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Abstract
In 2021, the interior structure of Mars is revealed for the first time with seismic data from InSight mission.
The red planet is found to have a liquid core, a 500­km lithosphere, and an average crustal thickness
ranges from 24 km to 72 km (Khan et al., 2021, Knapmeyer­Endrun et al., 2021, Stähler et al., 2021).
Before reliable seismic measurements from the ground are available, the proper method to investigate
the interior of a terrestrial planet is to study its topography and gravity. By modeling the relationship
between the topography and gravity and comparing it to the observations, important information about
a planet’s interior structure can be learned. Stress state, which can be inferred from observed surface
faults, provides more information about the formation and evolution of major features on a planet. The
finite element method (FEM) can be used to compute the state of stress in the planet with a given
model.

This work contributes to understand the interior of Mars by developing a new 3D flat FEM model.
The performance of the FEM model is evaluated by comparing the calculated lithospheric stresses
(and strains) to observed faults on the surface of Mars. To improve the accuracy of the FEM model,
various crustal profiles are incorporated and the effect of a mantle plume is considered. The main
research question of this study is: What information about the subsurface crustal structure of Mars can
be revealed from the surface faults?

To obtain a realistic crustal profile for Mars, different crustal models are investigated. These models
come from the theories of both classic isostasy (Airy and Pratt) and flexural isostasy (infinite plate
and thin shell). In order to evaluate these crustal models, the power spectra of the spherical harmonic
expansions of Martian gravity anomaly and the gravity effect of topography with different compensations
are compared. For 2 ≦ n ≦ 90, the thin shell model with an elastic thickness of the lithosphere (Te) of
158 km fits the observation best. But the infinite plate model outperforms the thin shell model for
5 ≦ n ≦ 90 with a Te of 136 km. Varying the Young’s modulus in the thin shell model from 100 GPa to
1 GPa changes the best­fitting Te from 120 km to 580 km.

The 3D flat FEM Mars model is made with the commercial software package Abaqus. In order
to simulate the effects of varying crustal thickness (or density) from the crustal models, a deviatoric
buoyancy approach is proposed. This approach neglects the gravity in the crust and mantle, and it only
considers the effects of the surface loads and the corresponding buoyancy. The boundary effect in the
flat model is reduced by extending the model size. A series of simple loads, which simulate different
types (positive, negative, and hybrid) of topography, have been generated to verify the performance of
the FEM model.

Three regions are selected as the regions of interest: Tharsis Rise, which represents large volcanic
mountains; Hellas Basin, which represents impact craters; and Utopia Basin, where both volcanic
mountain and impact basins coexist. The topography of these regions is loaded into the FEM model,
and the predictions from the model are compared to the observations. The stress and strain analyses
for the Tharsis Rise suggest that the formation of the bulge and the surface faults are affected by both
the volcanic constructed lithosphere and the dynamic support from the deep mantle plume. The plume
underneath Tharsis is likely to experience a reversal from upwelling to downwelling. Such a reversal
from the bottom changes the property of the surface stress and results in the current faults distribution.
The Hellas Basin is found to be in isostatic equilibrium, while the Utopia Basin is not.

Although the FEM model could not explain the direction and location of all faults in the regions of
interest, it gives insights into whether the target region is in isostatic equilibrium. By further including
the effect of mantle plume (as done for Tharsis), it can make a more realistic prediction on the formation
and evolution of target regions. The main recommendation from this study is to construct a spherical
FEM model for Mars and incorporate the crustal profile in it. Future studies could also investigate the
effects of spatial variations in crustal thickness and density on Mars.
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1
Introduction

Mars, the “Red Planet”, is the fourth inner planet in the solar system. As a neighbour of the Earth,
Mars is also a terrestrial planet but with a much thinner atmosphere. It has a mean radius of about
3389.5 km (Seidelmann et al., 2002), which is about half of the size of the Earth. Mars is similar to
the Earth in terms of the tilt of the rotational spin axis and rotational period (Laskar et al., 2004), which
result in comparable daily and seasonal features to Earth. The red planet has been a destination for
space exploration not only because it is close and similar to Earth, but also for scientific goals like
searching for life and preparing for human exploration1. Another important scientific aim is to discover
the subsurface and evolution of the planet.

In this thesis, a completed introduction consists of both chapter 1 and chapter 2. This chapter only
provides a brief introduction on Mars (section 1.1) and literature reviews (section 1.2) about the interior
structure modeling of Mars as well as stress state estimation. The research questions (section 1.3) are
presented at the end of this chapter. Detailed introductions of topography, gravity, faults and stresses
can be found in chapter 2.

1.1. Mars and Its History

Figure 1.1: Impression of the interior of Mars (Cottaar and Koelemeijer, 2021). Mars differentiated into crust, mantle and core.
Shear waves induced by a marsquake can reflect on the boundary of the core and be detected by the seismometer.

1https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/Why_go_to_
Mars [15­01­2021]

1

https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/Why_go_to_Mars
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/Why_go_to_Mars
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The interior of Mars can be divided into three layers: the crust, the mantle, and the core. Recent
studies have revealed the interior structure of Mars with seismic observations from the InSight mission.
The average crustal thickness for Mars is estimated between 24 km and 72 km (Knapmeyer­Endrun
et al., 2021). The lithospheric thickness is found to be around 500 km (Khan et al., 2021), and the core
of Mars is discovered to be liquid with a radius of about 1830 km (Stähler et al., 2021).

Figure 1.1 shows a impression of the interior of Mars. The crust is an outer thin shell wrapping
around the planet. Underneath the crust is the thick mantle. The lithosphere consists of the crust
and the uppermost mantle. The liquid metal core lies deep down into the red planet. A path of the
shear waves is highlighted in Figure 1.1. The shear waves origin from a Marsquake, bounce at the
core­mantle boundary, and propagate to the site of the seismometer.

Figure 1.2: Martian cratering chronology model with main Martian eras indicated (Rossi and Gasselt, 2010). N stands for number
of impact craters per square kilometers. 1 Gyr = 109 years.

The geological history of Mars can be separated into four periods (Carr and Head, 2010, Rossi and
Gasselt, 2010): the pre­Noachian (4.6 to 4.1 Gyr), the Noachian (4.1 to 3.7 Gyr), the Hesperian (3.7 to
3.0 Gyr), and the Amazonian (3.0 Gyr to present). Figure 1.2 presents the number of impact craters
(radius larger than 1 km) per square kilometers as a function of geological age. The Noachian period is
featured with high cratering rates. The speed of the crater formation became stable from the middle of
Hesperian period (around 3.5 Gyr) to the end of middle Amazonian period (1 Gyr). The major features
on the surface of Mars (as shown in Figure 2.1) were formed in the early stage (before 3.5 Gyr). For
instance, the global dichotomy is estimated to form in the pre­Noachian, and the formation of Hellas
Basin marked the beginning of the Noachian period. It is also during the Noachian period that most of
Tharsis region began to form (Carr and Head, 2010).

1.2. Modeling Mars
Mars has a long geological history (4.6 Gyr). But the exploration of Mars by human­made spacecraft
only started over half a century ago. This means that humanity only has close observations on Mars
for less than 1

90,000,000 of the planet’s history. In other words, assuming the total age of Mars is 100
years, the spacecraft only have observed the planet for the last 35 seconds.

With this ”35­second” snapshot of Mars, scientists have built different models to simulate Mars.
The interior of Mars can be most effectively investigated by seismic measurements. But the data from
InSight mission are only available since 2019. Before that, the interior of Mars has been investigated
by studying the relationship between the data of topography and gravity. This section reviews how
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the interior of Mars was modeled and how the stress state was calculated from other literature. The
methodologies used in this study are elaborated in chapter 3 and chapter 4.

1.2.1. Interior Structure
With topography and gravity data, information about the lithosphere (crust and uppermost mantle) of
Mars can be revealed. Generally, this can be done by establishing crustal models first. Then, by com­
paring the modeled relationship (e.g., admittance) between gravity and topography to the observation,
geophysical parameters of the lithosphere (e.g., crustal thickness, crustal density, and mantle density)
can be derived (Wieczorek, 2015).

Gravitational admittance is a parameter to link topography and gravity data. It is the ratio between
gravity anomaly and Fourier transformed topography (Watts, 2001). To calculate admittance, geophys­
ical models which can estimate the gravity anomaly from topography are needed. Since the gravity
anomaly depends on parameters like lithospheric thickness, mantle density and crustal density, a re­
alistic estimation of these parameters can be obtained by varying the values of these parameters and
finding the best fit admittance. Watts (2001) shows the calculated admittance from different models
of isostasy globally. A global admittance study for a planet reveals the characteristic of its lithosphere
straightforwardly, but detailed information might be neglected.

For a planet like Mars whose surface is dominated by different topographic features, localized anal­
ysis of a certain region may bring more accurate results than a rough global analysis. McGovern
et al. (2002) proposed a spherical shell flexure model of the Martian lithosphere considering both sur­
face and subsurface loads. Using the spatial­spectral localization method developed by Simons et al.
(1997), they obtained the gravity/topography admittance for several volcanic regions. Estimations of
the lithosphere thickness were derived and converted into heat flow to reveal more information about
the planet’s interior. However, an inconsistency in the use of Martian radius was pointed out by Bel­
leguic et al. (2004), which led to some corrections of original work in a later paper (McGovern et al.,
2004).

To investigate the localized admittance of the gravity and topography fields around major Martian
volcanoes, Belleguic et al. (2005) used a numerical method with flexure models and a spectral local­
ization algorithm proposed by Wieczorek and Simons (2005). The densities and elastic thickness of
major volcanoes, as well as the crustal density, were constrained by Belleguic et al. (2005). They fur­
ther modeled the subsurface loads and concluded that the load under the Elysium rise and Arisa Mons
was more likely to be a mantle plume, which indicated recent volcanism in those areas.

Beuthe et al. (2012) investigated the crustal density and elastic thickness in the Tharsis region by lo­
calized admittance study on gravity data from Mars Express and Mars Reconnaissance Orbiter (MRO).
The authors predicted the gravity signal in flexural lithosphere models with two loading techniques: one
was a common top/bottom loading method, and the other was a new top/top model with loading history.
The density and elastic thickness for major volcanoes around the Tharsis province as well as Elysium
and Alba Mons have been estimated. But the constraints on the elastic thickness does not improve
with better (lower wavelength) gravity data. The reason might be that the gravity signal loses sensitivity
on lithosphere thickness as the wavelength decreases.

Instead of directly modeling the relationship between gravity and topography, Watts and Moore
(2017) modeled the gravity effects of the topography with different isostatic models and compared the
power spectra of outcomes to the observed gravity anomaly. By doing so, Watts and Moore avoided
the use of admittance and made the results easier to interpret under geophysical context. In this study,
the approach by Watts and Moore (2017) is applied to Mars to find the more realistic crustal models.

1.2.2. Stress State
The stress state in the lithosphere of Mars contains information about tectonics, volcanism, mantle
convection, and heat flow (Tenzer et al., 2015), which contributes to the understanding of current state
and evolution of Mars. On the surface of Mars, a large number of faults have been observed. The
state of the stress which induces a surface fault can be retrieved by examining the direction of the
displacement on the fault (Turcotte and Schubert, 2014). The relationship between surface faults and
stresses are discussed in chapter 2. The stress modeling is elaborated in chapter 4. This subsection
reviews how stress state is modeled by other studies.

The stress state in the lithosphere of Mars can be computed analytically from a thin shell model. The
equations to calculate lithospheric stress in thin elastic shell models were derived by Beuthe (2008).
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With these equations, it is convenient to construct the stress maps. However, the analytical solution
is only valid for a homogeneous thin shell model, which is not a good representation of the reality. To
solve the general equations from models with variable thickness, numerical methods are needed.

Numerical approaches like Finite Element Method (FEM) can also calculate the state of stress in the
lithosphere. Wu (2004) discussed how to apply commercial FEM software for geophysical problems.
Since commercial FEM tools solve the stiffness equation, Wu proposed to modify the stiffness equation
and add the terms of isostatic restoring force and self­ gravitation. Such modifications as well as related
boundary conditions were applied for a flat Earth model without self­gravitation and a spherical earth
model with self­gravitation in Wu’s paper. Wu emphasized that the output from FEM model should be
post­processed before it can be used for interpretation.

Spherical, compressive, self­gravitating and viscoelastic Earth models were built by Wang et al.
(2008). Even though these models (Wang et al., 2008) were designed for Earth, Blank (2015) managed
to adapt them for Mars and obtain the strain field of Mars from FEM program’s output. Blank (2015)
showed that commercial FEM packages discussed by Wu (2004) can be used for computing the state
of stress and strain for the lithosphere of Mars.

Other techniques are also used to compute the stress state on Mars. Tenzer et al. (2015) used a
flexural isostatic model based on a thin plate to estimate the sub­crustal stress and solved the Vening
Meinesz­Moritz inverse problem of isostasy to determine the crustal thickness of Mars. They con­
cluded that Martian sub­surface stress was caused by crustal loadings and volcanism­related regional
tectonism instead of active global tectonics.

Non­hydrostatic stress states in the Martian interior were calculated by Batov et al. (2019) with
different rheological models to investigate the zones with high seismic activity on Mars. Two major
types of models were used by Batov’s group: one was a flexural lithosphere model and the other one
was with extra melting domains. They computed the non­hydrostatic stress by summing up the initial,
hydrostatic and additional stresses. Significant shear and tensional stresses were found in regions
like Hellas Planitia, Argyre Planitia, Mare Acidalia, Arcadia Planitia plain and Valles Marineris. These
places were assumed to be possible sources of marsquakes.

In this study, the FEM will be used to compute the stress state in the lithosphere of Mars. The
surface faults on Mars are used to check the calculated stress.

1.3. Research Questions
Previous sections suggest that the interior of Mars can be investigated with topography and gravity
data, and additional observations on faults reveal more information about stress state on Mars. FEM
can be used to bridge these two parts by building a Mars model with interior structure and calculating
the stress state in it. Thus, the research question for this study is formulated as

What information about the subsurface crustal structure of Mars can be
revealed from the surface faults?

To answer the research question, the following sub­questions are derived:

1. What are the existing realistic crustal models for Mars?

(a) What are the basic and advanced crustal models from the literature?
(b) How to implement the selected crustal models in Matlab/Python?
(c) What would be the effect of applying different crustal models on the results of surface stress?
(d) What would be the effect of varying model parameters (e.g., lithospheric thickness, crustal

density, mantle density, and Young’s modulus) on the results of surface stress?

2. How to compute the surface stress state on Mars with FEM?

(a) Which FEM software packages are suitable for this project?
(b) Are there any existing FEM models for Mars? If there are, how to improve these models? If

not, how to create one?
(c) How to incorporate different crustal models into the Mars FEM models?
(d) How to extract the state of lithospheric stress from the output of FEM?
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3. How to analyze the relationship between surface faults and subsurface crustal structure on Mars?

(a) What is the relationship between crustal structure and the state of stress in the lithosphere?
(b) What is the relationship between surface faults and lithospheric stress state on Mars?
(c) Would the computed stress state have a better fitting for the younger faults?

Based on the main research question and followed sub­questions, this thesis can be divided into
three parts (as shown in Figure 1.3): firstly, studying different crustal models for Mars; secondly, im­
plementing different crustal models into the FEM models for Mars and calculating the stress state of
lithosphere; lastly, comparing the modeled stress state and observed faults on the surface of Mars.

Figure 1.3: The main work packages for this thesis.

The following chapter 2 serves as an additional introduction where the data (topography, gravity
and faults) used in this study are introduced. Readers can find more background information on the
red planet from chapter 2. After the introduction from both chapter 1 and chapter 2, methodologies
are presented in chapter 3 and chapter 4. The investigation on the subsurface crustal structure of
Mars is discussed in chapter 3. The construction of the FEM model, as well as the incorporation of
the crustal models into the FEM model, is elaborated in chapter 4. Verification and validation on the
methodologies are presented in chapter 5. Results, discussion, conclusion, and recommendation can
be found in chapter 6, chapter 7, chapter 8, and chapter 9, respectively.





2
Observations of Mars

Mars has been a target for space exploration for decades. In the pre­spacecraft age, information
of Mars was obtained by naked­eye and telescopes. Observation of the Red Planet by naked­eye
could only reveal information about its position and motion. Surface details of Mars were visible when
telescopes came into use in the observation. Italian astronomer Galileo Galilei was the first person
who viewed the planet with a telescope back in 1610 (Peters, 1984). The first map of Mars where
Syrtis Major Planum was correctly shown (Moore, 1984) was drawn by Dutch astronomer Christiaan
Huygens in 1659. Telescope observations yielded more information about Mars like the rotation period
and axial tilt (William, 1996).

The second period of Mars exploration began in the 1960s with robotic spacecraft. The goals of
early flyby missions in the 1960s were to approach Mars, conduct close measurement and image the
Martian surface at close distance (Snyder and Moroz, 1992). Later orbiter, lander and rover missions
aimed to take more images, conduct more detailed measurements and experiments for the planet. The
US Mariner 4 first completed the flyby mission to Mars in 1965 and sent back the first images of the
Martian surface (Nicks, 1967). On 14 November 1971, Mariner 9 arrived at Mars and entered the orbit,
making it the first orbiter of Mars. The title of the first lander of Mars goes to Soviet Mars 3 lander which
had a soft­land on Mars in December 1971. After decades of unmanned spacecraft mission to Mars,
the next period of Mars exploration is aim to pave the way for future human exploration (Rossi and
Gasselt, 2010).

This chapter presents important observations (topography, gravity and faults) of Mars in the ”35­
second snapshot”. Topography, which described the surface feature, is introduced firstly. Secondly, the
gravity of Mars in presented, which contains information about mass distribution on Mars. Thirdly, the
observed faults and stresses are discussed. This chapter aims to provide more background information
for readers.

2.1. Topography
The topography of Mars has been mapped by different approaches. During the Martian oppositions in
the 1970s and early 1980s, earth­based radar measurements were used to retrieve topography infor­
mation on parts of Mars (Downs et al., 1982). Since those observations from Earth were conducted
during Martian oppositions, the radar ranging data only covered the area within ±23° around the equa­
tor. The topography models covering a larger surface area were developed with data from several
Mars missions. For example, radio occultation measurements from Mariner 9 and Viking orbiters were
used to estimate the topography by Cain et al. (1972) and Lindal et al. (1979) separately. Images from
the Viking mission were used by Wu et al. (1984) to derive the topographic information with stereo­
scopic viewing techniques. But these Martian topography models were limited by spatial extend or
large uncertainty. Errors of these models were about 1 to 3 km in the vertical direction (Smith et al.,
1999).

To obtain high­quality global measurements of the Martian topography, the Mars Orbiter Laser Al­
timeter (MOLA) was sent to Mars onboard Mars Global Surveyor (MGS) in 1996. Four­year measure­
ments (from 1997 to 2001) of MOLA contributed to topography models whose average accuracy was

7
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better than 1 m with respect to the planet’s center of mass (Neumann et al., 2001).
In this study, the global topographic maps from MOLA are used. The data can be downloaded from

the website of NASA Planetary Data System (PDS) Geosciences Node1 and has the map resolution
from 4 to 128 pixels per degree globally. Both the planetary radius and areoid2 maps can be found
on the above­mentioned website. And the topography is calculated as the difference between the
planetary radius and the areoid.

Figure 2.1: Topography of Mars with data from MOLA. The range of the colorbar is limited to ±8 km in order to show the
global topographic features. The map is presented using a Mollweide projection with a central meridian of 0∘ longitude. Major
topographic features are labeled.

The topography of Mars from MOLA is shown in Figure 2.1. The most prominent features of Martian
topography are the hemispheric dichotomy, the Tharsis bulge and the Hellas basin. The hemisphere
dichotomy describes the large differences (about 5 km) in elevation between the Northern and Southern
hemispheres (Smith et al., 1999). This phenomenon is also referred to as crustal or global dichotomy.
It is shown in Figure 2.1 that the Northern hemisphere is dominated by lower topographic values (below
zero km) while the mean height of the Southern hemisphere is more above zero km. Generally, the age
of the surface can be approximated by counting the number of impact craters per unit area (Tanaka,
1986). The fact that the surface in the north is more lightly cratered suggests that the Northern hemi­
sphere is younger than the Southern. The smoother Northern hemisphere was likely to be resurfaced
by volcanism in the late Noachian­early Hesperian time period (Robinson, 1995).

Tharsis bulge, which is also called Tharsis rise, refers to the high­elevation region which is centered
at 100° W longitude near the equator. The area is characterized by Olympus Mons and the Tharsis
Montes. With a height of nearly 22 km, Olympus Mons is the highest volcano on Mars and currently the
second tallest mountain in the Solar System (next to Rheasilvia on Vesta). Tharsis Montes is located
to the left of the centre of this region where three large shield volcanoes aligned: Arsia Mons, Pavonis
Mons and Ascraeus Mons. The formation of Tharsis bulge was largely due to volcanism and related
tectonic processes (Williams et al., 2008). Huge shield volcanoes in Tharsis region are thought to be
linked with hot superplume from the deep mantle of Mars (Yuen et al., 2007), which is similar to the
hotspot under the Hawaii island on the Earth. The geological features in Tharsis are quite complex and
are found to be populated by diverse structures in different time and space scales (Beuthe et al., 2012).

The Hellas basin is the huge impact basin in the Southern hemisphere. It is seen as a large blueish
circle surrounded by greenish rings in Figure 2.1. Hellas Planitia has a radius of about 1150 km and
1https://pds­geosciences.wustl.edu/missions/mgs/mola.html [07­01­2021]
2A gravitational and rotational equipotential surface of Mars, analogous to ”geoid” for Earth.

https://pds-geosciences.wustl.edu/missions/mgs/mola.html
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was likely formed during the Late Heavy Bombardment period (late Pre­Noachian and early­Noachian
period) (Schultz and Frey, 1990).

2.2. Gravity
This section covers the gravity data of Mars together with the spherical harmonics toolbox to process
the data. In addition, some gravitational reductions are conducted to obtain the gravity anomalies.

2.2.1. Data and Tools
Martian global gravity data has been gathered in the second Mars exploration period (since the 1960s)
from different spacecraft including Mariner 9, Viking 1, Viking 2, MGS, Mars Odyssey (MODY)3 and
MRO4. The last three missions largely contributed to the Martian gravity solutions as they orbited Mars
at close distance (Wieczorek, 2015). The early orbit for MGS was highly elliptical, and the altitude at
the periapsis was just 170 km. MODY also obtained part of the tracking data from altitudes around 200
km. But later in the missions, their orbits were circularized into near­circular orbits around 400 km.

With radio­tracking data fromMGS,MODY andMRO, Konopliv et al. (2011) obtained a global gravity
solution (JGMRO 110C) up to degree and order 110. Later in 2016, a higher resolution gravity solution
was created by Genova et al. (2016). This dataset is called the Goddard Mars Model­3 (GMM­3) and
is presented in spherical harmonics up to degree and order 120. GMM­3, together with other gravity
models of Mars, can be downloaded from NASA PDS Geosciences Node 5.

In the above gravity models, gravity data is presented in the form of spherical harmonics coefficients
𝐶𝑛𝑚 (also known as Stokes coefficients). Given the coefficients 𝐶𝑛𝑚 for degree n and order m, gravita­
tional constant 𝐺, total mass of the body𝑀 and the reference radius 𝑅0, one can derive the gravitational
potential with (Wieczorek, 2015)

𝑈(r) = 𝐺𝑀
𝑟

∞

∑
𝑛=0

𝑛

∑
𝑚=−𝑛

(𝑅0𝑟 )
𝑛
𝐶𝑛𝑚𝑌𝑛𝑚(𝜃, 𝜙) (2.1)

where 𝜃 and 𝜙 are the planetocentric colatitude and longitude at position r on the sphere, respectively.
𝑌𝑛𝑚(𝜃, 𝜙) is the spherical harmonic function for degree n and order m, which is expressed in Equation
A.7. The coefficients with negative order 𝐶𝑛,−𝑚 are referred to as 𝑆𝑛𝑚.

The radial component of the gravitational field 𝑔𝑟 can be calculated from Equation 2.1 by taking the
first radial derivative, which is given by (Wieczorek, 2015)

𝑔𝑟 =
𝐺𝑀
𝑟2

∞

∑
𝑛=0

𝑛

∑
𝑚=−𝑛

(𝑅0𝑟 )
𝑛
(𝑛 + 1)𝐶𝑛𝑚𝑌𝑛𝑚(𝜃, 𝜙) (2.2)

where the direction of 𝑔𝑟 is positive downward, and the rotational potential is neglected.
In this study, the gravity data from GMM­3 is used. To examine the solutions of gravity field, the

square root of the potential power per spherical harmonic degree can be used, which can be calculated
from (Neumann et al., 2004)

𝜎𝑛 = √
1

2𝑛 + 1

𝑛

∑
𝑚=−𝑛

𝐶2𝑛𝑚 . (2.3)

Figure 2.2 shows the potential power per degree for the GMM­3 gravity solution (blue) and its un­
certainties (red). The magnitude of the uncertainties increases gradually until it reaches the same level
as that of the gravity signal at n = 100. To avoid the data with relatively high uncertainties, the gravity
data with spherical harmonic degree higher than 90 is abandoned in this study.

The spherical harmonic toolbox fromRoot et al. (2016) is used in this study to conduct both Global
Spherical Harmonic Synthesis (GSHS) and Global Spherical Harmonic Analysis (GSHA). The GSHS
3In operation since 2001
4In operation since 2006
5https://pds­geosciences.wustl.edu/dataserv/gravity_models.htm [05­01­2021]

https://pds-geosciences.wustl.edu/dataserv/gravity_models.htm
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(a) The square root of the total power spectra of GMM­3 and its uncertainties for 0 < n ≦ 120.

(b) The square root of the total power spectra of GMM­3 and its uncertainties for 60 ≦ n ≦ 120.

Figure 2.2: The square root of the potential power for all degrees (a) and higher degrees (b) of GMM­3 and its uncertainties.

converts the data from spherical harmonic domain into spatial domain. With the Stokes coefficients and
several parameters of the planet as input, the GSHS software can be used to output the gravitational
potential, components of gravitational fields (vectors) and components of gravity gradient tensors. The
GSHA does the other way around, which converts the data from spatial domain into spherical harmonics
domain. This spherical harmonic toolbox was initially designed for Earth, but it could be adapted to
other celestial bodies (Backer, 2018). In addition, it could make the transformation between spatial
and spherical harmonic for other spatial­distributed parameters like the crustal thickness and density.

2.2.2. Gravity Anomaly
The gravitational profile of a planet is related to its mass distribution. Extra mass on the surface of the
planet could bring extra gravitational signals. Gravity anomalies can be observed by performing gravity
reductions and provide information inside the lithosphere of Mars.

The gravity coefficients are connected to the mass distribution of the planet. For example, the
degree­0 term (𝐶00) represents the mass of the planet, degree­1 terms (𝐶10, 𝐶11, 𝑆11) depends on the
offset between the center of mass and the origin of the coordinate system, and 𝐶20 term stands for the
flattening of the planet (Backer, 2018, Wieczorek, 2015). To study the gravity anomaly in the crust of
Mars, the above­mentioned coefficients are removed from the gravity signal.

The resulted gravity anomaly (Figure 2.3) is called the Free­Air Anomaly (FAA) in this study, which
shows the gravity anomaly in the crust (both on the surface and in the subsurface). One could expect
that the regions with high topography would have larger FAA, and lower topography yields to lower
FAA. In other words, the FAA is correlated to the topography. This might be true for regions like the
Tharsis rise, Alba Mons, Elysium Mons and Valles Marineris. But different stories are found around the
Isidis Planitia, Utopia Planitia and Hellas Basin where regions with negative topography show zero or
even large position FAA.

Topography only gives information on the surface of Mars while the FAA also contains gravity signal
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under the surface. The mismatch between the topography and FAA suggests that the subsurface part
of the crust is not homogeneous and may vary in density or thickness.

Figure 2.3: Free Air Anomaly of Mars, which is obtained by removing 𝐶00 , 𝐶10 , 𝐶11 , 𝑆11 and 𝐶20 terms in the first 90 spherical
harmonic degrees. The global dichotomy is absent because the central terms are removed. The range of the colorbar is limited
to ±500 mGal. The image is presented using a Mollweide projection with a central meridian of 0∘ longitude. Maximum and
minimum FAA are 3570 mGal and ­746 mGal, respectively.

To examine the gravity signal under the surface, one could remove signal contributed by topography
from the FAA 𝑔𝐹 by (Fowler, 2005)

𝑔𝐵 = 𝑔𝐹 − 𝛿𝑔𝐵 (2.4)

where 𝑔𝐵 is called Bouguer gravity anomaly and 𝛿𝑔𝐵 is the Bouguer gravity correction which represents
the gravity signal from topography

𝛿𝑔𝐵 = 2𝜋𝐺𝜌𝐻 (2.5)

where 𝐺 is the gravitational constant, 𝜌 is the density of topography and 𝐻 represents topographic
height.

With topographic data fromMOLA and a crustal density of 2900 kg/m3, the Bouguer gravity anomaly
for Mars is obtained with Equation 2.4 and shown in Figure 2.4. The dichotomy is not removed in the
topographic data so that this global feature is clearly visible. The Bouguer gravity anomaly shows the
gravity signal under the surface of Mars without the signal from topography. Zero Bouguer anomaly
means the gravity anomaly can totally attribute to mass from topography. On the other hand, non­
zero Bouguer anomaly implies that there are other sources of gravity signal from the subsurface of the
planet. Positive Bouguer anomaly stands for excessive mass in the subsurface while negative Bouguer
anomaly refers to a local mass deficiency.

Large Bouguer anomalies are found at the low­topography regions like a large part of the Northern
hemisphere, Hellas Basin and Argyre Planitia. This suggests that more mass is located beneath these
regions and reveals information about the local crustal structure. It could be that the crustal density
at negative­topography regions is higher or negative topography results in thinner crust which makes
dense mantle materials closer to the surface. Different theories to explain the gravity anomaly by es­
tablishing relationship between topography and crustal thickness or density are introduced in chapter 3.
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Figure 2.4: Bouguer Gravity Anomaly of Mars, which is obtained by performing Bouguer correction based on FAA. The global
dichotomy is not removed in the Bouguer correction. The topography signal of volcanic mountains is not removed completed by
simple Bouguer correction because a global crustal density of 2900 kg/m3 is lower than that of volcanic materials. The range of
the colorbar is limited to±500mGal. The image is presented using a Mollweide projection with a central meridian of 0∘ longitude.
Maximum and minimum Bouguer anomalies are 1359 mGal and ­1065 mGal, respectively.

2.3. Faults and Stress
One way to evaluate the computed stress state from models is to compare it with the observed surface
faults and see whether they adhere to the expected relationship. In this section, the surface faults data
of Mars and basic stress theory are introduced.

2.3.1. Surface Faults
Faults refer to the lateral displacements happening on fractures (Turcotte and Schubert, 2014). The
scales of surface faults vary from millimeters to kilometers. This thesis studies the large­scale (∼km)
surface faults on Mars.

On Earth, the state of faults can be monitored by seismology networks or GPS stations. But this is
not the case (at least for now) to measure the faults on Mars. Imagery is a common source to obtain
information about the faults on Mars. But identifying faults on Mars with images is constrained by many
factors, such as the quality of data, the viewing angles and lighting conditions. These constraints make
it difficult to obtain a global unbiased collection of faults. For example, a comprehensive investigation
on faults with images from Viking missions were conducted by Anderson et al. (2001), and over 24,450
individual faults were found. But these faults only cover the Western hemisphere.

To avoid the disadvantages of images data in faults identification on Mars, Knapmeyer et al. (2006)
added synthetic lighting to the MOLA shaded relief maps. They collected an inventory of Martian faults
with about 8500 compressional and extensional tectonic faults (total length: 680,000 km ). This Martian
global surface faults database was updated in 2008 with 1409 new compressional faults and 4925 new
extensional faults (Knapmeyer et al., 2008). The updated faults database also classified all faults into
different groups based on the location of their origins and estimated the age for each fault.

Figure 2.5 shows the map of both compressional and extensional faults on Mars. The distribution of
some faults are related to topographic features. For example, most normal faults are distributed around
the Tharsis province and Valles Marineris in the Western hemisphere. The dichotomy boundary in the
Eastern hemisphere, as well as the Hellas Basin, are clearly outlined by faults.

The faults distribution in the Western hemisphere is highly related to the Tharsis bulge. As it is
shown in Figure 2.5, the majority of observed compressional faults in the Western hemisphere are
distributed in circles around the Tharsis rise. These thrust faults are quite old (age > 3.5 Gyr) and
could be the results of compressional stresses from large volcanic loads and the lithosphere flexure
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Figure 2.5: Global map of compressional (neon pink) faults and extensional (neon blue) faults on Mars. Topography is mapped
in the background. The faults database is from Knapmeyer et al. (2006). This image is presented using a Mollweide projection
with a central meridian of 0∘ longitude.

(Knapmeyer et al., 2006, Zhong, 2002). Similar topography­related thrust faults can also be seen
around the boundary of Hellas Basin. Most of the extensional faults are in radial directions toward
the Tharsis Montes, Alba Mons, Olympus Mons, Syria Planum and Tempe Terra. These normal faults
suggest the wide spread of tensional stress in and around the Tharsis province at the time of formation.

The formation of strike­slip faults on Earth is related to the plate tectonics (Andrews­Hanna et al.,
2008). Since Mars only has one single plate (no global plate tectonics), the number of strike­slip faults
found on Mars is not comparable to that of the other two types of faults (Knapmeyer et al., 2006). That’s
why the strike­slip faults are absent in Figure 2.5. When comparing the calculated stress field to the
observed faults, it is reasonable to use the most recent­formed faults from observation because models
compute the lithosphere stress with new topography and/or gravity data. However, the dating of faults
was based on the age of geological structure where the faults were found (Figure 2.6). So, the ages
of faults in the database only present the “reliable maximum ages for each fault” as the fault could be
younger than its surrounding surface.

(a) Percentage of the Martian surface at given age span (Knap­
meyer et al., 2006).

(b) Histogram of the faults age in Figure 2.5. Data source: Knap­
meyer et al. (2006, 2008).

Figure 2.6: Histograms for (a) the age of Martian surface and (b) age of surface faults. The distribution of age for faults is similar
to that of the surface. 75% of the surface is older than 3.5 Gyr. 1 Ga = 1 Gyr = 109 years.

The state of the stress which induces the fault can be retrieved by examining the direction of the
displacement on the fault (Turcotte and Schubert, 2014). For instance, a normal fault occurs when a



14 2. Observations of Mars

region is under tensional (extensional) stresses, and compressional stress could result in thrust faulting,
as illustrated in Figure 2.7 (a) and (b) respectively. Strike­slip faults can be found in the region where
shear stress is dominant, as shown in Figure 2.7 (c) and (d).

Figure 2.7: Cross sections of different faults (Turcotte and Schubert, 2014).

In this study, models are built to calculate the stress state in the lithosphere of Mars. By extracting
the calculated surface stresses and comparing them to the distribution of observed faults, one can
examine the performance of the models.

2.3.2. Stress and Strain
In continuum mechanics, the Cauchy stress tensor is widely used to define the state of stress at a point
in three dimensions. It contains nine components, including three normal stress components (𝜎𝑥,𝜎𝑦,𝜎𝑧)
at the diagonal entries and six shear stress components (𝜏𝑥𝑦,𝜏𝑦𝑥,𝜏𝑥𝑧,𝜏𝑧𝑥,𝜏𝑦𝑧,𝜏𝑧𝑦) at the off­diagonal
entries. This is illustrated visually in Figure 2.8 and mathematically in Equation 2.6.

𝜎3𝑑 = [
𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

] ≡ [
𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] ≡ [
𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧

] (2.6)

Figure 2.8: Components of stress tensor in Cartesian coordinate (Helwa, 2009). Different expressions for the components are
also shown in Equation 2.6.
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Plane Stress
One goal of this study is to find out the faults distribution from calculated stress state in the lithosphere
of Mars. Since the surface of Mars is dominated by compressional and extensional faults, the stress
components in the vertical direction can be ignored in the stress­fault relation analysis. In other words,
plane stress theory is applied in the analysis.

To express the stress state in 2D, only four stress components, which define the normal stress and
shear stress components in two directions, are needed. Equation 2.6 can be reduced into

𝜎2𝑑 = [
𝜎11 𝜎12
𝜎21 𝜎22 ] = [

𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑦𝑥 𝜎𝑦𝑦 ] = [

𝜎𝑥 𝜏𝑥𝑦
𝜏𝑦𝑥 𝜎𝑦 ] . (2.7)

The transformation equations for the plane stress are given by (Gere and Goodno, 2012)

𝜎𝑥1 = 𝜎𝑥 cos2 𝜃 + 𝜎𝑦 sin2 𝜃 + 2𝜏𝑥𝑦 sin𝜃 cos𝜃 (2.8a)

𝜎𝑦1 = 𝜎𝑥 sin2 𝜃 + 𝜎𝑦 cos2 𝜃 − 2𝜏𝑥𝑦 sin𝜃 cos𝜃 (2.8b)

𝜏𝑥1𝑦1 = (𝜎𝑦 − 𝜎𝑥) sin𝜃 cos𝜃 + 𝜏𝑥𝑦 (cos2 𝜃 − sin2 𝜃) (2.8c)

where 𝜎𝑥1 and 𝜎𝑦1 are the new normal stresses, 𝜏𝑥1𝑦1 and 𝜏𝑦1𝑥1 are the new shear stresses, 𝜃 is the
angle between the old and new coordinates (Figure 2.9). Moment equilibrium gives 𝜏𝑥1𝑦1 = 𝜏𝑦1𝑥1.

Figure 2.9: Coordinate transformation for plane stresses(Gere and Goodno, 2012).

A special plane could be found when the shear stress 𝜏𝑥1𝑦1 = 0 in Equation 2.8. Such a plane is
called the Principal Plane, and the angle is given by

tan 2𝜃𝑝 =
2𝜏𝑥𝑦
𝜎𝑥 − 𝜎𝑦

. (2.9)

The normal stresses of the principal plane can be calculated by combining Equation 2.8 and 2.9,
which is given by

𝜎1 =
1
2 (𝜎𝑥 + 𝜎𝑦) +

√1
4 (𝜎𝑥 − 𝜎𝑦)

2 + 𝜏2𝑥𝑦 (2.10a)

𝜎2 =
1
2 (𝜎𝑥 + 𝜎𝑦) −

√1
4 (𝜎𝑥 − 𝜎𝑦)

2 + 𝜏2𝑥𝑦 (2.10b)

where 𝜎1 and 𝜎2 are the maximum and minimum principal stresses, respectively. The direction of
the principal stress is defined positive outward as shown in Figure 2.9. It means that positive principal
stresses are tensive/tensional/tensile while negative principal stresses are compressive/compressional.
However, it doesn’t mean that maximum principal stress is always tensional since it could be smaller
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than zero in some cases. So, when conducting stress analysis, it’s important to distinguish the sign of
the principal stress and then the magnitude.

Apart from the principal stresses, Von Mises stress is also used in many stress analyses to com­
pare with the yield stress criterion and gives a good indication of margins over possible plastic response.
It can be directly used to identify some regions of interest in the stress plots prior to a principal stress
analysis. The equation for Von Mises stress in 2D is given by

𝜎v = √𝜎2𝑥 − 𝜎𝑥𝜎𝑦 + 𝜎2𝑦 + 3𝜎2𝑥𝑦 . (2.11)

As a scalar combination of the stress components, Von Mises stress does not contain information about
the direction of stress or other property like tension and compression.

Plane Strain
The plane strain has four components and can be written as

𝜖2𝑑 = [
𝜖11 𝜖12
𝜖21 𝜖22 ] = [

𝜖𝑥𝑥 𝜖𝑥𝑦
𝜖𝑦𝑥 𝜖𝑦𝑦 ] = [

𝜖𝑥 𝛾𝑥𝑦
𝛾𝑦𝑥 𝜖𝑦 ] (2.12)

where 𝜖𝑥 and 𝜖𝑦 are the normal strains, 𝛾𝑥𝑦 and 𝛾𝑦𝑥 are the shear strains.
The transformation equations for plane strain are given by (Gere and Goodno, 2012)

𝜖𝑥1 = 𝜖𝑥 cos2 𝜃 + 𝜖𝑦 sin2 𝜃 + 𝛾𝑥𝑦 sin𝜃 cos𝜃 (2.13a)

𝜖𝑦1 = 𝜖𝑥 sin2 𝜃 + 𝜖𝑦 cos2 𝜃 − 𝛾𝑥𝑦 sin𝜃 cos𝜃 (2.13b)

𝛾𝑥1𝑦1 = 2 (𝜖𝑦 − 𝜖𝑥) sin𝜃 cos𝜃 + 𝛾𝑥𝑦 (cos2 𝜃 − sin2 𝜃) (2.13c)

which is slightly different from that of the plane stress in Equation 2.8.
Similarly, the principal plane can be determined by

tan 2𝜃𝑝 =
𝛾𝑥𝑦

𝜀𝑥 − 𝜀𝑦
(2.14)

where 𝜃𝑝 shows the direction of the principal plane.
The maximum and minimum principal strains can be calculated by

𝜖1 =
1
2 (𝜖𝑥 + 𝜖𝑦) +

√1
4 (𝜖𝑥 − 𝜖𝑦)

2 + 14𝛾
2𝑥𝑦 (2.15a)

𝜖2 =
1
2 (𝜖𝑥 + 𝜖𝑦) −

√1
4 (𝜖𝑥 − 𝜖𝑦)

2 + 14𝛾
2𝑥𝑦 . (2.15b)

Strain 𝜖 and stress 𝜎 can be linked through the Young’s modulus (modulus of elasticity) 𝐸 by

𝜎 = 𝐸𝜖. (2.16)



3
Crustal Models for Mars

When seismicmeasurements from the ground are not available or insufficient, modeling the relationship
between the topography and gravity of a planet and comparing it to the observations is a useful method
to obtain information about the planet’s subsurface structure (Wieczorek, 2015). In this study, the data
of topography and gravity are combined with geological theory of isostasy. They are used to invert for
geophysical parameters for Mars. This chapter introduces different isostatic models for Mars and a
spectral approach to compare these models with observation.

3.1. Models of Isostasy
The idea of isostasy was introduced to explain two phenomena. Firstly, the mismatch between the
gravity anomalies and the gravitational attraction of large mountains on Earth (Airy, 1855). Secondly,
how the topography is soundly supported by a rigid crust together with a viscous mantle? The first
phenomenon can be explained by isostatic equilibrium in which the gravity anomalies of topography are
compensated underneath the surface. There are two end­member in classic isostasy, Airy and Pratt,
which use different approaches to implement the compensation. The second question can be answered
from the perspective of stress: the non­hydrostatic stresses induced by the topography support the
crust (Jeffreys, 1943). Since non­hydrostatic stress is the difference between the actual stress and
hydrostatic pressure in the crust, it is also called the ”deviatoric stress”.

3.1.1. Classic Isostasy
Classic isostatic models simplify the problem by assuming local compensation, which means the crustal
columns can move independently in the vertical direction and do not affect each other. Early isostasy
includes two models from Airy and Pratt separately (Watts, 2001). In Airy’s model, the crustal density
is uniform. The compensation is reached by varying the crustal thickness. Thus, a larger positive
topography would yield to a deeper root while negative topography would cause a shallower root. But
in Pratt’s model, a uniform­thickness crust is assumed, and compensation is achieved by changing
lateral density. The root beneath positive topography has a lower density.

General Equations
The equations for Airy’s models can be found in Equation 3.1 and Equation 3.2. Equation 3.1 describes
the depth of the root under positive topography, where ℎ1 is the topographic height, 𝜌𝑢 is the density
of the crust and 𝜌𝑠 is the density of the mantle. For the case of sea floor, the depth of the root, r, is
shown in Equation 3.2 where 𝜌𝑤 is the density of water. In case of pure negative topography (without
infill materials), the term 𝜌𝑤 can be removed.

𝑟1 =
𝜌𝑢ℎ1
𝜌𝑠 − 𝜌𝑢

(3.1)

𝑟3 =
𝜌𝑢 − 𝜌𝑤
𝜌𝑠 − 𝜌𝑢

𝑑 (3.2)

17
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Figure 3.1: Illustrations of (a) Airy’s theory of isostasy and (b) Pratt’s theory of isostasy (Fowler, 2005).

The mathematical description for Pratt’s model can be found in Equation 3.3 and Equation 3.4,
where 𝜌𝑢 is the mean density of the crust, 𝐷𝑐 is the depth of compensation of the crust, 𝜌1 and 𝜌𝑑
represent the densities of the crust under topographic loads.

𝜌1 =
𝜌𝑢𝐷𝑐
ℎ1 + 𝐷𝑐

(3.3)

𝜌𝑑 =
𝜌𝑢𝐷𝑐 − 𝜌𝑤𝑑
𝐷𝑐 − 𝑑

(3.4)

Equations for Mars
For Mars, the equations for both Airy and Pratt can be simplified by removing the density of water, 𝜌𝑤,
and replacing 𝑑 with ℎ. After this simplification, there is no need to distinguish negative and positive
topography in two separate equations as the sign would be included in the topography term ℎ. The
depth of the root 𝑟 from Airy and density of crust 𝜌 from Pratt can be simplified into

𝑟 = 𝜌𝑐ℎ
𝜌𝑚 − 𝜌𝑐

(3.5)

where 𝜌𝑐 is the density of the crust, 𝜌𝑚 is the density of the mantle,

𝜌 = 𝜌0𝐷𝑐
𝐷𝑐 + ℎ

(3.6)

where 𝜌0 is the mean crustal density.
The assumption of local compensation neglects the shear stresses between the crustal columns

and only relies on the buoyancy to provide the support. On the one hand, these assumptions simplified
the problem and made the mathematical expressions straightforward. On the other hand, ignoring
those physical processes made both Airy and Pratt the end­member among the models of isostasy.

3.1.2. Flexural Isostasy
Unlike Airy or Pratt isostasy, another type of isostatic theory allowing the crustal column to exert shear
stresses on its neighbors. Such theory is called regional or flexural isostasy. The flexural isostasy
theory assumes the lithosphere to be an elastic plate or shell. Thus, when a topographic load is applying
to the lithosphere, the compensation would be distributed around a larger area than the Airy’s model.
Since the pressures from the loads spread over a broad region in flexural models, the maximum crustal
thickness is not as large as that of the Airy’s model, as shown in Figure 3.2.
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Figure 3.2: Comparison of regional isostasy (infinite plate) and local isostasy (Airy) models(David, 2010). Airy’s model results
in a larger crustal thickness than the infinite plate model. Pratt’s model would bring larger density variations than the flexural
model.

Infinite Plate Model
The infinite plate model is a simple but common flexural model. It simulates the lithosphere as an
infinite plate floating on viscous interior materials. To describes the effect of flexural models, Watts
(2001) introduced the concept of flexural response function, which is the ratio between the deflection or
flexure (output) of the lithosphere and the geological loads (input). The values of the flexural response
function ranges from zero to one, corresponding to the Bouguer response (no compensation) and Airy
response (full compensation), respectively.

The flexural response function for the infinite plate is given (Watts, 2001) by:

Φ(𝑛)𝑝𝑙𝑎𝑡𝑒 = [1 +
𝐷

(𝜌𝑚 − 𝜌𝑐)𝑔
(2𝑛 + 12𝑅 )

4
]
−1

(3.7)

where n is the spherical harmonic degree, 𝑟 is radius of the planet, 𝑔 is the gravitational acceleration,
and 𝐷 is called the flexural rigidity.

𝐷 = 𝐸𝑇3𝑒
12(1 − 𝑣2) (3.8)

In Equation 3.8, 𝐸 is the modulus of elasticity (or Young’s modulus) and 𝑣 is the Poisson’s ratio. Te is
the effective elastic thickness of lithosphere, which describes the lithosphere’s resistance to bending
or deflection with vertical loads. A higher effective elastic thickness represents a more rigid lithosphere
which would not easily bend. Airy’s model is locally compensated and has no resistance to bending
when loads are applied. So, the value for Airy’s flexural parameter is zero, which in turn brings the
value of its flexural response function to one:

Φ(𝑛)𝑙𝑜𝑐𝑎𝑙 = (1)−1 (3.9)

which also applies to the Pratt’s model.
An example of the flexural response function as a function of spherical harmonic degree n is shown

in Figure 3.3. It is plotted for Earth with lithospheric thickness Te ranges from 25 to 75 km by Watts
and Moore (2017). The vertical axis shows the value of flexural response function, which is also the
degree of compensation. The horizontal axis represents different spherical harmonic degree n and its
equivalent wavelength 𝜆. On the surface of a sphere with a radius of 𝑟, these two parameters are linked
by the Jeans’ relation (Wieczorek and Simons, 2005)

𝜆 = 2𝜋𝑅
√𝑛(𝑛 + 1)

. (3.10)
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Figure 3.3: Flexural response function Φ(𝑛)𝑝𝑙𝑎𝑡𝑒 of the infinite plate with various Te for Earth (Watts and Moore, 2017).

In Figure 3.3, different Te yields different curves but they share a similar pattern like a low­pass
filter. The flexural response functions Φ𝑝𝑙𝑎𝑡𝑒 equal to one at low­degree (long­wavelength) region, be­
gin to decrease between n = 12 and n = 33, and reach zero at high­degree (low­wavelength) zone.
Φ𝑝𝑙𝑎𝑡𝑒 = 1 stands for local isostasy, which means the region is 100% compensated (Airy case in Fig­
ure 3.3). This is illustrated in the bottom plot of Figure 3.4 where the wavelength of the load is so large
that the lithosphere could not support it at all. On the contrary, Φ𝑝𝑙𝑎𝑡𝑒 = 0 means no compensation
happened and is called the ”uncompensated” Bouguer case. The Bouguer case is shown at the top
plot of Figure 3.4. It shows that the wavelength of the load is so small that the lithosphere can support it
without deflection. The regions in between the Airy and Bouguer in Figure 3.3 are thought to have flex­
ural isostasy, in which the loads are neither large enough to ”destroy” the lithosphere nor small enough
to leave the lithosphere intact. Both isostatic compensation and lithosphere bending would support the
loads. The plot of flexural response functions for Mars can be found in Figure 3.6.

Figure 3.4: Isostatic response of lithosphere (grey) to vertical loads(green) (Gaianauta, 2015). Te is the effective elastic thickness
of the lithosphere. 𝜆 is the wavelength (Equation 3.10) of the load. Local isostasy happens where the lithosphere is too thin to
support the load. A stronger lithosphere supports the load with regional (or flexural) isostasy. In the extreme case, the lithosphere
with very large thickness can fully support the load without isostatic compensation.
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Thin Shell Model
The infinite plate model may provide a good representation of short­wavelength features at the surface
of a planet. But it is not a good idea to apply infinite plate model for large­wavelength features where the
effect of planet’s curvature appears. After all, neither the Earth nor Mars is flat. Thus, a more realistic
model which considers both flexure and the spherical shape of the planet is desired.

Figure 3.5: Illustration of an elastic thin shell (Te << R) by Thor (2016). It shows the deflection 𝑢(𝑟) and loading pressure 𝑞(𝑟)
(or 𝑝(𝑟)) caused by a load at position r.

The elastic thin shell model is shown in Figure 3.5. For a thin shell with radius 𝑟 and an uniform
thickness of Te, Kraus (1967) derived how much vertical displacement/deflection 𝑤 the thin shell model
would have under certain loads

[𝐷∇6 + 4𝐷∇4 + 𝐸𝑇𝑒𝑅2∇2 + 2𝐸𝑇𝑒𝑅2] 𝑤 = 𝑅4(∇2 + 1 − 𝑣)𝑝 (3.11)

where ∇2 is the Laplacian operator (see Appendix A), 𝐷 is the flexural rigidity (Equation 3.8), and 𝑝 is
the loading pressure

𝑝 = 𝑔 [𝜌𝑐ℎ − (𝜌𝑚 − 𝜌𝑐)𝑤] . (3.12)

Based on Equation 3.11, Turcotte et al. (1981) expanded both displacement 𝑤 and loading height
ℎ in spherical harmonics and found the ratios between the coefficients as a function of spherical har­
monics degree n:

𝑤𝑛
ℎ𝑛

= ( 𝜌𝑐
𝜌𝑚 − 𝜌𝑐

) { 𝑛(𝑛 + 1) − (1 − 𝜈)
𝜎 [𝑛3(𝑛 + 1)3 − 4𝑛2(𝑛 + 1)2] + 𝜏[𝑛(𝑛 + 1) − 2] + 𝑛(𝑛 + 1) − (1 − 𝜈)} (3.13)

where
𝜏 = 𝐸𝑇𝑒

𝑅2(𝜌𝑚 − 𝜌𝑐)𝑔
(3.14)

𝜎 = 𝜏
12(1 − 𝑣2) (

𝑇𝑒
𝑅 )

2
(3.15)

The second term at the right­hand side of Equation 3.13 was referred to 𝐶𝑛 as the ”degree of com­
pensation for degree n” (Turcotte et al., 1981), which is given by

𝐶𝑛 =
𝑛(𝑛 + 1) − (1 − 𝜈)

𝜎 [𝑛3(𝑛 + 1)3 − 4𝑛2(𝑛 + 1)2] + 𝜏[𝑛(𝑛 + 1) − 2] + 𝑛(𝑛 + 1) − (1 − 𝜈) (3.16)

It’s important to note that the concept of the “degree of compensation” from Turcotte et al. (1981) is
equivalent to the concept of the “flexural response function” from Watts (2001). In this thesis, the name
“flexural response function” is used. However, Equation 3.16 from Turcotte et al. (1981) is not the
correct flexural response function for the thin shell model due to a missing term in Equation 3.11 from
Kraus (1967).

This mistake was pointed out by Beuthe (2008), who also derived the equation of deflection 𝑢 for a
constant­thickness elastic thin shell with under loading pressure 𝑝 as

𝜂𝐷ΔΔ′Δ′𝑢 + 𝑅
2

𝛼 Δ
′𝑢 = −𝑅4 (Δ′ − 1 − 𝜈) 𝑝 + 𝑅3 ( 1

1 + 𝜉Δ
′ − 1 − 𝜈)ΔΩ (3.17)



22 3. Crustal Models for Mars

where 𝜂 is a parameter very close to 1

𝜂 = 𝜉
1 + 𝜉 = (1 +

𝑇2𝑒
12𝑅2)

−1

, (3.18)

𝛼 is inversion the of the extensional rigidity

𝛼 = 1
𝐾 (1 − 𝑣2) =

1
𝐸𝑇𝑒

, (3.19)

𝜉 is a dimensionless ratio
𝜉 = 𝑅2𝐾𝐷 = 12𝑅

2

𝑇2𝑒
(3.20)

and the operator Δ is linked to the Laplacian operator
Δ = ∇2. (3.21)

For homogeneous thin shells, one can assume

ΔΩ = 0. (3.22)

With Equation 3.18 to Equation 3.22, Equation 3.17 can be written as

[𝐷∇2 (∇2)′ (∇2)′ + 𝑅2𝐸𝑇𝑒 (∇2)
′] 𝑢 = −𝑅4 [(∇2)′ − 1 − 𝑣] 𝑝. (3.23)

One can remove the (∇2)′ operator in Equation 3.23 with Equation A.2:
[𝐷∇6 + 4𝐷∇4 + (4𝐷 + 𝑅2𝐸𝑇𝑒) ∇2 + 2𝑅2𝐸𝑇𝑒] 𝑢 = −𝑅4 (∇2 + 1 − 𝑣) 𝑝, (3.24)

which is almost the same as Equation 3.11. The different sign at the right­hand sides of both equations
is a result of different definition for the displacement/deflection direction (𝑢 = −𝑤). The other difference
is that the term ”4𝐷∇2𝑤” is missing at the left­hand side of Equation 3.11. This mistake happened
when Kraus combined equations for the thin shells in the final step Beuthe (2008). The same error
is also seen in other studies (Banerdt, 1986, McGovern et al., 2002, Turcotte et al., 1981) and has a
consequence for the first harmonic degree component.

Since Turcotte et al. (1981) derived the flexural response function (Equation 3.16) based on a mis­
taken version of thin shell models (Equation 3.11), a correct thin shell flexural response function is
desired. To achieve that, one need to transform Equation 3.24 into spherical harmonic space and de­
rive the ratio between the coefficients of displacement 𝑤 or 𝑢 and loading height ℎ. This can be done
with Equation A.3, which transforms Equation 3.24 into

( 𝐸𝑇3𝑒
12(1−𝑣2) [−𝑛

3(𝑛 + 1)3 + 4𝑛2(𝑛 + 1)2 − 4𝑛(𝑛 + 1)] + 𝑅2𝐸𝑇𝑒(−𝑛(𝑛 + 1) + 2)) 𝑢𝑙𝑚
= −𝑅4 [−𝑛(𝑛 + 1) + 1 − 𝑣] 𝑝𝑙𝑚 ,

(3.25)

where 𝑢𝑙𝑚 and 𝑝𝑙𝑚 are the spherical harmonics coefficients of 𝑢 and 𝑝, respectively.
Inserting Equation 3.12 into Equation 3.25 gives the relationship between the coefficients 𝑢𝑙𝑚 and

ℎ𝑙𝑚 as following
𝑢𝑙𝑚
ℎ𝑙𝑚

= ( 𝜌𝑐
𝜌𝑚 − 𝜌𝑐

)Φ(𝑛)𝑠ℎ𝑒𝑙𝑙 (3.26)

where Φ(𝑛)𝑠ℎ𝑒𝑙𝑙 is the correct flexural response function for the thin shell:

Φ(𝑛)𝑠ℎ𝑒𝑙𝑙 =
𝑛(𝑛 + 1) − (1 − 𝜈)

𝜎[𝑛3(𝑛 + 1)3 − 4𝑛2(𝑛 + 1)2 + 4𝑛(𝑛 + 1)] + 𝜏[𝑛(𝑛 + 1) − 2] + 𝑛(𝑛 + 1) − (1 − 𝜈) . (3.27)

Compared to Equation 3.16, Equation 3.27 has the missing term ”4𝑛(𝑛 + 1)𝜎” back. With a few
more steps (see Appendix A), one can write Equation 3.27 into a format similar to that of the infinite
plate (Equation 3.7) as

Φ(𝑛)𝑠ℎ𝑒𝑙𝑙 = [1 +
𝐷

(𝜌𝑚 − 𝜌𝑐)𝑔
( 1𝑅4

[𝑛(𝑛 + 1) − 2]2

1 − 1−𝑣
𝑛(𝑛+1)

+ 12(1 − 𝑣
2)

𝑇2𝑒 𝑅2
1 − 2

𝑛(𝑛+1)

1 − 1−𝑣
𝑛(𝑛+1)

)]

−1

. (3.28)
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Deriving the flexural response functions for different isostatic models in this study is essential for
the following three reasons. Firstly, the flexural response functions themselves could reflect the char­
acteristics of different isostatic models. By simply comparing the functions in Table 3.1, one could find
that those functions only have small differences. Compared to the flexural response function of lo­
cal isostatic models (Equation 3.9), the function of the infinite plate (Equation 3.7) has an extra term
which represents the bending or flexure of the model. For the thin shell model which considers the
curvature of the planet, additional terms that stand for membrane stresses are added to the flexural re­
sponse function (Equation 3.28). Their similarities and differences are visualized in the plots of flexural
response functions in Figure 3.6.

Secondly, the flexural response function is a powerful tool to conduct flexural isostatic analysis.
With the crustal profiles computed from local isostasy, one could filter these profiles using the flexural
response function and obtain the new profiles under flexural isostasy. This process is described by
(Mussini, 2020)

𝑀𝑙𝑚 = 𝐴𝑙𝑚Φ(𝑛) (3.29a)
𝐷𝑙𝑚 = 𝑃𝑙𝑚Φ(𝑛) (3.29b)

where 𝐴𝑙𝑚 is the crustal thickness profile from Airy’s model, 𝑝𝑙𝑚 is the crustal density profile from Pratt’s
model, 𝑀𝑙𝑚 and 𝐷𝑙𝑚 are the new profiles for crustal thickness and density distribution, respectively. All
profiles are in the domain of spherical harmonics, and the multiplication in Equation 3.29 is conducted
for each degree (𝑛).

Thirdly, the flexural response function simplifies the flexural problem into one single equation. Only
a few parameters, which represent the size of the planet, strength of the gravity field and the property of
the lithosphere, are used. By changing the values of these parameters, one can theoretically compare
the characteristics of the lithosphere for different celestial bodies.

Table 3.1: Comparison of the Flexural Response Function for different models.

Model Flexural Response Function

Classic
Isostasy Airy and Pratt Φ(𝑛)𝑙𝑜𝑐𝑎𝑙 = (1)−1

Flexural
Isostasy

Infinite
Plate Φ(𝑛)𝑝𝑙𝑎𝑡𝑒 = [1 +

𝐷
(𝜌𝑚 − 𝜌𝑐)𝑔

(2𝑛 + 12𝑅 )
4
]
−1

Thin
Shell Φ(𝑛)𝑠ℎ𝑒𝑙𝑙 = [1 +

𝐷
(𝜌𝑚 − 𝜌𝑐)𝑔

( 1𝑅4
[𝑛(𝑛 + 1) − 2]2

1 − 1−𝑣
𝑛(𝑛+1)

+ 12(1 − 𝑣
2)

𝑇2𝑒 𝑅2
1 − 2

𝑛(𝑛+1)

1 − 1−𝑣
𝑛(𝑛+1)

)]

−1

Table 3.2: Summary of Parameters for both Mars and Earth. The values in the table are used in this study unless otherwise
specified. All values for Earth are taken from Watts and Moore (2017). The sources of the values of parameters for Mars are
listed in the last column.

Parameters Mars Earth Unit Reference

Gravitational Constant 𝐺 6.67 × 10−11 m3/kg/s2 (Watts and Moore, 2017)
Mean Radius 𝑟 3389.5 6371.0 km (Wieczorek, 2015)
Gravitational Acceleration 𝑔 3.72 9.81 m/s2 (Hirt et al., 2012)
Crustal Density 𝜌𝑐 2900 2650 kg/m3 (Wieczorek, 2015)
Mantle Density 𝜌𝑚 3500 3330 kg/m3 (Wieczorek, 2015)
Young’s modulus 𝐸 65 100 GPa (Kalousová et al., 2012)
Poisson’s Ratio 𝑣 0.25 0.25 ­ (Kalousová et al., 2012)
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Based on Equation 3.7 and Equation 3.28, a visualisation of the flexural response functions of the
infinite plate and the thin shell for Mars is presented in Figure 3.6. The parameters for Mars are stated in
Table 3.2. The blue curves represent the flexural response of the infinite plate as a function of spherical
harmonics degree n while that of the thin shell is represented by the red curves.

Figure 3.6: Comparison between the flexural response function of the thin shell model and infinite plate model with various Te
for Mars. Values for parameters are specified.

The infinite plate models in Figure 3.6 show similar behaviours as found in Figure 3.3: their values
decrease from one to zero as the degree increases and function like low­pass filters which block the
features in the high­degree (or short­wavelength) band. This is different from models of local isostasy
which have a constant response of one. Compared to models of local isostasy, flexure is added to the
infinite models. The bending stresses induced from the flexure could support the topographic loads at
certain degrees where isostatic compensation is not needed. Besides, the infinite plate models shift
to the left­hand side as the lithospheric thickness Te increases. This means the model with a higher
lithospheric thickness has a higher rigidity (Equation 3.8) which allows its filter effect to start at a lower
degree (or a longer wavelength).

The flexural response functions of the thin shell models overlap with those of the infinite plate models
at high­degree region but they diverge from the plate models at low­degree zone. This divergence hap­
pens because membrane stresses are taken into account in the thin shell model. The longer the wave­
length, the greater the influence of the planet’s curvature would be. Thus, more membrane stresses
are induced by the thin shell model at low­degree region.

In short, the difference in the flexural response functions between the models of local isostasy and
the infinite plate model shows the effect of bending stresses. The divergence in the flexural response
functions between the infinite plate model and the thin shell model comes from the membrane stresses.
This is consistent with findings from other studies (Kalousová et al., 2012, Turcotte et al., 1981).

A comparison of the flexural response functions between Mars and the Earth in the thin shell model
is shown in Figure 3.7. The parameters for both planets are stated in Table 3.2. The red curve is the
flexural response function for Mars with a best­fitting lithospheric thickness of 158 km1. That for the
Earth is represented by the blue curve with a Te = 34 km. The green curve shows how Mars would
behave with a lithospheric thickness of 34 km, for comparative purposes.

The difference between the flexural response functions (blue and green) of Te=34 km for both plan­
ets comes from the difference in their planetary parameters. The radius of the planet is believed to
have the largest effect (the radius of Earth is nearly twice than that of Mars). Since the curvature is
inverse proportional to the radius of the circle in a plane, the curvature effect of Mars is larger than that
1The best­fitting lithospheric thickness is calculated for 2 ≦ n ≦ 90.
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of the Earth. Relatively, at the same spherical harmonics degree, the support from membrane stresses
on Mars is larger than that on the Earth.

In reality, Mars has a more rigid lithosphere (Te = 158 km from this study), and the difference the
flexural response functions of Mars and the Earth with their best­fitting Te = 34 km is larger than that
from the previous comparison (between the blue and green curves). Comparing the blue and red curves
not only shows that the lithosphere of Mars is relatively stronger but also reveals different isostatic
compensation on both planets. While the local isostasy dominates the first 20 degrees on the Earth, it
does not play a important role on Mars.

Figure 3.7: Flexural response function as a function of spherical harmonic degree for the thin shell models for both Mars and
Earth.

3.1.3. Advanced Isostasy
Classic isostatic equilibrium is reached under the prescription that there are equal mass or pressure at
the depth of compensation (Beuthe, 2020). Since classic models of isostasy ignore the shear stresses
between the neighboring crustal columns, the loads are supported by buoyancy in classic isostasy.
However, regional isostasy considers both flexure and curvature into the model. In this case, the loads
are supported by a combination of buoyancy, bending stresses and membrane stresses. The original
equal mass/pressure prescription may not be strictly applicable for regional isostasy.

Another prescription which defines the isostatic equilibrium as the state of minimum deviatoric
stresses within the lithosphere was mentioned by Jeffreys (1959) and later elaborated by Dahlen (1982)
and Beuthe et al. (2012), respectively. Deriving the equations for the ”Minimum Deviatoric Stresses
Isostasy” is beyond the scope of this thesis. But knowing this is helpful to the interpretation of results
from the FEM models.
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3.2. Power Spectra Analysis
One way is investigate the subsurface structure of a planet is to probe a planet from orbit and retrieve
information about its topography and gravitational field. Important geophysical parameters can be
derived by modelling the relationship between a planet’s topography and gravity. For example, many
studies (Belleguic et al., 2005, Beuthe et al., 2012, McGovern et al., 2002) modeled the admittance,
which is the ratio between gravity and topography in the spectral domain. But this artificial parameter
is hard to interpret under the geophysical context.

In this study, power spectrum is used to compare the relationship between gravity and topography
(Watts andMoore, 2017). The power spectrum is also called degree variance, which is a tool to express
the energy stored in the gravitational field in terms of spherical harmonic degrees or wavelengths.
With the relationship between topography and gravity defined in the first place, one can convert the
power spectra of topography from different models into the power spectra of gravity. Then, results from
different models can be evaluated by comparing the modeled power spectra to the observed one. In
this section, the power spectra of gravity anomaly and several topography models are introduced.

3.2.1. Free Air Anomaly
The power spectrum at a given degree n can be calculated by summing up the square of all coefficients,
which is given (Kaula, 1967) by

𝜎2(𝑛) =
𝑛

∑
𝑚=0

{𝐶2𝑛𝑚 + 𝑆2𝑛𝑚} (3.30)

where 𝐶𝑛𝑚 and 𝑆𝑛𝑚 are the spherical harmonics coefficients of gravity. The unit used for power spectra
of gravity is mGal2.

The power spectrum of FAA is used as the observed gravity spectrum because it shows the gravity
anomaly in the crust of a planet. To obtain the FAA, gravity reductions mentioned in chapter 2 are
required. The FAA power spectrum can be computed from Equation 3.30. However, considering the
unit for the gravity power spectrum, the coefficients 𝐶𝑛𝑚 and 𝑆𝑛𝑚 are not the Stokes coefficients which
describe a planet’s mean gravitation potential. Instead, the coefficients in Equation 3.30 should be the
spherical harmonic coefficients of certain mass anomalies.

Figure 3.8: Flowchart of the procedure to obtain the spherical harmonics coefficients of FAA.

The first step to get the correct coefficients is to perform both gravity reductions and GSHS to the
origin Stokes coefficients. The second step is to extract the radial component of gravitational vectors,
which represents the FAA in the spatial domain. The last step is to convert the spatial FAA into the
space of spherical harmonic by GSHA, from which the right coefficients for the power spectrum of FAA
are derived. This process is visualized in Figure 3.8.

Alternatively, one could apply the following equation to obtain the power spectrum of the gravity
anomaly (Pavlis et al., 2012) at a given degree n

𝜎2(𝑛) = [𝐺𝑀𝑎2 ⋅ (𝑛 − 1)]
2 𝑛

∑
𝑚=0

{𝐶̄2𝑛𝑚 + 𝑆̄2𝑛𝑚} (3.31)

where 𝑔 is the gravitational constant, 𝑀 is the mass of the planet, 𝑎 is the equatorial radius of the
planet, 𝐶̄ and 𝑆̄ represent the Stokes coefficients. Equation 3.31 avoids the incommodious procedures
of global spherical harmonics transformations, and it is used for the power spectra analysis.



3.2. Power Spectra Analysis 27

3.2.2. Topography Models
Similar to that of gravity, the power spectrum of topography for spherical harmonic degree n is given
(Watts and Moore, 2017) by

𝜎2topo(𝑛) =
𝑛

∑
𝑚=0

{𝑇2𝑛𝑚 + 𝑌2𝑛𝑚} (3.32)

where 𝑇𝑛𝑚 and 𝑌𝑛𝑚 are the spherical harmonic coefficients of a planet’s rock equivalent topography.
In the uncompensated topographymodel, the gravity effect of the topography only depends onmass

of topography. The power spectrum of the gravity effect of uncompensated topography model can be
calculated from (Kaula, 1967)

𝜎2uncomp(𝑛) = [4𝜋𝐺𝜌𝑐
𝑛 − 1
2𝑛 + 1]

2
𝜎2topo (3.33)

where 𝜌𝑐 is the mean density of the crust and 𝑔 is the gravitational constant.
Based on the uncompensated model, the gravity effect of compensated topography can be calcu­

lated by incorporating the effect of isostatic compensation into Equation 3.33. For a fully compensated
topography under local isostasy, its gravity effect is given (Kaula, 1967) by

𝜎2local(𝑛) = {4𝜋𝐺𝜌𝑐
𝑛 − 1
2𝑛 + 1 [1 − (

𝑅 − 𝐷𝑐
𝑅 )

𝑛+2
]}
2

𝜎2topo (3.34)

where 𝑟 is the radius of the planet and 𝐷𝑐 is the depth of compensation.
Equation 3.33 and Equation 3.34 give the upper and lower limits of the gravity effect of topography

models, respectively. The results from regional (or flexural) compensated models should lie between
the limits. For models with regional compensated topography, the power spectra of their gravity effects
are given (Watts and Moore, 2017) by

𝜎2regional(𝑛) = {4𝜋𝐺𝜌𝑐
𝑛 − 1
2𝑛 + 1 [1 − Φ(𝑛) (

𝑅 − 𝐷𝑐
𝑅 )

𝑛+2
]}
2

𝜎2topo (3.35)

where Φ(𝑛) is the flexural response function for the infinite plate (Equation 3.7) or the thin shell (Equa­
tion 3.28).
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An example of power spectra analysis for Earth (Watts andMoore, 2017) is presented in Figure 3.9.
The black points show the power spectrum of Earth’s FAA while the coloured points present the power
spectra of gravity effects of different topography models.

Figure 3.9: Comparison of power spectra between Earth’s FAA (black), gravity effects of topography with no compensation (pink),
local compensation (green) and regional compensation (blue) (Watts and Moore, 2017). HDB and LDB stands for high degree
band and low degree band, respectively.

The uncompensated model (pink) and locally compensated model (green) set the upper and lower
limits, respectively. The power spectra of both FAA (black) and regionally compensated model (blue)
are between the limits. The observed spectrum fits the power spectrum of infinite plate model better
than others. This suggests that the infinite plate model is the best model among the three to represent
the behaviour of Earth’s crust. However, there are large differences between themodeled and observed
spectra at low degree band (LDB), which could be explained by support from mantle dynamics.

The inset at the top right of Figure 3.9 shows how a best lithospheric thickness is found for the
infinite plate model. This is done by searching the minimum root­mean­square (RMS) error between
the modeled and observed spectra with varying lithospheric thickness. The best fit of Te = 34 km was
found for an infinite plate model for Earth by Watts and Moore (2017). Similar approaches are used in
this thesis to study the crust of Mars.



4
3D Flat FEM Models for Mars

Having discussed the models of isostasy for Mars, this chapter details how these crustal models are
built with FEM. Firstly, an overview of the models created in this study is introduced in section 4.1.
Secondly, the generation of the models in Abaqus is discussed in section 4.2. Next, the implementation
of different isostatic models are introduced in section 4.3. Lastly, section 4.4 explains how the target
regions are selected in this study and how the boundary effect is alleviated.

One of the advantages of the flat Marsmodel over a spherical Marsmodel is computational efficiency
(Nield et al., 2018). Furthermore, the simple geometry of the flat model makes it easier for trial and
error than a spherical one.

4.1. The Software and Model Overview
This section introduces the FEM software package (Abaqus) used in the study. Then, an overview on
the 3D flat FEM models for Mars is provided.

4.1.1. The FEM Software
The basic idea behind the FEM is discretization of the actual geometry of the problem by a set of finite
elements. Nodes are used to connect these finite elements, and together, they are called the mesh.
The tool used for this thesis is Abaqus, which can calculate the displacements of the nodes and derive
the stresses as well as strains in every single finite element.

Abaqus is a suite of engineering simulation programs for computer­aided engineering and FEM.
One of the most important components of Abaqus is the Abaqus/CAE, which stands for Complete
Abaqus Environment(CAE), a graphical and interactive environment for Abaqus. With this powerful
interface, users can edit the geometry of the modeled structure and assign relevant properties to it. It
is also possible to import CAD models from other software. Abaqus/CAE can mesh the geometry and
verify the analysis model.

Once the model is finished, an input file containing the information of the model is generated.
Abaqus/CAE hands it over to analysis tools while keeping an eye in the background to control and
monitor the job. The major analysis products in Abaqus are Abaqus/Standard and Abaqus/Explicit.
The former one is designed for handling static and low­speed dynamic events which demand high­
accuracy solutions for stresses. While the latter one is a special­purpose analysis product for high­
speed, transient dynamic events such as impact and explosion. Once the analysis is completed, the
output database can be processed by Abaqus/CAE or other software.

In short, a full ABAQUS analysis consists of three stages (Figure 4.1): preparation, simulation and
evaluation. These stages are performed in sequence and can be implemented in pre­processors like
Abaqus/CAE, analysis programs like Abaqus/Standard or Abaqus/Explicit, and software like Abaqus/CAE
or Matlab separately.

29
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Figure 4.1: The basic procedure for Abaqus.

4.1.2. Model Overview
The high­level overview of the 3D flat FEM model is presented in Figure 4.2 where the inputs, out­
puts, relevant scripts and software are included. Before the FEM model starts, topography and gravity
data is used by Model.m to construct different crustal models and generate the surface loads. The
Model_data.py contains all parameters in the model settings and paths to input files. It should be
imported before the generation of the FEM model. The Model_gen.py contains all the steps required
to construct the model. This file is processed by the Abaqus Python Development Environment (PDE)
to extract all the information for model generation. The steps in Model_gen.py is elaborated in sec­
tion 4.2.

The default Model_data.py and Model_gen.py are designed for a model with uniform thickness
and density for each layer. However, incorporating the results from crustal models would bring lateral
variations in the crustal density or thickness. So, both Model_data.py and Model_gen.py are
updated in order to incorporate the features of different crustal models from chapter 3. This ”update”
for the model is elaborated in section 4.3.

Figure 4.2: A high­level overview of the 3D flat FEM model for Mars. Matlab is used for procedures on left of the orange dashed
line while the other procedures are implemented with both Abaqus and Python.

When the model construction is finished, the Model.cae, which contains the completed model,
is generated. The fact that Model.cae can be opened in Abaqus/CAE makes it easy to visualize
and change the settings of the model. The Model.odb is the output database, which contains all
pre­defined parameters from the model. It also can be viewed in Abaqus/CAE and print specified
parameters (like Stress.dat and Strain.dat) from the GUI. The output parameters are further
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processed by Postprocess.m in Matlab.

Table 4.1: The configuration of the 3D FEM flat model in Abaqus. Parameters like depth of the crust and model size can be
modified to fit different regions/models.

Part Depth Size Density Young’s modulus Poisson’s Mesh Size
[km] [km] [kg/m3] [N/m2] Ratio [km]

Crust 0­100 3560×3560 2900 5×1010 0.5 40×40
Mantle 1 100­400 3560×3560 3500 1×1011 0.5 90×90
Mantle 2 400­1400 3560×3560 3700 1×1011 0.5 90×90
Core >1400 ­ ­ ­ ­ ­

4.2. Model Creation
This section gives a step­by­step introduction to how Abaqus generates the FEM model. Firstly, sub­
section 4.2.1 introduces the generation of different parts for the flat Mars. Then, the mesh settings are
discussed in subsection 4.2.2. Finally, the step and loads are described in subsection 4.2.3.

4.2.1. Part
The flat Abaqus model consists of several individual rectangular parts (Abaqus keyword *Part) simulat­
ing the crust and mantle, as shown in Table 4.1. In the default settings, the crustal part has a depth of
100 km and a size of 3560×3560 km, the mantle part has the same size and a depth all the way down
to 1400 km, and the core part is not simulated. Instead, the support from the core is simulated by the
encastré boundary condition (Abaqus keyword *Boundary), which undertakes all the stress/force from
the top parts and fixes the bottom surface of the mantle in terms of both translations and rotations. The
crustal part is on top of the mantle parts, and they have different resolution after mesh. So, they are
connected by the surface­to­surface tie constraints (Abaqus keyword *Tie). Such tie connections also
allow stresses to transfer between the neighboring mesh layers and prevents the surface penetration
(Nield et al., 2020).

In Abaqus, no units are shown. So, users should keep the units in a consistent manner. In this
study, the standard International System of Units (SI) is used (Table 4.2). However, expressing the
the length of the model size (3560 km) in meters would exceed the maximum approximate size limit in
Abaqus’ geometry engine. To tackle this issue, one could first create the parts with units in km, then
scaling the parts by a scale factor of 1000 to convert the unit back to meter.

Table 4.2: Consistent units for Abaqus in this study.

Quantity Length Force Mass Time Stress Energy Density

Symbol m N kg s Pa(N/m2) J kg/m3

After the parts have been created, assembled, and constrained, different properties are assigned
to the parts as shown in Table 4.1. The crust has a density of 2900 kg/m3 while higher densities
of 3500 and 3700 kg/m3 are assigned to the upper and lower mantle, respectively. The values of
Young’s modulus for the crustal and mantle parts are 5 × 1010 GPa and 1 × 1011 GPa separately. A
Poisson’s ratio of 0.5 is shared by both parts to exclude the material compressibility (Van der Wal,
2009). Compressible materials can be indicated by a Poisson’s ratio lower than 0.5 but it could bring
large instabilities in Abaqus analysis and is hard to fully implemented under surface loads (Wu, 2004).
The parameters for viscosity are not defined because this study calculates the state of equilibrium in
the model, and time­dependent viscosity does not play an important role in this case. So, only the
incompressible elastic material behavior is taken into account in the model.

4.2.2. Mesh
To better study the stress state in the crust, a high resolution mesh with the maximum element edge
size of 40×40 km is defined for the crustal part. A relatively coarse mesh of 90×90 km is taken for the
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mantle parts. For comparison, a model resolution of 100×100 km was used by Nield et al. (2018) in
their area of interest for a flat Earth Glacial Isostatic Adjustment (GIA) model.

Different 3D element shapes are available in Abaqus. They are wedge, tetrahedron, and hexahe­
dron as shown in Figure 4.3. While the hexahedron is sufficient for models with regular geometry, the
elements of wedge and tetrahedron are designed to tackle models with complex geometry.

Figure 4.3: Different 3D element shapes in Abaqus (Casteren, 2018).

The mesh element type used in this study is C3D8H, which indicates that it is a continuum hybrid
element with 8 nodes. For a flat model with cuboid parts, the brick element is sufficient to generate the
mesh. The use of this simple mesh element also ensures the convergence and accuracy of the model.
The hybrid element is selected to avoid the singularity due to the incompressible material (Van der Wal,
2009).

Figure 4.4: The mesh of the 3D flat Mars model. The crust at the top is covered by fine mesh while the mantle is with coarse
mesh.

4.2.3. Load and Step
In order to model the crust of Mars, both the crustal structure and the topography need to be taken
into account. The implementation of crustal model in the Abaqus is discussed in section 4.3, and this
subsection covers the settings of the loads and step.

To apply surface loads on a planet, the time steps need be defined to determine how long the surface
loads are working in the model. For example, to model the GIA on Earth, multiple steps are defined
with time­varied ice loads on the surface by many studies (Casteren, 2018, Nield et al., 2020). It can
be done for the Earth because there is historical ice loading data available. But for Mars, the loading
history of either ice or topography is not available. So, instead of using the multiple time steps and
changing the surface loads with time, only one step and fixed surface loads are used.

The only step used in the model is the geostatic step (Abaqus keyword *Step). With the geostatic
step, the model can generate a geostatic stress field which supports the surface loads. This step would
not stop until the generated stress field is in equilibrium with the applied loads and boundary condition
in the model. With the geostatic step, it is possible to model the lithosphere of Mars under loads without
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inputting any time information. However, the geostatic step also assumes that the lithosphere Mars is
in equilibrium with its surface loads. Though this assumption may not represent what really happens
on the red planet, it fits the idea of isostatic equilibrium and could reveal information on how deviatoric
buoyancy and stresses play roles in supporting the surface loads.

The surface loads of Mars are converted from topographic height ℎ into pressure 𝑝 by

𝑝 = 𝜌𝑐𝑔ℎ. (4.1)

Then, the topographic pressure field is mapped on the surface of the flat model (Abaqus keyword
*Load). Figure 4.5 shows how a circular positive load is mapped on the surface of the flat model. The
load is represented by the pink arrows. These arrows are pointing downward, which means that the
topography is positive and brings extra mass on the surface. The lengths of the arrows are determined
by the magnitude of the loads.

Figure 4.5: A sample circular load (pink arrows) with varying heights on top of the 3D flat Mars model. The encastré boundary
condition is visible at the bottom of the model.

After the loads and steps are defined in Abaqus, a job can be created for the model. In the job
definition, the model name, analysis type, memory usage, and number of CPUs can be specified.
The analysis process initiates once the job is submitted. But in this study, isostatic models should be
incorporated into the FEM model before creating the job. This is discussed in the next section.
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4.3. Implementation of Isostasy
The models of isostasy discussed in chapter 3 require lateral variations in either crustal thickness or
crustal density. The purposes behind the spatial variations in thickness or density are to alter the
distribution of buoyancy at the crust­mantle boundary and maintain the isostatic equilibrium. Such
isostatic restoring forces are implemented in Abaqus as elastic foundations or Winkler foundations
(Abaqus keyword *Interaction) at the material boundaries (Wu, 2004). To create the elastic foundation,
the stiffness with a value equal to Δ𝜌𝑔 has to be defined for each boundary layer. By doing so, it also
means that the buoyancy is uniform at the material boundary.

In this thesis, the gravity of the crust and the mantle is neglected. The motivations are: firstly, to
simplify the model and make the solution converge quicker in Abaqus; secondly, to study the effect
of the loads only; lastly, to compute the nonhydrostatic stress state in the lithosphere. As a result, the
buoyancy at the interface between the crust and heavier mantle should correspond to the applied loads
only. Such topography­related buoyancy is called deviatoric buoyancy in this study, as it excludes the
effect of the body forces from the crust and the mantle.

The deviatoric buoyancy has lateral variations at the material boundary, and such spatial variations
cannot be achieved by the elastic foundations in Abaqus. Instead, it is calculated directly and loaded
as pressure at the crust­mantle boundary in the flat Mars model. Since the deviatoric buoyancy can
be implemented without the elastic foundations, the flat Mars model is further simplified by neglecting
the lateral variations in density (for Pratt) and thickness (for Airy). This assumption would not affect
the results of this study as the variations in crustal thickness only play an important role in terms of the
short­wavelength deformation (Nield et al., 2018).

4.3.1. Local Isostasy
In the Pratt’s model, a uniform depth of compensation 𝐷𝑐 is assumed, and the buoyancy is distributed
on the same boundary layer but with different magnitudes (due to the different heights of the loads).
The basic equation for the Pratt’s model is Equation 3.6, which shows how the density of each crustal
column 𝜌 varies due to the topography height ℎ. In this case, the deviatoric buoyancy 𝑑𝑃 depends on
the density difference between the mean density 𝜌0 and the crustal density 𝜌 from Equation 3.6, the
gravity of the planet 𝑔, and the depth of compensation 𝐷𝑐

𝑑𝑃𝑃𝑟𝑎𝑡𝑡 = (𝜌0 − 𝜌)𝑔𝐷𝑐 (4.2)

where the positive pressure is upwards (push) and negative one is downwards (pull). The implemen­
tation of Pratt’s model can be visualized in Figure 4.6.

Figure 4.6: The illustration of the implementation of Pratt’s model in Abaqus. The applied load (blue) brings density variations in
the crust. The darker the color is, the larger the density variation is. A larger density variation also brings larger buoyancy (green
arrows) at the boundary. The deviatoric buoyancy is only added under the load.

The Airy’s model is harder to implement in Abaqus than the Pratt’s model. Because in the Airy’s
model, the deviatoric buoyancy has to be distributed at different layers due to the variations in crustal
thickness. Thus, the crustal part in the flat model is further divided into 10 or more layers, which
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provides surfaces at different depths to load the buoyancy in the Abaqus. This process is called dis­
cretization (Figure 4.7). More layers in the discretization could increase the accuracy of the model. But
the computation time is also proportional to the number of crustal layers. In practice, 10 to 20 layers for
the crustal part could balance the computational accuracy and efficiency for the model. The buoyancy
anomalies at various depths are calculated by

𝑑𝑃𝐴𝑖𝑟𝑦 = (𝜌𝑚 − 𝜌𝑐)𝑔𝑟 (4.3)

where 𝑟 is the variation of crustal thickness due to Airy’s isostasy from Equation 3.5.

Figure 4.7: The illustration of the implementation of Airy’s model in Abaqus. The continuous crust­mantle boundary is divided
into multiple layers so that the buoyancy (green) can distribute at different depths. The deviatoric buoyancy is only added under
the load.

4.3.2. Flexural Isostasy
Since the models of flexural isostasy are based on the crustal profile from the local isostasy, the imple­
mentation of flexural isostasy in the flat Mars model is the same as that of the isostasy.

Figure 4.8: The flowchart to generate crustal profiles with flexural isostasy.

The crustal profiles from flexural isostasy can be obtained by Equation 3.29 with flexural response
functions introduced in chapter 3. This process is elaborated in Figure 4.8 with four steps. Firstly, a
global crustal profile based on local isostasy with the topography data as input is needed. The crustal
profile can be either a global crustal density distribution from the Pratt’s model or a crustal thickness
map from the Airy’s model (both are used as shown in Figure 4.10). Secondly, a GSHA is needed to
transform the global crustal profile from spatial domain into spherical harmonic domain. Equation 3.29
is used at this step to filter the coefficients at each degree. The third step is to transform the new crustal



36 4. 3D Flat FEM Models for Mars

profile from spherical harmonic back to space with a GSHS. This step generates a global crustal profile
with flexural isostasy. Lastly, the regions of interest are extracted from the global crustal map and
applied to the flat model.

Two examples are given to illustrate how the flexural isostasy would filter the crustal profiles. The
first one is a simple loading case with two circular loads, as shown in Figure 4.9. The crustal profiles
based on local and flexural models of isostasy for the two loads are presented in Figure 4.10 in a global
scale.

Figure 4.9: Simple surface loads with both positive (+5 km) and negative (­5 km) topography. The heights of the loads de­
crease/increase parabolically to zero. Both loads have a radius of 354 km.

(a) Crustal thickness with the Airy’s Model. (b) Crustal thickness with the thin shell model (based on the Airy).

(c) Crustal density with the Pratt’s Model. (d) Crustal density with the thin shell model (based on the Pratt).

Figure 4.10: Global crustal profiles for the sample loads (Figure 4.9) under Airy(a), Pratt(c) and their corresponding thin shell
models(b+d). The Airy’s model assumes a mean crustal thickness of 50 km, a crustal density of 2900 kg/m3 and a mantle
density of 3500 kg/m3. The Pratt’s model takes a mean crustal density of 2900 kg/m3 and a compensation depth of 100km.
The thin shell model has an elastic thickness of 158 km. All images are presented using a Mollweide projection.

The average crustal thickness for the Airy’s model is 50 km. While the negative load makes the
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crust thinner, the positive load increases the crustal thickness (Figure 4.10a). Such opposite behaviors
can also be found in the density variations caused by the loads in the Pratt’s model (Figure 4.10c).
The flexural isostasy includes the support from elastic stresses, which makes the spatial variations of
thickness or density increase in size but decrease in magnitude (Figure 4.10d and Figure 4.10b). The
results are consistent with Figure 3.2 from David (2010).

(a) Crustal thickness for Mars with Airy’s model.

(b) Crustal thickness for Mars with the thin shell model (based on Airy).

Figure 4.11: Global crustal thickness profiles for Mars with local(a) and regional(b) isostasy. The Airy’s model uses an average
crustal thickness of 50 km, a crustal density of 2900 kg/m3, and a mantle density of 3500 kg/m3. The thin shell model takes an
elastic thickness of 158 km. Both images are presented using a Mollweide projection with a central meridian of 0∘ longitude.

The second example (Figure 4.11) shows how the thin shell model changes the crustal thickness
profile from the Airy’s model. The crustal thickness profile from local isostasy is highly related to the
topography, and short­wavelength (high­degree) features are clearly visible in Figure 4.11a. But the
flexural isostasy works like a low­degree­pass (or long­wavelength­pass) filter and smooths out all
short­wavelength features. Only the effects from long­wavelength features, like the global dichotomy,
Tharsis Rise, and Hellas Basin, remain in Figure 4.11b.
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4.4. Target Regions
The flat Mars model is designed to conduct regional analysis. This section explains how the regions of
interest are selected in subsection 4.4.1 and how the boundary effects are reduced in the flat models
in subsection 4.4.2.

4.4.1. Selection
The regions of interest in this study are the Tharsis Rise, Hellas Basin, and Utopia Basin. The Tharsis
Rise and Hellas Basin, together with their neighboring regions are selected because they are the most
prominent features on the surface of Mars except the global dichotomy. While the Olympus Mons
reaches a height up to 21 km, the Hellas Basin goes down to 7 km deep. They are good examples as
positive and negative topographic loads for the 3D flat Mars model.

The number of faults distributed over the regions is also a significant criterion. As shown in Fig­
ure 4.12, both the Tharsis region and the Hellas Basin are the home to young faults with age less than
3.5 Gyr. In addition, a large number of both extensional and compressional faults are located around
the Utopia Basin (and Elysium Mons), which is selected as the third region of interest. This region is
more complex than the previous two because it not only has large positive and negative topographic
features but also contains the boundary of the global dichotomy.

Figure 4.12: Regions of interest (green:Tharsis, red:Utopia, yellow:Hellas) with extensional (neon blue) and compressional (neon
pink) faults younger than 3.5 Gyr. The image is presented using a Mollweide projection with a central meridian of 0∘ longitude.
Rectangular boxes are distorted due to projection.

The default size of the flat model is 3560×3560 km, which is depicted by the green dotted­line box,
red dotted­line box, and yellow solid­line box in Figure 4.12. However, for Tharsis and Utopia, the
default size is not large enough to cover the major features and faults. So, the size for these two region
is extended to 7120×7120 km. After model extension for the Tharsis and Utopia, major faults on the
surface of Mars are covered in these three regions, as shown in Figure 4.13.

Table 4.3: An overview of the regions of interest. These regions are highlighted in Figure 4.13.

Region Center Size
Tharsis Rise 0∘ N, 120∘ W 7120×7120 km
Utopia Basin 20∘ N, 120∘ E 7120×7120 km
Hellas Basin 40∘ S, 70∘ E 3560×3560 km

An overview of the reigons of interest is presented in Table 4.3. Since these regions are shown in
the Mollweide projection in both Figure 4.12 and Figure 4.13, plots with equidistant projection for the
regions are shown in Figure 4.14. It shows how the regions look like in the flat model.
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Figure 4.13: Regions of interest (green:Tharsis, red:Utopia, yellow:Hellas) with extensional (blue) and compressional (pink)
faults. The faults younger than 3.5 Gyr are colored with neon blue (extensional) and light pink (compressional). The image is
presented using a Mollweide projection with a central meridian of 0∘ longitude.

(a) Tharsis Rise. (b) Utopia Basin.

(c) Hellas Basin.

Figure 4.14: The topography of regions of interest in equidistant projection.
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4.4.2. Boundary Effect
Since the flat Mars model is not infinite, the boundary might have a impact on the region of interest. A
common practice to make sure the boundary effects are negligible is to extend the model. For example,
to study a 3500×4500 km region of interest, Nield et al. (2018) used a flat model with a total width of
60000 km. It is true that the larger the model is, the less boundary effect would be. But it also comes
with the price of computation time. Therefore, it is necessary to find a balance between boundary effect
reduction and computational efficiency.

To find such a balance, the default model size (Table 4.3) is extended up to 2.5 times as shown in
Figure 4.15. The results from different models are compared to determine the minimum extended size
to alleviate the boundary effects.

Figure 4.15: An illustration of the extended models to study the boundary effects. The original region of interest is shown in
green, and the extended models are with different colors. ROI stands for region of interest.

Taking the Tharsis Rise region for example, the differences in the magnitude and direction of the
maximum principal stresses for different extended models are presented from Figure 4.16 to Fig­
ure 4.19. Large boundary effects can be observed in Figure 4.16 in terms of both magnitude and
direction for the original ×1 model. Figure 4.17 shows that the boundary effects are largely reduced as
the model size increases to ×1.25. In Figure 4.18 and Figure 4.19, the effects of the boundary are not
visible, and the sporadic differences in both magnitude and direction plots are attributed to interpolation
errors from post­process. Similar results are obtained for the Utopia Basin and Hellas Basin, which can
be found in Appendix B.

In summary, by extending the model to 1.25 times of the original one, the boundary effects can
be reduced significantly. Though the ×1.25 model appears to be sufficient, a safer choice is the ×1.5
model which is selected for this study to ensure the boundary does not affect the regions of interest.
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(a) Difference in the magnitude of maximum principal stresses. (b) Difference in the direction of maximum principal stresses.

Figure 4.16: The difference in the magnitude and direction of the maximum principal stresses between the ×1 and ×1.25 models.

(a) Difference in the magnitude of maximum principal stresses. (b) Difference in the direction of maximum principal stresses.

Figure 4.17: The difference in the magnitude and direction of the maximum principal stresses between the ×1.25 and ×1.5
models.

(a) Difference in the magnitude of maximum principal stresses. (b) Difference in the direction of maximum principal stresses.

Figure 4.18: The difference in the magnitude and direction of the maximum principal stresses between the ×1.5 and ×1.75
models.
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(a) Difference in the magnitude of maximum principal stresses. (b) Difference in the direction of maximum principal stresses.

Figure 4.19: The difference in the magnitude and direction of the maximum principal stresses between the ×1.75 and ×2 models.

4.4.3. Plume Modeling
The Tharsis rise represents the most prominent gravity Figure 2.3 and topography Figure 2.1 anomalies
on Mars. Previous studies (Redmond and King, 2004, Zhong, 2002) suggest that the Tharsis region is
mainly supported by the flexure of the lithosphere and partly by a deep mantle plume. Van der Tang
(2021) modeled such a mantle plume under the Tharsis rise and found that the best­fitting (to gravity
anomaly) plume was at the depth from 800 km to 900 km with a density anomaly of 400 kg/m3.

A proper way to model such amantle plume is to change the density (and other relevant parameters)
of the plume region in the FEM model and simulate the plume with time­dependent steps. But it would
take too much time to create and run such a model. Instead, this study simulates the effect of the
mantle plume under the Tharsis rise by modeling the pressure induced by the plume. In the FEM
model, pressure is loaded at the crust­mantle boundary. So, plume modeling is also referred to as
bottom loading.

Since the magnitude of the pressure is unknown, the pressure with different orders of magnitude
(10 MPa, 100 MPa, 1000 MPa, 10000 MPa) is loaded in the FEM model separately to investigate the
effects of bottom loading. Figure 4.20 shows how the pressure distributes at the crust­mantle boundary
with the maximum pressure of 10 MPa.

Figure 4.20: The bottom load (pressure) at the crust­mantle boundary to simulate the effect of a mantle plume under the Tharsis
region. The maximum pressure is at the center, and the pressure decreases parabolically to zero at the edges.



5
Verification and Validation

This chapter presents the verification and validation on the data (section 5.1), power spectrum analysis
(section 5.2), and the FEM model (section 5.3). Results from literature are used to verify and validate
the data and methodologies in the first two sections. The FEMmodel is validated with a series of simple
modeling cases.

5.1. Data
In this section, the power spectra of both topography (MOLA) and gravity (GMM­3) data are compared
to that of referenced data from literature. Similarities and differences between the data are discussed.

5.1.1. Topography
The topography data used in this study is downloaded from the NASA PDS site as mentioned in chap­
ter 2. It is the difference between the shape (or radius) of the planet and the areoid. To validate this
topography data fromMOLA, its power spectrum is compared to that of theMarsTopo2600 shapemodel
from Wieczorek (2015) in Figure 5.1. The power spectra of both MOLA and MarsTopo2600 fit very well
in the first 110 degrees except for the degree two. The large deviation at degree two may attribute to
the consideration of the oblateness of the planet. The MarsTopo2600 is a shape model which would
contain the effect of the oblateness in its degree­two terms. However, the MOLA is a topography model
where the effect of the oblateness is lessened.

Figure 5.1: Power spectra of the topography of Mars for MOLA (blue) and MarsTopo2600 (red). The larger difference at degree
two is due to the oblateness of the planet.

Figure 5.2 presents the power spectrum of MarsTopo2600 by Wieczorek (2015). It is used to verify
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that the power spectrum of MarsTopo2600 in Figure 5.1 is plotted correctly.

Figure 5.2: Power spectra of the topography (MarsTopo2600), geoid (JGMRO 110C), and geoid error by Wieczorek (2015). Only
the MarsTopo2600 is used for verification in this study.

5.1.2. Gravity
The gravity data of Mars (GMM­3) is used in this study for the power spectra analysis in chapter 3.
To verify that the correct gravity dataset is used, the square root of the potential power of the stokes
coefficients and its uncertainties from GMM­3 dataset are calculated by Equation 2.3 and shown in
Figure 2.2.

The square root of potential power of GMM­3 is shown in blue in Figure 2.2 and green solid line
in Figure 5.3. That of the GMM­3’s uncertainties are plotted in red in Figure 2.2 and green dashed
line in Figure 5.3. The patterns of both GMM­3 and its uncertainties are consistent in Figure 2.2 and
Figure 5.3, which suggests the correct gravity data is used. The verification and validation of the gravity
data itself has been done by Genova et al. (2016) and Van der Tang (2021).

Figure 5.3: The square root of potential power (A) and higher degree spectra (B) of the GMM­3, MRO110C, and MROMGM0032
solutions and relative formal uncertainties from Genova et al. (2016). The GMM­3 (green) in this figure is used for verification.
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5.2. Power Spectra Analysis
In this section, both Fig.1 and Fig.3 from Watts and Moore (2017) are reproduced. With the same input
data and equations, Fig.3 is remade successfully, but some differences are found between the remade
Fig.1 and the original one. The issue with Fig.1 is elaborated in this section.

5.2.1. Reproduction of Fig.3 from Watts and Moore (2017)
To verify the scripts used for the power spectra, Fig.1 and Fig.3 from Watts and Moore (2017) are
reproduced. The topography data is from the Earth2014 Rock Equivalent Topography model1. All
equations and parameters are the same as those from Watts and Moore (2017). These equations are
also discussed in chapter 3.

(a) The calculated spectrum based on the gravity effect of the topog­
raphy and its Airy compensation (green) with a Dc of 61 km. The to­
pography data is from Earth2014 Rock Equivalent Topography (RET)
model.

(b) Comparison of the power spectrum of Earth’s FAA field (black) to
the calculated spectrum based on the gravity effect of the topography
and its Airy compensation (green) with a Dc of 61 km (Watts andMoore,
2017).

Figure 5.4: Comparison of the power spectrum of the gravity effect of the topography and its local compensation with a Dc of 61
km.(a) shows the plot from this study and (b) is Fig.3 from Watts and Moore (2017).

Figure 5.4a compares the power spectrum of observed Earth gravity anomaly and that of the grav­
ity effect of the topography and its local compensation with a Dc of 61 km. The spherical harmonic
coefficients from the EGM2008 gravity model (Pavlis et al., 2012) is used. The power spectrum of the
gravity anomaly is calculated with Equation 3.31. The Earth2014 Rock Equivalent Topography model
(Rexer and Hirt, 2015) is used as input topographic data.

Figure 5.4b is taken from Watts and Moore (2017), which does the same as Figure 5.4a. It can be
seen that both subplots in Figure 5.4 match with each other. This visual inspection confirms that the
code used for the power spectra analysis is correct.

Fig.3 from Watts and Moore (2017) is reproduced and discussed in the above. By doing so, it is
sufficient to verify the code used for power spectra analysis in this study. With verified spectral analysis
code, Fig.1 from Watts and Moore (2017) is also reproduced. But readers should keep in mind that
the content on the next page does not serve as verification and validation because the results are not
the same as the original paper. The differences are discussed in the following to raise questions about
Fig.1 from the original paper.

1http://ddfe.curtin.edu.au/models/Earth2014/ [25­06­2021]

http://ddfe.curtin.edu.au/models/Earth2014/
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5.2.2. Reproduction and Discussion of Fig.1 from Watts and Moore (2017)

(a) The reproduced Fig.1 with verified code in this study. (b) The original Fig.1 from Watts and Moore (2017).

Figure 5.5: Comparison of power spectra between Earth’s FAA (black), gravity effects of topography with no compensation (pink),
local compensation (green) and flexural compensation (blue). (a) is the figure reproduced in this study. (b) is Fig.1 from Watts
and Moore (2017). The values for parameter used in (a) are taken from Watts and Moore (2017). The power spectra of both
local­compensated and flexural­compensated topography overlap in the low­degree band.

Figure 5.5a is meant to reproduce Figure 5.5b, which compares the power spectrum of Earth’s
gravity anomaly to those of Earth’s topography with no compensation, local compensation, and flexural
compensation. As seen in Figure 5.5, the power spectra of both Earth FAA (black) and the gravity
effect of uncompensated topography (pink) match in both subplots. Firstly, the same pattern for Earth’s
FAA is seen in Figure 5.4, and this is confirmed here. Secondly, the match of the power spectra of
uncompensated topography in both Figure 5.5a and Figure 5.5b proves that the equations and code
used for topography without compensation are correct.

However, discrepancies are found between Figure 5.5a and Figure 5.5b in the power spectra of
local­compensated (green) and flexural­compensated (blue) topography. Their results especially mis­
match at n < 50. Equation 3.35 suggests that the power spectrum of flexural­compensated topography
is dependent on that of the local­compensated topography (Equation 3.34). If both of them go wrong,
topography with local compensation should be checked first.

For n = 2, the power spectrum of the gravity effect of topographywith local compensation (Dc = 61km)
has a value of approximately 0.5 mGal2 in Figure 5.4. That value is larger than 1 mGal2 in Figure 5.5b
(Dc = 30km). This does not make sense because a lower Dc should yield to a lower value in power
spectrum according to Equation 3.34. The result in Figure 5.5a, which has a value slightly larger than
0.1 mGal2, does make sense as it is lower than the value in Figure 5.4.

Furthermore, the best­fitting flexural rigidity D = 4.37 × 1023 N m (Watts and Moore, 2017) is not
equivalent to the stated Te=34 km when applying the values of parameters given by Watts and Moore
(2017). It is likely that they used different values for parameters in the calculation instead of the ones
they gave in the paper, which makes the reproduction of Figure 5.5b impossible2.

2We have emailed Watts and Moore about this issue, but they have not responded yet. We also contacted Christian Hirt who
confirmed that we used the correct Earth2014 RET model (Hirt et al., 2012).
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5.3. The FEM Model
To study the behavior of the 3D flat Mars model, a series of simple loads are created as testing cases.
These loads include single positive load, single negative load, dual positive loads, dual negative loads,
positive & negative loads, and large dual positive loads. Only the most representative results are
presented in this section.

5.3.1. Positive & Negative Loads
The Positive & Negative (PN) loads are the most representative simple loading case. The loads consist
of a positive circular load up to +5 km and an negative circular load down to ­5 km. The maximum or
minimum points of the loads are at the center of the loads as shown in Figure 4.9.

Figure 5.6: Maximum principal stresses (a) and Minimum principal stresses (b) at the surface for the NP loads with Airy’s
compensation. The arrows indicate the direction of maximum/minimum principal stresses.

Figure 5.6 shows the surface stress analysis for the PN loads under Airy’s isostasy (other isostatic
models have similar results). The positive maximum principal stresses, which indicate the tensional
regions, are presented in Figure 5.6 (a). It shows that a large tensional zone is formed underneath
the negative circular load at the upper left of the plots. While Figure 5.6 (b) shows the regions under
compression with negative minimum principal stresses. And a compressional zone is caused by the
positive load at the lower right of the plots. Judging from the directions of the principal stresses, both
tensional and compressional faults are expected to be radially distributed over the loading areas.

While Figure 5.6 presents the surface stress state for only one model, Figure 5.7 compares prin­
cipal stresses at the diagonal of the flat models with different compensations. The pink dashed curve
represents the model without any extra compensation. While the blue and green ones stand for the
models with Airy’s and Pratt’s compensations separately. The peak of the principal stresses can be
found at the center of the negative load where is dominant by tensional stresses. And the bottom lies
at the center of the positive load where the most compressional stresses prevail.

The models of local isostasy have compensations (buoyancy) at the crust­mantle boundary. Such
buoyancy can support the loads together with the stresses in the crust. So, the models with isostatic
compensations do not require as much stress as the non­compensation model to maintain the equilib­
rium. But the Airy’s model under the negative load is an exception where the crust­mantle boundary
moves closer to the surface and the modeled thickness of the lithosphere becomes very small.

It is important to note that the ”non­compensation” (also called the ”Abaqus”) model is the model
without extra buoyant support. For such a model, an equilibrium can still be reached because the
shear stresses between the crustal elements/columns are not neglected in Abaqus. In other words,
the stresses play a big role in supporting the loads.

Figure 5.8 compares the local isostasy (Pratt), flexural isostasy (Plate) and the non­isostasy models.
Figure 4.10 already shows that the flexural model would experience less support from buoyancy than
the local isostatic model because they have more support from stresses. As a result, the maximum
principal stresses for the flexural (plate) model are higher than the Pratt’s model in Figure 5.8.
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Figure 5.7: Maximum principal stresses of the diagonal elements for the NP loads with non (or Abaqus) (pink), Airy (blue) and
Pratt (green) compensations.

Figure 5.8: Maximum principal stresses of the diagonal elements for the NP loads with Abaqus (pink), Pratt (blue), and Plate
(green) compensations.

Figure 5.9 and Figure 5.10 show the effects of varying the average crustal thickness (for the Airy’s
model) and the depth of compensation (for the Pratt’s model), respectively.

For both models, increasing these parameters results in lower stresses in the crust under the peak
of the loads. It suggests that a thicker crust in both Airy’s and Pratt’s models requires less stress
support. The reason may be that stresses required to support the load can more widely spread in a
thicker crust where the magnitude of stresses reduces. In other words, a crust with larger rigidity is
simulated effectively. This further implies that pure local isostasy cannot be simulated in Abaqus as
interaction between neighboring elements is not neglected.
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Figure 5.9: Maximum principal stresses of the diagonal elements for the NP loads with different average crustal thickness from
Airy’s model.

Figure 5.10: Maximum principal stresses of the diagonal elements for the NP loads with different depth of compensation from
Pratt’s model.

5.3.2. Large Dual­Positive Loads
The large­dual­positive (LDP) loads are designed to check if the infinite plate model and the thin shell
model would behave differently in the flat Mars model. Figure 5.11 shows the difference in the flexural

Figure 5.11: The difference in the flexural response functions between the infinite plate model and thin shell model (Te=120 km).
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response functions between the infinite plate model and thin shell model. Theoretically, their difference
becomes visible from 𝜆=1039 km (𝑛=20) and increases to around 12% at 𝜆=2030 km (𝑛=10).

This means that for a load at the wavelength of around 2000 km, the buoyant support from the
infinite plate model would be 10% higher than that from the thin shell model. To test if such a difference
would affect the surface stresses, the LDP loads are created. The LDP­loading case includes two
positive loads with radius of 354 km and 1000 km, respectively. The profiles of the loads can be found
in Figure 5.12.

Figure 5.12: The large dual positive (LDP) loads with top view (left) and cross­section view (right).

The crustal thickness variations due to the LDP loads under the Airy’s isostasy is visualized in
Figure 5.13. The blue curve shows how the crustal thickness would vary under local isostasy (Airy).
And these of the infinite plate model and the thin shell model are represented by the orange and yellow
curves. It is clear that the flexural models relieve the crustal variation from the model of local isostasy,
which is consistent with the study of David (2010) as shown in Figure 3.2. And less crustal variations
are observed in the shell model than the plate model. What’s more, as the wavelength of the load
increases, the difference in the thickness variations between the two flexural models also increases.

Figure 5.13: A cross­section view on the crust under the LDP loads with Airy, Infinite Plate and Thin Shell isostasy. A mean
crustal thickness of 50 km is assumed for the Airy’s isostasy. The crustal density is 2900 kg/m3 and mantle density is 3500
kg/m3.
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The minimum principal stresses at the surface of the models with LDP loads are shown in Fig­
ure 5.14. The minimum principal stresses are presented because they show the how compressive the
regions are under positive­topography loads. The red, blue and green curves show the stress profiles
for non­compensated, airy­compensated and plate­compensated models. The bottom of the curves
represents the centers of the loads where large differences between the local isostasy and the other
two models can be found. Such differences are lower under the larger load, which can be explained
by the difference in the crustal thickness as shown in Figure 5.13.

Figure 5.14: The minimum principal stresses at the diagonal under the LDP loads for different models. The stress states for
elements at the diagonal are shown.

Though Figure 5.13 shows the differences in crustal thickness variations between the infinite plate
model and the thin shell model, such differences do not significantly affect the stress state at the surface
of the models. As Figure 5.15 suggests that the maximum difference in the minimum principal stresses
at the center of the loads is around ­0.2 MPa. On the other hand, the minimum principal stresses reach
­45 MPa under the long­wavelength load (d2). Under the short­wavelength load (d1), the difference
is even smaller. So, in the flat Mars model, the difference in the surface stresses between the infinite
plate model and the thin shell model is negligible.

Figure 5.15: Differences of the minimum principal stresses between the infinite plate and thin shell models under the LDP loads.
The red dashed lines indicate the centers of the loads (Figure 4.9).





6
Results

This chapter presents the major findings from this thesis. In section 6.1, the power spectra analysis is
performed for all candidate crustal models, enabling the comparison of these models on Mars. The ef­
fects of independently varying parameters in the crustal models are also studied. After being evaluated,
these crustal models are implemented in the FEM models. Therefore, section 6.2 presents the results
from FEM modeling for the selected regions on Mars with previous defined crustal models. Besides
purely isostatic support, a possible plume under the Tharsis rise is also investigated in the model.

6.1. Crustal Models for Mars
This section contains results from the crustal studies. Firstly, results from the power spectra analysis
for different crustal models are presented. The best­fitting lithospheric thickness is obtained in different
cases. Secondly, the effects of independently varying parameters (Young’s modulus, Poisson’s ratio
and density contrast) are presented.

6.1.1. Power Spectra Analysis

Figure 6.1: Comparison of the power spectrum of Martian FAA field (black) to calculated spectra based on the gravity effect
of uncompensated topography (red) and the gravity effect of the topography and its local compensation (green), infinite plate
compensation (dark blue) and thin shell compensation (light blue). The blue horizontal arrows show the estimated degree band
where mantle dynamics and flexural isostasy make the most contribution. The lithospheric thickness Te of 158 km is the best fit
for the thin shell model from degree 2 to 90.
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By comparing the power spectrum of the FAA and those of the gravity effect of the topography with
different crustal models, one could evaluate the performance of these crustal models and find the more
realistic models among them.

Figure 6.1 presents the power spectrum of the Martian FAA field (black) as a function of spherical
harmonic degree, together with calculated spectra based on the gravity effect of topography with no
compensation (red), local compensation (green), infinite plate compensation (dark blue) and thin shell
compensation (light blue).

The uncompensatedmodel (red) and fully compensated (green)model set the upper and lower limits
for the calculated spectra, respectively. The power spectra of both flexural models, whose lithospheric
thickness is 158 km, are in between the limits. Both flexural models converge to the uncompensated
model at n > 20 region but they diverge from each other at low­degree region (n < 15). As the de­
gree decreases, the power spectrum of the infinite plate model drops and tends to approach the fully
compensated model while that of the thin shell model maintains at the same level.

The observed spectrum (black) has smaller values than the uncompensated topography (red) for
n < 25. The reason why it is greater than the uncompensated model for n ≧ 25 regions is discussed
in next chapter. From Figure 6.1, it is hard to determine whether the thin shell model or the infinite
plate model is better fitting to the observation. Because the power spectrum from the infinite plate
model better follows the power spectrum of the observation for 4 < n ≦ 15. But in the low degree band
(2 ≦ n ≦ 4), the power spectrum of the thin shell model is closer to that of the observation than the
infinite plate model.

To compare the performance of both flexural models (thin shell and infinite plate), the Root­Mean­
Square (RMS) errors between the power spectrum of observed gravity anomaly and that of the gravity
effect of the topography with the thin shell and infinite plate compensation are calculated as a function
of lithospheric thickness of the lithosphere (Te).

Figure 6.2 shows these RMS errors for both the thin shell model (Figure 6.2a) and the infinite plate
model (Figure 6.2b) from 2 ≦ n ≦ 90. The best­fitting Te for the thin shell model is 158 km with a RMS
error of about 177.84 mGal2. For the infinite plate model, a lower best­fitting Te of 142 km is found with
a higher RMS error (around 223.17 mGal2).

(a) RMS errors for the topography with the thin shell compensa­
tion. The best­fitting Te of 158 km was found for 2 ≦ n ≦ 90.

(b) RMS errors for the topography with the infinite plate compen­
sation.The best­fitting Te of 142 km was found for 2 ≦ n ≦ 90.

Figure 6.2: RMS errors between Martian FAA and the gravity effect of the topography with flexural compensation as a function
of lithospheric thickness Te. Insets show the zoom­in view of the red rectangular zone where the best­fitting value of Te was
found. RMS errors are calculated globally from 2 ≦ n ≦ 90. Values for parameters are summarized in Table 3.2.

Figure 6.3 shows these RMS errors for both the thin shell model (Figure 6.3a) and the infinite plate
model (Figure 6.3b) from 5 ≦ n ≦ 90. For both models, the elastic thickness of the lithosphere is thinner
than the previous case. The best­fitting Te is found to be 101 km and 136 km for the thin shell model
and infinite plate model, respectively. Unlike Figure 6.2, the RMS error for the infinite plate model is
smaller than that of the thin shell model in Figure 6.3.
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(a) RMS errors for the topography with the thin shell compensa­
tion. The best­fitting Te of 101 km was found for 5 ≦ n ≦ 90.

(b) RMS errors for the topography with the infinite plate compen­
sation.The best­fitting Te of 136 km was found for 5 ≦ n ≦ 90.

Figure 6.3: RMS errors between Martian FAA and the gravity effect of the topography with flexural compensation as a function
of lithospheric thickness Te. Insets show the zoom­in view of the red rectangular zone where the best­fitting value of Te was
found. RMS errors are calculated from 5 ≦ n ≦ 90 (without first four degrees where mantle dynamics play a role).

6.1.2. Effects of Independently Varying Parameters
As summarized in Table 3.1, the flexural response functions of the infinite plate and the thin shell
models are dependent on various parameters, such as Young’s modulus, Poisson’s ratio, and the
density contrast between the crust and mantle. The following results show how these parameters
affect the best­fitting lithospheric thickness in the power spectra analysis. To find the best­fitting Te, the
gravity effect of the topography with the thin shell compensation is compared to the observed gravity
anomaly of Mars. The RMS errors are calculated from degree 2 to 90.

Figure 6.4 shows the effects of varying Young’s modulus on the best­fitting lithospheric thickness.
Young’s modulus ranges from 1 to 100 GPa, and the corresponding best­fitting Te drops from 580 km
to around 120 km. In Figure 6.2a, the best­fitting Te of 158 km is found with a Young’s modulus of 65
GPa, which is consistent in Figure 6.4.

Figure 6.4: The best­fitting lithospheric thickness Te as a function of Young’s modulus for the thin shell model (2 ≦ n ≦ 90).
Young’s modulus ranges from 1 GPa to 100 GPa. Values for other parameters are summarized in Table 3.2.
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The effects of varying the Poisson’s ratio on the best­fitting lithospheric thickness are shown in Fig­
ure 6.5 where the best­fitting Te decreases gradually with an increasing Poisson’s ratio. The variation
of the best­fitting Te is about 12 km for the given range of Poisson’s ratio.

Figure 6.5: The best­fitting lithospheric thickness Te as a function of Poisson’s ratio for the thin shell model (2 ≦ n ≦ 90). The
value of Poisson’s ratio ranges from 0 to 0.5.

The range of the density contrast between the crust and mantle of Mars is from 400 to 900 kg/m3

(Knapmeyer­Endrun et al., 2021). As the density contrast increases from 400 to 900 km, the best­fitting
Te also increases. The variation of Te due to changes of density contrast in Figure 6.6 is around 60
km.

Figure 6.6: The best­fitting lithospheric thickness Te as a function of density contrast between the crust and mantle for the thin
shell model (2 ≦ n ≦ 90). The mantle density is assumed to be 3500 kg/m3, and the density contrast ranges from 400 to 900
kg/m3.
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6.2. Faults Characterization
In this section, the results from the FEM models are presented for different regions of interest. Firstly,
the results for the Tharsis Rise and Hellas Basin are shown because they represent regions with large
positive­topography and negative­topography features, respectively. Then, the Utopia region, where
both positive and negative features appear, is presented.

The principal stresses or strains together with the surface faults are plotted for the target regions.
Tensional faults are likely to occur at the regions with positive maximum principal stresses. Regions
with negative minimum principal stresses are in compression, where compressional faults could grow.
The flat models with no compensation, Airy’s compensation, Pratt’s compensation, infinite plate’s com­
pensation and thin shell’s compensation are all simulated. Since they yield similar results in most of the
cases, only the most representative results are shown in this section. Extra figures for other models
can be found in Appendix B.

6.2.1. Tharsis
Figure 6.7 shows the maximum principal stresses together with tensional faults (a) and the minimum
principal stresses along with compressional faults (b). The small red arrows in the plots indicate the
directions of the principal stresses. Important topographic features are marked in both plots, and the
center of the region is at 0∘ N, 120∘ W. The topography of the target region is shown in Figure 4.14a,
and the resulted surface stresses are quite correlated to the topography. Large compressional zones
can be found under the giant Tharsis mountains (Olympus Mons and Tharsis Montes). The areas with
negative topography are dominated by tensional stresses. However, only large topographic features
are still recognizable in the stress field.

In Figure 6.7 (a), the tensional faults distribute radially with respect to the Tharsis Montes, Alba
Mons, and Tempe Terra. But the regions, which are dominated by the tensional faults, are under large
compression according to the stress analysis. Furthermore, the directions of the minimum principal
stresses cannot explain the observed tensional faults. There might be some divergence between the
model assumptions and the actual regional conditions in Tharsis.

Figure 6.7: Maximum principal stresses (a) and minimum principal stresses (b) for the Tharsis Rise region with Pratt’s Isostasy.
Tensional (green) and compressional (brown) faults are also plotted.

The principal strain plots for the Tharsis region can be found in Figure 6.8. Since strain is related to
the displacement, more detailed topographic feature can be observed in the strain plots. In Figure 6.8
(a) where the maximum principal strains and the tensional faults are shown, the locations of the large
strains are quite consistent with the observed tensional faults. The radial tensional faults at the south
of the Tharsis Rise, along the Valles Marineris, around the Alba Mons, and over the Tempe Terra all
overlap with the deep brown color which indicates positive (tensional) large strains. The compressional
strains are found where large topographic difference appears, like the surrounds of large Tharsis moun­
tains and the Valles Marineris. Some circumferential patterns are found for the compressional strains
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but they are not related to the observed compressional faults.

Figure 6.8: Maximum principal strains (a) and minimum principal strains (b) for the Tharsis Rise region with Pratt’s Isostasy.
Tensional (green) and compressional (orange) faults are also plotted. The faults younger than 3.5 Gyr are highlighted with light
green and yellow in both plots.

Bottom Loading
Bottom loads with different orders of magnitude (10 MPa, 100 MPa, 1000MPa, 10000MPa) are applied
at the crust­mantle boundary of the flat Mars model. The results for all positive (upwards) and negative
(downwards) bottom loading cases are shown in Figure B.16 and Figure B.17, respectively. Both figures
suggest that the effects of bottom loading would be visible with a bottom load at around 1000 MPa. A
larger bottom load at the magnitude of 10000 MPa would cause too much compression or tension to
the Tharsis region and serve boundary effects in the flat model.

Figure 6.9: The principal stresses and observed faults for the Tharsis Rise region with negative (a:­1000 MPa) and positive (b:
+1000 MPa) bottom loads.

Figure 6.9 shows the the region under negative (­1000 MPa) and positive (+1000 MPa) bottom
loads, respectively. With negative bottom loading, tensional stresses dominate almost the whole region
except for the mountains. Compressional stresses prevail the whole plot when the positive bottom



6.2. Faults Characterization 59

loading is applied. Compared to Figure 6.7, the directions of the principal stresses are different in
Figure 6.9. The directions of the stresses under the bottom loading are nearly circumferential for the
tensional stresses and radial for the compressional stresses, which could explain the radial tensional
faults and circular compressional faults.

6.2.2. Hellas
The strain analysis for the Hellas Basin can be found in Figure 6.10 where detailed features are shown.
It shows both maximum principal strains (a) and minimum principal strains (b) for the Hellas Basin
region. The maximum principal strain plot Figure 6.10(a) suggests that there are nearly circumferential
tensional structures around the impact basin. The inner tensional structure almost encloses the impact
crater and only leaves an opening at the northeast corner where several linear tensional faults lie. The
outer tensional structure depicts the boundary of the Hellas Basin and is more tensional than the inner
one. The tensional faults in the northern boundary of Hellas Basin lie in the tensional­strain zone. The
minimum principal strain plot Figure 6.10(b) nicely depicts the boundary of the deep impact basin and
its surrounds. The large compressional strains around the impact crater are consistent with the circular
comrpessional faults around the crater’s boundary.

Figure 6.10: Maximum principal strains (a) and minimum principal strains (b) for the Hellas Basin region with Pratt’s Isostasy.
Tensional (green) and compressional (orange) faults are also plotted. The faults younger than 3.5 Gyr are highlighted with light
green and yellow in both plots.

Figure 6.11 shows the maximum principal stresses (a) and minimum principal stresses (b) for the
Hellas Basin region. The corresponding faults are also mapped on the plots. It is shown that the region
is dominated by tensional stresses. This is what would happen when negative topography is loaded on
the surface of the flat model. Though the stress analysis explains the existence of the compressional
faults at the lower bottom of the model, the majority of the observed faults are not consistent with the
calculated stress field.
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Figure 6.11: Maximum principal stresses (a) and minimum principal stresses (b) for the Hellas Basin region with Pratt’s Isostasy.
Tensional (green) and compressional (brown) faults are also plotted.The arrows indicate the direction of the principal stresses

6.2.3. Utopia
The strain analysis and stress analysis for the Utopia region are shown in Figure 6.12 and Figure 6.13,
respectively. Utopia Basin, Isidis Basin, a part of Hellas Basin, Elysium Mons, and the dichotomy
boundary can be observed in this region.

Figure 6.12: Maximum principal strains (a) and minimum principal strains (b) for the Utopia Basin region with Pratt’s Isostasy.
Tensional (green) and compressional (orange) faults are also plotted. The faults younger than 3.5 Gyr are highlighted with light
green and yellow in both plots. Tensional strains are positive while compressional strains are negative.

Figure 6.12(a) presents the tensional strains and faults. Both the dichotomy boundary and Elysium
Mons are highlighted by the tensional strains. Large tensional strains also cover the northern rims of
the Hellas Basin and near continuously distributed all the way to the periphery of Isidis Basin. The
Utopia Basin, which covers a large part in this region, is hardly visible in the plot. And the tensional
strains which depict the boundary of the Utopia Basin have relatively low values. The distribution of
the tensional strains is in harmony with the computed tensional strain field.

Compressional strains are found on the edges of the Elysium Mons, Isidis Basin, Hellas Basin, and
parts of the dichotomy boundary as shown in Figure 6.12(b). But these compressive regions do not
coincide with the observed compressional faults except for the Hellas. The compressive strains enclose
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Figure 6.13: Maximum principal stresses (a) and minimum principal stresses (b) for the Hellas Basin region with Pratt’s Isostasy.
Tensional (green) and compressional (brown) faults are also plotted.The arrows indicate the direction of the principal stresses.
Tensional stresses are positive while compressional stresses are negative.

the Utopia Basin, as well as the Elysium Mons, but no clear relationship between these compressive
faults and strains are found.

Figure 6.13 shows the results from the principal stress analysis. The positive maximum principal
stresses present that all basins and the regions in the north of the dichotomy are under large ten­
sional stresses. One exception is the Elysium Mons, which causes a local compressional region by the
southeast of the Utopia Basin.

The compressional faults around the Hesperia Planum and to the west of Isidis Basin lie in the
compression­dominant zone. But there are a large number of compressional faults, which are likely
related to the topography, can either be explained by the strains or the stresses in the north of the
Martian dichotomy.
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Discussion

In this chapter, the results obtained in this research are interpreted. Both implications and limitations of
this study are discussed. Furthermore, results from other similar studies are compared. Investigations
on the crustal structure and faults characterization on the regions of interest are presented in section 7.1
and section 7.2, respectively. The discussion on the results of the FEM model from section 5.3 can be
found in section 7.3.

7.1. Crustal Models for Mars
This chapter discusses the results obtained for the crustal study of Mars. The outcomes from different
models of isostasy are interpreted. The comparison of power spectra analysis between Mars and the
Earth is included. The effect of varying Young’s modulus is highlighted and compared to similar studies.
In the end, the limitation of the approach used in the crustal study is discussed.

7.1.1. Power Spectra Analysis
As shown in Figure 6.1, the power spectra of the gravity effect of topography with compensation from
the infinite plate and the thin shell models agree better with that of the observed FAA than the model
of local isostasy. This suggests that the flexural models are decent representations of the lithosphere
of Mars, and the flexural isostasy is widely operative on this red planet.

Comparisons between both flexural models in Figure 6.2 and Figure 6.3 show that the gravity effect
of topography from the thin shell model better fits the observed gravity anomaly than that of the infinite
plate model on a global scale (2 ≦ n ≦ 90). This can be visually confirmed in Figure 6.1 where the
spectrum of the thin shell model is closer to the observed spectrum for n ≦ 4.

But when the low­degree terms (n = 2,3,4) which contain the effects of mantle dynamics are re­
moved, the infinite plate model outperforms the thin shell model for 5 ≦ n ≦ 90. This can be observed
in Figure 6.1 where the spectrum of the infinite plate model better follows that of the observation from
n = 5 to 15 than the thin shell model.

The different behaviors between both flexural models can be attributed to the fact that the thin shell
model takes the curvature of the planet into account and introduces the membrane stresses. For lower
degrees (longer wavelengths), the support from the membrane stress plays a role, and the thin shell
model overestimates the gravity effect of topography than the infinite plate model. Such a difference is
also illustrated in the plots of flexure response functions (Figure 3.6).

The power spectra analysis for the Earth (Figure 3.9) is different from that for Mars: while the flexural
isostasy dominates the HDB (33 < n < 400) as well, the model of local isostasy still plays a important
role between the HDB and LDB (12 < n < 33). The fact that the model of local isostasy does not fit with
observation does not suggest that local isostasy is absent on Mars. Since the models are simplified
and represent the planet as a whole, there could be some regions under local isostasy on Mars.

Comparison between the magnitude of observed spectra in both Figure 3.9 and Figure 6.1 shows
that the FAA of Mars is about one or two orders of magnitude higher than that of the Earth. This may
be a results of both lack of plate tectonics and active mantle convection on Mars. It also suggests Mars
has a very strong lithosphere which can support all those mass anomalies on it. For both Mars and the
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Earth, the observed spectra at low­degree region are not properly modeled by the models of isostasy.
Because the major source of support for topographic features changes from elastic isostasy at short
wavelengths to dynamics mantle at long wavelengths.

7.1.2. Varying Parameters
The best­fitting Te is sensitive to parameters, such as Young’s modulus, Poisson’s ratio, and the den­
sity contrast between the crust and mantle. Results in previous chapter show that Young’s modulus
has the most prominent effect on the best­fitting lithospheric thickness among the above­mentioned
parameters.

Young’s modulus measures the stiffness of a material. Materials with a high Young’s modulus are
not easily deformed when forces are applying on them. Figure 6.4 shows that a higher Young’s modulus
yields to a lower Te. Such a negative correlation between Young’s modulus and Te is also found by
Taylor et al. (2020). It could be interpreted as that a thick lithosphere is not required when the stiffness
of the crustal material is high. On the contrary, when the crustal material has lower stiffness, a thin
lithosphere would not be strong enough to support the crust. In other words, the increase of lithopheric
thickness compensates the effect of decreasing Young’ Modulus (lower material stiffness).

Recent seismic study (Khan et al., 2021) suggests that Mars has a very thick lithosphere with a
depth of around 500 km, which is much higher than the best­fitting Te found in both Figure 6.2 (158 km)
and Figure 6.3 (136 km). On the one hand, Khan et al. (2021) only used eight seismic events detected
by InSight mission, and their results could contain large uncertainties. On the other hand, Figure 6.4
indicates that it is possible to obtain such a deep lithosphere in the model by lowering Young’s modulus.
For a Te of 500 km, Young’s modulus of around 2 GPa is found in Figure 6.4. This value is much lower
than the values used in previous studies (Belleguic et al., 2005, McGovern et al., 2002, Neumann et al.,
2004) where Young’s modulus is around 100 GPa. But relatively lower values for Young’s modulus on
Mars are obtained by Heap et al. (2020) (5.4 GPa) and Taylor et al. (2020) (17.8 GPa). In addition, a
lower Young’s modulus (2 GPa) will result in a thicker lithosphere (500 km), which is consistent with the
recent seismic study by Khan et al. (2021). It could be that the values of lithospheric Young’s modulus
on Mars have been overestimated.

7.1.3. Limitation
As shown in Figure 6.2, the RMS errors are higher than the results for the Earth from Watts and Moore
(2017). This suggest that there are still rooms to improve the crustal models in this study. For example,
the observed spectrum is higher than the calculated ones for 𝑛 > 25 in Figure 6.1. It could be that the
crustal density used does not have the optimal value. Instead of using an uniform value for the crustal
density, one could derive the degree­dependent crustal density.

Figure 4.11b presents the profile of global crustal thickness with a thin shell model (Te = 158 km).
On the one hand, the results from Figure 4.11b agree with recent seismic findings (Knapmeyer­Endrun
et al., 2021) that the mean crustal thickness of Mars ranges between 24 km and 72 km. On the other
hand, comparison between Figure 4.11a and Figure 4.11b shows that detailed (short­wavelength) fea­
tures are erased in Figure 4.11b.

7.2. Faults Characterization
In this section, results from the 3D flat FEM model are interpreted by regions. Similar studies are
compared for three regions of interest. Implications from the results on the subsurface structure are
elaborated.

7.2.1. Tharsis
The Tharsis Rise is the second largest feature on the surface of Mars, which covers around one quarter
of the planet’s surface. The most significant long­wavelength areoid and topographic anomalies are
observed in the Tharsis region. Two competing models were proposed to explain the formation of
the giant rise (Zhong, 2002): one depends on the dynamic support from an upwelling mantle plume
(bottom loading), and the other rely on volcanic construction and its associated lithosphere flexure (top
loading). These two models are not contradicting to each other, and the combination of both models
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could provide a better explanation to the origin of the Tharsis rise (Redmond and King, 2004). By
loading the topography on the surface of the model and searching for the state of equilibrium with
geostatic step in Abaqus, this study takes the idea of top loading to obtain a lithosphere that supports
the Tharsis Rise.

Figure 6.7 shows that the calculated surface principal stresses and observed faults do not quite
match in terms of both location and direction. This inconsistency may come from the assumption that
the 3D FEM model only calculates the state of equilibrium while such an equilibrium state has not been
reached in the Tharsis region. This implies that the Tharsis region might still be active.

The values of the principal strains obtained for the Tharsis region are at the same order of magni­
tude of that found by Golombek and Phillips (2010). While the observed tensional faults quite match
the calculated strain map, the computed minimum principal strains do not yield much information about
the compressional faults. This suggests the tensional faults might be geologically younger than the
compressional faults in the Tharsis region as they can be explained by the strain analysis with re­
cent topography data. This is further supported by the minimum principal strains plot (Figure 6.8)
which shows that circumferential compressional strains are found around large mountains. In the early
stage of the Tharsis Rise when the whole region was rising, such circumferential compressional strains
could dominate the region and the related compressional faults may form at that time. But with only
a volcanically constructed lithosphere, it is insufficient to explain the distribution of both tensional and
compressional faults in the Tharsis region.

By including the bottom loading in themodel, the effects of both volcanic construction and themantle
plume are taken into account and more insights about the formation of the region can be obtained. The
observed faults fit quite well with both the positive bottom load (upwelling) and the negative bottom load
(downwelling) in terms of direction and location (Figure 6.9). This suggests that the dynamic support
played an important role in the formation of the Tharsis Rise in the perspective of stresses and faults
formation.

Putting the pieces together, a theory to explain the formation of the Tharsis Rise is formulated. In the
early stage, the upwelling mantle plume (positive bottom loading) brings the uplift on the Tharsis region.
Such a positive bottom load would also bring large compressional stresses on the surface, which would
induce circumferential compressional faults around the giant bulge. The lithosphere and the upwelling
mantle plume support the Tharsis together. But as time goes, the mantle plume would lose heat and
cool down. In the later stage, an downwelling mantle plume may replace the upwelling plume. This
cooler plume may have a lower wavelength than the initial hotter one. But it would significantly change
the stress condition from compressional to extensional around the Tharsis Montes, Alba Mons, and
Mons Olympus. As a result, radial­distributed extensional faults replace the compressional faults at
the center of the Tharsis region. However, there are some old circumferential compressional faults
that remain at the rim of the Tharsis bulge, which explains why extensional faults dominate the inner
of Tharsis Rise.

7.2.2. Hellas
The Hellas Basin is a huge impact crater which is estimated to have formed 4 billion years ago1. As
shown in Figure 4.14c, the impact crater itself has a diameter of 2300 km and a depth of over 7 km. It
would only occupy about 40% of the surface of the flat model. But over 80% of the flat model is under
tensional stresses when the equilibrium is reached. This shows how large one impact crater can affect
its surrounding areas.

The strain analysis is consistent with the distribution of both tensional and compressional faults.
This suggests that the calculated equilibrium state for the Hellas Basin fits well with its current state.
So, for Hellas, local isostasy plays an important role in its formation and evolution. This is line with the
finding from Neumann et al. (2004) that the Moho relief under the Hellas Basin is close to be in the
state of isostatic equilibrium.

The reasons why the stress analysis for Hellas does not work well with the faults could be: firstly,
the modeled state does not match the actual situation for the target region; secondly, the model itself
could not handle the negative topography well. Thirdly, stress may not be a good parameter to analyze
the faults. The first reason is dismissed as the strain analysis yields decent results about the faults.

To elaborate the second point, one should recall the model settings which is introduced in chapter 4.

1https://sci.esa.int/web/mars­express/­/55575­craters­within­the­hellas­basin [15­07­2021]

https://sci.esa.int/web/mars-express/-/55575-craters-within-the-hellas-basin
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The flat Mars FEM model uses the geostatic step which ensures a state of equilibrium between the
surface loads and lithosphere stress is reached. In this case, the way how the geostatic works does
not bring the issue but the way to load the topography might do. The surface topography is loaded as
pressure on the surface of the flat Mars model. Positive topography, like a mountain, is converted into
positive pressure which points downwards. In this way, the compression brought by the extra masses is
simulated in the model. But when this approach is applied to the negative topography, it would convert
the negative topography into negative (upward) pressure to simulate the tension coming from the mass
dispossession. As a results, the surface tensional stresses are overestimated in the flat Mars model
for regions with negative topography. Blank (2015) also confronted the issue of negative topography
in the FEM model, and he set the load height to zero at the negative­topography region to avoid the
issue.

The third point is raised because the large tensional stresses are also found under the Hellas Basin
by Batov et al. (2019) as shown in Figure 7.1. Even higher tensional stresses are expected at the
surface as shown in Figure 7.2, which is consistent with the results in this study. This suggests that
the inconsistency between the stress states and faults distribution is not due to the errors in stress
calculation. The real problem could be the fact that faults are linked to the displacements while the
stresses are not. This also explains why the elastic strain is a more direct parameter to compare with
the faults than the stress because the strain reflects displacement (Banerdt and Golombek, 2000).

Figure 7.1: Tensile(positive)­compressive(negative) stresses and axes projections of stress tensor for Hellas Basin (Batov et al.,
2019). The stress state at the depth of 10km is shown. Lengths of principal stress axes projections are proportional to stress
magnitudes.

Figure 7.2: Distribution of compressive­tensile stresses along depth beneath the Hellas (Batov et al., 2019). Compressive
stresses are with negative values while tensile stresses are positive.)
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7.2.3. Utopia
The Utopia region selected in this study contains a variety of topographic features like the boundary of
the global dichotomy, Utopia Basin, Isidis Basin, Elysium Mons, Hesperia Planum, and a part of Hellas
Basin. Hellas Basin has been discussed previously and is thought to be in isostatic equilibrium. This is
confirmed by the compressional strains plot in Figure 6.12 (b) where the compressional faults coincide
with calculated compressive strains.

The situations are different for the other basins. The edges of the Isidis Basin are depicted by com­
pressive strains. However, the compressional faults around the Isidis Basin do not follow the edges but
go through the basin. Although the Utopia Basin is surrounded by large circumferential compressional
faults, no evidence from the perspective of either strain or stress is found to support the formation of
those faults. Compared to the Hellas Basin, different relationship between the observed faults and cal­
culated strains/stresses shows that the basins of the Isidis and Utopia are not in the state of isostatic
equilibrium. Figure 7.3 presents the surface height and calculated Moho depth for several large topo­
graphic features on Mars by Neumann et al. (2004). It shows that the crustal profile of the Hellas Basin
closely follows the result of local isostasy but those of the Isidis and Utopia basins are higher than the
dashed curve. This means that the Isidis Basin and Utopia Basin are currently over compensated by
the lithosphere. Since the flat Mars model only simulates the region with local compensation, it is not
surprising that the calculated results for the Utopia and Isidis do not match to the observations.

To model the super­isostatic uplift under Utopia and Isidis, one could apply positive bottom loading
as tested for the Tharsis Rise. It is expected that the bottom loading would generate compressive
stress fields under the basins, which could support the formation of the observed compressional faults.

Figure 7.3: The profiles of surface height and model depth of Moho along a great circle through Argyre, Hellas, Isidis, and Utopia
by Neumann et al. (2004). The dashed curve shows the Moho with local isostasy.

7.3. The FEM model
In this section, results of applying simple loads to the FEM model are elaborated. Results from the PN­
load case (subsection 5.3.1) shows how different models of local isostasy are implemented to the FEM
model and respond to the loads. The LDP­load case (subsection 5.3.2) shows how different flexural
isostatic models behave in the FEM model.

7.3.1. Implementation of Local Isostasy
In subsection 5.3.1, models of Airy’s and Pratt’s isostasy are implemented in Abaqus with the ap­
proaches discussed in section 4.3. Figure 5.6 shows that under the loads, which would only result in
radial faults with respect to the centers of the loads. This does agree with the fact that complex fault­
ing patterns are observed on the surface of Mars because it only shows the faults induced by surface
loading. The formation of faults is not only affected by loading from the surface but also influenced
by loading underneath (mantle dynamics), volcanism, regional tectonics, and other factors. This study
only focuses on the influence from surface loads, isostatic compensation, and mantle dynamics (for
Tharsis only).
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Figure 5.7 compares the behaviors of the FEM model with no compensation, Airy’s compensation
and Pratt’s compensation. When there is no compensation, the FEM model generates larger stresses
in the crust to support the loads. The deviatoric buoyancy induced by local isostasy partially supports
the loads, so the models with isostatic compensations do not require as much stresses as the non­
compensated model.

It’s important to note that local isostasy cannot be strictly modeled in Abaqus. Local isostasy ig­
nores the interaction between neighboring columns, and the loads are purely supported by buoyancy.
However, shear stresses between elements are always modeled in Abaqus, and they support the loads
to maintain the equilibrium in the model.

7.3.2. Implementation of Flexural Isostasy
The effects of flexural isostasy on Mars have been discussed in subsection 3.1.2. By applying the
flexural response functions of the thin shell or the infinite plate model, long­wavelength features can
be preserved while short­wavelength ones are erased. This is illustrated in Figure 5.13 where the
differences in crustal thickness between local and flexural isostasy are lower (about 5 km) under the
long­wavelength load (𝑑2=2000 km) but higher (about 18 km) under the short­wavelength load (𝑑1=708
km).

Similar patterns in differences between the local and flexural models can be seen in Figure 5.14.
However, the ratio between difference in stress and total stress at the centers of loads in Figure 5.14
is not as large as the ratio between the thickness difference and total thickness in Figure 5.13. In other
words, a certain percentage of buoyancy difference at the crust­mantle boundary does not yield to the
same amount (but a lower percentage) of stress difference in the FEM model. This may be caused by
the shear stresses between elements in Abaqus (which eases the difference in buoyancy).

The difference between the thin shell model and the infinite plate model in the FEM model is also
illustrated in subsection 5.3.2. Results from analytical models in both Figure 5.11 and Figure 5.13
suggest that the crustal thickness from the infinite plate model is over 10% higher than that of the thin
shell model at the center of the large load (𝑑2=2000 km). This results in about 10% higher deviatoric
buoyancy in the infinite plate model than the thin shell model.

However, stress results from FEM model in Figure 5.15 show less than 1.25% (0.5/40) of difference
in stresses between the infinite plate model and the thin shell model. This difference is so small that it
is not visible in the faults characterization for the regions of interest. The reason could be that the flat
geometry of the FEM model fits the infinite plate but does not simulate the thin shell properly.

7.3.3. Limitation
The flat Mars FEM model has several limitations. One is its geometry. Since it is flat, the model could
not simulate the behavior of an elastic thin shell under long­wavelength loads. That is why only a little
difference is observed between the stress states from the infinite plate and the thin shell. Another
limitation concerns the choice of step in the model. The use of the geostatic step in Abaqus makes it
easy to obtain a state of equilibrium and neglects geological time in the model. But such an equilibrium
state may not apply to all selected regions. What is more, the geostatic step ensures the minimum
deformation in all finite elements. If the deformation is too low, no useful information of strain can be
derived from the model output.
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Conclusion

In this thesis, the main research question is:

What information about the subsurface crustal structure of Mars can be revealed from the
surface faults?

To answer this question, this thesis starts by comparing different crustal models for Mars and then
implements the crustal models into a flat FEM model for Mars. After that, the modeled stress and strain
are compared with the observed faults.

In the first part, different models of isostasy are studied. The difference in the flexural response
functions between the models of local isostasy and the infinite plate model shows the effect of bending
stresses. The divergence in the flexural response functions between the infinite plate model and the
thin shell model comes from the membrane stresses.

Both infinite plate model and the thin shell model act like low­pass filters to Airy’s isostasy which
allow the local compensation at low degree remain. But the degree of compensation at low degree
is even lower in the thin shell model than the infinite plate because the former one also considers the
curvature of the planet. This would enable the lithosphere to partially support the large wavelength
load.

Applying the thin shell model to both Mars and Earth results in different shapes of the flexural
response function. Mars appears to have a relatively more rigid lithosphere than the Earth. The major
reasons behind it could be: firstly, Mars is smaller than Earth and has a larger curvature; secondly,
Mars is thought to have one single plate while Earth’s lithosphere is consisted of multiple pieces.

The power spectrum of the gravity signal of Martian topography with flexural compensations nicely
explains the observed spectrum of the FAA. From the power spectrum analysis, the thin shell model
with a Te of 158 km is found to be the best crustal model globally for 2 ≦ n ≦ 90. For 5 ≦ n ≦ 90 where
the degrees affected by mantle dynamics are excluded, the infinite plate model with a Te of 136 km
outperforms the thin shell model. Compared to the value of 34 km found by Watts and Moore (2017)
for Earth, the value of Te for Mars suggests that Mars has a more rigid lithosphere than Earth.

Varying Young’s modulus, Poisson’s ratio and the density contrast also change the best­fitting Te.
By decreasing Young’s modulus from 100 GPa to 1 GPa, the corresponding best­fitting Te increases
from around 120 km to 580 km. A recent seismic study (Khan et al., 2021) indicates that Mars has
a 500 km­thick lithosphere. This corresponds to a Young’s modulus of about 2 GPa in Figure 6.4.
Compared to a typical value of 100 GPa in previous studies (Belleguic et al., 2005, McGovern et al.,
2002, Neumann et al., 2004), the lower value estimated in this study suggests that the values of Young’s
modulus have been overestimated.
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70 8. Conclusion

In the second part, FEM models are constructed to investigate the regions of interest. Sev­
eral simple loading cases are studied to check the performance of the FEM model. They show that
proposed approaches are able to implement isostasy into the FEM model. It is found that Abaqus
cannot strictly simulate the models of local isostasy due to the presence of shear stresses between
neighboring elements.

The target regions are the Tharsis Rise, Hellas Basin and Utopia Basin. For the Tharsis Rise,
both the volcanic constructed lithosphere and the support from the deep mantle plume played a role
in the formation of the region and the surface faults. It is found that the underneath mantle plume may
experience a reversal from upwelling to downwelling. Such a reversal from the bottom changes the
property of the surface stress and results in the surface faults distribution today.

It is found that the Hellas Basin is under large tensional stresses. These stresses could not explain
the presence of surface faults but the corresponding surface strains are consistent with the faults dis­
tribution around Hellas Basin. The calculated strains match the observed faults so well that it could
support the claim that the Hellas Basin is in isostatic equilibrium.

Unlike the Hellas Basin, the surface faults on the Utopia Basin can not be explained by results
from a flat isostatic­equilibrium FEM model. Neumann et al. (2004) suggest that, instead of isostatic
equilibrium, the Utopia Basin is overcompensated and experiences a super­isostatic lift in its crust.
Such an extra support from mantle plume also explains the observed compressional faults around the
Utopia.

In summary, both isostatic compensation and dynamic mantle support could affect the faults forma­
tion on the surface of Mars. The amount of isostatic compensation and the state of the mantle plume
(upwards or downwards, strong or weak) are region­dependent.



9
Recommendation

Based on the research conducted in this thesis, the following recommendations are established for
future research.

Firstly, a spherical FEM model which incorporates the crustal structure of Mars is desired. With
a spherical geometry, the model could better simulate the planet, especially in the long­wavelength.
Many spherical models have been developed to study the GIA on Earth (Casteren, 2018, Nield et al.,
2020, Van der Wal, 2009), and Blank (2015) developed a spherical FEM model for Mars. These spher­
ical models can be adapted for Mars or other planets. The challenge of building a realistic spherical
FEM model for Mars is how to incorporate the complex crustal structure and load the topography in a
spherical geometry. The practices from the flat model cannot be used directly because the flat model
is in Cartesian coordinates not spherical coordinates, and the state of isostatic equilibrium might also
be different in the spherical coordinates (Hemingway and Matsuyama, 2017).

Secondly, it would be interesting to further investigate bottom loading of the Tharsis Rise in the FEM
Mars model. In this study, the effects of some roughly estimated super­plumes under the Tharsis region
are studied. The bottom loading on the crust­mantle boundary together with topography loading on the
surface could reveal useful information about the evolution of the Tharsis bulge. More information about
this topic can be found in the MSc thesis of Van der Tang (2021).

Thirdly, the effects of varying crustal thickness and density could be further investigated. This study
takes the deviatoric buoyancy approach and neglect the variations in crustal thickness and density.
Nield et al. (2018) investigated a flat FEM Earth model with lateral variations in lithospheric thickness.
And they found that these variations are important if one wants to capture short­wavelength deformation
on Earth. So, applying the spatial variations in crustal thickness or density could improve the accuracy
of the FEM model.

Lastly, the geostatic step could be replaced by time­dependent steps in the FEM model. The geo­
static step only yields to a state of equilibrium. By using time­dependent steps, such as the visco step,
one could investigate the evolution of target regions. The challenge of this recommendation is how to
obtain the loading history on Mars.
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Supplement Equations

The Laplacian operator is given by

∇2 ≡ 𝜕2
𝜕𝜙2 + cot𝜙 𝜕

𝜕𝜙 + csc2 𝜙 𝜕2
𝜕𝜓2 (A.1)

where 𝜙 and 𝜓 are the colatitude and longitude, respectively. And (∇2)′ is defined as (Beuthe, 2008)

(∇2)′ = ∇2 + 2. (A.2)

The Laplacian operator in spherical harmonic domain for a given function 𝑌𝓁𝑚(Ω) is (Audet, 2014)

∇2𝑌𝓁𝑚(Ω) = −𝓁(𝓁 + 1)𝑌𝓁𝑚(Ω). (A.3)

The loading height ℎ in Equation 3.12 is defined by

ℎ = ℎ0 −
𝜌𝑚
𝜌𝑐
ℎ𝑔 (A.4)

where ℎ0 is the original height of topography, ℎ𝑔 is displacement of the geoid caused by extra mass
from topography.

The flexural response function of the thin shell models (Equation 3.27) can be rewritten into a
similar format to that of the infinite plate (Equation 3.7) in three steps. Firstly, replacing both 𝜏 and 𝜎 in
Equation 3.27 with Equation 3.14 and 3.15 and inverting both sides. This would change origin equation
into

1
Φ(𝑛)𝑠ℎ𝑒𝑙𝑙

= 1 +
𝐸𝑇3𝑒

12(1−𝑣2) [𝑛
3(𝑛 + 1)3 − 4𝑛2(𝑛 + 1)2 + 4𝑛(𝑛 + 1)] + 𝐸𝑇𝑒𝑅2[𝑛(𝑛 + 1) − 2]

𝑅4(𝜌𝑚 − 𝜌𝑐)𝑔[𝑛(𝑛 + 1) − (1 − 𝜈)]
. (A.5)

Secondly, substituting relevant terms with the flexural parameter 𝐷 (Equation 3.8) in Equation A.5, this
yields

1
Φ(𝑛)𝑠ℎ𝑒𝑙𝑙

= 1 + 𝐷
(𝜌𝑚 − 𝜌𝑐)𝑔

( 1𝑅4
[𝑛(𝑛 + 1) − 2]2

1 − 1−𝑣
𝑛(𝑛+1)

+ 12(1 − 𝑣
2)

𝑇2𝑒 𝑅2
1 − 2

𝑛(𝑛+1)

1 − 1−𝑣
𝑛(𝑛+1)

) . (A.6)

Lastly, inverting both sides in the Equation A.6, one can have Equation 3.28.
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74 A. Supplement Equations

Spherical Harmonics 𝑌𝑛𝑚(𝜃, 𝜙) is the spherical harmonic function for degree 𝑛 and order 𝑚, which
is expressed as (Wieczorek, 2015)

𝑌𝑛𝑚(𝜃, 𝜙) = {
𝑃̄𝑛𝑚(cos𝜃) cos𝑚𝜙 if 𝑚 ≥ 0
𝑃̄𝑛|𝑚|(cos𝜃) sin |𝑚|𝜙 if 𝑚 < 0 (A.7)

where 𝑃̄ is the Legendre functions after normalisation

𝑃̄𝑛𝑚(𝜇) = √(2 − 𝛿0𝑚) (2𝑛 + 1)
(𝑛 − 𝑚)!
(𝑛 + 𝑚)!𝑃𝑛𝑚(𝜇) (A.8)

in which 𝛿𝑖𝑗 represents the Kronecker delta function.
The de­normalised Legendre functions are associated with the Legendre polynomials by

𝑃𝑛𝑚(𝜇) = (1 − 𝜇2)
𝑚/2 d𝑚

d𝜇𝑚𝑃𝑛(𝜇) (A.9)

𝑃𝑛(𝜇) =
1
2𝑛𝑛!

d𝑛

d𝜇𝑛 (𝜇
2 − 1)𝑛 . (A.10)
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Supplement Figures

Boundary effect studies for the Hellas Basin

(a) Difference in the magnitude. (b) Difference in the direction.

Figure B.1: The difference in the magnitude and direction of the maximum principal stresses between the ×1 and ×1.25 models.

(a) Difference in the magnitude. (b) Difference in the direction.

Figure B.2: The difference in themagnitude and direction of themaximum principal stresses between the×1.25 and×1.5 models.
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(a) Difference in the magnitude. (b) Difference in the direction.

Figure B.3: The difference in themagnitude and direction of themaximum principal stresses between the×1.5 and×1.75models.

(a) Difference in the magnitude. (b) Difference in the direction.

Figure B.4: The difference in the magnitude and direction of the maximum principal stresses between the ×1.75 and ×2 models.

Boundary effect studies for the Utopia Basin

(a) Difference in the magnitude. (b) Difference in the direction.

Figure B.5: The difference in the magnitude and direction of the maximum principal stresses between the ×1 and ×1.25 models.
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(a) Difference in the magnitude. (b) Difference in the direction.

Figure B.6: The difference in themagnitude and direction of themaximum principal stresses between the×1.25 and×1.5 models.

(a) Difference in the magnitude. (b) Difference in the direction.

Figure B.7: The difference in themagnitude and direction of themaximum principal stresses between the×1.5 and×1.75models.

(a) Difference in the magnitude. (b) Difference in the direction.

Figure B.8: The difference in the magnitude and direction of the maximum principal stresses between the ×1.75 and ×2 models.

Results from FEM models:
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Figure B.9: Maximum principal stresses (a) and minimum principal stresses (b) for the Tharsis Rise region with no isostatic
compensation (pure Abaqus). Tensional (green) and compressional (brown) faults are also plotted. The arrows indicate the
direction of the principal stresses.

Figure B.10: Maximum principal stresses (a) andminimum principal stresses (b) for the Tharsis Rise region with Flexural Isostasy.
Tensional (green) and compressional (brown) faults are also plotted.
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Figure B.11: Maximum principal stresses (a) and minimum principal stresses (b) for the Hellas Basin region with no isostatic
compensation (pure Abaqus). Tensional (green) and compressional (brown) faults are also plotted. The arrows indicate the
direction of the principal stresses.

Figure B.12: Maximum principal stresses (a) andminimum principal stresses (b) for the Hellas Basin region with Flexural Isostasy.
Tensional (green) and compressional (brown) faults are also plotted.
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Figure B.13: Maximum principal stresses (a) and minimum principal stresses (b) for the Hellas Basin region with Airy’s Isostasy.
Tensional (green) and compressional (brown) faults are also plotted.

Figure B.14: Maximum principal stresses (a) and minimum principal stresses (b) for the Hellas Basin region with no isostatic
compensation (pure Abaqus). Tensional (green) and compressional (brown) faults are also plotted. The arrows indicate the
direction of the principal stresses.
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Figure B.15: Maximum principal stresses (a) andminimum principal stresses (b) for the Hellas Basin region with Flexural Isostasy.
Tensional (green) and compressional (brown) faults are also plotted.

Figure B.16: Minimum principal strains and compressional faults for the Tharsis Rise region with positive bottom loads
(a:+10MPa, b:++100MPa, c:+1000MPa, d:+10000MPa).
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Figure B.17: Maximum principal strains and tensional faults for the Tharsis Rise region with negative bottom loads (a:­10MPa,
b:­100MPa, c:­1000MPa, d:­10000MPa).
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