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The Frobenius problem for homomorphic

embeddings of languages into the integers

Michel Dekking

DIAM, Delft University of Technology, Faculty EEMCS, P.O. Box 5031, 2600 GA Delft, The

Netherlands. Email: f.m.dekking@tudelft.nl

Abstract Let S be a map from a language L to the integers satisfying S(vw) = S(v) + S(w)

for all v, w ∈ L. The classical Frobenius problem asks whether the complement of S(L) in

the natural numbers will be infinite or finite, and in the latter case the value of the largest

element in this complement. This is also known as the ‘coin-problem’, and L is the full

language consisting of all words over a finite alphabet. We solve the Frobenius problem for

the golden mean language, any Sturmian language and the Thue-Morse language. We also

consider two-dimensional embeddings.

1 Introduction

The Frobenius problem is also known as the ‘coin problem’. Since the value of
a coin can only be positive, we will consider exclusively embeddings into the natural
numbers N = {1, 2, 3, . . . }. Let L be a language, i.e., a factor-closed subset of the free
semigroup generated by a finite alphabet under the concatenation operation.

A homomorphism of L into the natural numbers is a map S : L → N satisfying

S(vw) = S(v) + S(w), for all v, w ∈ L.

The two main questions to be asked about the image set S(L) are

(Q1) Is the complement N \ S(L) finite or infinite?

(Q2) If the complement of S(L) is finite, then what is the largest element in this set?

These two questions are known as the Frobenius problem in the special case that L
is the full language consisting of all words over a finite alphabet. In this case they
have been posed as a problem (with solution) for an alphabet {a, b} of cardinality 2
by James Joseph Sylvester in 1884 [15]: N \ S(L) is finite if and only if S(a) and S(b)
are relatively prime, in which case its largest element is

S(a)S(b)− S(a)− S(b).

In this paper we will also restrict ourselves to the two symbol case: alphabet {a, b}.
In Section 2 we prove that for the golden mean language (“no bb”) the set N\S(L)

is finite when S(a) and S(b) are relatively prime, with largest element

S(a)2 + S(a)S(b)− 3S(a)− S(b).
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Our main interest is however not in sofic languages1, but in languages with low com-
plexity (slow growth of the number of subwords of length n), where the complement
of S(L) can be infinite.

In Section 3 we analyse the case of Sturmian languages, and show that for the
Fibonacci language a 0−∞ law holds: either the complement is empty or it has infinite
cardinality.

In Section 4 we show that for any homomorphism S the image of the Thue-Morse
language will consist of a union of 5 arithmetic sequences.

In Section 5 we consider two-dimensional embeddings, which behave quite differ-
ently.

We usually suppose that gcd(S(a),S(b)) = 1. First of all this is not a big loss
since automatically the complement will have infinite cardinality if this is not the
case. Secondly, if r divides both S1(a) and S1(b) for some homomorphism S1, then

S1(Ln) = rnS2(Ln), for n = 1, 2, . . . , where S2(a) =
S1(a)

r
, S2(b) =

S1(b)

r
.

Here, and throughout the paper, we write Ln for the set of words of length n in a
language L—not to be confused with the n-fold concatenation of L.

Our work is related to the work on abelian complexity, see, e.g., [3], [13], [8]. See
Lemma 3.1 for such a connection.

Our work is also related to the notion of additive complexity, see [14] and [2]. The
additive complexity of an infinite word w over a finite set of integers (see [2]) is the
function n→ φ+(w, n) that counts the number of distinct sums obtained by summing
n consecutive symbols of w. Let Lw be the language of all words occurring in the
infinite word w. Then the additive complexity is φ+(w, n) = Card{S(u) : u ∈ Lnw},
where S is the identity map on the alphabet of w. Here we do, and may, assume that
the alphabet of w is a subset of N.

We finally mention that homomorphisms S from a language to the natural numbers
already occur in the 1972 paper [4, Section 6] in the context of the Fibonacci language,
where they are called weights.

2 Homomorphic images of the golden-mean language

The golden mean language is the language LGM consisting of all words over {a, b}
in which bb does not occur as a subword. Now if S satisfies S(a) = 1 or S(b) = 1, then
it is easily seen that S(LGM) = N, so for these homomorphisms the golden mean and
the full language both map to N. One could say they both have Frobenius number
0. In general however, the Frobenius number will increase substantially. If we take S
defined by

S(a) = 100, S(b) = 3,

1Regular languages, or equivalently, languages defined by the labelling of paths of an automaton,
see [10, Section 1.5]
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then the Frobenius number of the full language under S is 300 − 100 − 3 = 197, and
the Frobenius number of S(LGM) is equal to 9997. For arbitrary homomorphisms
the solution of the Frobenius problem for the golden mean language is given by the
following, where we write Sa := S(a), Sb := S(b).

Theorem 2.1 Let S : LGM → N be a homomorphism. Suppose gcd(Sa,Sb) = 1, and
both Sa > 1 and Sb > 1. Then the Frobenius number of S(LGM) is equal to

max N \ S(LGM) = Sa(Sa − 3) + Sb(Sa − 1).

Proof: Let an Sa-point be defined as a multiple nSa, n = 0, 1, . . . , and an Sa-interval
as the set of numbers between two consecutive Sa-points. We also consider Sb-chains,
defined for n ≥ 0 by

C(n) = {nSa + Sb, nSa + 2Sb, . . . , nSa + (n+ 1)Sb}.

The union of the Sa-points and the Sb-chains will give LGM: the Sa-points are the
images of the words an, and the Sb-chains are the images of the words in which n
letters a occur, and k letters b for k = 1, 2, . . . , n + 1. Here n + 1 is the maximal
number of letters b that can occur because of the “no bb” constraint.
The key observation is that the Sb-chain C(Sa − 2) has Sa − 1 elements, which are
all distinct modulo Sa. This is a consequence of gcd(Sa,Sb) = 1. It follows that the
Sb-chains fill in more and more points of the Sa-intervals. The last point to be filled
in is equal to Sa−Sb modulo Sa, produced by the last element of the chain C(Sa− 2).
This is the number

P := (Sa − 2)Sa + (Sa − 1)Sb.

But then the largest number in the complement of LGM is P −Sa, which is the number
as claimed in the theorem. In this argument we used that if a point in an Sa-interval
is filled in, then the corresponding points modulo Sa in all later intervals will also be
filled in, simply because the later chains will be extensions of the earlier ones. 2

460 7 14 21 28 35 42 49

S(a) = 7, S(b) = 3: row n shows C(n − 1) in green, n = 1, . . . , 8 (truncated at 56).

1

Figure 1: Example with S(a) = 7, S(b) = 3: row n shows the Sa-points in blue, and the
Sb-chain C(n− 1) in yellow and green, for n = 1, . . . , 8 (truncated at 56).

3 Sturmian languages

Sturmian words are infinite words over a two letter alphabet that have exactly
n + 1 subwords for each n = 1, 2, . . . . We call the collection of these subwords a

3
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Sturmian language. There is a surprising characterization of Sturmian words: s is
Sturmian if and only if s is irrational mechanical, which means that there exist an
irrational number α ∈ (0, 1) and a number ρ such that s = sα,ρ, or s = s′α,ρ, where

sα,ρ =
(
[(n+ 1)α+ ρ]− [nα+ ρ]

)
n≥0, s

′
α,ρ =

(
d(n+ 1)α+ ρe − dnα+ ρe

)
n≥0.

See, e.g., [10, Prop. 2.1.13]. Because of this representation, we will use the alphabet
{0, 1} instead of {a, b} in this section.
Of special interest are the Sturmian words sα := sα,0 and s′α := s′α,0 of intercept 0.
These have the property that they only differ in the first element:

sα = 0 cα, s′α = 1 cα.

Here cα := sα,α is called the characteristic word of α. For n ≥ 0 we have

cα(n) = sα,α(n) = [(n+ 1)α+ α]− [nα+ α] = [(n+ 2)α]− [(n+ 1)α].

The words sα, s
′
α and cα generate the same language ([10, Prop. 2.1.18]), which we

denote Lα. Recall that Lnα is the set of words of length n in Lα.

Lemma 3.1 Let Lα be a Sturmian language, and let S be a homomorphism with
S(0) 6= S(1). Then Card S(Lnα) = 2 for all n ≥ 1.

Proof: This follows directly from the fact ([10, Th. 2.1.5]) that Sturmian words are
balanced, i.e., any two words of the same length can differ by at most 1 in their number
of ones. 2

A sequence ([nα]), where [.] denotes integer part, is called a Beatty sequence if α > 1,
and a slow Beatty sequence if 0 < α < 1 (terminology from [9]).

Theorem 3.1 Let α be an irrational number from (0, 1). Let Lα be the Sturmian
language generated by α, and let (qn)n≥0 be the slow Beatty sequence defined by

qn = [(n+ 1)α].

Let S : Lα → N be a homomorphism. Define S0 = S(0),S1 = S(1). Then

S(Lα) = {(S1− S0)qn +nS0 + S0 : n = 0, . . . }∪ {(S1− S0)qn +nS0 + S1 : n = 0, . . . }.

Proof: If S0 = S1 then this is certainly true, so suppose S0 6= S1 in the sequel. We
denote cα[i, j] := cα(i) . . . cα(j) for integers i, j with 0 ≤ i < j. Let N`(w) denote the
number of occurrences of the letter ` in a word w for ` = 0, 1. Then

N1(cα[0, n− 1]) =
n−1∑
k=0

cα(k) = [(n+ 1)α]− [α] = qn, N0(cα[0, n− 1]) = n− qn.

Of course all words cα[0, n− 1] are in the Sturmian language Lα, but Lα also contains
the words 0cα[0, n− 1] and 1cα[0, n− 1]. It thus follows from Lemma 3.1 that S(Lα)
is given by the union of all images S(0cα[0, n− 1]) and S(1cα[0, n− 1]). Since

S(0cα[0, n− 1]) = S0 + (n− qn)S0 + qnS1 = (S1 − S0)qn + nS0 + S0,

the result follows. 2

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3.1 The Fibonacci language

Let Φ = (
√

5 + 1)/2 = 1.61803 . . . be the golden mean, and let α := 2−Φ = Φ−2.
We have (see, e.g., [10, Example 2.1.24])

cα = ([(n+ 1)α]− [nα])n≥1 = 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, . . . ,

the infinite Fibonacci word. We write LF := Lα.

Theorem 3.2 Let S : LF → N be a homomorphism. Then

S(LF) =
(
(S0−S1)[nΦ]+(2S1−S0)n+S0−S1

)
n≥1 ∪

(
(S0−S1)[nΦ]+(2S1−S0)n

)
n≥1.

Proof: This is a corollary to Theorem 3.1, using [−x] = −[x]− 1 for non-integer x:

(S1 − S0)qn−1 + nS0 = (S1 − S0)[nα] + nS0 = (S1 − S0)[n(2− Φ)] + nS0

= 2(S1 − S0)n+ (S1 − S0)[−nΦ] + nS0

= (2S1 − S0)n+ (S1 − S0)(−[nΦ]− 1)

= (S0 − S1)[nΦ] + (2S1 − S0)n+ S0 − S1. 2

Lemma 3.2 For S(0) = 1, S(1) ≤ 3 or S(0) = 2, S(1) = 1 one has S(LF) = N.

Proof: Take (S0,S1) = (1,1). Then obviously S(LF) = N.
Take (S0,S1) = (2,1). Then S(LF) = N, since by Theorem 3.2 S(LF) is the union of
([nΦ]) and ([nΦ] + 1), where the difference of two consecutive terms in ([nΦ]) is never
more than 2.
Take (S0,S1) = (1,2). Then S(LF) = N, since S(LF) is the union of ([n(3 − Φ)]) and
([n(3−Φ)]) + 1), where the difference of two consecutive terms in ([n(3−Φ)]) is never
more than 2.
Take (S0,S1) = (1,3). This case is more complicated. Let u := (−2[nΦ] + 5n− 2)n≥1,
and v := u+ 2. Then according to Theorem 3.2, the union of the sets determined by
u and v is S(LF). Let ∆u be the difference sequence defined by ∆un = un+1 − un
for n ≥ 0. It is easy to see that the difference sequences ∆v and ∆u are both equal
to the Fibonacci sequence 1, 3, 1, 1, 3, 1, . . . on the alphabet {1, 3} (cf. [1]). We claim
that if two consecutive numbers m,m+ 1 are missing in u, then these two do appear
in v, implying that S(LF) = N. Indeed the two missing numbers are characterized by
un+1 − un = 3 for some n, and the missing numbers are m = un + 1 and un + 2. The
second number appears in v, simply because v = u + 2. The first number appears
because un+1 − un = 3 implies un − un−1 = 1 (no 33 in the 1-3-Fibonacci sequence),
and so vn−1 = vn − 1 = un + 1. 2

We define E := {(1, 1), (1, 2), (1, 3), (2, 1)}.

Theorem 3.3 Let S : LF → N be a homomorphism. Then N \ S(LF) has infinite
cardinality, unless (S(0),S(1)) ∈ E, in which case the complement is empty.
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Proof: According to Lemma 3.2 the complement of S(LF) is empty for (S0,S1) ∈ E .
The density of the set S(LF) in the natural numbers exists, and equals

δ :=
2

(S0 − S1)Φ + 2S1 − S0
.

The theorem will be proved if we show that δ < 1 for (S0,S1) not in E . First we note
that the denominator of δ is positive:

(S0 − S1)(Φ− 1) + S1 > −S1(Φ− 1) + S1 = S1(2− Φ) > 0,

where we used that 1 < Φ < 2. We now have

δ < 1 ⇔ (S0 − S1)Φ + 2S1 − S0 > 2 ⇔ (S0 − S1)Φ > S0 − S1 + 2− S1.

If S0 > S1, this is satisfied, since under this condition (2 − S1)/(S0 − S1) ≤ 0, unless
(S0,S1) = (2, 1) ∈ E . If S0 < S1, we have to see that Φ < 1 + (2− S1)/(S0 − S1). This
holds for S0 ≥ 2, since then (2− S1)/(S0 − S1) ≥ 1. If S0 = 1, then this does not hold
for S1 = 1, 2, 3, i.e., for pairs from E , but it will hold for all S1 ≥ 4. 2

For particular values of S(0) and S(1) the complement of the embedding of the
language has a nice structure, as it can be expressed in the classical Beatty sequences
A(n) = [nΦ] for n ≥ 1, and B(n) = [nΦ2] for n ≥ 1. The sequences A and B are
called the lower Wythoff sequence and upper Wythoff sequence; they are extremely
well-studied.

Example 1. Let S be given by S(0) = 3 and S(1) = 2. In the following we consider
A and B as functions from N to N, and define functions pX + qY + r by

(pX + qY + r)(n) = pX(n) + qY (n) + r
for real numbers p, q, r and functions X,Y : N→ N. Then

S(LF) = B(N)∪(B+1) (N), N\S(LF) = {1, 4, 9, 12, . . . } = (2A+Id+1) (N∪{0}).
The first statement follows from Theorem 3.2, and the relationship B = A+ Id. The
second statement follows in a number of steps from the fact that A and B form a
Beatty pair: A(N) ∩ B(N) = ∅, and A(N) ∪ B(N) = N. This implies that A(A(N)) ∪
A(B(N)) ∪ B(N) = N, where the three sets are disjoint. But AA = B − 1 (see, e.g.,
Formula (3.2) in [4]). Adding 1 to all three sequences it follows that

B(N) ∪ (B + 1) (N) ∪ (AB + 1) (N) = N \ {1}.
Moreover, according to [4, Formula (3.5)] one has AB = A+B = 2A+ Id.
But then the three sequences ([nΦ] + n)n≥1, ([nΦ] + n + 1)n≥1, (2[nΦ] + n + 1)n≥0,
form a complementary triple, i.e., as sets they are disjoint, and their union is N.
A similar result holds for2 S(0) = 4, S(1) = 3.

Example 2. Let S be given by S(0) = 3 and S(1) = 1, then by Theorem 3.2
S(LF) = (2A− Id) (N) ∪ (2A− Id + 2) (N).

It is proved in [1] that
N \ S(LF) = {2, 9, 20, 27, 38, 49, . . . } = (4A+ 3Id + 2) (N ∪ {0}),

and that the three sequences (2[nΦ]−n)n≥1, (2[nΦ]−n+ 2)n≥1, (4[nΦ] + 3n+ 2)n≥0,
form a complementary triple.

2In these two cases N \S(LF) is given by sequences A276885, respectively A276886 in OEIS ([11]).
It is easily seen that the definitions of these sequences in OEIS are equivalent to the way in which we
obtain them.
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4 The Thue-Morse language

Let θ given by θ(a) = ab, θ(b) = ba be the Thue-Morse morphism. Let LTM be
the language generated by this morphism.
Let Rr,s = {s, r+s, 2r+s, . . . } be the set determined by the arithmetic sequence with
terms rn+ s for n = 0, 1 . . . .

Theorem 4.1 Let S : LTM → N be a homomorphism. Define p = S(a), q = S(b).
Then

S(LTM) = Rp+q,0 ∪Rp+q,p ∪Rp+q,q ∪Rp+q,2p ∪Rp+q,2q.

Proof: Let LnTM be the set of words of length n in the Thue-Morse language. Put
r = S(ab) = p+ q. It is clear (and for p = 0, q = 1 also observed in [13]) that since the
Thue-Morse word is a non-periodic concatenation of ab and ba that for n = 1, 2, . . .

S(L2n
TM) = {rn, rn+ q − p, rn+ p− q}, S(L2n−1

TM ) = {rn+ p, rn+ q}.

This implies the statement of the theorem. 2

Theorem 4.2 Let S : LTM → N be a homomorphism. Then N \ S(LF) has infinite
cardinality if and only if S(a) + S(b) ≥ 6. For S(a) + S(b) < 6, the complement is
either empty or a singleton.

Proof: This follows directly from Theorem 4.1. If S(a) + S(b) ≥ 6, then the density of
N \ S(LTM), is at least 1/6, so the set has infinite cardinality.

When S(a)+S(b) < 6, then, because of symmetry, we only have to consider the four
cases (S(a),S(b)) = (1, 2), (S(a),S(b)) = (1, 3), (S(a),S(b)) = (1, 4), and (S(a),S(b)) =
(2, 3). In these cases one will find with Theorem 4.1 that the complement of S(LF) is
empty in the first two cases, and equal to {3}, respectively {1} in the last two. 2

Remark Let σ given by σ(a) = ab, σ(b) = aa be the period-doubling or Toeplitz
morphism. The difficulty—see [8, Lemma 6]—of determining the abelian complexity
of the period-doubling morphism already indicates that solving the Frobenius problem
for the period-doubling language will be much more involved than for the Thue-Morse
language.

5 Two dimensional embeddings

Here we consider homomorphisms S : L → N × N and S : L → Z × Z. The
situation changes drastically for this ‘double-coin’ problem.

Proposition 5.1 Let L be a language on the alphabet {a, b}, and let S : L → N×N be
a homomorphism. Then N×N \ S(L) has infinite cardinality for all pairs {S(a),S(b)}
which are not equal to the pair {(0, 1), (1, 0)}.
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Proof: It suffices to prove this for the full language Lfull. The image under S is an
integer lattice, with a complement of infinite cardinality, unless S(a) and S(b) are the
unit vectors. 2

We learn from this that the alphabet is ‘too small’, and that we should rather
consider embeddings in Z × Z instead of N × N. We focus again on low complexity
languages, in particular on those generated by a primitive morphism ϕ on an alphabet
A. Such a morphism has a language Lϕ associated to it, where each word w ∈ Lφ has
a measure µϕ(w). For a given homomorphism S : Lϕ → Z× Z we call the average

∆ϕ(S) :=
∑
a∈A

µϕ(a)S(a)

the drift of S.

Proposition 5.2 Let Lϕ be a language generated by a primitive morphism on an
alphabet A, and let S : Lϕ → Z × Z be a homomorphism. Then Z × Z \ S(L) has
infinite cardinality if ∆ϕ(S) 6= (0, 0).

Proof: It is well-known that the measure µϕ is strictly ergodic (see, e.g., [12]). Because
of this, we have for words w from Lϕ, where |w| denotes the length of w,

1

|w|
S(w) =

1

|w|
∑
a∈A

Na(w)S(a)→
∑
a∈A

µϕ(a)S(a) = ∆ϕ(S) as |w| → ∞.

Thus for long words w the images S(w) will be concentrated around the line in the
direction of the drift of S, and so the complement of S(Lϕ) will have infinite cardinality
if the drift is not (0, 0). 2

Can we say something about the Frobenius problem for homomorphic images of
morphic languages of an embedding with drift (0, 0)? We shall give an infinite family
of morphic languages Lθ on an alphabet A = {a, b, c, d} of four letters where for the
homomorphism S⊕ given by

S⊕(a) = (1, 0), S⊕(b) = (0, 1), S⊕(c) = (−1, 0), S⊕(d) = (0,−1)

the homomorphic embedding is the whole Z×Z—and thus the complement is empty.
We shall make use of the paperfolding morphisms introduced in [6]. Let σ be the
rotation morphism on the alphabet {a, b, c, d} given by σ(a) = b, σ(b) = c, σ(c) =
d, σ(d) = a, and let τ be the anti-morphism given by τ(w1 . . . wn) = wn . . . w1.
A morphism θ on {a, b, c, d} is called a paperfolding morphism if

1) στθ = θστ ,
2) Letters from {a, c} alternate3 with letters from {b, d} in θ(a).

A paperfolding morphism is called symmetric if σθ = θσ. It is clear that this happens
if and only if the word θ(a) is a palindrome.

Let G be a (semi-) group with operation + and unit e. In general an infinite
word x = (xn) over an alphabet A and a homomorphism S : A∗ → G generate a walk
Z = (Zn)n≥0 by (cf. [5])

Z0 = e, Zn+1 = Zn + S(xn) = S(x0 . . . xn), for n ≥ 0.

3This corrects an omission in [6, Definition 1].
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A paperfolding morphism θ with θ(a) = a... is called perfect if the four walks
generated by the fixed point x = θ∞(a), and its three rotations over π/2, π and 3π/2
visit every integer point in the plane exactly twice (except the origin, which is visited
4 times).
In [6] it is—not explicitly—proved that for any odd integer N that is the sum of two
squares there exists a perfect symmetric paperfolding morphism of length N . To make
the proof explicit, one uses that, according to the paragraph at the end of Section 7 in
[6], there exists a symmetric plane-filling and self-avoiding string for each such N , and
then one observes that the construction of such a string in the proof of [6, Theorem 4]
always satisfies the perfectness criterion given in [6, Theorem 5].

The smallest length is N = 5, with morphism θ given by

θ(a) = abcba, θ(b) = bcdcb, θ(c) = cdadc, θ(d) = dabad.

Figure 2: The four images of the words θ4(a), . . . , θ4(d) under S⊕, where θ is the perfect
symmetric 5-folding morphism. The origin is not covered, but it is the image of the word
abcd ∈ Lθ.

Proposition 5.3 Let Lθ be the language generated by a perfect symmetric paperfolding
morphism θ. Then S⊕(Lθ) = Z× Z.

Proof: This follows directly from Theorem 5 in [6], using the observation above. 2

Acknowledgement

I would like to express my gratitude to two reviewers for their excellent comments.

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

References

[1] J.-P. Allouche and F. M. Dekking, Beatty sequences and complementary triples,
In preparation.

[2] H. Ardal, T. Brown, V. Jungic, J. Sahasrabudhe, On additive and Abelian com-
plexity in infinite words, Integers 12 (2012), #A21, 1–8.

[3] F. Blanchet-Sadri, D. Seita, and D. Wise, Computing abelian complexity of binary
uniform morphic words, Theor. Comput. Sci. 640 (2016) 41-51.

[4] L. Carlitz, R. Scoville, and V. E. Hogatt Jr., Fibonacci representations, Fib. Quart.
10 (1972),1–28.

[5] F. M. Dekking, Marches automatiques, J. Théor. Nombres Bordeaux 5 (1993),
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