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ABSTRACT
Motivation: A single-molecule protein sequencer, which labels only 2
out of 20 amino acids and uses single-molecule TIRF microscopy to
measure the order of these fingerprints, opens the door to identify
proteins with high fidelity using only a small quantity of sample.
From the fingerprint, a key challenge is to detect which protein was
measured.
Results: We present a first tool that efficiently retrieves the protein
sequences by just comparing the fingerprints, even in the presence
of a high error rate. A clustering method is first employed to reduce
the redundancy of the database. Given a fingerprint, our algorithm
employs an efficient filtering strategy to identify potential matches and
a dynamic programming to verify the matches found. These matches
are then mapped back to the original fingerprint database to get the
final proteins.

We analyzed the detection behavior on simulated data and
investigated how the use of additional information may improve
the performance. In addition, we tested whether the fingerprint
information is sufficient to solve other problems, such as
distinguishing whether a human cell sample contains bacterial or viral
proteins.
Availability: This fingerprints detection tool FPD has been written in
C++. Source code is available at http://homepage.tudelft.nl/g4b23
Contact: yaoyao0221@gmail.com

1 INTRODUCTION
Detection and quantification of protein expression levels is of
importance to understand the essential molecular processes within
a cell. For example, some proteins, which are alternatively spliced
or post-translationally modified, are thought to be the key for some
diseases. Knowing the structures of such proteins could help us
understand the diseases. Recently, two international teams produced
the first drafts of human proteome (Kim et al., 2014; Wilhelm
et al., 2014). Both teams discovered a number of novel proteins and
were able to identify proteins encoded by 84% to 92% of all the
genes in the human genome predicted to encode proteins. However,
many proteins are only present in low concentrations, which cannot
be measured using current protein sequencing techniques: Edman
degradation (Edman and Begg, 1967) and mass spectrometry (Berg
et al., 2002). Both rely on a large and highly concentrated sample
of the protein to determine the amino acid order correctly (Steen
and Mann, 2004; Berg et al., 2002) (see Supplementary Material

Section 1.1 about these existing techniques). Thus, sequencing at the
single-molecule level is needed to detect proteins present in minute
quantities.

Chirlmin Joo lab is developing a single-molecule finger-printing
protein sequencer, which labels only 2 out of 20 amino acids,
cystines (C) and lysines (K), and uses single-molecule TIRF
microscopy to detect these fingerprints. Each of the labeled amino
acid produces a specific spectral signal as it is sequenced. The
signals measured at each position on the slides are imaged and are
then converted into CK bases (see Supplementary Material Section
1.2 for more detailed description). This novel technique opens
the door to identify proteins with high fidelity using only a small
sample. Because of some technical barriers we encountered during
the process, such as inefficient labeling and fast translocation, there
is no formal data right now.

From the fingerprint, the challenge is to retrieve the actual protein
based on the CK fingerprint detected, even in the presence of
a high measurement error rate. Although numerous applications
comparing protein sequences based on the 20 different amino acids
(Altschul et al., 1990; Thompson et al., 1997; Needleman and
Wunsch, 1970), none of these are equipped to use only few amino
acids. When represented by only 2 amino acids, some proteins
are not distinguishable, e.g. some proteins that are evolutionarily
related. Accordingly, it is of importance to provide solutions for
these indistinguishable fingerprints. Finally, comparing a fingerprint
to a full protein database is too slow since the database can become
very large (more than 56 millions sequences in UniProt (Magrane
and Consortium, 2011)). Hence, we need to improve the time
efficiency when searching against a large database.

The clinical use of this protein sequencing approach could
provide accurate diagnosis of diseases. Hence, in this paper, we use
the human proteome database. Here, we present a tool that retrieves
proteins form this database by searching the fingerprints, even in the
presence of a high error rate. First, a clustering method is employed
to cluster similar proteins in the database with respect to their
amino acid sequences to reduce the redundancy of the fingerprint
database. An efficient filtering strategy is used to identify potential
matches, which significantly improves the average running time of
our algorithm, followed by a dynamic programming method, which
verifies those potential candidates to find matching proteins. Finally,
a post-processing step retrieves proteins with identical fingerprints
with those matches in the original database.
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We analyzed the performance of our method on simulated data
and investigated how additional information, if available, influences
performance. In addition, we tested whether the fingerprint
approach can solve other problems, such as detecting whether a
human cell sample contains bacteria or virus proteins.

2 METHODS
The inputs to our method are a reference database, a query fingerprint and
an error level bound. The alphabet set is Σ ={‘C’, ‘K’}, since we only
comparing the fingerprints. Let Q denotes the query with length LQ, Rx ∈
R denotes the xth reference in the database R with length LxR ∈ LR. The
error level α is defined as the ratio of the number of errors (k) between two
fingerprints to the length of the query LQ. The distanceD(Rx, Q) between
a reference Rx and query Q is the minimal steps to transform Q into Rx.
It is used to calculate the dissimilarity between them, which is also referred
to as the number of errors between two fingerprints. Formally, given Q, R,
and α, the problem is to find all Rx ∈ R for which D(Rx, Q) is smaller
than k, where LQ is the length of the query LQ and k equals to α× LQ.

Given the inputs, the algorithm takes four steps to search for the actual
matches as illustrated in Fig. 1. First, a) a clustering step is used to cluster
similar proteins in the original database with respect to their amino acid
sequences, hence reduce the redundancy of the fingerprints. It is done
before searching the query against the database. In the following paper,
R is specifically used to represent the after clustering database. Then b) a
combined filtration strategy is applied to identify potential references in R;
and c) all remaining references are examined for possible matches; finally,
d) a post-processing step retrieves proteins with identical fingerprints with
those matches in the original database. These steps will be discussed in more
detail in the section below.
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    Match
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Fig. 1: Overview of the fingerprint retrieval algorithm. The
algorithm takes as input a protein fingerprint database R, a query
Q and an error level threshold α.

2.1 Preprocessing: grouping related sequences using
clustering

Intuitively, there is a significant loss of information due to the representation
of 20 amino acids protein sequences using only 2 amino acids. For
example, only 89.8% of proteins are uniquely represented by CK fingerprints
(see Supplementary Material Section 5.6 for other possible 2 amino
acids representations). The remaining proteins thus are not uniquely
distinguishable by their fingerprints.

When two proteins have a significant degree of sequence similarity, they
are likely to share an evolutionary origin. Our assumption is that two
evolutionarily related proteins are more likely to have similar fingerprints
( see Supplementary Material Section 2.1). Thus, by clustering proteins

in the original amino acid database, we may capture some of the protein
family information of those indistinguishable fingerprints and also reduce
the redundancy of the fingerprints. Representative fingerprints of each cluster
are retained after clustering, which are used in the subsequent three phases.

2.1.1 Greedy neighbor clustering method The algorithm starts by
pairwise alignment of all full sequences using a Needleman-Wunsch (N-W)
dynamic programming method. For each pairwise alignment, we compute
the sequence distance (SD) as the number of errors (substitutions, insertions
and deletions) in the alignment, and sequence percentage identity (SPI) is
then defined as the ratio between the number of exactly matching residues
and the length of the alignment. In the algorithm, the SPI between two full
sequences x and y is calculated as follows:

SPI(x,y) = 1−
SD(x,y)

L(x,y)

, (1)

where the L(x,y) is the length of the alignment between sequence x and y.
If the SPI exceeds a certain threshold, the two full sequences that are

compared are considered to be neighbors. In this way, a neighbourhood
relationship of all input sequences is determined. This matrix is used in a
greedy neighbor clustering process. The process starts with a first sequence
as a cluster member and puts any other sequence into that cluster if the
sequence is a neighbor of at least one sequence already in the cluster. This
procedure is repeated on all remaining sequences until all sequences are
clustered. Next, sequences representing each cluster are extracted. Unlike
conventional methods, in which only the longest amino acid sequence is
used, we keep all different fingerprints in a cluster as representatives. As a
result, we could acquire some of the protein family information from the
clustering without losing information on the variation within a cluster.

2.1.2 Linear SPI threshold model We adapt the threshold for short
fingerprints for two reasons. 1) For some short lengths (l < 9) there are
more fingerprint occurrences than the maximum distinguishable possibilities
2l, where l represent the length. For instance, there are 136 fingerprints
of length 5 in the database (shown in Fig. 3), while there are only 25 =
32 different possibilities. Additionally, 2) For short amino acid sequences,
a higher SPI threshold means allowing a very low number of SD, which
more often becomes zero. In such case these sequences are not clustered
with similar sequences other than itself. Thus we propose to treat sequences
differently according to their fingerprint length, namely by modelling the
threshold as a linear function of their fingerprint length. A lower threshold
for shorter fingerprints can cluster similar sequences together and reduce the
redundancy, and a higher threshold for longer sequences helps to prevent
unique fingerprint from being clustered.

From the protein length distribution, we learn that when the fingerprint
is longer than 10 (about one-fourth of the average fingerprint length in Fig.
3), the ratio of the total number of sequences over the number of possible
fingerprints is nearly zero. For those sequences, a higher SPI threshold
helps to preserve the unique fingerprints. A lower threshold is more suitable
for 1 ≤ l < 10 since it clusters some proteins together and reduces the
redundancy for these short lengths. As a result, we model the threshold as
a linear function of the fingerprint length until one-fourth of the average
fingerprint length of the database:

θl =

{
Tlow +

Thigh−Tlow

L−1
(l − 1) , 1 ≤ l < L;

Thigh , l ≥ L.
(2)

where θl is the threshold corresponding to length l, Tlow and Thigh are
two user specified parameters, and L is one-fourth of the average fingerprint
length.

2.2 Filtration: eliminating uninteresting sequences
The optimal algorithm for retrieving fingerprints from a database is dynamic
programing. Unfortunately, it is quite slow on ordinary computers, so
many heuristic and hardware alternatives have been developed, such as
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Fig. 2: Consecutive pieces qj−1, qj and qj+1of query Q and their
corresponding pieces rj−1

x , rjx and rjx in reference Rx. For each
query piece, it is compared within a limited range in the reference,
which is length k larger on left and right.

FASTA (Pearson and Lipman, 1988), BLAST (Altschul et al., 1990) and
methods using hardware technologies (Farrar, 2007; Szalkowski et al., 2008;
Manavski and Valle, 2008). These methods have significantly reduced the
running time, however, at the cost of reduced sensitivity or very expensive
hardware.

In order to reduce the running time without affect the sensitivity of the
algorithm, filtration is used to remove those references that definitely can
not match the query fingerprint with distance smaller than or equal to k.

Filtration exploit the fact that it is much easier to tell that a reference
fingerprint does not match a query fingerprint than to tell it matches.
Typically, it uses a simple and highly efficient filter criterion to analyze the
reference sequences. Only small number ofRxs that have a reasonable level
of similarity to Q will be kept for further analysis.

2.2.1 q-gram partial exact matching This filtration method
combines two algorithms, partial exact matching and q-grams counting. The
query fingerprint Q is divided into (k + 1) pieces q0, q1, ..., qk , where k
equals to α×LQ, so there must be at least one piece that appears exactly in
a reference Rx (Wu and Manber, 1992). If, for Rx, no piece of Q appears
exactly, it is discarded (for more detail, see Supplementary Material Section
3.3).

The q-gram counting method is a faster filtration method, which compares
the q-grams of two fingerprints for filtration. A q-gram (Ukkonen, 1992)
in the alphabet set Σ is any string in Σq , where Σq is the set of all
possible strings of length q over Σ. For example, the 2-grams of sequences
CCCCKK are CC, CK and KK. The q-gram distance is defined as
the sum of the absolute difference between each q-gram occurrence. If
the q-gram distance is smaller than or equal to 2qk, Rx is marked as a
potential match (Ukkonen, 1992); otherwise, Rx can be filtered out (see
Supplementary Material Section 3.4 for more detailed description).

We combined the partial exact matching and q-gram counting to decide
whether there exists at least one piece in Q that appears exactly in a piece
of Rx, a different distance function between two pieces of Rx and Q, rjx
and qj , based on their q-grams is defined below to design a more efficient
filtration approach.

Dqpm(rjx, q
j) =

∑
ν∈Σq

max(G(qj)[ν]−G(rjx)[ν], 0), (3)

where ν is a q-gram and G(rjx)[ν] and G(qj)[ν] denote the total number of
times ν occurs in rjx and qj , respectively.

For each piece qj in query, the corresponding piece rjx contains the same
positions in reference with additional k positions on the two sides of rjx as
shows in Fig. 2. It is sufficient to to comparing the rjx in reference with
the qj in query to determine whether the piece qj appears in the reference
Rx, since k errors cannot alter more than k positions. Since a query piece
is searched in a limit range in a reference, it can discard more entries in the
reference database compare to the partial exact matching method, where the
qj is compared with the whole reference.

The distance between a piece qj in query Q and the corresponding piece
rjx in Rx is computed to determine if the Rx is a potential match. Given
a query Q and a reference Rx. For each qj and its corresponding rjx, we

checked whether any q-grams occur more often in qj than in rjx. If not, the
Dqpm(rjx, q

j) is zero. If this happens for at least one piece qj , thenRx is a
potential candidate; otherwise, Rx is not a potential candidate.

Combining partial exact matching and q-grams counting methods, allows
us to filter more effectively when q is small. However, since string
comparison is used to distinguish different q-grams, when q gets bigger,
the time needed becomes longer. In our implementation, we took advantage
of the fact that comparing two numbers, by comparing individual bits using
any of AND, XOR, 2’s complements, etc, which takes at most a couple of
instruction cycles, is much faster than comparing two strings representing the
same numbers. We transformed the fingerprints into decimal numbers using
a binary-to-decimal hashing function. Given fingerprint x = x1x2x3...xn,
the corresponding decimal number is denoted by dec(x):

dec(x) = 2n +

n∑
i=1

2n−iBi,

where Bi =

{
0 for xi = C

1 for xi = K
.

(4)

A single bit 1 is added at the left side to ensure a one-to-one correspondence
between the resulting decimal number and a fingerprint sequence. By using
this hashing method, we can efficiently determine different q-grams and
count these occurrences.

2.2.2 Combining strategy The filtration method described above has
its strengths and weaknesses. Although it works well and more efficient for
most of the cases (see Table 2), it is slower comparing to a length filtering,
which quickly find the potential matches by checking whether the length
difference between a reference and query |LxR − LQ| ≤ k. For example,
let the query Q CCKKK be compared to a reference Rx CKKKKK
with an error level of 20% (meaning k is 1) using the 2-gram partial exact
matching method. The query is divided into k + 1 = 2 pieces, q1 = CC,
q2 = KKK, and the corresponding pieces in the reference are r1

x =
CKK and r2

x = KKKKK. Since Dqpm(r2
x, q

2) = 0, then q2 appears
exactly in r2

x, thus,Rx will not be discarded. However, the reference clearly
is not a match, since it takes at least 2 steps (a substitution and a deletion) to
transform Rx into Q. By employing a frequency distance filtering method,
which discards a referenceRx by checking whether the maximum difference
between symbol occurrences is bigger than k (in Supplementary Material
Section 3.2) . Since the frequency distance Dfd(Rx, Q) = 2, which is
bigger than 1, then the reference Rx can be filtered out easily. For this
particular example, frequency distance works but the 2-gram partial exact
matching does not. Thus, we cannot say which filtration method is superior
to the others, but combining them can be more effective.

The basic idea of our combination strategy is to use different filtration
approaches together for different error levels. A simple length filtering and
frequency distance filtering are faster than a q-gram partial exact matching
method. Hence, when the error level is smaller than 5%, length filtering
and q-gram partial exact matching are employed. When the error level is
larger than 5%, we add frequency distance filtration method. This makes our
filtration quite efficient so that a large number of references are eliminated.

2.3 Verification: finding matches
In this phase, the remaining potential matches are examined by an N-W
dynamic programming approach considering the set of possible error types.
In our analysis, there are four types of errors might occur: deletion, insertion,
mismatch an amino acid with another one (substitution), and swapping
(transposition). Matching an amino acid at a position can also be seen as
a substitution with the same amino acid (for more detail, see Supplementary
Material Section 4.1).

2.3.1 Computation of Di,j The dynamic programming algorithm is
designed to provide the optimal alignment between two sequences, i.e. an
alignment with long regions of identical amino acid pairs and very few
mismatches and gaps. As the sequences become more dissimilar, more
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mismatched amino acid pairs and gaps should appear. To find the optimal
alignment, a dynamic programming matrix D needs to be calculated. Each
element Di,j represents the maximum score of aligning the substrings
Q[1...i] and Rx[1...j]. Let c denote the costs of the four operations. The
base cases, D0,j and Di,0, are defined as (cdel × j) and (cins × i) for
all 1 ≤ j ≤ LxR (length of Rx) and 1 ≤ i ≤ LQ (length of Q)
respectively. Then considering the four possibilities, the Di,j is updated
using the following recursive relation,

Di,j = max


Di−1,j−1 + csub

Di−1,j + cins

Di,j−1 + cdel

Di−2,j−2 + cswap

(5)

The cost for each operation are set differently based on the estimation
of how likely each error could happen in our measurements. Because
currently deletions caused by low labelling efficiency are the dominating
errors, followed by insertions, transpositions and substitutions, we choose
a relatively low penalty (negative) for deletions and higher penalties for
transpositions and mismatches. For the matching positions, the costs of
them are positives (see Supplementary Material Section 4.2). Note that the
penalties can be adapted at any time.

2.3.2 Matches and ture matches By memorising the solutions to the
subproblems for 1 ≤ j ≤ LRx and 1 ≤ i ≤ LQ stored in the dynamic
matrix, we can recursively compute the maximum score of aligning Rx
and Q. Therefore we find the score of the optimal alignment of the two
sequences starting from the maximum value in the last row or last column.
Maintain a ‘shadow matrix’ of traceback pointers in the recursion, so that
we remember which case was used to calculate every cell Di,j . From the
detailed alignment, the numbers of errors for different types as well as the
total number of errors can be calculated. The distance between the query and
the reference D(Rx, Q) is the total number of errors (see Supplementary
Material Section 4.3 for an example). If this distance is smaller than k, the
reference sequenceRx is considered as a match. Otherwise, it is not a match
of the query sequence with the error level α.

By using a post-processing phase, not only the matches that are preserved
after clustering are retrieved, but also the matches in the original database
which were clustered with those representative fingerprints. This is done by
mapping the matches found to their clusters, and finding the exact matches
within the same cluster.

A true match is found when the match is the exact query protein. If a
match has the same fingerprint but a different amino acid sequence, it is not
considered to be a true match. In our analysis, this is determined by checking
the protein accession codes.

2.3.3 Spacing model Thus far, only fingerprints acquired from the
measurements are used in the filtration phase. Ideally, additional information
can be deduced from the measurements, the spacings between two read-
outs. The spacings are non-labeled amino acids between two labeled ones,
which show a different pattern in the measurement. Here we explore ways
of taking the spacing information into account. There are two ways to do so:
by considering whether or not spacings occur between two read-outs, or by
considering the length of spacings between two read-outs.

1. Occurrence of spacing: If there is a spacing, it means there are some
non-labeled amino acid between two read-outs. Since the measurement
speed is unknown, gathering information on the occurrences of
spacings is easier than estimating the length of spacings. If two
read-outs are adjacent to each other, no spacing occurs. 81.8% of
sequences have at least two read-outs next to each other, and the average
number of such cases is 4.4 per sequence. This observation shows that
including the occurrences of spacing, we should be able to improve the
performance for these sequences.

2. Length of spacing: In this case, the number of non-labeled amino acids
in the amino acid sequence is measured. From the sequencing signals,
we can not easily determine the start or the end of proteins in the time
trace if they do not correspond to a labelled amino acid. Thus, the
starting and ending non-labeled amino acids are not included when we
construct the fingerprint with length of spacing. Using the length of
spacing, we should be able to improve the performance on most of the
sequences even further.

The penalties used to incorporate spacing information in the verification step
are described in detail in Supplementary Material Section 4.2.

Two distances between query and reference are calculated to examine
whether a reference sequence is a match. One is the distance between the
with spacing information fingerprints, which gives the total number of errors
between them. Other one is the distance between the CK fingerprints, which
gives the number of errors occur at C and K positions. If both distances
are smaller than the k

′
= (α × L

′
Q) and k = α × LQ respectively,

where theL
′
Q is the length of the with spacing information query fingerprint,

LQ is the length of the CK fingerprint and k
′

represents the number of
errors allowed between two fingerprints with spacing information, then the
reference sequence Rx is a match.

3 RESULTS
In this section, we present the performance of our method. We first
describe the characteristics of the database used in the analysis,
and then compare results of our clustering and filtration methods to
other methods. Furthermore, we test the efficacy of our sequence
detection method with simulated human sequences and other
databases.

3.1 Database
We downloaded the reviewed human complete proteome (reviewed
only) from Uniprot release 2014.04 (Magrane and Consortium,
2011) and used it to test our algorithm. It contains 20,264 different
proteins; the average amino acid sequence length is 559.34 and
the average fingerprint length is 44.87. The length distribution of
the amino acid sequences and fingerprints are shown in Fig. 3.
The ratio between the number of fingerprints of length l and the
number of possible fingerprints, Nl

2l , is also shown. Clearly, for
sequences shorter than 9, Nl

2l > 1, meaning it will be impossible
to distinguish some of those fingerprints. Since Ks occur 2.49
times more frequent than Cs in the database, this is the fact that
redundancy for fingerprints contains more Ks occurs even for long
sequences. Although Cs occur relatively rare, it is still likely to
have duplicated fingerprints contains more Cs for long sequences.
For example, when l = 22, there are several indistinguishable
fingerprints (see Supplementary Material Section 5.1). 14 proteins
have no Cs or Ks at all, those proteins are removed for future
analysis since they cannot be measured. The percentage of unique
fingerprints in the original database is 89.8% after remove those
proteins.

3.2 Clustering effectively reduce fingerprint
redundancy

In our algorithm SMGN, we set Tlow to 50% and Thigh to 90%
(see Supplementary Material Section 2.2 for the reasoning on the
choice of parameters). To examine the performance of our clustering
method, we compared it to two available applications, CD-HIT
(Huang et al., 2010) and BLASTClust (Altschul et al., 1997). We
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Fig. 3: The fingerprint length distribution of human complete
proteome and the ratio between the number of fingerprints Nl and
2l different fingerprints of length l.

evaluate the performance of these methods based on two aspects,
uniqueness and loss ratio. They are defined as follows:

Uniqueness =
∑
l∈LR

N l
u

N l
,

Loss ratio = 1− NdCR
NdR

,

(6)

whereN l
u is the number of uniquely presented fingerprints of length

l, N l is number of fingerprints of length l, and NdCR and NdR are
the number of different fingerprints in the after clustering database
and original ones respectively. The higher the uniqueness and the
lower the loss ratio the better.

CD-HIT (Huang et al., 2010) uses a greedy algorithm to cluster
sequences and remove redundancy. Comparing with the greedy
neighbor clustering method we used, this method puts a sequence
into a cluster only if it is a neighbor to the longest amino acid
sequence in the cluster. To compare with our method, the cut-
off threshold is set to 90% using a local sequence percentage
identity and the minimum alignment coverage for both sequences
to 90%. A greedy method SM-CDHIT which used a linear threshold
model, and different representatives is also implemented in order to
compare with CD-HIT. BLASTClust (Altschul et al., 1997) uses a
greedy neighbor clustering method with local alignment methods to
clustering sequences. The two parameters, alignment coverage and
local sequence percentage identity of this method are set to be 90%
and 90% for comparison. The database used here is 5000 random
entries in the human complete proteome database (hm5000).

Table 1 shows the uniqueness and loss ratio of the four
methods. Obviously, our clustering method SMGN can get the
best uniqueness without losing any CK information. And the two
clustering methods using the linear SPI threshold also outperform
CD-HIT and BLASTClust that used only a single threshold based
on the fact that the uniquenesses are higher than the two existing
tools. A Venn diagram shows the overlap of the representatives of

Table 1. Comparison of uniqueness and loss ratio of the database after
using the four clustering algorithms with the original database.

Method No. of clusters N l Uniqueness Loss ratio

hm5000 × 5000 89.1% ×
CD-HIT 4827 4827 91.3% 1.9%

BLASTClust 4819 4819 91.2% 2.0%
SM-CDHIT 4829 4918 91.3% 0

SMGN 4804 4915 91.4% 0

these four methods in Supplementary Material Fig. 10 to illustrate
the degree of similarity of the sets of representatives obtained by
these different programs.

3.3 Filtration can speed up detection of low error levels
The efficiency of filtering algorithms is very sensitive to the error
level. Most filters work very well at low error levels but quickly
become less efficient with increasing error levels. This is related to
the amount of Rxs that filters are able to discard (Navarro, 2001).
When evaluating filtering algorithms, it is important not only to
consider their time efficiency (running time per query t) but also
their tolerance for errors. Hence, the filtration efficiency η, which is
the total number of matches found divided by the total number of
potential matches retained by the filtration algorithm is examined as
well.

We evaluated our combined filtration method 6GPMFDL on the
hm5000 database and compared the results with those obtained by
other filtration methods, including a simple length filtering OnlyL,
frequency distance (Kahveci and Singh, 2001) with length FDL,
partial exact matching (Wu and Manber, 1992) with length PML,
5-gram counting (Ukkonen, 1992) with length 5GCL and our 6-
gram partial exact matching method 6GPML. We simulated data
with different error level between 0% to 20% to test all the methods.
A parameter q controlling the size of q-grams is needed for several
methods. The choice of q should be based on the filtration efficiency
and the time need to process it. Basically, different q-grams will
have different efficiencies. In the error-free case, the performance
of various q of our filtration method is listed in Supplementary
Material Table 7. When q is 6, we will be able to obtain the
highest filtration efficiency without compromising speed. For q-
gram counting method, 5 is assigned to q (see Supplementary
Material Table 6). Below, we used the above mentioned qs for the
evaluation.

The experimental results show that our combined method
6GPMFDL filters out more references than most other methods. The
second best approach, our method 6GPML has the best filtration
efficiency when the error level is smaller than or equal to 5%. The
frequency distance FDL is better when the error level is bigger than
5%.

The efficiency of all filtration algorithm quickly decreases when
the error level increases. As mentioned before, if α is small,
filtration algorithms can easily filter out the uninteresting references,
and hence they finish in less than a millisecond. However, when α is
large, the running time performance of our algorithm is better than
that of most other filters.
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Table 2. Comparison of filtration and time efficiencya on different error levels.
In each entry η/t, where η denotes filtration efficiency and t denotes the running
time of the algorithm per query in milliseconds.

Methods 0% 2% 5% 10% 20%

OnlyL 6%/1.92 3%/3.39 3%/19.27 3%/34.41 5%/63.72
FDL 40%/0.52 14%/2.44 9%/5.93 7%/14.09 10%/39.58
PML 73%/1.92 20%/8.30 4%/21.63 3%/35.73 5%/68.29
5GCL 98%/0.53 42%/2.00 8%/7.65 3%/29.44 5%/68.35

6GPML 98%/0.61 56%/2.19 18%/6.33 3%/34.44 5%/78.89
6GPMFDL 98%/0.40 70%/1.25 34%/2.95 7%/14.66 8%/48.50

a millisecond per query.
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Fig. 4: Detection precision as a function of the fingerprint length
for various error levels on the simulated data.

3.4 Proteins can be detected well at low error levels
3.4.1 CK fingerprints alone Here we examine the performance
of using our algorithm to find matches based on fingerprints,
considering various error levels, from error-free to 40%. We define
detection precision (P ) as one divided by the number of matches
found by our algorithm, if the original query protein is retrieved;
otherwise, it is zero. A unique match is found when the detection
precision is one, i.e. only the same sequence as the given query
sequence is retrieved. Similarly, the unique match percentage (U ),
is defined as the percentage of queries yielding a unique match. If
the detection precision is 1 for all queries, then the unique match
percentage is maximized. Finally, detection sensitivity (S) is defined
as one if the original query protein sequence is retrieved, i.e. when
there is a true match; otherwise, it is zero.

In order to test the efficacy of our method, we simulated some
fingerprints queries with properties similar to those expected from
the single-molecule finger-printing technology. We used the human
complete proteome database, and iteratively introduced up to 40%
errors into each of the fingerprint. Up to 70% deletions, 20%
insertions and 10% transpositions are introduced at random. Then
the erroneous queries are searched in the reference database. Fig.
4 and Table 3 shows the performance on the simulated data with
different error levels.

Table 3. The average detection sensitivities at
different error levels on the simulated data.

Error level α Average detection sensitivity S

0% 1.00
5% 1.00

10% 0.97
15% 0.96
20% 0.93
30% 0.90
40% 0.87

When the fingerprint length l ranges from 1 to 8 for α = 0% (no
errors), the average detection precision is smaller than 0.5 and never
reaches 1, meaning we cannot find unique matches for fingerprints
shorter than 9 symbols even in the error-free case. Thus, caused by
the fact that there are too many short length fingerprints compared to
the number of possible different fingerprints (2l) we can distinguish.
This is the main reason why the unique match percentage is less
than 90% in Fig. 5. However, for some long sequences, such as l is
40, the detection precision is also smaller than 1, in this case, it is
because K occurs 2.49 more often than C as we described before in
Section 3.1.

If a higher error level is set for the simulation, more errors are
introduced to the queries and more reference sequences will be
retrieved for each query. Fig. 4 also shows the change of detection
precision for various error levels. Clearly, it drops when the error
level increases for each fingerprint length. Shorter sequences are
strongly affected by the increase in error level. Table 3 shows
whether we are able to find the true match using the simulated data.
As error levels increase, we increasingly are unable to find the true
match back, and so the detection sensitivities decrease. The reasons
are described in detail in Supplementary Material Section 5.3.

As we already pointed out, we cannot find unique matches
for sequences shorter than 9 even in the error-free case. In
order to find out whether these small fingerprint proteins share
a domain or a biological process, we did an annotation analysis
on the sequences shorter than or equal to 12 (the precision for
length between 9 and 12 is still very low), we found several
annotations that are enriched in these sequences, such as hormone
activity, Ribonucleoprotein LSM domain, and S100/Calbindin-D9k,
conserved site (see Supplementary Material Section 5.5 for more
detail). Sequences with these annotations are more likely to be
non-specifically distinguished.

As illustrated in Fig. 5, for fingerprints alone, we can find a unique
match for half of the queries when the error level is less than 10%.
When the error level goes up to 30%, we are unable to find unique
matches for any of the queries.

3.4.2 With additional spacing information Using the CK
fingerprints alone, we are able to uniquely distinguish approximately
90% of the sequences in the error-free case. This percentage
decreases when the error level goes up. We therefore examined the
possibilities of including spacing information, both the occurrence
of spacing and the actual spacing length.
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Fig. 5: Unique match percentage for various error levels on the
simulated data.

Fig. 5 compares the unique match percentages with and without
spacing information. At each error level, the performance increases
when we include spacing information. Even by using only the
occurrence of spacing information, the unique match percentage
increases for error level smaller than 30%. If the length of
spacing is included as well, the unique match percentage increases
dramatically. For the error-free case, it goes up to 99.6%, an
improvement at about 10% compared to the original CK fingerprint
performance.

In summary, using only the fingerprints, the performance
becomes extremely poor for long fingerprints (l ≥ 30) even when
the error level is at only 15%. Shorter fingerprints, especially
those ≤ 8, are very hard to detect at all. Including spacing
information in some way improves performance, it is a necessity
for shorter fingerprints. If we could measure a third amino acid, the
detection precision will be improved even further (for detail, see
Supplementary Material Section 5.4).

3.5 Single-molecule protein sequencing is useful in a
variety of applications

Until now, we have explored the performance of single-molecule
protein sequencing for identifying proteins in human samples.
However, the system may have different uses. Here explore two
possible applications: 1) detection of bacteria/virus infection, and
2) detection of cancer-related proteins.

3.5.1 Distinguish bacterial/viral proteins from human One
possible application is to determine whether a prepared human cell
sample contains bacterial or viral proteins using the fingerprint
information. To examine this, we searched for proteins in this
human respiratory syncytial virus (HRSV) and Tuberculosis (TB)
protein datasets in the human proteome, and checked how many of
these proteins are not retrieved, indicating they could be uniquely
identified. We chose these two dataset causes for their potential
clinical relevance. HRSV infection occur in children may lead to
severe illness if diagnosed too late (Glezen et al., 1986). Thus,
we need to determine whether a child is infected with HRSV
as quickly as possible. TB is a common and deadly infection;
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(b) TB.

Fig. 6: Detection performance a) HRSV and b) TB proteins in the
human proteome at different error level thresholds.

it is definitively diagnosed by identifying M. tuberculosis using
histopathology, which is a slow culture process taking 2 to 6 weeks
(Pai et al., 2008). As a matter of fact, treatment is often begun before
a definitive diagnosis is confirmed (National Collaborating Centre
for Chronic Conditions, 2006).

UniProt database contains 21 HRSV proteins (Magrane and
Consortium, 2011), four of them have fingerprints shorter than 8
and one of them has a fingerprint length of 206. TB has many more
proteins (6327), and 47.0% of which have fingerprint length of 8 or
less. We searched each bacterial/viral protein in the human database
using our algorithm. If the number of true matches is zero, it means
the query protein is absent from the human database. The percentage
of bacterial/viral proteins absent in the human proteome is computed
and shown in Fig. 6.

We conclude that fingerprint can be used to determine whether
a human protein sample contains bacterial/viral proteins when
the error level is less than 20%, considering all proteins in a
sample are measured. When the error level is higher than 20%,
we find matching human protein sequences for all bacterial/viral
proteins, which makes it impossible to use only fingerprints to detect
them. As before, the allowed error level increases when spacing
information is included.

3.5.2 Detecting cancer-related proteins Another use scenario
for single-molecule protein sequencing is to diagnose cancer in
human. By detecting or quantitating cancer-related proteins in the
proteome. The cancer gene set is downloaded from COSMOC
(Forbes et al., 2011). The corresponding proteins are retrieved by
cross-referencing the cancer gene set and the human proteome. 448
out of 522 unique cancer-related proteins are in the reviewed human
complete proteome database obtained from UniProt (Magrane and
Consortium, 2011). We used our algorithm to search these cancer
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Fig. 7: Number of identifiable cancer proteins in human.

proteins in the human proteome. The number of uniquely retrieved
proteins at various error levels is shown in Fig. 7.

Clearly, fingerprint is enough to detect cancer proteins in human
sample at up to 30% of errors. When occurrence of spacing is
included, performance is slightly better at the beginning, but no
longer helps when the error level is higher than 30%. However, the
use of the spacing length dramatically increases performance, even
for α > 30%.

4 CONCLUSIONS AND FUTURE WORK
Here, we developed a first tool FPD to retrieve the actual protein
sequences using the order of just two amino acids. Our algorithm
employs a clustering method to extract sets of similar proteins and
reduce redundancy of the fingerprints database, an efficient filtering
strategy to identify potential matches and a dynamic programming
to verify the matches found. These matches are then mapped back
to the original fingerprint database to get the final proteins.

We demonstrated that by using the fingerprint information alone,
we can accurately detect most of proteins, but it is hard to
specifically identify with fingerprints less than 8 long. If errors
are taken into account, performance quickly descends. Including
additional information, such as a spacing or adding a third amino
acid to the fingerprint, could improve performance. As a matter of
fact, unless the length of spacing is measured or the error rate of the
measurement is less than 15%, it’s difficult to detect proteins with
high precision using the single-molecule finger-printing technique.
In addition, the fingerprint is sufficient to solve other problems,
for example to detect bacterial/viral infections and to detect cancer-
related proteins.

While the overall emphasis of the current paper was on sequence
detection, we believe that several of our methods may have a broader
application. For example, our clustering method can be used in other
problems, which require to remove redundancy of the database,
especially when the database consist of patterns extracted from an
original database. The combined filtration strategy could also be
useful for other string matching applications, where our method
could be used to improve efficiency.

We have deferred several issues for future work. Currently, we
do not have real data of the measurement, thus the performance
analysis is done on the simulated data with properties similar
to those expected from the single-molecule protein sequencing
technology. We plan to run the algorithm with the real data in the

future, and test using a better simulation when we learn more form
the measurement.

Another worthwhile analysis is how much performance can be
improved by including unknown phosphorylation sites of a protein.
This may be useful, cause physically phosphorylation positions can
be effectively labeled.

Although our clustering method outperforms two existing
methods, it is slower. The main reason is the use of a slower
dynamic programming pairwise sequence comparison. Since
dynamic programming is also used in the verification, a faster
method could be employed to future speed up our method without
influence the accuracy. Implementing it through the use of SIMD
instructions, which perform operations on multiple values in parallel
(Wozniak, 1997; Rognes and Seeberg, 2000; Farrar, 2007), could be
the solution.
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SUPPLEMENTARY MATERIAL
1 SINGLE-MOLECULE PROTEIN SEQUENCING

The single-molecule protein sequencing method is a laser-based technique that allows the fast sequencing of an individual protein molecule.
It detects the fluorescent signal of labeled individual amino acids one by one. By using this technique, we can measure the sequence using
only a single protein, particularly useful for sequencing proteins with a low expression level.

1.1 Existing protein sequencing methods
Right now, there are two main approaches to determine a protein’s sequence without prior knowledge of the gene which translate to the
protein: Edman degradation and mass spectrometry. Each of these has its limitations. 1) Edman degradation, developed by Peer Edman,
identifies a protein by removing amino acids one by one from the amino-terminus (Edman and Begg, 1967). However, if the peptide sequence
is longer than 50 residues (Berg et al., 2002) or the N-terminus is modified or hidden within the tertiary structure, this method will fail to
identify the protein accurately and completely (Steen and Mann, 2004). 2) Electrospray ionization mass spectrometry was developed in the
late 1980s, allowing large molecules like polypeptides to be processed and measured. The protein is first degraded by an endopeptidase (an
enzyme that breaks peptide bonds of nonterminal amino acids) to produce protein fragments before measuring the mass-to-charge ratios
(Berg et al., 2002). As a result, this method can analyze only protein fragments. This is problematic since we need to assemble those
small fragments in order to reconstruct the original sequence. We cannot be 100% certain that the reconstructed sequence is accurate using
techniques at the present time. And like Edman degradation, it requires a large and highly concentrated sample of a protein.

1.2 Single-molecule finger-printing approach
A large and pure protein sample is required to accurately and completely sequence a protein using the current sequencing techniques ( in
Supplementary Material Section 1.1). Single-molecule finger-printing approach allows us to sequence the entire protein using only a small
amount of protein samples. This is required, because 1) some proteins are found in extremely small amounts in nature. For example, a human
cell may only have few copies of a transcription factor. 2) Likewise, know that some diseases are due to the occurrence of specific proteins.
If we could easily sequence proteins, we could diagnose diseases by identifying the particular protein associated with the disease. 3) Protein
deficiency diseases occur because of the lack of a specific protein. By sequencing protein samples from healthy individual, and reproducing
these proteins in vivo or in vitro, they can be used in therapies to cure such deficiency diseases. Here, the single-molecule fluorescence
resonance energy transfer (smFRET) measurements which lead to protein fingerprint is described in more detail (see Fig. 8 (a)).
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(a) ClpXP model.
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Fig. 8: a) The model of how a protein goes through the ClpXP. The donor is placed at the top disk of the ClpP. The protein is labeled with
two different dyes. b) Amino acid composition of the ClpP subunit. The length of a ClpP subunit is 207 amino acids.
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First, the sequencing substrates need to be labeled with acceptors fluorophores. Labeling all the 20 different amino acids in a protein needs
an equivalent number of dyes, which is rather expensive to achieve at the present time. It is also inefficient since not all of them can be
labeled specifically. So labeling two amino acids, cysteine (C) and lysine (K), is used. The reason for choosing cysteine is that it is conserved
in proteins and the only amino acid that has a thiol group (-SH). The occurrence of cysteine in various species ranges from 0.5% to 2.26%
(Miseta and Csutora, 2000). Also, cysteine residues in homologous proteins are highly conserved according to the PAM 250 scoring matrix,
which is used to score aligned protein sequences to determine the similarity. Lysine is rather common; the frequency of occurrence of lysine
is 5.8% in the nonredundant OWL protein database (Trinquier and Sanejouand, 1998). Since maleimide dyes react with a thiol group and
NHS (N-hydroxysuccinimide) ester dyes are commonly used for fluorescent labeling of amine groups (-NH2) in proteins, thus, the thiol
group of cysteine is labeled with maleimide dyes and the amine group of lysine is conjugated with NHS ester days.

The labeled protein sequence has to pass through an instrument that can unfold it and scan it accurately, in order to read the labeled C and
K residues. ClpXP consists of two proteins, a ClpX and a peptidase called ClpP (Baker and Sauer, 2012), is chosen. ClpX unfolds the protein
substrate before ClpP degrades the substrate into small peptide fragments. A donor dye (Cy3) needs to be placed in a specific location in
ClpXP in order to react with labeled cysteine and lysine residues of a protein. We choose to label a cysteine in a ClpP subunit, because the
maleimide dyes react with a thiol group of cysteines, and cysteines occur less than the other amino acids (except for tryptophan (W), which
is not present in ClpP; see Fig. 8 (b) for the occurrence of 20 amino acids in a ClpP subunit). Since ClpP is symmetric as illustrated in Fig. 8
(a), the donor can be near the bottom of ClpP chamber or at the top. Here, we place the donor at the top disk of the ClpP.

Cy3 Cy5 Cy7 

A x 

B x x 

C x x 

D x x x 

a) 

b) 

c) 

  A                            B                             C                           D 

 B1        B2       B3 

Fig. 9: FRET signal between three dyes. a) Interaction map among three dyes (Lee et al., 2010). Only Cy3 is directly excited by the light
source G0; ki, decay rate of the ith dye in the absence of FRET interaction and kij , the rate of FRET from the ith dye to the jth dye. b) Four
different kind of occurrences among three dyes. In each situations, the excited dyes are marked with ‘x’s. c) The FRET signal without noise.
The time period is divided into 4 parts. In situation A, Cy3 is excited by the light source and no acceptors are within the FRET distances.
Intensities shown in part B and part C correspond to a Cy3-Cy5 pair and a Cy3-Cy7 pair respectively. Due to the interaction among the
dyes, all three dyes have some intensity value in the last part. We assume the distance between dyes are constant in situation C and D, but in
situation B, the distance between Cy3 and Cy5 is decreasing from B1 to B3.
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After placing the donor in a feasible place, we can measure the FRET signal between the donor (Cy3) and the acceptors (Cy5 and Cy7) to
distinguish cysteines and lysines. The sensitivity of FRET depends on the distance between donor and acceptor pairs, FRET is most sensitive
when the distance between two dyes is about 5.4 nm for a Cy3-Cy5 pair and 3.8 nm for a Cy3-Cy7 pair (Lee et al., 2010). Fig. 9 (a) shows
the interaction diagram among the three dyes. From this diagram, we can deduce four different situations based on the occurrence of three
dyes within the FRET working range and the ideal signal with respect to the four situations (see Fig. 9 (b) and (c)).

To acquire the fingerprint, we need to image the process using fluorescence microscopy. In order to measure individual proteins over an
extended time period and to discard the background noise at the same time, we immobilize ClpXP proteins on a quartz slide and illuminate
under total internal reflection fluorescence microscopy (TIRF). The ClpP is tagged with biotin conjugated with a neutravidin, the quartz
slide is also marked with biotin. Since neutravidin is a tetramer with a strong affinity for biotin, the ClpXP will stick on the slide and
be immobilized. The sequencing process will start when the proteins are introduced into the immobilized ClpXP. Image processing and
quantitation will finally result in a fingerprint sequence.

2 CLUSTERING ANALYSIS
2.1 Evolutionarily related proteins are more likely have similar fingerprints
To verify our assumption that two evolutionarily related proteins are more likely to have similar fingerprints, we checked several different
set of proteins which we know for sure that are evolutionarily related, each of the set consists sequences that have the same gene name or
similar protein names. The following Table 4 shows the number of sequences of each set and the average pairwise amino acid and fingerprints
similarities. It is clear that proteins with higher amino acid similarities also share a significantly higher fingerprint similarity. The average
fingerprint similarity between all pairs of proteins in the database is 46.3%, which is at least higher than or equal to the average fingerprint
similarity between pairs of non-related proteins, thus is the upper bound of the fingerprint similarity between not evolutionarily related
proteins. Since the upper bound is much lower comparing to the listed fingerprint similarities for related proteins, thus it is true that two
evolutionarily related proteins would have a high fingerprint similarity.

Table 4. Amino acids and fingerprints similarities of sets of proteins which share an evolutionary origin.

Gene/Protein name No. of sequences Amino acids similarity fingerprint similarity

GN: HLA-A 21 93.9% 88.9%
GN: HLA-DRB1 13 93.2% 88.6%

GN: HLA-B 35 92.8% 87.5%
PN: Ankyrin repeat domain-containing protein 20... 4 97.1% 94.9%

PN: Arf-GAP with GTPase, ANK repeat and PH domain-containing protein... 11 72.3% 82.4%
PN: 14-3-3 protein... 7 75.9% 81.1%

2.2 Choice of threshold parameters of clustering method
Here, we determined which SPI threshold is the optimal choice to reduce the redundancy of the fingerprints. The protein sequences are
clustered based on their amino acid sequences and analyzed on their fingerprints. Running on the whole database is too slow, so we tested on
a smaller database containing 5000 random sequences (hm5000).

Because although there are many individual exceptions, it is believed that when two proteins share 50% or higher sequence identity,
their backbones differ by less than 1 Å root-mean-square (RMS) deviation (Gerstein and Levitt, 1998). Thus the protein sequences share
at least 50% of similarities are considered as evolutionary-related proteins and works as the Tlow in our method. We compared the within
and between class fingerprints similarities, and also checked the number of clusters, number of sequences and uniqueness after clustering
to choice a better maximum SPI threshold Thigh. We can see from Table 5 that when Thigh decreases, the number of clusters drops as
well as the number of sequences. In the mean time, the after clustering uniquenesses are always bigger than before clustering and increase
while Thigh decreases. For the fingerprints, the within class similarity is always smaller than the corresponding maximum SPI threshold
Thigh. When Thigh drops, the within class similarity decreases and the between class similarity increases. Thus we choose Thigh is 90% by
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considering the influences of within class similarity, between class similarity as well as the after clustering uniqueness. Note that since all
different fingerprints are kept as representatives, the loss ratio of our method is always zero.

Table 5. The performance of the clustering method for different SPI thresholds. The between class similarities are analyzed on all clustered members, and
not only on representative sequence.

Tlow-Thigh Uniqueness before No. of clusters No. of sequences Within class CK similarity Between class CK similarity Uniqueness after

50% - 95% 4851 4919 92.5% 37.161% 91.3%
50% - 90% 89.1% 4804 4915 84.6% 37.158% 91.4%
50% - 85% 4772 4914 81.1% 37.155% 91.4%

2.3 Representatives of the four clustering methods
To known which representatives are chosen by the clustering method, we show a Venn diagram in Fig. 10 to illustrate the finding that the sets
of representatives obtained by different programs fed with the same input database and maximum SPI threshold have a considerable degree
of similarity in size and content. It is also clear that using our criteria on choosing the representatives will keep more sequences which should
not be considered as redundancy because they are distinct in terms of fingerprints.
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SM-CDHIT

BLASTClust

SMGN13 4

9 00
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4779
01
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88

24

Fig. 10: Venn diagram. The overlap of four different databases after clustering, each obtained with a different program, based on the same
input database (hm5000) and same maximum SPI threshold (90%).

2.4 Using a single pairwise sequence distance SD threshold instead of a linear SPI threshold model to control the
similarity

The amino acid length distribution of human proteome ranges from 21 to 34350 (Fig. 11) (a). The average length is 559.02 amino acids. As
we have shown previously, a very high similarity between two amino acid sequences results in a poor clustering, since it fails to put related
proteins together. On the contrary, a lower similarity might put non-related proteins in a cluster. Hence, it is impossible to set a single SD
bound works well for very short amino acid sequence and long ones at the same time because of the extremely wide range of the amino acid
sequence length. Thus, a single SD bound does not satisfactory for our purpose.

3 FILTRATION METHODS AND ANALYSIS
3.1 Filtration based on length infromation
Given query Q, reference Rx and error level α, Rx is a potential match when the absolute difference between the length is smaller than or
equal to k, where k is α× LQ.
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Fig. 11: The a) amino acid length and b) fingerprint distribution of human complete proteome.

An Adelson-Velskii and Landis’ tree (AVL) is a height-balanced binary search tree (Adelson-Velskii and Landis, 1962). Since the database
is large and searched frequently, to quickly locate data without having to search through the entire database we build an AVL tree structure on
the lengths of fingerprints in the database. The process consists of two steps: a sorting step and building step. In the sorting step, a quicksort
algorithm (Sedgewick, 1978) is used to order the entries in the database by their fingerprint lengths. In the building step, an AVL tree is
constructed on the fingerprint lengths, where the node represents fingerprint length and the positions of the first and last entries of that length
in the database are stored for each node. Afterwards, we can quickly locate potential matches by searching the smallest and largest potential
length in the AVL tree.

Building a tree structure on the sequence length is better than using a lookup table, since it saves more memory based on the observation
of the fingerprint length distribution in Fig. 11 (b). The fingerprint length ranges from 0 to 3456, but only 366 of these numbers are taken by
at least one sequences in the database. If we would use a lookup table, only 10.6% of them would be used to save the locations. Hence we
build a balanced search tree on the length which uses less spaces.

3.2 Filtration based on frequency distance
The idea of frequency distance is that if two sequences are similar, then the frequency, i.e. the number of occurrence of the alphabet symbols
in two sequences should also be similar (Kahveci and Singh, 2001).

Given two fingerprints Q and Rx over an alphabet Σ. The frequency vector f(x) is defined as f(x) = f(x1)...f(xi)...f(xσ), where
f(xj) is the count of the jth symbol of Σ in sequence x. The frequency distance, Dfd(Rx, Q), between referenceRx and queryQ is defined
as the minimum number differences betweenRx andQ. Let posDistance denotes the number of extra symbols forQ comparing toRx, and
negDistance the number of missing symbols. Since each possible operation (deletion, insertion, substitution and transposition) changes the
value of posDistance and negDistance by at most one, the larger one of the two values equals to Dfd(Rx, Q). Formally,

Dfd(R,Q) = max(posDistance, negDistance),

where posDistance =
∑

f(Qj)>f(R
j
x)

f(Qj)− f(Rjx)

and negDistance =
∑

f(Qj)<f(R
j
x)

f(Rjx)− f(Qj).

(7)

The frequency distance between two fingerprint sequences is a lower bound on their distance D(Rx, Q) (Kahveci and Singh, 2001). Thus,
if the frequency distance Dfd(Rx, Q) is larger than k, D(Rx, Q) > k, hence the reference sequence Rx can be filtered out. Otherwise, Rx
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becomes a potential match and is kept for verification. Note that for our fingerprint sequences, the posDistance equals to negDistance,
since the alphabet symbol set Σ is {C, K}.

3.3 Partial exact matching
The central idea of this partial exact matching approach is to search some substrings of a query sequence which appear exactly in a reference
(Wu and Manber, 1992). Suppose that we have a query Q and we want to find a reference sequence Rx in the database with at most k errors.
Then for reasonably small k, there must exist a substring inQ which exactly appears inRx. This approach therefore performs an exact string
matching first.

Different algorithms select different subsequences in the query to do the exact string matching. The original approach cuts the query
sequence into ρ pieces, where ρ is (k + 1). In this way, at least one of the pieces must appear exactly in a reference, since k errors cannot
alter (k + 1) pieces at the same time (Wu and Manber, 1992). Hence, the first step for this algorithm is to divide Q into (k + 1) non-
overlapping pieces q0, q1, ..., qk that have approximately equal length. Then, for each reference Rx, it checks whether any of the divided
pieces in Q appear in Rx exactly. If none of the pieces appear exactly, then the checking step ignores this reference Rx. Otherwise, Rx is
marked as a potential match.

Let k denotes the number of errors and LxR the length of the reference sequence Rx. This method needs to compare (ρ2 L
x
R

LQ
) pairs of

subsequences to determine whether there is a piece of Q appears exactly in Rx. Thus, it is time-consuming. In our implementation, we take
advantage of the binary-to-decimal hashing function described above, and choose different subsequences based on the query length and k
to quickly determine whether a reference is a potential match or not. Since the hashing method is slower for long fingerprints, instead of
dividing the query into (k + 1) pieces, we iteratively find ρ for the query sequence. Each iteration consists of examining whether the length
of each piece is smaller than a certain value and doubling ρ if at least one piece is longer. It repeats until all pieces are shorter than the value.
In practice, we set this value to 14, because the hashing function works less effectively if the length of the (sub)sequence is larger than 14.
Since we divide the query into ρ pieces, with ρ ≥ (k + 1), the number of pieces that must appear exactly in a reference is (ρ − k). If the
number of exactly matching pieces is larger than (ρ − k), then the reference is considered as a potential match. Otherwise, the reference is
discarded by the filtration method.

3.4 q-gram counting filtering
A q-gram (Ukkonen, 1992) in the alphabet set Σ is any string in Σq , where Σq is the set of all possible strings of length q over Σ. In our
case Σ is {C, K}. For q = 1, the sequence CCKKKCC breaks down into 4 Cs and 3 Ks and sequence CKCKK has 2 Cs and 3 Ks. The
q-gram counting approach uses the q-grams of two sequences for filtration, and it takes the order of CK into account. For example, the above
two sequences share the same number of Ks but the difference between the number of Cs in two sequences is 2. Thus, we must need at least
two operations to make the numbers of Cs and Ks equal, for example, by deleting two Cs in the first sequence.

Given two sequences, reference Rx and query Q, we define the distance between two sequences as the total number of differences of the
occurrences of q-grams as follows:

Dq(Rx, Q) =
∑
ν∈Σq

|G(Rx)[ν]−G(Q)[ν]|, (8)

where ν is a q-gram and G(Rx)[ν] and G(Q)[ν] denote the total number of times ν occurs in Rx and Q, respectively. The relation between
q-gram distance and the number of errors is given in (Ukkonen, 1992). Formally,

Dq(Rx, Q)

2q
≤ D(Rx, Q). (9)

It indicates that the q-gram distance divided by 2 times of q is a lower bound of the number of errors, hence can be used as a filter. When
Dq(Rx,Q)

2q
≥ k, the number of errors between Q and Rx is also larger than k, and therefore the reference sequence Rx can be filtered out.

On the contrary, if Dq(Rx,Q)

2q
≤ k, then it is possible that D(Rx, Q) ≤ k, and Rx is marked as a potential match.

In our implementation, we took advantage of the binary-to-decimal hashing function to efficiently count the occurrences of each q-gram.
The choice of q should be based on the filtration efficiency and the time needed to process it. In the error-free case, the performance of

various q is listed in Table 6. It is clear that when q increases, the filtration efficiency increases at first, and then decreases at some point. In
terms of speed, the running time decreases at first, then increases when q is larger than 5. Considering the influences of filtration efficiency
and time needed to perform this method, we choose q to be 5.

This filtration method sums the differences of all q-grams between two fingerprint sequences. When q = 1, this method counted the
absolute differences between occurrence of symbols which is different from frequency distance method, which is the maximum of these
differences.
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Table 6. Comparison of performances using different
q for q-gram counting filtration method. Note that
tests were performed on the human complete proteome
database.

q filtration efficiency η time t (ms)

1 0.242 2.33
2 0.598 2.07
3 0.866 1.88
4 0.937 1.98
5 0.958 2.02
6 0.963 2.55
7 0.958 2.55
8 0.948 2.91
9 0.935 3.56
10 0.924 4.59

3.5 The choice of q for q-grams partial exact matching
The choice of q should be based on the filtration efficiency and the time need to process it. In the error-free case, the performance of various
q is listed in Table 7. When q is 6, we will be able to obtain the highest filtration efficiency without compromising to the speed.

Table 7. Comparison of performances of different q for
q-gram partial exact matching filtration method. Note
that it is run on the human complete proteome database.

q filtration efficiency η time t (ms)

1 0.237 1.74
2 0.592 1.34
3 0.862 1.33
4 0.937 1.60
5 0.958 1.80
6 0.963 2.15
7 0.958 2.18
8 0.948 2.68

3.6 Examples of filtration methods
To help better understand those different filtration methods, here we show examples of applying different filtration methods: length filtering,
frequency distance, q-gram counting, partial exact matching, and q-gram partial exact matching. Let the query Q CCKKK be compared to
a reference Rx CKKKKK with an error level of 20%. k equals to 1, since k = α× LQ.

1. Using the length filtering, we check whether the length difference |LxR − LQ| ≤ k. If the length difference satisfies the criterion, Rx is
a potential match. For this example, LxR is 6 and LQ is 5, thus Rx will not be discarded by the length filtering.

2. The frequency distance Dfd(Rx, Q) is 2, which is the maximum of posDistance and negDistance, where posDistance = 1 and
negDistance = 2. Rx will be filtered because Dfd(Rx, Q) > k.

3. By using a 2-gram counting filtration method, the reference Rx will be kept, since Dq(Rx, Q) = 3, hence Dq(Rx,Q)

2q
= 3

4
, smaller than

k.
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4. Partial exact matching method first divides the query fingerprints into 2 pieces, thus query pieces qi = CC, q2 = KKK. Since
q2 = KKK appears exactly in Rx, Rx will not be discarded.

5. Using a 2-gram partial exact matching method, the query fingerprint is divided into 2 pieces, q1 = CC, q2 = KKK, the corresponding
pieces in reference are r1

x = CKK and r2
x = KKKKK. Since Dqpm(r2

x, q
2) = 0, meaning q2 appears exactly in r2

x, Rx will not be
discarded.

For this particular example, only frequency distance can eliminate the uninteresting referenceRx. Normally, q-gram partial exact matching
works better, follows by q-gram counting, partial exact matching, frequency distance and length filtering (shown in Table 2).

4 VERIFICATION ANALYSIS
4.1 The set of operation possibilities
Based on the analysis of the placement of donor dye, we concluded that four different errors can occur in the measurements: substitution,
insertion, deletion, and transposition (swapping).

1. Insertions and Deletions are operations that change the length of the fingerprint. Intuitively, deletion removes a symbol and insertion adds
a symbol. Deletion in one sequence is equivalent to insertion in the other. In our case, all operations are done in query, since references
are verified by UniProt (Magrane and Consortium, 2011). For notational convenience, we denote inserted symbols with a special gap
character “-”, understanding that “-” corresponds to either a deletion or an insertion of a specific alphabet symbol. By our analysis,
because of the low labelling efficiency and the weaker of the sequencing signal (leading to dark bases which are indistinguishable from
the sequencing signal), a large number of amino acids would not be read out during the sequencing process, leading to deletion errors
in query sequence. Moreover, since dyes are specifically conjugated to a certain group of an amino acid, few other amino acids will be
incorrectly labeled, meaning few insertion errors in query sequence.

2. Substitution occurs when a symbol is replaced by another symbol at the same position in the sequence (mismatching). It is also known
as the mutation or replacement operator. Since it is not likely a C or K wrongfully labeled with the other dye, mismatching errors are
unlikely to occur in the measurements.

3. Transposition is an operation that swaps the position of two sequential symbols in a sequence. We restrict ourselves to only transposing
sequential letters and allowing letters to be transposed only once. When the two labeled residues are close enough, it may be difficult to
distinguish the order of these residues from the sequencing signal. Thus, it is possible to have transposition errors (see Fig. 12 for how
often it might occur for various fingerprint length).
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Fig. 12: The frequency of two read-outs that are adjacent to each other for various fingerprint length.
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4.2 Costs for the four operations
As we discussed above, four types of errors might occur in our measurements. Thus, in the dynamic programing algorithm, these four
operations are allowed. Note that a match of symbols between two sequences can be seen as a substitution operation, in which a symbol
is “replaced” by itself. The number of matching positions between two sequences is of importance to determine whether a fingerprint is a
match or not. Let c denotes the cost of a possible operations, each cost is described in detail below and the penalties set for each operation is
shown in Table 8.

1. Deletion (adding a gap in query): It costs cdel to add a gap character after Q[i] to match Rx[j]. The rest of the alignment score comes
from aligning Q[1...i] and Rx[1...j − 1]. Therefore the maximum score ending with a deletion is Di,j−1 + cdel, where cdel is the cost
of a deletion in the query sequence.

2. Insertion (adding a gap in reference): This is equivalent to adding a gap character after Rx[j] to match Q[i], which costs cins. The
rest of the alignment score comes from aligning Q[1...i − 1] and Rx[1...j]. Hence the maximum score ending with an insertion is
Di−1,j + cins.

3. Substitution: It costs csub to substituteQ[i] forRx[j]. The rest of the alignment cost originates from aligningQ[1...i−1] andRx[1...j−
1]. Therefore the maximum score ending with a substitution is Di−1,j−1 + csub. When Q[i] = Rx[j] (a match), csub is positive,
otherwise it is negative.

4. Transposition: We swap Q[i − 1] with Q[i] and then substitute them for Rx[j − 1] and Rx[j] respectively. These three operations
cost cswap. The rest of the alignment score comes from aligning Q[1...i − 2] and Rx[1...j − 2], whose maximum value is Di−2,j−2.
Therefore, the maximum score ending with a swap is Di−2,j−2 + ctrans.

Table 8. The penalties used in verification phase.

‘ C ’ ‘ K ’ ‘ X ’ ‘ os ’ ‘ ls ’
‘ C ’ 50

‘ K ’ −50/− 45 50
‘ X ’ −50/− 45 −50/− 45 50

‘ os ’ −8/− 30 −8/− 30 −8/− 30 20
‘ ls ’ −1/− 20 −1/− 20 −1/− 20 × 2

Let ‘os’ represent an occurrence of spacings, and ‘ls’ represent a spacing. ‘X’ represent a third
amino acid. a/b in some cells, where a is the substitution penalty and b is the transposition penalty.
The costs for deletion and insertion are cdel = −2 and cins = −5, respectively.

4.3 Dynamic programming example
Comparing two sequences based on the CK fingerprints alone and those with spacing information. Table 9 shows the inputs, and Fig. 13
shows the resulting pairwise alignments. It shows that if only fingerprints are used, the reference sequence is recognized as a true match.
However, if spacing information is added, the reference sequence is discarded since the distance between them does not satisfy the criteria
(α×L

′
Q) although α×LQ is satisfied, where L

′
Q is the length of fingerprint with spacing information and LQ is the length of CK fingerprint

alone.

Table 9. The inputs of a example detection. Error level α is 30%

fingerprint fingerprint with occurrence of spacing fingerprint with length of spacing
Query: KCCKK KoCoCoKK KoooooooCoooooCKK

Reference: KCCKKCK KoCoCoKKoCoKo KooooooCoooooCKKoooCooooK
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KCCKKCK   7 
|||||   
|||||   
KCCKK--   7 
 
   Matches: 5, Mismatches: 0, Transpositions: 0, Gaps in Query: 2, Gaps in Reference: 0, Total error: 2 
=========================================================================== 
 
 
KoCoCoKKoCoKo   13 
||||||||      
||||||||      
KoCoCoKK-----   13 
 
   Matches: 8, Mismatches: 0, Transpositions: 0, Gaps in Query: 5, Gaps in Reference: 0, Total error: 5, Total CK error: 2 
=========================================================================== 
 
 
K-ooooooCoooooCKKoooCooooK   26 
| |||||||||||||||          
| |||||||||||||||          
KoooooooCoooooCKK---------   26 
 
   Matches: 16, Mismatches: 0, Transpositions: 0, Gaps in Query: 9, Gaps in Reference: 1, Total error: 10, Total CK error: 2 
=========================================================================== 
 
 

Fig. 13: An example result of the verification.

5 RESULTS ANALYSIS
5.1 Fingerprint duplication
A non-redundant fingerprint database is one where each single entry isn’t repeated. The uniqueness is one and the loss ratio is zero for
a non-redundant database. This database is constructed to calculate the number of duplicates. For each entry in the non-redundant database,
the number of exact matching fingerprints in the original database is extracted. Then the number of duplicates for a particular entry is defined
as the number of exact matching fingerprints minus one.
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Fig. 14: Number of duplicates of a) various fingerprint lengths and b) fingerprint length 22.

From Fig. 14 (a), we can see that duplication not only occurs for short fingerprints, but even when the fingerprint length is relatively long.
For example, we examined for fingerprints of length 22 (Fig. 14 (b)). It is clear that if a fingerprint consists of all most all Ks or Cs, it is more
likely to have duplicate sequences.
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5.2 Error-free query sequences
We consider the queries are error-free in this analysis, thus the true matches are retrieve every time, meaning the detection sensitivity is
optimal. Detection precision for various fingerprint lengths are shown in Fig. 15 (a)-(c). It shows that when fingerprint length increases,
the detection precision increases; and the detection precision drops when the error level increases for each fingerprint length. When more
spacing information is included, the higher the detection precision for all fingerprint length. Although only a slight improvement can be seen
when occurrence of spacing is included comparing to use the fingerprint alone. When the length of spacing is included, the improvement is
significant.

As illustrated in Fig. 15 (d), the unique match percentage decreases while the error level increases. We can find a unique match for half
of the queries when the error level is less than 10%. When the error level goes up to 30%, we will not be able to find unique matches for
most of the queries by using the fingerprint alone. At each error level, the performance increases when we include more spacing information.
Even by using fingerprint whith the occurrence of spacing, the unique match percentage increases while the error level is smaller than 30%.
If the length of spacing is included as well, the unique match percentage increases drastically; for the error-free case, it goes up to 99.6%, an
improvement at about 10% compared to use fingerprint alone.
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(a) Fingerprint alone.
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(b) Fingerprint with occurrence of spacing.
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(c) Fingerprint with length of spacing.
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Fig. 15: Detection precision as a function of the fingerprint length and the unique match percentage for various error levels.

5.3 Performance on simulated data
The detection precision on the simulated data is already shown earlier. Here, we examine the detection sensitivity when spacing information
is included. The average of the detection sensitivities for three different measurements are shown in Table 10. When error level increases, the
detection sensitivity decreases. Given an error level, the average detection sensitivity drops when more spacing information is included. The
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reasons of why the detection sensitivity drops are: 1) the dynamic programing algorithm favors deletions and insertions over substitutions and
transpositions, where the latter two are considered as two deletions and/or insertions. Thus, the number of errors between them are bigger,
which leads to misidentification. Another reason could be 2) the length of the true match falls outside of the search range (1 − α) × LQ ≤
l ≤ (1 + α)× LQ. It might happen when too many deletions or insertions are simulated.

Table 10. The average detection sensitivities of different error levels on simulated data.

Error level α Fingerprint alone Fingerprint with occurrence of spacing Fingerprint with length of spacing

0% 1.00 1.00 1.00
5% 1.00 0.95 0.91

10% 0.97 0.92 0.90
15% 0.96 0.91 0.87
20% 0.93 0.89 0.84
30% 0.90 0.86 0.81
40% 0.87 0.85 0.80

5.4 A third amino acid
Even though we can improve the performance by using spacing information, still some of the sequences are hard to uniquely identify. If
we can label a third type of amino acid, we may be able to improve the detection precision especially for very short fingerprints, such as of
length one and zero. Here, we analyse how much detection precision improves when include a third amino acid.

Fig. 16 presents the unique match percentage changes when a third amino acid is measured for the error-free case. All of them are
significantly higher than using only fingerprints and when occurrence of spacing is included. Compared to using fingerprint with length of
spacing, several third amino acids have a higher unique match percentage. These are among the amino acids that occur more frequently in the
database. We can acquire the highest unique match percentage (99.9%) for the error-free case among the possible choices of a third amino
acid, if the third labeled amino acid is serine (S). And the lowest unique match percentage we can get is 97.3% when tryptophan (W) is used
as the third amino acid.
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Fig. 16: Unique match percentages for possible third amino acids in error-free case. The red, green and blue horizontal lines correspond to
the unique match percentage in error-free case using fingerprint with length of spacing, fingerprint with occurrence of spacing and fingerprint
alone.
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5.5 Annotation analysis for short fingerprints L ≤ 12

We found that the detection precision is worse when the fingerprints are short. Thus, we more detailed examined the distribution of detection
precision for various fingerprint lengths. From Fig. 17, it is clear that when the fingerprints have lengths up to 8, most of the detection
precisions are smaller than one. For fingerprints with length range from 9 to 12, the total number of cases where detection precisions are
smaller than one is larger than or equal to the number of cases where detection precisions equal to one. When fingerprint length is larger than
12, most of the cases have detection precisions equal to one, and few of them with detection precisions smaller than one. Thus, we considered
fingerprints with length shorter than or equal to 12 as short fingerprints.
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Fig. 17: The detection precision distribution for fingerprint length range from 1 to 16.

Duplicated sequences are not distinguishable by our algorithm. This may not be a problem in application when searching for proteins share
the same function. We therefore asked whether such proteins share some other properties, such as protein domain and/or gene ontology. We
performed an annotation analysis using DAVID (Huang et al., 2009) on the fingerprints of length shorter than or equal to 12, and retrieved a
list of annotations that are enriched in these sequences. We set the searching criteria to occur more than 3 times and have an EASE score ≤
0.05 in two different annotation categories, gene ontology and protein domain. A term with an EASE score ≤ 0.05 usually is considered as
strongly enriched (Huang et al., 2009). Some shorter sequences, even though they have distinct amino acid sequences, share the same gene
ontology annotations and/or protein domains.

Here we only shown several different annotations enriched in all lengths ≤ 12 and plotted the fingerprint length distribution of proteins
having the corresponding annotation in Fig. 18. For each annotation, the fingerprint length distribution of proteins with the given annotation
is overlaid on the fingerprint length distribution of the human proteome database. We specified the bin size to 12, so the first bin contains
a length range between 1 to 12 and so on. Annotations, such as Ribonucleoprotein LSM domain and Ribonucleoprotein LSM domain,
eukaryotic/archaea-type are restricted to short fingerprint lengths, although the other annotations are distributed over a larger range of
fingerprint length. For example, the proteins with Calcium-binding EF-hand or organelle envelope annotations distributed over all human
complete proteome lengths. Thus, although we retrieved these annotations using DAVID, they are not of interest for us. Most of these
annotations show a higher percentage of proteins length ranges from 1 to 12 (the first two turquoise bin) comparing to the whole human
proteome database (the first two grey bin).
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Fig. 18: The length distribution of gene annotations and fingerprints.

5.6 Choice of 2 amino acid combinations
To explore how would other 2 amino acid combinations influence the detection performance, here we analyse the uniqueness of all the
possible choice of 2 amino acids combinations.

As illustrated in Fig. 19 (a), the uniqueness varies for different combinations. The higher the uniqueness the better choice of this
combination. When the two amino acids occur more often, the uniqueness is relatively high. The combination of the two most frequent
amino acids (see Fig. 19 (b)), leucine (L) and serine (S), shows the highest percentage of unique fingerprints (98.7%), and the combination
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(a) Duplication ratio.
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Fig. 19: a) Uniqueness of all 2 amino acid combinations and b) amino acid composition for human complete proteome database.

of methionine (M) and tryptophan (W) has the lowest uniqueness (64.6%). The current choice of labeling, the combination of C and K,
shows 89.8% of unique fingerprints, which is larger than the average percentage (87.3%). Stevens et al. presented the feasibility of labeling
phenylalanine (F) and valine (V) to identify mRNAs translations (Stevens et al., 2012), where the uniqueness of the combination of F and V
is 94.8%, better than the choice of C and K.
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