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Abstract Multiple recent events have shown the alarming vulnerability of infrastructure on sea
to sabotage. This infrastructure can be monitored and protected with passive sonar systems,
which provide a number of advantages over other surveillance methods such as RADAR or
active sonar. An overview of different localisation methods suitable for the Dutch littoral zone
that perform bearing estimation, ranging or complete localisation on the surface plane is made
from methods available in literature. From this overview a proposal is made to select cepstral
ranging for further research, as there is a limited amount of literature available on this subject.
Experimental data from the Dutch coastal area has been gathered with a RHIB and stationary
sensor to verify important parameters for both computation and the ranging environment. An
effective cepstral ranging method based on experimental data has been developed, although
ranging with tidal effects and SNR mismatch remains somewhat problematic. To compensate
for this a novel ray tracing method based on open-source measurements has been developed
that offers a significant increase in accuracy while effectively compensating for variations in
bathymetry and tide.
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1 Introduction

1.1 Background

Recent world events have brought to light the vulnerabilities of underwater infrastructure like
subsea cables, pipelines and wind turbines and their power cables on sea. Notably the Nord-
stream 1 and 2 pipelines were presumably sabotaged on 26 September 2022 by a yet unknown
party [3], and on 20 October 2022 both subsea cables connecting Shetland to the rest of the
world were cut [4]. In these examples damage to infrastructure was first noticed by failure of the
connected system and afterwards it is hard, if not impossible, to positively identify the party
responsible for the damage. The reason for this is that these subsea cables and pipelines are
completely unprotected and while most modern subsea cables have build-in acoustic surveillance
capabilities, older cables do not [5].

Not only cables and pipelines are at risk, but also the numerous wind farms that provide a
significant amount of energy for the Netherlands. In 2022 a Russian vessel was found gathering
information on Dutch wind farms which was suspected to be a preparation for sabotage [6]. If
these wind farms would be disabled this might have profound effects on Dutch energy security
with disastrous results from both an economic and social perspective.

Surveillance of these areas of interest can provide deterrence against acts of sabotage. Passive
sonar systems are an excellent tool for this. They are able to detect small targets that might be
undetected by radar or even submerged targets, as long as the targets emit an acoustic signal
themselves. As passive sonar does not use a self-emitted signal it does not damage or hinder
sea-life and targets do not know that they are being tracked. In the case of a stationary system
there is also no requirement for permanent crewing of a vessel for surveillance as monitoring
can be performed from land-based installations or even automatically.

It is important to note that at the start of this thesis the topic of research itself was not
clearly defined yet. The starting objective was to perform a literature survey on methods
suited for stationary and passive surveillance in coastal areas as mentioned above. From this
literature survey it was concluded that cepstral ranging seems like a promising and recently
emerging ranging technique, while this specific method had not yet been tested or used by
TNO. Ranging itself, no matter the technique used, is one of the most important and hardest
parts of sonar based localisation. In the future ranging techniques like this might be used to
detect if a vessel comes too close to a prohibited part of Dutch coastal areas, i.e. wind farms
or other infrastructure. Therefore the decision was made to expand on this topic in this thesis.

Cepstral ranging itself is based on a specific algorithm that is able to discern the Time
Difference Of Arrival or TDOA of different travel paths of sound waves underwater. This is
the so-called multi-path environment of a shallow water waveguide. The physical mechanism
behind this is explained in greater detail in section 2.1.3. From this TDOA it is possible to
determine the distance to a target by a geometric relation if certain parameters are known.
This thesis researches the possibilities and limitations of cepstral ranging and determines which
factors and parameters influence its ranging performance.

1.2 Problem statement

Defense of critical underwater infrastructure has high priority at this time, especially for coun-
tries that possess a significant amount of sub-sea and on-sea infrastructure that is important
for their society and economy. The Netherlands possesses a lot of wind farms in its coastal
areas and receives a significant amount of internet data through undersea cables. For these
wind farms specifically the surrounding waters are restricted to normal sea traffic to prevent
accidents, but possibly also sabotage. It is however difficult to actively patrol these areas as
they are numerous and large. Radar surveillance is mostly used for surveillance at sea, but



smaller vessels might be lost in noise. Passive sonar might offer better performance in this case,
as any vessel that uses an engine or any other source of sound can be heard and located by
this method when in range of this system. Additionally passive sonar does not pose a risk for
marine animals as it does not emit sound itself.

During the cold war a vast amount of resources has been invested in sonar R&D, although
arguably mostly aimed at Anti Submarine Warfare or ASW. Using sonar detection and locali-
sation methods for small vessels with the purpose of coastal defense seems to be a less mature
field. Considering the risks to underwater infrastructure as described in section 1.1 there is now
a great interest in expanding on this topic. Bearing estimation methods for this purpose have
been researched to some degree as will be shown in section 2.2.1 of the literature survey, but
methods to find the range to a source or target are less developed as shown in section 2.2.2.

When comparing the methods described in
. . . GPX track and water depth on measurement day

this section, the ’cepstral analysis’ method ( PN 0
from section 2.2.2.2 seems most promising be- S2137 P
cause of its relative ease of implementation and — s2125¢
straightforward method of operation. While 5242 |
some studies have been done on this topic data
was found to be relatively sparse and factors
contributing to an increase of effectiveness of
cepstral ranging have not been thoroughly re-
searched. Cepstral ranging has been shown to
function well in certain settings that are fitting | . | 4 | |
for Dutch coastal surveillance, e.g. a shallow 421 422 423 424 425 426 427
water environment, but which factors have in- ronatude -ldedl

fluence on this, and how well this technique
would be suited for actual use in coastal de-
fence is not yet clear. Especially in shallow
waters it can be expected that differences in water depth caused by tidal effects, storms etc.
will have a significant influence on the exact multi-path structure and thus the TDOA. An
effect like this is readily visible in figure 2, which shows the water depth varying over the course
of multiple hours for measurements in the same location. In this figure it is also apparent
that there is a significant variation in bathymetry for different locations. Both will result in
inaccurate or skewed ranging values, as cepstral ranging experiments in literature assume a
spatially and temporally uniform water depth [7] [8] [9] [10] [11]. Another issue is the matching
algorithm, which matches measurements to the correct range. These and other issues should
be investigated and resolved first before cepstral ranging is feasible for practical use.

-[m]

52115
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Water depth
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Figure 2: Measured and charted water depth during
the acoustic measurements used in this thesis

1.3 Objectives

As described in the previous sections 1.1 and 1.2, the aim of this thesis is to provide an overview
on the preparation of data for cepstral ranging, methods to perform cepstral ranging and to
give substantiated advise to improve the performance of cepstral ranging. This thesis should
provide the reader with a solid understanding of cepstral ranging, the advantages and disad-
vantages of this ranging method and suitable algorithms to use for this purpose. To accomplish
this the following points will be thoroughly addressed, with the overarching research question
mentioned first:



1. How accurate can the range of sound sources be estimated in a real-world
situation using cepstral based ranging methods and a single hydrophone in relation
to the true range between receiver and source? This main research question should in-
dicate if cepstral ranging is indeed suitable for deployment in coastal surveillance and should
offer an indication of performance compared to other ranging methods.

To answer this main research question first a few sub-questions should be answered. These
are formulated to solve challenges that have to be overcome before cepstral ranging could be
considered usable in a deployable and well-functioning system. These sub-questions including
context are shown below:

2. Which cepstrum settings and methods of data preprocessing are suitable for
cepstral ranging? A cepstrum is computed with parameters comparable to an FFT compu-
tation, i.e. a window size and overlap. It is also possible to adjust the sample rate to increase
computation speed, which might impact the ranging performance. When a cepstrum is gener-
ated there will certainly be noise present. Removing this noise as much as possible with various
methods will presumably increase the ranging performance.

3. Which methods of building a ranging library are suitable for cepstral ranging?
Cepstral ranging involves comparing a cepstrum generated from a measurement to a so-called
library which contains cepstra of which the accompanying range is known. Various methods to
generate this library are available, either based on theoretical models or earlier measurements.
A few of these methods of library building should be researched and compared.

4. Which matching algorithms are available and what is their performance?
When one has decided on a type of library as mentioned above, an algorithm should be se-
lected to automatically compare the measurement cepstrum to the library. The accuracy of
this algorithm is expected to have a significant influence on the accuracy of cepstral ranging,
as well as on the maximum range for which a source can be ranged.

5. What is the influence of (tidal) changes in water depth on the performance on
cepstral ranging and how to negate resulting inaccuracies in ranging? As mentioned
in section 1.2 it is expected that a change in water depth will have a significant impact on
the ranging values generated by cepstral ranging. The Dutch coastal areas have a constantly
changing water depth because of the tidal movement of water, which can result in a depth
varying by several meters on a single day. This effect must be accounted for to prepare cepstral
ranging for practical applications.

It is anticipated that answering these questions will result in an overview of cepstral ranging
that is sufficient to prove whether cepstral ranging is applicable to real-world deployment and
that the results can be used as a guideline for both the development of a cepstral ranging system
and to compare it to other ranging systems.



1.4 Scope and limitations

Cepstral analysis and ranging is a broad topic which still requires a significant amount of
research to enable it to be fielded reliably and accurate. It is not realistic to cover and solve all
issues related with cepstral ranging in this thesis. Therefore a certain amount of compromises
and limitations have to be made in the research for this thesis. These limitations will be outlined
in the following section.

e Already before making the literature survey it was decided that the focus of this thesis
should be on stationary systems. A moving receiver could perform range estimation by
taking multiple bearing measurements while manoeuvring the receiver to infer a range.
A moving system however introduces a plethora of other issues concerning reliability,
maintenance and general feasibility, especially when the system has to be unmanned.

e No modelling or simulations to create synthetic data will be carried out. These models
are often computationally intensive and creating a time sequence would take considerable
resources. Next to that, creating accurate synthetic data is a complex task and it would
be difficult to verify the accuracy of this data. As this thesis tries to verify the usefulness
of cepstral ranging in a real environment, experimental data will suffice.

e While the dataset used in this thesis was recorded on a vector hydrophone, which is able to
estimate the bearing of a source, only the included hydrophone sound data will be used in
this report. Potentially a vector hydrophone could be able to estimate both a bearing and
range using the methods discussed in this thesis, which could be very effective for coastal
surveillance as it should result in a complete 2D localisation on the horizontal plane. To
be able to focus completely on the more challenging ranging part, the vector data will not
be used.

e Because of the relatively shallow depth of Dutch coastal areas and to simplify the research
for this thesis considerably, all sound sources that are to be ranged are assumed to be on or
very close to the surface. The multi-path structure of sound travelling in the waveguide of
a body of water is essential for cepstral ranging, and this structure changes considerably
if the depth of the source changes. This will result in different TDOA values for the
same range in the case of a varying depth and thus inaccurate ranging values. This thesis
focuses on surface sources like most vessels, and not on submersed sources like Unmanned
Underwater Vehicles (UUV). While in theory it should be possible to estimate both the
range and depth from cepstral analysis, this is deemed out of scope for this thesis.

e The focus of this thesis will be on measurements in open waters, i.e. in areas with no
sound wave reflections by underwater objects or walls. Since cepstral ranging relies on
the TDOA of multi-path reflections, reflections from objects other than the water surface
or bottom might interfere with the performance of cepstral ranging. This could limit
the usefulness of cepstral ranging in for instance a port or harbour, or any other area
that contains significant underwater walls or objects that might reflect sound waves from
the source to the receiver. While this apparent issue has to be overcome before cepstral
ranging can be used in the aforementioned environments, priority should be given to create
a reliable system for cepstral ranging without the addition of these challenges. Therefore
any environment other than open water without significant underwater structures are
deemed out of scope for this thesis.

Even without research done in the areas mentioned above, this thesis has the potential to result
in a ranging method that is suitable for coastal defence in shallow water after overcoming some
engineering challenges with regards to the deployment of such a system. Addressing these
limitations would only offer an improvement to the ranging or localisation performance.



1.5 Overview of content

This thesis presents an exhaustive literature survey on topics of significance for coastal surveil-
lance, which include the basics of hydroacoustics, methods to find both bearing and range or
to perform a 2D localisation and an introduction to sound signatures.

This literature survey identifies cepstral ranging as an emerging field of interest with the
potential to be of significance for coastal surveillance. This method elegantly identifies the
Time Difference of Arrival or TDOA of various echoes, even with a stationary signal. These
echoes can then be used to find the range to a source by geometric relations. As not a lot of
information about this topic is yet available, a project is proposed to identify which parameters
and factors are of importance during cepstral ranging and to quantify the practical accuracy of
this method.

A methodology is presented which expands on the experimental data that has been used
to generate these results. This data consists of both GPS and audio measurements taken a
few kilometers from the coast near Scheveningen with a RHIB. The receiver was placed on the
bottom after which the RHIB performed a series of runs at various distances of the receiver,
while constantly recording its position with a GPS receiver. Next to the detailing of data it is
explained how the measurement cepstra and libraries which contain cepstra with a known range
are generated, how the step between library and measurement can be made and parameters
of potential significance are identified. To compensate for tidal effects, other environmental
effects and bathymetry, a novel ray tracing algorithm has been developed that incorporates
open source data to compute sound speed and expected reflection path lengths.

The methodology is then converted to results where the errors between distance known by
GPS and estimated distance are compared for various parameters of interest. These results
offer insight on which parameters for cepstrogram generation offer the most accurate results
and other implications. Issues with variations in tide and SNR are identified, researched and
alleviated. A novel ray tracing method however offers impressive performance while not yet fully
operational, as it is able to effectively compensate for bathymetry, tide and sound speed during
TDOA estimation. These results are used to give recommendations to further the development
of the ray tracing algorithm and to expand on the mechanism behind ranging issues with tidal
variations and variations in SNR.



2 Literature survey

2.1 Principles of shallow water sound propagation

Water is an excellent medium for sound propagation. A body of water will act as a natural
waveguide for sound waves, constrained by the sea floor and surface. Nevertheless, acoustic
recognition and localisation is hampered by sound attenuation or so called transmission loss.
Because sound absorption in water is very small for low frequencies, it is mostly dominated by
geometrical spreading, volume attenuation, bottom reflection loss and boundary and volume
scattering loss [12]. Another limiting factor is the refraction of sound waves caused by density
differences in different water layers. Especially important in shallow water are sound reflections,
bouncing between water surface, bottom and underwater obstacles. As these phenomena have
a profound influence on detection and localisation underwater, the mechanisms behind them
and their effect on shallow water sound propagation are discussed in this section.

2.1.1 Transmission loss

Transmission loss is defined as the ratio in decibels between the sound intensity I(r,z) at a
field point and the intensity I at a 1m distance from the source. It plays an important role in
the Sonar equation 1. While relatively simple for passive Sonar systems, it’s a useful tool to
determine the Signal to Noise Ratio or SNR, which has some connection to the detectability of
targets by passive Sonar [1].

SNR=SL—TL— N + DI (1)

Here SL stands for Source Level, TL for Transmission Loss, N the noise at a single hy-
drophone and DI for the Directivity Index, which is applicable when an array that has some
noise rejection is used.

Geometrical spreading accounts for the largest part of transmission loss. When neglecting
attenuation the radiated energy at first will spread over the surface of a sphere with radius r
which is equal to the distance to the point source. This implies that the energy at distance r
will be inversely proportional to the sphere surface area, which results in equation 2 [12].

TL=20logr (dB re 1m) (2)

As the sound energy is captured in the water waveguide, spreading in the vertical direction
will cease once the sound travel distance r becomes larger than the water depth D. As a result
the spreading loss gradually becomes inversely proportional to the surface area of a cylinder,
which results in equation 3 [12].

TL=10logr (dB re 1m) (3)
Equation 2 holds for the cases where » < D and equation 3 for the farfield when r >> D.

2.1.1.1 Volume attenuation and scattering losses

When sound travels through the ocean it will continuously transfer energy to the water which
will turn into heat. Sound will also scatter while propagating through water, for a significant
part by biological organisms or by surface and bottom roughness during reflections[12]. An
approximation of these losses is given in equation 4 [13].

0.11f2 4412
1+ f2 ' 4100 + f2

of ~33%107% + +3.0%107%f%  (dB/km) (4)



While equation 4 does not account for pressure, temperature and salinity, which all have
an effect on attenuation, it is sufficient as an approximation and to demonstrate the effect of
frequency on attenuation.

2.1.1.2 Boundary reflection loss

In shallow water waveguides, sound waves will inevitably interact with both the bottom and
the surface of this waveguide. This constrasts with sound propagation in an ocean, where
refraction as explained in section 2.1.2 can capture sound waves in a layer of low sound speed
[14]. Depending on the incident angle in regard to the boundary plane and the difference in
sound speed between both media, a certain fraction of the incident energy is reflected and
another fraction leaves the waveguide.

Surface interaction also results in attenuation [12], a doppler shift and amplitude modulation
by wave movement on the surface and multiple scattering mechanisms [15]. One of these
mechanisms unique for the surface boundary is the mixing of air bubbles into the top layer with
increased wind speeds. Sound energy reflected by the boundaries will also result in interference
or so-called 'multipath propagation’ which will be discussed in section 2.1.3.

Bottom interaction has much of the same mechanisms as surface interaction, but on the other
hand the reflections are more complex as the sea bottom often is made up of multiple layers
of materials with different geoacoustics. This layering can also have a large variation in lateral
directions, making extrapolating from known data difficult [16]. Depending on the media these
layers are made of, they can be modelled as fluids which only support compressional waves, or
if the media are closer to a solid they have to be modelled as elastic. In that case they support
both compressional and shear waves. In reality these media are more or less viscoelastic and
thus lossy [12].

For bottom reflections there can be a critical incident angle for which reflections would be
theoretically lossless because no incident energy will propagate into the boundary layer. This
can only occur when the sound speed in the boundary layer is higher than the sound speed of
water. The equation to calculate this critical angle is given in equation 5 [12].

6, = arccos (2) (5)
Co
In equation 5 ¢; is the water sound speed and ¢y the sound speed in the boundary layer. In
reality there will be a phase shift depending on the incident angle and a loss of energy during
the reflection.

2.1.2 Sound wave refraction

The speed of sound in water is in reality often a function of depth, especially in deep water.
Water at the surface will (especially during the summer and daytime) rise in temperature and
therefore see an increase in sound speed. At a certain depth there can be a large temperature
gradient where the temperature quickly lowers with increasing depth, the so-called thermocline.
With the lower temperature the sound speed decreases as well. As depth increases pressure
increases too so sound speed gradually increases with an increase in depth. An approximate
graph of the sound speed in an ocean as a function of depth is shown in figure 3a.
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Figure 3: Sound speed and refraction in an ocean

According to Snell’s law, these changes in density will refract sound waves during their travel,
potentially trapping sound waves in water layers with low sound speed [12]|. For very shallow
waters like ports or Dutch wind turbine farms with an average water depth of 20m these effects
are practically nonexistent. While refraction by water layers might occur it will not prevent
sound waves from reflecting of the surface or bottom [17].

Refraction can play a role in the layered media, where sound waves that have penetrated into
a layer encounter a sound speed gradient and bounce or curve back to the water on different
positions. This is shown in figure 3b and results in a distorted signal for an omnidirectional
receiver Q.

2.1.3 Interference in the multipath environment

Both refraction and reflection create many different paths that sound waves can travel from a
transmitter to a receiver in a shallow water environment. As these paths have different travel
times and transmission loss they will produce a distorted signal for the receiver [16].

A classical example of this is the Lloyd mirror pattern. This effect is created by the sum-
mation of the direct path and one or more reflected paths when they arrive from a broadband
source S at the receiver P as shown in figure 4a [18]. The time delay between arrival of these
different paths and phase reversal of reflections will create both constructive- and destructive
interference for specific frequencies, depending on source depth and range.
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Figure 4: Visualisation of the Lloyd mirror pattern

The parabolic shape of the interference striations in a spectrogram is caused by movement of
the source relative to the receiver. As distance (or depth) decreases or increases the striations
move to different frequencies, creating the characteristic "bathtub’ shape as seen in figure 4b
and 4c [18].

While multipath interference will distort the received signal it can also be a valuable tool
for ranging a target, as the interference pattern is a function of both depth and range. If the
bathymetry is known it is possible to calculate the range to a target with use of the interference
pattern. This is further explained in section 2.2.2.



2.2 Detection and localisation algorithms

To effectively survey an area the location of targets in or near this area has to be known. This
section addresses common or promising algorithms that accomplish this goal. These algorithms
can be broadly divided into three different categories on which location parameters of the target
they can acquire.

The most common algorithms will result in an estimation of the target bearing relative to
the receiver. This can be done in its simplest form by cross correlation of the signal of two or
more hydrophones or beamforming algorithms that can use hundreds or hydrophones. These
algorithms are explained in section 2.2.1. Algorithms for ranging are much less common. If
the source strength and bathymetry of the surrounding water are unknown it is not possible
to effectively find a target range with a stationary receiver, except when using triangulation
methods which are addressed in section 2.2.4. There are some methods based on multipath
interference that can work with a smaller hardware setup, these are addressed in section 2.2.2.
Finally there are algorithms that can find a target location in 2D or 3D space. They often require
extensive knowledge of the bathymetry or use a large amount of sensors and are addressed in
section 2.2.3.

2.2.1 Bearing estimation methods

2.2.1.1 Cross correlation

In literature there is a large selection of bearing estimation methods to be found. For shorter
ranges and very shallow water like harbour environments the (generalized) cross correlation
method is frequently used [19] [20] [21] [22]. This method is based on the principle that sound
waves will have different arrival times for two hydrophones with some spatial distance between
them. The difference in arrival times can be calculated using equation 6 [19].

Lsin« AT x ¢
= ) (6)

AT = . or « = arcsin (
Here L means the distance between the hydrophone pair, o the angle between the source and
the normal of a line connecting the two hydrophones, and ¢ means the local speed of sound.

The cross correlation algorithm compares two data sets and shifts them per sample point
relative to each other. It returns a peak for a certain shift of samples that aligns the two
data sets correctly. The amount of sample shifts that produced a peak in the cross correlation
multiplied by the sample rate will give the time delay AT. The cross correlation is defined as
shown in equation 7 [19].

Rua(7) = /_ T h(#)ha(r — )dt (7)

With h; and hy being the signals of hydrophone 1 and 2 respectively.

A variant of the cross correlation called the GCC-PHAT algorithm uses a frequency weighing
function that normalizes the signal spectral density by the spectrum magnitude. As this whitens
the input signals it sharpens the peak of the cross correlation function and thus increases
resolution [23]. The cross correlation function 7 is multiplied by the weighing function. This
specific algorithm has been used to detect divers [20].

While it is technically possible to place the sensors far apart this can compromise its per-
formance for bearing estimation. As sound waves are made up from a multitude of sinusoidal
signals there is also a multitude of phase shifts or time delays that will align the sinusoidal
signals, depending on the specific frequencies of these sound waves. If the distance L between
the two sensors is kept within half the wavelength of the smallest wavelength that is to be
measured it is ensured that only the closest phase shift that matches is actually correct. If this
is not done the cross correlogram will show grating lobes on other time delays that also match
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the signal frequency as shown in figure 5a as tracks parallel to the main correlated track. In
practice this means that it will be harder or even impossible to exactly pinpoint the correct
bearing if the signal does not contain unique features in the time domain.

Tive (5

(a) GCC-PHAT correlogram (b) Standard correlogram

Figure 5: Correlogram comparison of a RHIB passing in a harbour channel

2.2.1.2 Beamforming

Beamforming is probably the most popular family of algorithms for hydroacoustic detection.
The SOSUS system, which was built and used by the USA to detect and track Soviet sub-
marines throughout the Atlantic, employed large arrays and beamforming techniques for this
purpose. This technique is also extensively used in RADAR and wireless communication [24].
The most straightforward beamforming method is the principle of delaying and summing the
received signals of all elements of a hydrophone array in the time domain to look in a cer-
tain direction using the same principle of time delay as in equation 6 [25]. Summation of the
hydrophone datasets after delaying them the appropriate amount has the advantage of cre-
ating noise rejection of signals coming from other directions. If it is assumed that noise and
other sources are uncorrelated in the looking direction these sources will get cancelled some-
what by summing, while amplifying the signal in the looking direction [1]. The bearing of
a source can be found by looking for peaks in the power output of the beamformer. Other
relevant beamforming methods are generally applied in the frequency domain after a Fourier
transformation of the received signals, like the conventional (Bartlett) beamforming algorithm.
The delay and sum algorithm in the time do-

main is also called conventional beamforming 80 o
140 dB

or vice versa in some literature [26], but [1] NCZ 0 a8
WN = 50 dB

w
2
[

uses this term for the frequency domain ver-
sion. The Bartlett beamformer is similar to
the delay and sum beamformer but instead
of a timeshift a phase shift is applied that is
equal to a timeshift on each frequency. By
increasing the amount of sensors in an array
the noise filtering effect becomes larger and
the beamwidth becomes smaller [25]. As the o T w0 % 0 30 50 %0
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While conventional and weighed beamforming are capable of handling wideband signals there
are also other beamforming methods that will only handle narrowband signals with a reduction
in sidelobes and mainlobe width [16]. The Minimum Variance Distortionless Responce processor
(or MVDR) shows excellent source separation and resolution for sources close to each other as
shown in figure 6 (note the sidelobes for CBF), but is sensitive to phase errors on sensors, in
that case the Fourier Integral Method (FIM) might be more robust[27] [28].

2.2.1.3 MUSIC Algorithm

The MUlItiple SIgnal Classification algorithm can be used as a direction finding algorithm for
signals. It offers high resolution and is based on the eigenvalue decomposition of the sensor
covariance subspace of an array. In its original form it only works with narrowband signals
but modifications that support broadband signals are available at some computational cost[29].
In the case of diver detection with passive sonar MUSIC offers a comparable performance to
MDVR [30]. The algorithm has as shortcomings that the amount of sources needs to be known
in advance and that correlated sources are difficult to separate but it offers better performance
than other bearing estimation methods [31].

2.2.2 Range estimation methods

Range estimation is one of the challenges of passive SONAR. While with active SONAR it
is possible to infer the range to a target by recording the travel time between emission of a
signal and reception of its reflection this is not an option with passive SONAR. If the velocity
of a source is unknown it is also impossible to infer the range to a source from the bearing
rate € and as moving receivers are outside of the scope of this report inferring the range by
receiver manoeuvring is also not feasible. It is however possible to perform ranging based on
the acoustic energy distribution over frequencies measured at one or more stationary receivers,
based on multipath interference. This section discusses and explains these methods.

2.2.2.1 The waveguide invariant

The striation pattern that can be observed in figure 4 is caused by interference of reflected
paths as explained in section 2.1.3. From normal mode propagation theory it can be shown
that similar striations occur for ranges where the Lloyd mirror pattern is not valid anymore
[32]. In this far field the striations are created by interference between multiple normal modes.
According to [33] the received pressure spectrum I(r, 2, z5,w) of a source is a function of range
r, receiver depth z,, source depth z; and angular frequency w can be written as equation 8,
which is the sum of all relevant modes. The amount of relevant modes N is a function of
frequency [32].

I(r, 2z, 20) = P(@)(>_B2+2 Y ByBy cos(Akyn(w)r)) (8)
n n,m;nFEm
where 5
B2, 2) = <k;>%wn<zs>wn<zr> and Ak (w) = k(@) — k() (9)

with P(w) the source specrum, k, the mode eigenvalue and horizontal wavenumber and ¥, (z)
the accompanying eigenfunction. The cosine term in equation 8 is created by the interference
of two modes and it is this part of the equation that creates the striation pattern mentioned
above. It also becomes clear from equation 8 that the contours of equal sound intensity (the
striations in this case) are a function of range and frequency. The slope of these contours can
be calculated using equation 10 [33].
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Here m and [ are wavemode numbers, w the frequency in radians per second and r the target
range. [ is an interesting parameter determining if the contour is linear or not and is shown to
be ~ 1 for ideal waveguides. In ideal waveguides it is also shown to be mostly independent of
m and [, and importantly not strongly dependent on the details of sound speed profile (SSP)
or seafloor properties in shallow water, hence the name waveguide invariant [33|. If these
assumptions are made then equation 10 can be rewritten to equation 11.

5
r=3x *é (11)

This potentially makes it a powerful tool in passive ranging in shallow water as it offers a
robust option where errors in SSP or bottom properties would only have a weak effect on
ranging errors.

2.2.2.2 Cepstral analysis

The term 'cepstrum’ was originally coined in [34] by reversing the first syllable of 'spectrum’ as it
was then explained as being the spectrum of a spectrum. Other relevant terms like frequency’,
’harmonic’ or 'filter’ were changed to ’quefrency’, 'rhamonic’ and ’lifter’ respectively in the
same fashion [35]. These terms will be used for the remainder of this report.

The current definition of the power cepstrum is shown in equation 12.

Cp = F " (log(Fua(f))) (12)

Here F),, denotes the power spectrum and F~! the inverse Fourier transform. Essentially this
operation returns peaks on the periodicity of peaks in the spectrum. The log operation performs
linear separation or deconvolution on the multipath signal, separating a signal containing an
echo in two additive parts, the original signal and the echo which contains a periodic component.

If a signal containing one single echo is considered it can be expressed as 13. Here s(t) is
the signal and as(t — 7) an echo with strength o and a TDOA of 7.

x(t) = s(t) + as(t — 1) (13)

Taking the Fourier spectral density of this signal would result in 14, where the echo and the
original signal are convoluted.

| Faa(F)IF = [S(NF(1 + o + 2a cos(2m f7)) (14)

By taking the logarithm of the power spectral density deconvolution is performed on the signal
and its echo, as shown in 15 [36].

C(f) = log |Fuu(f)I* = log |S(f)I” + log(1 + a” + 20 cos(2m f7)) (15)

In this sense it is indeed a spectrum of a spectrum, as a spectrum will result in a peak on the
periodicity of a signal. Because phase information is lost by using the power spectrum it is not
possible to return to the time domain, hence the term ’quefrency’ denoting the temporal unit
of the power cepstrum [34].

The power cepstrum is a very useful tool for echo detection, as an echo will result in both
constructive and destructive interference on specific frequencies depending on phase. This
is an exact analogy to the Lloyd mirror pattern of section 2.1.3. Therefore the power cep-
strum can be used to determine the timedelay of multipath arrivals or Time Difference Of
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Arrival (TDOA). It was shown that for shallow water SONAR, applications it outperforms
the autocorrelation function [7]. While other cepstra with different properties exist, like
the complex cepstrum which is reversible to the time domain because it retains phase in-
formation, it was shown that for TDOA estimation the power cepstrum performs best [37].
Using cepstral analysis for range estimation in
shallow water SONAR seems to be a relatively <10” Vigo - Zodlac passing - cepstrum :
new concept. Model based predictions of TDOA |, i
seem to introduce a large error from ranges further
than 200m - 300m, which can be solved by us-
ing trained convolutional neural networks for the
replica fields [8]. The error in the model based
predictions was explained in this study as being
caused by unpredictable scattering of the reflected
signal on smaller angles of attack. By using a more
advanced reflection model which accounted for a
rough seafloor the error was significantly reduced
for intermediate ranges. This method can be com- . " " ” " o
bined with good results with the GCC method Time - [s]
from section 2.2.1.1 for bearing estimation in a
small array to get both bearing and range estima-
tion [9]. A comparison for a number of different
methods to create replica fields is given in [10].
Recently [11] showed an impressive performance of cepstral range detection using a single
hydrophone with accurate range estimates for a distance of up to 1km in 25m deep water. In
this experiment normalized, replica cepstra were derived from a passing RHIB with a single
known track and cepstra from other hydrophones in the same array were matched to this library
for multiple tracks. This increase in performance was explained by the increase of the maximum
quefrency which should therefore include other paths with longer travel times. These longer
paths still have a significant TDOA even on longer ranges. Data was also downsampled to
2kHz.

quefrency - [s]

L~ w - o [=2] ~ co w0

Figure 7: Cepstrogram of passing Zodiac, using
the same data as in figure 4c

2.2.3 Matched Field Processing

One solution to find range, depth and possibly bearing estimations is the family of algorithms
called Matched Field Processing (MFP). This method can be broadly seen as the three dimen-
sional generalization of lower dimensional, plane-wave beamformers. In general for MFP the
sound field is recorded at a (often vertical) linear array and matched to a known set of sound
field replica’s and their spatial location. The unique spatial structure of the sound field then
permits localisation in range, depth and bearing, depending on the array geometry and the
complexity of the ocean environment [1|. These replica fields are mostly computed using sound
propagation models, but it is also possible to use sources of opportunity with a known location
to estimate the replica fields for these locations [38] [39].

MFP uses the depth dependent Green’s function as a basis to represent the used signals.
The ocean is modelled as a waveguide and the signal from the source can be considered to be
the point source solution to the wave equation. The point source solution is composed of modal
components which propagate long distances at shallow grazing angles and vertical components
which decay rapidly because of strong interaction with the bottom. The modal components
have discrete values of the wavenumber spectrum for the Green’s function while the vertical
components occupy a continuum in the spectrum at lower wavenumbers or higher phase speeds,
as shown in figure 8. For sources at horizontal ranges that are greater than a few water depths
from the receiving array, the discrete portion of the field is the major contributor. Surface noise
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can have both discrete and continuous contributions and can thus have some overlap with the
source signal at the array [40].

Array Discrete o
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Figure 8: MFP schematic showing the vertical array, replica field positions, sound speed profile and the spectrum
distribution [1]

The MFP algorithms generally use narrowband signals, although some broadband methods
exist [40]. G(r,z) is originally used to denote the velocity potential but as the field is a function
of frequency it can also be conveniently expressed as G(f, A) where A denotes parametric
dependencies on source location and environmental parameters. The spatial structure of the
signal at each array element N can then be written as 16

G(I’l, 21, A)

G B G(I‘Q, 29, A)
(f,A) = | (16)

G(FN, ZN A)

with rq, z1...rn, 2y denoting the ranges and depths of each sensor respectively. The covariance
of the signal is given by equation 17,

K, = 07G(f, A)GH(f, A) (17)

where o7 is the variance of a complex Gaussian random variable that is equal to the source
strength. The ensemble covariance matrix K is then made up of the signal covariance matrix
K and the noise covariance matrix K,,. The noise covariance matrix contains mostly sensor
(self)noise, surface noise and discrete noise sources that are in fact point sources just like the
signal of interest [40]. A method to derive the covariance matrix directly by signal measurements
is to take snapshots of length [ of the data of each sensor, taking the Fourier transform and use
them to create the sample covariance matrix K(f) as shown in equation 18.

R(f) = -

ll

> _RI(NR(H” (18)

where L is the number of snapshots [40] and R denotes the datavector containing the snap-
shot on all sensors. When conventional MFP is used, normalized weight vectors w¢(A) are
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constructed for every spatial point A according to equation 19. From hereon the frequency
dependence is removed from the equations for simplicity.

G(A)

we(A) = IG(A)| (19)

Then the conventional MFP output B.(A) for every point A in reference to the true source
location Aipue is given by equation 20.

B.(A) = We(A) K (Atrue)We(A) (20)

Using equation 20 a grid of values of B, can be formed over every parameter variation of A to
search for the best match of A to A¢rye, Which is indicated by the global maximum of B.(A).

While it is possible to include every spatial parameter in A to perform localisation in 3D
one has to account for the spatial uniqueness of the signal. If the surroundings of the array are
not exactly unique in criteria that affect the weight vectors w¢(A) then there will be ambiguity
with one or more variations of A that are not the location of Aiue. In that case other MFP
algorithms might remove some ambiguity [40].

The MVDR beamformer from section 2.2.1.2 when converted to MFP provides higher res-
olution and is able to handle ambiguity better than conventional MEFP. The MFP algorithm
uses equation 21 as the algorithm and equation 22 for the weight vectors.

By (A) = [wav(A) P K(Agrue) "Wy (A)] ! (21)

K_leV (A)
WMv<A)HK_1WMv<A)

The increased resolution of this adaptive MFP algorithm however has also an increased reso-
lution in it’s parameters, and therefore is more prone to mismatch than the conventional MFP
algorithm [40]. So when for instance the sound speed profile in the water column or the bottom
profile has some error this will result in a more serious mismatch with the MV algorithm than
with the conventional algorithm. For this reason more tolerant algorithms exist, like the Mul-
tiple Constraints Matching algorithm [1]. A comparison of the three algorithms with a slight
mismatch in a shallow water example is given in figure 9. Promising results are also shown for
the Matched Mode Processing algorithm, which has the advantage that replica’s can be formed
by using only certain modes that are easier to correctly model [40] [41].

WMv(A) =

(22)
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Figure 9: Comparison of three MFP algorithms with a mismatch of 2m/s at the bottom of the water column

(1]

For this research submerged targets are deemed out of scope, so it might be advantageous
to assume all sources of interest are surface targets. This would mean one less parameter to
search and match against, which might improve the robustness of MFP. While Dutch coastal
areas have some slight depth variation because of submerged sand banks this will probably not
influence the sound propagation models enough to enable 2D localisation on the sea surface
plane. In that case MFP might still be used for range estimation if it has advantages over other
ranging methods.

2.2.4 Triangulation

Another probably more obvious method of acoustic localisation would be triangulation. In lit-
erature this can be broadly divided into bearing triangulation [42] [43] and TDOA triangulation
using wavefront curvature [44] [45] [43]. Triangulation using moving receivers [46] is another
method but out of scope for this survey. In the case of bearing triangulation in 2D at least
two separate arrays capable of finding the bearing of a target are needed. With this setup
the localisation will be ambiguous if the surrounding terrain does not make one of the found
locations impossible, but this ambiguity can be removed by using another array. The target’s
location will be on the intersection of the bearings found by each array as indicated in figure
10a. For the bearing estimations any bearing finding method as described in section 2.2.1 can
be used. [43] Proposes the use of two arrays and beamforming to get an ambiguous solution,
while [47] uses cross correlation to find the bearing of a target.

Wavefront curvature localisation is only feasible in the nearfield of the array. This nearfield
is limited by what is often called the Fresnel range and can be computed using equation 23 [43].

Ry = L*/\ (23)

Here Ry denotes the Fresnel range, L the baseline of the array which is called D, in figure
10b and wavelength A\. When considering the optimal propagation frequency of 800Hz, i.e. a
wavelength of 1.875m in a 25m deep waveguide [17] with a sound speed of 1500m/s the array

17



Probable
Hypothesis

Improbable
Hypotheses

. LN N,
Misdetection "\ :
\\ &
\
o ::50 array length D /
(a) Schematic of bearing triangulation [42] (b) Schematic of wavefront curvature localisation [48]

Figure 10: Triangulation methods

needs an aperture of more than 43m to be able to perform ranging up to one kilometre. On
lower frequencies the array’s aperture will need to be even larger. One possible solution is
using wide aperture (sparse) arrays for wavefront curvature localisation, i.e. arrays with an
inter-sensor spacing larger than half the maximum wavelength [47] [49]. This makes arrays
with a large baseline feasible with a minimal amount of hardware, as in theory only three
spatially separated measurement points are needed to find the curvature of the wavefront [50].
Studies regarding wavefront curvature used transient signals in experiments, like dolphin clicks
[50] or by hammering on a metal pole [47], although the latter also was able to correlate the
signal received of a running jet engine which emits a more stationary signal. Surface targets
do usually not produce much transients so for wavefront curvature ranging to be applicable
to surface targets it should be able to work reliably with continuous signals. In this regard it
is possibly limited in the same way as cross correlation based bearing estimation from section
2.2.1.1, as the cross correlation function is mostly used for correlating the signals and finding
the time delay [49]. Multipath arrivals might also result in ambiguous solutions to the time
delay estimation [43].
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2.3 Signature recognition

Not unlike human voices machinery also has distinctive parameters in their sound emissions
that make it possible to separate them from each other. This is certainly the case for vessels.
Being able to discern different vessels from each other is fundamental in a military setting,
especially for for instance submarines which largely rely on sound for sensing. Because of this
the signatures and their recognition methods are often classified. Still some information on this
is available in literature, which will be addressed here.

[19] Cites two widely used methods for signature recognition. The first method is based
on the sound spectrum emitted by the target. Vibrations of the engine and other machinery
on board will carry over to the water and have higher energy levels on certain frequencies
(harmonics) than others. The specific distribution of these energy levels per frequency are
characteristic of a certain vessel. An example of this compared to ambient noise is given in
figure 11a. Large vessels will have higher energy levels on lower frequencies than small vessels
[51]. It was also shown that the frequencies of these harmonics vary with (engine) speed [52]
as expected, but no method for predicting how this shift will exactly occur was found.

The other method of collecting a signature is by demodulating the cavitation noise caused
by the vessel’s propeller and extracting information on the parameters of this propeller [19].
Cavitation occurs on almost all vessel propellers and produces non uniform noise with a maxi-
mum frequency inversely proportional to the cavitation bubbles size [53]. Cavitation is stronger
in the upwards position where the wake of the hull creates a slower inflow velocity, which means
a blade pass rate can be found using demodulation techniques. Often one blade of the pro-
peller will cavitate more than the others. In that case it is also possible to discern a propeller
rotational rate [52].

Demodulation itself is performed by the DEMON algorithm, which stands for Detection of
Envelope MOdulation on Noise [19]. This algorithm works by windowing the signal, applying a
Hilbert transform to the window, computing the root mean square of this transformed window
and then performing a fast Fourier transform to extract the frequency data [21]. An example of
this is shown in figure 11b. While normally the signal of one hydrophone is used for DEMON
it is also possible to use the cross correlation of two or more hydrophones [19] [21], in cases
where the cross correlation is already used for bearing estimation. This can also be reversed,
where narrowband components of the DEMON signal of two hydrophones are selected and the
phase difference is computed between the two components to find a direction [52].

The added benefit of being able to recognise certain vessels can be that possibly hostile
vessels that might be used for espionage or sabotage can be recognised if a signature is available.
When such a vessel approaches a monitored area a different reaction by law enforcement might
be applicable than when a known fishing vessel approaches the same area. In the case of
demodulation there might be added benefits in direction finding as the demodulated signals
have much increased wavelengths compared to the modulated signals, possibly making a larger
array aperture feasible while still maintaining the spatial Nyquist criterion as addressed in
section 2.2.1.1.
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Figure 11: Examples of signature outputs

An interesting observation made while writing this report is that cepstral analysis might
aid in the extraction of signatures. The quefrency of horizontal lines in the cepstrum of the
measurement shown in figure 5 were found to exactly match the demodulated frequency with
the highest level found using the DEMON algorithm. For the measurement shown in figure 7
the horizontal lines visible there did not match the demodulated frequency with the highest level
but one of the secondary lines. A possible explanation for this is that cepstral analysis will pick
up sidebands and harmonics created by the shaft rotation. As these sidebands and harmonics
will have a periodicity in frequency these will show up in a cepstrum. Further research into
this observation might be interesting.
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2.4 Project proposal

After conducting the literature survey the project proposal from section 2.4.1 was drafted. Soon
it was discovered however that this plan was too ambitious to complete within the time allocated
for this thesis, as coding issues with wavefront curvature ranging were found. Therefore it was
decided to simplify the research and to focus solely on cepstral ranging. This algorithm was
chosen as ranging is a much more complex task than bearing estimation, and cepstral ranging
showed potential in retrieved literature.

The original project proposal has been kept in this thesis for the sake of completeness. The

revised project proposal of the project that was actually carried out can be found in section
2.4.2.

2.4.1 Original project proposal

This report provided an overview of techniques found in literature for localisation and recog-
nition of surface targets from a stationary, passive sonar system in shallow water. Almost all
retrieved literature focused on one specific algorithm, or at most provided a comparison on dif-
ferent algorithms in the same family. If a surveillance system for the aforementioned case would
have to be designed first a thorough investigation and comparison of the techniques mentioned
in this report should be made to be able to select the optimal localisation techniques for this
system.

As the comparison mentioned above is not available it is proposed that one is made. This
research project should include all relevant algorithms and methods as mentioned in this report
and make an objective and preferably quantitative overview and comparison of these methods
to be used as a guideline for the design of such a surveillance system. Different combinations
of methods can be proposed to achieve improved localisation performance. The setting of this
research should be centered around the Dutch littoral zone, i.e. the North sea, where most
infrastructure with Dutch interests are found. An excellent case in point would be a typical
wind farm in the North sea as it is expected that wind farms would be one of the use cases of
such a surveillance system.

Unfortunately acoustic simulations are known to give incorrect results with even the smallest
error in bottom- or sound speed profile. Other errors are introduced compared to real world
performance by the small temporal deviations in SSP, scattering and signal that are impossible
to simulate accurately. Consequently it is proposed to base the comparison as much as possible
on experimental measurements. This way it is ensured that the obtained results are accurate
and additionally it provides some insight on the real world performance of algorithms that are
only tested in simulations. TNO has some relevant data from previous experiments available and
additional measurements will be taken in TNO’s anechoic basin and the port of Scheveningen.
If these are not sufficient additional measurements can be taken on other locations. Acoustic
simulations might still be useful in a supporting role to conduct sensitivity studies for instance.

When sufficient data has been gathered and analyzed the performance of the different al-
gorithms can be compared. Parameters like the maximum functional distance, resolution, size
of systematic errors, accuracy, resistance to disturbances, reliability on low SNR and ability to
discern between multiple sources can be used to quantify the results. It is doubtful one algo-
rithm can be picked as the "best’ algorithm as the use cases might differ significantly, but the
goal of this study will be to show the strengths and weaknesses of these algorithms in different
relevant settings.
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2.4.2 Revised project proposal

This report provided an overview of techniques found in literature for localisation and recog-
nition of surface targets from a stationary, passive sonar system in shallow water. Of these
techniques the cepstral ranging method was identified as an algorithm of interest in regard
to surveillance of the Dutch coastal areas. Ranging is the more challenging part of hydroa-
coustic localisation and cepstral ranging seems to offer accurate results with a comprehensive
visualisation in TDOA.

While some literature is available on cepstral ranging which sometimes shows impressive
performance, the circumstances of these results and parameters of interest for cepstral ranging
are often unclear. It is therefore proposed to conduct an in-depth analysis of the performance
of cepstral ranging in a real-world situation. To accomplish this data has to be gathered,
preferably recorded on a location of interest like the Dutch littoral zone. Algorithms applicable
to cepstral ranging should be developed, their key parameters should be identified and potential
problems with cepstral ranging should be addressed.

Unfortunately acoustic simulations are known to give incorrect results with even the smallest
error in bottom- or sound speed profile. Other errors are introduced compared to real world
performance by the small temporal deviations in SSP, scattering and signal that are impossible
to simulate accurately. Consequently it is proposed to base the comparison as much as possible
on experimental measurements. This way it is ensured that the obtained results are accurate
and additionally it provides some insight on the real world performance of algorithms that are
only tested in simulations. TNO has some relevant data from previous experiments available and
additional measurements will be taken in TNO’s anechoic basin and the port of Scheveningen.
If these are not sufficient additional measurements can be taken on other locations. Acoustic
simulations might still be useful in a supporting role to conduct sensitivity studies for instance.

Using the developed algorithms and measurement data recorded in an area of interest the
effectiveness of cepstral ranging should be researched. This should preferably result in quan-
tative data expressed in parameters like the expected error or maximum range so that during
future work a comparison can be made between cepstral ranging and other ranging methods.
The goal of this study will be to identify the strenghs and weaknesses of cepstral ranging and
identify problems that should be addressed before cepstral ranging can be fielded in a practical
setting.
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2.5 Conclusion of literature survey

There is a vast amount of literature covering passive sonar techniques as during the cold war
significant efforts were made to perfect the art of ASW. However most efforts went into tech-
niques most suitable for this tactical scenario, i.e. beamforming algorithms that work well
with the large towed arrays or the SOSUS system that increase the detection range with their
array gain. Now with the large increase of infrastructure at sea and global tensions rising the
stationary surveillance of said infrastructure becomes more and more relevant.

This report focused on promising techniques to detect and localize surface targets with
stationary, passive sonar systems, including the challenges that need to be overcome. A number
of bearing estimation, ranging, direct localisation and signature recognition algorithms were
addressed which can be added in varying combinations to arrive at a functional system to
provide surveillance over critical underwater infrastructure in shallow water.

The multipath environment created by the shallow water waveguide brings both advantages
and disadvantages. While it might increase the amount available methods to perform ranging
like cepstral analysis there is also a risk of interference of the echoes when using cross correlation
algorithms, especially when performing wavefront curvature localisation. If the interference is
too severe for cross correlation to find a direction reliably beamforming might have an advantage
at the cost of an increased amount of sensors. The MUSIC algorithm shows excellent DOA
resolution but has as a distinct disadvantage that the amount of sources need to be known
in advance. While it might be possible to first identify the amount of sources with another
algorithm and then compute accurate bearings using MUSIC the presence of grating lobes must
be eliminated in that case, as these grating lobes might present themselves as false positives or
hide an actual source.

For ranging a number of suitable methods are presented. Cepstral analysis is relatively new
in sonar applications and shows varying results in accuracy and range. The maximum range of
cepstral analysis seems to increase when more reflections are included. Best results seem to be
achieved when using replica fields derived from actual sources instead of propagation models.
The waveguide invariant method uses similar analysis methods based on a different physical
principle. While cepstral analysis is based on multipath interference the waveguide invariant
method is based on the interference of multiple propagation modes. It might be possible to
combine these two methods to perform ranging on short and long ranges. It might be that
the long range cepstral ranging [11] already used the waveguide invariant to achieve its longer
range compared to other studies, as not analytical models but replica fields from actual sources
were used.

Matched Field Processing has in theory the ability to locate sources directly using a single
array. It is however doubtful if this can be achieved in the shallow North sea where the lack of
spatially unique features might result in a significant amount of ambiguity. In that case MFP
might still be used for ranging, but the amount of sensors needed is probably a disadvantage
compared to other ranging methods. MFP is also prone to mismatch and needs accurate
information on the waveguide, which can vary significantly from both a spatial and temporal
point of view.

Triangulation methods are potentially reliable and easy to implement. They however need
a large aperture or sensor spacing to achieve a sufficient range and accuracy, and wavefront
curvature might result in some ambiguity if there are significant reflections.

Finally a short overview of simple signature recognition methods is given. The recognition of
vessels might aid in protecting an area of interest and demodulation can provide extra tools to
perform localisation as it provides new signals to be used with a much increased wavelength.
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3 Methodology

The research outlined in the sections 1 and 2.4 will be carried out using the data, methods,
algorithms and equations as described in this section. While some parts or solutions were
extracted from literature, most had to be built specifically for this thesis. Fortunately TNO
possessed an experimental dataset which included almost all data necessary for this thesis, and
further data could be acquired through open-source means, e.g. Rijkswaterstaat.

First the experimental data is described, which includes audio, GPS, AIS and depth data.
Subsequently the algorithms needed to build and enhance the cepstra are discussed, followed
by methods to determine the TDOA. Next the algorithms needed for cepstral ranging are
investigated, while not an exhaustive list because of time constraints, preliminary research
showed that these algorithms offered the best chance at successful cepstral ranging. Finally the
method by which the accuracy of the described cepstral ranging methods will be measured is
discussed.

3.1 Data collection and experimental setup

Cepstral ranging was tested on an already ex-
isting dataset made available by TNO. This
dataset was recorded on 17-05-2022 using a
vector sensor, which uses three sensors to mea-
sure particle motion for direction finding and a
regular pressure hydrophone for a total of four
recorded channels. This device was placed at a
depth of 14.6m at the time of placement in the
North Sea near Scheveningen, with a latitude
of N52.1164 and longitude of E4.2314. A RHIB
with a GPS receiver of which the location was
constantly recorded performed a series of ex-
periments and runs around the sensor. Espe-
cially these runs as shown in figure 12, which Figure 12: Multiple high-speed run tracks marked in
are performed under full power and thus emit red, sensor location marked with the black 'balloon’
a maximum amount of sound energy are useful

for this thesis.

3.1.1 Audio data

For this thesis only the data from the hydrophone was used, which was recorded with a sample
rate of 78125Hz. While the vector data might produce a bearing to the target it was deemed
out of scope as explained in section 1.4. As the pressure sensor was part of the vector sensor
setup, which are inherently dependent on wavelength for their operation, there was a filterbank
included that unfortunately also filtered the hydrophone sensor data above 10kHz. The conse-
quences are clearly visible in the spectrogram of figure 13a, where most sound energy disappears
at approximately 10kHz. Therefore it can be expected that downsampling with a factor of ap-
proximately 4 (shown in figure 13b) will not result in a ranging performance degradation, while
reducing the amount of data that needs to be processed and thus decreasing the computational
load. Important to note is that the third Lloyd mirror pattern in figure 13 between the 7 and 8
minute mark is not caused by the RHIB, but by another unknown sound source (presumed to
be a vessel). The presence of another vessel gives the opportunity to check if the cepstrograms
of different vessels will vary.
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The vector- and sound data was stored in a sequence of .WAV files of each 264kB, with
a recording time of 4 minutes and 49 seconds. The starting time of the recording has been
included in each title. Both the time of the .WAYV files and the .GPX file, which is detailed in
section 3.1.2, were recorded in the UTC time standard. Therefore there is a time difference of
-2 hours compared to the local time at the moment of recording which had to be corrected to
enable comparisons with written notes of the experiment. Additionally, it was found that there
was a time shift of 3 seconds between the .GPX data and the .WAV files after comparing the
Closest point of Approach or CPA of multiple passes between these two files. Finding the CPA
for the GPS data is trivial, and the CPA for the audio data was identified by either finding the
minima in the Lloyd mirror patterns and maximum sound energy of generated spectrograms
or by finding the maxima of quefrency values in cepstrograms.

These .WAV files were generated for the entire three days that the sensor was left on the
seafloor. RHIB measurements and experiments were only carried out on the first day of record-
ing and this thesis only uses the data of this first day.
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3.1.2 GPS and depth data

Next to the sound files a .GPX file was in-
cluded that constantly recorded the exact lo-

GPX track depth measurements availability

cation of the RHIB in a single track segment Available
with a temporal resolution of 1 second, span- 5213
ning the entire day of measurements. Addi- 521251
tionally, a number of waypoints was included, 52121

which among other things contained the loca-
tion of the hydrophone, the starting and stop-
ping locations of the high speed runs and the
location of airgun measurements. These points
were also described in a short measurement re-
port, which additionally detailed the depth of ~ **®°[ . | | | | |
the receiver as 14.6m below sealevel. 421 422 423 424 425 426 427
While analysing this .GPX file it was found rongtude - (eed]
that the file also contained a segment. of depth Figure 14: The availability of depth data in the GPS
measurements. These depth recordings were {rack recording
available for most gps coordinates, except for
the high speed track segments. The depth sensor presumably could not perform measurements
on high speeds. An overview of the entire track and the availability of depth data is shown in
figure 14. These depth measurements can later be used for comparison against available depth
charts and measuments from third parties to enhance the accuracy of the multipath prediction
for ranging.

52115 ’///. \
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3.1.3 AIS data

Finally a set of .CSV files containing recorded AIS messages sent and received in the vicinity
of the experiment for the entire three days was included in the dataset. These messages were
recorded with a temporal resolution of approximately 1 minute and contained all message types.
Of these message types only the type 1, 2, 3 and 18 are relevant for this thesis as these messages
contain position reports. The .CSV files were imported into MATLAB and filtered for relevant
message types, data and proximity to the sensor setup with a custom-made function which is
presented in appendix A.1. The data distilled from the AIS messages is described below:

e Time of message This section contains the timestamp of when the message was received.
These timestamps are, just like the GPS data, presented in the UTC format and thus have
to be calibrated to local time by shifting them 2 hours ahead.

e Message type This section contains the message type, which shows what kind of informa-
tion is contained in the message. Only the message types 1, 2, 3, and 18 contain position
reports, where type 1 to 3 are sent by class A AIS devices. These transmitters are placed
on larger vessels with a length of >20m where AIS is mandatory. Type 18 messages are
sent by class B AIS devices where the transmission of AIS data is voluntary.

e Latitude The latitude of the vessel at the time of sending.
e Longitude The longitude of the vessel at the time of sending.

e MMSI The Maritime Mobile Service Identity number of the sending vessel. This is the
unique ID of the AIS transmitter and vessel, which is used to identify the sender of the
message.

e Speed The speed of the vessel in knots at the time of sending.

27



As the locations of recorded AIS messages were often at a great distance to the sensor setup and
therefore no signals of these sources could possibly be recognised on the sensor, only messages
sent in a grid of a longitude between 4.1943° and 4.2822°, and a latitude between 52.0815° and
52.1440° were used.

3.2 Cepstrogram generation

In this section the processing of the audio data from section 3.1.1 into a cepstrogram is detailed.
The principle behind cepstral analysis for ranging purposes has already briefly been addressed
in section 2.2.2.2 of the literature survey. In summary, a cepstrum is generated by application
of a Fourier transformation on a signal. The generated signal in the frequency domain is then
enhanced and the echo and main signal are deconvoluted by computing the logarithm of the
spectral amplitude, after which the signal is brought back by an inverse Fourier transform.
This is reiterated in equation 12 shown below [35].

C, = F log(Fue(f))) (12 revisited)

While different types of cepstrum exist, e.g. the complex cepstrum which retains phase informa-
tion, real cepstrum or power cepstrum, only the power cepstrum C), is used in this thesis. The
literature survey showed that using the power cepstrum for ranging applications is the norm,
and personal testing indicated that the power cepstrum is more computationally efficient than
the complex cepstrum and offers better contrast for echo detection than both the complex and
real cepstrum. Because phase information is lost and the signal is deconvoluted during the
computation of the power cepstrum, the inverse Fourier transform does not result in a return
of the signal to the original time domain. However, the cepstrum is expressed on a timescale
called quefrency, usually in seconds.

x(t) = s(t) + as(t — 1) (13 revisited)
|Fe ()7 = [S(F)P(1 4 o® + 2a cos(2m f7)) (14 revisited)
C(f) =log |Fuu(f)> =1og |S(f)* + log(1 + a* + 2 cos(2m fT)) (15 revisited)

The revisited equations 13, 14 and 15 displayed above show how the cepstrum computation
results in the deconvolution of a signal s(f) and an echo with amplitude o and time delay 7.
Equation 15 implies that an echo will result in a periodic set of peaks on the quefrency value
equal to 7 and its rahmonics (the name for harmonics in a cepstrum). This ability to detect
echoes, even in stationary signals, is the basis for cepstral ranging as it makes it possible to use
the multipath structure of a shallow water waveguide for ranging.

3.2.1 Cepstrum parameters and the implications of discrete data

In this specific case the cepstra have to be computed from a large discrete dataset as discussed
in section 3.1.1. This means that a cepstrum generated from this data will also be discrete. As
cepstra are returned to a time unit without removing sample points the quefrency spacing will
be equal to the spacing between the original data points as shown in equation 24.
1
A, 7. (24)
It is important to note that therefore reducing the sample rate f, will result in a lower que-
frency resolution. The implications of this trade-off between computational load and cepstral
resolution will be researched later in this report.
The maximum quefrency that can be detected in a cepstrum also depends on both the
amount of data fed into the algorithm that computes the cepstrum and the sample rate of the
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data. This is comparable to how the maximum frequency visible in a spectrum is equal to
the Nyquist frequency. Just like a discrete spectrum generated by a Fast Fourier Transform or
FFT the power cepstrum algorithm will produce a cepstrum that is symmetrical. While the
first value is unique, the second value will be equal to the last value, the third value will be
equal to the second-last value and so on. The total length of the data vector produced by the
power cepstrum algorithm will be equal to the length of the data vector fed to it. However, the
amount of unique data is less and can be computed using equation 25

N, samplepoints

Kquefrencies - T +1 (25)

Of these unique quefrencies and accompanying data the first entry is equal to a quefrency of
zero (0). Combined with equation 24 the maximum quefrency value 7, expressed in seconds,
can be computed using equation 26.

Nsam epoints
TK = —;}p t (26)

This relationship can be used to compute the minimum block-size necessary to see all relevant
quefrencies. The time-delay between direct path and the reflected paths increases as the source
gets closer to the receiver, but approached a limit. When the source is directly overhead from
the receivers point of view the time-delay is at its maximum. As shown later in this report
the Bottom-Surface or BS path was found to be dominant. As it might be obvious from this
title, this path leaves the source (on the surface) and reflects after reaching the bottom to the
surface, from which it reflects to the bottom mounted receiver. Consequently, the maximum
quefrency value of interest is equal to approximately twice the time sound needs to travel from
the surface to the bottom in the area of interest. For example, when using the measured depth
as explained in section 3.1.2 and a sound speed of 1500 m/s the maximum quefrency value of
interest is equal to approximately 19.5ms.

3.2.1.1 Expected cepstral shape

The dominance of the BS path can be anticipated when computing expected time-delay values
for various propagation paths. The following equations were used to accomplish this, based on
equations published in 2] and an expansion of these by own work for the third order reflections
of the SBS- and BSB path. First the path length of the direct path (equation 27) and the
various reflection paths (equations 28 to 33) are computed, after which the time-delays can be
derived using these results and equation 34.

Rp = /X2 + (H, — H,)? 27

(27)
Rs = /X2 + (H; + H,)? (28)
Rp=+/X2+4 (2H, — H, — H,)? (29)
Rsp = /X2 + (2H, + H, — H,)? (30)
(31)

(32)

(33)

Rps = /X2 + (2H, — H, + H,)? 31
Rsps = VX2 + (2H, + H, + H,)? 32
Rpsp = /X2 + (4H, — H, — H,)? 33

— Rreﬂectiocn - RD (34)
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In these equations X refers to the horizontal
distance between source and target, in other
words the all-important parameter for this the-
sis, H, to the vertical distance between bot-
tom and surface, H; to the vertical distance
between source and surface and H, to the ver-
tical distance between receiver and surface. A
graphical representation of these parameters is
given in figure 15.

These equations only hold for a mirror
smooth bottom profile, something which cer-
tainly is not representative of the seafloor near
Dutch coastal areas. They do however pro-
vide some insight on expected time-delay mag-
nitudes and how their values will change for
various ranges. Another issue pointed out by
these equations is the inclusion of source depth

Hs

Figure 15: Representation of time-delay computation
parameters [2]

as a parameter. While this thesis solely targets surface vessels it is assumed that even this class
of vessels will exhibit variations of effective source depth. The primary sound source of surface
vessels can be assumed to be propeller cavitation, and the propeller of a large cargo ship will
be located several meters deeper than the propeller of a RHIB with an outboard engine. In
theory equation 28 to 33 provide a system of equations that can be solved for both the range
X and source depth H;, although it is unsure if all these different propagation paths will be
clearly recognisable in the cepstra, especially when considering that these will inevitably have

clutter from rahmonics.

The different approximate time-delay values have been plotted using the equations above in
figure 16. As parameters a depth of Hy = 14.6m, a receiver depth of H, = 14.3m, a source
depth Hy = 0.4m and a sound speed ¢ = 1500m /s were used.
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This figure shows that the reflections for the SB, SBS and BSB paths are tightly clustered
together for virtually all ranges. The shorter paths are severely dependent on the distance
between either source and surface or receiver and bottom for a significant time-delay over the
direct path. Since these distances are very short in this case these shorter paths result in a time-
delay that is only recognisable when the source is extremely close to the receiver. Therefore
it can be expected that the longer paths will dominate in the analysis of the measurements
described in section 3.1. Figure 16 also shows a shape similar to an exponential function, where
the time-delay sensitivity swiftly decreases at range. This might contribute to larger ranging
errors at range, together with the loss of SNR.

As the power cepstrum algorithm makes use of both the FFT- and iFFT algorithms it has
the same limitations when it comes to block-sizes. The FFT algorithm is much faster when
the block-size is equal to a power of two (2). Therefore it is advisable to choose a block-size
of a power of two, close to the preferred size as computed. It is also possible and probably
preferable to make use of a window function like the Hann or Hamming windows to reduce
spectral leakage during the FFT computation.

3.2.2 From cepstrum to cepstrogram

As mentioned earlier the cepstra have to be computed from a large discrete dataset as discussed
in section 3.1.1. Of course, computing one single cesptrum from the recording of a dynamic
scenario, i.e. a vessel moving in the vicinity of the sensor, would not provide adequate results
as the multipath structure will constantly change. Therefore multiple cepstra are generated to
create a K by M sized cepstrogram, which is analogue to how a spectrogram is generated from
multiple spectra.

To accomplish this the dataset is divided into multiple, smaller sets of a certain size. These
smaller sets or windows make it possible to evaluate the available data at multiple points in
time, which in this scenario means that ranging is performed at certain intervals. Usually these
windows or blocks are created with an overlap with regards to the previous dataset, expressed
in n datapoints or a percentage of the window size N. For example, a window size of N = 100
datapoints and an overlap of 50% means that the first 50 datapoints of the new window are
equal to the last 50 datapoints of the previous window. Using an overlap makes it possible
to increase the temporal resolution while still keeping an adequate quefrency range. A typical
cepstrogram is shown in figure 17a.

An addition to the algorithm to remove some of the noise in the cepstra is proposed by
Kam W. Lo in his paper on cepstral ranging [11]. Here a method is presented that splits the
selected block for cepstrum computation in five (5) blocks of half the original block size, with
75% overlap. The cepstra of all sub-blocks are then computed after which the mean of the
five cepstra are used as the final cepstrum. The idea behind this technique is that the echoes
will stay relatively stationary during this small time-frame and thus will not shift in quefrency,
while noise will be random and vary over each cepstrum computation. By taking the mean of
the results this noise is possibly removed or reduced. Of course it is imperative that the time
span of the blocks is small enough that the echo time-delay will not shift significantly during
the sub-block computation, or else the cepstrum peaks might be reduced or washed out by
computing the mean as well. It is also important to note that when using this technique the
value of 7k as discussed in section 3.2.1 will depend on the sub-block size, and not the overall
block size. The effectiveness of this technique will be tested later in this report.
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3.3 Cepstrum processing

The cepstrogram was generated using an algorithm built around equation 12. From this algo-
rithm the cepsta have a very small spacing between minima and maxima as seen in figure 17a
which can be solved by normalization like in figure 17b using equation 35, where 7, denotes the
discrete quefrency values 7, 7o, ..., 7 [11].

A _ C(m) — min[C(7,)]
) = el sl

(35)

The normalization result C’(Tk) however results in a larger mean value of cepstra that were
recorded at a higher overall sound level, i.e. with the sound source nearby, which is clearly
visible in figure 17b. This can be solved by subtracting the mean of every cepstrum from itself
as shown in equation 36, which results in figure 17c. This subtraction removed the difference
in contrast between individual cepstra and is denoted by C().

Ol = Om) — (D2 C(m) (36)

k=1

Close observation reveals that there are horizontal lines at specific quefrencies visible. These
are presumably caused by irrelevant, stationary processes or noise. By taking the total mean of
the cepstrogram, formed by M cepstra, for each quefrency bin and subtracting this from each
respective quefrency bin some of these stationary signals can be removed. One should note
that this cannot be done to individual cepstra as one needs a significant amount of cepstra, i.e.
a cepstrogram, to accomplish this. It should however be possible to accomplish this by either
always using the same total mean in regards to time, or by for instance saving the mean of the
last few minutes of recording for this operation. For a deployed, functional system it would be
possible to record when no vessels are near and use an ’empty’ cepstrum generated from this
data. This is shown in equation 37, which was acquired from [8|, and provides us with the final
result of figure 17d.

Con(7) = Con() = 77(3 Conl) (37)

In addition it is necessary to remove the first few quefrency bins from all cepstra, up to a
quefrency of approximately 0.5ms. This should be done before normalization. Unfortunately
a cepstrum contains peaks of high amplitude around a quefrency of zero (0) which drown out
the smaller peaks generated by echo arrivals.
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Figure 17: Different stages of cepstrogram processing
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Figure 17: Different stages of cepstrogram processing
After this final operation that resulted in figure 17d the cepstrum or cepstrogram is ready
to be used for ranging. For the remainder of this report a cepstrum normalized and processed

using the methods as described in this section will be denoted using C(7;) where 7, denotes
the discrete values of the quefrency domain.
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3.4 Raytracing for TDOA estimation

Next to methods to build a cepstrum library from experimental data it should also be possible
to build one from simulations. In the case of a constant bathymetry the analytical equations
as given in section 3.2.1 would suffice. However, this is usually not the case and certainly not
in the area where the measurements used in this thesis were taken. This area is sloped because
of its proximity to the coast and might contain sandbanks that create some additional spatial
variation in bathymetry. An overview of the bathymetry from both the RHIB measurements
and open source data in the NAP (Normaal Amsterdams Peil, approximately the average water
height in the North sea) standard is visible in figure 18.

GPX track and water depth on measurement day
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Water depth

52.11

52.105

52.095

I i I
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Figure 18: Measured and retrieved bathymetry for the testing area

Therefore it can be assumed that more accurate results can be obtained by estimating
TDOA values while taking in account the varying bathymetry. It was decided to build a simple
raytracing algorithm to accomplish this task.
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3.4.1 Sound speed computation

First, open source data was acquired from Ri-
jkswaterstaat concerning the salinity and tem-
perature of the water near the measurement
location for the measurement day. Unfortu-
nately the nearest measurement station that
collected this data for two or more depths
was located at 'Haringvliet 10" near Rotter-
dam, about 38km from the measurement lo-
cation at Scheveningen. This station provided
both temperature and salinity readings at 10
minute intervals, and at a depth of both 250cm
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1503 |

Sound speed in water - [m/s]
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Computed sound speed during measurements
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and 900cm. Both the salinity and the tem-
perature measurements Varled elther nOt at Mg079:00 10:00 11‘:00 12100 13100 14‘100 15100 16:00 17‘100 18:00
all or an insignificant amount between those local time May 17, 2022
two depths. The nearby measurement station

'lichteiland Goeree’, which provides only read-
ings at 600cm depth but is placed in deeper
water reported very similar measurements. Therefore a raytracing method that does not ac-
count for refraction by a change in sound speed in the water column was deemed accurate
enough, while greatly simplifying the coding process.

In section 3.2.1 it was explained that the BS path was expected to be dominant in the cepstra,
and this was confirmed by preliminary cepstra generation. Because of this the raytracing
algorithm was written to solely compute this specific propagation path.

To generate accurate TDOA estimations accurate data on sound speed and bathymetry are
essential. Sound speed measurements were not available so equation 38 was used to compute
the sound speed from the salinity and temperature measurements which were acquired from
Rijkswaterstaat.

Figure 19: Computed sound speed during measure-
ments

¢ = 1449.2 + 4.6T — 0.055T2 + 0.000297° + (1.34 — 0.017)(S — 35) +0.016z  (38)

Here ¢ denotes sound speed in m/s, T' denotes temperature in degrees Celsius, S denotes salinity
in parts per thousand and z denotes depth in meters. According to the source this equation
should give reasonably accurate results [12|. Using the data from the measurement day a plot
of the sound speed can be generated with a resolution of 10 minutes. As the GPS transmitter
on the RHIB provides a position update on every second the sound speed data is linearly
interpolated to match this resolution.

The resulting estimated sound speed is visible in figure 19. A spread of approximately 6
m/s can be observed during the measurements.

3.4.2 Bathymetry integration

The most important part for this solution is the bathymetry integration to account for range
dependent environments while raytracing. This system is based on open source depth charts
available in the .XYZ format, where X contains the WGS84 longitude, Y the WGS84 latitude
and Z the water depth in meters at that point. First depth charts from the EMODNET database
from 2022 were used with a spatial resolution of 11—6 arc minutes, which translates to roughly
115 meters. This resolution was deemed unsatisfactory and a different chart was requested
from Rijkswaterstaat. This chart has a resolution of 20m but first had to be converted from
a GEOTIFF file to an .XYZ file using QGIS software (open source geographic information

system). A GEOTIFF file is much more efficient when it comes to storage space but it was
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found that an .XYZ file is easier to implement. To compensate for the increase in storage
the GEOTIFF file was cropped to the area of measurement before conversion to .XYZ. As
the Rijkswaterstaat bathymetry dataset used the 'RD NEW’ geodetic datum a conversion to
WGS84 had to be carried out as well, which was also possible using QGIS. A resolution of 20m
was the highest available at this time but an even higher resolution might offer better results.
Once the correct bathymetry has been loaded

the complete dataset has to be calibrated for Tidal changes in water height

tidal changes in the water column. It would be =T , \
possible to compute the theoretical tidal height S o
as a forecast, but fortunately a measurement ere
station was available at Scheveningen which
measured the water height compared to NAP
every 10 minutes. As visible in figure 20, high-
lighted in orange, a tidal difference of approxi-
mately 2 meters occurred during the measure-

50_‘|‘ “ ‘\ |\ . “ |\ |

Water height compared to NAP - [em]

ments. A v"“. d I .9" v‘lw :‘I Vo

The EMODNET file used a datum different S A
than NAP and therefore required some cali- rin - —— F—— -
bration. Fortunately the Rijkswaterstaat file Local time 202

is also ‘relatlve‘to NAP, .JUSt hl‘{e the tidal in- Figure 20: Measured tidal height relative to NAP at
formation. This makes it possible to add the Scheveningen, orange denotes when the RHIB was ac-
tidal height directly to the bathymetry dataset. tive

To accomplish this the tidal dataset was first

linearly interpolated over the same timescale as the GPS recording time, just like the salinity
and temperature for the sound speed computation. After this the correct water height for each
GPS location and its corresponding point in time can be added to the bathymetry dataset.

3.4.3 Raytracing algorithm

With the correct bathymetry, calibrated for tidal effects, and the computed sound speed it
becomes possible to estimate the TDOA values for each location using raytracing. The concept
of this technique is based on making a vertical ’slice’ of the waveguide between the source and
the receiver. The probability of this slice containing bathymetry datapoints is very low, so a
bathymetry profile is linearly interpolated in the vertical plane between source and receiver,
using the calibrated bathymetry dataset. This profile contains a fixed number of interpolation
points between source and receiver for uniform computational load and to scale resolution with
distance. Some additional datapoints are added to the set behind the receiver location to allow
some overshoot of rays. An example of the result for the RHIB at 09:35 local time is shown in
figure 21.

This figure clearly shows the range dependent bathymetry and implies that accurate cepstral
ranging can only be accomplished when accounting for bathymetry.

The interpolated bathymetry is then used to compute the first ray. An angle #; is selected
and a uniformly spaced vector x is created, spanning the entire range of interpolated bathymetry
for x1, x9, ... xy, with a selected resolution r being the spatial spacing between adjacent values
of x. The bathymetry is again (linearly) interpolated over the vector x to have the bathymetry
depths y;, . The corresponding y values for the first ray y;, are given by equation 39 with y;
being the source depth, i.e. the propeller depth.

y1, = tan(by)x, + ys (39)
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Example of interpolated bottom profile

WO
K

[seafloor
% Receiver
#  Source

Depth - [m]

0 200 400 600 800 1000 1200
Distance from source - [m]

Figure 21: Interpolated bottom profile with receiver and source (RHIB) locations during departure from
Scheveningen

The algorithm then computes the absolute difference between the first ray and bathymetry
using equation 40 and finds the indices i1, i of the two smallest results as these belong to the
closest points to the intersection between the bottom and first ray. These points s;, and s;, are
then used to compute the exact intersection using equation 41 using geometric relationships.
The result of 41 can be plugged into equation 39 to compute the corresponding y value.

Siria = Hlli2I1|y1n - ybn| (40)

Sip ¥ T

ds
With the exact intersection point known the segment of bathymetry that is hit by the ray is
selected and its local angle 6, used to compute the reflection angle of the second ray. The angle
of the second ray 6, can be computed using equation 42. It follows that the second ray y», can
be computed using equation 43.

Try = T +

(41)

0y = 20, — 0, (42)
Yo, = tan(fs)(x, — yry) + xry (43)

As the sea surface is assumed to be horizontal, smooth and located on y = 0 the second
reflection point can be computed straightforward using the previous results using equation 44
with the y coordinate yry being the trivial solution.

yri

tan(6s) (44)

XITro9 = ITr1 —

The procedure for the third and final ray is analogue to the procedure for the first ray as they
both follow a downward path and end when they intersect the interpolated bathymetry. With
the corresponding y values y3, given by equation 45 the equations 40 and 41 can be used to
compute where the final ray will touch the bottom, i.e. (hopefully) the receiver again.

ys, = tan(6y)(xry — x,) (45)
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With the endpoint (z3,,ys,) known the entire expected propagation path for the ray can be
plotted as shown in figure 22.

Example of interpolated bottom profile with ray
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Figure 22: The example from figure 21 with the computed ray included

These equations can be used to compute the total trajectory of the BS-path for a certain
starting angle 6;. Of course some simplifications are made in this model. Refraction in the
water is not accounted for and neither is bottom penetration and refraction. Including these
might offer better estimation results, but at the cost of requiring a more refined and compli-
cated algorithm with an increased computational load. The accuracy of the estimation process
described above will be measured in section 4.

To arrive at a quantity usable for cepstral ranging the expected TDOA has to be computed.
This is simply the difference between the total path-length of the computed rays and the length
of the direct path, divided by the sound speed at that time as computed in section 3.4.1. The
code for the algorithm is shown in appendix A.3.

3.4.4 TIterative solver

The raytracing method from section 3.4.3 only works for a certain starting angle #; and com-
putes the expected path, regardless of whether this ends at the receiver or not. Because of the
range dependent bathymetry it is impossible to find an exact solution beforehand. Therefore
an iterative process or solver is needed to find the starting angle that will result in the ray
ending with the receiver.

A relatively simple solving algorithm was developed. While not completely robust to find
the global minimum if was found to function without error for this specific case when boundary
conditions were satisfied.

First the algorithm from section 3.4.3 is executed for a broad range of angles which should
positively include the exact solution, but with a relatively course resolution to decrease com-
putational load. For each computed ray the distance between the endpoint of the ray and the
receiver, i.e. error ¢, is measured by computing the difference between their respective x coordi-
nates. From these € values, which can be either negative or positive, the largest minimum value
and the smallest positive value are selected, i.e. the two values closest to zero with opposite
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signs. It is reasoned that the exact solution should lie between these two error values and their
respective starting angles 6,,., and 6.

Consequently a new range of starting angles is formulated, spanning the range between the
two angles 0.« and 6.;, as found above. This enhances the resolution in the area where the
solution is to be found. Again the raytracing algorithm is executed for these new values of 6;
and again two new angles 6,,., and 0,,;, are selected. This process continues until the absolute
error || has been reduced to a certain threshold.

Because the first evaluation computes the errors for a broad range of angles which should
include the exact solution, the risk of finding a local minimum is reduced. To remove the risk
of the solver getting stuck on a local minimum which is not able to satisfy the maximum error
condition the solver terminates after 100 iterations, shows an error and selects the minimum
value of |e| present at that moment. This did not happen for this specific use-case, except
when the RHIB was located in the port of Scheveningen and no direct path to the receiver was
present. For a more challenging bathymetry that includes steep ridges this solver might not be
suitable, although one could argue if this method of ranging itself would be suitable for such a
scenario.

The code for the solver can be found in appendix A.4.

3.5 Building a cepstrum library

It is possible to perform the ranging by cepstral analysis automatically by comparing a cepstrum
generated from a measurement to a set of cepstra of which their respective distances are known.
This is however complicated by varying bathymetry. When using polar coordinates with angle 6
and range r, and the bathymetry varies with respect to both € and r, a bearing finding method
should be included as well, and the library should contain cepstra for all bearings and ranges
of interest. An additional complicating factor is found when transitioning to a 3D coordinate
system, e.g. cylindrical coordinates, to include tidal variations in water depth. To compensate
for this the tidal depth should be included as a variable as well.

The sensor setup used in the measurements for this thesis contained a vector sensor and
would therefore be able to determine a bearing to a source as well. However, insufficient data
was available to build a library that uses the bearing 6 as a variable since the amount of passes
from the source and the variation in their location was limited. The raytracing method from
section 3.4 can be used to create synthetic data for the library, but no satisfying results were
yet gained. Therefore it was decided to exclude 6 as a variable during this analysis.

Regardless of whether 6 is included in the library as a variable, multiple methods of library
building are possible. These methods include both experimental and synthetic options.
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3.5.1 Experimental methods

On first glance it seems relatively straightforward to generate a library from experimental
measurements, as no simulations have to take place. After all, measurements from a real
scenario remove any errors that might be present in synthetic models. However, this severely
complicates the ability to vary different variables when it comes to bathymetry. In other words,
one has to perform a measurement for any possible bearing, range, tide and source depth if
depth is assumed to be a variable.

Nevertheless, using experimental data provides a method to quickly generate expected cep-
stra for ranging purposes. The accuracy of these methods are evaluated using the data from
section 3.1.1. As the RHIB that was used as a sound source had its position measured con-
stantly using a GPS receiver, determining its distance to the receiver is straightforward. Using
this information it is possible to directly appoint a certain cepstrum to a certain distance,
discarding bearing and tidal height as variables.

Using this technique, two different methods are identified:

Single-pass library

For this library a collection of cepstra is selected that together span a single run of the RHIB
closing in on the receiver, passing overhead and moving away again. This section should include
all relevant ranges, i.e. the RHIB should start at maximum distance, pass directly overhead for
minimum distance and move away to maximum distance again. These cepstra are then sorted
on distance and have their respective distance appointed to them. A matching algorithm as
explained in section 3.6 can then be used to find the library cepstrum that is most similar to a
cepstrum of unknown distance, i.e. a cepstrum generated during surveillance. The appointed
range of the library cepstrum is then assumed to be equal to the range of the unknown cepstrum.
An example of this library is shown in figure 23a.

Averaged library

This library is similar to the single-pass library, but instead of a single run it used multiple runs
on multiple trajectories or locations. The cepstra of these runs are then grouped together on
M range intervals, e.g. all cepstra recorded at 200m to 210m are grouped together when a 10m
interval is used. The N cepstra of each group or interval are then averaged over each quefrency
as shown in equation 46 to generate M library cepstra, one for each interval, denoted by L.

L) = 3 3 Gl (46

This technique has a few advantages. Primarily, false cepstrum peaks caused by another
sound source or mechanism are expected to not be located on the same quefrency for multiple
measurements and thus will be filtered by taking the mean of multiple measurements. Peaks
in the cepstra that are inherent to the specific range will be located on the same quefrency
for every measurement and will therefore not be filtered. Secondly, small differences of real
cepstrum peak locations in respect to quefrency, caused by small changes in bathymetry when
the source location differs in respect to 6, will be averaged. When the bathymetry of a single-
pass differs from other passes this is expected to reduce the selective bias created by that specific
bathymetry. However, if the quefrencies of real cepstrum peaks differ too much between runs,
the peak amplitude might be reduced and result in smearing. An example of this is shown in
figure 23b.
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Replica cepstrogram - single-pass with BS-path delay Replica cepstrogram - averaged with BS-path delay
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(a) Example of single-pass library (b) Example of averaged library

Figure 23: Examples of experimental libraries, including the expected TDOA of the BS-path for the receiver
depth

Figure 23 clearly shows the differences between these two different libraries. While the
single-pass library contains more noise, the amplitude of the cepstra has a greater magnitude
and the peaks are sharper. Meanwhile the averaged library contains significantly less noise and
less defined peaks in the cepstra. The peaks of the single-pass library however do not align
accurately with the expected TDOA for the receiver depth, while the averaged library aligns
quite well.

3.5.2 Synthetic methods

Another option would be to use the raytracing model from section 3.4 to compute the expected
quefrencies of cepstrum peaks. This method also significantly reduces the difficulty of including
bearing and tidal height as a variable. After all, only changes in parameters for the algorithm
need to be made instead of performing experiments for all the possible combinations of variables.
Difficulties arise however during the conversion of the computed TDOA values to cepstra that
can be used to match measurement cepstra. A peakfinding algorithm that can detect the
TDOA in cepstra seems like the perfect solution to this issue, however most cepstra contain
so much noise that no reliable peakfinding algorithm could be found. Attempts to generate
replica cepstra from computed TDOA values were unsuccessful as well. Therefore comparison
of computed TDOA values will be done by hand in section 4, and automating this process will
be recommended to future researchers of this subject.

3.6 Library matching algorithms

When a library containing cepstra with known range has been built, it is advantageous to use
an algorithm that can automatically detect the library cepstrum that best fits the cepstrum,
generated from a measurement with unknown distance. This way the range of a source can
automatically be detected. Unfortunately no satisfying methods were found for TDOA values
generated by the raytracing algorithm from section 3.4 so the following matching methods are
solely meant for libraries built from experimental data which contain cepstra.
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3.6.1 Minimized sum

The most straightforward method to compare two sets of data for similarity would be the
method of minimized sum. This method was also used in [11] and subtracts every cepstrum set
in the library from the measured cepstrum set for each quefrency value. Subsequently it looks
for the minimal sum of the absolute value of the results, as shown in equation 47 [11].

n = ;nin |C(71) — C°(71)] (47)

1<n<N
k=1

If two sets of data would be equal for every quefrency value the result of equation 47 should be
zero. The selected index n indicates the estimated range 7 = r; for the source. This algorithm
is expected to be computationally efficient as very few operations are required to compute 7.

3.6.2 Pearson Correlation Coefficient

The Pearson Correlation Coefficient or PCC is a well known statistical tool which is used to
measure the linear correlation between two sets of data. This PCC can best be described as
the ratio between the covariants of two variables and the product of their standard deviations.
In the case of discrete datasets like the cepstral library this can be expressed as equation 48.

_ > i@ — 2)(yi — 9)

\/Z?ﬂ(xi - j)2\/2:?:1(% —y)?
Here 7, is the Discrete Pearson Correlation Coefficient or DPCC, n the number of datapoints,
x; and y; are the individual datapoints of the two sets and Z and ¥ are their respective means.
Ranging is performed by finding the largest r,, value after r,, has been computed for the
measurement cepstrum and all cepstra in the library.

While the PCC is meant to be used for linear datasets it was found that it is also able to
correlate the highly nonlinear datasets of the cepstral library and incoming measurements.

(48)

Tzy

3.7 Accuracy estimation

The results in ranging performance should be compared, preferably quantitative. In the case of
comparison of accuracy both the Mean Absolute Error (MAE) and Symmetric Mean Absolute
Percentage Error (SMAPE) as shown in equation 49 and 50 respectively offer a convenient
single value for an entire measurement sequence. Here the MAE value is expressed in the unit
of measurement, in this case meters, while the SMAPE value shows a percentage error. In these
equations f; represents the i-th predicted value of the observation, y; represents the i-th true
value of the observation and n represents the number of measurements.

R
MAE = =3 |3 — ui (49)
=1
1 Ui — Yi
SMAPE =~} _i=wl 0y (50)

n = (19l + lvil) /2

A comparison relative to true distance might offer insight as well. In this case one can
remove the sum and division by n from equation 49 and 50 and calculate these values for every
distance. However, an error comparison relative to sound energy or intensity might be more
beneficial. Vessels or other sound sources are expected to produce different sound intensity
levels. In other words, some vessels will certainly be quieter than others, and it is reasonable
to expect a louder vessel resulting in a further maximum range in which it can be detected and
ranged, or that it might result in more accurate ranging values.
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3.8 From methodology to results

The previously discussed methodological subjects are meant to answer the research questions
found in section 1.3. The following list details how the previous sections will be used to an-
swer these questions. Some of these questions have already been partly answered during the
methodology research, but their implications will be discussed in the coming sections.

2. Which cepstrum settings and methods of data preprocessing are suitable for
cepstral ranging? While this question has been partly answered in section 3.2 and 3.3, the
ideal parameters have not been determined yet. The performance of a variation of parameters
like block-size and sample rate will be measured in section 4.

3. Which methods of building a ranging library are suitable for cepstral rang-
ing? These methods have been discussed in section 3.5. Their performance will be measured
in section 4.

4. Which matching algorithms are available and what is their performance?
These algorithms have been discussed in section 3.6. Their performance for different types of
libraries will be measured in section 4.

5. What is the influence of (tidal) changes in water depth on the performance
on cepstral ranging and how to negate resulting inaccuracies in ranging? The data
gathered and algorithm designed in section 3.4 is meant to negate the influence of tidal changes
in water depth while also incorporating variations of bathymetry. The accuracy of this method
when it comes to determining the TDOA for varying parameters will be measured in section 4.

Finally these research questions will be used to answer the main research question: 1. How
accurate can the range of sound sources be estimated in a real-world situation
using cepstral based ranging methods and a single hydrophone in relation to the
true range between receiver and source?

Other details on data, e.g. section 3.1.3, will be used to gather additional information on
parameters that might influence the ranging potential of cepstral analysis.
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4 Results

The methods and algorithms as discussed and explained in section 3 are put in practice in this
section, to generate the results necessary to answer the research questions as given in section
1.3. Some unexpected issues were encountered while generating these results, therefore a few
subsections also contain an explanation on how these issues were researched and solved. The
result subsections contain references to their respective discussions in section 5.

4.1 Cepstrogram parameters

First some research was carried out to find the settings for cepstrum and cepstrogram generation
that provide the best results. As made evident in section 3.2 there are a multitude of different
parameters available with either continuous or integer possible values. No realistic means of
completely optimizing this optimisation problem are available, so only the most significant
parameters were varied over a set of realistic parameters.

The block-size and sub block-size were kept fixed on a power of two to keep the FFT
algorithm efficient, and it’s exact size was determined by the selected sample rate while keeping
Tx above the value of 19.5ms as computed in section 3.2.1, using an edited form of equation 26
which is shown in equation 51, and equation 52 where the log 2 term is rounded to the nearest
upper integer.

Nsamplepoints = 19-5_3 * 2 x fs (51)

BS = 2\82(V) (52)

It is important to remember here that if a sub block structure is used as described in section
3.2.2, the sub block size determines the value of 7x and the governing block size has to be
increased by a factor of 2.

Considering this block size contains only about 40ms of data, the location of the source
is updated extremely often, even with no overlap in cepstrogram generation. To speed op
computation a trial was done where only one in five data blocks was used to compute a cepstrum.
The resulting accuracy is shown in table 3 and 4.

4.1.1 Effects of sample rate

Determining the ideal, or rather lowest sample rate that does not result in a breakdown of
accuracy is essential for increasing the efficacy of cepstral ranging. A lower sample rate means
less data to process and thus an increase in computational speed. However, decreasing the
sample rate will not only decrease the maximum frequency that is used for cepstrum generation
as it lowers the Nyquist frequency, but also the quefrency resolution as shown in equation 24.

Unfortunately the dataset used was filtered above 10 kHz as evident in figure 13a. This
makes it impossible to verify a change in ranging performance when higher frequencies are
included. Considering that sound attenuation increases with an increase in frequency it can
be assumed that using ultrasound for ranging on distance will be ineffective. Still, with this
dataset the impact of an increase in A,, and decreasing the Nyquist frequency under 10kHz
can be observed.

Down-sampling was performed by removing a certain amount of equally spaced sampling
points from the original audio data. This was tried with and without a filter to reduce aliasing,
which was included in the decimate function in Matlab. It was found that using this filter had
a positive effect on ranging performance, more noticeably as the amount of down-sampling was
increased. Therefore all down-sampling was performed using this Chebyshev Type I IIR filter.

Using the decimate function down-sampling was compared with a factor of 2, 4, 8, 16 and
finally 32. Considering the original sample rate of 78125Hz this results in a sample rate of
39602Hz, 19531Hz, 9766Hz, 4884Hz and 2441Hz. Computational speeds for these sample rates
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were compared as well. The results for these sample rates and their computational speeds with
their accuracy are expressed in MAE and SMAPE, as explained in section 3.7, and are shown
in table 1 and table 2 respectively.

Sample rate performance in MAE
Down-sample Pearson [m]| Minimisation | Averaged Cross correla- || Computation
factor [m] library (Pear- | tion [m] time [s]
son) [m]

1x 156 192 25 158 466

2x 147 151 34 150 722

4x 141 120 39 147 405

8x 128 107 46 151 243
16x 120 110 49 154 157
32x 112 93 49 209 112

Table 1: Sample rate performance in Mean Absolute Error
Sample rate performance in SMAPE
Down-sample Pearson %] Minimisation | Averaged Cross correla- || Computation
factor [%] library (Pear- | tion |%] time [s]
son) |%]

1x 46 62 7 47 466

2x 44 47 9 44 722

4x 42 36 11 44 405

8x 38 30 12 45 243
16x 35 30 13 46 157
32x 32 25 13 66 112

Table 2: Sample rate performance in Symmetric Mean Absolute Percentage Error

Sample rate performance in MAE
Down-sample | Pearson [m] Minimisation | Averaged Cross correla- || Computation
factor [m] library (Pear- | tion [m] time |s]

son) [m]

1x 153 170 4 153 149
2x 144 171 9 147 176
4x 139 155 19 149 119
8x 125 130 33 144 94
16x 122 112 44 153 80
32x 116 101 46 198 72

Table 3: Sample rate performance in Mean Absolute Error, negative overlap

Sample rate performance in SMAPE
Down-sample || Pearson [%] Minimisation | Averaged Cross correla- || Computation
factor [%] library (Pear- | tion |%] time [s]

son) [%]

1x 45 45 1 47 149
2x 43 46 2 45 176
4x 41 42 5 45 119
8x 36 35 8 44 94
16x 34 30 11 45 80
32x 32 27 12 61 72

Table 4: Sample rate performance in Symmetric Mean Absolute Percentage Error, negative overlap




These results were generated using the methods described in sections 3.5 and 3.6. As input
data the runs close to the receiver at low tide, as detailed in section 3.1, were used. The distance
during this entire time-span is shown in figure 24. All matching algorithms except the ’averaged
library’” used only the data in the orange segment to build a library, this segment was chosen
because it includes all ranges of all other segments. The averaged library used the entire range
visible in figure 24 to generate a library for the specific results of the tables shown above.
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Figure 24: Range to RHIB from receiver based on GPS measurements

The error values of the various tables above are computed over the entire range of measure-
ments shown in figure 24. This includes moments where the source is relatively stationary. It
can be assumed that the engine produces less noise in these moments, resulting in a lower SNR.
It was chosen to nevertheless include these segments when computing the MAE and SMAPE
values to be able to judge the overall effectiveness of ranging. An in depth comparison of
error values for different ranges and sound levels follows later. It can be observed that, with
the exception of the cross-correlation matching algorithm, the accuracy actually monotonically
increases with an increase in down-sample factor. Meanwhile the averaged library, here only
shown using the Pearson matching algorithm, shows an error increase while increasing the
down-sample factor. The errors shown in table 3 and 4 are comparable to the errors of table 1
and 2, while a significant decrease of computation time was gained by using a negative overlap.
These results are discussed in section 5.1.
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4.1.2 Usage of sub blocks

In literature a structure was proposed where a data block was split into five blocks of half the
original block size with a 75% overlap. This might result in a reduction of noise in the generated
cepstrum. To verify if this method provides any reduction in error the results of table 1 and 2,
which were generated using this technique, were also produced without this technique. These
are shown in tables 5 and 6.

Sample rate performance in MAE
Down-sample || Pearson [m] Minimisation | Averaged Cross correla- || Computation
factor [m] library (Pear- | tion [m] time [s]

son) [m]

1x 196 200 32 211 952
2x 187 177 39 205 1317
4x 180 176 52 201 769
8x 169 156 61 205 462
16x 160 150 66 206 293
32x 145 120 68 190 220

Table 5: Sample rate performance in Mean Absolute Error, no sub blocks

Sample rate performance in SMAPE
Down-sample || Pearson [%] Minimisation | Averaged Cross correla- || Computation
factor [%] library (Pear- | tion [%)] time |s]

son) |%]

1x 57 56 8 63 952
2x 55 48 11 61 1317
4x 53 49 15 59 769
8x 50 44 16 60 462
16x 47 41 17 61 293
32x 44 33 19 59 220

Table 6: Sample rate performance in Symmetric Mean Absolute Percentage Error, no sub blocks

Because of the halved block size to keep 7 close to 19.5ms a large increase in computation
time can be observed. This halved block size also doubles the times that ranging is being
performed on this dataset, i.e. a block now contains approximately 20ms of data instead of
40ms of data. Therefore this method without sub blocks was also compared to the same block
size as used when averaging sub blocks. To compensate for the doubling of 7, the quefrencies
above 20ms were simply deleted. It’s results are shown in table 7 and 8.

Sample rate performance in MAE
Down-sample || Pearson [m] Minimisation | Averaged Cross correla- || Computation
factor [m] library (Pear- | tion [m] time [s]
son) [m]

1x 175 263 21 172 449

2x 161 187 33 162 656

4x 150 148 43 153 387

8x 138 132 51 148 240

16x 126 127 55 157 158

32x 115 100 59 221 121

Table 7: Sample rate performance in Mean Absolute Error, no sub blocks, standard block size
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Sample rate performance in SMAPE
Down-sample || Pearson [%] Minimisation | Averaged Cross correla- || Computation
factor [%] library (Pear- | tion |%] time [s]
son) [%]

1x 52 87 5 o1 449

2x 48 58 9 48 656

4x 45 45 12 45 387

8x 41 38 15 45 240

16x 38 37 16 48 158

32x 35 29 16 72 121

Table 8: Sample rate performance in Symmetric Mean Absolute Percentage Error, no sub blocks, standard
block size

All tables in section 4.1.2 show a worse performance than their counterparts in section 4.1.1,
which use sub-blocks. This effect can be observed across all sample-rates.

4.1.3 Selection of parameters for further results

Virtually all results previously in this section have shown that, for a single-pass library, the
error is actually reduced by down-sampling, with a minimum error at a down-sample factor of
32. The exception is the cross-correlation algorithm, which performs better at smaller down-
sample factors. Meanwhile the averaged library seems to perform better with a higher sample
rate. Therefore for the coming sections a down-sample factor of 32 will be used in conjunction
with the single-pass library, while a higher sample rate will be used for the averaged library.

Section 4.1.2 shows that the usage of sub-blocks reduces the error significantly for both
block-sizes. Therefore this technique will be used for the remainder of the results. When it
comes to using a negative overlap in cepstrum generation, e.g. 'skipping’ blocks, no significant
increase in error can be seen while computation time is significantly reduced. The one in five
ratio used in tables 3 and 4 will be used for the remainder of this report unless a different ratio
is specified.
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4.2 Library and matching algorithm effectiveness

Two different types of experimental libraries were discussed in section 3.5. This includes the
single-pass library where only a small segment of measurements is used to create a library as
shown in figure 24, and the averaged library where much more data is included and averaged
for certain range increments. The results of the tables above mostly include the single-pass
library, while the averaged library is represented paired with the Pearson algorithm. In this
section these results will be expanded, and the averaged library will be tested in conjunction
with the other algorithms as well.

4.2.1 Single-pass library

The single-pass library only uses the very first run of the RHIB to generate the library, as
indicated in figure 24. This range is also indicated in the different sub-figures of figure 26.
These sub-figures show the range as measured by GPS in the top position and the estimated
range by using the single-pass library and the corresponding algorithm is shown in the middle
position. The bottom graph shows the error between the GPS measurements and the estimated
distance. The error spread is mostly centered around zero for the mean algorithm, while
the Pearson algorithm shows a slight bias to overestimating the range. The cross correlation
algorithm however shows a strong bias to underestimating the range.
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Figure 25: Single-pass library - 32x down-sampling
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Figure 26: Single pass library results
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4.2.2 Averaged library

In section 4.1.1 the averaged library combined with the Pearson matching algorithm impressed
with lower MAE and SMAPE magnitudes compared to averaged library algorithms. However,
since the library shown in figure 27 contains all cepstra on which ranging is performed, even
when they are averaged, these results might be subjective. Therefore the algorithms were tested
on an averaged library that excluded the data between 10:13:00 and 10:18:45. This way the
second run at around 10:14:00 can be used to verify the effectiveness, of which the results are
shown in figure 28. The ranging performance of a complete averaged library is also shown for
comparison in figure 28d. These results were generated without down-sampling since section
4.1.1 showed that the averaged library performs better without down-sampling.
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Figure 27: Averaged library - no down-sampling
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Figure 28: Averaged library results at high tide
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4.2.3 Tidal influence

The previous results have all been generated using experimental libraries that were recorded
at virtually the same time as the measurements themselves. To see how these libraries and
matching algorithms perform at a change in water height by tidal effects a measurement from
ca. 6 hours later was used.

Here the same RHIB passes the sensor, although at a significantly lower speed at first. Some
acceleration occurs after the closest point of passage, although only half the speed of the runs
at low tide is reached. The tides created a difference with respect to NAP of approximately
-50cm at the time of library creation, which is close to low tide. During the measurements used
in this section however the tide created a difference of 105cm with respect to NAP, creating a
change in water height of 155 cm compared to the moment of library creation.

4.2.3.1 Single-pass library

The single pass library is not able to perform ranging with any of the algorithms with the new
measurements. No trend following the GPS measured range of the RHIB can be observed in
figure 30 and the resulting range of all algorithms seems to be mostly noise.
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Figure 29: Cepstrogram of RHIB at high tide - 32x down-sampling
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Figure 30: Single-pass library results at high tide
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4.2.3.2 Averaged library

The averaged library is not able to perform ranging on the new measurements with any algo-
rithm, just like the single-pass library. The Pearson algorithm shows some tendency towards
lower range values at the closest passing point in figure 32a, but both the minimization algo-
rithm in figure 32b and the cross correlation algorithm in figure 32c¢ result in either maximum
or minimum ranging values.
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Figure 31: Cepstrogram of RHIB at high tide
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Figure 32: Averaged library results at high tide
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4.2.3.3 Identifying problems with tidal ranging

To come to an explanation for the abysmal ranging performance with a change in water height
a comparison was made between two cepstra. The first cepstrum was measured at high tide at
16:12:35 with a distance of 160m, which is visible in figure 29, while the second cepstrum was
extracted from the single-pass library for a distance of 175m generated at low tide as visible in
figure 25. These cepstra were both generated from data that had been downsampled 8 times
as a tradeoff between noise and resolution. The result is visible in figure 33.

Cepstral magnitude - [-]

0.4

0.3

02

0.

-0.2

-03

-04

01—

|

h i
Il

‘\
i
ﬂf/ \~ J‘|

N

P‘H' | \M
,‘M '“l v“l l IH
**W

‘I‘\ ‘M |J|\

|/|

\HM
Lim

‘ ‘\A‘NI I "“ N ‘l ) I M\“J JII‘\
‘\J' I| 41 ' 'w' w\ l wl‘ ‘I
1 W“‘ * \ W

Comparison of cepstra at different water heights

High tide measurement - 175m distance
Low tide library -

160m distance

AT

M‘ﬂ \‘.m \

I‘“‘ “

v

0.01
Quefrency - [s]

Figure 33: Comparison of cepstra at high- and low tide

Only the first two negative peaks at a quefrency of 3ms and 6ms respectively are of signif-

be seen at higher quefrencies.
These results point to an issue with ranging created in the higher quefrency range. There-

result in an increase in ranging performance.
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icance. These are created by the arrival from the bottom-surface reflection path and it’s first
rahmonic. While these peaks seem to closely align between the two cepstra, no correlation can

fore ranging was attempted again, but with the maximum quefrency limited to 12ms, which
corresponds approximately to the quefrency of the first rahmonic at the closest point of passage
during high tide. Only the result of the Pearson algorithm and cross correlation algorithm are
displayed in figure 34 as the minimisation matching algorithm only generated noise.
results were generated with data downsampled with a factor of 8 as this gave the most accurate
ranging performance in this specific case. Decreasing the down-sample factor further did not

These
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Figure 34: Single-pass library results at high tide - maximum quefrency of 12ms

Interestingly decreasing the quefrency improved the ranging performance considerably with
a tide mismatch. Although a significant amount of noise is still present in the range estimations,
a trend following the actual range where the error magnitudes are close to zero can be seen in
this data, especially after the closest point of passage. These results are further discussed in
section 5.3.
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4.2.4 Smoothing of ranging results

As evident in figures 26 and 28 there is significant noise contained in the range estimations,
regardless of matching algorithm. The averaged library seems to be less affected. This noise
seems to fluctuate around an error value of zero on most ranges. Therefore a simple moving
average window filter was added to the ranging results of the single-pass library in conjunction
with the Pearson and minimized sum matching algorithms. The window span was set on 49,
which contains approximately 5 seconds of data. While this may seem as a large window for a
source at high speed it was found that this size gives the best results for this specific series of
measurements.

RHIB distance (gps)

sed for replica generation

I Source distance

Distance - [m]

10:10:00 10:12:00 10:14:00 10:16:00 10:18:00 10:20:00 10:22:00 10:24:00 10:26:00
Time May 17, 2022

RHIB distance (Pearson)
T

800 T T

Distance - [m]

10:10:00 10:12:00 10:14:00 10:16:00 10:18:00 10:20:00 10:22:00 10:24:00 10:26:00
Time May 17, 2022
00 RHIB distance (Pearson) error
h \ 17 \ \
A [ f A
200~ JU ft f\\ \ | N \ NooA
—_ W | | Pw | \ i \, N /1
E o U [~ A T M ‘ W oo LM | e
= iy \ /W | et W \ \ \ Ak
5 oMY v EWAV pva f./‘vJ WA |/ \w\fﬁ\w VW Y M
= , \
= h./w\, J \"\,N
-200 — |
400 |
10:10:00 10:12:00 10:14:00 10:16:00 10:18:00 10:20:00 10:22:00 10:24:00 10:26:00
Time May 17, 2022

(a) Pearson ranging - single-pass - moving average filter

64



RHIB distance (gps)

[ Used for replica generation
N Source distance

Distance -[m]

10:10:00 10:12:00 10:14:00 10:16:00 10:18:00 10:20:00 10:22:00 10:24:00 10:26:00
Time May 17, 2022

RHIB distance (mean)
800 : ‘

Distance - [m]

10:10:00 10:12:00 10:14:00 10:16:00 10:18:00 10:20:00 10:22:00 10:24:00 10:26:00

Time May 17, 2022
RHIB distance (mean) error
400 \ i T \
2001 Wasalls V0 I l‘\/ B
E \ [ i \ [ i l | M
< N V' ~ N At o g ‘ wh \ Pan] |
5 ° - ‘V\/L\f \ “"wuj\ pod ™ \\ Nu/‘\(/\ruf ALY Iy RN ARIASY
= "/ |/ \/ \A
-200{— \/ _
400 | | | | | | | | |
10:10:00 10:12:00 10:14:00 10:16:00 10:18:00 10:20:00 10:22:00 10:24:00 10:26:00
Time May 17, 2022

(b) Minimisation ranging - single-pass - moving average filter

Figure 35: Single-pass library results with moving average filter

The readability of ranging results is increased significantly by adding a moving average filter.
Some 'rounding’ of ranging results can be observed where there is a sharp change in range, i.e.

where the RHIB suddenly accelerates or decelerates. As a result the MAE was reduced to
85m and 62m for the Pearson and minimisation matching algorithms respectively, and the
SMAPE to 25% and 16% respectively. A sudden decrease in range estimate can be observed
around 10:16, especially with the Pearson algorithm in figure 35a, while the RHIB stays at an
approximately constant distance. Analysis of the AIS data showed that this is the passage of
another vessel. This vessel was identified by its MMSI as the MARKENJE, a small dredging

vessel. The TDOA lines created by this vessel can be seen in figure 36 around the 10:16 mark.
The implications of this result will be discussed in section 5.4.
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4.3 Raytracing accuracy for TDOA estimation

While a raytracing algorithm has been developed for this thesis that can incorporate open-
source depth measurements as well as data regarding salinity, temperature and tidal effects, no
results were gained in converting this to an automatic ranging algorithm. Therefore the results
of this algorithm will only be presented visually, plotted over generated cepstrograms. The data
has not been down-sampled to sharpen the cepstrograms. As the TDOA in a cepstrum will
invariably result in rahmonics the TDOA computed by raytracing has been plotted including
two rahmonics, visible as black lines. These rahmonics are simply computed by multiplying
the computed TDOA with a factor of two and three respectively.

As visible in figure 36 and more notably figure 38a, some passes of the RHIB seem to have a
time-shift between the GPS and audio data. This has been corrected by shifting the GPS time
by two seconds in figure 38b. The results of the ray tracing algorithm are discussed in section
5.5.
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Figure 36: Cepstrogram including raytracing result
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Cepstrogram with raytracing results
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(a) Second pass of RHIB - raytracing result
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(b) Sixth pass of RHIB - raytracing result

Figure 37: Two examples of correct raytracing results

Figure 37 shows an exact match between the TDOA line and its rahmonics in the cepstro-
grams and the computed TDOA values.
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Cepstrogram with raytracing results
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(a) Third pass of RHIB - ray tracing result
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(b) Sixth pass of RHIB - ray tracing result shifted 2 seconds

Figure 38: Example of time mismatch and correction

By shifting the ray tracing results 2 seconds, a very close match between the cesptrogram
and computed TDOA is attained. There seems to be a slight mismatch at the closest point of
passage, although barely significant.
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4.3.1 Raytracing effectiveness of tidal compensation

The TDOA has also been computed for the measurements from section 4.2.3 to visualise if and
how well the raytracing algorithm is able to compensate for tidal effects the TDOA has also
been computed for the measurements from section 4.2.3. The result can be seen in figure 39.
Again a time-shift is visible in this plot. This is corrected in figure 40 by shifting the GPS time
by four seconds. This figure compares the (correct) result for high tide in black with the result
for the same track at the tidal height in red of the earlier measurements as in figure 36.
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Figure 39: Cepstrogram including raytracing result - high tide
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Figure 40: Cepstrogram including raytracing result - high tide

69



5 Discussion

In this section the results as presented in section 4 are analyzed and where possible explained.
The previous section showed the effects of down-sampling, usage of sub-blocks and skipping
data, expressed in error compared to GPS data and computation time.

Following these results and taking them into account, the effectiveness of the single-pass
library and averaged library were explored in conjunction with the Pearson, minimization and
cross correlation algorithms. These methods were tested on measurements with varying tidal
height and visualised with error graphs.

Finally the accuracy of the ray tracing algorithm was visualised for varying tidal heights.

5.1 Cepstrogram parameters and sample rate

Section 4.1 provided insight on the effect that parameters have when it comes to cepstrogram
generation and the resulting accuracy.

Interestingly for the single-pass library errors are reduced significantly by down-sampling,
with a monotone decrease of error compared to an increase in down-sampling factor. This can
be explained by the fact that the amount of quefrencies K is reduced and their spacing A,
is increased by this down-sampling operation. Fewer discrete quefrencies result in less noise
relative to the peaks of interest in the cepstra. Next to that the peaks of interest, which are
usually a negative peak flanked by two positive peaks, are represented by only three discrete
quefrencies when down-sampling with a factor of 32. This reduces the risk of mismatch caused
by a TDOA peak that has a slightly different shape in the higher resolution representation
created without down-sampling.

For the averaged library however there is a monotone increase of error visible when the
amount of down-sampling is increased. It is assumed that this is created by the same mechanism
that decreases the error for the single-pass library, namely the increase in A,.. As visible in figure
27 the TDOA peaks are washed out and often multiple traces are visible in close proximity.
This is almost definitely caused by differences in bathymetry for different positions of the RHIB,
which are all used to create this library. With larger magnitudes of A, these TDOA traces end
up merging, resulting in a TDOA peak that spans more quefrencies.

Apparently the Lloyd mirror pattern is also strong enough on the lower frequency range
generated by down-sampling as no definite reduction in accuracy by down-sampling could be
measured.

Sub-blocks have been proven as a simple yet effective method to reduce the ranging error.
In both table 6 and 8 a significant decrease of error can be seen when compared to table 2,
while computation time was not significantly affected. Apparently this method of averaging
while the signal is relatively stationary due to the short time-span is able to reduce noise in the
cepstra.

As expected does the skipping of data to generate cepstra not have significant effects on the
ranging error. Since the data blocks for cepstrum generation span such a short time there is no
need to compute them for all available data. This result can be used to reduce the computation
time significantly.

Finally an interesting observation can be made when comparing the computation time in
the various tables regarding the down-sampling results. Here an increase of computation time
is actually visible when down-sampling with a factor of two. This is created by the decimate
algorithm and the included low-pass filter which takes more time to execute than the time
needed to perform the computation on the original sample rate. Only when down-sampling
with larger factors is the computation time actually reduced. When recording on a lower sample
rate this would obviously not be an issue.
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5.2 Library and matching algorithm effectiveness

In section 4.2 the effectiveness of both library types in combination with three algorithms were
explored, with and without tidal influence.

When using the single-pass library both the Pearson algorithm and the minimisation algo-
rithm show a comparable performance. The minimisation algorithm however seems to show
a small decrease in spread between adjacent ranging values. As this algorithm has the lowest
computation speed of all matching algorithms these results suggest that the minimisation al-
gorithm is the best choice in combination with a single-pass library. This can be interpreted
as showing that the covariance of the library and measurement is a less suited indicator for
matching than comparing magnitude as with the minimisation algorithm. Unfortunately the
cross-correlation algorithm has a comparably worse performance and tends to underestimate
the range to the RHIB.

An increase in error magnitude when on maximum range is not visible in the data and
it is expected that cepstral ranging can be used for ranges further than the maximum of
approximately 700m found in this dataset. A definite maximum can not be found from this
dataset and is expected to also depend on the sound level of the source. Unfortunately no
quantitative sound levels of the RHIB from these measurements can be attained.

The averaged library continues these trends as this library also shows less spread for the
minimisation algorithm. This is especially noticeable during the stationary section in figure
28b. The shape of the second pass is however better recreated by the Pearson algorithm.
Again the cross correlation algorithm shows a comparably worse performance, resulting often
in incorrect minimum or maximum ranges. While the averaged library shows a superior per-
formance compared to the single-pass library at first glance, this is certainly created by having
all measurements which are to be ranged in the library. It was hoped that this would not be
the case by averaging multiple ranges but apparently these exact cepstra are still available in
original form in the library. When comparing the second pass of the averaged library, which
was not included in the library, to the second pass in the single-pass library it becomes evident
that the single-pass library actually offers better ranging performance. This might be explained
by the reduced library cepstra magnitudes as visible in figure 27. These reduced magnitudes
are probably caused by averaging, as an inclusion of a few negative values for a certain dis-
crete quefrency and range will reduce the overall magnitude of that quefrency and range in the
library.

5.3 Tidal influence on ranging

When it comes to ranging with a change in water height are both libraries and their algorithms
virtually unable to perform ranging with the default parameters as selected previously. One
would assume that an increase in water height would only result in an underestimation of the
range to the source. Figure 33 validates this assumption, as the cepstrum peaks of the bottom-
surface path and it’s first rahmonic align with the same peaks of the library with an approximate
10% reduction in range for a 10% increase of water height. However, there is no correlation
between both cepstra after these two peaks. Consequently the ranging performance with tidal
mismatch can be improved in this case by limiting the maximum generated quefrency to the
quefrency of the first rahmonic. This limit improved the ranging performance considerably as
visible in figure 34.

The most probable explanation for this result is the lower velocity of the vessel and conse-
quently a lower sound level. It was theorized that possibly another reflection path, different
than the bottom-surface path as expected according to section 3.2.1, was present in the data.
This could possible result in a nonlinear scaling between quefrency peaks with a change in
bathymetry and distance, and therefore hinder matching. However no proof for this could
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be found, as all cepstrum peaks for both the high- and low tide data were found to be on
quefrencies scalable with an integer factor from the first peak, i.e. the original peak and it’s
rahmonics.

Considering that the ranging performance is increased in the later half of the run, after the
RHIB has accelerated, it can be assumed that this is the primary factor that decreases ranging
performance during the high tide measurements. The SNR is certainly increased by the higher
engine load, which is assumed to increase the amount or magnitude of rahmonics present at
higher quefrencies. Limiting the quefrency is therefore an obvious solution, however this limits
the minimum range at which cepstral ranging can be performed. Therefore limiting of the
maximum quefrency should only be done when it is certain that the source is at a further range
than the minimum range imposed by the quefrency limit.

Another factor that improved the ranging performance with tidal mismatch was decreasing
the down-sample factor to 8, while decreasing it further did not result in an decrease of ranging
error. This result can possibly be explained by the increase in resolution. The lower speed and
change in water height possibly introduces small perturbations in the cepstra which influence
the TDOA peak and rahmonics on this lower resolution, while the higher resolution is able to
keep the perturbations separate.

5.4 Responsiveness to other vessels

The measurements used in this thesis all involve the same RHIB as a sound source. However,
at 10:16 a different vessel passes the sensor, which was identified as the MARKENJE, a small
dredging vessel. Judging by the slope of the cepstral lines in figure 36 around 10:16 this vessel
had a significantly lower speed than the RHIB. This lower speed and resulting lower engine
sound level possibly explains why less rahmonics are visible in the cepstrogram. Unfortunately
less rahmonics in a cepstrum also mean that matching against a library with cepstra that contain
more rahmonics is less reliable. This, together with the sound levels of greater magnitude caused
by the RHIB, explains why the ranging algorithm only picked up this vessel when it got within
reasonable distance of the sensor. This explanation matches the explanation for tidal influence
as given in section 5.3.

Unfortunately the AIS location was only recorded once every minute, which means that the
ranging accuracy for this vessel can not be measured. This result does however show that an
experimentally generated cepstrum library shows some sensitivity to specific vessels or engine
speed, even if their characteristics are quite similar. The MARKENJE has an inboard diesel
engine with Z-drive propulsion and while the size of the vessel and propeller depth, and thus
source depth, are roughly comparable to the RHIB, the generated cepstrum still shows small
differences.

5.5 Ray tracing for TDOA estimation

As this method is not automated there is no accurate method to compare the results of ray
tracing to the results of the experimental methods. The visualised results do however look
very promising. The ray tracing method is able to match the TDOA lines in the cepstra almost
exactly while correctly predicting the influence of tidal changes. If automated in similar fashion
as the experimental methods, a SMAPE of less than 5% can be expected. This accuracy also
brings an issue with the GPS or audio data to light. As evident in figure 38 there seems to
be a mismatch between the time of the GPS data and the time of the audio data. That is the
only logical explanation as sound travel times in water for these ranges are significantly smaller
than the mismatch. Determining which one of these two sets is responsible for this mismatch
was found to be impossible. As this mismatch was not constant it was impossible to accurately
compensate for this issue. This means that this issue must also be present in the previous
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results, although not directly evident because of the lower accuracy.

The assumption that, based on salinity and temperature measurements, there will be no
significant refraction of sound waves in the measurement waveguide was found to be correct. If
not larger errors in TDOA estimation from the ray tracing method should have been encoun-
tered. As the day of measurements was a sunny day with temperatures of 23 °C at sea, some
density differences between layers in the waveguide could have been expected, but fortunately
this effect was found to be insignificant. To completely rule out refraction some measurements
should be taken at the end of summer, when the coastal areas might have been warmed by
longer periods of warm weather. However, for practical applications during most of the year,
refraction is not expected to count a significant shift in TDOA estimation based on the data in
this thesis.

5.6 Recommendations for future research

The aim of this thesis was to lay the foundation for a practical cepstral ranging method that
can be used to survey coastal areas at a time where sub-sea infrastructure is at an elevated risk.
Unfortunately some issues were encountered that first have to be solved before any practical
deployment can be considered. Therefore the recommendations for future research will mostly
be aimed at the mitigation of these problems.

The primary recommendation is to automate the ray tracing algorithm as presented in
section 3.4.3. This might be done by finding an effective method to create synthetic cepstra
from the ray tracing TDOA results which should be suitable for matching from a library analog
to the experimental methods in this thesis. Another suggestion would be to create an effective
peak-finding algorithm that is able to reliably find the first two or three TDOA rahmonics in
a cepstrum to match them to a ray tracing TDOA value. While this peak-finding algorithm
might impose a serious challenge it would offer a very elegant solution as it removes the need
for comparison of complete cepstra. If a reliable solution has been found that can couple
ray tracing results to measured cepstra the result would most probably be very effective and
accurate. Next to that does ranging based on only the cepstrum peak with smallest quefrency
and not the following rahmonics increase the robustness of ranging. As shown in section 5.4
cepstra can vary somewhat between vessels of comparable characteristics as rahmonics can
vary in strength, but the cepstrum peak with the smallest quefrency is always expected to be
present. Using only this peak can increase the reliability between different vessels. Of course
the source depth needs to be comparable between vessels to keep the multi-path propagation
in the waveguide constant.

The second recommendation would be to further investigate the influence of source sound
level and consequently SNR on the matching performance. The most probable explanation
for the difficulties of performing ranging on a different vessel or the same vessel at high tide
with a lower engine speed was found to be differences in sound level compared to the library.
The data available however was insufficient to say this with certainty. Different measurements
with controlled tidal height and engine speed to find a correlation between these factors and
ranging performance are expected to offer further insight into the exact cause. When the
cause is identified it can be expected that methods to circumvent the degradation of ranging
performance can be found.

Finally it might prove effective to combine the methods in this thesis with machine learning
or artificial intelligence. This relatively new field has a huge potential when it comes to pattern
recognition and might therefore be effective at matching a measurement to a library.
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5.6.1 Possible practical applications

First the current issues with cepstral ranging as documented in this report need to be solved.
Once this method has matured sufficiently it offers a robust ranging method that only requires
a single, readily available sensor and can perform in shallow water.

When paired with a method to perform bearing estimation it offers the possibility of 2D
localisation on the horizontal plane for an area with a radius of at least 700 meters. One
possible configuration could be three hydrophones, placed within short distances of each other
but not on the same line in the horizontal plane. These three hydrophones can be split in three
possible pairings, which together with a cross correlation algorithm can find the unambiguous
bearing to a target as shown in section 2.2.1.1. Cepstral ranging can then be performed on any
of the hydrophone signals, possibly including beamforming for a small array gain, to find the
accompanying range and thus the polar coordinates of the source.

Another possible configuration would be to use a vector sensor as used for the measurements
in this report. The internal hydrophone signal can be used for cepstral ranging while the signals
of the three movement sensors can be used to find the unambiguous bearing, resulting in a
similar localisation method as described above.

Both these suggested configurations require only a small amount of readily available hard-
ware and can perform localisation from a single point. Using a vector sensor results in an even
smaller sensor setup, the sensor package used to generate data for this thesis for example takes
up less than one square meter. However, the first suggested configuration of three hydrophones
uses less expensive and possibly more robust hardware. It’s size will mostly depend on the
maximum wavelength that needs to be detected for bearing estimation.
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6 Conclusion

While cepstral ranging has had some articles dedicated to it in literature it was found that
research on this topic was mostly incomplete. No data could be found on the effects of important
parameters for cepstrogram generation nor on the algorithms suitable to convert a cepstrum
to an estimate of range and the implications of environmental factors. The aim of this thesis
was therefore to generate this data and to give an overview on important factors to reckon
with when selecting a cepstral ranging method for practical usage, and to show what can be
expected of cesptral ranging when it comes to performance.

6.1 Cepstral parameters

It was found that a lower sample rate of approximately 2.5 kHz actually increases the accuracy
when paired with the single-pass library as long as the library cepstra match the measurement
cepstra well. With mismatch created by a change in bathymetry or SNR, a slightly higher
sample rate of 10 kHz gave better results. Another interesting conclusion is that not all data
has to be analyzed for maximum accuracy as the data-blocks relatively small when limited to
the maximum quefrency of interest. The method of using sub-blocks to reduce noise was found
to be effective.

6.2 Library types

Two (experimental) library types were conceived in this thesis. This includes the single-pass
library, where only a small part of experimental data is used to generate a library, and the
averaged library where a larger part of experimental data is selected and averaged in groupings
of comparable ranges to generate a library. It was found that the single-pass library is superior to
the averaged library when measurements are taken in an environment with varying bathymetry.
This variation produces smearing in the averaged library which hinders ranging as it decreases
the amplitude of cepstrum peaks of interest. In an environment of virtually range independent
bathymetry, or where data is used with the exact same environmental parameters and location,
the averaged library might offer some advantage in noise reduction.

Next to these experimental methods a ray tracing algorithm was developed with the aim
to create a synthetic library. While efforts to create this synthetic library to automate rang-
ing failed, this algorithm still proved to be impressively accurate in forecasting TDOA values.
No TDOA estimation errors by refraction should be expected when using this method in the
environment of measurements. Once a method has been found to create a library from this
algorithm, or any other solution to compare measurement cepstra to the ray tracing results, the
ray tracing method is expected to offer significantly superior performance over the experimental
libraries. Next to an increase in ranging performance it offers the possibility of creating the
libraries from open source data, without the need for time consuming and expensive measure-
ments.
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6.3 Matching algorithms

Three different matching algorithms were investigated in this thesis. The Pearson algorithm
which compares covariance of two sets, the minimisation algorithm which compares the magni-
tude for each discrete quefrency and the cross correlation algorithm to correlate two sets of data.
While the Pearson and minimisation algorithms showed comparable performance the spread of
ranging values was deemed to be lower for the minimisation algorithm. It is recommended to
use this algorithm in combination with a low sample rate as it also is computationally more effi-
cient than the Pearson algorithm. The cross correlation algorithm showed a significantly worse
performance, unless there was a mismatch between library cepstra and measurement cepstra.
In that case the cross correlation algorithm performed comparable to the Pearson algorithm,
while the minimisation algorithm suffered a more significant reduction from this mismatch.

6.4 Tidal influence and mismatch

As expected the change in water height by tidal movement has a significant effect on ranging
performance, although this effect is more profound than anticipated. A systematic error de-
pending on range can be expected from this change in water height, however with the cepstrum
computation settings as selected in section 4.1 no ranging can be performed and the range
estimation mostly consists of noise. The main cause was identified to be in a variation between
the library cepstra and the measurement cepstra at high tide at the higher quefrency range. No
other reflection paths that show nonlinear behaviour with the tidal mismatch, and thus hinder
ranging, could be identified. It is therefore assumed that this decreased ranging performance is
caused by the significantly lower engine speed of the RHIB during the high tide measurements.
By reducing the maximum generated quefrency and increasing the sample rate the ranging
performance could be increased significantly, although not to the levels without mismatch.

A second vessel that passed the sensor at lower speed during the low tide measurements
where the libraries were created was also ranged less accurate. This reinforces the conclusion
that the decrease in ranging performance is the result of a lower engine speed and SNR.

6.5 Overall accuracy

The maximum realistic accuracy attained in this thesis has been a SMAPE of 25% using the
single-pass library and the minimisation matching algorithm, which can be improved to 16%
when a moving average filter is added. The used library however has to be created at exactly
the correct water height for these results. When using a directional sensor setup and a library
that also accounts for the bearing of the source and therefore bathymetry this value might be
improved. The ray tracing method, while not yet automated, shows potential to have a SMAPE
of approximately 5%.

When it comes to range, no specific dependency of error and range can be discovered. Cep-
stral ranging performs well up to the maximum range of the RHIB in this dataset, which is
approximately 700m. This result is impressive considering the shallow depth of the waveg-
uide and demonstrates the effectiveness of cepstral ranging in shallow water. In practice this
decreases the amount of sensors needed to survey a specific area.

76



6.6 Contributions to the field of cepstral ranging

The emerging field of cepstral ranging shows impressive ranging results in literature. However,
the data on which these findings were based is often generated in highly controlled experiments
with little research presented on possible detrimental factors. The aim of this thesis was to
investigate the potential of cepstral ranging in a less controlled environment and therefore to
validate it’s performance in practical, real world situations.

Therefore a dataset was selected that was not necessarily recorded for this thesis, but still
contained relevant data to evaluate cepstral ranging in a real world setting. Using this data
the performance of cepstral analysis was found to be indeed spectacular with an experimentally
generated library, but severely dependent on an exact match between library and measurements,
which was not apparant from literature. Literature on cepstral ranging mostly use the same
data to generate both the library and the measurements that need to be ranged.

Multiple matching algorithms, two of which were not yet used for cepstral ranging in lit-
erature, were evaluated. Ranging performance was found to be dependent on engine speed
or SNR, especially in the higher quefrency range, a conclusion which was not found in any
existing literature. This thesis shows that the negative effect of SNR on ranging performance
can be reduced by limiting the maximum quefrency. It was also concluded that a low sample
rate in the 2Khz range offers the best performance without mismatch between measurements
and library, while a higher sample rate in the 10kHz range offers better performance with a
mismatch between data.

The foundation was laid of a ray tracing method that can accurately predict TDOA val-
ues with varying environmental parameters like tidal height or sound speed. This algorithm
only uses open-source data to generate TDOA estimations which were found to be extremely
accurate for all measurements available in the TNO dataset. While the algorithm is not yet
able to perform automated ranging, it provides a step to a system that is not dependent on
experimentally generated data for TDOA estimation, nor prone to mismatch by environmental
factors.

In conclusion this thesis provides an advancement of cepstral ranging to convert it from
a theoretical method to practical application. Encountered problems with cepstral ranging,
not yet presented in literature, were identified and at least partially solved, or suggestions for
further research to solve these problems was given.
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Appendices
A Matlab code

A.1 AIS data import

function AISDATA = import_AIS(latlim2,lonlim2)

%% Import AIS data

Bl = readtable ("2022-05-17 _decoded_typel.csv");
B2 = readtable ("2022-05-17_decoded_rest.csv");
B2 = B2((B2.msg_type < 4 | B2.msg_type == 18) ,:);

Bil = B1(:,["timestamp","msg_type","lat","lon"

,"mmsi","speed"]);

B22 = B2(:,["timestamp","msg_type","lat","lon","mmsi","speed"]) ;

B33 = [B11;B22];

B33 = sortrows(B33,"mmsi");

B33 = B33 (" (B33.lat < latlim2(1) | B33.lat > latlim2(2)),:);
B33 = B33("(B33.lon < lonlim2(1) | B33.lon > lonlim2(2)),:);

B33.timestamp = datetime(B33.timestamp*1le6,’ConvertFrom’,’epochtime’,’TicksPerSecond’,1e6,”’

Format’,’dd-MMM-yyyy HH:mm:ss.SSSSSS’) + hours(2);

AISDATA = B33;

end

A.2 Cepstrogram generation

function [rsb,tb,tt] = pceps(y,fs,bs,sbs,bov,sbov,limits)
% [rsb,tb,tt] = pceps(y,fs,bs,sbs,bov,sbov,limits)

calculates the power

% cepstrum of dataset y which is sampled with samplerate fs.

% The dataset is split into blocks of size bs with an overlap of bov.
% The blocks can also be divided into 5 subblocks with size sbs and

% overlap sbov. If this is not required,

% Maximum time delay can be set with

the vector ’limits’

% lower and upper limit. If not required, fill in [] for
% results in a maximum timedelay of sbs/2/fs or bs/2/fs.

i = 1;
j =0
k = 1;
if or(isempty(sbs),isempty(sbov)) ==
sbs = [];
sbov = [];
perform_averaging = false;
else
perform_averaging = true;
end
if perform_averaging == true

steps = (bs-sbs)/((1-sbov)*sbs);
end

while i < length(y)

true
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37 if i+bs-1 > length(y)

39 break

40

41 end

42

43 yb = y(i:i+bs-1);

14

45 if perform_averaging == true

A7 while j <= steps

19 ysb = yb((1:sbs)+(j*(1-sbov)*sbs));
50

51 % fsb(:,j+1) = abs(fft(hanning(length(ysb)) .*ysb)) .~ 2;
52 fsb(:,j+1) = abs(fft(ysb)) . 2;

53 j = j+i;

54

55 end

56

57 fsb_mean(:,k) = mean(£fsb,2);

58 rsb(:,k) = ifft(loglO(fsb_mean(:,k)));
59

60 else

61

62 % fsb = abs(fft(hanning(length(yb)) .*yb)) . 2;
63 fsb = abs(fft(yb))."2;

64 rsb(:,k) = ifft(logl0(£fsb));

65

66

67 end

68

69 tb(k) = i/fs;

70

71

72 i = i + (bovxbs);

73 j = 0;

74 k = k+1;

76 end

78 rsb = rsb(l:round(size(rsb,1)/2),:);
80 % i = i-(bov*bs)+bs-1;

g2 % Constrain time lag and perform normalisation

83
g4 if isempty(limits) == false

85

86 if round(limits (2)*fs) > size(rsb,1)
87

88 limit_upper = size(rsb,1);

8¢

90 else

91

92 limit_upper = round(limits (2)*fs);
93

94 end

95

96 limit_lower = round(limits (1)*fs);
o7

98 rsb(limit_upper+l:end,:) = [];

99 rsb(1:1limit_lower,:) = [];

100 tt = (limit_lower:limit_upper-1)/fs;
101

102 else

103

104 tt = (0:size(rsb,1)-1)/fs;

105

106 end

109 end
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A.3 Raytracing algorithm

function [pathlength,directlength,delta_t ,x_ref,y_ref,err] = raytracing_function_num3(xb,yb,xs
,ys,target ,theta,c_0,res)

xbb
ybb

O:res:max (xb);
interpl (xb,yb, xbb) ;

R W N

6 for ik = 1:length(theta)
s %% First ray

10 % First ray setup
11 p0 = tand(theta(ik));

13 rayl = pO*xxbb + ys;

15 % first reflection computation

16 delta_1l = abs(rayl - ybb);

17 [7,80111_I] = mink(delta_1,2);

15 delta_pointsll = delta_1(sort(solll_I));
19 s0l11_I = sort(solll_I);

xbb(s0l111_I(1)) + (delta_points11(1l)/(sum(delta_pointsl1))) * res;

21 sollx (ik)
2 pO * solix(ik) + ys;

solly (ik)

24 % angle of reflecting surface
25 pl = (ybb(sol11_I(2)) - ybb(solll_ I(1))) / res;

7 % angle of reflected ray
28 theta_p2 = -theta(ik) + 2*atand(pl);

30 %% second ray

32 % second ray setup
33 p2 = tand(theta_p2);

35 ray2 = p2*xbb + solly(ik) - (p2 * sollx(ik));

37 s012x(ik) = sollx(ik) + -solly(ik)/p2;
38 so0l2y (ik) 0;

11 %% Third ray

43 ray3 = -p2*xxbb - (-p2 * sol2x(ik));

45 delta_3 = abs(ray3 - ybb);

6 [test3,s0133_I] = mink(delta_3,2);

17 delta_points33 = delta_3(sort(sol33_I));
15 80133_I = sort(sol33_I);

50 if test3(1) > 2 * res

52 solilx (ik) = [];
53 solly(ik) = [1;

54 sol2x (ik) = [];
55 sol2y(ik) = [];
56 break

58 end

60 s013x(ik) = xbb(s0133_I(1)) + (delta_points33(1l)/(sum(delta_points33))) * res;
61 so0l3y(ik) = -p2*so0l3x(ik) - (-p2 * sol2x(ik));

63 err (ik) = so0l3x(ik) - target;

64 x_ref_temp = [xs sollx(ik) so0l2x(ik) sol3x(ik)]’;
65 y_ref_temp = [ys solly(ik) sol2y(ik) sol3y(ik)]?’;
67 d = diff ([x_ref_temp y_ref_templ);

60 tl = sum(sqrt(sum(d.*d,2)));
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pathlength(ik) = tl(end);

directlength(ik) = sqrt(sol3x(ik)~2 + (so0l3y(ik)

delta_t (ik) = (pathlength(ik)-directlength(ik))/c_0;

x_ref (ik,:) = x_ref_temp’;
y_ref (ik,:) y_ref_temp’;

end

if exist(’so0l3x’,"var") == 0
pathlength = Nal;
err = NalN;
x_ref = [NaN NaN NaN NaN];
y_ref = [NaN NaN NaN NaN];
directlength = Nal;
delta_t = Nal;

else

end

end

A.4 Raytracing solver

function [pathlength,directlength,delta_t ,x_ref ,y_ref ,6err]

target ,margin,theta,c_0,res)

%% Iterative raytracing

[pathlength ,directlength ,delta_t ,x_ref ,y_ref ,err]

target ,theta,c_0,res);
iq = 1;

while min(abs(err)) > margin

err_neg = err;

err_pos = err;
err_neg(err>0) = nan;
err_pos (err<0) = nan;
[*,I_neg]l = max(err_neg);
[“,I_pos] = min(err_pos);

theta = linspace(theta(I_neg),theta(I_pos)

[pathlength ,directlength ,delta_t ,x_ref ,y_ref ,err]

target ,theta,c_0,res);
if iq > 100

disp(theta)

disp (err)
disp(’stuck in iteration?)
break
end
iq = iq+1;
end
[err,I_search] = min(err,[],"ComparisonMethod"

pathlength = pathlength(I_search);
directlength = directlength(I_search);
delta_t = delta_t(I_search);

x_ref = x_ref(I_search,:);

y_ref = y_ref(I_search,:);

,10) ;

,"abs");
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iterative_raysolver (xb,yb,xs,ys,

raytracing_function_num3(xb,yb,xs,ys,

raytracing_function_num3(xb,yb,xs,ys,



43 end
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