based on copingstyierype Count. No significant regression was found, the
model explained 0% of the variance in the participant’s emotionality of explanation.
These results indicate that coping style indeed correlates with emotionality of
explanation when explaining human behaviour. However, for explaining robot be-
haviour, we found no correlation.

4.5.3. Perception of Coping Styles

Finally, for research question 3.3, We test the effect of actor type and (modelled)
coping style on the perception in terms of naturalness, appropriateness, warmth,
competence, and discomfort. We conducted 5, 7x2x2 MANOVA's (5 dependent
variables, 7 modelled coping styles, 2 actor types). A Bonferonni correction puts
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Table 4.6: Linear regression model to predict emotionality of explanation based on perceived coping
style for the human actor type only

95% Confidence Interval for Beta
Beta Lower Bound | Upper Bound t-value | p-value
Intercept 7.57 4.41 10.74 4.710 <0.0005
Accepting-Responsibility | 0.57 0.07 1.07 2.228 0.027
Escape-Avoidance 0.60 0.13 1.06 2.507 0.013
Problem-Solving -0.76 | -1.22 -0.30 -3.259 | 0.001

the significance level at p <= .01.

Coping style had a significant influence on all metrics (Wilks’ Lamba
p=< 0.0005): naturalness (F(6,519)=11.998, p<.0005), appropriateness
(F(6,519)=4.243, p<.0005), warmth (F(6,519)=3.880, p<.001), competence
(F(6,519)=11.973, p<.0005), and discomfort (F(6,519)=5.596, p<.0005).

Actor type had a significant influence (Wilks’ Lamba p=< 0.0005). With specific
effects on naturalness (F(1,519)=14.831, p<.0005 ), competence (F(1,519)=8.976,
p=.003), and discomfort (F(1,519)=16.485, p<.0005), but not on appropriateness,
and warmth.

Scenario had a significant influence (Wilks’ Lamba p=< 0.0005). With
specific effects on naturalness (F(1,519)=28.384, p<.0005), competence
(F(1,519)=15.673, p<.0005), and discomfort (F(1,519)=14.418, p<.0005), but not
on appropriateness and warmth.

Furthermore, there were some interaction effects. The interaction between
actor type and coping style was significant (Wilks’ Lamba p=< 0.009). There was
an effect on warmth (F(6,519)=2.867, p=.009) and competence (F(6,519)=3.630,
p=.002), but not on naturalness, appropriateness, and discomfort. The interaction
between scenario and coping style was significant (Wilks’ Lamba p=< 0.0005).
There was an effect on naturalness (F(6,519)=5.583, p<.0005), appropriateness
(F(6,519)=4.764, p<.0005), and competence (F(6,519)=4.169, p<.0005), but not
on warmth and discomfort. The interaction between scenario and actor type was
significant (Wilks’ Lamba p=< 0.021). However, there were no specific effects found
here. Finally, there was no effect of the interaction for coping style times actor type
times scenario.

Figure 4.3 shows box-plots of the perception of the coping styles. Robots were
perceived more positively on three metrics (naturalness of the behaviours, com-
petence of the actor, and discomfort (opposite effect) imposed by the actor). Ad-
ditionally, we can see that accepting-responsibility and escape-avoidance are less
positively perceived than the other coping styles in general. However, these styles
are much more positive in the robot conditions.

Moderating Variable; Human Actor

In our following test, we ignore the participants assigned to a robot condition and
focus on those assigned to one of the two types of human actor conditions. We
test whether the human actor variable influences the recognition. We did a 7x2x2
MANOVA using the perception in terms of naturalness, appropriateness, warmth,
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Figure 4.3: Perception of the coping styles in terms of naturaleness, appropriateness, warmth, compe-
tence, and discomfort across the coping styles and actor types

competence, and discomfort as dependent variable; and, coping style, human actor,
and scenario as independent variables. Human actor showed no significant main
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effect nor a significant interaction effect with one of the other variables. This gives
us confidence that results regarding perception from our study are stable across
different human actors and thus reliable.

4.6. Discussion

In the previous section, we looked at (1) the recognition of coping styles; (2) the
emotionality of the participants’ explanations; and (3) the perception of the coping
styles in terms naturalness, appropriateness, warmth, competence, and discomfort.
In this section, we discuss these findings.

Coping Style Recognition

We found that most coping styles were recognised in Robin’s behaviour regardless
of actor type. The distancing style was not strongly recognised for either humans
or robots. The positive-reappraisal style was not recognised at all. In general,
coping styles can be divided in emotion-based coping and problem-based coping
[16]. Emotion-based coping (D, A-R, E-A, P-R) focuses primarily on regulating the
negative feeling of distress caused by the situation. Problem-based coping (C, S-
C, P-S) focuses on dealing with the situation to address the cause of the distress.
Especially distancing and positive-reappraisal focus strongly on the more internal
processes, which makes it understandable that these were harder to recognise. The
problem-based coping styles were recognised more clearly as can be seen in table
4.3.

Interestingly, escape-avoidance was recognised for the human actor type but
not at all for the robot actor type. Looking specifically at the biases imposed by
actor type (figure 4.2, we can see that people perceive significantly less escape-
avoidance in robot behaviour than in human behaviour). This has implications for
human-robot interaction. We simply do not expect robots to deal with problems by
trying to get away from them. Programming a robot to behave in that way might
not be understood by people. When developing interaction models for when the
robot is unable to solve a problem, then we must adopt different strategies.

Emotionality of Explanations

Besides coping style recognition, we gathered unrestricted spontaneous people’s
explanations of the behaviours. Such explanations provide insights in people’s men-
tal state ascription imposed on behaviour [8].

Our results indicate that people use emotions when explaining the behaviours.
We tested the emotionality depending on coping style and on actor type. Actor type
had an influence on the emotionality of the explanations. People did use emotions
when explaining robot behaviour, but they used less emotions than for explaining
the human behaviour.

Modelled coping style did not predict emotionality. However, we did find a
correlation between perceived coping style and emotionality of explanations. This
correlation occurred for the human actor type, but not for the robot actor type. We
propose a possible explanation for this correlation in our findings. Perhaps there is
some aspect of the behaviour, that causes one to recognise escape-avoidance and
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that causes one to ascribe emotions to the behaviour, that people did not ascribe to
the robot but that they did ascribe to the humans. For example, escape-avoidance
is associated with having ‘hopes and whishes’ [16, 41]. It is possible that this is
what impacts recognition of escape-avoidance as well as emotionality of the expla-
nations. A follow-up study could be to test the influence of hopes and wishes (rather
than coping style) on emotionality using a similar setup as used this study. One can
define and validate behaviours that correspond with a low versus high amount of
hopes and wishes ascribed to it, have a human versus robot actor type as between-
subjects control, and measure the emotionality of participants’ explanations of the
behaviours.

There was a significant correlation between perceived coping style and emo-
tionality of the explanations for the human actor type. However, the R? was quite
small (7.4% of the variance could be explained with the model). Still, we should
not expect this value to be much higher. First, there was no main effect of mod-
elled coping style on emotionality and there was an effect of modelled coping style
on perceived/ recognised coping style. This already implies that perceived coping
style is unlikely to have a strong correlation with emotionality. Furthermore, ‘when
people use emotions in explanations’ is very much an unsolved problem in social
sciences as well [11, 14, 27]. If there were strong straightforward correlations then
earlier work would have already found and reported these.

In summary, participants recognised the coping styles within the robots, and
participants used emotions to explain the robot behaviour. However, the percep-
tion of the coping style in the robot behaviour did not correlate with the emotionality
of the resulting explanation of the behaviour. People are able to recognise these
emotional behaviours in robots, and people attribute emotions to a robot’s under-
lying motivations. However, the recognition did not impact the emotionality of the
explanations. These results imply that people attribute mental states and motiva-
tions differently to robots than they do for humans. Similar to nuance differences
found in related studies on anthropomorphism [29, 30, 44]. Our results indicate
that people’s estimate of what emotions cause a robot’s behaviour are independent
of the robot’s coping style for stressful situations.

Perception of the Behaviour

We found that the behaviours were perceived more positively for the robots than
for the humans in terms of naturalness of the behaviours, competence of the ac-
tor, and discomfort (opposite effect) imposed by the actor. This was not what we
expected. We provide several possible explanations for this finding. It might be a
novelty effect. People are initially more positive about the robot because they find
it an interesting new type of entity [1, 48, 49]. In that case, the novelty effect will
gradually wear off. A second explanation is that people have lower expectations of
the robot in these scenarios. This would cause them to be more positive about the
robot’s behaviour [50]. Finally, maybe people might feel more comfortable with a
robotic support in these specific scenarios. For example, it has been proposed peo-
ple might be more comfortable sharing health-related issues with a robotic health
coach [49].
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There were also some interaction effects. Escape-avoidance was perceived pos-
itively for robots but not for humans. So the modelled behaviour worked in the
stressful encounter. However, this does not imply that escape-avoidance should be
modelled in robots. In fact, our results imply the opposite. Designers of humanoid
robots must take the user’s mental models into account as well as the social cues
that robots emit [45]. If escape-avoidance is not recognised, then modelling be-
haviour in this style can cause unexpected results. Participant’s assessment of the
behaviour was independent of the robots motivations. However, we should strive
for transparency in a robot’s intentions [9]. People predict robot behaviour and
frame their interaction based on their mental models [29, 45]. We must ensure
that these expectations are aligned.

4.6.1. Limitations

Participants of our study were citizens from the united states of America. Our
results our therefore tested within and for the English language. There might be
differences across languages for the emotionality of the explanations. There might
even be cultural differences, for example, British people might differ somewhat
from our population. In addition, we recruited participants via Amazon Mechanical
Turk. Many people do mTurk studies for some additional income which biases the
distribution of people that would have done our study. Another limiting factor is that
we chose a particular humanoid robot (the Pepper robot from Softbank). There
might be subtle differences on all our measures when testing this on a different
platform. Finally, we chose to have participants type the explanations rather than
speak them out loud. Typing made gathering and analysing the data much less
error prone. However, there might be differences in the explanations when they
are given in another way. For example, spoken explanations might be longer than
types explanations if the participants finds typing less convinient than talking.

4.6.2. Implications for Robot Self-Explanations
Next, in this discussion we want to address the possibility to use people’s explana-
tions of robot behaviour as input for eXplainable Artificial Intelligence (XAI). This
is an important current topic in human robot interaction given the importance of
transparency on trust and comprehension [4, 20, 32, 51], and the appearance of
the recent GDPR [23]. For humans, explanations by third parties are not the same
as self-explanations; however, there are similarities in the types and frequencies of
mental constructs (for example, beliefs, goals, emotions) used [11, 52]. The usage
of beliefs and especially goals as explanations has been widely tested in the XAI
community [3, 6, 7, 12, 13]. However, it has been proposed that considering emo-
tions might be required for explainable agents like robots [15]. When considering
our findings as input for XAI, then our results confirm that the use of emotions must
be considered for explaining robot behaviour. Whether this is directly as part of self-
explanations as in [43], or the expression as part of a transparency mechanism as
in [42], or both, remains an open question though.

Our results indicated the use of emotions in explanations for robot behaviour is
lower than that for human behaviour. Furthermore, our results show that the emo-
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tionality is stable across different styles to cope with distressful encounters. This
implies the task is at least slightly easier for robot designers. Some emotionality
in robot self-explanations seems necessary, but in a less involved manner than for
humans. An important follow-up study would be to let the robot self-explain the
behaviours modelled in this study using the exact explanations as given by the par-
ticipants of this study and then measure the effect (naturalness/ appropriateness/
warmth/ competence/ discomfort) on other participants.

4.7. Conclusion

In this chapter, we investigated people’s perception of robot versus human be-
haviour. The behaviours were modelled to represent several coping styles from lit-
erature [41]. We measured (1) whether people could recognise the coping styles;
(2) what spontanious unrestricted explanations people give for the behaviour; and
(3) how positive and accepting people were towards the behaviour (i.e., natural-
ness, appropriateness, warmth, competence, and discomfort). For all these out-
comes we considered the influence of the actor type (human versus robot) and
scenario (health versus museum).

We found that people did not recognise escape-avoidance in robot behaviour.
Robot designers must take this into account. Even though the behaviour was per-
ceived as positive, we conclude that designers of robot behaviour should take extra
care when implementing escape-avoidance like behaviours because people do not
recognise them in robots. When the robot shows behaviours that do not match
a user’s expectations then users might become increasingly aware that they are
dealing with a programmed machine rather than an actual intentional agent (i.e.,
breaking the illusion of life [53]). Misaligned expectations can cause users to quit
the interaction [50].

XAI is indeed often based on how people explain behaviour amongst each other
[9, 12]. How people explain behaviour can serve as input for eXplainable AI (XAI)
[8, 17] as well. Our work shows that emotions in robot self-explanations seems
necessary, but in a less involved manner than for humans, and verifies that further
research on this topic is needed.

Our main finding is that we show that, and shed light on what way, people use
emotions when explaining robot behaviour. They do so with less frequency then
they do for human behaviour. Still, only about 1/4th of the explanations is devoid of
any emotionality when analysing with the LIWC sentiment miner (about 1/5th for
the human behaviour explanations). Furthermore, we found a difference in what
causes people to explain human behaviour with emotions and what causes people
to explain robot behaviour with emotions. The perception of coping style correlates
with the emotionality of explanations when people explain human behaviour, but
not when people explain robot behaviour.
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Cognitive agent programming frameworks facilitate the development of in-
telligent agents like robots and avatars. By adding a computational model
of emotion to such a framework, one can program agents capable of using
and reasoning over emotions. Computational models of emotion are gener-
ally based on cognitive appraisal theory; however, these theories introduce a
large set of appraisal processes, which are not specified in enough detail for
unambiguous implementation in cognitive agent programming frameworks.
We present CAAF (Cognitive Affective Agent programming Framework), a
framework based on the belief-desire theory of emotions (BDTE), that enables
the computation of emotions for cognitive agents (i.e., making them cognitive
affective agents). In this chapter we bridge the remaining gap between BDTE
and cognitive agent programming frameworks. We conclude that CAAF mod-
els consistent, domain independent emotions for cognitive agent program-
ming.

Parts of this chapter have been published in International Conference on Intelligent Virtual Agents 2019

(1]
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5.1. Introduction

Interaction with intelligent agents is facilitated by providing such agents with affec-
tive abilities. For example, affective abilities in intelligent agents have been applied
to facilitate entertainment [2, 3], to make an agent more likable for the user [4],
to get empathic reactions from the user [5], and to create the so-called the illusion
of life [6, 7], where characters are modelled to appear more life-like.

Cognitive agents can be programmed in frameworks like, e.g., GOAL [8], Jadex
[9], or Jason [10]. A cognitive agent is an autonomous agent that perceives its
environment through sensors and acts upon that environment with actuators [11].
It does so based on its beliefs, desires and intentions. Cognitive agents have a
mental state and a reasoning cycle (see Figure 5.1). The mental state consists of
beliefs and desires. Beliefs are the agent’s representation of its environment. The
agent can believe it is walking down the street, or that it is raining outside. Desires
are things the agent wants to be true. For example, the agent can want to have
an umbrella. The intention to get an umbrella reflects the agent’s commitment
to achieve that desire. After sensing percepts from the environment, the agent
updates its mental state. Based on its beliefs, desires, and intentions, the agent
reasons about its next action. The environment can change by itself, in response to
an action of the agent, or actions from other agents that are situated in the same
environment; thus, the agent may not always be certain of the exact state of affairs
in its environment.

Agent

Updatesof | | Choose next
mental state Mental state action

v

Environment

Figure 5.1: The reasoning cycle of a cognitive agent.

By adding a computational model of emotion to cognitive agent programming
frameworks, one can program intelligent agents capable of using and reasoning
over emotions. Computational models of emotion are usually based on cognitive
appraisal theories [12]. Cognitive appraisal theory proposes that emotions are con-
sequences of cognitive evaluations (appraisals), relating the event to an individual’s
desires. For example, one is happy because one believes something to be true, and
desires this to be true.

However, cognitive appraisal theories [13—15] typically introduce a large set of
appraisal processes, which are not specified in enough detail for unambiguous im-
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plementation in cognitive agent programming frameworks. Psychological theories
are developed to explain emotions for humans. These theories are thus not obli-
gated to provide worked out computational specifications for the appraisals. Here
we address this problem by integrating a computational model of the belief-desire
theory of emotions (BDTE) [16, 17] with a BDI (belief-desire-intention)-based, cog-
nitive agent programming framework. We present CAAF, a Cognitive Affective Agent
programming Framework. Emotions are computed based on BDTE for two reasons:
1) because it is conceptually close to the BDI agent framework; and 2) it does not
introduce a large set of appraisals that are difficult to describe in a computational
manner.

The two main contributions of this work are: 1) We define semantics for the
programming constructs of cognitive agents, formalizing how an agent updates its
mental state, and how emotions are computed. 2) We show when the agent should
minimally (re)appraise, by proving that, under some circumstances, the compu-
tation of emotions stays consistent when reducing the frequency with which the
agent’s emotions are recomputed, thereby increasing the efficiency of the compu-
tation.

5.2. Motivation & Related Work

In this article, we focus on computational models of emotion based on cognitive ap-
praisal theory. A computational model of emotion describes the eliciting conditions
for emotions, often including corresponding intensity. A popular appraisal theory
among computer scientists, is the OCC-model [14, 18, 19]. The appraisal theory by
Lazarus [13], and the sequential check theory (SCT) by Scherer [15, 20] have also
found some attention among computer scientists. For example, the computational
model EMA [21, 22] is mainly based on the appraisal theory by Lazarus [13], where
the link between appraisal and coping is emphasized. EMA models how emotions
develop and influence each other. For example, sadness can turn into anger at the
responsible source. In [23] a formal notation for the declarative semantics of the
structure of appraisal is proposed. Using this, a computational model of emotion is
developed based on SCT.

The OCC model is the most implemented cognitive appraisal theory. Compu-
tational models based on the OCC model include AR [24], EM [7], FLAME[25],
FearNot! [5], FAtIMA [26], and GAMYGDALA [2]. In AR [24] agents judge events
based on their pleasantness, and whether they are confirmed, unconfirmed, or
disconfirmed. For example, sadness is achieved when an agent confirms an un-
pleasant event. In EM [7] the aim is to build ‘believable agents’, agents that appear
emotional and engage in social interactions. The EM architecture facilitates artists
to model emotional agents in their applications. In FLAME the desirability of an
event is modelled with fuzzy sets. For example, they define a fuzzy set ‘undesir-
able event’. Individual events are then partly a member of this set, the amount of
membership is adaptively learned over time. FearNot! is an application that helps
children to cope with bullying. The agents use planning and expected utility to
derive proper emotional responses. Currently the emotional responses in FearNot
are triggered with a more enhanced model FAtiMA. FAtIMA divides the appraisal
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CAAF

CBDTE

!

BDTE CAF

Figure 5.2: CAAF is build upon CBDTE [17] and CAFs (Cognitive Agent programming Frameworks).
With CAAF, we close the gap between CBDTE and CAFs, and provide a fully worked out, computational
account of BDTE.

into different modules, all responsible for a separate part of the computation. This
enables implementing such modules independently. GAMYGDALA is an emotion
engine that can be added to games by annotating events with their influence on
the beliefs and desires of different characters.

An underlying problem with many appraisal theories is that cognitive agent pro-
gramming frameworks lack the required knowledge representations to compute
most appraisal processes. For example, a computational model of emotion that
aims to describe the OCC-model in total [14], including emotion intensities, needs
to model 12 different appraisals. For many of these appraisals it is unclear how they
should be implemented, e.g., deservingness, sense of reality, or proximity. Other
appraisals, e.g., praiseworthiness, require complex constructs like norms and values
to be represented by the agent. SCT [15, 20] additionally introduces multiple layers
in the appraisal process. An event is first analysed in a reactive, bodily responsive,
type of way, and later analysed with increasingly nuanced cognitive processes. The
computational model of emotion, EMA [22], is mainly based on the appraisal the-
ory by Lazarus [13]. EMA [22] aims to simplify the appraisal processes, introduced
by the underlying appraisal theories, and models them from a knowledge repre-
sentation consisting of beliefs, desires, intentions, and (decision-theoretic) plans.
This is conceptually closer to cognitive agent programming frameworks; however,
though these frameworks are suited for programming decision-theoretic plans, they
do not always do so. This would thus put constraints on the agent programming
frameworks for which we want to compute emotions.

The appraisals and knowledge representation proposed by the belief-desire the-
ory of emotion (BDTE) [16, 17] are more compatible with cognitive agent program-
ming frameworks. In BDTE, emotions are derived only from beliefs and desires. In
its minimal form BDTE requires only two appraisals. This makes BDTE more suitable
as a basis for simulated emotions for such frameworks.

In this chapter, we integrate a computational model of BDTE with a cognitive
agent programming framework (CAF), hence developing CAAF. In [17], Reisenzein
extended BDTE to a computational form (CBDTE). CBDTE has been referred to as
a computational model of emotion [12]; however, Reisenzein acknowledges that
the motivation behind developing CBDTE was not to develop a worked-out com-
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putational model, but rather to clarify aspects of BDTE [17]. Here, we build upon
CBDTE, and close the gap between CAFs and CBDTE (see figure 5.2). Thus, this
chapter presents a full computational account of BDTE, and formalizes how a cog-
nitive agent should (efficiently) compute emotions.

5.3. A Model of Emotion for Cognitive Agent

Programming Frameworks

In this Section we present CAAF. We present the formal semantics needed to in-
tegrate BDTE with cognitive agent programming. Further, based on this formal
system we show in Section 4 that emotions can be computed in an efficient way
using the model presented here.

5.3.1. Semantics for a Basic Knowledge Representation

& BDTE
The mental state of an agent requires a knowledge representation. The agent
needs to represent states of affairs, to store these representations, and to change
the stored representations.

Representing the states of affairs is achieved with a language. This language
needs to define a syntax of well-formed formulae. We write ¢ € L to denote that
¢ is a formula of language £. Here, a formula is a single proposition that contains
information about a state of affairs, i.e., it is a sentence that expresses whether a
state of affairs is true (or not). We do not define how logical connectives work in
this language, i.e., symbols that connect propositions such that the sense of the
compound proposition depends only on the original sentences (for example, ¢, and
@,). The contribution of this chapter is to define semantics for the programming
constructs of cognitive agents, formalizing how an agent updates its mental state,
and how emotions are computed.

Storing states of affairs is done with a set. The belief, desire and emotion base
are represented in the semantics as a set of formulae, mapped to a value [0, 1].
These bases are a subset of some language £, but contain further information as
well. A belief base has the form: X : (C : £ — [0,1]), where C is mapping of a
formula ¢ to (exactly one) certainty value between [0, 1]. We denote b{p - c} € X
for ‘the agent believes ¢ with certainty ¢". Furthermore, we add the constraint that
if C contains the mappings b{p — c} and b{-¢ — c'}, then ¢ = 1—¢’. A desire base
hastheform I : (U : £ - [0, 1]), where U is mapping that maps formula ¢ to a utility
value between [0, 1]. We denote d{¢ — c} € T for ‘the agent desires ¢ with utility
(strength of desire) u'. Finally an emotion base has the form Y : (I : Lx 0 — [0, 1]),
where 6 € 0 is an emotion label (happy, unhappy, hope, fear, surprise, relieve, or
disappointment), and I maps formula ¢ € £ and label 6 € 6 to an intensity value
between [0, 1]. We denote e{px8 — i} € Y for ‘the agent has emotion 6 (concerning
formula ¢) with intensity i". Note that traditional boolean propositional logic (where
formulae are either true or false, rather than mapped to a value between [0,1])
would be sufficient for programming cognitive (BDI-based) agents [8]. However,
for the computation of many emotions in BDTE we need values between [0, 1]. For
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example, an agent that applies for a new job cannot feel hope (according to BDTE)
when it only knows if it got the job afterwards. It should reason over the certainty
of getting this job. For example, after having a good job interview. Also note that
the emotions in Y contain a formula, rather than just a label and intensity. With
this we model the apparent directedness of emotions, in line with BDTE [17]. One
is happy about some formula, e.g., ¢ ="I will get a new job".

Changing the knowledge representation is denoted with a combine operator
@. Given some set S and some set T containing a number of formulae, S @ T
denotes an update of S with T. @ is a simple set join, with elements in set T taking
priority over elements in set S, to allow updating of ¢, w and i in S. For all formulae
@ € Sand ¢ € T, the mapping ¢ — n in the resulting set is taken from the set T.
Thus, @ is not symmetric, i.e., SO T #T D S.

Definition 3. (Combine @)
Given some sets S, and T, which contain a number of elements e = {¢ — n}, where
pisaformulag € L, andn a valuen € [0,1]. S @ T is defined as follows:

e€eESPT iff eeT,or(eeSande¢T)

A knowledge representation is a pair (£, @), where L is a language to represent
states of affairs, and @ defines how a set of formulae is updated with another set of
formula. Using our definition of a knowledge representation, we can now formally
define what a mental state of an agent is. We call this initial definition a ‘Simple
Mental State’ because we will expand it later in the chapter.

Definition 4. (Simple Mental State)
A mental state is a pair (Z,T) where X is called a belief base, and T is a desire base.

The aim of the work presented here is to add emotional reasoning to these agent
programming frameworks. The belief-desire theory of emotion (BDTE) [16, 17]
provides a method for computing emotional responses based solely on ones beliefs
and desires. For BDTE we need only the beliefs and desires, before and after an
agent’s update of its mental state. We could imagine that a computation of an
agent program is a sequence of mental states m,, m,,m,, ... BDTE then enables
the computation of an agent’s emotions in a mental state m; by using the belief-
and desire base corresponding to mental states m;_; and m;. Based on BDTE we
can define the inner workings of this function [17].

Definition 5 describes BDTE in a computational manner. This is based on CBDTE
[17]. In function R(Z,2',T,T") - Y (R for Reisenzein’s appraisal [17]), we denote
as the belief base of mental state m;_;, I' as the desire base of mental state m;_;,
¥’ as the belief base in mental state m;, and I as the desire base of mental state
m;. The function R(Z,Z',T, ") computes all new emotions resulting from changes
in the mental state.

Definition 5. (BDTE R)
Given function R(Z,Z',T,T') - Y. Let S be the set containing all ¢ such that b{p - ¢} € £, b{p - c'} € &',

d{p >u}erT,and d{p »u'} e, withc=c',oru=u'. S={@,,.., 0.} If we iterate through s withi = 1.n,
add the following emotions as follows: Y = E; @ E, @ ... ® E,, such that:
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e{p; X happy > u} € E; iff ¢'=1&u>0
e{p; X unhappy - u} € E; iff c'=0&u>0
e{p; x hope > ¢ X u} € E; iff 0<c'<1&u>0
e{p; x fear > (1 —-c')Xu} € E; iff 0<c'<1&u>0
e{p; X surprise > 1 —c} € E; iff =1

e{p; X surprise - c} € E; iff ¢'=0

e{p; xrelief >1—-c}€EE; iff ¢'=1&u>0
e{p; X disappointment - c} € E; iff ¢'=0&u>0

For example, let ¢, ='I got a new job’, b{p,; — 1} € ¥’ (i.e., the agent beliefs
to have gotten a new job), and d{p, — 0.9} €T (i.e., the agent strongly desires to
have gotten a new job), then Definition 5 prescribes e{¢, X happy — 0.9} € Y (i.e,,
the agent is very happy that it got a new job).

With these definitions we already have a framework to implement emotions,
which basically works as proposed in previous work [17]. We might imagine
that the computation of an agent program results in a sequence of mental states
mg, My, My, .... Computing emotions can then be done by computing Y over two
consecutive mental states. However, this approach does not take into account
that emotion intensities decay over time, how to deal with multiple appraisals of
the same emotion label (#), or the fact that you might want to store emotions for
reasoning purposes. Furthermore, computation based on BDTE gives a large set
containing multiple emotions for every formula ¢ the agent has in its mental state,
meaning we need a method to abstract useful information from it.

5.3.2. Closing the Semantic Gap between BDTE and BDI

In this Section we expand the model such that BDTE can be used for agent pro-
gramming in an efficient way, including decay, repeated appraisals, and querying
the emotions. We start with expanding the mental state of an agent with an emo-
tion base. With this we can store the current emotional state of an agent, and
query this when needed.

Definition 6. (Mental State)
A mental state is a triple (Z,T,Y) where X is called a belief base, T is a desire base,
andY is an emotion base.

With an emotion base storing the emotional responses we can now define a
function that gradually decays the intensities of the stored emotions. Function
d(Y, At) is responsible for decaying the emotional state Y over time At. For the
consistency of our model (see Section 5.4) we define At to be zero within one
reasoning cycle of an agent. Between reasoning cycles, At is a function over the
actual system time passed between the start of the previous and current reasoning
cycle. Function decay is a mapping d : Y — Y’, that decreases the intensity i € [0, 1]
for all elements e{p x 0 - i} €Y.

Definition 7. (Decay Function d)
Lete{p x 0 - i} €Y. d is a function d (Y, At) - Y' defined as:

e{p x 8 - f(0,i,At)} € d(Y, At) iff e{lpx0->i}eY
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Where f (8, i, At) is a function that decreases the intensity i, and for all emotions
e € Y the emotion also exists in Y' with a decayed intensity. The function can be
initialized differently for every emotion label 6 € 0. An example of exponential
decay for happy would be: f(happy,i,At) =i —i X At.

We adopt the view in [7] that decay may need different instantiations for differ-
ent emotions, depending on the corresponding emotion label 6 € . For example,
hope and fear may decay slower than surprise. In our model an agent programmer
can adjust the default decay function, for every emotion label independently.

The above defined functions come together in (i.e., are sub-functions of) func-
tion EM. This function is a mapping: EME X EZXTxTxY) > Y.

Definition 8. (Emotion Base Transformer EM)

Let %, T, and Y be a belief base, desire base, and emotion base in some mental
state m. Further, letX’', and dbase’ be the belief base and desire base after some
update on this mental state. Function EM(Z x X' X T xI" x Y) - Y’ computes the
emotion base in this updated mental state as follows:

Y' = d(Y,At) B R, E,T, )

This function is called when the belief base or desire base of an agent change.
This happens through updates. There is a set of build-in updates that act on the
mental state bases of the agent. Updates change the belief and desire bases of the
agent. Whilst performing these updates, the agent will automatically add emotions
to its emotion base Y.

Definition 9. (Mental State Transformer M)

Let ¢ € L, and n € [0,1]. The mental state transformer function M (update, m) -
m’ is @ mapping from built-in updates (update = [insert, adopt, drop]) and mental
states m = (%,T,Y) to mental states as follows:

M (insert(p,n), m)
M (adopt(p,n), m)
M (drop(p), m)

(Z@®{p-n}I,Y)
(ZTre®{p->n}Y)
(T @ {9 - 0},Y)

withY' = EM(Z,X',T,T",Y), where ¥’ is the belief base, and " is the desire base in
the resulting mental state m'.

Mental state bases are defined as sets, thus, if a previous mapping {¢ - n}
exists in the mental state, then the updates defined above overwrite the previ-
ous mapping. In BDTE the claim is made that emotions are subconscious meta-
representations of ones beliefs and desires [17]. In the definition above, we model
this with function EM, which automatically updates the emotions when updating
the beliefs, and desires in the mental state.

Definition 10. (Transition rule)
Let m be a mental state, and u be an update ([insert, adopt, drop]) performed in
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mental state m. The transition relation — is the smallest relation induced by the
following transition rule.
M (u,m) is defined

m l>]V[(u,m)

The execution of an agent as explicated above, results in a computation. A
computation in this context is a list of mental states and corresponding updates,
performed by the agent. The new mental state is derived from the transition rule in
Definition 10. The agent chooses its next update from the set of possible updates
in the current state, this set is filled through the rules defined by the programmer.
The computation starts in the initial mental state of the agent.

Definition 11. (Mental Computation)
A mental computation is a sequence of mental states mgy,uy, mq,uq, My, uy, ... SUCh

that for each i we have that m; 34 m;,, can be derived using the transition rule of
Definition 10.

The emotion update function EM is triggered as part of the Mental State Trans-

former (Definition 9). It is a part of the mapping from m; N m;,,. Emotions are
thus computed after every mental state change of an agent.

Figure 5.1 showed the reasoning cycle of an agent. The mental computation,
defined in Definition 11, operates solely in the ‘updates of mental state” box. This
means that in the model presented here, an agent senses its environment and starts
updating its mental state based on these observations. With these mental state
updates, we now defined how emotions are automatically changed accordingly.
After updating its mental state, the agent can choose a new action to perform in
the environment, which in turn changes the environment. The agent then again
senses the changes in the environment, and the cycle starts anew.

5.3.3. Querying the Emotion Base

Querying the emotion base of an agent is useful. For example, if one wants to know
if the agent is happy then one should inspect the emotion base for formulae about
which the agent is happy. However, a computation based on BDTE gives a large set
containing multiple emotions for every formula ¢ the agent has in its mental state.
We therefore need a function that abstracts over these formulae.

To model this, we define an overall affective state, which summarizes the agent’s
emotions. We compute this affective state with function A. This function computes
abstractions from the emotion base that enable a programmer to, for example,
query the overall happiness of an agent. It summarizes the emotions in some
emotion base Y. It does so by taking all formulae in the emotion base Y, for all
emotion labels 6 € ©, and computing a single intensity from these emotions in Y
concerning the emotion label 6.

Besides the computational argumentation there is also a psychological argu-
mentation to define the affective state. In [27] Reisenzein argues that emotions
have a hedonic tone, different than that of beliefs and desires. It feels a certain
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way to have an emotion, which is essentially different from how a belief or desire
feels. In his own words: “To account for the hedonic tone of emotions in BDTE, one
must assume that ‘emotional’ belief-desire configurations cause a separate mental
state that carries the hedonic tone. [27]"” By means of an affective state we model
this hedonic tone of emotions.

Definition 12. (Affective State Q)
Q is a function, that computes a generalized affective state which summarizes the
emotions e{p x 6 — i} € Y for some emotion label 6 € ©.

Q(8,Y) = log, (Ze{(pX@—)i}EY 2%19)/10

In our model we have implemented Q(6,Y) with a logarithmic function (Log,
(X 2P%19)/10), where we sum over all emotions e{¢ X 6 — i} € Y corresponding to
label 6. Other possible functions might be normal combine: i = I/(I + 1), with
I the summation of all intensities concerning 8), or a simple MAX function (taking
the highest intensity emotion corresponding to 6.

From these functions the logarithmic is computationally speaking slightly less
efficient; however, the function forces the resulting intensity to be as least as large
as the highest value, but takes other values into account. For example, happiness
about three different propositions: ¢, = ‘Getting a new job’, ¢, = ‘Buying a new
car’, and ¢5; = ‘Going out for dinner’, with corresponding intensities: [0.7,0.6,0.3],
will compute to an overall happiness of 0.76 with logarithmic combine, to 0.62 with
normal combine, and to 0.7 with the MAX function.

We do not claim that this is the only correct way to compute the overall affec-
tive state, but rather that an agent programmer requires a summary to efficiently
query the emotion base, and that the here proposed approach will thus help the
programmer.

5.4. Proof of Consistency when Minimizing the
(Re)Appraisal of Emotions

In Section 5.3, we defined the (re)computation of an agent’s emotions to occur
after every mental state update. However, this is not a computationally optimal
approach. In this Section we show how one can optimize this by showing when
an agent should minimally (re)compute its emotions (i.e., when the agent should
(re)appraise).

There are three conditions that should trigger a reappraisal: 1, An agent should
reappraise before querying its emotion base, if it has updated its mental state since
the last reappraisal, since otherwise it would query an outdated emotional state. 2,
An agent should reappraise before a mental state update if the last reappraisal was
in a previous reasoning cycle, otherwise the emotions are not correctly decayed. 3,
An agent should reappraise when it performs a mental state update on a formula
that had already been updated after the last reappraisal, otherwise the previous
update will be lost. Since 1 and 2 directly follow from the formal semantics, we
need only to show that 3 is true. We do so by proving that if we assume that
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updates refer to different formulae, appraisal can be postponed to the last update.
From this one can infer point 3.

Theorem 1. Consistency For Delayed Appraisal

Let uq,u,,.,u, be different mental state updates, with ¢4, ., ..., @, the formulae
these updates refer to respectively. Furthermore, letu’, v, ., u;, be the same mental
state updates; however, for these mental state updates we define the Mental State
Transformer (Definition 9) to delay updating the emotion base untilv;,. Furthermore

let ¢, # @, # ... # ¢,. Consider the following two possible reasoning cycles:

uz uz Un

T'Cl : mo — ml e e 4 mn
! ! !

U ) u, o,

rcy ¢ mog —>my — .. > My

where rc, delays updating the emotion base until update w;,. Under the constraint
that ¢, + @, #+ ... # @, we can derive that m,, = m},.

To show the truth of this claim, let the knowledge bases corresponding to mental
state m; be denoted with, m; = (Z;,T},Y;). Since £ and T are updated normally we
need only to show that Y,, = Y;,. To this end, we first need to define a property of
the definitions. We defined At in function d (decay) to be zero within one reasoning
cycle. Furthermore, d(Y,0) = Y. Due to this, we can ignore decay when comparing
reasoning cycles rc,; and rc,. If we denote E; to be the set of emotions resulting

. . oy uj .
from function R in transition m;_, — m;, then we can write:
-1 L

Y, = d(Yo,0)@DE;
= YZ&DE

Y, = d(Yo®DE;,0) DE;
= YYODE DE;

Yn = Y0®E1®E2®®En

The emotion base resulting from reasoning cycle 2 can be found with the same
definitions. Since the update of the emotion base is delayed, the emotion base
Y;_, = Y,. Furthermore, the computation of new emotions (Definition 5) will con-
sider all updated formulae:

Y, = d(Y,0) ®{E ®E, ® .. D Ey)

Y, DE, DE, D .. E,.

If o # @, # ... # @, then the emotions in sets Ej, ..., E, do not overwrite each
other when added to the emotion bases. Therefore, we can conclude thatY,, = Y;,.
Together we can now also conclude m,, = m},.

5.5. Discussion

In this section we discuss some drawbacks of using BDTE as psychological back-
ground. BDTE models a limited range of emotions compared to other theories
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(BDTE models 7 emotions, while, for example, OCC models over 20 different emo-
tions). Should an agent programmer want to use the emotions in the agent’s deci-
sion making, then a smaller set of emotions might be more conceivable; however,
there can also be domains in which the set of emotions modelled by BDTE is too
limited. For example, when a programmer needs the agent to properly reason
over empathic emotions like gratitude and remorse, then BDTE is inadequate in its
current form.

Future work could thus complement this framework by modelling social emo-
tions. In [28], Reisenzein discusses possible extensions of BDTE to take social
emotions into account. For example, he proposes introducing altruistic desires. For
example, pity is then explained as a form of displeasure following from the frus-
tration of an altruistic desire (desiring something good for someone else). How-
ever, this does not provide explanations for all social emotions (e.g., anger). When
adding social emotions, one might need to complement the presented framework
with additional concepts such as norms.

5.6. Conclusion

In this chapter, we presented CAAF (a Cognitive Affective Agent programming
Framework), a framework where emotions are computed automatically when
agents update their mental states. We presented semantics showing the program-
ming constructs of these agents in a domain-independent manner. With these
constructs, a programmer can build an agent program with cognitive agents that
automatically compute emotions during runs. We chose BDTE to compute new
emotions because it is conceptually close to the BDI architecture and therefore al-
lowed us to embed emotions without introducing many additional concepts in the
mental states of the agents.

Our semantics facilitate incremental work. For example, if it is desirable to
change the affective state (Definition 12) with a global mood, then one could change
the function that computes the affective state (function A4), without being forced to
adjust the entire framework. One might also want to enable programmers to adjust
the emotion base without changing the belief base. Definition 9 defined functions
to update the agent’s mental state. We could simply complement this definition to
contain function Appraise, capable of inserting emotions in the emotion base (Y),
similar to the update insert for the belief base (X). This fits well in the modular
approach suggested by Marsella et. al. [12], where models can implement parts
of a complete cycle of emotional reasoning. For example, one could add a module
capable of using emotions to guide the agent’s decision making (e.g., what action
to perform in the environment, or when to decrease the utility of a desire as a
type of coping behaviour). The framework presented in this chapter provides a
modular, domain-independent, and consistent implementation for the computation
of emotions for cognitive agent programming frameworks, thereby facilitating the
development of intelligent virtual agents with affective abilities.
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Explanation of actions is important for transparency of-, and trust in the de-
cisions of smart systems. Literature suggests that emotions and emotion
words - in addition to beliefs and goals - are used in human explanations of
behaviour. Furthermore, research in e-health support systems and human-
robot interaction stresses the need for studying long-term interaction with
users. However, state of the art explainable artificial intelligence for intel-
ligent agents focuses mainly on explaining an agent’s behaviour based on
the underlying beliefs and goals in short-term experiments. In this chap-
ter, we report on a long-term experiment in which we tested the effect of
cognitive, affective and lack of explanations on children’s motivation to use
an e-health support system. Children (48 children aged 6-14) suffering from
type 1 diabetes mellitus interacted with a virtual robot as part of the e-health
system over a period of 2.5 - 3 months. Children alternated between the
three conditions. Agent behaviours that were explained to the children in-
cluded why 1) the agent asks a certain quiz question; 2) the agent provides
a specific tip (a short instruction) about diabetes; or, 3) the agent provides a
task suggestion, e.g., play a quiz, or, watch a video about diabetes. Their
motivation was measured by counting how often children would follow the
agent’s suggestion, how often they would continue to play the quiz or ask
for an additional tip, and how often they would request an explanation from
the system. Surprisingly, children proved to follow task suggestions more of-
ten when no explanation was given, while other explanation effects did not
appear. This is to our knowledge the first long-term study to report empiri-
cal evidence for an agent explanation effect, challenging the next studies to
uncover the underlying mechanism.

Parts of this chapter have been published in 8th International Conference on Affective Computing and
Intelligent Interaction (ACII 2019) [1]
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6.1. Introduction

Humans are increasingly supported by Artificial Intelligence (AI), for example, at
home using virtual assistants, in health care settings, and in education [2]. Trans-
parency of why such systems provide particular advice or choose certain actions,
as well as user trust in such systems, is important [3-5]. Therefore, the ability
to provide explanations to motivate the reasoning behind the Al's decisions, i.e.,
eXplainable AI (XAI), becomes increasingly important. This trend is supported by
the recent General Data Protection Regulation (GDPR) law, which states that users
have the right to explanations [6].

Current XAI for agents is often based on folk psychology, i.e., how humans in
their everyday lives explain their decisions amongst each other [7]. Such explana-
tions are based on the beliefs and goals of the system. For example, ‘I suggest you
watch this video about diabetes because I think (a system belief) it contains valid
information about proper blood sugar levels, and I want (a system goal) you to
learn when your blood sugar level would be too low’. Using beliefs and/or goals for
explaining intentional behaviour is common in both human-human communication
and in XAI [8-12]. We refer to this as providing cognitive explanations.

Literature suggests that emotions and emotion words - in addition to beliefs
and goals - are used in human explanations of behaviour [13—-15]. Humans explain
their decisions also based on their emotions. For example, 'I called the hospital
because I was scared (emotion) that I might have a hypo (too low blood sugar
level)’. As such, explanations of agents based on beliefs and/or goals may not
always be sufficient and emotions may be required as part of the explanations in
human-agent interaction [16].

Furthermore, research in e-health support systems and human-robot interaction
stresses the need for studying long-term interaction with users [2, 17-19]. How-
ever, state of the art of XAI for intelligent agents has focussed mainly on explaining
an agent’s behaviour based on the underlying beliefs and/or goals in short-term
experiments [5, 9, 12, 20].

In this chapter, we report on a long-term experiment in which we tested the
effect of cognitive, affective and lack of explanations on children’s motivation to use
an e-health support system. Children (aged 6-14) suffering from Type 1 Diabetes
Mellitus (T1DM) interacted with a virtual robot as part of the e-health system over a
period of 2.5 to 3 months. Children alternated between the three conditions. Agent
behaviours that were explained to the children included why 1) the agent asks a
certain quiz question; 2) the agent provides a specific tip (a short instruction) about
diabetes; or, 3) the agent provides a task suggestion, e.g., play a quiz, or, watch
a video about diabetes. Their motivation was measured by counting how often
children would follow the agent’s suggestion, how often they would continue to
play the quiz or ask for an additional tip, and how often they would request an
explanation from the system.
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6.2. Motivation, Related Work, and Hypothesis

First, we motivate why intelligent agents in consequential domains, such as health-
care, must be able to explain their behaviour. As computer systems become more
powerful, more complexity is introduced in their decision making [5]. To maintain
trust in a system in the long-term, the system must be clear about the task it is
trying to achieve [2]. Lack of trust in a behaviour change system causes users to
not rely on the given advice [21], and can cause them to misuse or even abandon
the system [22]. XAI has been shown to have a positive impact on a user’s trust
in several studies [3, 4, 23, 24]. Indeed, such consequential domains often include
explainable Al for transparency and intelligibility [7].

Now we motivate why emotions need to be considered in the generation of ex-
planations. XAl is typically based on how humans explain their behaviour amongst
each other, i.e., on folk psychology [13, 14, 25]. This refers to the use of beliefs,
goals and emotions to explain behaviour [14, 15]. Explanations using beliefs and
goals (which we call cognitive explanations) are often used in XAI [8—12]. However,
using emotions and emotion words for explanations (which we call affective expla-
nations) has not yet been properly tested in XAL Still, synthetic emotions expressed
by agents have the potential to influence user attitudes and behaviour [26], and
explanations of agents based on beliefs and goals may not always be sufficient,
emotions may be required as part of the explanations in human-agent interaction
[16].

Finally, we motivate why long-term experiments are essential. Explanations are
typically done by using the agent’s beliefs and/or goals and in short-term experi-
ments [5, 7, 9, 12, 20]. However, the importance of testing long-term effects has
been stressed in human-robot interaction and e-health [2, 17-19]. Long-term in-
teraction typically has more repetition of information and interaction patterns, and
such systems need to overcome novelty effects. Related work shows that reasons
to stop using a robot change over time [19]. In the short-term, the robot must be
enjoyable and easy to use, in the long-term it must be functionally relevant.

The context of this work is the PAL project (a Personal Assistant for a healthy
Lifestyle). Here we develop a support application with a (Nao) robot and virtual
avatar thereof that helps children (aged 6-14) with T1DM to cope with their illness.
The child sets personal learning goals with the caregiver, such as, ‘recognise hypo
and correct blood sugar accordingly’. The PAL agent then shapes the activities to
support the child to achieve these goals. For example, during the quiz PAL might
ask the child what the child should do when (s)he suddenly starts shaking and is
feeling very hungry. The child can then ask PAL why the agent asks the child this
question. The XAI module developed and reported upon here enables the system to
respond along the lines of: ‘I would be happy for you if you learn how to recognise
that you have a hypo, and learn what you should then do".

Because agent explanation of action is important for trust and motivation,
because emotions need to be considered as part of the explanations, and because
XAI needs to be evaluated in such long-term experiments, we address the following
question:
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What is the effect of cognitive, affective and lack of explanations on the
motivation of children to use an e-health support system in long-term
interaction?

We look at several motivational effects of explanation style and split our research
question into four hypotheses. First, we want to know if children appreciate and
use explanations. We assess this by measuring the total number of requested
explanations.

Hypothesis 1. There is a difference in total number of requested explanations
induced by explanation style (cognitive versus affective explanations).

Second, we expect explanations to have an effect on the usage of the system.
People desire to know the goals they are pursuing when being educated [27, 28].
Explanations may help a user to better understand why an action is proposed,
thereby understanding the learning goal. In previous work it was found that adults,
more than children, prefer goal-based over belief-based explanations [12]. Here we
are interested in the effect of cognitive versus affective explanations.

Hypothesis 2. There is a difference in the average number of questions in a quiz
before children close it given the explanation style (cognitive versus affective versus
lack of explanation).

Hypothesis 3. There is a difference in how often children request an additional tip
given the explanation style (cognitive versus affective versus lack of explanation).

Finally, to directly assess the motivational value of explanations, we look at how
often a task suggestion by the system is followed. We expect such task suggestions
to be followed more often when they are explained because in general people
are more motivated to learn something when they know why they should learn
it [27, 28].

Hypothesis 4. There is a difference in how often children follow a task suggestion
after they received an explanation, induced by explanation style (cognitive versus
affective versus lack of explanation).

6.3. Implementation of a Model for Explainable Al

In our model, explanations consist of some raw content and a presentation of the
content. The content of the explanation is the goal that the agent is pursuing
with its behaviour. The presentation is the resulting set of sentences generated.
We consider two different styles in which these sentences can be formulated, (i.e.,
cognitive and affective explanations).

6.3.1. Explainable Actions

We explain three different types of actions shown by the PAL agent. 1) Asking the
user a quiz question (e.g., ‘What should you do when you are experiencing a hypo
whilst doing sports?”). 2) Giving the user a tip of the day or shortly a tip (e.g., '"When
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your blood sugar level is below 4.0 mmol/L then you have a hypo’). 3) Suggesting
a task to do (e.g., ‘play the quiz’ or ‘watch this video").

Quiz questions and tips are activities that the child can do within the system. A
child can play a quiz as often and for as many questions as they like. When a child
requests a tip, then (s)he can request next tips as often as (s)he likes. Suggesting
an activity happens when the child is shown a list of four possible activities (‘tasks’)
to do in the system. This always happens when the application starts. Additionally,
the child can request a (new) list of possible tasks at any moment. The PAL agent
then always suggests that the top-most task would currently be the best task to
do. It can potentially motivate this suggestion further by explaining why it thinks
the child should do that activity (See also figure 6.1). The text used to suggest a
task is chosen randomly from a set of pre-made sentences. For example, in figure
6.1.a the text is ‘Let’s do the first activity’ and in figure 6.1.c the text is I think you
should do this first activity’. In the cognitive and affective styles, the explanation
and task suggestion texts are concatenated in a single text balloon.

Play the 1 I-y.r mumfy

game and 1 \ corre Ibglﬁ Mm ou
count carbs. Vou nacd lt nm'g'way always with y i

Answer the questions correctly
about g | glucose
wm:]:‘ uw(:.g. m!';m

paytne !‘ I would be happy for you if you
I want you to leam how to deal mmum. fou need leam what to take with you when
with eating (extra) snacks like lesstioco Yol g0 ol of theolie fons
candy or cookies. So, let's do the e couple of hours, days, and/or
first activity. . nights. So, | think it is best if we
) now do this first activity.

Ihope that you leam when you
1 think you should do this first shoukdask for halpreparding your
activity. diabetes. Therefore, | am asking
you this question.

(c) No Explanation (d) (Affective) Explanation during the Quiz

Figure 6.1: Four screen-shots of the PAL system. Screen-shots (a-c) show task suggestions, screen-shot
(d) shows the quiz. During a task suggestion the user is always shown a list of four possible tasks. The
top-most task is then suggested by the PAL agent as being the ‘best’ to do at the current time. In
screen-shot (a) the PAL agent explains why it is a good task to do by providing a cognitive explanation,
in (b) it provides an affective explanation, and in (c) it provides no explanation for its suggestion. Finally,
screen-shot (d) shows an example of an affective explanation given during the quiz.
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6.3.2. Content of explanations

The content of the explanations is the goal that the agent is trying to pursue. Which
is @ common approach in XAI [8-12]. However, an action often pursues multiple
goals. For example, (a proposal for) watching a video can be valuable for a large
list of unrelated learning goals (like, ‘recognise hypo’, ‘be able to talk with friends
about diabetes’, and ‘start eating more vegetables’). This is a complicating factor
since an explanation loses its value when it becomes too long [29], so we should
not mention all the goals in an explanation.

Within PAL we chose a simple solution for this problem. We pick a random goal
as content for the explanation to show the child why an activity is beneficial for the
child’s self-management. Clearly, we are not claiming that this is the best way of
selecting content for the explanation. However, we do believe that this is a valid
way that fits our purposes (i.e., measure the effect of explanations on a child’s
motivation to use the system in long-term interaction).

6.3.3. Presentation of explanations

With the content of the explanation being a single goal, we still need to share this
information with the child. So, we need a way to transform it into some natural
language sentence. We do this partly by automation and partly by annotation. The
learning goals are annotated with a natural language sentence that describes them,
e.g., ‘how to recognise that your blood sugar level might be too high (hyper), and
what you should then do’. We can then automatically put a sentence in front of
that that completes the explanation, e.g., ‘I want you to learn... And, we can add
a sentence behind to refer to the explained action, like, ‘That is why I ask you this
question’, or ‘And that is why I gave you this tip (of the day)’ So a full explanation
can be: ‘I want you to learn how to recognise that your blood sugar level might be
too high (hyper), and what you should then do. That is why I ask you this question.’

We differentiate the sentences before and after the description to prevent repet-
itiveness in sentences. For example, ‘I want you to learn’ can be interchanged with
‘my aim is that you learn’, and ‘That is why I ask you this question’ can be inter-
changed with ‘So, remember the answer to this question well!. We have 3 different
sentences to precede the goal description and 5 different sentences for every ex-
plainable action to follow it. We implemented the explanations in three languages
(English, Dutch, Italian), which is a strong proof of concept that similar implemen-
tation is possible in at least a large set of languages.

In addition, this implementation allowed us to differentiate the style of the ex-
planation. We consider cognitive explanations and affective explanations. The
cognitive explanations are phrased like above, affective explanations use emotion
words in the phrasing of the explanations. For example, we can exchange the
sentence ‘I want to’ with ‘It would make me happy if you' In that way, the full
explanation becomes: ‘It would make me happy if you learn how to recognise that
your blood sugar level might be too high (hyper), and what you should then do.
That is why I ask you this question.” This shows that this implementation enables
providing, with a very simple manipulation of the sentence generation, explanations
in different styles.
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6.4. \VMethod

We evaluated the different explanation styles in a long-term (2.5 - 3 months) ex-
periment.

6.4.1. Participants

In total there were 48 (25 Dutch and 23 Italian) children with T1IDM aged 6-14. The
children were recruited via hospitals in the Netherlands and in Italy. There were no
consequences to dropping out intermediately.

6.4.2. Experimental Design

When a child logs into the system (s)he is set to an initial experimental condition
randomly. There are three possible conditions, Cognitive Explanations, Affective Ex-
planations, and No Explanations. The children rotate between the three conditions
(within-subjects testing).

It was not possible to test our hypothesis between subjects in this particular
experiment. This experiment is part of a larger project where multiple experiments
have been tested simultaneously. A requirement was therefore that all children
would see the same content in the system. This meant that it was not possible
to distribute the conditions randomly over the children and then keep them in that
condition.

There were two phases of the experiment. The system had some small dif-
ferences in the two phases. Task suggestions are only given in the second phase.
Quizzes and tips were given in both phases. Furthermore, there were minor changes
between the phases in activities without explanations. The experimental conditions
switched per week in the first phase and per log-in in the second phase. We changed
this in the second phase because many children used the system actively for only
one or two weeks, which causes them to not have enough exposure to the different
conditions. Children that participated in the first phase were allowed to do so again
in the second phase. 4 children (Dutch) and 9 children (Italian) did both phases.

Finally, both cognitive and affective explanations can be offered to the children
in two different ways. 1) On the initiative of the PAL agent. Meaning the PAL agent
simply gives the explanation for its behaviour. 2) On the initiative of the child.
Meaning the system shows a question mark. The child can choose to press the
question mark of his/her own accord. See figure 6.1.d for an example during the
quiz.

Task suggestions are always explained when the child is in the cognitive or
affective condition, and they are always explained on the initiative of the PAL agent.
For the quiz and the tips the PAL agent provides explanations automatically 20%
of the time. The other cases the child is shown a question mark. There is an
exception to this. When the quiz is opened through the task suggestions rather
than manually, then all questions in the quiz are for the same underlying goal which
has already been mentioned during (the explanation for) the task suggestion itself.
The explanations for the questions would always have the exact same content.
Questions during a quiz opened in this way always only show a question mark.
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6.4.3. Measures and Variables

For hypothesis 1, we test how often children request explanations of their own
accord. We count how often children press the question marks (visible during the
quiz and the tips) given an explanation condition (cognitive or affective). There is no
measure in the no explanation condition since children cannot request explanations
in that condition.

For hypothesis 2, we count the number of questions a child answered before
closing the quiz. We then compute the average quiz length in the different styles
for that child.

For hypothesis 3, the number of times the child manually request a ‘next tip".
When the child receives a tip of the day, then the child can choose to either close the
screen or press the ‘next tip’ button. We compute the average of next tip presses
in the different styles for that child.

For hypothesis 4, we test whether children are more inclined to follow task sug-
gestions in the different conditions (cognitive, affective, and lack of explanations).
When presented with a task suggestion, the child can accept the suggestion by
pressing the top-most task in the screen (see figure 6.1), or the child can reject the
suggestion by either closing the screen or choosing another task in the list. We log
the child’s decision and measure the percentage of times the child actually chooses
the suggested task given the explanation condition.

6.4.4. Material & Set-Up

There are two main locations where children interact with the PAL system, at home
and at the hospital. At the hospital, the children interact with a physical Nao robot
from Aldebaran and the PAL system. There they interact with a Health-Care Pro-
fessional (HCP) and a researcher present. At home, they get a tablet with a virtual
avatar of the robot and the same health-care applications (quiz, sorting game, etc.).
At home, they interact with the system individually.

6.4.5. Procedure

Children were first invited to come to a hospital. There they were introduced to
the PAL agent and system. Together with the HCP, they set some specific goals
to advance their self-management of their diabetes (e.g., ‘learn to recognise when
you might have a hypo’). The system shapes the activities and task suggestions to
work towards those goals. At the end, the children were given the tablet with the
avatar to take with them to their houses. For 2.5 to 3 months they could play with
the PAL system as often and long as they wanted. At the end of the period, they
were invited to the hospital again.

6.5. results

One child (out of 48) was excluded from analyses due to a glitch in the data caused
by a system error. The remaining 47 children had an average of 19 log-ins (STD =
12.9, minimum = 1, maximum = 55). Only three children requested an explanation
in both the cognitive and the affective style. In section 6.6, we discuss possible
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improvements on our method for addressing the first hypothesis in future work.

For the second hypothesis, a one-way within subjects (or repeated measures)
ANOVA was conducted to compare the effect of (IV) explanation style (cognitive,
affective, and no explanations) on (DV) the average length of the quiz measured
by the number of questions. There was no significant effect of the IV explanation
style, Wilks’ Lambda = 0.88, F (2,19) = 1.319, p = .291.

Average Quiz Length

Average number of questions

No Explanation Cognitive Affective

Explanation Style

Figure 6.2: The average number of questions per child and per style before children close the quiz in
the different explanation styles.

For the third hypothesis, a one-way within subjects (or repeated measures)
ANOVA was conducted to compare the effect of (IV) explanation style on (DV)
how often children request another tip. There was no significant effect of the IV
explanation style, Wilks" Lambda = 0.93, F (2,45) = 1.772, p = .182.

Average Number of Next Tip Requests

Estimated Marginal Means

No Explanation Cognitive Affective
Explanation Style

Figure 6.3: The average number of times per child and per style that children requested a next tip in
the different explanation styles.

Finally for the fourth hypothesis, a one-way within subjects (or repeated mea-
sures) ANOVA was conducted to compare the effect of (IV) explanation style on (DV)
the percentage of task suggestions followed by the children. There was a significant
effect of the IV explanation style, Wilks’ Lambda = 0.60, F(2,13) = 4.285,p = .037.
In addition, three paired samples t-tests were used to make post hoc comparisons
between conditions. A first paired samples t-test indicated that there was a signifi-
cant difference in the percentage of task suggestions followed for no explanations
(M = 23%, SD = 28%) and cognitive explanations (M = 7%, SD = 15%) con-
ditions; t(14) = 2.204,p = 0.045. A second paired samples t-test indicated that
there was a significant difference in the percentage of task suggestions followed
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for no explanations (M = 23%, SD = 28%) and affective explanations (M = 11%,
SD = 27%) conditions; t(14) = 2.505,p = 0.025. A third paired samples t-test
indicated that there was no significant difference in the percentage of task sug-
gestions followed for cognitive explanations (M = 7%, SD = 15%) and affective
explanations (M = 11%, SD = 27%) conditions; t(14) = —0.501,p = 0.624. With
a LSD test these values are significant; however, if we consider a Bonferroni cor-
rection then the significance threshold is 0.0167. So, the ANOVA test shows that
explanation style has an effect on the percentage of task suggestions followed by
the children; however, the post hoc tests are inconclusive concerning the effect’s
direction.

We did an additional test where we combined the cognitive and affective con-
ditions and compared the combined (any explanation) group against the no ex-
planation group. A paired samples t-test indicated that there was a significant
difference in the percentage of task suggestions followed for no explanations
(M = 23%, SD = 28%) and any explanations (M = 9%, SD = 16%) conditions;
t(14) = 2.950,p = 0.011. This final test indicates that providing no explanations for
task suggestions correlates with children following the suggested tasks more often.

Percentage of Task Suggestions that Children Follow

Percentage

No Explanation Coanitive Affective
Explanation Style

Figure 6.4: The percentage of task suggestions that children follow in the different explanation styles.

6.6. Discussion

The results come from a long-term ‘in the wild’ study. We recruited children aged
6-14 diagnosed with with TIDM. We are dealing with a real-world system (PAL)
which is far more representative than a lab experiment could have been. However,
this also means that the experiment was difficult to control. Children could stop
the interaction with the system at any point in time. They could potentially request
an explanation and close the application before the avatar could present it. Still,
the system and the explanations were running robustly during the period of three
months.

We found that explanation style influences how often children follow task sug-
gestions. We found no further significant effects. This might be because the expo-
sure of explanations during task suggestions was high. Every time children log-in
the system the first thing they saw was a task suggestion which (in the cognitive
and affective conditions) is always explained. During the quiz and the tip the expla-
nations were not often explained in a forced manner. Most of the time, the children
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would only see a question mark that they could press of their own accord. The
results show that children did not press the question marks often. Since children
already see an explanation in 20% of the cases, a case might be added in future
work where children get no forced explanations to prevent potential saturation ef-
fects.

We did not expect that the no explanation condition would correlate with task
suggestions being followed more often. We offer three possible explanations for
this. 1) A straightforward explanation is that children simply do not read the longer
texts in explained task suggestion (see also figure 6.1 for examples of differently
explained task suggestions). This would result in more randomly chosen tasks from
the menu. This would mean that the in literature suggested length of explanations
[9] is still too long when applying explanations in a long-term experiment with
child users. 2) Another possibility is that children do read and understand the
explanations but they sometimes think they already know what the task is supposed
to teach them. For example, if the PAL agent says the child should do a quiz because
it teaches the child how to recognise when one might have a hypo, and if the child
thinks (s)he already knows this, then the child is more likely to choose another
task instead. This would relate to literature about teaching and learning, where it
is suggested that explaining the importance of educational material helps students
to orient/ plan their behaviour better themselves [30]. This would imply there is
a positive effect of explanation style on the child’s behaviour in the system. 3)
The child might sometimes get stubborn from the explanation. Thinking something
along the lines of ‘I don't feel like practising / doing that!. Which causes them to
choose different tasks.

Future work should determine the underlying mechanism of why certain ex-
planation styles change the users’ behaviour in long-term interaction. A possible
approach is to (sometimes) ‘ask’ the users why they chose a particular task after
their selection. This was not possible in the here presented work due to limitations
imposed by the project; however, it is our recommendation for future long-term ex-
periments in this area. Secondly, the work here indicates that there is insufficient
knowledge on when and how affective explanations should be used. When varying
the style (but not the content) of your explanations, then (in the long-term) this
may only trigger subtle differences in the users. A formal model of when a particu-
lar type of explanation is preferred is beneficial for further research in this area as
this enables testing such a model against randomly chosen styles.

6.7. Conclusion

In this chapter, we presented results from a long-term (2.5 - 3 months) experi-
ment on the effect of explanations on the motivation of children to use an e-health
system involving interaction with a virtual robot. We considered cognitive expla-
nations (based on the beliefs and goals of the agent), affective explanations (also
using emotions of the agent for generating the explanation), and no explanations
(providing no explanations at all for the agent’s behaviour). The explanations were
implemented in an in-the-wild autonomous health-support application for children
(aged 6-14) suffering from T1DM. We found that explanation style influences how
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often children follow task suggestions. Specifically, the results indicate that chil-
dren follow the suggestions more often when no explanation is given. We found
no other significant effects of explanations in this study. Although no effect was
found of cognitive versus affective explanations, this is to our knowledge the first
evidence that explanations impact long-term human-agent interaction and system
usage. Our results also show that counter-intuitive effects of agent explanations
may be expected when used with children, and, that more research is needed to
understand why lack of explanations seems to correlate with following task sugges-
tions.
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Conclusion

I knew who I was this morning, but I've changed a few times since then.

Lewis Carroll
(Alice Pleasance Liddell in Alice’s Adventures in Wonderland)
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In this Thesis, we focused on designing self-explanations for robots. In
most studies, self-explanations are typically based on how humans amongst
themselves explain behaviour. However, we have argued that many aspects of
how humans explain behaviour have not yet sufficiently been considered for robot
self-explanations. Our main research question was:

Main Research Question

Which aspects of human behaviour explanation can be used in the construction
of social humanoid robot self-explanations and how should we generate such
explanations?

We focused on two aspects of this question: 1) attuning explanations to the
receiver; and 2) using emotions in the explanations. We derived five research
guestions from this main question and addressed these in the respective chapters.

In the introduction of this book, we provided some background information on
emotions and explanations by discussing related work in the field. In chapter 2,
we discuss the type of social robot system we have addressed in our work. We
discuss its functionality and its specific requirements. In chapter 3, we address the
issue that a good explanation takes the receiver of the explanation into account.
We investigate explanations based on beliefs and desires. We compare the use
of different explanation styles on child and adult users and find that personalising
explanations is indeed needed. In chapter 4, we address whether and how humans
use emotions in their explanations of robot behaviour. We switch from robot self-
explanations to explanations that people provide for robot behaviour. We study the
usage of emotions specifically. Furthermore, we study if people recognise emotional
behaviour of the robot. In chapter 5, we provide a formalisation of the interplay
between beliefs, desires, and emotions. In this work, we focus on the simulation
of emotions in social robots. We identify a gap in existing models, and address this
with a custom formalisation framework for emotions based on cognitive appraisal
theory. In chapter 6, we compare emotions-based explanations and (regular) goal-
based explanations in a long-term study. We found empirical evidence for an effect
of agent explanation on prolonged interaction. However, the effect was not in line
with expected effects based on literature. Which introduces a challenge for future
work in this area. Finally in the chapter, we discuss the conclusions drawn from
the separate chapters. Then, we discuss the limitations of our work and poten-
tial directions for future continued work. Finally, we discuss some more general
contributions from the thesis as a whole.

7.1. Findings

The first research question was:

Research Question 1; Chapter 2

What are the design principles for a social robot system that must autonomously
run for several months?

In the PAL (Personal Assistant for a healthy Lifestyle) project, we strove to do re-
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search on human-robot interaction in real world environments. In the wild, it is
important to reach autonomous, personalised, long-term interaction [1-5]. Fur-
thermore, we were dealing with different groups of users and focusing on conse-
guential domains (for example, the PAL-project itself focuses on helping children
reach self-efficacy regarding diabetes type 1 management). We identified the fol-
lowing four design principles to address these challenges. The system should:
(1) be cloud-based, (2) be modular, (3) have a common terminology and
knowledge-base, and (4) implement hybrid artificial intelligence techniques
that all have their own contribution to steering the interaction.

The design principles and resulting system are generic and the implementation
was tailored to diabetes self-management for children. The architecture of this
system distinguished specific functional modules for the common Knowledge-Base
(ontologies), Data-Base, Hybrid Artificial Brain (dialogue manager, action selection
and explainable AI), Activities Centre (Timeline, Quiz, Break & Sort, Memory, Tip
of the Day, ...), Embodied Conversational Agent (ECA,; i.e. humanoid robot and
avatar), and Dashboards (PAL control and PAL inform). The resulting system
autonomously interacted with a group of (48) child users, their parents, and their
caregivers for two periods of two and a half to three months. The system remained
stable and continued to show (more and more) behaviours and support in health
education & care. This work can serve as a blueprint for future long-term human-
avatar and human-robot interaction studies and thereby facilitate incremental
research.

Research Question 2; Chapter 3
What are the differences in preference for goal-based versus belief-based social
robot explanations between adults and children?

Social humanoid robots interact over a long period of time with users in com-
plex consequential domains such as healthcare. We argued in the introduction and
related work that such systems benefit from the capability to self-explain their be-
haviour. However, they may have to deal with several types of users and these
users might differ in the types of explanations that the robot should give them. In
the context of healthcare for diabetic children, we were specifically interacting with
both child and adult users.

We implemented a Nao-robot as a belief-desire-intention (BDI)-based agent
and explained its actions using two different explanation styles. BDI-based pro-
gramming is a common way of implementing the high-level reasoning of intelligent
agents such as social robots [6, 7]. Two explanation styles have commonly been
considered for such implementations: goal-based and belief-based action expla-
nations [8, 9]. We compared the preference for these explanation styles between
two user groups. We conducted a user study (19 children, 19 adults) in which the
robot performed actions to support type 1 diabetes mellitus management. We in-
vestigated the preference of children and adults for goal- versus belief-based action
explanations.

We found that adults have a significantly higher preference for goal-based
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explanations than children. This was first evidence that self-explanations of
intelligent agents are perceived differently by children and adults. Research on
such preferences is an important step for generating personalised explanations in
human-robot and human-agent interaction, because it provides input on the form
and content such explanations should take.

Research Question 3; Chapter 4

To what extent and in what way do humans use emotions in their explanations of
robot behaviour?

Addressing this is important because it: (1) helps us design how robots can
explain their own actions; and (2) gives insight into how humans perceive robot
behaviour. We discussed both in chapter 4. We particularly focus on emotions
because (a) humans use emotions when explaining human behaviour [10], (b)
self-explanations of intelligent agents (such as robots) are typically based on how
humans explain behaviour [11, 12], but (c) current research on self-explanations
by robots has not thoroughly considered emotions yet.

To address this question, we presented filmed behaviours of either a human or
a humanoid robot coping with a distressing situation to MTurk participants. The
behaviours were modelled to represent several coping styles from the literature
[13]. Behaviour in coping styles was chosen because coping strategies are trig-
gered by emotion and are aimed at emotion regulation [14]. We can study the
explanations of these coping induced behaviours to find whether people use emo-
tions when explaining robot behaviour (i.e., as existence proof). If people do ex-
plain robot behaviour using emotions, then this should be observed in behaviours
resulting from coping strategies. If people do not use emotions for explanations of
this behaviour then that is a strong indicator that they also won't use it when the
robot shows other types of (semi-)intentional behaviour. We measured (1) whether
people could recognise the coping styles; (2) what spontaneous unrestricted expla-
nations people give for the behaviour; and (3) how positive and accepting people
were towards the behaviour (i.e., naturalness, appropriateness, warmth, compe-
tence, and discomfort). For all these outcomes we considered the influence of the
actor type (human versus robot) and scenario (health versus museum).

We show that, and shed light on what way, people use emotions when
explaining robot behaviour. They do so with less frequency then they do for
human behaviour. Still, only about 1/4th of the explanations is devoid of any
emotionality (about 1/5th for the human behaviour explanations). Furthermore,
we found a difference in how people explain human behaviour with emotions and
how people explain robot behaviour with emotions. The perception of coping
style correlates with the emotionality of explanations when people explain human
behaviour, but not when people explain robot behaviour. This implies that people
have slightly simpler models to attribute emotions to robot intentions than for
attributing emotions to human intentions. Which implies that we can get away
with simpler models for choosing to use emotions in the generation of robot
self-explanations as well.
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Research Question 4; Chapter 5
How can we incorporate emotion theory into BDI-based agent programming?

Given our findings concerning research question 3, it made sense to further in-
vestigate emotions in robot self-explanations. One way of modelling emotions that
can be included in explanations is by expanding BDI-based agent programming with
a computational model of emotion. Furthermore, BDI-based models are concep-
tually close to cognitive emotion theory and BDI-based agent programming is an
important part of the decision making of hybrid social robot systems as discussed
in chapter 2..

In this chapter, we discussed different computational models of emotion and
what they lack to enable unambiguous implementation into BDI-based agent pro-
gramming. These models typically simulate emotions based on cognitive appraisal
theory [15]. Cognitive appraisal theory, however, introduces a large set of appraisal
processes not specified in enough detail for agent oriented programming.

In this chapter, we discussed a framework based on the belief-desire theory of
emotions (BDTE) [16], that enables the computation of emotions for BDI-based
agents. We bridged the remaining gap between BDTE and BDI-based agent
programming frameworks.

Research Question 5; Chapter 6
What are the effects of cognitive and affective explanations on motivation to use a
social robot/ avatar system during long-term interaction?

We address that state of the art explainable artificial intelligence for intelligent
agents focuses mainly on explaining an agent’s behaviour based on the underlying
beliefs and goals in short-term experiments. However, as argued in this thesis, and
as supported by the work concerning research question 3, emotions and emotion
words (in addition to beliefs and goals) play a role in intelligent agent (robot/ avatar)
self-explanations. Furthermore, research in e-health support systems and human-
robot interaction stresses the need for studying long-term interaction with users
[1, 17-19].

In this chapter, we report on a long-term experiment in which we tested the
effect of cognitive, affective and lack of explanations on children’s motivation to use
the e-health support system which we described in chapter 2. Children (aged 6-14)
suffering from type 1 diabetes mellitus interacted with a virtual robot (avatar) as part
of the e-health system over a period of 2.5 - 3 months. Children alternated between
the three conditions (cognitive, affective and no explanation). Agent behaviours
that were explained to the children included why 1) the agent asks a certain quiz
question; 2) the agent provides a specific tip (a short instruction) about diabetes;
or, 3) the agent provides a task suggestion, e.g., play a quiz, or, watch a video
about diabetes. Their motivation was measured by counting: (1) how often they
would continue to play the quiz or (2) ask for an additional tip, (3) how often children
would follow the agent’s suggestion, additionally and how often they would request
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an explanation from the system.

We found that the explanation condition influenced how often children followed
task suggestions. Unexpectedly, the results indicate that children follow the sug-
gestions more often when no explanation is given. We found no other significant
effects of explanations in this study. We discussed three possible explanations for
this in chapter 6. We briefly summarise these here. 1) Explanations are additional
text to read. Children might simply not read the longer texts in explained task sug-
gestion causing them to choose more randomly from the menu. This would imply
explanations need to be even shorter than literature suggests [6], or be given less
frequently. 2) Understanding the purpose of the task might help children orient/
plan their behaviour better themselves. Which would mean the explanation is in-
deed helpful. This would relate to literature on education [20]. 3) The child might
get stubborn when the robot explains. Thinking something like ‘I don’t want to
do that!. Which causes them to choose different tasks. Although no difference
appeared between cognitive versus affective explanations, this is to our knowledge
the first evidence that explanations impact long-term human-agent interaction and
system usage. Our results also show that counter-intuitive effects of agent expla-
nations may be expected when used with children and in long-term interaction,
and, that more research is needed to understand why lack of explanations seems
to correlate with following task suggestions.

7.2. Limitations

We have studied user preferences for- and motivational effects of explana-
tions. However, our techniques for generating the explanations remain somewhat
straightforward. This was good for our purposes, because it allowed us to bet-
ter control the types of explanations given and the effects of these explanations.
However, it will be needed in future work to also generate explanations in more
complex manners. For example, we now try to cleanly separate beliefs and goals
in the generated explanations to find preferences (chapter 3). However, humans
would shift between the styles and/or combine the styles in specific situations. So,
overall preferences give us insight in the need for personalised explanations and
give us some handles on how to personalise them. However, specific situations
might still require an explanation in a style that is not generally preferred. We
will give some suggestions in the future directions section below (7.3) on how to
generate explanations using more elaborate models.

Another limitation of this work is that we did not yet generate emotions in ex-
planations based on the robot’s current emotional state as simulated by the com-
putational model of emotion we introduced (CAAF, see chapter 5). There were two
reasons for this. First, with CAAF running, we would would have had less control
over the exact phrasing of the explanations as provided by the robot. Such a control
was important to cleanly compare the different conditions. Second, the emotional
state simulated by a computational model of emotion can not directly be used in
the explanations. Such models simulate several emotions during interaction. This
is good, because it allows the robot to properly interact in complex social interac-
tions. However, we currently do not yet know what emotions should be used in
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the explanations, nor when we should use them. This is a very complex problem
and requires more research. However, we belief future work should generate emo-
tions in explanations also based on the robot’s own emotional state simulated by
a well-defined computational model of emotion like CAAF. This will allow for more
variety in the explanations and for more intelligent decision mechanisms for what
emotions to use (and when to use them) in explanations.

7.3. Future Work

In our thesis, we tested the effects of robot self-explanations and we studied how
humans themselves explain robot behaviour. However, we did not tightly com-
bine these studies yet. Robot self-explanations based on insights from how people
explain (robot) behaviour can help to improve the self-explanations [11]. Here,
however, we want to argue to have future studies that consider an even tighter
link between the two research fields. We propose a 2-step research set-up. First,
show robot behaviour to lay humans and ask them to explain the behaviour just
like we did in chapter 4. Second, show different humans the robot behaviour and
let the robot self-explain using the explanations from the first study. In this way,
we can study the effects of robot self-explanations on humans without having to
construct the explanations ourselves. This relates to the limitation mentioned that
more elaborate explanation models are needed.

Furthermore, we argue it is important to have a good conceptual framework to
annotate the explanations with. For example, an annotation framework like f-ex
[21] to annotate the types of mental constructs (likes, beliefs and desires) used in
the explanations. Or, a sentiment miner like LIWC [22] to measure the usage of
emotion words in explanations. In this way, we can incrementally learn the effects
of explanation styles on things like preference, motivation, comprehensiveness,
informativeness, etc within specific contexts and settings.

Note that some methods to annotate the explanations require more time and
resources than others. A sentiment miner or other text miner would be an au-
tomatic process; whereas a framework like f-ex requires humans to annotate the
explanations which can become quite a lot of work when attempting to annotate
databases of hundreds, thousands, or even more explanations. It may not be sim-
ple to crowd-source such annotations because they do require some knowledge
of folk psychology (see also [21] for a description of how to use f-ex), but they
do provide far more expressive annotations than text miners can currently give.
Still, for automatically annotating and studying explanations it would be valuable to
have text mining algorithms that automatically map concepts in explanations like
whether a belief or desire was mentioned.

Finally, our measures were user preference for explanation styles in chapter 3
and motivation in chapter 6. Future work should take more complex explanation
models that are attuned to the users and that at times use emotions in addition to
beliefs and desires and then test these models with regards to, for example, trust
in the robot and understanding of what the robot explains to the user. Previous
studies showed effects on these measures for systems that explain behaviour [23—
26]. However, when the explanation models become more complex than it will
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become valuable to see re-evaluate their effect also on these basic measures.

7.4. Overall Contribution

In this thesis, we have made first steps towards developing human-aware explain-
able artificial intelligence for humanoid robots. We designed and tested the expla-
nations in a real-world ('in the wild") system in a consequential domain (helping
children aged 6-14 to become more self-manageable with regards to their iliness).
The system autonomously interacted with users for two periods of 2.5 - 3 months.
Our research shows that it is possible to address interesting and complex research
questions in such settings, even considering that there was only a limited group of
users (48 children in the final chapter).

Overall, we conclude robot (and avatar) self-explanations must indeed take ad-
ditional aspects of human behaviour explanation into account. Specifically, we
provide evidence supporting:

1. Robot (and avatar) self-explanations should be attuned to the receiver of the
explanation.

Which is based on our related work and on chapter 3, where we showed expla-
nations are perceived differently by different types of users). Secondly:

2. Robots (and avatars) should be able to use emotions in their explanations.

Which is based on our discussion of related work and on chapter 4, where
we showed humans themselves use emotions when explaining robot behaviour.
Furthermore, our final chapter showed that explanation effects occur also in long-
term interaction. These effects were not in line with the expectations based on
literature, showing the need for more work in this area.

This thesis shows that explainable artificial intelligence (both in the social sci-
ences as well as in human-computer interaction) should consider individual pref-
erences, and consider emotions in addition to beliefs and desires when explain-
ing robot or avatar behaviour.
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Epilogue

All we can do is decide what to do with the time given us.

J.R.R. Tolkien
(Gandalf the Grey in The Lord of the Rings)

That brings us to the end of this book and of my adventure as a PhD Candidate.
It marks the end of an era that I greatly enjoyed and where I learned more than I
can possibly summarise here. I will write the acknowledgements mainly in Dutch.
For my non-Dutch colleagues I will write the appreciation of their help in English.
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(In English.) Special thanks for the independent committee members: Prof.dr.
T. Belpaeme, Prof.dr.ir. D.A. Abbink, Prof.dr. C.M. Jonker, and Dr. M.M.A. de Graaf.
Thank you for reading and appreciating this work and your vital role in finalising it.

Ook mijn collega’s op de afdeling van interactive intelligence wil ik bedanken.
Ruud voor de technische ondersteuning met name aangaande de Nao en Pepper
robots. Bart voor de technische ondersteuning en de hulp met name tijdens het
laatste experiment met het filmen en editen van de filmpjes.

(In English.) My office mates: Rifca, Bernd, Fran, Ding, Thomas, Pietro. Thank
you for being great office mates who were always willing to help others and still
make time for the 15 o-clock coffee break. Rifca, thank you also for the pleasant
times in the PAL meetings. Bernd for always having time for in depth discussions
about artificial intelligence or dungeons and dragons. Fran for the pleasant times,
coffee breaks, and your never ceasing willingness to help your peers. Ding, I don't
know if you remember the graduate school course we followed, but I will indeed
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Adjusted Ways of Coping
Questionnaire

To do a manipulation check for the coping styles, we ask participants to fill in an
adapted version of the ways of coping (WoC) questionnaire. The original ques-
tionnaire is somewhat long for an Amazon Mechanical Turk study and was initially
designed for recognising coping styles in ones own behaviour. The questions are
not all recognisable in someone else (see also table 4.1). To account for this, we
developed an adjusted Ways of Coping questionnaire specifically for our purposes.
Firstly, the seek social support questions could be removed since we do not
consider that style in our study. Secondly, we picked the three most descriptive
sentences per style to include in our questionnaire. We believe that this results in
a list that is sufficiently descriptive to capture the different coping styles and short
enough for participants in the study. We chose the sentences with the following
rationale. (1) the first and second author independently went through the list re-
moving sentences that they deemed unrecognisable in someone else. (2) For every
coping style, the three questions with the highest factor loading, amongst the ones
that were deemed recognisable by both authors, were included in the list. There
was one disagreement in the escape avoidance style concerning sentence 5 (see
table 4.1). The eventual decision was to include the sentence in the question list.
Additionally we phrased all the sentences such that they referred directly to
Robin. Pronouns were changed based on the condition (him/his versus her/hers
versus it/its depending on the actor being male/female/robot respectively). The
resulting question list (pronouns in female form) can be seen in table A.1.
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Table A.1: The adjusted ways of coping questionnaire to measure perceived coping style in another

Confrontive(C) . Robin stood her ground and fought for what she wanted

. Robin tried to get Bob to change his mind.

. Robin expressed anger to Bob.

. Robin made light of the situation; refused to get too serious about it.

. Robin went on as if nothing had happened.

. Robin looked for the silver lining, so to speak; tried to look on the bright
ide of things.

. Robin tried to keep her feelings to herself.

. Robin tried not to burn her bridges, but leave things open somewhat.

. Robin tried not to act too hastily or follow her first hunch.

. Robin criticised or lectured herself.

. Robin realised she brought the problem on herself.

. Robin apologised or did something to make up.

. Robin wished that the situation would go away or somehow be over with.
. Robin had fantasies or wishes about how things might turn out.

. Robin avoided contact with Bob

. Robin knew what had to be done and doubled her efforts to make things
ork.

. Robin made a plan of action and followed it.

. Robin changed something so things would turn out all right.

. Robin changed or grew as a person in a good way.

. Robin came out of the experience better than when she went in.

. Robin changed something about herself.

Distancing(D)

WNHWN =

1%2]

Self — Controlling(S — C)

Accepting — Responsibility(A — R)

Escape — Avoidence(E — A)

Problem — Solving(P — S)

Possitive — Reappraisal(P — R)

WNHWNS HWNEFEWNEWN -




Filmed Conversations of
Coping Styles

We designed videos of several conversations between two individuals (which for
convenience we refer to as ‘Bob’ and ‘Robin’). The content of the conversations is
such that in all of them Bob does something that is distressing for Robin. Robin then
copes with that in one of the styles discussed in section 4.2.2 and the Ways of Coping
[1, 2]. We chose to exclude the ‘seek social support’ style in our study because we
focus on a conversation between two individuals to avoid additional complexity in
perspective taking for the participants. Seeking social support would require an
additional actor in the scenario. Robin, in some of the video’s, was played by a
professional actor or actress. In other video’s, Robin was acted out by a humanoid
robot (the Pepper robot of Softbank which we animated for this purpose). In this
appendix, we discuss the design and validation of the conversations in the videos
first. Then, we discuss the animation of the robot and the shooting of the videos.

B.0.1. Conversations in Coping Styles
We designed conversations in coping styles based on the Ways of Coping [1]. We
validated whether people were able to recognise the dominant coping styles in the
conversations via a pilot study. We did two rounds of validation which we discuss
here.

Participants were colleagues, friends, and family. They were uninformed of our
goal with this study. Both validation rounds had 5 unique participants. In total,
there were 10 participants (3 male, 2 female, aged 28-55).

Set-up and Procedure First Validation

This first validation round had 5 (male) participants. We showed people textual
prints of the different variations of the conversations and textual prints of the dif-
ferent coping styles as in table 4.1. Participants read all the conversations and all
the coping styles of a single scenario (health/ museum). Then, they were shown
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Table B.1: Results from the first validation round. Rows show participants with a number, the ‘order’
in which they were shown the scenarios, and the style they selected per style as intended for the
conversation.

Health

r. Order | C D S-C A-R E-A P-S P-R
1 M-H C D S-C A-R E-A P-S P-R
2 H-M C D S-C A-R E-A P-S P-R
3 M-H C D S-C P-R E-A P-S A-R
4 H-M C E-A S-C AR D P-S P-R
5 H- C E-A S-C A-R P-R P-S D
Agreement: 100% 60% 100% 80% 60% 100% 60%

Museum

Nr. Order | C D S-C A-R E-A P-S P-R
1 M-H C D S-C A-R  E-A P-S P-R
2 H-M C E-A S-C AR D P-S P-R
3 M-H C D E-A AR SC P-S P-R
4 H-M C D S-C A-R E-A P-S P-R
5 H- C D S-C P-S E-A PR A-R

Agreement: 100% 80% 80% 80% 60% 80% 80%

the conversations and styles of the other scenario. The order in which they were
shown the scenarios was randomised to correct for learning effects. Participants
had to match conversations and styles. They were only allowed to choose one style
per conversation. They could take as much time as they wanted. However, all
participants finished in about 30 minutes.

During all sessions a researcher was present to answer any questions. It was
made clear to the participants that there was no right or wrong answer. Rather
we were interested in their subjective perception of the conversations. If partici-
pants asked who were having the conversations, then we told them to imagine two
persons unknown to each other.

Results 1st Validation

Most agreements were quite good. For example, the confrontive conversations
were recognised as such in both the health as the museum scenario by all partic-
ipants (100% agreement). Other styles proved more difficult and reached ‘only’
60% agreement (e.g, distancing).

We argue that 80% agreement is good enough for our purposes. There are
always more styles simultaneously used when coping with a situation. Reaching
100% in all cases might prove a lengthy process. Eventually reaching 100% might
then even be a random stroke of luck more than anything else. We therefore
focused on the styles with 60% agreement and tried to improve those.
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Table B.2: Results from the second validation round. Only styles with insufficient agreement were
included for this round

Health Museum
Nr. Order | D A-R E-A P-R | D S-C E-A
6 H-M D A-R E-A P-R | E-A S-C D
7 H-M D A-R E-A PR | D S-C E-A

D

D

D

8 M-H A-R EA P-R | D S-C E-A
9 M-H P-R E-A AR | D S-C E-A
10 H-M AR EA PR | D S-C E-A
Agreement:  100% 80% 100% 80% | 80% 100% 80%

Updating the Conversations

We discussed with the participants what brought them to their decisions to find
out how we could improve the texts. Based on the resulting recommendations we
made a new set of conversations and validated these with 5 different people.

Set-up and Procedure Second Validation

Participants informed us that they matched the clear coping styles first, and then
went on to the more difficult to recognise ones. To save our participants and our-
selves some time, in this second set we removed the styles and variations with
sufficient agreement in the previous validation.

The second validation round had 5 participants (3 male, 2 female, aged 28-55).
The styles with 60% agreement and all styles that they were confused with were
included in the second validation. For example, possitive-reappraisal (P-R) had 60%
agreement and was confused with accepting-responsibility (A-R) and distancing (D).
Meaning these three styles were included for the second validation. When doing
this for all columns in table B.1 this left us with a total of seven conversations.

Results 2nd Validation
For the second validation the agreement went up to at least 80% per style. See
table B.2 for an overview of the results.

B.0.2. Making Videos of the Conversations
Using the validated conversations, we continued to translate them into videos where
they were played out by actors. We wanted videos of the conversations rather
than textual descriptions to make sure that people have the same mental image
of the robot. A textual description like ‘the Robot did X' might invoke different
mental state images for different people. Furthermore, non-verbal characteristics
and movements might have an influence on the perception. We chose a Pepper
robot from Softbank as embodiment. Pepper is a humanoid robot which makes
having dialogue with it seem natural. In addition, its size makes it reasonable to
have it in @ museum or hospital giving guidance to users.

We hired professional actors (one male one female) to play the role of Robin
in the conversations. In addition, we hired a semi-professional actor for the role
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Figure B.1: Pepper degrees of freedom.
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of Bob. We gave them descriptions of the coping styles, and they were tasked to
make the proper movements and intonations to reflect them. We chose to have
Robin be acted out by both a male and a female so that we can check whether
differences in perception of the coping styles are due to the human-robot difference
or simply due to a more general ‘another actor’ difference. Figure 4.1 shows eight
snapshots of the videos. The videos themselves can be accessed via this link:
https://ii.tudelft.nl/ExplainableAl/video/.

The next step was to animate the Pepper robot to move similarly as the actor.
However, it is not possible to have the robot move exactly the same as the actor.
The robot is limited in its movements since: (1) the robot does not have the same
degrees of freedom; (2) its proportions are slightly different than that of a human;
(3) the tablet blocks arm movements in front of the robot; and finally (4) fast
movements cause the engines to make loud noises. See also figure B.1 for the
appearance and degrees of freedom of the Pepper robot.

We annotated the videos of one of the actors using the ANVIL software pack-
age. For the annotation, we took the limitations of the Pepper robot into account.
Annotating subtleties like mouth movement would have been irrelevant, since it is
not possible to implement it. We annotated (1) the part of text the movement is a
part of; (2) the speed of the movements; and (3) the direction of the arms, hands,
head, and body.

Arm movements that were impossible on the robot due to proportional differ-
ences or due to the tablet were modelled to resemble the intended gesture as good
as possible. For example, pointing could be done by stretching the fingers and
pointing the arms in a wider angle around the tablet, rather than pointing a sin-
gle finger in a straight angle. Finally, very fast movements like nodding 5 times
or more within 2 seconds were annotated as such, but were later animated as 2
or 3 slower nods. For the voice, we used the build-in voice of the Pepper robot.
This automatically creates intonations with the words. When sentences were not
pronounced fluently enough, we tried to improve by adding additional punctuation
to the sentences.
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Table C.1: t-values for coping style recognition.

(a) Human Actor: t-values

Recognition

ModelledStle  rz----p----5C--"AR ~ EA " "PS PR "
t(40)=.8,
Confrontive (C) p(= .“212
— t(34)=-  t(34)=2.8, t(34)=-  t(34)=-  t(34)=-
Distancing (D) 1.1, p=.009 1.0, .6, 2.4,
p=.272 p=.314 p=.521 p=.021
Self-Controlling (5-C) | t(42)=1.8, t(42)=- t(42)=-
p=.086 1.6, 2.1,
p=.114 p=.045
Accepting- t(39)=.8,
Responsibility (A-R) p=.436
Fscape-Avoidance t(34)=- t(34)=-
(E-A) 12, 2.8,
p=.234 p=.008
Problem-Solving (P- t(40)=- t(40)=1.1, t(40)=-
S) 1.8, p=.264 1.2,
p=.079 p=.247
Possitive-Reappraisal t(32)=.7, t(32)=.9,
(P-R) p=.487 p=.396
(b) Robot Actor: t-values
Recognition
ModelledStle ¢ ----p----5C--"AR ~ EA " "PS PR -

Confrontive (C)

Distancing (D)

elf-Controlling =-
7,

p=.485
t(34)=- t(34)=2.1,

Accepting-
Responsibility (A-R)

Escape-Avoidance t(35)=2.1,

(E-A) p=.044 .7,
p=.097

Problem-Solving  (P- t(36)=1.9, t(36)=-

S) =.064 2.8,
p=.008

Possitive-Reappraisal t(46)=2.1,

(P-R) p=.042
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