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Kemeny’s constant and the effective graph resistanceI

Xiangrong Wanga,∗, Johan L. A. Dubbeldama, Piet Van Mieghema

aFaculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031, 2600 GA Delft, The Netherlands

Abstract

Kemeny’s constant and its relation to the effective graph resistance has been established for reg-
ular graphs by Palacios et al. [1]. Based on the Moore-Penrose pseudo-inverse of the Laplacian
matrix, we derive a new closed-form formula and deduce upper and lower bounds for the Ke-
meny constant. Furthermore, we generalize the relation between the Kemeny constant and the
effective graph resistance for a general connected, undirected graph.

Keywords: Kemeny constant, effective graph resistance or Kirchhoff index, multiplicative
degree-Kirchhoff index, Moore-Penrose pseudo-inverse, spectral graph theory
2010 MSC: 15A09, 15A18, 15A63

1. Introduction

Consider an undirected graph G(N, L) with N nodes and L links. The adjacency matrix A of
a graph G is an N × N symmetric matrix with elements ai j that are either 1 or 0 depending on
whether there is a link between nodes i and j or not. The Laplacian matrix Q of G is an N × N
symmetric matrix Q = ∆ − A, where ∆ = diag(di) is the N × N diagonal degree matrix with the
elements di =

∑N
j=1 ai j. Let d = (d1, d2, . . . , dN) denote the degree vector for a graph G. The

Laplacian eigenvalues of Q are all real and non-negative [2]. The eigenvalues of Q are ordered
as 0 = µN ≤ µN−1 ≤ . . . ≤ µ1. For a connected graph, the second smallest eigenvalue, coined
the algebraic connectivity by Fiedler [3], is positive, i.e., µN−1 > 0. The Laplacian matrix Q is
not invertible due to a zero eigenvalue µN = 0, but one of the generalized matrix inverses is the
Moore-Penrose pseudo-inverse, denoted as Q†.

The effective graph resistance RG, also called Kirchhoff index, characterizes the resistance
distance [4] between nodes in an electrical network and can be computed by RG = N

∑N−1
i=1

1
µi

,
where µi is the i-th eigenvalue of the Laplacian matrix Q. Studies [5, 6, 7] relate the effective
graph resistance and the trace of the pseudo-inverse Laplacian Q† as

RG = Ntrace(Q†) = N
N∑

j=1

(
Q†

)
j j
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Bounds and closed-form formulas for the effective graph resistance are extensively inves-
tigated in some classes of graphs, such as regular graphs [8], Cayley graphs [9] and circulant
graphs [10]. In complex networks, represented by graphs, the effective graph resistance char-
acterizes the difficulty of transport in a network. As a robustness indicator, the effective graph
resistance allows to compare graphs and is applied in improving the robustness of complex net-
works, especially against cascading failures in electrical networks [11, 12, 13].

Let P denote the transition probability matrix of a finite, irreducible Markov Chain and the
steady state probability vector π and the all-one vector u satisfying Pu = u and πT P = πT .

Theorem 1 ([14]). Let h and g be any two column vectors such that the scalar products hT u and
πT g are nonzero. Then the inverse

Z ≡
(
I − P + ghT

)−1

exists.

The Kemeny constant is defined, in terms of the trace of the matrix Z, as

K(P) ≡ trace (Z) − πT Zu

For a given transition probability matrix P and with hT g = 1, the Kemeny constant K(P) is the
same regardless of the choice of the matrix Z defined in Theorem 1.

Kemeny offered a prize for the first person to find an intuitively plausible interpretation for
his constant. Peter Doyle suggested the following explanation: choose a target state j according
to the steady state probability vector. Start from a state i and wait until the time T j, also called
hitting time, that the target state occurs for the first time. Let Xk, k ≥ 0 denote the states of the
Markov chain. The expected hitting time is E

[
T j|X0 = i

]
= 1 +

∑
k, j pikE

[
T j|X0 = k

]
. By the

maximum principle E
[
T j|X0 = i

]
is a constant. The explanation is reported in the second edition

(2003) of a book [15] by Grinstead and Snell along with a question “Should Peter have been given
the prize?”. An alternative interpretation is provided by Levene and Loizou [16]. Rewrite K(P)
as K(P) =

∑N
i=1 πi

∑N
j=1 π jmi j in a finite irreducible Markov chain, where mi j is the mean hitting

time from a state i to a state j and π is the steady-state vector. Imagine a random surfer who is
following links according to the transition probabilities. At some stage the random surfer does
not know in which state he is and where he is heading. In this scenario, the Kemeny constant
can be interpreted as the mean number of links the random surfer follows before reaching his
destination.

Kirkland [17] studied the Kemeny constant K(P) via the group inverse of the matrix I −P for
the directed graph associated with the transition matrix P. A closed-form expression [18] for the
Kemeny constant was provided in terms of the weights of certain directed forests in a directed
graph of matrix P. The Kemeny constant and its relation to the effective graph resistance RG

was previously investigated by Palacios et al. [8, 1, 19]. For a regular graph with degree r, the
relation between the Kemeny constant and the effective graph resistance was shown to be

K (P) =
r
N

RG

However, the relation between the Kemeny constant K(P) and the effective graph resistance RG

in a general graph is missing so far.
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Motivated by advances of the pseudo-inverse of the Laplacian, such as its appearance in
the electrical current flow equation [4], the relation with the effective resistance [2] in electrical
networks, the relation with the mean first-passage time [20, 21] in a Markov-chain model of
random walks and the state-of-the-art application in identifying the best spreader node [6] in
a graph, we connect the Kemeny constant and the effective graph resistance via the pseudo-
inverse of the Laplacian. The paper is organized as follows. Section 2 presents a new closed-
form formula for the Kemeny constant. Bounds for the Kemeny constant and the relation to the
effective graph resistance are derived in Section 3. Section 4 concludes the paper.

2. New closed-form formula for the Kemeny constant

The stochastic matrix P = ∆−1A characterizes a random walk on a graph that is time-
reversible. One of the main contributions of this paper is Theorem 4, which derives a new
closed-form formula for the Kemeny constant based on the pseudo-inverse of the Laplacian ma-
trix. We first state two lemmas that will be used in the proof of Theorem 4.

Lemma 2. Consider the N × N transition probability matrix P = ∆−1A. The all-one column
vector u satisfies Pu = u. The column vector π = d

2L satisfies πT P = πT and πT u = 1. The
Moore-Penrose pseudo-inverse of the matrix I − P equals,

(I − P)† =
(
I − P + πuT

)−1
−

uπT

uT uπTπ
(1)

Proof. See Appendix A.

Lemma 3. The Moore-Penrose pseudo-inverse of the matrix product ∆−1QQ† can be simplified
as (

∆−1QQ†
)†

= ∆ − ∆
ddT

dT d
(2)

where column vector d is the degree vector of a graph G and matrix Q is the Laplacian matrix.

Proof. See Appendix B

Theorem 4. Assume the transition probability matrix P = ∆−1A. A closed-form formula for the
Kemeny constant follows

K(∆−1A) = ζT d −
dT Q†d

2L
(3)

where the column vector ζ =
(
Q†11, Q†22, . . . Q†NN

)
.

Proof. For the given transition matrix P = ∆−1A, all the matrices Z defined in Theorem 1 with
βT g = 1 result in the same Kemeny constant. Choose the matrix Z as

Z ≡
(
I − P + πuT

)−1
(4)

Lemma 2 shows that the Moore-Penrose pseudo-inverse of the matrix I − P can be rewritten in
terms of matrix Z as

(I − P)† = Z −
uπT

uT uπTπ
(5)
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The Kemeny constant can be written as, with trace
(

uπT

uT uπTπ

)
= 4L2

NdT d ,

K(∆−1A) = trace (Z) − πT Zu = trace
(
(I − P)†

)
+

4L2

NdT d
− πT Zu (6)

Next, we focus on the Moore-Penrose pseudo-inverse of the matrix I−P. Substituting P = ∆−1A,
we have that

(I − P)† =
(
∆−1(∆ − A)

)†
=

(
∆−1Q

)†
In general, the pseudo-inverse of the product of two matrices does NOT follow the product of the
pseudo-inverse of each matrix, i.e., (AB)† , B†A†, but [22]

(AB)† =
(
A†AB

)† (
ABB†

)†
(7)

Let A = ∆−1 and B = Q, we arrive at(
∆−1Q

)†
= Q†

(
∆−1QQ†

)†
According to lemma 3, matrix

(
∆−1QQ†

)†
can be further simplified as

(
∆−1QQ†

)†
= ∆ − ∆

ddT

dT d
(8)

The Moore-Penrose pseudo-inverse of the matrix I − P thus follows

(I − P)† = Q†∆ − Q†∆
ddT

dT d
(9)

and the trace of (I − P)† can be written as

trace
(
(I − P)†

)
= trace

(
Q†∆

)
− trace

(
Q†∆

ddT

dT d

)
(10)

where trace
(
Q†∆

)
=

∑N
i=1

(
Q†

)
ii

di = ζT d. With the inner product of two vectors following

trace
(
xyT

)
= xT y, we have that

trace
(

Q†∆d
dT d

dT
)

= dT

(
Q†∆

)
d

dT d
(11)

Substituting (10) into (6) yields

K(∆−1A) = ζT d − dT

(
Q†∆

)
d

dT d
+

4L2

NdT d
− πT Zu (12)

Next, we focus on simplifying the term πT Zu. After left multiplying π and right multiplying u of
(5), we arrive at

πT Zu = πT (I − P)† u + πT uπT

uT uπTπ
u (13)
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Introducing the matrix (I − P)† in (9) and with π = d
2L , we obtain that

πT Zu =
dT Q†d

2L
−

dT
(
Q†∆

)
d

dT d
+

4L2

NdT d
(14)

Substituting (14) into (12), we establish Theorem 4.

Corollary 1. The Kemeny constant can be expressed, in terms of the effective resistance matrix
Ω, as

K(∆−1A) =
dT Ωd

4L
(15)

where Ω =
(
ωi j

)
and each element ωi j represents the resistance on the link between nodes i and

j.

Proof. The effective resistance matrix Ω can be written [2], in terms of the pseudo-inverse Lapla-
cian, as

Ω = ζuT + uζT − 2Q† (16)

Left multiplying dT and right multiplying d yields

dT Ωd = 4LζT d − 2dT Q†d (17)

Dividing 4L on both sides of (17) and substituting to Theorem 4 results in (15).

The Kemeny constant in (15) contains a quadratic form,

dT Ωd =

N∑
i=1

N∑
j=1

diωi jd j (18)

and each term diωi jd j in a connected graph (with non-negative link weights) is positive: there is
a path between each pair (i, j) of nodes with positive effective resistance and each node has, at
least, a degree di ≥ 1. Hence, Corollary 1 indicates that the Kemeny constant is strictly positive.

Theorem 4 enables the computation of K(P) via the pseudo-inverse of the Laplacian in the
unweighted, undirected graph associated with the transition matrix P, which is different from
the approach in [18] employing the weighted, directed graph of the matrix P. The result in
Corollary 1 was obtained by Palacios and Renom [23, Corollary 1] working with a different Z

matrix, Z =
(
I − P + uπT

)−1
, which is called the fundamental matrix [15]. Moreover, half of

the quadratic form in (18) is also defined [24, 23] as the multiplicative degree-Kirchhoff index
R∗G = 1

2 dT Ωd. The Kemeny constant relates to R∗G in the form of K(∆−1A) =
R∗G
2L .

3. Generalization of the relation between K(∆−1 A) and RG

In this section, we derive a general relation between the Kemeny constant and the effective
graph resistance. Sharp upper and lower bounds are deduced for the Kemeny constant. Finally,
we study the Kemeny constant for special graphs.
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3.1. Generalization of the relation
Corollary 2. Assume the probability transition matrix P = ∆−1A. The relation between the
Kemeny constant K(∆−1A) and the effective graph resistance RG is described as

dminRG

N
−

dT Q†d
2L

≤ K(∆−1A) ≤
dmaxRG

N
(19)

where dmin and dmax is the minimum and the maximum degree in graph G, respectively.

Proof. An inequality for the term ζT d in (3) follows

dminζ
T u ≤ ζT d ≤ dmaxζ

T u (20)

Substituting (20) into (3), together with ζT u =
RG
N and dT Q†d

2L ≥ 0 due to the positive semi-
definiteness of the matrix Q†, we establish the general relation between K(∆−1A) and RG, i.e.,
Corollary 2.

For a regular graph with degree r, the degree vector follows d = ru. Since Q†u = 0, the
quadratic form for a regular graph follows

dT Q†d = 0 (21)

The Kemeny constant in Theorem 4 is reduced to K(∆−1A) = rζT u = r RG
N , which was found

earlier by Palacios et al. [1].
Moreover, a sharper lower bound than that in (19) is presented by invoking a new lower

bound for the term ζT d. Applying the lower bound of Q†ii, derived in [6],

Q†ii ≥
1
di

(
1 −

1
N

)2

(22)

to the term ζT d =
∑N

i=1 Q†iidi yields

ζT d ≥ N
(
1 −

1
N

)2

Combining with (3), a sharper lower bound for the Kemeny constant follows

K(∆−1A) ≥ N
(
1 −

1
N

)2

−
dT Q†d

2L
(23)

Next, we show that a lower bound (24) for the effective graph resistance (or the Kirchhoff index)
can be obtained by using (22). Invoking (22) and RG = Ntrace

(
Q†

)
, we arrive at

RG ≥
(N − 1)2

N

N∑
i=1

1
di

Employing the inequality
∑N

i=1
1
di
≥ N2

2L in [25], we show that

RG ≥
N (N − 1)2

2L
(24)

The lower bound (24) is a pretty good bound obtained circa 2014-2015 (see, e.g., [12, 25, 26,
27]), but is superseded by the state-of-the-art result in [25, Theorem 1].
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3.2. Bounds for Kemeny’s constant

Since Q†u = 0, we rewrite the degree vector as

d = davu − δ (25)

where the average degree dav = 2L
N = dT u

N . This definition (25) has two direct consequences.
First,

δT u = 0

implying that the difference vector of the degree has mean zero, is orthogonal to the vector
xN = u

√
N

belonging to the zero Laplacian eigenvalue µN = 0 and that δ can be written as a linear
combination of all eigenvectors of the Laplacian (and pseudo-inverse Laplacian) belonging to
positive eigenvalues (for a connected graph). Thus,

δ =

N−1∑
k=1

(
δT xk

)
xk (26)

which also illustrates that δT u = 0 due to orthogonality of the Laplacian eigenvectors xT
k xm = δkm

(where δkm is the Kronecker delta), because xN = u
√

N
. Next, the norm ‖δ‖ =

√
δTδ follows from

δTδ = (d − davu)T (d − davu) = dT d − Nd2
av (27)

which also equals, invoking (26) and orthogonality of the eigenvectors,

δTδ =

N−1∑
k=1

(
δT xk

)2

The stochastic interpretation is Var[D] = E
[
(D − E [D])2

]
= E

[
D2

]
− (E [D])2 = dT d

N − d2
av,

where D is the random variable of the degree in a graph, which equals the degree of a randomly
selected node in the graph.

After this preparation, we introduce the definition (25) into the quadratic form

dT Q†d = δT Q†δ

due to Q†u = 0. Invoking the inequality [28, (5.4) on p. 99],

1
µ1
≤
δT Q†δ
δTδ

=

∑N−1
k=1

1
µk

(
δT xk

)2∑N−1
k=1

(
δT xk

)2 ≤
1

µN−1

we find with (27) that
dT d − Nd2

av

µ1
≤ δT Q†δ ≤

dT d − Nd2
av

µN−1
(28)

Consequently, the Kemeny constant K(∆−1A) in (3) is upper and lower bounded by

ζT d −
Var [D]

E [D] µN−1
≤ K(∆−1A) ≤ ζT d −

Var [D]
E [D] µ1

(29)

7



Involving K(∆−1A) =
R∗G
2L , we derive upper and lower bounds for the multiplicative degree-

Kirchhoff index
2LζT d −

NVar [D]
µN−1

≤ R∗G ≤ 2LζT d −
NVar [D]

µ1
(30)

which improves the lower bound in [29]

R∗G ≥ N − 1 + 2L (N − 2) (31)

We numerically evaluate the upper and lower bounds in (29) for various random graphs. In
Figure 1, we present the accuracy of the bounds for (a) Erdős-Rényi graphs (ER) with N = 500
nodes, link density p = 2pc, where pc =

log(N)
N is the connectivity threshold; (b) Barabási-Albert

graphs (BA) with N = 500 and the average degree dav = 6; (c) Watts-Strogatz small-world
graphs (WS) with N = 500, the average degree dav = 6 and the rewiring probability p = 0.1. The
generation of these random graphs is described in, e.g., [30] for ER graphs, [31] for BA graphs,
and [32] for WS graphs. For each class of random graphs, we generate 105 graph instances and
the probability density functions and the bounds for the Kemeny constant K(∆−1A) are plotted.
The upper bound deviates on average 0.01%, 0.04% and 0.002% of the numerical value of the
Kemeny constant in ER random graphs, BA graphs and WS graphs, respectively. The lower
bound is slightly less accurate compared to the upper bound, with 0.05%, 0.8% and 0.04% of
difference in ER, BA and WS graphs. Hence, the simulation results show that the upper and
lower bounds in (29) are a good approximation for K(∆−1A). Moreover, Table 1 shows that the
result (30) improves the lower bound for the multiplicative degree-Kirchhoff index found in [29].

Table 1: Accuracy of lower bounds (30) and (31) in random graphs with the same parameters as in Figure 1. The value
in each column is the average value over 105 graph instances.

Random graphs R∗G/2L lower bound (31)/2L lower bound (30)/2L
ER graphs 544.38 498.08 544.11
BA graphs 603.87 498.17 598.80
WS graphs 949.97 498.17 949.54

3.3. Quadratic form dT Q†d in star graphs
The Laplacian for a star graph with N nodes can be written as

Q =

[
N − 1 −uT

1×(N−1)
−uT

(N−1)×1 I(N−1)×(N−1)

]
(32)

The pseudo-inverse of the Laplacian matrix can be computed [2] by

Q† = (Q + J)−1 −
J

N2 (33)

where J is the all-one matrix. With (32), we can write the inverse of matrix Q + J as

(Q + J)−1 =

[
N 0
0 I + J

]−1

=

[ 1
N 0
0 I − J

N

]
(34)
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Figure 1: Accuracy of the upper and lower bounds for the Kemeny constant.

Left multiplying dT and right multiplying d in (33), together with (34) and using d = (N −
1, 1, . . . , 1), we have that dT Q†d

2L = 1
2 −

2(N−1)
N2 . From (3), the Kemeny constant for a star graph

can be explicitly expressed as K(∆−1A) = N − 3
2 . Due to ζT d = (N − 2)Q†11 +

RG
N and Q†11 = N−1

N2 ,
the Kemeny constant is rewritten, in terms of the effective graph resistance RG, as

K(∆−1A) =
RG

N
+

N − 2
2N

(35)
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Figure 1: Accuracy of the upper and lower bounds for the Kemeny constant.

4. Conclusion

In this paper, we generalize the relation between the Kemeny constant and the effective graph
resistance, which was known for regular graphs, to general connected, undirected graphs. By
deriving a new closed-form formula (3), we provide a new approach to compute the Kemeny
constant via the pseudo-inverse of the Laplacian matrix. Moreover, we show that for general
graphs the Kemeny constant can be tightly upper and lower bounded by (29).
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Appendix A. Proof of Lemma 2

Proof. According to Theorem 1, the inverse matrix Z =
(
I − P + πuT

)−1
exists. The definition

of the inverse of a matrix reads(
I − P + πuT

) (
I − P + πuT

)−1
= I (A.1)

Left multiplying πT in (A.1) yields, with πT P = πT ,

uT
(
I − P + πuT

)−1
=

πT

πTπ
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Substituting into (A.1) results in

(I − P)
(
I − P + πuT

)−1
= I −

ππT

πTπ

Similarly, the following can be obtained

(
I − P + πuT

)−1
(I − P) = I −

uuT

uT u
(A.2)

Assume that (1) is correct, then we verify indeed that the matrix product (I − P) (I − P)† follows

(I − P)
((

I − P + πuT
)−1
−

uπT

uT uπTπ

)
= I −

ππT

πTπ
(A.3)

and, similarly, the matrix product (I − P)† (I − P) can be written as((
I − P + πuT

)−1
−

uπT

uT uπTπ

)
(I − P) = I −

uuT

uT u
(A.4)

Right multiplying I − P in (A.3) yields

(I − P) (I − P)† (I − P) =

(
I −

ππT

πTπ

)
(I − P) = (I − P) (A.5)

Right multiplying (I − P)† in (A.4) results in

(I − P)† (I − P) (I − P)† =

(
I −

uuT

uT u

) ((
I − P + πuT

)−1
−

uπT

uT uπTπ

)
= (I − P)† (A.6)

Since matrices (I − P) (I − P)† and (I − P)† (I − P) are symmetric matrices, together with (A.5)
and (A.6), we establish Lemma 2.

Appendix B. Proof of Lemma 3

Proof. Let xk be the eigenvector belonging to the eigenvalue µk of the Laplacian Q. The vector
u
√

N
is an eigenvector of Q belonging to the eigenvalue µN = 0. The Laplacian matrix can be

written as Q =
∑N

k=1 µk xk xT
k and the matrix product QQ† follows

QQ† =

N∑
k=1

µk xk xT
k

N−1∑
m=1

1
µm

xmxT
m = I −

1
N

J

where matrix J = uuT is the N × N all-one matrix. Left multiplying ∆−1 yields

∆−1QQ† = ∆−1 −
∆−1u

N
uT

11



The Moore-Penrose pseudo-inverse [22] for the sum of matrices
(
A + mnT

)†
is(

A + mnT
)†

= A† − kk†A† − A†h†h +
(
k†A†h†

)
kh (B.1)

where k = A†m and h = nT A†.
Let A = ∆−1, m = −∆−1u

N and nT = uT , so that k = −u
N and h = dT . With k† = uT

N2 and h† = d
dT d ,

we arrive at (
∆−1 −

∆−1u
N

uT
)†

= ∆ −
u
N

uT

N2 ∆ −
∆d
dT d

dT +

(
uT

N2 ∆
d

dT d

)
u
N

dT

Since − u
N

uT

N2 ∆ +
(

uT

N2 ∆ d
dT d

)
u
N dT = 0, Lemma 3 is established.
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