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Abstract
Expressive logics, such as the modal μ-calculus, can be used
to specify and verify functional requirements of program
models.While such verification is useful, a key challenge is to
guarantee that the model being verified actually corresponds
to the (typically effectful) program it is supposed to. We
explore an approach that bridges this gap between effectful
programming and functional requirement verification. Using
dependently-typed programming in Agda, we develop an
embedding of the modal μ-calculus for defining and verifying
functional properties of possibly-non-terminating effectful
programs which we represent in Agda using the coinductive
free monad.

CCS Concepts: • Theory of computation → Program
verification; Modal and temporal logics; Logic and ver-
ification.
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1 Introduction
An important aspect of developing reliable software is to val-
idate that it satisfies its functional requirements. A popular
approach to validating functional requirements is via testing.
However, as Dijkstra [12] famously put it, program testing
can be used to show the presence of bugs, but never to show
their absence! A safer approach is to formally verify that a
program satisfies its functional requirements. In order to do
this, we must decide on the following:

1. How are we going to model the given software?
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2. How are we going to represent the functional require-
ments of the software as properties of the model?

3. Are we going to do the verification manually (e.g., in
a proof assistant) or do we want to use an automatic
verification technique (e.g., model checking)?

For model checking we can use tools such as TLA+ [16] or
mCRL2 [13] to verify the functional requirements of our
software. For example, mCRL2 lets us specify our software
formally as a labelled transition system and provides a pow-
erful logic – the modal μ-calculus [15] – for automatically
verifying properties of that system. However, a downside of
traditional model checking is that we are verifying a model
instead of the actual software system.

Recent work by Dal Lago and Ghyselen [8] suggests a
promising alternative direction, namely model-checking pro-
grams involving algebraic effects and handlers.The attraction
of this approach is that it would allow us to state and prove
high-level functional requirements about programs directly.
However, as Dal Lago and Ghyselen [8] demonstrate, this
model-checking problem is, in general, undecidable.

In this paper we explore a different approach: we embed
the modal μ-calculus into the dependently-typed language
Agda,1 such that we can state and prove functional require-
ments of programs with algebraic effects and handlers di-
rectly. Our embedding makes it possible to formally verify
that a given program satisfies its functional requirements.
It should be noted that, since we work in Agda, our work
has been carried out in an intuitionistic setting. Therefore,
in order to maintain the traditional semantics of modal μ-
calculus formulas, which are subject to the laws of classical
logic, we use the law of excluded middle as a postulate2 in
Agda. Nevertheless, while our embedding currently requires
programmers to manually prove that the functional require-
ments are met, our work demonstrates that dependently-
typed languages, such as Agda, are suited for expressing and
verifying functional requirements using the expressive logic
of the modal μ-calculus. We believe the core ideas of our
embedding are transferable to other dependently-typed lan-
guages, such as Idris3, Coq4, or Lean5. However, we do rely

1https://agda.readthedocs.io
2https://agda.readthedocs.io/en/v2.6.4.3-r1/language/postulates.html
3https://idris2.readthedocs.io/en/latest/
4https://coq.inria.fr/
5https://lean-lang.org/

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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extensively on Agda’s support for dependent pattern match-
ing, guarded coinduction, and copattern matching [4], which
may necessitate alternative encodings in other languages.

The main contribution of this paper is that it demonstrates
how to use dynamic logic – in particular, the first-order modal
μ-calculus – to represent functional requirements of effectful
programs within a proof assistant. More specifically, we
make the following technical contributions:

• First (in § 4), we present a deep embedding in Agda of a
simple dynamic logic known as Hennessy-Milner logic,
which is the core of the first-order modal μ-calculus.

• Then (in § 5), we add support for action formulas – a
way of representing a set of operations.

• Next (in § 6), we extend our embedding of Hennessy-
Milner logic by introducing least- and greatest-fixed-
point operators, thereby turning it into an embedding
of the modal μ-calculus.

• Subsequently (in § 7), we add support for regular formu-
las – a way of representing a (possibly infinite) sequence
of action formulas.

• After that (in § 8), we extend our embedding of the
modal μ-calculus by introducing operators for existen-
tial and universal quantification and by adding parame-
ters to the fixed-point operators, thereby turning it into
an embedding of the first-order modal μ-calculus.

The paper is structured as follows: first (in § 2), we discuss
examples of expressing simple functional requirements us-
ing the first-order modal μ-calculus; then (in § 3), we show
how to define the coinductive free monad in Agda, which lets
us represent possibly-non-terminating sequential effectful
programs; after that (in §§ 4 to 8), we present our embedding
of the first-order modal μ-calculus in Agda;6 finally, we dis-
cuss related work (in § 9) and conclude and discuss future
work (in § 10).

2 Using the First-Order Modal μ-Calculus
In this section we show how to use the first-order modal
μ-calculus to express functional requirements of a simple
effectful program. As our running example we will use the
following contrived ATM which allows users to view the
balance of their bank account:

1. To start using the ATM, a user must insert their card;
2. Then, the user has to provide their PIN code;
3. Next, the ATM checks the PIN code;
4. If the PIN code is correct, the bank account balance is

displayed, after which the bank card is ejected and the
ATM goes back to its initial state; otherwise, the ATM
throws an exception and halts.

Below is a sequential program that implements this behavior
using operations named according to their effects (getPIN,

6The full source code of our work can be found at https://github.com/
ivanstodorov/modal-mu-calculus-for-free.

correctPIN, etc.). We can think of it as a sequence of opera-
tions which is executed a (possibly infinite) number of times,
halting only if an incorrect PIN is entered.

1 ATM =
2 getPIN;
3 if correctPIN then
4 showBalance;
5 ATM;
6 else
7 throwException;

An intuitive functional requirement which our ATM pro-
gram must satisfy is that, when the ATM’s first user starts
interacting with it, they must provide their PIN code:

At the start of the program it must be possible
to execute the getPIN operation.

The same must also be true for all subsequent users of the
ATM. However, for now, let us only focus on the first user.We
observe that our requirement is a modal statement, because
it talks about what must be possible in a particular situation,
namely when the program is first executed. Therefore, it can
be represented using dynamic logic as follows:

〈 getPIN 〉 true

For a given program (represented as a sequence of opera-
tions) the formula 〈 A 〉 F, where A is some operation and
F is some formula, can be read as “the first operation is A
and the remaining formula F holds for at least one possible
continuation of the program”. To see what we mean by pos-
sible continuation here, consider, for example, the correctPIN
operation on line 3 which has two possible continuations:
one for the case in which the operation returns true (the
then branch) and one for false. The formula true holds for
all programs. Our ATM program above satisfies the formula
〈 getPIN 〉 true, since its first operation is indeed getPIN and
the formula true trivially holds for the remaining program.

Another functional requirement of our ATM is that, when
the ATM’s first user starts interacting with it, they must not
be able to directly view their bank account balance:

At the start of the program it must not be possi-
ble to execute the showBalance operation.

This property must also hold for all subsequent users of the
ATM, but for simplicity we once again focus on the first user.
Its representation in dynamic logic is:

[ showBalance ] false

For some program (some sequence of operations) the formula
[ A ] F, where A is some operation and F is some formula, can
be read as “if the first operation is A, then the remaining for-
mula F holds for all possible continuations of the program”.
The formula false does not hold for any program. Therefore,
for any operation A the only scenario in which the formula
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[ A ] false holds for some program is when the first opera-
tion in that program is not A, since, if the first operation in
the program is A, then the formula false must hold for the
remaining program, which is impossible. Our ATM program
above satisfies the formula [ showBalance ] false, because its
first operation is not showBalance.

The functional requirements discussed above all made the
simplifying assumption that they only talk about the initial
state of the ATM. The modal μ-calculus can also be used to
express more complex requirements, such as the following:

It is not possible to execute the showBalance op-
eration before executing the getPIN operation.

A difference from the previous requirements is that this re-
quirement should be true for all users of our ATM, not only
the first one. We can express this requirement using action
formulas and parameterized fixed-point operators [13]. An
action formula represents a set of operations. For example,
the action formula true represents the set of all possible
operations, whereas false represents the empty set of opera-
tions. Furthermore, any single operation is an action formula
which represents the singleton set containing that operation.
We can also take the complement of a set of operations (X
2 ), the union of two sets of operations (X ∪ Y), and the in-
tersection of two sets of operations (X ∩ Y), where X and
Y are action formulas. The parameterized fixed-point oper-
ators let us define formulas, respectively, inductively (via
the least-fixed-point operator μ) and coinductively (via the
greatest-fixed-point operator ν). Moreover, these operators
introduce a user-defined list of parameters, which can be
used throughout the remainder of the formula, and, when-
ever a fixed-point operator is referenced, it needs to be given
a well-typed list of values for its parameters. Using these
features, our functional requirement can be expressed as
follows:

ν X (b:bool:=false) . [ (getPIN ∪ showBalance) 2 ] X(b) ∧

[ getPIN ] ((¬ b) ∧ X(true)) ∧

[ showBalance ] (b ∧ X(false))

By using the greatest-fixed-point operator, we are defining a
property of a possibly-infinite sequence of operations. This
property says that, initially, we have not executed getPIN
(b:bool:=false); that executing any operation other than getPIN
or showBalance is inconsequential; that executing getPIN is
possible only if it has not already been executed for the
current user (otherwise ¬ b would not hold) and leads to a
state in which getPIN has been executed for the current user
(X(true)); and that executing showBalance is possible only if
getPIN has already been executed for the current user (other-
wise b would not hold) and leads to a state in which getPIN
has not yet been executed for the current user (X(false)).

This formula serves as an example of the expressiveness
of the first-order modal μ-calculus. In the remainder of this

paper we are first going to present an embedding of alge-
braic effects in Agda which lets us write programs, like the
contrived ATM program, using the coinductive free monad.
Subsequently, we develop an embedding in Agda of the first-
order modal μ-calculus which lets us verify properties of
effectful programs, like the ones discussed in this section.

3 Modelling Effectful Programs
In this section we explain how we can model sequential ef-
fectful programs using the free monad [6, 19] in Agda. First
(in § 3.1), we present an implementation of the inductive
free monad and show how it can be used to represent finite
sequential effectful programs. Then (in § 3.2), we show how
our implementation can be extended to the coinductive free
monad, which can be used to represent programs with infi-
nite sequences of operations. After that (in § 3.3), we discuss
an important property of algebraic effects, namely that we
can combine a number of effects into a single effect which
contains all of their operations. Finally (in § 3.4), we describe
how we can define smart injections for our effects which
reduce the notational overhead of programs with combined
effects. §§ 3.1 and 3.3 describe known work on modeling and
programming with the free monad in Agda. Readers familiar
with this may wish to only read §§ 3.2 and 3.4 about the
coinductive free monad and smart injections.

3.1 The Inductive Free Monad
The free monad is a structure which models the syntax of
effectful computations and is typically defined as follows:7

data Free5 (f : Set→ Set) (U : Set) : Set where
pure : U → Free5 f U

impure : f (Free5 f U)→ Free5 f U

Here, the functor f is a so-called signature functor, represent-
ing the types of operations that can occur in the computation,
and U is the type of the final result. However, this definition
is not strictly positive8 and is therefore not accepted by Agda.
We remedy this by using containers [1, 2] – a means of rep-
resenting strictly-positive functors. Containers are defined
in Agda’s standard library as follows:
record Container (s p : Level) : Set (suc (s ⊔ p)) where
constructor _▷_
field Shape : Set s

Position : Shape → Set p

Here, we can think of Shape as the operations of an effect
and of Position as the return type of each operation. The
extension of a container gives us a functor on Set:
È_É : ∀ {s p ℓ } → Container s p → Set ℓ → Set (s ⊔ p ⊔ ℓ )
È S ▷ P É X = Σ[ s ∈ S ] (P s → X )

7A universe polymorphic definition of this datatype is also possible.
8https://agda.readthedocs.io/en/v2.6.4.3-r1/language/data-types.html#
strict-positivity
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Using these definitions, the free monad is given by the fol-
lowing datatype:
data _*_ (C : Container s p) (X : Set x)

: Set (x ⊔ s ⊔ p) where
pure : X → C * X
impure : È C É (C * X ) → C * X

This inductive definition models any finite sequence of oper-
ations of an effect described by a container. To illustrate, let
us try to implement the contrived ATM program from § 2.
We first define the operations of our ATM as a container:
data EffectShape : Set where
getPIN : EffectShape
correctPIN : N → EffectShape
showBalance : EffectShape
throwException : EffectShape

effect : Container 0ℓ 0ℓ
Shape effect = EffectShape
Position effect getPIN = N

Position effect (correctPIN _) = Bool
Position effect showBalance = ⊤

Position effect throwException = ⊥

Using this container, a simplified and terminating version of
the ATM program from § 2 can be represented as follows:9

ATMC : effect * ⊤
ATMC = impure (getPIN , _ where
n → impure (correctPIN n , _ where
false → impure (throwException , ⊥-elim)
true → impure (showBalance , pure)))

Unlike the ATM program from § 2, the ATM program above
halts after showing the balance, instead of recursively return-
ing to its initial state. To model the (potentially infinitely)
recursive behavior of the ATM program from § 2 we use a
coinductive implementation of the free monad instead.

3.2 Representing Recursion: The Coinductive Free
Monad

To define the coinductive free monad, we need a coinductive
datatype with the same structure as _*_. We model this struc-
ture using a coinductive record type in Agda. To define this
record type, we first define the following datatype which
captures the core structure of the free monad:
data Free (F : Container ℓ1 ℓ2 → Set ℓ3 → Set ℓ4)

(C : Container ℓ1 ℓ2)
(U : Set ℓ3) : Set (ℓ1 ⊔ ℓ2 ⊔ ℓ3 ⊔ ℓ4) where

pure : U → Free F C U

impure : È C É (F C U)→ Free F C U

9We use pattern matching lambda expressions (https://agda.readthedocs.
io/en/v2.6.4.3-r1/language/lambda-abstraction.html#pattern-matching-
lambda) to introduce the results of each operation.

The difference between Free and _*_ is that, while the impure
constructor of _*_ recursively calls the datatype _*_ itself, in
the impure constructor of Free that recursive call is replaced
by a call to the parameter F. This lets us use Free to define
the following inductive record type:
record IndFree (C : Container ℓ1 ℓ2)

(U : Set ℓ3) : Set (ℓ1 ⊔ ℓ2 ⊔ ℓ3) where
inductive; constructor 〈〈_〉〉
field free : Free IndFree C U

This IndFree record type is isomorphic to _*_. The coinduc-
tive version of the free monad can be defined analogously
as a coinductive record type:10

record CoFree (C : Container ℓ1 ℓ2)
(U : Set ℓ3) : Set (ℓ1 ⊔ ℓ2 ⊔ ℓ3) where

coinductive; constructor 〈〈_〉〉
field free : Free CoFree C U

In the rest of this paper we will use the coinductive free
monad as our representation of effectful program trees:
Program : Container ℓ1 ℓ2 → Set ℓ3 → Set (ℓ1 ⊔ ℓ2 ⊔ ℓ3)
Program = CoFree

For example, our ATM program from § 2 can be modelled as
follows:
ATM : Program effect ⊤
free ATM = impure (getPIN , _ where
n → 〈〈 impure (correctPIN n , _ where
false → 〈〈 impure (throwException , ⊥-elim) 〉〉
true → 〈〈 impure (showBalance , _ _→ ATM) 〉〉) 〉〉)

3.3 Composing Effects
The previous section modelled the operations of our ATM
using a single container, representing a single effect. An
attractive property of algebraic effects and the free monad is
that we can define and combine separate effects. Concretely,
the following function represents the sum of two containers:
_⊎_ : (C1 : Container s1 p) → (C2 : Container s2 p) →

Container (s1 ⊔ s2) p
(C1 ⊎ C2) .Shape = (Shape C1 Sum.⊎ Shape C2)
(C1 ⊎ C2) .Position = [ Position C1 , Position C2 ]′

Here, [_,_]′ is the non-dependent eliminator for the sum
datatype Sum._⊎_. Using the function _⊎_ we can, for ex-
ample, define and combine separate effects for the different
operations of our ATM. For brevity, we show just the defini-
tion of the IOEffect.
data IOShape : Set where
getPIN : IOShape

10This coinductive record type corresponds to a version of ITrees [21]
without an explicit constructor for “silent” transitions. Silent transitions
can be represented using a (container-encoded) signature functor.
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showBalance : IOShape

IOEffect : Container 0ℓ 0ℓ
Shape IOEffect = IOShape
Position IOEffect getPIN = N

Position IOEffect showBalance = ⊤

Other effects for verifying that a PIN code is correct (verifi-
cationEffect) and for throwing exceptions (exceptionEffect)
can be defined analogously. Then, we can combine them into
a single effect as follows:
effect⁺ : Container 0ℓ 0ℓ
effect⁺ = IOEffect ⊎ verificationEffect ⊎ exceptionEffect

Using effect⁺, our ATM is implemented as follows:
ATM⁺ : Program effect⁺ ⊤
free ATM⁺ = impure (inj1 getPIN , _ where
n → 〈〈 impure (inj2 (inj1 (correctPIN n)) , _ where
false →
〈〈 impure (inj2 (inj2 throwException) , ⊥-elim) 〉〉

true →
〈〈 impure (inj1 showBalance , _ _→ ATM⁺) 〉〉) 〉〉)

This program is difficult to read because of all of the injec-
tions. The usual solution to this problem is to use smart
constructors [19] to make programs more readable. Here, we
will use smart injections which let us generically inject an
operation of a smaller effect into a larger one.

3.4 Smart Injections
The following record type represents a witness that we can
inject a container C1 into C2:
record _:<:_ (C1 : Container ℓ1 ℓ2) (C2 : Container ℓ3 ℓ4) :
Set (ℓ1 ⊔ ℓ2 ⊔ ℓ3 ⊔ ℓ4) where
field
injS : Shape C1 → Shape C2

projP : ∀ {s}→ Position C2 (injS s) → Position C1 s

Using Agda’s support for instance arguments11 [11], we can
declare a generic function that allows Agda to automatically
infer injection witnesses that inject an operation of a smaller
effect type into a larger one:
inj : {C1 : Container ℓ1 ℓ2} {C2 : Container ℓ3 ℓ4}

{| _ : C1 :<: C2 |} → Shape C1 → Shape C2

inj {| inst |} x = injS inst x

Using smart injections, our ATM program becomes more
readable:
ATMB : Program effect⁺ ⊤
free ATMB = impure (inj getPIN , _ where
n → 〈〈 impure (inj (correctPIN n) , _ where
false →

11https://agda.readthedocs.io/en/v2.6.4.3-r1/language/instance-
arguments.html

〈〈 impure (inj throwException , ⊥-elim) 〉〉
true →
〈〈 impure (inj showBalance , _ _→ ATMB ) 〉〉) 〉〉)

It is equally possible to write smart constructors akin to
those used by Swierstra [19]; e.g., a function getPINB : {| IO-
Effect :<: C |} → Program C N. However, to program with
smart constructors we must use the monadic bind of the coin-
ductive free monad. While it is possible to define a notion
of monadic bind for the coinductive free monad, it can be
problematic to use it in conjunction with guarded coinduc-
tion in Agda, because Agda’s guardedness checker is unable
to infer that recursive calls are guarded in continuations of
a monadic bind.12 For that reason, we do not use monadic
bind or smart constructors in this paper. We will, however,
use the smart injection function inj discussed above.

4 Hennessy-Milner Logic
Weare now ready to formalize the first-ordermodal μ-calculus
in Agda. To start, we will focus on a subset of the first-
order modal μ-calculus: a simple dynamic logic known as
Hennessy-Milner logic (HML) [14]. The syntax of HML for-
mulas is:

f ::= true | false | ∼ f | f ∧ f | f ∨ f | f ⇒ f

| 〈 U 〉 f | [ U ] f

Here, true is a formula that holds for all programs, and false
does not hold for any program. The standard connectives
from predicate logic maintain their traditional meanings,
e.g., negation (∼ f), conjunction (f ∧ f), disjunction (f ∨ f) and
implication (f ⇒ f). The diamond (〈 U 〉 f) and box ([ U ] f)
modalities we introduced in § 2. We represent HML formulas
in Agda using the following Formula datatype.

data Formula (S : Set ℓ ) : Set ℓ where
true false : Formula S
~_ : Formula S → Formula S
_∧_ _∨_ _⇒_ : (_ _ : Formula S) → Formula S
〈_〉_ [_]_ : S → Formula S → Formula S

The datatype S represents the operations which can be used
in the formula. The semantics of HML formulas is given by
the satisfaction relation _�_ in Figure 1. We say that a given
program x satisfies a HML formula f, when x � f.

Although this implementation does not support all fea-
tures of the first-order modal μ-calculus, we can still use it
to express and prove some functional requirements of our
ATM example. For example, the functional requirement that
at the start of the program it must be possible to execute the
getPIN operation, can be expressed as follows:

property1 : Formula (Shape effect⁺)
property1 = 〈 inj getPIN 〉 true

12It should be possible to use Agda’s sized types [3] instead. We do not
explore that here.
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_�_ : {C : Container ℓ1 ℓ2}→ {U : Set ℓ3}→
Program C U → Formula (Shape C)→ Set (ℓ1 ⊔ ℓ2)

_ � true = ⊤

_ � false = ⊥

x � (~ f ) = ¬ (x � f )
x � (f1 ∧ f2) = (x � f1) × (x � f2)
x � (f1 ∨ f2) = (x � f1) ⊎ (x � f2)
x � (f1 ⇒ f2) = (x � f1)→ (x � f2)
x � (〈 s1 〉 f ) with free x
… | pure _ = ⊥

… | impure (s2 , c) = (s1 ≡ s2) × (∃[ p ] c p � f )
x � ([ s1 ] f ) with free x
… | pure _ = ⊤

… | impure (s2 , c) = (s1 ≡ s2)→ (∀ p → c p � f )

Figure 1. Semantics of HML formulas in Agda

Using the satisfaction relation we can prove that our ATM’s
software satisfies this functional requirement as follows:
proof1 : ATMB

� property1
proof1 = refl , zero , tt

Another functional requirement which we can express
is that at the start of the program it must not be possible
to execute any operation other than the getPIN operation.
Unfortunately, since HML does not support action formulas
(we introduce them in § 5), we have to explicitly mention
each impossible operation to encode this requirement:
property2 : N → Formula (Shape effect⁺)
property2 n = [ inj (correctPIN n) ] false ∧

[ inj showBalance ] false ∧
[ inj throwException ] false

We can again use the satisfaction relation to prove that our
ATM satisfies this requirement.
proof2 : (n : N) → ATMB

� property2 n
proof2 n = (_ ()) , (_ ()) , _ ()

However, this functional requirement can be expressed in a
better way using action formulas, as described in the next
section.

5 Action Formulas
Action formulas represent sets of operations. Their syntax
is:

af ::= U | true | false | af 2 | af ∩ af | af ∪ af
As we mentioned in § 2, every operation U is also an action
formula which represents a singleton set containing only
that operation. Moreover, the action formula true represents
the set of all operations and false the empty set of operations.
The non-terminal symbols af 2 , af ∩ af and af ∪ af in the
grammar represent the complement of a set of operations,

the intersection of two sets of operations and the union of
two sets of operations, respectively. We can represent action
formulas in Agda using the following datatype:
data ActionFormula (S : Set ℓ ) : Set ℓ where
true false : ActionFormula S
act_ : S → ActionFormula S
_2 : ActionFormula S → ActionFormula S
_∩_ _∪_ : (_ _ : ActionFormula S)→ ActionFormula S

Furthermore, we can define a function which checks whether
a given operation is part of the set of operations represented
by a given action formula as follows:
_∈_ : {S : Set ℓ }→ S → ActionFormula S → Set ℓ
_ ∈ true = ⊤

_ ∈ false = ⊥

s1 ∈ (act s2) = s1 ≡ s2
s ∈ (af 2 ) = ¬ (s ∈ af )
s ∈ (af1 ∩ af2) = (s ∈ af1) × (s ∈ af2)
s ∈ (af1 ∪ af2) = (s ∈ af1) ⊎ (s ∈ af2)

Now that we have all of the necessary definitions to use
action formulas, we need to incorporate them into our defi-
nition of HML formulas discussed in § 4. We can do this by
changing the constructors for the diamond and box modali-
ties to use action formulas, instead of single operations:
〈_〉_ [_]_ : ActionFormula S → Formula S → Formula S

Furthermore, we need to modify the semantics of our HML
formulas shown in Figure 1, in order to account for the
changes in the definition. In particular, we need to redefine
the semantics for the diamond and box modalities as follows:
x � (〈 af 〉 f ) with free x
… | pure _ = ⊥

… | impure (s , c) = (s ∈ af ) × (∃[ p ] c p � f )
x � ([ af ] f ) with free x
… | pure _ = ⊤

… | impure (s , c) = (s ∈ af ) → (∀ p → c p � f )

Using our new definition of HML, we can now define the
functional requirement that at the start of the program it
must not be possible to execute any operation other than the
getPIN operation, as follows:
property3 : Formula (Shape effect⁺)
property3 = [ (act (inj getPIN)) 2 ] false

Moreover, we can prove that our ATM’s software satisfies
this functional requirement as follows:
proof3 : ATMB

� property3
proof3 h = ⊥-elim (h refl)

As we can see, both the definition of the functional require-
ment and the proof that it is satisfied become cleaner with the
use of action formulas, compared to the versions presented
at the end of § 4. However, while action formulas are very
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convenient, since they make some functional requirements
simpler to represent, they do not increase the expressivity
of our HML formulas. Thus, in the next section we will look
at how we can extend our implementation of HML formulas
by adding least- and greatest-fixed-point operators, thereby
changing it into an implementation of a more expressive
dynamic logic, known as the modal μ-calculus.

6 The Modal μ-Calculus
In this section we are going to extend our implementation
of HML by adding least- and greatest-fixed-point operators,
thereby transforming it into an implementation of a more
expressive dynamic logic, known as the modal μ-calculus.
First (in § 6.1), we will present the full syntax of modal μ-
calculus formulas, explain the functionality behind the new
structures which it introduces and describe an intuitive, but
unsuccessful, attempt to implement it in Agda.Then (in § 6.2),
we are going to discuss how we have solved the problems of
the intuitive implementation and we will give an example of
how our implementation can be used.

6.1 Intuitive Initial Attempt
The modal μ-calculus is a fixed-point dynamic logic and its
syntax is described by the following BNF grammar:

f ::= true | false | ∼ f | f ∧ f | f ∨ f | f ⇒ f

| 〈 U 〉 f | [ U ] f | μ X . f | ν X . f | X

Aswe can see from this grammar, all features of HML are also
present in the modal μ-calculus. However, there are three
new symbols in the grammar: variables X which represent
formula variables bound by least- and greatest-fixed-point
operators, μ X . f and ν X . f, respectively. Using these three
new constructs it is possible to express requirements which
involve recursion (which is also the reason why the modal μ-
calculus is sometimes referred to as HML with recursion). To
explain how this works, let us consider what the fixed-point
operators represent. The fixed-point operators μ X . f and
ν X . f introduce a new formula variable X which is bound
in the body f of the corresponding fixed-point operator. The
occurrences of X in f represent recursive references to the
fixed-point operator (i.e., μ X . f ≃ μ X . f[μ X . f/X]).

Next, to see how the least- and greatest-fixed-point oper-
ators work, let us consider two example formulas, μ X . X
and ν X . X. These formulas represent the least fixed point
and the greatest fixed point, respectively, of a formula that
recursively references itself. The difference between them
is in the proofs of satisfiability which they require. Proofs
that a least-fixed-point formula holds for a given program
are given inductively (i.e., they correspond to finite deriva-
tion trees). In contrast, proofs that a greatest-fixed-point for-
mula holds for a given program are given coinductively (i.e.,
they correspond to corecursively generated, possibly-infinite
derivation trees). Thus, the formula μ X . X is not satisfied
by any program, since for all programs the least-fixed-point

operator will be referenced infinitely many times, while the
formula ν X . X is (trivially) satisfied by all programs.

Now that we have some intuition about the fixed-point op-
erators, let us try to implement them in Agda. A logical first
attempt would be to use a datatype Formula′ which extends
the Formula datatype with the following three constructors:
μ_ ν_ : (Formula′ S → Formula′ S)→ Formula′ S
ref_ : Formula′ S → Formula′ S

These constructors are designed based on the intuition which
we discussed above – the fixed-point operators require a
function, that takes a formula as input (the new formula
variable) and returns a formula, while the constructor ref_
can be used to reference the formula variables which are
introduced by the fixed-point operators. Unfortunately, this
definition of the fixed-point operators is not accepted by
Agda, since the datatype Formula′ appears as an argument
to a function in one of its constructors and is therefore not
strictly-positive.

In order to solve this problem, we need to come up with
a different way of representing the references to Formula′

in all of the constructors. Fortunately, we can also think of
formulas as predicates on programs. Thus, we can define
a datatype Formula′′ which has the same constructors as
Formula′, but expressed as follows:
μ_ ν_ : ((Program C U → Set) → Program C U → Set)→
Formula′′ C U

ref_ : (Program C U → Set) → Formula′′ C U

While this approach is accepted by Agda, it also has its down-
sides. The main drawback of this approach is that, as can be
seen from the definitions of the constructors, it requires the
Formula′′ datatype to be parameterized by the container C
and the return type U of the programs which it can be used to
express properties of. Another disadvantage of this approach,
that is also valid for Formula′, is that, while we would like
to use the ref_ constructor only for referencing the formula
variables which have been introduced by the fixed-point
operators, the ref_ constructor in Formula′ and Formula′′

can take any formula as its argument, not only the intended
formula variables.

In our implementation we solve all of these issues by
representing the formula variables which are introduced
by the fixed-point operators using de Bruijn indices [10].
In order to achieve this, we add a new parameter to our
definition of formulas – a natural number which denotes the
number of formula variables, that can be referenced in the
current formula. With this implementation the introduction
of new formula variables by the fixed-point operators is
not represented by a function. Instead, it is expressed by
incrementing the corresponding parameter of the formula.
Moreover, with this approach we can guarantee that the
ref_ constructor can only be used to reference the formula
variables which have been introduced by the fixed-point
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operators. Our implementation of modal μ-calculus formulas
in Agda is shown in Figure 2.

data Formula5 ? (S : Set ℓ ) : N→ Set ℓ where
true false : ∀ {n}→ Formula5 ? S n
~_ : ∀ {n}→ Formula5 ? S n → Formula5 ? S n
_∧_ _∨_ _⇒_ : ∀ {n}→ Formula5 ? S n →

Formula5 ? S n → Formula5 ? S n
〈_〉_ [_]_ : ∀ {n}→ ActionFormula S →

Formula5 ? S n → Formula5 ? S n
μ_ ν_ : ∀ {n}→ Formula5 ? S (suc n)→ Formula5 ? S n
ref_ : ∀ {n}→ Fin n → Formula5 ? S n

Figure 2. Definition of modal μ-calculus formulas in Agda

Now that we have defined the constructors for the fixed-
point operators, we have to also define the semantics of those
operators. We have already seen that the fixed-point oper-
ators represent the least fixed point and the greatest fixed
point, respectively, of a function of type Formula5 ? C U →
Formula5 ? C U . Therefore, in order to give the semantics
of the fixed-point operators, we need a way of defining the
fixed points of such functions. As we have already discussed,
functions of type Formula5 ? C U → Formula5 ? C U can also
be expressed as functions of type (Program C U → Set)→
Program C U → Set, since we can think of formulas as predi-
cates over programs. Fortunately, functions of type (Program
C U → Set)→ Program C U → Set are examples of so-called
indexed functors and the least and greatest fixed points of
indexed functors can be represented as follows:

record Mu {C : Container 0ℓ 0ℓ} {U : Set}
(F : (Program C U → Set) →
Program C U → Set)

(x : Program C U) : Set where
inductive; constructor mu2

field mu : F (Mu F ) x

record Nu {C : Container 0ℓ 0ℓ} {U : Set}
(F : (Program C U → Set)→
Program C U → Set)

(x : Program C U) : Set where
coinductive; constructor nu2

field nu : F (Nu F ) x

Unfortunately, with these definitions we face the same prob-
lem which we mentioned in § 3, when talking about the free
monad, namely that they are not strictly positive and are
therefore not accepted by Agda. Thus, in order to complete
our implementation of the modal μ-calculus, we need a way
to represent strictly-positive indexed functors as well as their
fixed points.

6.2 Introducing Containerization
When we were faced with a similar problem in § 3, we solved
it by using containers [1, 2]. However, containers can only
be used when working with normal functors. In order to
represent strictly-positive indexed functors, we need a more
complex version of containers known as indexed contain-
ers [5]. In our implementation we use a data structure which
is heavily inspired by the indexed containers presented by
Altenkirch et al. [5]. It has the typical structure of a con-
tainer as well as an associated extension function13 which
transforms it into an indexed functor. We have called this
data structure Container8 and its implementation looks as
follows:

record Container8 (C : Container ℓ1 ℓ2)
(U : Set ℓ3) : Set (ℓ1 ⊔ ℓ2 ⊔ ℓ3) where

constructor _▷_
field Shape8 : N

Position8 : Fin Shape8 → Program C U →

List⁺ (Result C U)

Here, the datatype Result represents the new program ob-
tained by applying a modality sequence to the input program
(the one which is provided as an argument to the position)
as well as the modal μ-calculus formula which this new pro-
gram should satisfy – both of which are necessary, in order
to encode the satisfaction relation. Furthermore, we provide
an algorithm for translating a modal μ-calculus formula into
an instance of Container8 . Our algorithm consists of the
following steps:

1. Desugar all implications according to the formula
f1 ⇒ f2 = (∼ f1) ∨ f2;

2. Desugar all negations by replacing every negated for-
mula with its dual, while counting the number of nega-
tions in front of each occurrence of the ref_ construc-
tor;

3. Replace all ref_ constructors which have an odd num-
ber of negations in front of them with false;

4. Translate the resulting formula into disjunctive normal
form (DNF);

5. Define the Shape8 of the container as the number of
conjunctions in the formula;

6. Define the Position8 of the container for each shape
(each conjunction in the formula) as a function which
relates a given input program to a list of values of type
Result, one for each element in the given conjunction.

Using this algorithm, we can translate any modal μ-calculus
formula into an instance of Container8 . Thus, we can define
the semantics of our fixed-point operators: they are repre-
sented as either the least fixed point or the greatest fixed

13For the exact implementation of the extension function please refer to
our source code at https://github.com/ivanstodorov/modal-mu-calculus-
for-free.
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point, depending on which operator is used, of the instance
of Container8 corresponding to the given formula.

Using this implementation of the modal μ-calculus, we
can now express and prove more complex properties of pro-
grams. For example, the liveness property specifies that a
program can never terminate or, put differently, that when-
ever a program executes some operation, there is always at
least one more operation which has to be performed after it.
Going back to our ATM example, we can express the liveness
property as a functional requirement of our ATM’s software
using our implementation of the modal μ-calculus as follows:

property4 : Formula5 ? (Shape effect⁺) zero
property4 = ν (([ true ] ref zero) ∧ (〈 true 〉 true))

However, this property does not hold for our ATM’s software,
since it halts, if an incorrect PIN code is provided. We can
prove this as follows:

proof4 : ATMB
� ~ property4

proof4 = mu2 (zero , tt , zero , _ { refl→
mu2 (zero , tt , false , _ { refl→
mu2 (suc zero , _ _ →⊥-elim) }) })

This example serves as a demonstration of the capabilities of
the modal μ-calculus. As we can see, it allows us to represent
much more complex functional requirements compared to
HML. However, this additional expressivity comes at the cost
of complexity, since the modal μ-calculus and, in particular,
the fixed-point operators can sometimes be complicated to
use. Thus, in the next section we will explain how we can
extend our current implementation of the modal μ-calculus
with regular formulas – a feature which can be used to ex-
press some fixed points, such as the one used in the liveness
property, in a simpler and cleaner way.

7 Regular Formulas
Regular formulas are a way of representing (possibly infi-
nite) sequences of action formulas and their syntax can be
represented using the following BNF grammar:

rf ::= n | af | rf · rf | rf + rf | rf * | rf ⁺

where:
• the terminal symbol n represents the empty sequence

of action formulas;
• the terminal symbol af represents a sequence consisting

of just a single occurrence of the given action formula;
• the non-terminal symbol rf · rf represents the concate-

nation of two sequences of action formulas;
• the non-terminal symbol rf + rf represents a choice

between two sequences of action formulas;
• the non-terminal symbol rf * represents a sequence

of zero or more occurrences of the given sequence of
action formulas;

• the non-terminal symbol rf ⁺ represents a sequence of
one or more occurrences of the given sequence of action
formulas.

It should be noted that the non-terminal symbol rf ⁺ can be
expressed using the non-terminal symbols rf · rf and rf *:

rf ⁺ = rf · (rf *)

Thus, in our representation of regular formulas we do not
need the non-terminal symbol rf ⁺, since we can always add
it later as syntactic sugar. With this in mind, we represent
regular formulas in Agda using the following datatype:

data RegularFormula (S : Set ℓ) : Set ℓ where
n : RegularFormula S
actF_ : ActionFormula S → RegularFormula S
_·_ _+_ : (_ _ : RegularFormula S)→ RegularFormula S
_* : RegularFormula S → RegularFormula S

Next, in order to incorporate regular formulas into our def-
inition of the modal μ-calculus from Figure 2, we need to
change the constructors for the box and diamond modalities.
However, instead of doing that, we will create a separate
datatype FormulaA 5 to represent modal μ-calculus formulas
with support for regular formulas:

data FormulaA 5 (S : Set ℓ ) : N → Set ℓ where
true false : ∀ {n} → FormulaA 5 S n
~_ : ∀ {n}→ FormulaA 5 S n → FormulaA 5 S n
_∧_ _∨_ _⇒_ : ∀ {n}→ FormulaA 5 S n →

FormulaA 5 S n → FormulaA 5 S n
〈_〉_ [_]_ : ∀ {n} → RegularFormula S →

FormulaA 5 S n → FormulaA 5 S n
μ_ ν_ : ∀ {n}→ FormulaA 5 S (suc n)→ FormulaA 5 S n
ref_ : ∀ {n}→ Fin n → FormulaA 5 S n

The reason for this decision is that we do not want to adjust
the satisfaction relation for the datatype Formula5 ? , in order
to incorporate regular formulas into it. Instead, we want
to desugar FormulaA 5 into Formula5 ? , thereby making it
possible to reuse the satisfaction relation for Formula5 ? . In
order to do this, we define a function desugarwhich desugars
a FormulaA 5 into a Formula5 ? . For the constructors true,
false, ∼_, _∧_, _∨_, _⇒_, μ_, ν_ and ref_ the definition of this
function is straightforward, since those simply get mapped to
the corresponding constructors of Formula5 ? .Thus, the cases
which we need to focus on are those for the box and diamond
modalities: [ rf ] f and 〈 rf 〉 f, respectively. In those cases
we first desugar the remaining formula f and then we use
two separate functions desugar-rf1 and desugar-rf3 for the
box and diamond modality, respectively, which desugar the
regular formula rf, given the remaining formula (desugar f).
Those functions can be defined by pattern matching on the
regular formula rf and for the constructors n , actF_, _·_ and
_+_ their definitions look as follows:
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desugar-rf1 : {S : Set ℓ }→ {n : N} → RegularFormula S →

Formula5 ? S n → Formula5 ? S n
desugar-rf1 n f = f
desugar-rf1 (actF af ) f = [ af ] f
desugar-rf1 (rf1 · rf2) f =
desugar-rf1 rf1 (desugar-rf1 rf2 f )

desugar-rf1 (rf1 + rf2) f =
desugar-rf1 rf1 f ∧ desugar-rf1 rf2 f

desugar-rf3 : {S : Set ℓ } → {n : N}→ RegularFormula S →

Formula5 ? S n → Formula5 ? S n
desugar-rf3 n f = f
desugar-rf3 (actF af ) f = 〈 af 〉 f
desugar-rf3 (rf1 · rf2) f =
desugar-rf3 rf1 (desugar-rf3 rf2 f )

desugar-rf3 (rf1 + rf2) f =
desugar-rf3 rf1 f ∨ desugar-rf3 rf2 f

As we can see, for those constructors the desugaring is
straightforward, because we simply translate the construc-
tors according to their meanings presented above. Unfortu-
nately, we cannot use this approach for the constructor _*.
For that case we need to use the following definitions [13]:

〈 rf * 〉 f = μ X . ((〈 rf 〉 X) ∨ f)

[ rf * ] f = ν X . (([ rf ] X) ∧ f)

However, since we represent the variables which are intro-
duced by the fixed-point operators using de Bruijn indices
(instead of giving them explicit names), we need to use a
slightly modified version of those definitions. In order to
demonstrate the desugaring of the _* constructor, let us con-
sider the following contrived formula:

ν X . 〈 true * 〉 X

Using the datatype FormulaA 5 this formula can be expressed
as follows:

ν 〈 (actF true) * 〉 ref zero

After desugaring the regular formula (actF true) *, which
represents zero or more occurrences of the action formula
true, this formula would look as follows:

ν μ ((〈 actF true 〉 ref zero) ∨ ref (suc zero))

As we can see, the regular formula (actF true) * is desugared
by introducing a new fixed-point operator exactly like in the
definition shown above. However, the ref zero, which in the
original formula refers to the greatest-fixed-point operator
in the beginning of the formula, becomes ref (suc zero) after
the desugaring, in order to account for the new fixed-point
operator which has been added.

Using this technique, we can desugar FormulaA 5 into
Formula5 ? . Thus, we can define a satisfaction relation for
FormulaA 5 by desugaring it into Formula5 ? and reusing the

satisfaction relation for Formula5 ? . Using regular formulas,
we can now express the liveness property which we stated
at the end of § 6.2 as follows:
property5 : FormulaA 5 (Shape effect⁺) zero
property5 = [ actF true * ] 〈 actF true 〉 true

As we can see, this representation is more compact and read-
able than the one we saw in the definition of property4 at
the end of § 6.2. Moreover, since the regular formula gets
desugared precisely into the fixed-point operator which was
used to express this property at the end of § 6.2, we can use
the same proof to show that our ATM’s software does not
satisfy this property.
proof5 : ATMB

� ~ property5
proof5 = proof4

This example illustrates the benefit of using regular formulas,
namely that they make some very common use cases of the
fixed-point operators simpler to write. With this we have
implemented all features of the modal μ-calculus into our
framework. Thus, in the next section we will introduce the
first-order modal μ-calculus and we will briefly explain how
we have implemented it in Agda, thereby adding even more
expressivity to our framework.

8 The First-Order Modal μ-Calculus
The syntax of first-order modal μ-calculus formulas is de-
scribed by the following BNF grammar:

f ::= true | false | B | ∼ f | f ∧ f | f ∨ f | f ⇒ f |

∀ p:T . f | ∃ p:T . f | 〈 rf 〉 f | [ rf ] f |

μ X (p1:T1:=v1,…,p= :T= :=v=) . f |

ν X (p1:T1:=v1,…,p= :T= :=v=) . f | X(v1,…,v=)

From the grammar we can see that the first-order modal μ-
calculus extends the modal μ-calculus with three additional
features:

1. Any boolean expression can be a formula;
2. Universal and existential quantifiers are supported;
3. The least- and greatest-fixed-point operators are pa-

rameterized.
It should be noted that the first two of those features have
also been added to action formulas. However, their imple-
mentation for action formulas is exactly the same as that
for first-order modal μ-calculus formulas. Therefore, in this
section we will only focus on the latter. Furthermore, for the
sake of brevity, we will only describe the intuition behind
our implementation of those features without going into the
implementation details.

The simplest new feature is that we allow any boolean
expression to be a formula. This is represented by the ter-
minal symbol B in the grammar shown above and such a
formula holds, iff the boolean expression evaluates to true.
To incorporate this feature into our implementation, we can
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add a new constructor to FormulaA 5 which takes a single
parameter, that is of type ⊤, if the boolean value evaluates
to true, or of type ⊥, otherwise. In our implementation we
provide a more general version of this feature: we add an-
other parameter to our definition of FormulaA 5 , a level ℓ1,
and we add the following new constructor to FormulaA 5 :

val_ : ∀ {n} → Set ℓ1 → FormulaA 5 S ℓ1 n

Using this new constructor, we can construct a formula using
any element of Set ℓ1. This feature increases the expressiv-
ity of our framework, because it allows us to reason about
more than just effect operations. For example, we can use
it together with the next feature which we will introduce –
universal and existential quantifiers, to model the statement
“there exists a natural number n, such that n > 42”. We can
represent this statement as a formula using the existential
quantifier and the val_ constructor to express the condition
n > 42. Furthermore, the formula val X holds for any program,
iff we can provide a value of type X. Thus, for the example,
that we just introduced, in order to prove that the formula
holds for a given program, we would need to give a natural
number n as well as a proof that n > 42.

The next new feature of the first-order modal μ-calculus
is the addition of universal and existential quantifiers which
are represented by the non-terminal symbols ∀ p:T . f and
∃ p:T . f, respectively, in the BNF grammar shown above.
Unfortunately, when it comes to these two operators, our
implementation does not match their definitions in the gram-
mar. Initially, we attempted to implement the exact behavior
from the grammar by adding constructors to FormulaA 5 to
represent the universal and existential quantifiers and con-
verting all formulas into prenex normal form (PNF), in order
to separate the quantifiers from the remainder of the for-
mula, before continuing to transform the remainder of the
formula using the techniques which we have described thus
far. However, this turned out to be impossible, since the
conversion of formulas into PNF could not be automated.
Instead, we settled for a different, but equally expressive, ap-
proach, namely requiring all formulas to be written in PNF
in the first place, thereby eliminating the need to convert
formulas into PNF automatically. It should be noted, that it
was necessary for us to have the formulas in PNF; otherwise,
we would not have been able to use the containerization
technique discussed in § 6.2. Thus, in our implementation we
use a new datatype called Quantified, that represents a for-
mula in PNF – it can introduce any number of universal and
existential quantifiers, before defining the actual formula.

The last new feature of the first-order modal μ-calculus
is that the least- and greatest-fixed-point operators are now
parameterized. To represent this in our implementation, we
add two additional arguments to the constructors for the
least- and greatest-fixed-point operators: a list denoting the
types of the parameters and a list containing their initial val-
ues. Furthermore, we modify the ref_ constructor to take an

additional argument: a list of values which will be given to
the parameters of the fixed-point operator which is being ref-
erenced. Moreover, in order to keep track of what types of pa-
rameters each fixed-point operator expects, we switch from
using standard de Bruijn indexing, represented using natu-
ral numbers, to indexing formulas by a Vec (List (Set ℓ1)) n,
where the length n of the vector denotes the number of fixed-
point operators which we can reference and the list at each
index of the vector represents the types of the parameters
expected by the corresponding fixed-point operator. Finally,
we introduce a new datatype called Parameterized, that rep-
resents the formulas which are passed to the fixed-point
operators – parameterized formulas in PNF.

Having said all of this, our full definition of first-order
modal μ-calculus formulas looks as follows, where FormulaA 5 ′

is defined by extending FormulaA 5 with the new features
discussed in this section:

data Quantified
(S : Set ℓ ) (ℓ1 : Level) (xs : Vec (List (Set ℓ1)) n)
: List (Set ℓ1 ⊎ Set ℓ1) → Set (ℓ ⊔ (suc ℓ1)) where

formula_ : FormulaA 5 ′ S ℓ1 xs → Quantified S ℓ1 xs []
∀(_)_ : ∀ {Us} (U : Set ℓ1) →

(U →Quantified S ℓ1 xs Us)→
Quantified S ℓ1 xs (inj1 U :: Us)

∃(_)_ : ∀ {Us} (U : Set ℓ1)→
(U →Quantified S ℓ1 xs Us)→
Quantified S ℓ1 xs (inj2 U :: Us)

data Parameterized
(S : Set ℓ ) (ℓ1 : Level) (xs : Vec (List (Set ℓ1)) n)
: List (Set ℓ1) → Set (ℓ ⊔ (suc ℓ1)) where

quantified_ : ∀ {Us} →Quantified S ℓ1 xs Us →
Parameterized S ℓ1 xs []

_ ↦→_ : ∀ {Us : List (Set ℓ1)}→ (U : Set ℓ1) →
(U → Parameterized S ℓ1 xs Us) →
Parameterized S ℓ1 xs (U :: Us)

Formula : (S : Set ℓ )→ (ℓ1 : Level) →
(Us : List (Set ℓ1 ⊎ Set ℓ1)) → Set (ℓ ⊔ (suc ℓ1))

Formula S ℓ1 Us = Quantified S ℓ1 [] Us

9 Related Work
Propositional dynamic logic (PDL) is a kind of logic which
was originally introduced by Vaughan Pratt [18] for the pur-
pose of reasoning about computer programs. Later, HML
was designed by Matthew Hennessy and Robin Milner [14],
based on the PDL of Pratt, with the goal of describing the
behavior of concurrent programs. And after that, the modal
μ-calculus, which is more expressive than both the PDL of
Pratt and HML, was first introduced by Dexter Kozen [15].
Since then, the modal μ-calculus has been widely used in the
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field of process theory, in order to reason about the behav-
ior of labelled transition systems. This widespread adoption
is what led to development of the tool mCRL2 [13] which
uses model checking to verify properties, expressed using
the first-order modal μ-calculus, of labelled transition sys-
tems. The adoption of the first-order modal μ-calculus in
our work was inspired by mCRL2. However, in our work we
attempt to use the first-order modal μ-calculus in a novel
context, namely to verify properties of programs defined
using algebraic effects.

In a different related line of work, it has been shown that
it is possible to formalize modal logics in a proof assistant [9].
However, such works do not make any connection between
the formalized modal logics and their meaning for computer
programs. Thus, our work differs from those by the fact that
we provide semantics for the first-order modal μ-calculus
which directly link it to computer programs.

Another related, although less closely, topic of research
is session types. Session types can be used to enforce cer-
tain properties of communication channels in a distributed
setting, such as the order in which messages are sent and
received through a given channel. Although session types
can be used to enforce some order among the operations
in a distributed program, which is similar to what can be
accomplished using our framework, it should be noted that
session types are typically applied to distributed programs.
In contrast, our framework provides a logic for verifying
properties of sequential programs. Therefore, at present, our
work is clearly separated from session types. However, if we
extend our framework, such that it can be used to reason
about concurrent and distributed programs, then we could
use it to express properties, similar to those enforced by
session types.

Recent work by Dal Lago and Ghyselen [8] extends tech-
niques due to Ong [17] for model-checking higher-order pro-
grams.This extension lets them automatically verifymonadic
second-order logic propositions about programs involving
algebraic effects and handlers. The work of Dal Lago and
Ghyselen [8] also demonstrates that the model-checking
problem for programs involving algebraic effects and han-
dlers is, in general, undecidable. Rather than using model
checking, the goal of our work is to allow programmers
working in a dependently-typed language, such as Agda, to
assert and verify functional properties of effectful programs.

In another contemporary line of work, Swierstra and Baa-
nen [20] demonstrate how we can derive effectful programs
directly from a given functional specification, represented
by a pre- and post-condition. The advantage of this approach
is that programs derived in this way are guaranteed to com-
ply with the provided functional specification and therefore
there is no need for additional verification. While our frame-
work does not currently support such features, an interest-
ing prospect would be to explore whether it is possible to
use first-order modal μ-calculus formulas, such as the ones

shown in this paper, as the pre- and post-conditions for such
program derivations.

10 Conclusion and Future Work
We have presented an embedding of the first-order modal
μ-calculus in Agda for stating and proving properties of pro-
grams with algebraic effects. This embedding lets us verify
properties of executable programs in Agda directly, rather
than first extracting a separate model. Furthermore, our work
demonstrates how to reason about programs in a proof as-
sistant using a dynamic logic, namely the first-order modal
μ-calculus. While our framework uses Agda, we believe that
our results should be reproducible in other proof assistants
which support the necessary features (such as coinduction).

In future work, we would like to explore the following:
• Extending our framework to reasoning about concur-

rent programs rather than “just” sequential ones.
• Reducing the effort required to manually prove that a

given formula holds for a given program, which cur-
rently requires knowledge of the satisfaction relation
setup.

• Improving performance. Our experience suggests that
type checking can be slow for complex formulas or
large programs. A main culprit is the large number of
transformations which we use to define our satisfaction
relation; in particular, the containerization discussed
in § 6.2. We would like to explore whether a different
approach to representing strictly-positive functors (e.g.,
descriptions [7]) might reduce complexity and improve
performance.

• Applying our approach to real-world programs, such as
cyber-physical systems.

• Defining a refinement calculus based on the first-order
modal μ-calculus which could allow us to “calculate”
programs that satisfy their functional requirements,
similar to the work of Swierstra and Baanen [20].
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