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Abstract
The cumulative constraint is often used when modeling constraint programming problems, frequently
seen in scheduling and planning problems. Energetic reasoning is one of the propagators used
to enforce this constraint. However, not much has been done to explore strategies for generating
explanations, which are then used by the solver for conflict analysis. This paper addresses this gap
by applying strategies used in time-table edge-finding to the energetic reasoning propagator. The
strategies are initial bounds relaxations and reducing the overload. Furthermore the paper compares
two old strategies (naive and greedy task removal) for reducing the overload and proposes two new
ones: greedy task shift and a probabilistic heuristic utilizing the knapsack problem. Results on
the MiniZinc RCPSP benchmarks show that the initial bounds adjustments provide great benefit,
reducing the number of conflicts by at least twenty-five percent. Reducing the overload provided
a small improvement (less than five percent) and results suggest there is not much of a difference
between the different strategies.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Programming, Energetic Reasoning, Explanations

1 Introduction

Constraint programming (CP) is a powerful paradigm for solving combinatorial problems
such as scheduling and planning [22, 18, 11, 1]. It has become a key tool in academic and
industrial applications because of its flexibility and expressiveness. In this paper I will be
tackling the Resource Constrained Project Scheduling Problem (RCPSP). In this problem
we are trying to schedule several jobs, each having a duration and requiring a certain amount
of a constrained resource.

The focus of this paper will be on the cumulative constraint. It makes sure that at no
point in time we use more resources than the capacity we are given. It models the usage
of limited resources well and has many real-world applications in construction, employee
scheduling, ship loading, time tabling, processor, and production scheduling [22, 18, 11, 1].
There are many propagation strategies tackling this constraint like Overload Check [15, 29],
Time-Tabling [20], Edge-Finding[21], Time-Table Edge-Finding[28], Energetic Reasoning [3]
and Not-First/Not-Last Pruning [26]. The propagations of ER is considered strongest, as it
implicitly covers the propagations of all these strategies except for not-first/not-last. Yet it
tends to have a higher runtime.

Initially, faster but weaker propagation strategies were preferred due to ER’s high
time complexity of O(n3) [3]. However, subsequent research has significantly improved its
performance, reaching O(n2) [8].

Conflict analysis is a technique that offers significant speedups by allowing us to backtrack
to the first decision which caused a conflict, rather than always assuming it was the last
decision which caused it. It has gained popularity within constraint programming [23, 16].
In order to ensure maximum backtracking, it is key to generate good explanations for the
performed propagations. Explanations are clauses produced when a conflict or propagation
occurs allowing us to pinpoint the source of the conflict. Good explanations are more general,
allowing us to backtrack to earlier decision levels. There is some work on the usage of
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explanations to improve the performance of the energetic reasoning propagator by Heinz and
Schulz [17]. It is not very in-depth, as it is research on multiple cumulative propagators, and
offers only three simple strategies, but it supports the claim that good explanations for the
propagator can improve runtime. Schutt [25] did work on explanations for Time Table Edge
Finding and the strategies he used for better explanations can also be applied to ER. Yet,
no extensive research has been done into the generation of good explanations for the ER
propagator.

In this paper I will apply Schutt’s strategies to ER, split into two main approaches -
initial bounds adjustments and reducing the overload. ER compares the available energy in
an interval, to the energy which is required for mandatory parts of tasks in this interval. If
the required energy is less than the available energy, there is a conflict. The amount excess
energy is called overload. For the most part they can directly be applied since TTEF is a
case of ER. Furthermore I will look into specific strategies for reducing the overload and
whether there is significant improvement. These strategies are the naive explanation, greedy
task removal which primarily aims to reduce the number of clauses (also analyzed by Heinz),
greedy task shift which primarily aims to expand the domains as much as possible (proposed
in this paper) and selecting an explanation based on the highest likelihood of appearing
heuristic which aims to make the explanation, which is most likely to be true if we assume
uniform distribution of the variables (proposed in this paper).

The results on the MiniZinc RCPSP benchmarks sets J120(from PSPLIB) [19] and
pack [9] show that the techniques from TTEF can indeed improve the ER propagator. The
bounds relaxations provide a sizable advantage of more than twenty-five percent. In terms of
analyzed strategies for reducing with the overload, the results suggest that they do indeed
help, but do not offer a big advantage (they amount to less than five percent improvement).
Also when compared to each other, they offer a similar advantage, which is a result also
suggested by Schutt in his work on TTEF [25].

To summarize my contributions are as follows. Firstly, I applied the bounds relaxation
strategy used in TTEF to the ER propagator. Secondly I analyzed how different strategies
for reducing overload energy to get more general explanations affect the number of conflicts
to achieve a solution. Finally, when analyzing these strategies I also proposed two new
strategies - greedily shifting out the task with the lowest resource consumption and choosing
the highest estimated likelihood explanation. The results suggest bounds relaxations offer
a reduction of more than twenty-five percent on the number of conflicts, while overload
reduction provides very limited advantage of less than five percent. Furthermore the non-naive
overload reduction strategies offered very similar advantage.

Section 2 will outline the problem definition for the RCPSP problem. Section 3 will
discuss previous work in more detail. Section 4 will act as a preliminary section. In Section 5
the main contributions of this paper will be presented. Section 6 will contain the experiments
and results in support of Section 5. Lastly, section 7 will be the conclusion.

2 Problem Definition

The cumulative constraint is a global constraint, on some set of tasks I and some finite
resource C. It can be defined as follows:

Let I be the set of tasks, and let C ∈ N>0 be the total amount of the limited resource
available.

For each task i ∈ I we have defined:

Si ∈ N: the start time of task i,
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Ei ∈ N: the end time of task i,
Di ∈ N>0: the duration of task i,
Ri ∈ N>0: the resource requirement of task i.

The end time of the task is defined by the start time of the task (variable) and duration
(constant) as follows:

∀i ∈ I, Ei = Si + Di (1)

Then for each task we will define earliest starting time esti = min(Si), latest starting
time lsti = max(Si), earliest completion time ecti = min(Ei) and latest completion time
lcti = max(Ei), which will be the smallest and largest values of the domain of Si and Ei

respectively.
The cumulative constraint enforces that the starting times of Si of all tasks i ∈ I do not

cause an overload, or:

∀t ∈ [0, T ),
∑
i∈I

t∈[Si,Ei)

Ri ≤ C (2)

where T is the maximum time in which a task can be executed, or T = maxi∈I(lcti)

Figure 1 An example of the RCPSP. We have four tasks and within this example all start and
end times are in the domain [0...12). The durations and resource consumptions of the tasks are
(3, 2), (9, 1), (2, 2), (4, 3) and task three precedes task four. The resulting schedule has S1 = 6, S2 =
0, S3 = 0, S4 = 2 and a makespan of nine.

I can now introduce the Resource Constrained Project Scheduling Problem. It is also
defined on a set of tasks, but now we can have multiple constrained resources, rather than
just one, each modeled with a separate cumulative constraint. In the RCPSP the tasks can
also have precedence constraints, meaning some task needs to be completed before another.
The goal is to select the starting times Si of all i ∈ I while respecting the cumulative and
precedence constraints while minimizing the makespan maxi∈I(Ei). An example of the
RCPSP with one resource with capacity of four can be seen in Figure 1.

3 Related Research

Many propagation strategies exist for the cumulative constraint, among which Overload
Check [15, 29] which makes sure that no subset of tasks causes an overload in the interval
required to complete these tasks (from est to lct), Time-Tabling [20] which makes use of the
geometric sweep line idea to build resource consumption profiles, Edge-Finding[21] which infers
mandatory precedence relations between tasks based on resource constraints, Time-Table
Edge-Finding[28] which combines the techniques of time-tabling and edge-finding, Energetic
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Reasoning [3] which reasons about the mandatory energy of tasks and Not-First/Not-Last
Pruning [26] which builds up on edge-finding by reasoning about tasks which cannot end
first or start last. The propagation done by ER implicitly includes the propagation done by
all other techniques except for Not-First/Not-Last [24].

Energetic reasoning as a tool for solving the RCPSP was first proposed by Erschler,
Lopez, and Thuriot (1991) [14]. The energy of a task is equal to the duration times resource
consumption. ER reasons about the energy of the mandatory part of a task within an interval
and the available energy of the interval. Often the geometric representation is helpful where
length is duration and height is resource consumption. The propagator was first used in
solver when made efficient (O(n3)) by Baptiste, Le Pape, and Nuijten (1999) [3]. In 2014,
Derrien and Petit [12] managed to reduce the number of relevant intervals by a factor of
seven. Efforts were then made by Bonifas et al. [7], Ouellet and Quimper [24], and Tesch [27]
that have led to a time complexity of O(n2log(n)). Finally, Carlier et al.[8] managed to
reduce the complexity to O(n2).

There has been some work done on explanations for the cumulative constraint and
specifically for energetic reasoning by Heinz and Schulz [17] in 2011. They have noted an
improvement of the runtime of the propagator with one of their three explanations strategies
tested. However since the paper is about the cumulative constraint in general, no specific
attention was paid to ER and the tested strategies were simple and greedy. Furthermore,
Schutt [25] has proposed detailed propagation strategies for Time-Table Edge-Finding which
can almost directly be applied to ER, but it has not been done yet.

Notably no extensive work has been done to analyze the potential benefits of explanations
for the ER constraint. Heinz and Schulz’s tests only three greedy implementations, one
of which yields potential benefit. Furthermore, their main metric is runtime, which shows
whether implementations are good enough, but does not give us insight on whether they
have potential and can be improved. An analysis of the number of conflicts found can give
us this insight. Also the effect of Schutt’s adjustments have not yet been explored on the ER
propagator.

4 Preliminaries

4.1 Constraint Satisfaction Problems

We can define a constraint satisfaction problem (CSP) as P = (X , C, D) where:
X = x1, x2, ..., xn is the set of variables.
D is the domain for the variables. For each variable xi ∈ X , D(xi) is the set of possible
values for the variable xi. All variables are integer variables with boolean variables being
modeled with domain 0, 1 with 1 signifying true and 0 - false.
C is the set of constraints. A constraint C(X) ∈ C is a relation between some variables
X ⊆ X . The constraint I am focusing on in this paper is the cumulative constraint. An
important type of constraint for conflict analysis is the atomic constraint - a predicate
a ⊗ b, where ⊗ ∈ {≤, ≥, =, ̸=}.

When we have mapped each variable xi ∈ X to a single value in its domain we have an
assignment A. This assignment is a solution if it also satisfies all constraints. The RCPSP
is a constraint optimization problem (COP). This means that on top of that we have an
optimization cost function f : Zn 7→ Z. Now we look for an optimal solution, the one with
the lowest cost (in the case of RCPSP the cost is the makespan).
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4.2 Constraint Programming

Constraint Programming (CP) is a method for solving the CSPs and COPs. It utilizes
solvers, where the constraints are tackled with the use of propagators - functions which prune
the domains of the variables based on the current domains, removing values which cannot be
a part of a solution. This repeats until no more propagation can be inferred (fixpoint), when
a decision needs to be made. Solvers will recursively make these decisions (by partitioning
at least one domain, giving us at least two subproblems) and the apply propagation until
fixpoint occurs. This repeats either until it is determined that within the current partition
no solution exists, or all variables have domains with size one (they have been assigned a
value).

4.3 The Energetic Reasoning Propagator

Figure 2 An example of a conflict that can be detected by the ER propagator. The total energy
required to complete all the tasks is 31, while the available energy is only 27, therefore if we are ever
in this state, scheduling the tasks will be infeasible.

Propagators have two main tasks - to detect conflicts, aborting the currently explored
branch and to propagate (make inferences about the domains of the variables). The ER
propagator compares in an interval [a, b) the available energy (b − a) × capacity and the
energy required for the execution of mandatory parts of a task within that interval (see Fig
2). In order to define the ER propagator, I introduce the following quantities, which define
the relation of a task i ∈ I to an interval [t1, t2):

Figure 3 An example application of the left shift, right shift and mandatory interval. The given
task has a LS value of 2, RS value of 4 and therefore an MI of 2.



6 Explanations for Energetic Reasoning

The left shift placement of a task, tells us how many time units we have to execute the
task for within that interval, if we schedule it as early as possible.

(LS(i, t1, t2) = max(0, min(ecti, t2) − max(esti, t1)) (3)

The right shift placement is similar to the left shift placement, but when the task is
scheduled as late as possible.

(RS(i, t1, t2) = max(0, min(lcti, t2) − max(lsti, t1)) (4)

The mandatory interval for a task within an interval is how many units of time the task
needs to execute for within that interval no matter where it is placed(see Fig 3).

(MI(i, t1, t2) = min(LS(i, t1, t2), RS(i, t1, t2)) (5)

The available energy for execution of task i in the time interval.

Avail(i, t1, t2) = C · (t2 − t1) −
∑

j∈I\{i}

Rj · MI(j, t1, t2) (6)

(see Fig 3) With all of these defined, we can define the consistency check and propagation of
the ER propagator, similarly to Derrien and Petit [12].

▶ Proposition 1 (as in Derrien and Petit [12] ER checker[13]). If the condition

∀t1, t2 ∈ N2, t1 < t2 C × (t2 − t1) ≥
∑
i∈I

Ri × MI(i, t1, t2) (7)

does not hold, then the cumulative constraint is infeasible.

▶ Proposition 2 (as in Derrien and Petit [12]). For any activity i if there exists an interval
[t1, t2) such that Avail(i, t1, t2) < Ri ∗ LS(i, t1, t2), then left shift placement is not feasible
and the activity can not start before t2 − 1

Ri
× Avail(i, t1, t2).

▶ Proposition 3 (as in Derrien and Petit [12]). For any activity i if there exists an interval
[t1, t2) such that Avail(i, t1, t2) < Ri ∗ RS(i, t1, t2), then right shift placement is not feasible
and the activity can not end after t1 + 1

Ri
× Avail(i, t1, t2).

The application of proposition 1 gives us the ER checker. Proposition 2 is the rule for
adjusting the lower bound of a variable’s starting time and proposition 3 is the rule for
adjusting the upper bound. The full (fixpoint) ER propagation is only obtained when no
bounds can be further adjusted by using propositions 2 or 3 [12].

Furthermore Derrien and Petit [12] offer a classification of relevant intervals [t1, t2) that
are sufficient to be checked to ensure those propositions are fully propagated.

4.4 Conflict Analysis
Conflict analysis [23, 16] is a technique which can offer substantial speedups to solvers for
COPs. When a conflict is detected, it allows us to backtrack more than one level, potentially
to the first decision which caused the conflict rather than just the previous decision level. At
its core it works with nogoods - a conjunction of atomic predicates which leads to a conflict.
While solving the problem, propagators can report the reasons for conflicts or propagation
also known as an explanation. These explanations are also conjunctions of atomic predicates.
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The solver can then remember and manage these explanations (nogood learning) in order to
allow smarter backtracking.

In order to ensure that our explanations provide the most benefit we want to ensure that
they are as general as possible, allowing for further backtracking. Transforming the initial
naive explanations into more general and useful ones is known as explanation lifting. This
paper will be focusing on explanation lifting for the ER propagator.

5 Main Contribution

Due to the relevance of conflict analysis in solvers [23], it is also important to generate good
explanations for the propagations made. Good explanations are more general, ensuring that
they can prune larger parts of the search space. Work on TTEF [25] and ER [17] shows that
having these more general explanations does improve solvers.

In the following sections I will expand on the previous work done for the explanations
of ER. Firstly I will show how we can relax the default naive explanations by relaxing the
bounds for the tasks without affecting the energy at all. Then I will outline how we can reduce
the energy overload to obtain an even more general explanation. I will then experiment with
different strategies for reducing this overload, to see whether different strategies give some
relevant benefit.

5.1 Bounds Relaxations

Figure 4 An example application of the bounds relaxations. A task is part of a conflict and
currently has the domain {1} for its starting variable. This can be relaxed to the domain {1, 2, 3, 4,
5}, while still maintaining the same mandatory interval and therefore having the same contribution
to the conflict. The picture of the state after the relaxation shows the left and right shift placements
of the task with the new domain, still having MI of two.

The initial naive explanation for conflicts will be:∧
i∈I

MI(i,t1,t2)>0

(Jesti ≤ SiK ∧ JSi ≤ lstiK) ∧ →⊥ (8)

However these clauses can be relaxed. We can adjust the bounds to some values est′
i and

lst′
i, such that the minimum interval of the task for the given interval remains the same (see

Fig 4). These values are est′
i = t1 + MI(i, t1, t2) − Di and lst′

i = t2 − MI(i, t1, t2). We can
then construct the explanation as follows:∧

i∈I
MI(i,t1,t2)>0

(Jest′
i ≤ SiK ∧ JSi ≤ lst′

iK →⊥) (9)
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The mechanism of the explanation for the starting time propagation is similar to the one for
the consistency check. For the lower bound adjustment of task i it will be:∧

j∈I\{i}
MI(j,t1,t2)>0

(
Jest′

j ≤ SjK ∧ JSj ≤ lst′
jK

)
∧ Si ≥ esti → Si ≥ LB (10)

And for the upper bound it is symmetric.

5.2 Dealing with the overload

Figure 5 An example application of the adjusting the overload. The conflict is caused by excess
energy of 31 and a naive explanation will include all tasks. However we can see that if we do not
include the task with energy of 2 in the explanation, the conflict still holds and we have created a
more general explanation for the same conflict.

Figure 6 An example of the different overload removal strategies. The interval has available
energy of 18, and total energy of 27, giving us overload of 9. Greedy task shift will try to move out
task 2 by one time unit, since it has the lowest resource consumption. Greedy task removal will
remove task 3, since it uses the lowest amount of energy in total. The probabilistic solution can
remove any one of tasks 1, 2 and 3, depending on what the inital domains were.

Let us define the overload of an interval as:

OL(t1, t2) =
∑
i∈I

Ri × MI(i, t1, t2) − C × (t2 − t1) (11)

As long as OL(t1, t2) > 0, the interval is still overloaded. Now we can further adjust the
bounds of the tasks, obtained from the bounds relaxations in the previous section for overload
checking (see Fig 5). Namely, if we decrease esti by one and increase lsti by one, we effectively
reduce MI(i, t1, t2) by one and therefore OL(t1, t2) by Ri. However if it is still positive, we
have obtained a viable, more general explanation for the conflict. The next problem is how
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do we select which tasks to adjust further to reduce the overload. In this paper I will be
analyzing the following strategies (differences are visualized in figure 6):

Baseline - no adjustments
Greedy task shift (proposed in this paper) - following up on the previous strategy, with
this one we try to expand the domains of the variables as much as possible by first
adjusting the tasks with lowest energy requirement Ri, allowing us to adjust as much as
possible.
Greedy task removal (proposed by Heinz[17]) - this strategy does not shift tasks, but
remove them, which can also be considered a case of shifting tasks. With this strategy
we remove the tasks with lowest mandatory energy first MI(i, t1, t2) × Ri in order to
obtain an explanation with the least number of clauses. Since it only removes tasks and
does not move them, if there is still leftover energy, greedy task-shift can also be applied
afterward.
Probabilistic heuristic (proposed in this paper) - from all possible explanations for the
conflict, report the one which has the highest probability to occur, if we assume uniform
distribution of the variables within their initial domain. That is, the probability of a
variable appearing within the new domain is |UpdatedDomain|

|DomainBeforeF irstDecision| . We then take
the product of these quantities for all tasks relevant to the interval. In order to tackle this
approach I will use the 0/1 knapsack problem [10]. Given a set of items (wi, vi) where
wi is the weight of an item and vi is the value of an item and also a maximum capacity
W , it tells us which items we need to pick in order to have the maximum sum of values
without exceeding the weight capacity. The weight capacity is the energy available for
overload (minus one, as we cannot remove the whole overload). The weight of a task
is its energy in the interval. We want to remove from the set, the tasks with lowest
probability of occurring. Therefore the value of each task is the negative of the logarithm
of its probability. The logarithm allows us to still use sums as in the original task, while
the minus allows us to work with positive numbers, and also to use maximum as in the
original task.

Dealing with the overload follows the same ideas when considering propagations and not
conflicts. However the available overload energy is much lower, as we need to make sure we
do not weaken the propagation, by changing the propagated bounds. For the lower bound
adjustment, the value is adjusted to t2 − 1

Ri
× Avail(i, t1, t2) rounded up, since when rounded

down, the assignment will still be infeasible. When reducing the overload, we increase the
available energy. In order to maintain the same level of propagation we can increase it by
up to Ri − 1 − Avail(i, t1, t2) mod Ri, ensuring that the result of the division remains the
same.

6 Experimental Results

The code used for the experiments, results and analysis scripts can be found on Github.1 The
experimental section of this paper has four goals. First is to compare the approaches based
on runtime among each other and to decomposition on a simpler test set. Decomposition
outperforms the ER propagator on the simple test sets, this runtime can potentially be
improved by implementing a faster version of the propagator. Second is to evaluate the
impact of the bounds relaxations on the propagator. Results suggest a decrease of between
ten and forty percent on the number of conflicts. Thirdly is to compare the different strategies

1 https://github.com/KonstantinKamenov/Pumpkin

https://github.com/KonstantinKamenov/Pumpkin
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for reducing the overload. On the datasets, these strategies provide an advantage but it is
less than five percent reduction compared to the solution using only bounds relaxations, a
result which was suggested in TTEF [25]. Lastly, to provide some insight into why overload
reduction provides such little improvement. As it turns out, there is not much energy to be
reduced for these explanations.

The implemented solution is the improved O(n3) ER propagator by Derrien and Petit [12].
The benchmarks were run on a 12th Gen Intel(R) Core(TM) i7-12700H, 2300MHz, 14 Cores,
20 Logical Processors. Each run was isolated to run on a single performance logical processor,
in high performance mode with a ten minute timeout on the complex test sets (J120 and
pack) and with a two minute timeout on the simpler test sets (J60 and BL). The benchmarks
I am using are PSPLIB’s J60 and J120 [19], pack [9] and BL [4]. PSPLIB’s instances are
widely used for the RCPSP. However it is considered a more disjunctive benchmark set,
therefore I am also using the pack and BL test set [5]. The set being more dsijnuctive means
that less pairs of tasks can run at the same time (either due to precedence constraints or
because they use too much resources together), where more cumulative test sets have more
pairs of tasks which can be simultaneously executed. The paper comparing disjunctive and
cumulative datasets also suggests ER techniques perform better on the cumulative sets, and
disjunctive sets my be better tackled by other techniques. Therefore the results on pack and
BL benchmarks are slightly more relevant. In total fifty J60, sixty-five J120, all forty BL and
all fifty-five pack instances were run (for reproducibility the specific instances are mentioned
in Appendix B). The model used was the RCPSP model also from the MiniZinc benchmark
repository, which uses the smallest indomain search strategy. The approaches tested are:

decomposition - running the cumulative constraint using decomposition
naive - just using the most basic explanations without any optimizations
relaxations - the naive approach, with bounds relaxations applied
shift - the approach of greedily shifting out the task with lowest resource consumption,
alongside the bounds relaxations strategy
greedy - the greedy task removal approach. Since it only removes task, if there is still
leftover energy, shift was also applied. This approach also utilized the bounds relaxations.
knapsack - the probabilistic heuristic implemented using knapsack. The knapsack was
implemented using the bottom-up tabulation approach, in O(n ∗ W ) time and space
complexity. Since it only removes task, if there is still leftover energy, shift was also
applied. This approach also utilized the bounds relaxations.

The primary metric we care about is the number of conflicts since a version of the propagator
with higher time complexity was implemented due to its simplicity. A lower number of
conflicts signifies a better solution as it was reached in a lower number of steps. Alongside it,
runtime, backtrack amount and lbd [2] will be explored. Since averages tend to be dominated
by the larger values, a lot of the metrics are presented in terms of gain. That is for each
instance, the result of the current solution was divided by the result of the baseline (on the
best achieved common solution). Formally, the metrics are as follows:

conflicts - The number of conflicts of the solution. Lower values (and gain less than 1.0)
are better.
runtime - The time it took the solver to reach the solution. When specified, runtime
optimal means the time it took to reach the optimal solution, while runtime proven is
the time it took to prove optimality. Lower values (and gain less than 1.0) are better.
backtrack - The average backtrack amount in number of levels, when a conflict is
encountered. Higher values (and gain more than 1.0) are better.
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Runtime
optimal (ms)

Runtime
optimal gain

Runtime
proven (ms)

Runtime
proven gain

Solution J60 BL J60 BL J60 BL J60 BL
decomposition 275.59 402.43 1.000 1.000 424.32 1273.18 1.000 1.000

naive 916.22 351.73 4.295 3.195 1008.95 675.10 4.292 2.072
relaxations 925.61 199.30 4.227 2.060 1014.34 334.23 4.220 0.877

shift 895.50 193.10 4.135 2.115 974.30 320.23 4.129 0.867
greedy 912.39 195.70 4.195 2.072 997.86 324.08 4.189 0.868

knapsack 916.32 197.78 4.211 2.077 995.34 329.03 4.204 0.887
Table 1 The runtime results of the solutions on the J60 and BL benchmark sets, with decompos-

ition used as baseline for calculating the gains

Conflicts gain Runtime gain Backtrack
gain

LBD gain

Solution J120 pack J120 pack J120 pack J120 pack
naive 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

relaxations 0.882 0.668 0.940 0.663 1.382 1.057 1.171 0.956
Table 2 Conflicts, runtime, backtrack and lbd gain on the completed instances from J120 and

pack datasets. Naive was used as baseline to calculate the gains.

lbd - The lbd of the solution. The lbd [2] keeps track of the smallest number of decision
levels ever seen for the nogood that cause it to propagate. Lower values (and gain less
than 1.0) are better.

For experiment four, different metrics were used.
no energy - The percentage of intervals where no energy could be removed using overload
reduction.
no change - The percentage of intervals where no energy ended up being removed (this
includes no energy intervals).
no removal - The percentage of intervals where no task could be removed (this also
includes no energy and no removal intervals).
normalized overload - To get an idea of how much the tasks could be moved, for an interval
the available overload to be removed was divided by the lowest resource consumption of
a task in this interval. For example a score of one means the lowest consumption task
could be moved out by only one time unit.

As we can see in the results from table 1 on the J60 test set decomposition heavily
outperforms all ER solutions, performing four times faster (only forty-four instances of J60
were considered as the others did not terminate in the two minutes for at least one solution).
On the other hand, on the more cumulative test set decomposition arrives at the optimal
solution more than two times faster, yet solutions using bounds relaxation manage to prove
optimality quicker. This performance could be improved by implementing faster versions of
the ER propagator.

Based on tables 2 and 3 we can conclude that the bounds relaxation strategy is indeed
very effective. Table 2 includes only completed (proven) instances by all compared solutions,
which were twenty-six for the J120 set and only eight for the pack set, so these results are not
entirely reliable and more testing should be done to explore the effects on proving optimality.
For finding the optimal solution bounds relaxations provide more than twenty-five percent
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Conflicts gain Runtime gain Backtrack
gain

LBD gain

Solution J120 pack J120 pack J120 pack J120 pack
naive 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

relaxations 0.688 0.745 0.805 0.773 1.254 1.036 1.295 1.109
Table 3 Conflicts, runtime, backtrack and lbd gain on all selected instances from J120 and pack

datasets. The gains were obtained by comparing the values for the lowest common makespan found
by the solutions. Naive was used as baseline to calculate the gains.

Conflicts gain Runtime gain Backtrack
gain

LBD gain

Solution J120 pack J120 pack J120 pack J120 pack
relaxations 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

shift 0.986 0.980 1.000 0.996 1.048 1.002 0.964 0.990
greedy 0.982 0.981 1.000 0.986 1.054 1.002 0.956 0.992

knapsack 0.969 0.977 0.992 0.989 1.047 1.002 0.960 0.992
Table 4 Conflicts, runtime, backtrack and lbd gain on the completed instances from J120 and

pack datasets. Relaxations was used as baseline to calculate the gains.

reduction in the number of conflicts. An interesting result is that the relaxed solutions tend
to have higher lbd (except for the completed pack instances), however they also backtrack
more. We can conclude that despite the naive solution having many clauses on the same level,
they are still deep in the search tree therefore they still do not provide a big backtracking
advantage.

The results from tables 4 and 5 suggest overload reduction strategies can provide an
advantage, but it is a small advantage. Table 4 includes only completed (proven) instances
by all compared solutions, which were twenty-seven for the J120 set and thirteen for the pack
set, so these results are not entirely reliable and more testing should be done to explore the
effects on proving optimality. All overload reduction strategies provide a similar advantage
- about four percent reduction on J120 and about one-and-a-half percent on pack. The
knapsack solution performed best, followed by greedy and shift solutions. The LBD and
backtrack results are also similar, but they follow the expected trend of better solutions
having higher backtrack amount and lower lbd.

The results from table 6 are not meant to serve as a comparison between the methods,
but rather to show that the metrics are pretty similar across the strategies. Twenty-four

Conflicts gain Runtime gain Backtrack
gain

LBD gain

Solution J120 pack J120 pack J120 pack J120 pack
relaxations 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

shift 0.965 0.988 0.988 0.999 1.026 1.001 0.981 0.993
greedy 0.964 0.984 0.989 0.988 1.029 1.001 0.975 0.992

knapsack 0.955 0.984 0.974 0.985 1.026 1.001 0.976 0.991
Table 5 Conflicts, runtime, backtrack and lbd gain on all selected instances from J120 and pack

datasets. The gains were obtained by comparing the values for the lowest common makespan found
by all solutions. Relaxations was used as baseline to calculate the gains.
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No energy No removal No change Normalized
overload

Solution J120 pack J120 pack J120 pack J120 pack
shift 24.1% 40.6% 100% 100% 70.2% 84.8% 0.981 0.817

greedy 24.1% 40.6% 84.2% 96.9% 70.3% 84.8% 0.975 0.815
knapsack 24.1% 40.6% 84.6% 96.9% 70.1% 84.8% 0.975 0.819
Table 6 Overload metrics for all overload reduction strategies

percent of the J120 and 40 percent of the pack benchmarks did not have any overload to be
reduced at all. Eighty-four for J120 and ninety-seven for pack did not allow for any task to
be removed at all, meaning these strategies just performed the shift in these explanations.
Shift has one hundred percent because it does not remove tasks in the first place. Seventy
percent for J120 and eighty-five for pack did not allow for any change to happen even when
using the shift strategy (meaning no task at all could be moved or removed), meaning no
overload reduction was done for these explanations. And the normalized overload for the
explanations is less than one, showing once again that on average the explanations allowed
for very little adjustment to be done on the tasks. We can also see that the more cumulative
set had less overload amounts in general. This is understandable since it has fewer precedence
constraints, meaning tasks are less limited and therefore mandatory intervals are smaller.
Also, since more pairs of tasks can be executed simultaneously, having a conflict will result
in a smaller overload since tasks use a smaller part of the available energy.

7 Conclusion

In this paper I have delved deeper into explanations for the energetic reasoning cumulative
propagator. I took what was done before for time-table edge-finding and adjusted it to the
ER propagator. I also explored different possible strategies to deal with the overload in the
explanations to generate more general explanations. The results suggest that the bounds
relaxation strategy should be used and provides a big advantage, having twenty-five percent
lower number of conflicts on average. On these datasets overload reduction did not have a
big impact (less than five percent improvement). The best performing solution was the task
removal, but the performance of all overload reduction strategies was fairly close.

Future work can focus on exploring more strategies for dealing with the overload. One
common strategy that was not explored in this paper is shifting tasks based on the number
of conflicts they have been a part of recently, to ensure the most general clauses. Another
aspect that can be improved is the algorithms for the strategies. The best strategies make
use of sorting, and the even slower knapsack, so implementing these algorithms efficiently is
required to provide a boost in runtime and not only the number of conflicts. Finally, the
runtime comparison can be analyzed using an ER propagator with lower complexity, to give
better impression of the actual improvement provided by the explanations.
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A Responsible Research

In this section I will tackle the the ethical implications of this project. Overall there are not
any significant ethical issues, but here are some of the main points:

Data and privacy - This project does not deal with processing or storing user data in
any way. The datasets used for analysis are public and commonly used for benchmarking
purposes. This project did not use any data for training.
Reproducibility - The project contains no (unseeded) randomness. The benchmarks to
be run were randomly selected, but they will be provided in appendix A.
Bias - Naturally I can be biased towards a positive result regarding the introduced
novelties. Although this cannot be mitigated, The results are presented as is, without
adjusting or cherry-picking data.
Use of AI - throughout this research project AI tools were used for assist with coding.
ChatGPT was used to help fix issues with coding in Rust, and Google Gemini was used
to generate the scripts for parsing and analyzing the results. Those scripts were later
checked by the author. For writing the report, AI was only used for the sake of spell and
grammar checking.
Sustainability - A great analysis of the open challenges associated with the sustainability
of CP are presented by Beldiceanu [6].

B Benchmark Sets

In this section, I will provide a list of the tests of each dataset which was used to obtain the
experimental results using the MiniZinc benchmarks repository.

https://doi.org/10.1007/BF01545589
https://doi.org/10.1007/s10601-008-9064-x
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J120: J120_10_5, J120_11_2, J120_13_6, J120_15_4, J120_16_1, J120_16_2,
J120_16_3, J120_18_4, J120_1_2, J120_20_8, J120_22_3, J120_22_4, J120_25_10,
J120_25_5, J120_26_10, J120_26_6, J120_27_1, J120_27_6, J120_27_8, J120_28_3,
J120_29_10, J120_29_9, J120_31_10, J120_31_7, J120_32_2, J120_32_3, J120_32_4,
J120_32_5, J120_32_8, J120_32_9, J120_33_1, J120_33_3, J120_35_4, J120_38_4,
J120_39_10, J120_3_1, J120_3_10, J120_3_4, J120_41_6, J120_42_2, J120_42_6,
J120_43_4, J120_44_6, J120_44_7, J120_45_10, J120_45_2, J120_47_6, J120_48_8,
J120_49_8, J120_4_3, J120_4_8, J120_50_9, J120_52_5, J120_53_7, J120_53_8,
J120_54_7, J120_56_9, J120_57_8, J120_58_5, J120_58_8, J120_5_4, J120_6_1,
J120_6_6, J120_9_2, J120_9_3
J60: J60_10_8, J60_11_10, J60_11_9, J60_12_4, J60_12_7, J60_12_8, J60_14_4,
J60_15_6, J60_18_3, J60_19_2, J60_19_9, J60_20_4, J60_20_7, J60_21_10, J60_23_7,
J60_24_6, J60_24_9, J60_26_1, J60_26_10, J60_2_10, J60_2_6, J60_31_8, J60_32_10,
J60_32_9, J60_33_1, J60_34_3, J60_36_2, J60_36_7, J60_38_6, J60_39_7, J60_3_10,
J60_3_6, J60_41_8, J60_43_3, J60_44_1, J60_44_2, J60_44_9, J60_45_4, J60_46_2,
J60_48_1, J60_48_6, J60_48_7, J60_5_10, J60_5_8, J60_6_6, J60_6_8, J60_7_9,
J60_8_1, J60_8_4, J60_8_9
pack: all 55
BL: all 40 instances
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