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Abstract

Active state machine learning algorithms are a class of algorithms that allow us to infer state machines rep-
resenting certain systems. These algorithms interact with a system and build a hypothesis of what the state
machine describing that system looks like according to the behavior they observed. Once the algorithm ar-
rives at a hypothesis, it sends it to a so-called equivalence oracle to be checked. The equivalence oracle
returns a counterexample trace describing different behavior between the hypothesis and the real system if
one exists. Traditionally, this task is done using a technique called the W-method, which provides certain
guarantees about finding a counterexample if one exists, but this is rather slow due to the thorough search
it needs to do. In real systems, there are sometimes patterns to the counterexamples to be found during the
learning process, which can be exploited to speed up the process of finding new counterexamples. Instead
of performing an exhaustive search each time, we first use the already observed patterns to generate new
traces to try before falling back to traditional techniques in case no counterexample was found in the first
step. This allows us to find counterexamples more quickly than usual, and because we can always fall back
on the techniques that do provide guarantees we do not have to sacrifice correctness. In the same amount of
time, our method provides an up to 26x increase in the number of states found compared to the W-method,
while remaining fully black box and without degrading worst-case performance. We also show that, when
not working in a fully black-box scenario, fuzzing can be a successful complementary technique to apply
next to active learning. However, we also show that relying on fuzzing alone does not always fully capture the
behavior of a system, and when correctness is critical such as in the case of model checking, it needs to be
supplemented with additional techniques to result in fully correct models. Finally, we use our home-grown
state machine learning library to participate in the 2020 RERS challenge, and apply the techniques we studied
so far to attain a perfect score on the sequential LTL track.

Tom Catshoek
Delft, January 2021
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1
Introduction

To understand the world around us, it is important to have a mental model of how it functions. For example,
kids seem to have a talent for figuring out how electronic devices work by pushing buttons and observing
what happens. We can do the same in software: by interacting with a system, observations can be made,
and a model consistent with those observations can be inferred. These models can be represented as state
machines, with the states corresponding to the states of the system, and transitions between those states rep-
resenting the actions that can be taken from them. Model inference techniques that actively interact with a
system to infer how it works are active state machine learning algorithms.

However, it is not a strict requirement to actively interact with a system to learn how it works. If a set of
passively observed interactions or traces is available, those can also be used to infer a state machine con-
sistent with those observations. These techniques that rely on a predefined set of traces are passive state
machine learning algorithms. However, as in this case there is no active interaction with the system that is
being modeled, the resulting model will only be as accurate as the given data allows. If a certain behavior
of the system does not appear in the set of observed interactions, this behavior will also be absent from the
learned model.

As one can imagine, being able to automatically construct a model that describes the behavior of a given
system can be useful in many situations. For example, in software testing, it can be useful to check if a given
system conforms to a formal specification. For a real world example of this we can look at a pilot study done
at ASML, where they investigate the feasibility of using state machine learning on the software running their
lithography machines [41]. Other notable examples include the automated reverse engineering of a botnet
C&C protocol [12], and more general black box testing such as checking implementations of TLS [14], SSH
[16], and OpenVPN [13] protocols. Previous work has also used state machine learning techniques to detect
security flaws in mobile phone apps [40], banking cards [1] and their readers [8], as well as industrial control
systems [27].

A downside of active state machine learning techniques is that, because they interact with a running sys-
tem and pose a large amount of queries to get a complete overview of the behavior of it, they can take a long
time to run. Previous work has shown that when the total time of the learning process increases, the time
spent testing hypotheses (equivalence queries) dominates the total time spent learning [41]. Therefore, this
seems like a prime target to focus on if we want to speed up the process of active state machine learning.

1



2 1. Introduction

Active learning
Regular inference, or the process of learning a regular language from sets of negative and positive examples is
a well studied problem in computer science. The first algorithm to be able to complete this task in polynomial
time (in the size of the system under learning) was published in 1987 by Dana Angluin [3]. This algorithm,
named L*, is presented in a framework called "minimally adequate teacher", or MAT. A schematic overview
of the MAT framework can be seen in Figure 1.1.

The MAT framework consists of a learner component and a teacher component. The learner poses two
types of queries to the teacher, membership and equivalence queries. For membership queries, the learner
poses the teacher a question in the form of an input sequence. It is assumed the teacher has access to the
actual system under learning (SUL) in the form of a DFA, so it can easily run the given input sequence and see
the corresponding output. The teacher answers the query with either true or false, depending on if the input
is in the regular set representing SUL or not. After having posed enough membership queries, the learner is
able to construct a hypothesis representing what it thinks the model looks like given the information it has so
far. Then, it asks the teacher if this hypothesis is correct in the form of an equivalence query. This is where the
Teacher’s equivalence oracle comes in. This oracle is able to determine if there exists a counterexample prov-
ing the inequivalence of the learner’s hypothesis to the actual SUL. If the hypothesis is correct, the teacher
says so and the learning stops. If the hypothesis is incorrect, the teacher provides the learner a counterexam-
ple that highlights a case where the hypothesis and the actual system give a different output. The learner then
adds the information of this counterexample to its observations and continues asking membership queries
to construct a new hypothesis.

Figure 1.1: Schematic overview of the minimally adequate teacher framework

Of course, in reality we do not have access to an equivalence oracle that magically gives us a counterexam-
ple if one exists, so we need to resort to conformance testing techniques to approximate it. These techniques
can be used to generate a set of test inputs to run on both the hypothesized model and the actual SUL, and
then if both systems give the same output to all test sequences we can conclude that they are equal. Several
methods of generating these sets of test sequences exist, with the most notable ones being the W-method
[10] and Wp-method [17] which use the access sequences to all states, concatenated with a repeated product
of the input alphabet which in turn is appended by the characterizing set of the hypothesized model. For a
more formal and complete explanation please refer to chapter 2. Others include the Transition Tour method,
the Distinguishing Sequence method, and the Unique Input-Output Sequence method. [39]

Since the introduction of L* and the MAT framework in 1987, several improvements over the classic L*
algorithm have been proposed. A nice property of the MAT framework is that the individual components can
be swapped out as long as they can fulfill the same task, perhaps in a more efficient way. TTT [6], which to the
best of our knowledge is the current state of the art active state machine learning algorithm, swaps out the
learner component of the classic L* for a more efficient implementation which uses discrimination trees to
avoid asking redundant membership queries. TTT also makes clever use of a trie datastructure to efficiently
store discriminating sequences, further improving efficiency.
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RERS
One of the driving forces behind the work in this thesis is our participation in the RERS (rigorous examina-
tion of reactive systems) challenge. The RERS challenge is a competition that invites its participants to solve
various problems in two classes: reachability and LTL (linear temporal logic). The reachability track consists
of problems concerning obfuscated source code of reactive systems, with the goal being to find out which
error states in the program are reachable and which are not. The given source code compiles into a program
that can be communicated with over stdin/stdout, where each input can be seen as an action that puts the
system in a different state and causes it to give an output. It seems like a natural fit to model this using Mealy
machines (Def. 2.1.4), and so that is the approach taken in this work. However, we will see that as soon as
the programs become anything other than trivial, a naive approach quickly runs into problems for various
reasons. We will attempt to identify these problems and figure out how to work around them to make active
state machine learning a feasible strategy for as many RERS challenges as possible.

1.1. Outline
In this thesis, we describe how to infer models of software using active state machine learning, and investigate
the performance characteristics of the most commonly used algorithms. We investigate methods to reduce
their run time in practice, thus opening up more problems to feasible application of state machine learning
techniques. We test our approach in a real-world setting by participating in the RERS challenge and describe
our method of solving both the reachability and LTL problems. In short, we aim to answer the following three
research questions:

• How can we speed up the process of finding counterexamples during equivalence checking? A vital
part of state machine learning algorithms based on the minimally adequate teacher framework is the
equivalence oracle. In practice, such an oracle can be realized using various algorithms which all have
certain tradeoffs. The theory of equivalence checking is a well researched area, so a summary of the cur-
rent work is provided in section 2.4. First, we show that it is very much worthwhile to spend some time
engineering a proper method of communicating with the system you are trying to learn from, and pro-
pose an improved version of the W-method equivalence checker in section 3.3. After this, we propose
two new equivalence checking methods which aim to speed up the process of finding counterexamples
by exploiting their structure in chapter 4.

• How can we use white/grey box testing to improve the effectiveness of state machine learning algo-
rithms? To the best of our knowledge, all current active state machine learning algorithms are black
box in the sense that they only operate on inputs and outputs of a given system and do not utilize
any source code analysis or instrumentation. Previous work has shown that combining learning and
fuzzing [24] can be very effective in certain cases. In chapter 5 we investigate this method further, show
that by itself it is possibly insufficient to capture the complete behavior of a system, and apply it to the
RERS challenge problems.

• What is the most effective set of techniques out of the ones we consider to solve the RERS challenges
in the sequential reachability and LTL tracks? After investigating the above methods of speeding up
active state machine learning, in chapter 6 we investigate what the most effective techniques are for
both the reachability and the LTL track of the RERS challenge 2020, and evaluate our approach on the
problems of RERS 2019.



4 1. Introduction

1.2. Main Contributions
• Python state machine learning library. One of the main contributions of this thesis is a new, easy

to use active state machine learning library written in python. It aims to fulfill the same goals as the
well-known LearnLibMealyisberner2015open1 library, but focuses on ease of use, simplicity, and easy
extensibility. Of course, it is not as battle-tested as LearnLib and does not support all the same algo-
rithms yet, but the ease of experimenting with new code and ideas python gives us makes it a worth-
while tradeoff for academic purposes, or at least this thesis. Most of the algorithms mentioned in this
thesis have been implemented by the author, and have been used over the course of this thesis. They
have also been used to solve the problems of the 2020 RERS challenge.

At the time of writing, the code used in this thesis can be found here 2. A neatly packaged library will
follow at a later date, with a link to it available on this page.

• Mutating equivalence checker. Standard equivalence checking techniques like the W-method are
thorough, but slow. We propose a new equivalence checking step that exploits structure in the coun-
terexamples found so far to perform a more targeted search for new ones. This technique provides a
significant speedup on the RERS problems we tested it on, and can be stacked with the W-method to
still provide the same correctness guarantees.

• Fuzzing. We confirm the previous work which showed us fuzzing can be combined with learning to
greatly improve the rate at which new states are discovered. However, we also show that only using the
traces found by fuzzing can be insufficient to capture the complete behavior of a system. We again pro-
pose to stack the fuzzer-based equivalence check with other methods to make sure nothing is missed.

• RERS. We devise a strategy to solve both the sequential reachability and LTL tracks of RERS 2020. We
integrate the NuSMV model checker into our library and succesfully use it to perform LTL checks on
the RERS problems. We also show that while active state machine learning can be a powerful technique
in black box scenarios, it has trouble competing with white/greybox fuzzing for pure reachability tasks.
However, for LTL tasks, learning state machines is a feasible approach and our method manages to
attain a perfect score on both the RERS 2019 and 2020 sequential LTL tracks.

1https://learnlib.de/
2https://github.com/TCatshoek/lstar



2
Preliminaries and Related Work

In this chapter we will introduce the reader to some knowledge required to understand what active state ma-
chine learning algorithms do, and how they function. We will explain the two types of models we use, DFAs
and Mealy machines. DFAs are the model of choice in the original L* algorithm as well as TTT. Both algo-
rithms have been adapted to learn the more expressive Mealy machine as well, which we use to model the
RERS problems. We will introduce the minimally adequate teacher framework, in which most active learning
algorithms are defined, and dive into the inner workings of L* and TTT. After that we will explain equivalence
oracles, which are a necessary component in the MAT framework and attempt to prove or disprove equiv-
alence of the proposed hypothesis model to the system under learning (SUL). Lastly, we will look at some
related work which we draw inspiration from.

2.1. Automata
The hypotheses created by state machine learning algorithms usually come in the form of automata, such
as DFAs or Mealy machines. More complex and expressive automata like for example register [23] or visibly
pushdown automata [2] are also possible to learn, but to narrow down the scope of this thesis we will focus on
DFAs and Mealy machines. We focus on DFAs since both the L* and TTT algorithms were originally developed
with the goal of learning regular languages (and thus DFAs) in mind, and Mealy machines since the RERS
reachability problems are well suited to be represented by them. We aim to stick closely to the notation used
in current literature.

2.1.1. DFAs
Definition 2.1.1. (DFA) A deterministic finite automaton U is a 5-tuple (Q,Σ, q0,δ,F ), where:

• Q is the set of all states

• Σ is the input alphabet

• q0 is the initial state

• δ : Q ×Σ→Q is the transition function

• F is the set of accepting states

Furthermore, the language accepted by U is defined by L(U ) = {w ∈Σ∗|δ(q0, w) ∈ F }

To clarify, Figure 2.1 shows an example DFA A which accepts the regular language defined by the regular ex-
pression b*a+b[ab]*. The three circles marked q0, q1 and q2 represent the states Q, and the input alphabet
Σ = {a,b}. The labeled arrows represent the transitions in δ, and the double circle around q2 marks it as an
accepting state.

5



6 2. Preliminaries and Related Work

Figure 2.1: An example DFA

To get the state q ′ after a certain transition from another state q we can write q ′ = δ(q, a) with a ∈ Σ and
q, q ′ ∈ Q. The state q ′ in this case is called the a-successor of state q . We can slightly abuse this notation to
extend the transition function to q ′ = δ(q, w) so it can accept words w ∈Σ∗, where Σ∗ is the concatenation of
any number of elements of Σ of any length. If we define the concatenation of a symbol a to a word w as a ·w
(or simply aw), and ε as the empty word, δ can be defined inductively as

Definition 2.1.2. (DFA transition function)

δ(q,ε) =q ∀q ∈Q

δ(q, aẇ) =δ(δ(q, a), w) ∀q ∈Q, a ∈Σ, w ∈Σ∗

An example in the case of the DFA A could be q2 = δ(q0, ab), where ab is the input that takes us from state q0

to the accepting state q2.

In the case of DFAs, it is also convenient to define a state output function λ :Σ∗ →B:

Definition 2.1.3. (DFA state output function)

λ(w) =
{

1 if δ(q0, w) ∈ F

0 otherwise
∀w ∈Σ∗

The full formal description of this DFA A= (Q, q0,F,δ,Σ) is

• All states Q = {q0, q1, q2}

• q0 is the starting state

• The accepting states F = {q2}

• The transition function δ can be represented by the transition table:

a b
q0 q1 q0

q1 q1 q2

q2 q2 q2

• The input alphabet Σ= {a,b}
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2.1.2. Mealy Machines
A Mealy machine is much like a DFA in the sense that it has states and transitions which bring it to a new
state through input symbols. However, it does away with the notion of accepting states and instead defines
an output function, which for each transition in the graph defines an output symbol.

Definition 2.1.4. (Mealy machine) a Mealy machine is a 6-tuple (Q,Σ,Ω, q0,δ,γ), where:

• Q is the set of states

• Σ is the input alphabet

• Ω is the output alphabet

• q0 is the initial state

• δ : Q ×Σ→Q is the transition function

• λ : Q ×Σ→Ω is the output function

Figure 2.2 shows an example Mealy machine M with the same general structure as the DFA in Figure 2.1.
However, note that no state is marked as being an accepting state, and each transition now not only has an
input symbol, but also an output symbol.

Figure 2.2: An example Mealy machine

The transition function for Mealy machines is defined analogously to the one for DFAs (2.1.2), and the output
function is similar as well. The output function λ can be defined inductively as

Definition 2.1.5. (Mealy machine output function)

λ(q,ε) =ε ∀q ∈Q

λ(q, a ·w) =λ(q, a) ·λ(δ(q, a), w) ∀q ∈Q, a ∈Σ, w ∈Σ∗
An example input for Mealy machine M could be ab, which would take us to state q2 from state q0 and
through state q1, while giving us the output word 12.

The full formal definition of Mealy machine M= (Q,Σ,Ω, q0,δ,λ) is

• The set of all states Q = {q0, q1, q2}

• The input alphabet Σ= {a,b,c}

• The output alphabetΩ= {1,2,3}

• The initial state q0

• The transition function δ represented by the transition table

a b
q0 q1 q0

q1 q1 q2

q2 q2 q2

• The output function λ represented by the table

a b
q0 1 0
q1 0 2
q2 3 3
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2.2. Minimally Adequate Teacher framework
As discussed in the introduction, most active state machine learning algorithms are based on the minimally
adequate teacher framework proposed by Angluin [3] in 1987. In this paper, Angluin describes the mini-
mally adequate teacher as a component in the framework that can answer two types of questions from the
learner: membership queries containing a string t , and conjectures (or equivalence queries) consisting of
a description of a regular set S. Since the original L* algorithm is intended to learn regular sets (which can
be represented by DFAs), the answer to a membership query is simply yes or no, depending on if t is in the
unknown set or not. The answer to an equivalence query is either yes if the conjectured set is correct, or a
counterexample from the symmetric difference of S and the unknown language if not.

2.3. Learners
The learner component in the MAT framework is the part that asks membership queries to the teacher, and
when it has collected enough information, constructs a hypothesis which it then poses to the teacher in the
form of an equivalence query. If no counterexample is found, learning stops. If a counterexample is found,
it is handed back to the learner, which uses the information gained from the counterexample to refine its
hypothesis, and the cycle begins again until no counterexample is found anymore.

The learner stores the result of all observations it made in an internal data structure, and calculates what
new membership queries to pose based on what knowledge it already has. The specifics of this process de-
pend on the type of learning algorithm chosen, which will be discussed in the following sections.

A generic high level description of the "learning loop" looks as follows:

input : A leaner L and a teacher T
output: A hypothesis H matching the unknown system

C ←− ε // Keep track of counterexample C

while C 6= None do
C ←− None
H ←− r e f i neH y pothesi s(L) // Asks membership queries until L can make a new H
C ←− equi valenceQuer y(T, H) // Returns a counterexample if there exists one
if C 6= None then

pr ocessCounter exampl e(L,C ) // Lets the learner process the counterexample
else

return H
end

end
Algorithm 1: High level learning loop

Assuming a perfect equivalence oracle (one that always gives a counterexample if one exists within reason-
able time; we will later see that this is a problem in practice), and a competent learner, it is easy to see that
the hypothesis eventually returned will match the unknown system since there exists no counterexample in
which it’s behaviour differs from the unknown system.

To make this idea workable in practice, we need implementations of both the learner and the equivalence
oracle, which we will discuss in the following sections.



2.3. Learners 9

2.3.1. L*
The L* algorithm [3] is the first published algorithm to be able to learn an unknown regular set from a teacher
in polynomial time. It does this by making use of a data structure called an observation table. For the fol-
lowing section, let U be an unknown regular set, and A a set describing the finite alphabet containing all the
characters needed to create every word in U .

Definition 2.3.1. (observation table) An observation table is a 3-tuple (S,E ,T ), with:

• S is a nonempty finite prefix-closed set of strings

• E is a nonempty finite suffix-closed set of strings

• T is a mapping ((S ∪S · A) ·E) →B, where B is {0,1}

A set is prefix closed iff every prefix of every member of the set is also contained within the set, e.g.

∀w ·a ∈ S : w ∈ S

Suffix closedness is defined analogously.

For two sets A and B the cartesian product is defined as A ·B = {(a,b)|a ∈ A,b ∈ B}

An observation table can be visualised as a two-dimensional array, where the rows are indexed by entries
from S ∪S · A, and the columns by E . The entries in the table are kept in T , which can be seen as a map that
stores the results of membership queries. The entry indexed by s ·e with s ∈ S and e ∈ E is denoted as T (s ·e).
We can also define a function r ow(s) which retrieves a row from the observation table,

r ow(s) = [T (s ·e)|∀e ∈ E ]

E
e1 ... ei

S
s1 T (s1 ·e1) ... T (s1 ·ei )
... ... ... ...
s j T (s j ·e1) ... T (s j ·ei )

S · A
s1 ·a1 T (s1 ·a1 ·e1) ... T (s1 ·a1 ·ei )
... ... ... ...
s j ·ak T (s j ·ak ·e1) ... T (s j ·ak ·ei )

Table 2.1: Example observation table structure

It is convenient to separate the sections S and S · A, since they represent different things. As we see later
on, the unique rows indexed by S represent states in the the hypothesis represented by the observation table,
and the one letter extension rows from S · A are used to determine the transitions in the hypothesis.

There are two important properties an observation table must have before it can be used to create a hy-
pothesis: closedness and consistency.

Definition 2.3.2. (closedness) An observation table is closed if for each row(s ·a) in S · A, there exists a row(s)
in S so that row(s) == row(s ·a)

Definition 2.3.3. (consistency) An observation table is consistent if for each pair s1 and s2 both in S where
row(s1) == row(s2), for all a ∈ A row(s1 ·a) == row(s2 ·a).

When an observation table is both closed and consistent, it can be used to build a hypothesis in the form
of a DFA (Q,Σ, q0,δ,F ), with:

• Q = {r ow(s) : s ∈ S}

• Σ= A

• q0 = r ow(ε)

• δ(r ow(s), a) = r ow(s ·a)

• F = {r ow(s) : s ∈ S,T (s) = 1}
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Learner
Now that we have introduced the concept of an observation table, we can specify the complete learning
algorithm L*:

input : A leaner L and a teacher T
output: A hypothesis H matching the unknown system

C ←− ε // Keep track of counterexample C
H ←− none
S ←− {ε}
E ←− {ε}

while C 6= none do
while (S,E ,T ) is not closed or not consistent do

if (S,E ,T ) is not consistent then
find s1, s2 ∈ S, a ∈ A and e ∈ E such that:
r ow(s1) = r ow(s2) and T (s1 ·a ·e) 6= T (s2 ·a ·e)
E ←− E ∪ {a ·e}
fill observation table using membership queries

end
if (S,E ,T ) is not closed then

find s1 ∈ S, a ∈ A such that:
r ow(s1 ·a) not in {r ow(s)|∀s ∈ S}
S = S ∪ s1 ·a
fill observation table using membership queries

end
end

/* at this point we have a closed, consistent observation table and can
create a hypothesis */

H ←− cr eateH y pothesi s(S,E ,T )
C ←− equi valenceQuer y(H)
if C 6= none then

S ←− S ∪ {C and all prefixes of C }
fill observation table using membership queries

end
end
return H

Algorithm 2: L* learning algorithm

Example
As an example, lets assume we are trying to learn the regular set accepted by the DFA from Figure 2.1, which
is also described by the regular expression b*a+b[ab]*. We know the alphabet Σ= {a,b}.

L* initializes it’s observation table, setting S = {ε} and E = {ε}, and enters it’s main loop, asking membership
queries to the teacher to fill all empty positions in the table until it is closed and consistent. After this, the
observation table looks like this:

ε

ε 0
a 0
b 0

Table 2.2: Initial observation table Figure 2.3: DFA H1 consistent with the initial observation
table

Since this observation table 2.2 is both closed and consistent, L* will use it to build a hypothesis DFA H1
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consistent with the observation table, which can be seen in Figure 2.3. After this, the L* learner poses an
equivalence query to the teacher containing the hypothesis DFA. Since this DFA is obviously not equivalent
to the "unknown" DFA A (2.1), a counterexample will be found. Let us assume the counterexample given
back to the learner by the teacher is ab. We can see the hypothesis DFA output λH1 (ab) = 0, and λA(ab) = 1,
so ab and its prefix a are added to S. After this the new entries in the observation table are filled out using
membership queries until it looks like the observation table in 2.3

ε

ε 0
a 0
ab 1
aa 0
aba 1
abb 1
b 0

Table 2.3: Observation table after processing the counterexample ab

At this point, the observation table in 2.3 is closed, but not consistent since r ow(ε) = r ow(a) but not
r ow(ε · b) = r ow(a · b), so b is added to E and the necessary membership queries to fill the new table are
performed, resulting in the observation table in 2.4.

ε b
ε 0 0
a 0 1
ab 1 1
aa 0 1
aba 1 1
abb 1 1
b 0 0

Table 2.4: Observation table after adding b to E Figure 2.4: DFA H2 consistent with observation table 2.4

After one last check if the table is closed and consistent, L* creates a new hypothesis H2 and sends it to
the teacher for an equivalence check. Since DFA H2 is obviously equivalent to the target system, the teacher
fails to find a counterexample and reports back to the learner that the hypothesis is equivalent. This causes
L* to pose it’s hypothesis H2 as the final output, and the learning stops.
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2.3.2. TTT
After looking at the tried-and-true L* algorithm, we should also introduce the current state of the art active
learning algorithm, TTT [6]. TTT is also a learner in the MAT framework, but instead of the observation tables
used by L*, it uses a discrimination tree.

This idea was first used by Kearns and Vazirani [26], and refined by Balcazar et al. [4] and Howar [20]
and results in a massive reduction in the number of membership queries necessary to learn a model, since
it reduces redundancy by only requiring membership queries that are necessary to distinguish states be per-
formed. TTT is based on the "discrimination tree" algorithm by Howar, but further reduces redundancy by
adding an extra step called discriminator finalization, which replaces excessively long suffixes in the discrim-
ination tree with shorter ones to reduce the length of the membership queries asked.

Definition 2.3.4. (Discrimination Tree) A discrimination tree T is a rooted binary tree, where

• N is a set of nodes, which can be divided into inner nodes I and leaves L, e.g. N = I ∪L

• n0 is the root node

• inner nodes are labeled with a discriminator (or distinguishing suffix)

• inner nodes have exactly two children, a >-child and a ⊥-child

• leaves are linked to hypothesis nodes

There are two main operations that are used to obtain information from a discrimination tree:

• sifting

• getting the lowest common ancestor of two nodes

Sifting is the main operation si f t (u) done on the discrimination tree. For a given access sequence s we
can find out what node we end up in by sifting the access sequence through the discrimination tree. To de-
scribe this process informally: we start at the root node n0, if it is a leaf, terminate and return the leaf. If it
is not, append the discriminator v of the current discrimination tree node to the access sequence u and ask
a membership query using u · v . Depending on the answer of the membership query, take the edge to the
corresponding child node and repeat this process until you end up in a leaf.

LCA, or lowest common ancestor, is the operation l ca(a,b) that retrieves the first inner node that is an an-
cestor to the two given leaf nodes a and b. Because of the way the discrimination tree is structured, this is
always a distinguishing sequence for the two given nodes. If all nodes except the root node carry a pointer to
their parent node, it can be computed very efficiently as well by simply walking up the tree towards the root
node and returning the first node that is found in the path of both nodes towards the root.

Lets immediately dive into a concrete example of a DFA A, with it’s corresponding discrimination tree D

Figure 2.5: DFA A Figure 2.6: Discrimination tree D for DFA A

In the discrimination tree depicted in Figure 2.6, the circular nodes represent inner nodes, which are
labeled with the discriminating suffixes. The square nodes represent leaf nodes, and are labeled according
to which state in the hypothesis in figure 2.5 they belong to. Inner nodes have two children, to which the
transitions are indicated with a dotted arrow for the ⊥-child, and a solid arrow for the >-child.
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Sifting works as follows: Say we want to know what state we are in after running a certain sequence of
inputs. For the sake of simplicity, let us use u = ε. We start at the root of the tree which has the discriminator
ε, so we do a membership query for ε ·ε, which returns false since it is not accepted by the target DFA A. This
means we proceed along the ⊥-path to the next inner node which is labeled with the discriminator b. We
do another membership query, this time using the sequence ε ·b, which also returns false, so we continue
towards the ⊥-child and end up in the leaf node labeled s0, so we know the sequence ε takes us to state s0

The lowest common ancestor operation kind of speaks for itself, but for the sake of completeness lets go
through an example here too. Let’s say we want to know how to distinguish state s0 and s2 from each other.
We can find the discriminator that allows us to do this by finding the lowest common ancestor of the leaves
labeled s0 and s2 in the discriminator tree. We simply walk back up towards the root from both nodes and
return the first node that is in both paths, which in this case is the root node labeled ε. This means we can
simply use the access sequences for nodes s0 and s2 and see what the output of a membership query is for
them, since λ(Hbs0c ·ε) is false, and λ(Hbs2c ·ε) is true.

Counterexample decomposition
Another key element of TTT is the counterexample decomposition introduced by Rivest & Schapire [32], fur-
ther elaborated by Steffen [38]. As we will see further on, as soon as TTT discovers a counterexample, it needs
to decompose it in such a way that it can add the suffix of the counterexample to the discrimination tree,
which is enough to distinguish between the hypothesis state that was wrong, and the new state introduced
by the counterexample.

Rivest & Schapire state that for a given counterexample w between target DFA A and hypthesis H , there
exists a decompostion w = u · a · v , with u ∈ Σ∗, a ∈ Σ, and v ∈ Σ∗, and λA(Hbuc · a · v) 6= λA(Hbu · ac · v)
This makes it apparent that, while in the hypothesis Hbu ·ac and Hbuc ·a lead to the same state, they have a
different output for the separating sequence v : thus, this state in the hypothesis needs to be split.

Learner
Now that we introduced the concept of a discrimination tree, let us look at how the learning algorithm TTT
works. It is significantly more complex than L*, and a 100% full formal description is outside of the scope of
this thesis. The goal here is to instill a working knowledge of how TTT functions into the reader. For the full
technical details, please refer to the PhD thesis of M. Isberner [21]

The TTT learner consists of three main datastructures: A spanning tree hypothesis Sp, which is a prefix-
closed set of access sequences describing the path to all states in the hypothesis so far, A discrimination
tree T , as described above, and a discrimination trie which is used to efficiently store the discriminators in a
redundancy-free way. The discrimination trie is only used to improve memory efficiency, and has no effect
on the amount of queries to be done, so for the sake of simplicity we can store the discriminators directly in
the nodes of the discrimination tree and ignore the trie altogether.

In the original paper [22] , TTT is described as working in four main steps:

Hypothesis construction. To construct a hypothesis from it’s internal datastructures, TTT looks at the prefix-
closed set of access sequences Sp ∈Σ∗. Each of these sequences is an access sequence to a state, so for each
access sequence the hypothesis has a state. This hypothesis DFA is at first only connected by the spanning
tree implicitly described in S. To get the non-spanning tree transitions, we need to sift them through the dis-
crimination tree. To determine the a-transition for the state described by the access sequence s ∈ Sp, we sift
the sequence s · a through the tree. The resulting leaf contains the target of the transition. We do this for all
missing transitions in each state to get the complete hypothesis.

Hypothesis refinement Once the previous step has successfully constructed a hypothesis, it is passed to the
teacher for an equivalence query. If no counterexample is found, the hypothesis is returned as the final an-
swer. If a counterexample is found, it is decomposed into a prefix u, breaking point a, and suffix v . From this
we can deduce that the sequences Hbuc · a and Hbu · ac should lead to different states, yet according to the
current hypothesis they are the same. This means that this state in the hypothesis should be split. In other
words, a new state with the access sequence Hbuc · a should be introduced to Sp. Note that this preserves
prefix closedness.
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The discrimination tree also needs to be updated. The leaf linked to the original state in the hypothesis
that was split in the previous step needs to be split as well. This is done by replacing it with an inner node
labeled with the suffix v , which can discriminate the the new state and the old state, which are added to the
new inner node as children according to their output after the suffix it is labeled with.

Hypothesis stabilization As a result of the hypothesis refinement step, it is possible for the hypothesis to be-
come inconsistent with the discrimination tree. For example, it is possible for a state to be the ⊥-child of an
inner node in the discrimination tree, but still be an accepting state in the hypothesis. This means the ac-
cess sequence for that state, plus the distinguishing suffix in the tree form an internal counterexample. This
counterexample can be treated in the same way as a counterexample retrieved from the teacher, e.g. it can
be decomposed, used to split a state in the hypothesis, and update the discrimination tree.

Discriminator finalization This is where TTT sets itself apart from the previous work in discrimination tree
based learners. Discriminators added to the tree through counterexamples are marked temporary, and can
contain a relatively long suffix v from the previously done decomposition. Discriminator finalization at-
tempts to replace the root of a subtree of temporary discriminators (also called a block) with a shorter, non-
temporary discriminator. This is done by either finding two states x and y in the same block that are them-
selves output-separable, e.g. ∃a ∈ Σ∗ : λ(bxc ·a) 6= λ(byc ·a), or separable through their a-successors, e.g. the
a-successors of state x and y are in distinct blocks, which implies they can be separated by a non-temporary
discriminator in the tree. When two such states x and y can be found, the non-temporary discriminator sepa-
rating them can also be found, which then in turn can be used to replace the inner node in the discrimination
tree at the block root.

Note: this new discriminator that replaces the temporary one does not necessarily partition the subtree
in the same way, so some effort is required to rearrange the subtree. This is done by marking every leaf in the
subtree according to it’s output relative to the new discriminator, and propagating this label up towards the
root of the block. Then, for the ⊥-subtree of the new final inner node, keep only the ⊥-labeled nodes, and for
the >-subtree only the >-labeled nodes. For a more formal description of this process please refer to [21].

these four steps above are essentially repeated in a loop, until no counterexample can be found anymore and
the final hypothesis is returned.

Example
Lets walk through an example of TTT learning the DFA A 2.5 as in our previous examples. TTT starts by
initializing it’s prefix closed set of access sequences Sp with one member, ε, for the first state in the hypothesis.
Consequently, the discrimination tree is initialized with a leaf as root node, which is linked to the initial state.

Now TTT takes the first step of building a hypothesis, which looks like Figure 2.7. The corresponding
discrimination tree at this point in time looks like Figure 2.8, which as we can see consists of a single leaf
which is linked to the only state in the hypothesis, s0.

Figure 2.7: Initial hypothesis DFA H0 Figure 2.8: Initial discrimination tree

During the second step, TTT passes the initial hypothesis H0 to the teacher to perform an equivalence
check. This hypothesis is obviously not equivalent to the DFA A we are trying to learn, so a counterexample
can be found. Let us assume the counterexample returned by the teacher is abb.

TTT then decomposes the counterexample into a prefix u, pivot point a and suffix v . The decomposi-
tion process looks for a decomposition of the counterexample where bucH0 ·av gives a different output from
buacH0 · v , which in this case is true for u = ε, a = a, v = bb since λA(ab) 6=λA(abb).

Now that we have the decomposition, we know the state accessed by buacH0 needs to be split. This is the
state s0, so we look up the leaf in the decision tree which it is linked to, and split it. This is done by replacing
the current node by a new inner node labeled with the suffix v , adding the old leaf node to it as a child, as well
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as a new leaf node which will be linked to the new state created by the split. This state s1, with access sequence
bucH0 · a, is also added to the prefix closed set Sp. After this process is finished, the resulting hypothesis H1

and the corresponding decision tree look like the following:

Figure 2.9: hypothesis DFA H1 Figure 2.10: Discrimination tree after processing the
counterexample abb

This hypothesis and discrimination tree are not stable, e.g. the discrimination tree is not consistent with
the hypothesis. We can see this by sifting the access sequence a into the tree, which on the inner node labeled
bb takes us along the "True" branch since λA(abb) = 1. This means that, according to the decision tree, the
state with access sequence a should be an accepting state, yet this is not the case in the hypothesis, therefore
abb forms an internal counterexample. An internal counterexample can be treated in the same way as a
counterexample obtained from the teacher, so we go through the same process described above another time.
We decompose the counterexample, this time into (ab,b,ε), and create a new state with access sequence ab,
and split the corresponding leaf in the decision tree, resulting in the following:

Figure 2.11: hypothesis DFA H2 Figure 2.12: Discrimination tree after processing the internal
counterexample abb

We now have a correct hypothesis H2, as well as a stable decision tree. However, there is still one last step
to go. In this example it may not be of much benefit since essentially we are already done, but when learning
larger state machines discriminator finalization can gain us a significant improvement in symbol complexity
(e.g. the amount of symbols sent to the SUL to execute). It is done as follows: First, we need to gather the
blocks of the discrimination tree. A block is a maximal subtree of temporary nodes, so in this case the entire
tree is one block. TTT then looks for a pair of states in the block that can either be separated by their output,
or by their a-successors (see the section describing discriminator finalization 2.3.2). In this case TTT will find
an output-wise splitter b, which is suited to replace the root node of the block bb.

Then, the new block with the root node marked ε can also be split output-wise using a as new final dis-
criminator. Now, all temporary nodes have been replaced with final ones, resulting in the final discrimination
tree seen in Figure 2.13.
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Figure 2.13: Finalized discrimination tree

2.3.3. Adaptation for Mealy machines
Both L* and TTT were originally designed to infer DFAs, but fortunately they can both be adapted to suit our
purpose of learning Mealy machines relatively easily. L*’s observation table can be modified so that the map-
ping T : ((S ∪S · A) ·E) → B changes to ((S ∪S · A) ·E) → Ω, where Ω is the output alphabet of the unknown
Mealy machine. This effectively means that the cells in the observation table simply contain the output of the
complete trace that indexes that cell. Now this observation table can be used to construct a Mealy machine
in the same way as would normally be the case, and no further modifications are necessary.

Adapting TTT to learn Mealy machines is slightly more challenging. We need to change the discrimination
tree from a binary tree to a tree where each node can have an arbitrary number of children, along with some
other adaptations which are described in the PhD. Thesis of M. Isberner [21].
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2.4. Equivalence oracles
Up until this point we have focused mostly on the learner-part of the MAT framework. However, without
the ability to pose equivalence queries, the learner would not be able to infer a correct hypothesis. Until
now we have assumed the existence of an equivalence oracle which is able to answer whether or not a given
hypothesis is equal to the target system, and if not, return a counterexample. In practice no such oracle
exists, so it is necessary to approximate equivalence queries using equivalence checking techniques. It is
important to note that, while there are a lot of different methods available, they all have their strengths and
weaknesses and provide different guarantees. Most of all they all merely approximate equivalence queries
and thus can give an incorrect output, although usually only false positives, e.g. they answer that a hypothesis
is equivalent while it is not. In any case, they all work by generating a set of test queries, which are executed on
both the hypothesis and the SUL. If the hypothesis and the SUL give the same output for all the test queries,
they are assumed to be equivalent. If the output is different for a certain query, that query is returned as a
counterexample. In this section we will explain several of the most commonly used equivalence checking
techniques and discuss their strengths and weaknesses.

2.4.1. Brute force
Perhaps the simplest equivalence checking technique is brute forcing through all possible input combina-
tions up to a certain length n. While this is guaranteed to find a counterexample if one exists up to the speci-
fied length, it is perhaps the least efficient way of equivalence checking. The amount of queries in the test set
grows exponentially with n and thus the query complexity is O|Σ|n , where |Σ| is the size of the input alphabet.
To generate the test set, we use the previously defined cartesian product and introduce a repeated variant of
it for any set A:

An = A · A · . . . · A︸ ︷︷ ︸
repeated n times

The algorithm for brute force equivalence checking goes as follows:

input : hypothesis H , SUL S, input alphabet Σ, max length n
output: Counterexample C if one exists, None otherwise

for i ← 1 to n do
T ←Σi

for t ∈ T do
SU LOut put ←λsul(t )
H y pOut put ←λhyp(t )
if SU LOut put 6= H y pOut put then

return t
end

end
end
return None

Algorithm 3: Brute force equivalence checking algorithm

Because of the exponential complexity of the brute force equivalence checking algorithm, it’s practical
usefulness is limited. Anything but the smallest state machines would require n to be so large that running it
quickly becomes infeasible, but for the sake of completeness it is still included here.

2.4.2. Random walk
While brute forcing equivalence queries guarantees finding a counterexample up to length n if one exists,
it is too expensive to be feasible. Using a random walk to generate input sequences allows us to explore
the same input space of sequences up to a given length n, but while covering more ground faster by not
exhaustively searching the inputs of lower length before moving on to larger sequences. However, the random
walk method does not guarantee finding a counterexample up to the specified length if one exists, because it
isn’t likely to explore everything in a realistic setting.
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For convenience, we use λstep as a step output function here, meaning it takes in a single symbol from
Σ, takes the system to the next state, and gives the output of the transition, as opposed to the normal output
function λ which takes in an entire sequence and gives the last single output for that sequence.

input : hypothesis H , SUL S, input alphabet Σ, max length n, number of walks numw alks
output: Counterexample w if one exists, None otherwise

for i ← 0 to numw alks do
reset S to initial state
reset H to initial state
w ← ε

while length of w ≤ n do
a ← random element from Σ

w ← w ·a

SU LOut put ←λ
step
sul (a)

H y pOut put ←λ
step
hyp (a)

if SU LOut put 6= H y pOut put then
return w

end
end

end
return None

Algorithm 4: Random walk equivalence checking algorithm

2.4.3. W-method

A more efficient method of equivalence checking that still provides certain guarantees about finding coun-
terexamples is the W-method, proposed by Chow in [10]. To provide these guarantees, the W-method needs
an upper bound m for the amount of states in the unknown system. For a hypothesis consisting of n states,
W-method creates a test suite by concatenating three sets of inputs, a state cover set V , test cases Z =∏m−n

i=0 Σi ,
and a characterizing set W . Resulting in a test suite V ·Z ·W .

Definition 2.4.1. (State cover set) A state cover set V for a state machine S is a set of input traces that reaches
every state in S. E.g. ∀q ∈ QS : bqcS ∈ V . V = {bqcS |∀q ∈ Qs } It can be easily determined by performing a
breadth first search on S and recording the inputs for each state when it is first reached.

Definition 2.4.2. (Characterizing set) A characterizing set W for a state machine S is a set of traces that can
be executed on from any state q ∈Qs which outputs uniquely identify that state q . E.g. the outputs of q ·W are
unique for all bqc ∈Qs . Determining the characterizing set for a given state machine S can be done in several
ways. For example the set E in the observation table utilized by L* is a characterizing set. Other ways of
determining the characterizing set are partition refinement like used in Moore’s minimization algorithm [31]
or Hopcrofts algorithm [19], or the more efficient method by Smetsers et al. in minimal separating sequences
for all pairs of states [35].

A simple pseudocode example of the W-method could look as seen in Algorithm 5. In practice, it might
be beneficial to generate the test traces "as you go", since the complete test set can become quite large and
require a lot of memory to be stored up front completely.
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input : hypothesis H , SUL S, input alphabet Σ, upper bound on SUL states m
output: Counterexample w if one exists, None otherwise

V ← st atecover (H)

Z ←∏m−n
i=0 Σi

W ← char acter i zi ng set (H)

for w ∈V ·Z ·W do
SU LOut put ←λsul(w)
H y pOut put ←λhyp(w)
if SU LOut put 6= H y pOut put then

return w
end

end
return None

Algorithm 5: W-method equivalence checking algorithm

Let us look at an example of how the W-method can be used to approximate an equivalence query in
the MAT framework. Assume at some point during the learning process, our learner has come up with the
hypothesis in Figure 2.14, and is trying to learn the DFA in Figure 2.15. Assume we know the target DFA has 3
states, so we pass this as input to the W-method along with the hypothesis and target DFA.

Figure 2.14: Example hypothesis Figure 2.15: Target DFA

The W-method will then calculate the state cover set for the hypothesis, which in this case is simply V = {ε}
since we do not need to input anything to get into the initial state, and there are no other states. Since the
hypothesis has one state (n = 1), and we provided as input to the algorithm m = 3, the test sequences Z will
become

∏2
i=0Σ

i = {a,b, aa, ab,ba,bb}. The distinguishing set for our hypothesis is W = {ε} which satisfies the
requirement of all states having a unique output for all traces in the set, since there is only one state in the
hypothesis. Therefore the complete test set in this case is V · Z ·W = {a,b, aa, ab,ba,bb}. These test queries
will be posed to the SUL and a counterexample aa will be found since this input leads to an accepting state,
which is not present in the hypothesis.

2.5. Characterizing sets
Like mentioned in definition 2.4.2, a characterizing set for a given state machine S is a set of input sequences
of which the output uniquely identifies every state in S. Every minimal (e.g. no two states show identical
behavior) state machine has a characterizing set. In the following section we will outline one of the possible
methods to find a characterizing set. A newer, improved variant of this method is described in [35].

2.5.1. Partition refinement
One way to find a characterizing set for a given state machine S, is building a partition tree using a parti-
tion refinement algorithm. A partition tree can be built as a tree where each node contains a partition block
holding states of S. The initial (trivial) partition contains a single block which contains all states, and this
partition is repeatedly refined for each layer it goes down in the tree. The refinement process is repeated until
all blocks in the partition only contain equivalent states, e.g. the output for all states in a block is equivalent
for all inputs.

Two examples of algorithms using partition refinement are Moore’s and Hopcroft’s algorithms for DFA
minimization. They use the idea of building a partition tree until no blocks can be refined anymore, which
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means that if there are blocks in the tree that contain more than one state, that those states are necessarily
equivalent. This fact can be used to minimize DFAs, since all distinguishable states correspond to a partition,
so a new, minimal DFA can be constructed using the final partitioning as states.

While minimizing DFAs or other state machines is not what we are looking for, the way these algorithms
build their partition tree is still useful for our purpose of determining a distinguishing set. We will end up
with partition blocks containing only a single state, since in our case all states are unique, but we can use the
set of "splitters" used to partition the states as a distinguishing set.

The paper Minimal Separating Sequences for All Pairs of States [35] provides a solid explanation of using
a partition refinement algorithm to determine a distinguishing set for a given FSM, but we will summarize
the procedure here. In essence, you start with a partition P containing the set Q of all states in your state
machine, and iteratively refine P until all states in each block are equivalent. Like before, two states q1 and
q2 are equivalent if λ(q1, x) = λ(q2, x) ∀x ∈ Σ∗. Analogously, a separating sequence for two states q1 and
q2 (sometimes called splitter in the context of splitting a partition block) is any sequence x ∈ Σ∗ such that
λ(q1, x) 6=λ(q2, x).

To refine a partition, we look for a block to split, e.g. the block contains states that we can prove are
inequivalent by giving them a certain input for which they will give a different output. We can split a block B
for two reasons:

• we can find an input symbol a for which two states q1, q2 ∈ B have a different output, λ(q1, a) 6=λ(q2, a)

• we can find an input symbol a that takes two states q1, q2 ∈ B to new states q ′
1 = δ(q1, a) and q ′

2 =
δ(q2, a) for which holds that q ′

1 and q ′
2 are in different blocks.

In the first case, we simply create a child node for each output given by the states after consuming symbol
a, and add these as children of the node containing the original partition B . The second case is a little more
complicated. Since we know that q ′

1 and q ′
2 are in different blocks, this means they have a lowest common

ancestor node (see 2.3.2) which has a splitter a′ that separates q ′
1 and q ′

2. Since q ′
1 and q ′

2 were reached from
q1 and q2 by consuming input a, we know the splitter for q1 and q2 can be created by prepending a to a′.
We can use the output of the states in B for this sequence a ·a′ to divide them over the child nodes as in the
previous case.

Before we can assemble our complete algorithm, we need to define two more concepts for partitions:
stability and acceptability.

• A partition is acceptable if for all blocks, all states contained within each block have the same output
for all single symbol inputs a ∈Σ∗, e.g. for all pairs (q1, q2) ∈ B and ∀a ∈Σ∗, λ(q1, a) =λ(q2, a).

• A partition is stable if it is acceptable and for any input a ∈ Σ∗ and all pairs of states (q1, q2) ∈ B , q ′
1 =

δ(q1, a) and q ′
2 = δ(q2, a) are also in the same block.

The algorithm to find a partition tree for a given FSM M is as follows:

input : A FSM M
output: A valid and stable partition tree T

Initialize T with a single node with one block containing the trivial partition of M

while P(T) is not acceptable do
find a so that λ(q1, a) 6=λ(q2, a) f or (q1, q2) ∈ B
add child nodes to the node containing B using a as described earlier

end
while P(T) is not stable do

find a so q ′
1 = δ(q1, a) and q ′

2 = δ(q2, a) such that q ′
1 and q ′

2 are in different blocks.
find LC A(q ′

1, q ′
2) and use it’s splitter a′ to construct a ·a′

add child nodes to the node containing B using a ·a′ as described earlier
end
return T

Algorithm 6: Partition refinement algorithm, adapted from Smetsers et al. [35]
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2.6. Combining active and passive learning
In the work by N. Yang et al. [41], the tradeoff between learning time and completeness of learned models
was investigated with a pilot study done at ASML. To resolve the tradeoff, they combined active learning
techniques with passive learning results as well as execution logs containing traces of the running programs
during normal use.

One observation they made is that for systems where early choices affect behavior much later in the pro-
gram, it becomes challenging to learn the full behavior of that problem using active learning alone. This
makes sense since commonly used equivalence checking techniques like the W-method check behavior up
until a certain depth, so if a choice made 10 actions ago influences the outcome of the next step in a system,
this will not be seen by the equivalence checker if it has a depth lower than 10. Fortunately, they found that
this behavior is often found during normal use of the program and thus can be seen in the execution logs or
models derived from them by for example passive learning.

To summarize the method used in this paper, they define three oracles (which could be seen as three
separate equivalence checkers):

• A log-based oracle, which attempts to find counterexamples by identifying traces present in the log but
which cannot be generated by the current hypothesis being checked. They do this by building a prefix
tree acceptor (PTA) from the logs, and calculating a difference automaton between the PTA and the
hypothesis.

• A Passive learning based oracle, which works similarly to the log-based oracle but instead computes a
difference automaton between a model learned from the logs using passive learning and the hypoth-
esis. They note that this oracle is based on a conjecture that passive learning overgeneralizes, and so
they need to check any counterexamples found this way by running them on the actual system to see if
it is a real counterexample, or a mistake made by overgeneralization by the passive learning algorithm.

• A wp-method based oracle. This is a standard equivalence checking technique that like the W-method
provides certain guarantees about finding a counterexample if one exists up to a certain depth.

However, since the standard MAT-framework is not built to use multiple equivalence oracles, they define
a sequential equivalence oracle which contains the other three and executes them in order. When an equiva-
lence query is posed, it is first passed to the fastest oracle, the log-based oracle. If no counterexample is found
in the logs, the passive learning oracle attempts to find one. Finally if passive learning also does not find a
counterexample, a standard equivalence check is ran using the wp-method. The authors mention that this
idea is similar to the hierarchical memory architecture used in computers, with different levels of caches of
different sizes and speeds. If checking the fastest, smallest cache does not result in a hit, go one level up and
try the slightly slower, larger cache. If that also does not result in a hit, go up another level etc. A description
of this architecture can be seen in Figure 2.16

Figure 2.16: Sequential oracle architecture, adapted from N. Yang et al. [41]

To test whether or not this approach was helpful, they ran experiments on 18 different model-driven
software engineering based components used in ASML’s lithography machines. They conclude that both the
full setup of the sequential equivalence oracle, as well as two simplified variants using only the log-based and
passive learning based oracles significantly speed up the learning process. However, there was no siginificant
benefit over using both at the same time.
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Main takeaway
For the purposes of this thesis, the most interesting part of this work is the concept of the sequential equiv-
alence oracle. In the following chapters we will introduce new equivalence checking methods intended to
speed up the active learning process much like the log-based and passive learning based oracle in this pa-
per do. While they are much faster than a standard W-method check, they do not provide much in the way of
completeness or under/over-approximation guarantees. As such they need to be backed up by the W-method
or similar much like the last step in the serial equivalence oracle here.

2.7. Combining learning and fuzzing
In the master thesis of Mark Janssen [24] the idea of combining active learning algorithms with fuzzing is
explored. In this work, a prototype tool is introduced that leverages the test cases found by a fuzzer (in this
case AFL) and uses those to perform equivalence checks during active learning. The results of this method
are compared to the L* and TTT implementations in LearnLib combined with the W-method, and the results
are promising.

The implementation of this fuzzing equivalence oracle reads test cases from a fuzzer corpus, and uses
these as input traces for an equivalence check. The author evaluates the performance of this fuzzing equiv-
alence oracle on the RERS 2015 reachability problems. This is done by first fuzzing the problems for 24-48
hours using AFL, and then using the resulting fuzzing corpora for the equivalence checks during the active
learning process. The results can be seen in Table 2.5.

Table 2.5: Results of combining learning and fuzzing on RERS2015 reachability, adapted from M. Janssen [24]

On the reachability problems of RERS 2015, the proposed method outperforms the plain L* and TTT com-
bined with W-method equivalence checks by a large margin. Where the non-fuzzing learning process fails to
find many states or fail to finish the learning process in a reasonable time, the fuzzer based process reaches
more error states, usually in less time. It is also stated that on the larger problems, running L* does not finish
within multiple days of running and thus is excluded. Note that even after 24-48 hours of fuzzing, still not all
reachable error states have been found by AFL.

In chapter 5, we dive deeper into leveraging fuzzers for active learning. We show that using only the traces
generated by a fuzzer for equivalence checking is not always enough to capture the full behavior of a program,
and try to resolve this by stacking the fuzzing equivalence checker with conventional methods to not break
the guarantees provided by them.

Main takeaway
The use of fuzzing for active learning is a promising way to speed up the equivalence checking step, and it
manages to find more states and reach more errors than the traditionally used W-method in less time. How-
ever, it does not provide similar guarantees, so caution is advised in case fully complete models are required.
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Automata learning in practice

3.1. An initial look at RERS

After looking at the various techniques available for active state machine learning in chapter 2, let us take
a look at how they can be used in practice. To do this, we will introduce the Rigorous Examination of Re-
active Systems challenge. In the RERS challenge, participants are invited to solve various problems in two
categories: linear temporal logic, and reachability. In this work, we apply our state machine learning library
to both categories to help highlight it’s flexibility. As we will see, learning state machines is very useful for
the linear temporal logic problems and performs extremely well in this track. The reachability problems are
a good benchmark to see how far we can push active state machine learning, but since it is a fully black box
technique it is very challenging to compete with white/greybox techniques like fuzzing.

RERS allows participants a lot of freedom in how they solve the tasks. RERS 2019 saw participants use tools
like AFL, LLVM Interval analysis, and various other analysis and verification tools. There are no restrictions
on time or resource usage, and combining different tools is encouraged.

In this work, the RERS code is interacted with as if it were a Mealy machine. This is an excellent fit, since
the problem code works by taking in input, which changes the internal state and gives an output depending
on what state it is in. Obviously we do not know what the final Mealy machine should look like, but some
training examples are provided which include a list of reachable error states. This allows us to check if our
method is working correctly. An example state machine learned using L* on RERS problem 11, which is the
simplest training problem, can be seen in Figure 3.1.

23
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Figure 3.1: Mealy machine of RERS Problem11

Linear Temporal Logic
In the linear temporal logic (LTL) track, participants are given obfuscated code representing a reactive system,
and are given a list of LTL propositions to check if they hold or not. The RERS LTL formulae consist of atomic
propositions representing input and output symbols, as well as the following temporal operators1:

• Xφ (next): φ has to hold after the next step

• Fφ (eventually): φ has to hold at some point in the future (or now)

• Gφ (globally): φ has to hold always (including now)

• φUψ (until): φ has to hold until ψ holds (which eventually occurs)

• φW Uψ (weak until, sometimes just W): φ has to hold until ψ holds (which does not necessarily occur)

• φRψ (release): φ has to hold until ψ held in the previous step

When checking an LTL formula for a given system, the question is essentially: "can this system generate
an input/output trace that violates the given formula?". For example, say we have a formula (iU o3), and
a system that generates an input/output trace i ,o1, i ,o2, i ,o3. According to the above rules, the symbol U
means "until", and thus the complete rule means: the trace only contains i until the symbol o3 occurs, which
does eventually occur. As we can see in the trace, in the second step i does not hold anymore, and o3 has not
occurred, so the formula is violated.

1http://rers-challenge.org/2020/index.php?page=problemDescS
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Reachability
The goal of the reachability challenges is to discover what error states are reachable in given obfuscated code,
which is available in both java and C. Some snippets of example code can be seen in listing 3.1. This is only a
small exerpt from the code, the larger problems contain over 500,000 lines with many functions chained like
this, so it would be totally infeasible for a human to make sense of them.

1 void calculate_outputm3 ( i n t input ) {
2 i f ( ( a1880323056 == 32 && cf ==1 ) ) {
3 calculate_outputm34 ( input ) ;
4 }
5 }
6 void calculate_outputm49 ( i n t input ) {
7 i f ( ( a535900205 == 4 && ( a1129397725 == 32 && ( a856341416 == 33 && ( ( input == 9) && cf ==1 ) ) ) ) ) {
8 cf = 0 ;
9 a363016538 = 34 ;

10 a856341416 = 35 ;
11 a1975051863 = 35 ;
12 p r i n t f ( "%d\n" , 25) ; f f l u s h ( stdout ) ;
13 } i f ( ( a1129397725 == 32 && ( a856341416 == 33 && ( ( cf ==1 && a535900205 == 4) && ( input == 6) ) ) ) ) {
14 cf = 0 ;
15 a535900205 = 10;
16 a1837354890 = 17;
17 p r i n t f ( "%d\n" , 18) ; f f l u s h ( stdout ) ;
18 }
19 }

Listing 3.1: Example RERS code

1

2 i f ( ( ( a1129397725 == 33 && a535900205 == 4) && a856341416 == 33) ) {
3 cf = 0 ;
4 __VERIFIER_error ( 0 ) ;
5 }
6 i f ( ( ( a2099614420 == 7 && a535900205 == 9) && a856341416 == 33) ) {
7 cf = 0 ;
8 __VERIFIER_error ( 1 ) ;
9 }

10 i f ( ( ( a1618049448 == 34 && a535900205 == 7) && a856341416 == 33) ) {
11 cf = 0 ;
12 __VERIFIER_error ( 2 ) ;
13 }

Listing 3.2: Example RERS error checking code

The main thing to figure out is which of the verifier errors can be triggered and which not. The RERS programs
check for error conditions as shown in listing 3.2 By learning a state machine representing the RERS problems
we can see which errors are reachable and which input sequence leads to them. An important caveat is that
we cannot prove the absence of errors this way, since the learned state machine may not capture the entire
system.
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3.2. Practical considerations
Next to all the algorithms and theory, the design and implementation of the automata learning system can
also greatly influence the time it takes to successfully learn a state machine. As we will see in this section,
it is highly advisable to take a thorough look at ways to improve the speed at which queries can be asked.
While this engineering work may not be the most academically interesting thing to do nor will it improve the
computational complexity of the algorithms used, it can still take the runtime of certain learning processes
from hours to minutes. Not to mention, while experimenting during development, it is beneficial to have a
short feedback loop and to be able to quickly iterate instead of waiting for hours for experiments to run.

3.2.1. Query speed
Pexpect
It is possible to communicate with the RERS problems over stdin/stdout, so a natural first choice would be
using a library such as Pexpect2. Pexpect is a python library that allows the user to open a subprocess, and
essentially pretends to be a human typing commands and reading the corresponding output. This makes
it very easy to automate interactive applications such as ssh, ftp, passwd and telnet. However, since it is
designed for these kinds of tasks and not for high speed communications, it is rather slow.

Popen
In an attempt to speed up the process of asking queries, it was decided to do away with Pexpect and roll our
own implementation, using python’s built in Popen functionality. This allows hooking up a pipe to the std-
in/stdout of the subprocess and directly reading from and writing to it. We implemented this as a connector
that starts a separate thread for the communication with the subprocess so the main thread does not have
to wait for the communication to finish, and a queue is used to communicate between the threads. While
this does improve the query speed over Pexpect, profiling the application still showed the querying to be a
bottleneck.

In-process querying
After optimizing the query speed over stdin/stdout as far as it would go, we drew some inspiration from two
well known fuzzers, AFL and libfuzzer. In a way, fuzzing a process is similar to what we are doing here, in the
sense that we need to rapidly try a huge amount of inputs, or in our case queries. At this point, we had been
communicating over stdin/stdout, much like AFL does when fuzzing a process. However, libfuzzer takes a
different approach. It is implemented as part of LLVM, and if a certain flag is used while compiling your
program, LLVM essentially turns it into a fuzzer which is included in the same process. This means you can
fuzz in-process, instead of having to go through the kernel for communication, which can be much faster and
also scales better for multithreading.

This inspired us to write a patcher for the RERS programs to add a function to the code that allows us to
ask a query by passing it as an argument to said function. This allows us to circumvent the scanf call that
normally reads the input, thus removing the need for communication between processes. The RERS code is
then compiled as a shared library, and loaded into the python process using python ctypes3, which allows
you to call C code from python. A small wrapper was written to allow the rest of the learning system to talk to
it, and so the entire need for inter process communication is removed since only a single process remains.

3.2.2. Reset speed
Another thing preventing queries from being posed as quickly as possible is the fact that the system needs to
be reset to get it back into it’s initial state after every query posed. The RERS code does not contain a reset
function or any other mechanism that would allow this to be done quickly, so it is necessary to kill the entire
process and restart it to get a clean slate for the next query. Launching a new process is relatively expensive,
especially if it needs to be done often like in our case. Therefore, creating a different method to reset the
RERS programs can give us a significant speedup. This is done by writing another patcher that collects all
the global variables in the RERS code, splits them into their definition and their assignments, and moves the
assignments into a separate reset function. The main loop is also patched to add a special character which
is not in the original alphabet, which triggers a reset. Using this technique we can perform a reset without
having to tear down and relaunch the process.

2https://pexpect.readthedocs.io/en/stable/
3https://docs.python.org/3/library/ctypes.html
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3.2.3. Comparison
Over the course of this thesis, all above techniques have been implemented in our automata learning library.
Intuitively, each technique improves upon the next, so we verify this by comparing the query speed for all of
them using different query lengths, averaged over 100 queries per length per technique. The results of this
comparison can be seen in figure 3.2.

Figure 3.2: The time per query, for the different communication techniques

The legend in figure 3.2 indicates which type of connector to the RERS program was used. The labels have
the following meaning:

• v1: PExpect based connector

• v2: Custom Popen based connector

• v3: Custom Popen with fast reset and built-in cache

• v4: Custom Popen with fast reset, no built-in cache

• so: In-process connector using RERS code compiled as a shared object

These results support the intuition we have about the speeds of the varying techniques, with the in-
process communicator being the fastest of them all by several orders of magnitude. This was to be expected,
as we can see a similar effect in other fields such as fuzzing, where similar techniques are used. We can
therefore confidently recommend using this type of communication whenever possible (e.g. source code is
available), as the only downside is the small amount of extra work required to write the extra function to call
from the python side. One thing initially not expected however is the fact that the performance of the con-
nectors using the fast reset technique degrades significantly faster with query length. This may be because of
a sub-optimal implementation, but it was decided to not spend any more time on investigating this since the
in-process connector outperforms all others by a large margin anyways.

3.2.4. Caching
Since posing queries is relatively expensive, it can be worthwhile to cache them. A naive approach would be
to keep a map that stores the queries as keys, and their responses as values. This works, and in our implemen-
tation is the cache with the fastest lookup and insertion speeds given that these are constant time operations,
but it consumes the most memory as no deduplication is performed whatsoever.

A more memory friendly approach would be to store the queries and their responses in a trie datastruc-
ture, which deduplicates the stored keys by building a tree like structure of nodes containing single elements
from Σ. However, lookup and insertion are slower with time complexity of O(m), where m is the lenght of the
query.
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To compare the two cache types, we ran 1000 queries of length 100 on RERS 2019 training problem 11 and
recorded the time it took for the queries to run the first time, and how long it took to ask them the second
time. The results, averaged over 10 runs, can be seen in table 3.1. These tests were all done using the v4 RERS
connector. Memory use was determined by serializing the cache objects to a pickle string and recording the
size of this string.

Insertion time (s) Retrieval time (s) Memory use (bytes)
Dict 2.30942 0.00111 4554891
Trie 2.48066 0.03759 242983
Uncached NA 2.30237 NA

Table 3.1: Insertion and retrieval times for different cache types

These results confirm our intuition, the dict based cache is the fastest, with the lowest insertion and re-
trieval overhead, while it uses the most memory. The Trie based cache has more insertion overhead, as well
as the retrieval being significantly slower. However, as expected, it is much more conservative in it’s memory
usage.

In practice, for the larger RERS problems the dict cache uses too much memory, and the trie cache lookup
is actually slower than the fastest connector described in the previous section, so in the final version of the
RERS learning code no cache was used.

3.3. Low hanging fruit
Some relatively simple things can be done to speed up the process of learning state machines by applying
some domain knowledge and applying smart heuristics. For example, in some cases it is possible to greatly
increase the speed of the W-method by applying early stopping on certain outputs. In other cases, it may be
beneficial to influence the order of access sequences by keeping track of certain statistics.

3.3.1. Early stopping
The RERS problems have alphabet sizes of between 10-20 characters, but for any given state usually not all of
them are valid inputs. When an invalid input is given, the RERS program returns "invalid input" and does not
transition to a different state.

Take for example the Mealy machine in Figure 3.3. Say we are performing an equivalence check using the
W-method (see 5). In the standard implementation all sequences starting with b will be posed as a query just
as the sequences starting with a. However, we know that transitions with the "invalid output" output keep
the system in the exact same state, so we can safely ignore the whole branch of the testing tree starting with
b.

Figure 3.3: Example Mealy machine with invalid input

In this small example this might not seem like a huge difference in the amount of queries we need to
do, but it still cuts the amount of queries necessary to check the state q0 in half. The larger the alphabet
and the more invalid transitions are present, the greater the reduction in queries. In practice, some of the
RERS problems are problematic to check beyond a depth of 3 or 4. With early stopping, W-method checks
with a depth of 14 become tolerable time wise. Keep in mind that the standard W-method’s test case query
complexity is O(|Σ|D ) where D is the depth.

Concretely, say we have an alphabet size |Σ| = 10, and each state on average has two valid inputs. This
would mean that we could check a depth of 10 using early stopping in the same time as the standard W-
method would need for a depth of 3, since 210 ≈ 103.
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3.3.2. Access sequence order
Another thing we can do to reduce the time needed to find counterexamples using equivalence checking is by
applying heuristics to determine the order in which the access sequences are tried by the W-method. Recall
that the W-method (2.4.3) takes all access sequences (the state cover set V) and concatenates them with the
test sequences and distinguishing set to create the full test set. However, the algorithm does not specify in
which order the access sequences should be used, and a naive implementation would most likely ask them in
the order they are found, e.g. shortest first. As a result, the oldest states always get checked first, which may
not be a very efficient way of working especially as the hypothesis grows larger and larger, since intuitively the
older states in the hypothesis do not change as much as the newer ones since they have already been checked
before.

In our library, several strategies are available:

• shortest first - test the states with the shortest access sequences first

• longest first - test the states with the longest access sequences first

• interleave - looping over all states, for each state ask all currently valid one-letter extensions before
going to the next state

• most interesting first - states get a score according to how many times a counterexample was found
by testing said state. States are tested with the highest scoring states going first. As soon as a state is
completely checked and no counterexample was found, it’s score gets reset.

Another interesting method of doing this could be by implementing power schedules, like used in fuzzers
[5]. A power schedule is similar to the "most interesting first" strategy mentioned above, but works in a more
refined way. In fuzzing with power schedules, seeds are assigned an "energy" value, which determines how
often they are chosen to mutate and test on the system. The energy value of a seed can depend on multiple
variables, like the execution time, length, and how many times the seed has lead to the discovery of new
states. It seems worthwhile to explore the possibility of applying this idea to active state machine learning by
assigning access sequences an energy value, and determining the order they are checked based on that.

3.3.3. Equivalence query approximation
By putting the techniques discussed above together, along with one more small adaptation we will describe in
a minute, we can adapt the W-method equivalence checking technique and create a version of it that is bet-
ter suited to the RERS challenge. Since the RERS challenge does not provide us with an upper bound of the
amount of states in the problem we are trying to learn, we remove the upper bound on the amount of states
in the SUL, and replace it with a search depth, or "horizon" parameter h. Simply put, this directly replaces
the m −n in

∏m−n
i=0 Σi , so the test cases of the W-method become Z =∏h

i=0Σ
i . This does break the guarantee

of finding a counterexample if there exists one, but this is a practical tradeoff we have no choice but to make.

To efficiently implement early stopping, we need a way to store what paths lead to invalid transitions. We
could store all input/output sequences that include "invalid input" as output in a trie and check if the given
input crosses a node that is tagged with "invalid output", but this would take a lot of memory so we need
something better. A similar, but more efficient implementation uses a prefix set.

Definition 3.3.1. (Prefix set) A prefix set P is a set that is said to contain an element e if a prefix of e is stored
in P . For example, take P = {aa, abbbb}. this would mean aaaaaa ∈ P , but not baaaaa ∈ P . The addition
of an element to a prefix set can remove elements from the set if it is a prefix of said elements. For example,
adding ab to P would result in P = {aa, ab} since ab is a prefix of abbbb.

In practice, a prefix set is implemented with the underlying data structure being a trie. This in combi-
nation with the fact that only the shortest prefix needed to accurately determine if an element is in the set is
stored, makes a prefix set a good fit for our purpose of checking if an input sequence contains an invalid input.

With all that out of the way, we can define our "smart" W-method equivalence checking as follows in 7.
Note that we explicitly reset the SUL and hypothesis to be able to get the intermediate output from the SUL
without having to reset it twice, which would be inefficient. Also, directly implementing this pseudocode as
is would be problematic for the "most interesting" ordering variant, since it requires keeping track of some
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additional information that would have distracted from the main algorithm had it been included. However,
since this is just bookkeeping and not very complicated it is left as an exercise for the reader.

input : hypothesis H , SUL S, input alphabet Σ, horizon h, outputs which to stop early on E , access
sequence ordering Or der

output: Counterexample w if one exists, None otherwise

V ← st atecover (H)
W ← char acter i zi ng set (H)
P ← i ni t i al i zepr e f i xset ()

for v ∈Or der (V ) do
to_vi si t ← {a|∀a ∈Σ if v ·a 6∈ P }+ {ε}

while |to_vi si t | > 0 do
cur _test_seq ← pople f t (to_vi si t )

/* Grow the testing tree where no early-stop condition has been reached */
SU LOut putPr e ←λsul(v · cur _test_seq)
if SU LOut putPr e ∈ E then

add v · cur _test_seq to P
else if |cur _test_seq| ≤ h then

for a ∈Σ do
if v · cur _test_seq ·a 6∈ P then

add cur _test_seq ·a to to_vi si t
end

end
end

/* Perform the usual W-method tests */
for w ∈W do

SU LOut put ←λsul(v · cur _test_seq ·w)
H y pOut put ←λhyp(v · cur _test_seq ·w)

if SU LOut put 6= H y pOut put then
return w

end

end
end

end
return None

Algorithm 7: W-method equivalence checking algorithm with early stopping and ordering
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In order to show the effectiveness of the modified W-method described in Algorithm 7, we learned state
machines for the sequential training problems of RERS 2019, and logged the amount of queries done and the
time taken. Both the smart and standard W-method were configured with a horizon of 3 and later 9, and the
smart W-method was configured to stop early on invalid inputs and errors and used the "most interesting
first" ordering strategy.

type / depth Total time (ms) Test queries States found Errors found Speedup

Problem 11
Standard 3 4783 627660 61 24 1x
Smart 3 448 19542 61 24 10.67x

Problem 12
Standard 3 3555 395330 50 23 1x
Smart 3 310 4758 50 23 11.46x

Problem 13
Standard 3 11154 1120801 59 17 1x
Smart 3 755 52692 59 17 14.77x

Problem 11
Standard 9 420458 53566393 61 24 1x
Smart 9 42782 2832398 61 24 9.82x

Problem 12
Standard 9 timeout 437380471 50 23 NA
Smart 9 timeout 101984919 279 26 NA

Problem 13
Standard 9 timeout 298424622 59 17 NA
Smart 9 66385 4631657 59 17 NA

Table 3.2: Standard vs smart W-method implementation

We see at least an order of magnitude reduction in the number of test queries (membership queries done
during equivalence checking) and a corresponding reduction in the time required to learn the complete state
machine.

Furthermore, for all runs that were able to run to completion, the amount of states found and errors
reached remains the same, which indicates that we are only skipping queries that are indeed of no importance
and correctness does not suffer.

For depth 9, the results are harder to interpret because of the timeouts but we can still see a similar re-
duction in both queries and time for problem 11. Problem 12 and 13 did not finish within an hour, so the
learning was stopped at the one hour mark and statistics were recorded. For problem 12 we can see that the
smart W-method was able to find more states and more errors with only a fourth of the amount of queries
done by the standard W-method. For problem 13, the standard W-method was not able to finish within an
hour, while the smart W-method was.





4
Exploiting structure in counterexamples to

speed up equivalence checking

In the previous chapter we discussed using active state machine learning on the reachability problems, and
how they have trouble competing with non-blackbox techniques. While dealing with the RERS 2019 train-
ing problem 12, we tracked the counterexamples found during the learning process, and noticed a certain
pattern. Some of the found counterexamples can be seen below.

(’7’, ’7’, ’7’, ’3’, ’1’, ’7’, ’7’, ’7’, ’7’, ’7’, ’1’, ’5’)
(’7’, ’7’, ’7’, ’3’, ’3’, ’10’, ’1’, ’7’, ’7’, ’7’, ’7’, ’7’, ’1’, ’5’)
(’7’, ’7’, ’7’, ’7’, ’7’, ’3’, ’1’, ’7’, ’7’, ’7’, ’1’, ’5’)
(’7’, ’7’, ’7’, ’7’, ’7’, ’3’, ’3’, ’10’, ’1’, ’7’, ’7’, ’7’, ’1’, ’5’)
(’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’3’, ’1’, ’7’, ’1’, ’5’)
(’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’3’, ’3’, ’10’, ’7’, ’1’, ’5’)
(’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’7’, ’1’, ’5’)

The corresponding state machine early on in the learning process can be seen in figure 4.1. We can clearly
see some kind of repeating structure. Problem 12 is marked as an arithmetic problem, so perhaps the un-
derlying code is counting something before a certain action can be taken. As we know, the code is heavily
obfuscated so we can only guess.

Figure 4.1: Incomplete state machine of training problem 12

33
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One problem we encountered learning this state machine is that the W-method, even with early stopping
and clever access sequence scheduling, takes a long time to go through all these repeating looping structures.
This issue is compounded by the fact that the state machine learned from this problem easily consists of more
than 3000 states, at which point the classic L* algorithm runs into severe difficulty since the observation table
blows up in size, although TTT fares better. The downside of using TTT here is that it requires more equiva-
lence queries than L*, and with the larger state machines those quickly get prohibitively expensive as well. To
alleviate this problem, we should attempt to reduce the time-to-counterexample for each equivalence check
as much as possible.

Since there is some kind of pattern in the counterexamples we can find for this problem, we theorized
that we would be able to exploit this pattern to speed up equivalence checking. In essence, we would like
to generate new sequences that look like the sequences we already have. Initially, we attempted to learn a
regular language from the counterexamples that were found during normal equivalence checking, but this
idea quickly ran out of steam since learning regular languages from only positive examples is problematic
since most learning algorithms easily overgeneralize without negative examples [15]. This can be alleviated
with clever use of statistics, but this seemed a very complex way to approach this problem so it was decided
to try some simpler methods first.

4.1. Markov chain
Perhaps one of the simplest ways of generating new sequences that follow a similar pattern to a given set of
sequences is using a Markov chain. A Markov chain is a stochastic model that can be used to predict the next
element in a sequence. It is usually modeled as a state machine that transitions to other states with a certain
probability, and this probability can only depend on the current state it is in (this is also called the Markov
property). In NLP, Markov chains have been used as language models to generate new text similar to the body
of text they were trained on. We can adapt this relatively simple method for our purposes and train a model
on our counterexamples, and ask it to generate new ones.

4.1.1. Method
In this method, we train a Markov chain on a collection of counterexample traces and use it to generate
potential new counterexamples. We train the Markov chain by splitting the input sequences into n-grams,
recording the start n-gram for each sequence, and counting the occurrences of the next character in the se-
quence after a given n-gram for all n-grams in each sequence. Using this information, we can calculate the
probability distribution of the start n-grams, as well as the probability distribution over the next characters
for all n-grams. This gives us all the information we need to generate new sequences, which we do by pick-
ing a start n-gram according to their probabilities, and picking a next character according to the calculated
probability distribution until a sequence of the desired length is obtained. If an unseen n-gram is reached,
we pick a random character from the input alphabet as the next sequence element.

To use the Markov chain for equivalence checking, we train the Markov chain on the currently seen coun-
terexamples, and use it to generate new counterexamples with a length between the shortest currently known
counterexample and f · the longest known counterexample. The parameter f is tuneable and determines the
maximum length of the generated sequences. The length of each new sequence is randomly chosen between
the two bounds. Up to n new sequences are generated and used for checking.

Example
As an example, let’s walk through what our method would do in the simple case of having one sequence:

(’7’, ’7’, ’7’, ’3’, ’1’, ’7’)

To keep things simple, we will take n-grams of size 1 and compute the transition matrix and start proba-
bilities:

1 3 7
1 0 0 1
3 1 0 0
7 0 0.33 0.67

Table 4.1: Markov transition matrix

Start probability
1 0
3 0
7 1

Table 4.2: Start probabilities
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Then, to generate a new sequence, our method will pick the first element according to the start probabil-
ities: In this case it will always start with 7, since that is what our only training sequence starts with. Then, it
will look in the transition matrix and move to either a 3 or a 7 with the probabilities 0.33 and 0.67 respectively.
It will keep emitting new sequence elements in this way until a sequence of the desired length is reached.

Algorithm

input : hypothesis H , SUL S, input alphabet Σ, currently found counterexamples C , n-gram size sn ,
query limit nq , length increase factor f

output: Counterexample w if one exists, None otherwise

shortest = length of shortest counterexample
longest = length of longest counterexample

M = fitMarkovChain(C, sn)

for i ∈ 0..nq do
newLength = f · random(shortest, longest)
sequence = M.generate(newLength)

SU LOut put ←λsul(sequence)
H y pOut put ←λhyp(sequence)

if SU LOut put 6= H y pOut put then
return sequence

end
end

return None
Algorithm 8: Markov chain based equivalence checker

4.1.2. Experimental setup and results
To test the impact of using Markov chain based equivalence checking, we run experiments on RERS 2019
training problems 11, 12 and 13. We use TTT as learning algorithm, and use a stacked equivalence checker
which first tries the Markov chain method with n-gram size 3, and then falls back to our smart W-method
with a horizon of 6, 9 and 12 and most interesting first access sequence ordering. For comparison, smart
W-method runs with horizon 6, 9, and 12 are also included. The end of each run is marked with the corre-
sponding symbol seen in the legend.

Figure 4.2: States found on the training problems of RERS 2019 using Markov equivalence checker

Problem 11, being the simplest problem, is solved quickly by all methods. Problem 12 sees a big jump in
discovered states by the Markov run with depth 12. The runs with lower depths are not as effective, because
problem 12 requires a rather large depth to find certain states in the first place. In problem 13, we see that
all runs with a depth lower than 12 stop early on because they have exhausted the states they can find. The
runs with depth 12 are more successful, and we can see that the Markov chain based method discovers states
more quickly than the W-method based run.

To further verify the effects of the Markov chain based equivalence checker, we run it in a similar config-
uration using depths 6 and 12 on the reachability problems of RERS 2019. These are different from the ones
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mentioned above, as those are the training problems of 2019. The results can be seen in Table 4.3.

Method States Errors Time (s) Test queries

Problem 11

W 6 41 20/20 1.189 79689
W 12 41 20/20 75.257 2545626
M 6 41 20/20 2.310 154598
M 12 41 20/20 42.549 2510334

Problem 12

W 6 55 15/27 4.162 252738
W 12 221 16/27 timeout 76765626
M 6 55 15/27 9.695 272564
M 12 1007 19/27 timeout 3944243

Problem 13

W 6 361 17/19 3314.201 48330957
W 12 155 18/19 timeout 101249245
M 6 404 18/19 timeout 285502
M 12 203 18/19 timeout 130307

Problem 14

W 6 190 24/24 558.96 0 23113867
W 12 190 24/24 timeout 108040125
M 6 177 24/24 timeout 324803
M 12 172 24/24 timeout 256296

Problem 15

W 6 254 43/55 1921.574 71897209
W 12 93 11/55 timeout 101424468
M 6 165 38/55 timeout 229050
M 12 129 25/55 timeout 139317

Problem 16

W 6 212 12/21 731.852 24289342
W 12 212 12/21 timeout 95184726
M 6 164 9/21 timeout 168072
M 12 176 8/21 timeout 43079850

Problem 17

W 6 716 41/41 3281.811 182479968
W 12 395 35/41 timeout 110915046
M 6 299 33/41 timeout 173232
M 12 292 36/41 timeout 219539

Problem 18

W 6 671 0/32 3275.669 145047075
W 12 273 0/32 timeout 102617008
M 6 273 0/32 timeout 467794
M 12 291 0/32 timeout 462160

Problem 19

W 6 864 22/36 3269.711 122842708
W 12 460 2/36 timeout 72115477
M 6 219 1/36 timeout 205288
M 12 247 12/36 timeout 188159

Table 4.3: Reachability 2019 Markov comparison table

These results indicate that the Markov chain equivalence checking method is effective for the first three
problems. However, performance seems to suffer for the other problems, at least within the given time limit of
one hour. It is hard to say if the Markov method would catch up with or overtake the W-method if given more
time. But this could be an interesting avenue of further research for someone with more compute available.
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4.2. Mutating counterexamples
Our second attempt at exploiting the structure found in these counterexamples is inspired by genetic algo-
rithms. Genetic algorithms keep a population of individuals which all have a certain fitness score, and have
the goal of maximizing this fitness. This is done by combining and mutating the individuals with a certain
probability based on their fitness score, and keeping the ones with higher fitness.

In our case, the counterexamples would be the individuals in the population, but we have no way of as-
signing them a fitness value since they are all valid counterexamples and there is no signal that tells us how
"good" or "bad" they are. However, we can still borrow the operators used by genetic algorithms to com-
bine and mutate our population to find new counterexamples that look somewhat like the ones we already
have. These new individuals will not all be valid counterexamples, but we can add the ones that are to our
population and throw the ones out that are not.

4.2.1. Intuition
In this chapter, our goal is to take a set of counterexamples, find a pattern in them, and using that pattern to
generate new, unseen counterexamples. As said before, extracting a pattern from only positive examples is
challenging, so we sidestep the need to do this by taking the counterexamples we have and mutating them
using genetic operators to create new test cases to try. This does not directly learn a pattern, but we assume
that since the newly generated sequences are made by taking parts of the already existing counterexamples
and assembling them together along with some duplications and deletions, they will follow the already es-
tablished patterns quite well.

One thing that caught our attention while looking at the counterexamples found by a normal equivalence
check, is that there did not appear to be one single pattern that could describe all of them. For example,
process of learning the state machine shown in Fig. 4.1 generated the counterexamples shown earlier, but
also the following ones:

(’4’, ’1’)
(’4’, ’1’, ’9’, ’6’)
(’4’, ’4’, ’8’, ’3’)
(’4’, ’6’, ’5’, ’3’, ’2’)
(’4’, ’6’, ’5’, ’3’, ’3’, ’2’)
(’4’, ’4’, ’1’, ’5’)
(’5’, ’5’)
(’5’, ’5’, ’7’)
(’5’, ’6’, ’10’, ’1’, ’5’)
(’5’, ’5’, ’6’, ’5’, ’7’, ’7’, ’1’, ’5’)

While this sample by itself may not be enough to see a clear pattern, these counterexamples are clearly
not following the same pattern as the ones mentioned at the start of this chapter. Therefore, it may be helpful
to not put all counterexamples in the same population where they will be mutated and combined with each
other, but to cluster them and keep them separate to ensure the patterns do not get mixed up needlessly. We
will investigate whether or not this pre-clustering step is helpful.

Also note that counterexamples might not be minimal, e.g. they can contain redundant steps that could
be omitted without changing the output, therefore we assume TTT will benefit the most from this method
since it is designed to handle non-minimal counterexamples quite well.
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4.2.2. Method

Mutators

In our method for mutating counterexamples, we use two operators. For mutation, we use duplication and
deletion, which picks a random point in a counterexample and duplicates it with a certain probability, or
removes it from the individual. We found that biasing this probability towards duplicating rather than delet-
ing is helpful since it will try growing longer counterexamples from the ones that are already present, and
intuitively the shorter counterexamples are found first.

Figure 4.3: Mutation example. The square marked red is the element being mutated

Our other operator is single point crossover, where on each of the parents a random point is picked, and
a new individual is assembled from the part left to the chosen point of one parent, and the part right to the
point on the other parent. Usually, the single point crossover operator is implemented by picking a single
point that is the same on both parents to keep the length of the children the same. However, since we are not
working with a fixed size for the individuals, we modify it slightly by picking a different point on both parents
to allow for longer and shorter offspring.

Figure 4.4: Crossover example. The red lines indicate crossover points

Equivalence checker

To be able to mutate counterexamples, we need to find some counterexamples to mutate in the first place.
Since the mutation based equivalence checker is not very effective at finding the initial few counterexamples,
it is necessary to stack it with another method like done in [41]. We use a stacked equivalence checker with
the mutation based checker first, and a smart W-method second. With reasonable parameters, the mutation
based checker finishes quickly, so it does not cause significant overhead by being put first.

The full mutating equivalence checker algorithm can be seen in 9.
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input : hypothesis H , SUL S, a list of counterexamples C , crossover probability Pc , mutation
probability Pm , maximum population size n

output: Counterexample w if one exists, None otherwise

/* Mutate individuals until population size n */
new_population = ;
while |new_population| < n do

if random() ≤ Pc then
// randomly pick two parents
parent1, parent2 ∈ C
individual = crossover(parent1, parent2)

else
// or randomly pick an individual
individual ∈ C

end

if random() ≤ Pm then
individual = mutate(individual)

end

new_population = new_population ∪ {individual}
end

/* Finally, use the newly generated traces in an equivalence check */
for trace ∈ new_population do

SU LOut put ←λS(tr ace)
H y pOut put ←λH(tr ace)

if SU LOut put 6= H y pOut put then
return w

end

end
return None

Algorithm 9: Mutating equivalence checker

4.2.3. Experimental setup and results
We again learn state machines of the RERS 2019 reachability training problems 11, 12 and 13. We use TTT
with the mutating equivalence checker in 9 stacked with the smart W-method with horizon 6, 9 and 12. For
comparison we also include just the W-method by itself in the same configuration.

Figure 4.5: States found on the training problems of RERS 2019 using mutating equivalence checker

Like before, problem 11 is solved quickly. Problem 12 and 13 both see a very significant speedup when the
depth is properly set. All in all, after around one hour the mutating method finds over 2500 states in problem
11 and almost 3000 in problem 13, compared to just over 1000 and almost 250 found by the Markov based
method. We can conclude the mutating equivalence checker is superior on these problems.

To more thoroughly check the performance of the mutating equivalence checker, we also ran a compar-
ison on the RERS Reachability 2019 problems. To clarify, these are not the same problems as the training
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problems used in Figure 4.5. The columns labelled "W n" are W-method with depth n. The columns labelled
"M n" are the mutating equivalence checker stacked with a W-method of depth n. The max values are high-
lighted in each row. For each run, the learning process was terminated after one hour if it did not finish by
then.

Method States Errors Time (s) Test queries

Problem 11

W 6 41 20/20 1.189 79689
W 12 41 20/20 75.257 2545626
M 6 41 20/20 2.504 99190
M 12 41 20/20 84.156 2813390

Problem 12

W 6 55 15/27 4.162 252738
W 12 221 16/27 timeout 76765626
M 6 55 15/27 5.086 235406
M 12 2999 19/27 timeout 3094162

Problem 13

W 6 361 17/19 3314.201 48330957
W 12 155 18/19 timeout 101249245
M 6 1167 18/19 timeout 4111261
M 12 1260 18/19 timeout 16143889

Problem 14

W 6 190 24/24 558.960 23113867
W 12 190 24/24 timeout 108040125
M 6 190 24/24 585.915 25157623
M 12 190 24/24 timeout 389705621

Problem 15

W 6 254 43/55 1921.574 71897209
W 12 93 11/55 timeout 101424468
M 6 254 43/55 2023.106 76386831
M 12 192 42/55 timeout 355449398

Problem 16

W 6 212 12/21 731.852 24289342
W 12 212 12/21 timeout 95184726
M 6 212 12/21 735.475 24630033
M 12 212 12/21 timeout 310215182

Problem 17

W 6 716 41/41 3281.811 182479968
W 12 395 35/41 timeout 110915046
M 6 716 41/41 timeout 223956043
M 12 644 41/41 timeout 373634871

Problem 18

W 6 671 0/32 3275.669 145047075
W 12 273 0/32 timeout 102617008
M 6 764 11/32 timeout 160871307
M 12 778 17/32 timeout 298504299

Problem 19

W 6 864 22/36 3269.711 122842708
W 12 460 2/36 timeout 72115477
M 6 868 22/36 3545.410 126318073
M 12 810 18/36 timeout 270496480

Table 4.4: Reachability 2019 mutating comparison table

We can see in Table 4.4 that the mutating equivalence checker performs on par or better than the W-
method equivalence checker by itself. The benefit gained over the standard W-method does seem to be de-
pendent on the problem. Interestingly, problem 12 and 13 show a large increase in the amount of states found
with the mutating equivalence checker, while the rest is mostly just on par or marginally better.

To investigate what was causing this disparity, we visualized the learned state machines of problem 12,
13, 18 and 19 in Appendix A.1. To help visibility, we limited the plotted states by access sequence length per
problem, and left out "invalid input" and "error" self loops. Evidently, the structure of problem 18 and 19 is
less suited for the mutating equivalence checker since they contain a lot of "traps" or branches that lead to a
state where all inputs are invalid. These catch the sequences generated by the mutating equivalence checker,
causing no further states to be explored. This is as opposed to problem 12 and 13, which contain far fewer of
these structures to get stuck in.
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4.2.4. Can pre-clustering help?
We also check if pre-clustering the counterexamples can make this method even more effective. Intuitively,
since mixing up the patterns will degrade performance, this should help. Whether or not this is the case in
practice will be investigated in this section.

Clustering
To divide our counterexamples into populations that hopefully consist of individuals generated by the same
or at least similar patterns, we calculate pairwise distances between the counterexamples using a longest
common subsequence distance metric, and cluster them using HDBSCAN [29] using a precomputed dis-
tance matrix. This method was chosen because HDBSCAN does not require the user to specify a predeter-
mined amount of clusters, and instead only requires setting a parameter indicating the minimum cluster size
that we care about. However, since our distance metric does not necessarily capture the similarity between
our counterexamples very well, we first project our counterexamples to a lower dimensional space using uni-
form manifold approximation [30]. UMAP makes the assumption that the data it is fed lies on a uniformly
distributed riemannian manifold, and that the manifold is locally connected. Since our chosen distance met-
ric does accurately capture the similarity of two counterexamples when there are only a few changes between
them, this locality allows UMAP to project the data into clusters in a way that makes sense intuitively. Another
benefit of this we observed is that HDBSCAN has a much easier time picking out the clusters since the UMAP
projection prioritizes the local structures in our data and smooths out the global relationships making the
clusters more coherent.

An example of a 2d representation of counterexamples found during a run on Problem 12 from the se-
quential training problems of RERS 2019 can be seen in Figure 4.6

Figure 4.6: UMAP projected and clustered counterexamples

We can check if the projection and the cluster assignment make sense. This projection tells us there are
two major patterns in the set of counterexamples we have, hence the two long stretched clusters. If we check
what counterexamples got assigned to the yellow cluster, we see the pattern with (7,7...7,7,3,1,7,7...7,7,1,5...)
is present in almost all points assigned to the cluster. Shorter sequences at the bottom, with the longest at the
top. The long cluster stretching to the right consists of the pattern (4,4,8,9,4,8,9,1,9,3,1,7,7,7...7,7,3,1,7,7,7...).
The smaller, round-ish cluster at the bottom left consists of shorter counterexamples that are most likely not
long enough to accurately determine a pattern of. Ideally this would be a separate cluster, which could most
likely be archieved with some tuning of the HDBSCAN parameters.

An interesting thing to note is that the two clusters correspond to a pattern seen in the state machine
learned for Problem 12 (see Figure 4.7). If we draw the graph representing the hypothesis learned after a
while, we see two "branches" of a repeating pattern, which correspond to the two stretched clusters in the
umap projection.
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Figure 4.7: Problem 12 intermediate hypothesis. Note the two repeating patterns on the right.
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input : hypothesis H , SUL S, a list of counterexamples C , crossover probability Pc , mutation
probability Pm , maximum population size n

output: Counterexample w if one exists, None otherwise

/* First we project and cluster the provided counterexamples */
distmat = calculate_distance_matrix(C)
projected = UMAP(distmat)
clusters = HDBSCAN(projected)

/* Then, for each cluster, mutate individuals until population size n */
populations = []
for cluster ∈ cluster s do

new_population = ;
while |new_population| < n do

if random() ≤ Pc then
// randomly pick two parents from cluster
parent1, parent2 ∈ cluster
individual = crossover(parent1, parent2)

else
// or randomly pick an individual
individual ∈ cluster

end

if random() ≤ Pm then
individual = mutate(individual)

end

new_population = new_population ∪ {individual}
end
populations.append(new_population)

end

/* Finally, use the newly generated traces in an equivalence check */
for population ∈ populations do

for trace ∈ population do
SU LOut put ←λS(tr ace)
H y pOut put ←λH(tr ace)

if SU LOut put 6= H y pOut put then
return w

end

end
end
return None

Algorithm 10: Mutating equivalence checker with clustering

Comparison vs no clustering

While this method still provides a significant speedup compared to using a plain W-method equivalence
checker, there are certain downsides to it. Once the collection of counterexamples grows, the clustering starts
to take more and more time since calculating the distance matrix is an O(n2) operation, and calculating the
longest common subsequence between two sequences is O(nm), where n and m are the lengths of the re-
spective sequences. This makes the clustering method unsuitable for larger problems, but fortunately the
method is still effective with the clustering turned off. A comparison vs no clustering can be seen in Figure
4.8
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Figure 4.8: Clustering vs no clustering on RERS 2019 using mutating equivalence checker

Figure 4.9: Amount of queries vs States found

We can clearly see that, going purely by wall-clock time, pre-clustering does not lead to better perfor-
mance on these problems. To see what causes this drop in performance, we plotted the amount of queries
done vs. the amount of states found in Figure 4.9. If the overhead of the clustering step was causing the
drop in performance, we would see at least a roughly equal amount of states found per query. That is not
the case, and thus the clustering step not only degrades performance time-wise but also makes the algorithm
less effective at finding new states.
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Using white/grey box testing techniques

White and grey box testing techniques usually involve some kind of source code analysis or instrumentation.
Since the RERS challenge gives us access to the source code of the problems, we investigate techniques to take
advantage of this and improve upon the standard black box active state machine learning algorithms. Previ-
ous work [24] [36] has investigated using fuzzers in combination with active learning algorithms to search for
interesting test cases to use during equivalence checking. The results of this work are promising so we inves-
tigate these techniques and integrate them into our state machine learning library. Another technique that
could be applicable in this context is symbolic execution. However, after some initial attempts of using KLEE
[7] and angr [34] on the RERS problems this was deemed to computationally expensive and it was decided to
focus on fuzzing instead.

In this chapter, we will first look into two popular fuzzers, AFL and LibFuzzer. We will explain how we set
them up to use on the RERS problems, and investigate their performance on the reachability problems we
have been using so far. After that, we will explain how fuzzers can be used to augment the process of learning
state machines, or more precisely, how the corpus of interesting inputs discovered by a fuzzer can help the
equivalence checking step in the learning process.

5.1. Fuzzing
For those unfamiliar, fuzzing is a technique used in software testing that tries to find flaws in a given piece
of software by providing it with input data created by a fuzzer. In it’s simplest form, this could be done by
randomly flipping bytes in a known valid input until something interesting (e.g. a crash) happens. In practice,
most fuzzers are a lot smarter about it and use instrumentation to gain knowledge of the coverage reached by
the generated inputs.

AFL
A well known example of this is AFL1, a grey-box fuzzer that uses instrumentation and a genetic algorithm to
create as many interesting different inputs as possible. AFL has been used to find bugs in many different well
known software projects, like Xorg server, OpenSSL, and SQLite. In the work by Janssen [24] AFL was used to
find interesting test cases to use for equivalence checking, which greatly sped up the learning process.

One downside of AFL is that it essentially runs two separate processes: the main AFL process that runs
the fuzzer, and another process that is the application being fuzzed. This means that AFL has to restart the
second process for every test case it runs, which is a relatively expensive operation if you want to absolutely
go as fast as possible. A lot of work has been done to negate the impact of this, for example AFL employs
what is called a forkserver, which loads the program being fuzzed and forks it from a clean state instead of
building it up from scratch for every run. Furthermore, it is possible to use "persistent mode", which uses a
special macro __AFL_LOOP to create a loop that processes multiple inputs without having to start or fork a
new process.

Another downside of AFL’s approach of using two separate processes is that the fuzz cases have to be
sent to the process that is being fuzzed either through stdin/stdout or through a file. This is generally not a
problem if you are running one or just a few fuzzers in parallel, but it prevents effective scaling on machines

1https://github.com/google/AFL
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with many threads/cores since all the communication goes through the kernel. This means that, once you
throw enough cores at the problem, you will not gain any additional benefit since most of your time is spent
waiting in the kernel 2.

libFuzzer
Similar to how we improved our query speed on the RERS challenge problems in section 3.2.1 by switching to
in-process querying, fuzzing can be done more efficiently using in-process fuzzing. A fuzzer capable of doing
in-process fuzzing is libFuzzer [33], which works by linking with the target process directly and thus avoids
both the overhead of restarting, and inter-process communication entirely. To use libFuzzer, one simply
needs to include a function "LLVMFuzzerTestOneInput" into the target program, which runs a single testcase,
and compile it using LLVM with the flag -fsanitize=fuzzer. This results in a binary which, when run, fuzzes
the process until a crash is found, which is then reported.

5.1.1. AFL vs libFuzzer on RERS
To compare AFL and libFuzzer, we will evaluate their performance on the reachability training problems
of the RERS 2019 challenge. We describe how we modified the RERS code to gain the maximum possible
performance out of both fuzzers, and compare the error states found over time by both methods.

AFL RERS modifications
To get the best possible performance out of AFL, we modify the code of the RERS problems to leverage persis-
tent mode by adding a reset function as before, and creating a loop to process the test cases. The modification
to the main loop can be seen in Listing 5.1. Instead of terminating the program on an out-of-alphabet input,
we break from the loop which processes the input, reset, and proceed to processing the next input sequence.
We also extract the input alphabet of the problem and use that to generate a dictionary file which is passed to
AFL.

1 i n t main ( )
2 {
3 char buf [1024*1024];
4

5 while (__AFL_LOOP(10000000) )
6 {
7 res et ( ) ;
8

9 // Read from stdin ( fd 0)
10 s i z e _ t n = read ( 0 , buf , 1024*1024) ;
11

12 // operate eca engine
13 for ( s i z e _ t i = 0 ; i < n ; i ++) {
14 i n t input = buf [ i ] ;
15

16 i f ( ( input != 2) && ( input ! = 10) && ( input != 9) && ( input != 5) && ( input ! = 3) && ( input != 4) &&
( input ! = 1) && ( input != 7) && ( input != 8) && ( input ! = 6) )

17 break ;
18

19 calculate_output ( input ) ;
20 }
21 }
22 }

Listing 5.1: AFL modified RERS main loop

A nice property of AFL is that it saves any crashes it encounters in a separate folder, and keeps running
indefinitely. This means we can keep the standard error checking code which calls assert(false) once an error
state is reached and terminates.

libFuzzer RERS modifications
As mentioned before, to be able to use libFuzzer on the RERS problems we have to write a function called
"LLVMFuzzerTestOneInput". This is a relatively simple modification only requiring us to define how a single
input should be handled by the program. We simply replace the main function with the code seen in listing
5.2. Same as before, we also extract the alphabet out of the source code and create a dictionary for libFuzzer
to use.
2https://gamozolabs.github.io/fuzzing/2018/09/16/scaling_afl.html
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1 i n t LLVMFuzzerTestOneInput ( const char *Data , s i z e _ t Size ) {
2 re set ( ) ;
3

4 // operate eca engine
5 for ( s i z e _ t i = 0 ; i < Size ; i ++) {
6 i n t input = Data [ i ] ;
7

8 i f ( ( input != 1) && ( input ! = 2) && ( input ! = 3) && ( input != 4) && ( input != 5) && ( input ! = 6) )
9 return −2;

10

11 calculate_output ( input ) ;
12 }
13 return 0 ;
14 }

Listing 5.2: libFuzzer function

One downside of libFuzzer is the fact that it terminates after a single crash (or a specified amount of
crashes) is found , and to the best of our knowledge there is no easy way to run it indefinitely like AFL. There-
fore we also have to modify the error checking code to not abort on reaching an error state. Instead it should
simply reset the program and continue to the next input. The consequence of this is that we do not get a
separate folder containing crashing inputs, but all interesting (coverage increasing) inputs get put in a single
corpus directory. LibFuzzer also overwrites test cases once it finds a smaller input with the same coverage.
This would be a nice feature for normal fuzzing jobs, but we want to be able to see the exact time each error
state has been reached for performance evaluation reasons. This required us to write a separate file watcher
process to copy the error-reaching test cases out of the corpus directory, saving their "last modified" date.

Performance comparison
To compare the performance of both fuzzers on our problems, we need to go with a meaningful measure-
ment of performance. For both the LTL and reachability RERS problems we are interested in getting as much
coverage throughout the problems as quickly as possible, but directly measuring for example block or branch
coverage may not be representative of the tasks we are trying to solve. A better solution would be to learn a
state machine using the traces generated by the fuzzer for each timestep in the evaluation, but this is pro-
hibitively expensive. In the end we decided to use the amount of reached errors over time as a metric, since
this is easy and computationally inexpensive to measure, and directly representative of our performance on
the reachability track. We are making the assumption here that performance on the LTL problems will not
differ much, or at least be in the same ballpark.

Figure 5.1: Errors reached over time on the training problems of RERS 2019

As we can see in Figure 5.1, the libFuzzer fuzzer outperforms AFL on all but the simplest problems. All
error states in problem 11 are reached by both fuzzers within seconds. However, AFL struggles to find all error
states within an hour on problem 12 and 13, while libFuzzer finds all reachable error states within minutes.
Whether this is purely due to the speed increase libFuzzer gives us or because of more effective instrumenta-
tion or something else is something open to further research.

We also checked if our intuition about libFuzzer being the better choice simply because it was faster was
true. We measured the executions per second over time for both fuzzers for all problems, and plotted them
in Figure 5.2 and 5.3. AFL conveniently logs data during fuzzing which we could plot directly, while we had to
be a little creative with libFuzzer since it does not include timestamps in it’s log file. We fixed this by piping
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the log output of libFuzzer through ts3, which prepends a timestamp to each line written. To track the total
number of executions, we integrated the executions per second graphs using scipy’s traps function.

Figure 5.2: Executions per second on the training problems of RERS 2019

Figure 5.3: Total fuzz cases ran on the training problems of RERS 2019

One thing that immediately drew our attention was the consistent performance of libFuzzer. It is likely
that it keeps a rolling average internally explaining the smoothness, but during the fuzzing AFL’s execs/s value
could be seen dropping low quite often, supporting what is seen in the graphs. All in all, the performance dif-
ference is smaller than we expected at first. This can most likely be explained by the fact that only 3 AFL
processes were running in parallel on one machine, thus preventing the largest bottleneck of kernel IO. Even
then, libFuzzer is still faster in all cases except at the start of fuzzing problem 13, and it also finds the reach-
able error states more quickly. It is interesting that is not likely to be explained purely by the difference in
exectution speed, so libFuzzer’s instrumentation or mutation engine is probably also more suitable for the
type of problem we are running it on.

5.2. Using fuzzing results for equivalence checking

Next to verifying the crashing testcases and seeing what errors they reach, running a fuzzer standalone is all
that is needed to do pretty well in the reachability challenges of RERS 2019. However, for the LTL problems
we require state machines to later run a model checker on. Therefore we use the corpus of testcases found
by the fuzzer as traces to ask during equivalence checking. This process is about as simple as can be, but for
completeness is still included in Algorithm 11.

3https://joeyh.name/code/moreutils/
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input : hypothesis H , SUL S, input alphabet Σ, corpus (set of input traces found by fuzzing) T
output: Counterexample w if one exists, None otherwise

for testcase ∈ T do
// Strip out non-alphabet characters from the testcase
trace = [x|x ∈ testcase, if x ∈Σ]

SU LOut put ←λsul(tr ace)
H y pOut put ←λhyp(tr ace)
if SU LOut put 6= H y pOut put then

return trace
end

end
return None

Algorithm 11: Corpus equivalence checker

Results
To see how well the equivalence checking using a fuzzer corpus works, we evaluated it on the 3 reachability
training problems of RERS 2019 again. We use libFuzzer, and for each problem the fuzzer was ran for 15
minutes. Data from a run using the W-method with depth 8 (11 for problem 13) is also plotted for comparison.

Figure 5.4: States found on the training problems of RERS 2019

As before, problem 11 is the easiest and finishes learning completely in under a second in both cases.
Problem 12 is more interesting to look at: while the fuzzer was able to find all error states, the traces provided
by the corpus alone are not enough to learn a model of the complete behavior of the program. This is con-
firmed by the W-method based learner overtaking the fuzzer based learner after running long enough. This
means that we will need to take additional learning steps besides fuzzing in case we want a model that cap-
tures the complete behavior of the RERS programs. Problem 13 is a similar story, only since it is even bigger
than problem 12 and requires a higher W-method depth to find more than a handful of states, it was not able
to find more states than the fuzzer based method within the given time.

5.3. Is fuzzing enough?
The results in Figure 5.4, particularly Problem 12, makes one wonder if the traces found by fuzzing alone are
enough to capture the complete behavior of the program. Seeing as the W-method based approach overtakes
the amount of states found by the fuzzer based approach after some time, we have to assume the model
learned with just the fuzz cases as equivalence check is incomplete. However, we also know that libFuzzer
manages to find all reachable error states in Problem 12 within minutes. To see why this is the case, we need
to delve into how fuzzers measure coverage and determine what makes a trace "interesting" to a fuzzer or
not.

5.3.1. Fuzzer instrumentation
Both AFL and libFuzzer determine whether inputs they try are interesting or not by looking at the coverage
these inputs reach. They can determine the coverage reached by a certain input by leveraging the instrumen-
tation they put in the programs they fuzz. On a high level, this instrumentation consists of a "guard" function
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call on each edge between basic blocks in the control flow graph of the program that is being fuzzed. To de-
termine the coverage of a certain input, the fuzzer counts how many times each guard is triggered. This is to
make sure that loops can be counted as well.

1 i n t foo ( i n t a ) {
2 i f ( a < 10) {
3 a = 10;
4 }
5 return a ;
6 }

Listing 5.3: Fuzzer example

Figure 5.5: The two paths through the example code

Let’s look at a simple example, adapted from here 4. Let’s say we have a function we want to fuzz (listing 5.3).
We can see this simple example consists of three basic blocks. In Figure 5.5 we can see the two possible paths
through the program, along with the basic blocks (green) and edges (solid) they hit.

We know that libFuzzer is successful in finding all the reachable error states in the RERS 2019 training
problems. If we take a look at the code that leads up to these error states (Listing 3.2), we can see why the
fuzzer is successful in finding them: each occurrence of the __VERIFIER_error function call would clearly get
it’s own guard assigned, and thus each time an error is triggered new coverage would be found and the input
that triggered it would be added to the corpus.

For a more in depth explanation of fuzzer internals, please see the background section of the Angora
paper [9].

5.3.2. Missed behavior

If we visualize the state machines learned on Problem 12 by the W-method and the fuzzing equivalence
checker, we see that the W-method captures more behavior than the fuzzed traces alone. For clarity, we lim-
ited the states to the ones with an access sequence shorter than 10, and mark an interesting path (of repeating
7’s as input) in green.

4https://farlopa.gratis/libfuzzer-internals-2/
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Figure 5.6: Problem 12 W-method

Figure 5.7: Problem 12 Fuzzer

We marked the same path in both figures, and by comparing we can easily see that Figure 5.6 shows
more complex behaviour than Figure 5.7. In the fuzzer-based graph, the tail of the sequence of 7’s is missing
the looping structure seen in the W-method based one. This is most likely due to the instrumentation of
the fuzzer not picking up on these structures, or it is somehow determined that these sequences are not
"interesting" according to the metrics in the fuzzer.

So with this, we have shown that learning state machines using only a fuzzer-based equivalence checker
is not enough to capture the complete behavior of this problem. In the context of the reachability task, this is
not an issue since the fuzzer’s instrumentation makes sure all reached error states are captured. In the context
of LTL checking, these missing states have the potential to lead to incorrect answers, and thus we will need to
augment the fuzzer based equivalence checker (with for example a fallback to the W-method) to make sure
the learned model is correct.





6
Putting it all together for RERS

Over the course of the previous chapters we have investigated several ways of improving the learning time
of active state machine learning on the 2019 RERS training problems. We concluded that for the reachability
track, running a libFuzzer based fuzzer is the most successful approach since it is not a requirement to ac-
tually learn a state machine to see what errors are reachable. On top of that, if we relied on a purely active
state machine learning based approach for the reachability track we would be missing out on useful informa-
tion since we would be using only black box techniques. It is clear that the grey/white box approach of using
a fuzzer has a significant advantage since it can make use of instrumentation instead of just relying on the
output of the program.

The problems in the LTL track, which we only have briefly discussed up until now, definitely benefit from
learning state machine models. As discussed in chapter 3, in the LTL track we are given obfuscated code
similar to that from the reachability track and are required to prove or falsify a list of given LTL formulae.
To do this, having a as-complete-as-possible overview of the behavior of the programs in the form of a state
machine is invaluable.

In this chapter we will describe our approach to the reachability and LTL challenges of RERS 2020, and
analyse our performance on the problems of RERS 2019.

6.1. LTL
As mentioned before, the LTL problems require us to prove or falsify certain LTL formulae on a given system.
The RERS challenge does not set any rules or limits on how we can do this, so we chose an active learning
based approach combined with a model checker capable of working with LTL formulae. After trying mcrl2
[18] and figuring out it does not support LTL checking, trying LTSMin [25] and getting confused by the docu-
mentation, we chose NuSMV [11] as model checker since it is relatively easy to use, fast, and directly supports
LTL model checking out of the box.

The theory of LTL model checking is outside the scope of this thesis so we will not go into that. We will
treat the model checker as a black box we can feed our hypothesis state machine and the LTL formulae into,
after which it will tell us which of the LTL formulae it was able to falsify and find a counterexample to.

6.1.1. NuSMV conversion
NuSMV uses a specialized input language to describe synchronous or asynchronous finite state systems1.
This means we need to somehow translate our Mealy machine hypotheses into the NuSMV input language.
Fortunately, this is a relatively simple task. One thing to keep in mind is that the RERS challenge uses alter-
nating LTL semantics. This means that in the input/output traces, the input and output steps are temporally
separate, e.g. the output occurs after the corresponding input. If we were using synchronous LTL semantics,
we would assume the input and corresponding output happen at the exact same point in time.

To deal with the alternating semantics, we need to add an extra state between each transition in the Mealy
machine hypothesis, since the output essentially takes an extra step. This means that we are translating
our Mealy machine into a labeled transition system, which is essentially a Mealy machine with only a single
output or input label on the transitions. An example of such a conversion can be seen in Figure 6.1.

1http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf
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Figure 6.1: Example translation from a Mealy machine (left) to labeled transition system (right)

Once we have converted our Mealy machine into a labeled transition system, we still need to translate it
to the NuSMV input language. This is done by a python script available in our git repository 2. The result of
translating the example Mealy machine in figure 6.1 can be seen in Listing 6.1.

1 MODULE main
2 VAR
3 s t a t e : { q0 , q0_o_a , q1 , q1_o_a } ;
4 output : {A , a } ;
5 ASSIGN
6 i n i t ( s t a t e ) := q0 ;
7 next ( s t a t e ) := case
8 s t a t e = q0 & output = a : q0_o_a ;
9 s t a t e = q0_o_a : q1 ;

10 TRUE : s t a t e ;
11 esac ;
12 i n i t ( output ) := { a } ;
13 next ( output ) := case
14 s t a t e = q0 & next ( s t a t e ) = q0_o_a : A ;
15 TRUE : output ;
16 esac ;

Listing 6.1: Example NuSMV code

The NuSMV input language requires us to define the variables we are interested in and the values they
can assume, as well as the transitions they can make and on what conditions those transitions apply. We
define the next state based on the current state and current "output" (which can be either an input or output
in the original Mealy machine); if the current state is q0 and the current output (which was an input in the
original Mealy machine) is ’a’, we know we need to go to the additional output state that comes after q0,
named q0_o_a by our script. The next output is defined in a similar way. The last line containing TRUE is a
catch-all fallthrough option keeping the state and output the same. This is required by NuSMV.

Translating the LTL formulae
One final thing we need to do before we can let NuSMV check the LTL properties on our Mealy machines, is
translate the LTL formulae into a format NuSMV understands. RERS specifies their temporal operators in a
slightly different way than NuSMV, but luckily the translation is quite straightforward and can be seen in 6.1.

Name RERS NuSMV Description
Next X φ X φ φ has to hold after the next step
Eventually F φ F φ φ has to hold at some point in the future (or now)
Globally G φ G φ φ has to hold always (including now)
Until φ U ψ φ U ψ φ has to hold until ψ holds (which eventually occurs)
Weak until φ WU (or just W) ψ ψ R (φ | ψ) φ has to hold until ψ holds (which does not necessarily occur)
Release φ R ψ φ V ψ φ has to hold until ψ held in the previous step

Table 6.1: RERS LTL operators and their NuSMV equivalents

Besides the translations listed in Table 6.1, some other steps need to be taken:

• Replace "true" and "false" with "TRUE" and "FALSE"

2https://github.com/TCatshoek/lstar/blob/master/util/mealy2nusmv.py
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• Replace the input and output variables (iA, iB, iC, oU, oV, oW, etc.) with (output = $variable identifier).
The variable identifier can be found in the ProblemX_alphabet_mapping.txt file provided by RERS.

With all these steps done, we can write the LTL constraints in our NuSMV file in a line that looks like the
following:

LTLSPEC NAME rule$n := $translated ltl constraints

Some example translations:

1 #inputs [ iA , iB , iC , iD , iE , iF , iG , iH , i I , i J ]
2 #outputs [oU, oV , oW, oX , oY , oZ]
3 #1:
4 ( ( f a l s e R ( ! ( iH & ( true U iG ) ) | ( ( ! iD | ( ! iG U ( ( oZ & ! iG ) & X ( ! iG U oY) )

) ) U iG ) ) ) )
5 #2:
6 ( ( f a l s e R ( ! ( i J & ( true U iA ) ) | ( ! oX U ( iA | ( ( i I & ! oX) & X ( ! oX U iB ) ) ) ) )

) )
7 #3:
8 ( ( ! ( true U oY) | ( ( ! iB | ( ! oY U ( ( ( oX & ! oY) & ! oW) & X ( ( ! oY & ! oW) U oU

) ) ) ) U oY) ) )

Listing 6.2: RERS LTL formulae

1 LTLSPEC NAME rule0 := ! (TRUE U ( output = 9) ) | ( ! ( output = 9) U ( ( output = 7) &
! ( output = 9) & X ( ! ( output = 9) U ( output = 6) ) ) )

2 LTLSPEC NAME rule1 := FALSE V ( ! ( ( output = 1) & (TRUE U ( output = 5) ) ) | ( ! (
output = 8) U ( ( output = 5) | ( ( output = 7) & ! ( output = 8) & X ( ! ( output = 8)
U ( output = 12) ) ) ) ) )

3 LTLSPEC NAME rule2 := ! (TRUE U ( output = 3) ) | ( ( ! ( output = 1) | ( ! ( output = 3)
U ( ! ( output = 3) & ! ( output = 12) & ( output = 7) & X ( ( ! ( output = 3) & ! (
output = 12) ) U ( output = 10) ) ) ) ) U ( output = 3) )

Listing 6.3: Translated NuSMV LTL formulae

Finally, we concatenate the LTLSPEC lines to the translation of our Mealy machine (listing 6.1), write every-
thing out to a file, and run NuSMV on it. NuSMV will then give us an output like

1 −− s p e c i f i c a t i o n ( ! ( TRUE U output = 4) | ( ! ( output = 16) U ( output = 4 | ( ( output =
8 & ! ( output = 16) ) & X ( ! ( output = 16) U output = 7) ) ) ) ) i s f a l s e

2 −− as demonstrated by the following execution sequence
3 Trace Description : LTL Counterexample
4 Trace Type : Counterexample
5 −> State : 6.1 <−
6 s t a t e = s0
7 output = 5
8 −> State : 6.2 <−
9 s t a t e = s0_o_5

10 output = 12
11 . . .
12 −− Loop s t a r t s here
13 −> State : 6.12 <−
14 s t a t e = s20_o_4
15 output = 11
16 −> State : 6.13 <−
17 s t a t e = s20
18 output = 4
19 −> State : 6.14 <−
20 s t a t e = s20_o_4
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21 output = 11

Listing 6.4: Example NuSMV output

Which we parse into a line like:

Rule #8: false [5;12;10;13;8;14;9;16;4;11;4]([11;4])*

6.1.2. NuSMV equivalence checker
Once NuSMV finishes running we parse the output into the infinite paths (or lasso x yω) they represent. These
are essentially normal sequences with an infinite loop at the end. We do not have the ability to pose infinitely
long queries to our system, so we need to unroll the infinite loop up to a certain amount of times and ask a
finite subset of the infinite query. This is not a perfect method, but better than not checking the counterex-
amples at all. We define an additional equivalence checking step, the NuSMV checker, seen in 12. This is
essentially a simplified variant of the method described in [28] by van de Pol and Meijer.

input : hypothesis H , SUL S, NuSMV counterexamples C , number of unrolls n
output: Counterexample w if one exists, None otherwise

Filter the NuSMV counterexamples C to only keep the input symbols

for x yω ∈ T do
for i in 0..n do

w = x · yn

SU LOut put ←λS(w)
H y pOut put ←λH(w)
if SU LOut put 6= H y pOut put then

return w
end

end
end
return None

Algorithm 12: NuSMV equivalence checker

6.1.3. LTL strategy
Our final approach for solving the LTL problems of RERS 2020 can be summarized as follows:

• Fuzz using libfuzzer

• Learn state machine using TTT with stacked EQ checker containing:

– smart W-method with horizon of 1

– corpus eq checker

– smart W-method with horizon of 3

– NuSMV checker with unroll of 1000

• Send state machine to NuSMV for final LTL check

• Report results

This allows us to run all 9 problems in under a day on a single machine with a i7-7700k and 32GB ram.

6.1.4. Results
Our method manages to successfully find a correct answer to all the RERS 2019 LTL problems. Note that this
is even without the intermediate NuSMV checker, since each problem has 100 LTL formulae to check instead
of 2020’s 10 which caused it to be too slow. Instead we opted to do a single LTL check at the end of the learning
process. For our entry to the 2020 challenge we did use the method mentioned above.
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Time(m:s) States Score
Problem 1 00:02 23 100/100
Problem 2 04:26 23 100/100
Problem 3 00:01 24 100/100
Problem 4 00:47 173 100/100
Problem 5 01:33 209 100/100
Problem 6 00:47 183 100/100
Problem 7 37:19 845 100/100
Problem 8 28:01 770 100/100
Problem 9 33:35 810 100/100

Table 6.2: RERS 2019 LTL results

Time(m:s) States Score
Problem 1 02:19 35 10/10
Problem 2 05:26 55 10/10
Problem 3 06:50 107 10/10
Problem 4 07:03 88 10/10
Problem 5 10:03 151 10/10
Problem 6 08:05 96 10/10
Problem 7 49:07 107 10/10
Problem 8 10:13 42 10/10
Problem 9 24:59 77 10/10

Table 6.3: RERS 2020 LTL results

With these results, we ended up winning the sequential LTL track of RERS 2020!

6.2. Reachability
The problems of the reachability track of RERS 2019 and 2020 were of great help in benchmarking and test-
ing our custom state machine learning library, but we had to come to the conclusion that active automata
learning is not a great approach in pure reachability contexts where source code is available. For one, active
automata learning is at a great disadvantage compared to techniques that are not completely black box, like
fuzzing with instrumentation. In this thesis, we looked into how we could leverage fuzzing in order to im-
prove active state machine learning and were succesful in that. However, since the reachability track does
not require us to learn a state machine model of the problems in the first place, learning one would just be
an extra unneccesary step. Therefore we chose to go with a purely fuzzer-based approach for reachability. To
further back up this choice, we compared a simple libFuzzer run to our best performing black box learning
based method, TTT combined with the mutating equivalence checker:

Figure 6.2: Learning vs Fuzzing on the training problems of RERS 2019

Figure 6.2 confirms that fuzzing outperforms our black box learning method, as expected. It finds all
reachable errors in a fraction of the time it takes our learner, which does not find all errors within an hour on
training Problem 12 and 13.

6.2.1. Reachability strategy
We can be short here, our strategy for the reachability problems goes as follows:

• Modify the RERS code as in 5.1.1

• Run the fuzzers for as long as possible, in our case two months (shorter is probably fine, but we have
no way to know in the context of the challenge)

• Run all the files in the corpus as inputs to the unmodified RERS program and record which error states
are reached

• Report back with all reached error states
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6.2.2. Results
Libfuzzer achieves impressive results on the RERS 2019 reachability track and manages to find every single
error state except one in problem 18 within a week of fuzzing. We would have liked to include data on time
spent before all states in a problem are reached, but libfuzzer overwrites test cases when it finds a smaller
input that reaches the same coverage, which means we cannot rely on the last modified date of files to see
when certain errors are reached. We later discovered this and implemented a workaround by using a file
watcher to copy new test cases to a folder and keep them if they reach a new error state, but rerunning the
fuzzer on all RERS reachability problems would be too time consuming.

Error states found
Problem 11 20/20
Problem 12 27/27
Problem 13 19/19
Problem 14 24/24
Problem 15 55/55
Problem 16 21/21
Problem 17 41/41
Problem 18 31/32
Problem 19 36/36

Table 6.4: RERS 2019 Reachability results

Error states found
Problem 11 18/18
Problem 12 17/17
Problem 13 40/43
Problem 14 15/15
Problem 15 54/55
Problem 16 16/16
Problem 17 30/30
Problem 18 39/42
Problem 19 19/19

Table 6.5: RERS 2020 Reachability results

While we did manage to find most reachable error states in RERS 2020, the sequential reachability track
also awards points for proving that error states are unreachable. Thus, we did not do so well in this track since
our method can only reliably determine reachable error states. We could have inflated our score by marking
all unreached error states as unreachable, but this would be a guess since we have no way to know if we found
all reachable error states. In a verification context this would be unacceptable so we decided not to do this.
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Conclusions and Future Work

In this chapter we will list our conclusions, discuss potential threats to the validity of our results, and list some
of the many avenues for future research.

7.1. Conclusions
Over the course of this thesis, we developed an active state machine learning library in python and used it
to participate in the 2020 RERS Challenge. We managed to win the sequential LTL track, but did not do that
well in the sequential reachability track since our method can only prove reachability, not unreachability.
Furthermore, we managed to answer our research questions:

• How can we speed up the process of finding counterexamples during equivalence checking? We
managed to develop two supplemental black box equivalence checking methods which, depending
on the SUL, greatly speed up equivalence checking during active state machine learning in the mini-
mally adequate teacher framework. The Markov chain based equivalence checker shows promise, but
degrades performance in certain cases. The Mutating equivalence checker performs very well in cer-
tain cases, finding an order of magnitude more states in the same timeframe. It also does not seem to
degrade performance in any of the problems we tested.

• How can we use white/grey box testing to improve the effectiveness of state machine learning algo-
rithms? We showed that (when not working in a purely black box scenario) fuzzing is a great technique
to use in combination with active learning, but relying on fuzzing alone can be insufficient to fully
capture the behavior of a system. This is due to the way fuzzers use their instrumentation to measure
coverage and decide what inputs are interesting or not. We also showed that this issue can be alleviated
by stacking the fuzz cases with traditional methods such as the W-method. This allows us to harness
the speed benefits of fuzzing without sacrificing correctness.

• The most effective set of techniques for the RERS challenge We showed that for reachability, using
a fuzzer is sufficient to find the reachable error states. Fuzzers also greatly outperform active state
machine learning since they leverage instrumentation, while active state machine learning in essence
is a purely black box method. In any case, both techniques are unable to prove whether states are
unreachable (learning is too since we do not know an upper bound on the amount of states), and thus
leave some points on the table. In the LTL track, learning state machines has proven to be a more than
feasible technique when combined with fuzzing and unrolling LTL counterexamples, as this was good
enough get 100% correct answers to the sequential LTL track of RERS 2020 (and 2019 too).

59
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7.2. Threats to Validity
While we did what we could to mitigate any potential threats to validity, we need to acknowledge the following
potential problems:

• Randomness Several of the techniques used in this work involve randomness. Both the Markov and
Mutating equivalence checkers use probabilities to generate new sequences, and thus may have lucky
runs where they find states they would normally miss, or the other way around. Because of the time
needed to run all experiments, it was deemed infeasible to run them a large amount of times and av-
erage the results. However, in most cases, multiple runs were done and no significant difference was
observed. Fuzzers also rely on randomness to mutate their corpus and find new coverage, so the same
could be said here. Since we fuzzed the problems multiple times on multiple cores, this is also some-
what mitigated.

• Newly written software All the learning algorithms, equivalence checkers and more used in this thesis
have been implemented from scratch by the author, and thus may contain more bugs or even mistakes
than a battle tested library like LearnLib would. Comparing our implementations with LearnLib would
have been a good idea, but due to time constraints this could not be done. However, since we partic-
ipated in the RERS challenge and managed to get a perfect score in the LTL track, which heavily relies
on our implementation of the learning algorithms, we can assume that no glaring errors have been
overlooked.

• Limited range of systems to learn We tested all our code on the RERS 2019 and 2020 LTL and Reach-
ability problems, and found it to work well. However, since these are generated benchmarks, there is
no way to tell how well our results would generalize, if they even are applicable, to other settings where
active learning is commonly used.



7.3. Future Work 61

7.3. Future Work
Several interesting directions for future research could be:

• Markov equivalence checker We observed that the Markov equivalence checker sometimes generates
long sequences of seemingly random inputs when it has insufficient data to calculate the next-item
probability for certain n-grams. This could potentially be alleviated by implementing a fallback to
shorter n-grams when no data is available for an n-gram of a certain length. Other methods of se-
quence generation could also be investigated.

• Pre-clustering Our attempt at pre-clustering the sequences before using them in the Mutating equiva-
lence checker did not manage to improve performance on the problems we tried it on. Sequence clus-
tering methods other than calculating the longest common subsequence and using that as a distance
matrix could be investigated. For example, it seems to be possible to cluster sequences using hidden
Markov models [37]. This might work better and allow us to skip the expensive UMAP calculations.

• Other fuzzers This may be interesting for future RERS participants: the Angora fuzzer [9] seems very
promising and may work even better than AFL and libFuzzer. This definitely seems worthwhile inves-
tigating.

• Fuzzing coverage There is a discrepancy between states found by active learning, and traces deemed
interesting by fuzzers. E.g. not all access sequences leading to unique states are deemed "new cover-
age" by the fuzzer. This can most likely be explained by the way fuzzer instrumentation works, but this
needs to be investigated further. Active learning could maybe even be used as a new way to measure
coverage in fuzzers.
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A.1. Mutating comparison

Figure A.1: Part of reachability 2019 problem 12

Figure A.2: Part of reachability 2019 problem 13

63



64 A. Figures

Figure A.3: Part of reachability 2019 problem 18
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Figure A.4: Part of reachability 2019 problem 19
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