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Summary

The Black Volta River, flowing through West Africa, plays a vital role in the region’s water supply, agricul-
ture, and transportation. This study focuses on the Lawra District in northwest Ghana, which experiences
flash floods. These floods create tidal waves in the river that impact the Bui Dam, which is crucial for
electricity generation in the region. The main research question is: ”How long does it take for a tidal
wave seen at Lawra to reach the Bui dam?” The question is further broken down into sub-questions
regarding the river’s depth and wave celerity. The main goal is developing a simplified model that can
accurately describe the celerity of the wave and as a result predicting the time it takes for the wave to
reach the dam. This information can then be used by the dam operators to take measures maximizing
electricity generation and minimizing potential damage from flooding.

The study segments the Black Volta River into 65 sections, each 3 to 10 kilometers long. Slopes are
determined using satellite images and digital elevation models. Depth calculations use two approaches:
Manning’s equation, an empirical formula relating flow velocity to roughness, slope, and hydraulic radius;
and the Leopold-Maddock method, using an exponential relationship between discharge and hydraulic
geometry, suitable for data-scarce regions.

Wave celerity is described using two models: the shallow water wave model, calculating wave speed
based on the square root of water depth, and the kinematic wave model, incorporating frictional forces
for realistic wave propagation. Results show four combinations: Manning’s equation with shallow water
wave model, Manning’s equation with kinematic wave model, Leopold-Maddock method with shallow
water wave model, and Leopold-Maddock method with kinematic wave model. The shallow water wave
model with Manning’s equation yields high celerity values, while the kinematic wave model offers more
moderate and realistic speeds. The Leopold-Maddock method with shallow water wave model indicates
depth increases with discharge, but empirical data limitations may affect accuracy. The kinematic wave
model, incorporating frictional effects, provides reliable flood wave behavior predictions.

It can be concluded that the Kinematic Wave model is generally recommended for the Black Volta River
due to its ability to incorporate frictional resistance and provide more accurate flood wave predictions.
Manning’s equation is preferred for detailed hydraulic analysis where sufficient data on channel rough-
ness and slope is available, while the Leopold-Maddock method is valuable for broader regional studies
and initial assessments in data-scarce areas. Future studies should address the assumptions made
in this research, such as constant discharge and Manning’s coefficient, by incorporating more detailed
field surveys and remote sensing data. Integrating hydrological models to simulate seasonal and event-
based discharge fluctuations and using high-resolution topographic and bathymetric data will improve
the precision of flood wave predictions. Additionally, considering temporary storage solutions for flood-
water can reduce downstream flooding and enhance flood management strategies.

By combining both methods and models, researchers can provide detailed and accurate predictions,
ensuring effective flood management and optimal electricity generation at the Bui Dam. This study
lays the groundwork for future research, emphasizing the need for comprehensive data collection and
advanced modeling techniques to address the complex challenges of flood wave prediction in river
systems.
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1
Introduction

1.1. Problem analysis

The Black Volta is a significant river in West Africa. It originates in the western part of Burkina Faso,
flows southwest through Ghana, forming part of the border between Burkina Faso and Ghana. Even-
tually, the river continues southward, also forming part of the border between Ivory Coast and Ghana
before it empties into Lake Volta in Ghana [3]. The Black Volta is one of the major rivers in the region
and plays a crucial role in water supply, agriculture, and transportation [14].

The focus of this research centers on the Lawra District, situated in the northwest region of Ghana.
Characterized by sporadic heavy rainfall, the area has experienced flash floods. The excess water
swiftly drains into the Black Volta River, which culminates in the formation of a tidal wave within the river.
The tidal wave eventually reaches the Bui dam. The dam generates electricity and is crucial for the
region. The influx of water from the tidal wave can lead to dangerously high water levels, prompting the
dam operators to release water in controlled amounts to prevent overflow [10].

Figure 1.1: Black Volta region [9]

However, this controlled release of water results
in a loss of potential power generation, leading to
financial losses [10]. Balancing the need for flood
control and electricity generation is a complex is-
sue requiring careful management and possibly
additional infrastructure or strategies to mitigate
the financial losses while ensuring the safety of
the dam and surrounding areas.

In the future, it would be beneficial for the dam op-
erators to have more information about how the
tidal waves behave in the Black Volta. This would
enable better anticipation of suchwaves andmore
informed decisions about how much water to re-
lease through the dam. As a result, maximum
electricity generation could still be achieved.

1.2. Research question

This report focuses on determining the velocity of
a tidal wave that occurs in the black volta river
during a flash flood. The velocity is examined
to determine the time it takes for the flood wave
to reach the Bui Dam from the village of Lawra
(North West Ghana). The main goal is to create a
simplified model that can describe the celerity of
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1.3. Approach 2

the wave. The celerity can then be used to determine how long it takes for the wave to reach the dam.
This is useful information for the operators of the dam because action can still be taken to ensure that as
much electricity as possible is generated while minimizing damage to surrounding villages. Concluding,
the main research question of this research is:

“how long does it take for a tidal wave seen at Lawra to reach the Bui dam”

This main research question can be answered by first answering the following sub-questions:

”what is the depth of different parts of the black Volta river?”

”what is the celerity of a tidal wave in the black Volta river?”

1.3. Approach

This study focuses on determining how long it takes for a tidal wave seen at Lawra to reach the Bui dam.
To determine this, the problem will be solved in several steps and the river will be divided into different
segments. This is done to simplify the problem. Additionally, the steps can initially be carried out for one
segment. Once this is done, the flood wave for this segment will be described, and all the steps will be
clear, hence the other segments can be easily described as well. After determining the various variables
for all segments and thus knowing the final celerity of the flood wave per segment, the segments can be
lined up to provide a simplified version of a flood wave from Lawra to the Bui Dam.

During the first step the geometry of the black Volta river has to be determined. The width of the river
can be determined using satellite images. Within each segment, a number of measurements are taken,
from which the average width is determined. Then, the depth has to be determined. For this, a method
must be found that can estimate the depth with a single cross-section of the river. This will be done
by using two different methods. First the Manning’s equation will be used and after that the Leopold’s
method. Once the depth is found by these methods, the celerity of a tidal wave can be calculated using
the flow in the black Volta river. The celerity is described using again two different simplified formula to
give a good indication of the velocity of a tidal wave. This can then be used to determine the time before
the tidal wave reaches the dam.

1.4. Structure

In Chapter 2 ”Methodology” the steps to eventually answer the research questions are presented and
described. All the steps and the formula used are carefully explained. This is done by first explaining
why the river is segmented, then the method of how the slope of the river is found is given and at last the
two different ways to find the depth and the two different formula’s to calculate the celerity are presented.

Moving on to Chapter 3 ”Results and Discussion” it presents the newly established celerity of the flood
wave and the time it takes to reach the Bui dam. Furthermore, this chapter discusses the findings and the
estimations that had to be made to make the calculations. The weight of each variable will be assessed
to ultimately make recommendations on which one should be prioritized for an initial measurement.

Finally, Chapter 4 ”Conclusion and recommendations” concludes the study by summarizing the findings
and answering the research questions. At last, recommendations are made to improve the approxima-
tions and suggestions for future studies are given.



2
Methodology

2.1. Segmenting the Black Volta

To accurately map the Black Volta River, it has been divided into segments. There are a total of 65
segments, with 48 segments being around 3 kilometers long and 17 segments around 10 kilometers long.
All segment lengths combined give the length of the river from Lawra to the Bui Dam as approximately
305 kilometers. Approximately 30 measurements of the river’s width have been taken per segment.

Figure 2.1: Elevation Map with Black
Volta and measurement locations

This was done using satellite images retrieved from Google Maps and
the measurement tool provided by Google Maps. To use these widths
for further calculations, the average width per segment was then de-
termined. This was done by dividing the total sum of widths by the
number of measurements. The advantage of dividing the river into dif-
ferent segments is that it allows the research problem to be solved in
smaller steps. Initially, the steps to find the ultimate celerity will be
carried out through one segment. These steps are as follows:

• finding the slope
• finding the average depth
• Determining a method to describe the celerity

Once the process for determining the celerity for one segment is
mapped out, this knowledge can be used to calculate the variables for
the other segments. Eventually, an initial description of a flood wave
passing through the Black Volta can be made by piecing the segments
together. In Figure 2.1 next to this text, the Black Volta River is shown
on a digital elevation model (DEM). The begin and end coordinates of
the various segments are also visible, indicated by red points.

2.2. Finding the slope

To determine the river’s gradient, a digital elevation model (DEM) has
to be utilized. A DEM is a representation of the bare ground (bare
earth) topographic surface of the Earth excluding trees, buildings, and
any other surface objects [18]. The DEMs used are obtained from
USGS.gov, an official website of the US government. With the assis-
tance of QGIS, data of the Black Volta can be retrieved and useful
maps can be generated. To illustrate the route of the Black Volta River
(shown as the blue line in Figure 2.1), data of all the rivers in Ghana
were downloaded from the World Bank database [19].

3



2.3. finding the average depth 4

Figure 2.2: Elevation
Map of Black Volta area

During the process of segmenting the river and measuring the width per segment,
the begin and end coordinates of each segment where stored in an excel file.
By uploading the file in QGIS, the elevation per coordinate can be established.
Subsequently, the slope of each segment can be calculated by subtracting the
elevation of the endpoint from that of the starting point and dividing this by the
length of the segment. Knowing the slope is important because it will ultimately
be needed to determine the average depth of the various segments. This will be
done, among other things, using the Manning equation.

The segment that is used to make the first calculations with is the most northern
segment. In table 2.1 the elevation of the begin and end coordinates can be
seen. A similar table is created from QGIS containing all the coordinates and
their corresponding elevations. The slope is then calculated as described above:

235− 234

6140
= 1.629× 10−4

The length of this first segment is 6.14 kilometers, as used in the calculation
above. Eventually this calculation will be made for all segments. For now, all the
further calculations will first be made with this most Northern segment.

Longitude Latitude Elevation
-2,93036664 10,60066509 234
-2,93412676 10,64818318 235
Table 2.1: Elevation of the most northern segment

2.3. finding the average depth

The research will continue as explained by first making an estimation of the depth,
this will be done in two different ways. The first method with help of the Manning’s equation and the
Continuity equation and the second with the Leopold-Maddock theory. Then the celerity will be described
with the shallow water wave model and the kinematic wave model for both.

2.3.1. Finding the average depth with Manning's equation

The continuity equation links the flow (Q) with the width (w), the average depth (h) and the velocity (v)
[6]. This equation is fundamental in hydraulic engineering as it represents the conservation of mass
principle, ensuring that the rate of flow into a section of the river equals the rate of flow out:

Q = w ∗ h ∗ v

The Manning equation relates the velocity of the water to the hydraulic radius (R), the slope and the
Gauckler–Manning coefficient (n) and is widely used in river hydraulics [1]. With its empirical basis and
applicability to natural channels, the Manning equation has been extensively validated and applied in
various hydrological studies [5]:

v =
1

n
∗R 2

3 ∗ S 1
2

The Gauckler–Manning coefficient can differ significantly per river. For now the value that has been
determined for the Black Volta River by the MDP study [7] will be used for the equation and is 0.045.
In the previous section the method of how the slopes where determined is explained. The hydraulic
radius will be determined by assuming the river is a rectangular channel, for a rectangular channel the
hydraulic radius is almost the same as the water depth [2]:

R ≈ h

To calculate the depth with the known variables the equations have to be rewritten. First the Manning
Equation is used to express the velocity in terms of the water depth. Next the velocity of the continuity
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equation will be replaced by the expression found in the manning equation. Finally, the equation will be
reformulated to solve for the depth. This gives the following equation:

h =
Q ∗ n

w ∗ S1/2

3/5

So for the first segment, the average depth will become:

h =
840 ∗ 0.045

57.875 ∗ 1.12 ∗ 10−41/2

3/5

= 10.6

In the result and discussion the impact of different Manning’s coefficients and discharges will be dis-
cussed. This because the Manning’s coefficient can very between 0.02 and 0.1. The coefficient varies
depending on several factors, for example the channel roughness, channel geometry, flow conditions,
vegetation and sediment transport [11]. Furthermore, the discharge can also vary and the effect will also
be evaluated.

2.3.2. Finding the average depth with Leopold and Maddock

Finding the depth is a very important step to calculate the celerity. Without the depth the average sur-
face of a cross-section can’t be determined. Another method to estimate the depth is by assuming an
exponential relationship between the discharge of a river and their hydraulic geometry. This relation-
ship is described in the Leopold and Maddock method [12]. In the thesis of Le Poole [15] the Leopold
equation for data scarce areas is completely explained. This highlights that the Leopold equation is a
suitable method to use for areas with limited data. The area under investigation in this study is one such
data-scarce area. There is only one cross-section of the river available, obtained from another study’s
[7] bathymetry. The location of the bathymetry is at ’Chache’ and the bathymetry is depicted below.

Figure 2.3: Bathymetry of the main channel and floodplain of the Black Volta in Chache [7]

From this Bathymetry the depth of the river at Chache can be determined. The width of the river at the
time the width measurements for this study where made at Chache is 150 meters. By evaluating the
Bathemetry the depth is determined to be 12.25 meters.

Now a method to determine the depth at other segments has to be found. Here fore the Leopold and
Maddock hypotheses is used. They derived the following power law relationships with six different
parameters to define the hydraulic geometry of rivers:

w = a ∗Qb

d = c ∗Qf

v = k ∗Qm

These six parameters have to fit the following two constrains:
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b+ f +m = 1± 0.1

a ∗ c ∗ k = 1± 0.1

The parameters can be obtained by using the data found at Chache. Once the parameters are found
the depth of the other segments can be determined by using the average width of each segment. These
parameters can be found by taking atypical set used in hydraulic geometry for the empirical exponents,
which include:

• Width exponent (b): 0.5
• Depth exponent (f): 0.4
• Velocity exponent (m): 0.1

These exponents have been validated through numerous studies and are considered standard for many
river systems [16] [4].

Using the known width (w) and depth (h), the coefficients where calculated first by rewriting the equations
above:

a =
w

Qb

c =
h

Qf

Substituting the given data and exponents:

a =
150

8400.5
≈ 5.17

c =
12.25

8400.4
≈ 1.07

With the coefficients a and c calculated, the depths for other river segments can be determined using
their respective widths. The relationship used for calculating depth is derived from the Leopold-Maddock
power-law equations:

di = c ∗ wi

a

f/b

Here, wi represents the width of the segment and this formula allows the predictions of the depths of
each segment based on the width and the previously calculated coefficients.

2.4. Describing the celerity with the Shallow Water Wave model

Now that the depth for each segment can be calculated using the continuity and Manning equation and
the Leopold-Maddock theory, a model will be described to calculate the celerity of the flood wave. This
is with the shallow water wave equation. The equation is one of the fundamental concepts applied in
hydraulic engineering, which formulates the movement of shallow water waves across open channels
or rivers [13]:

c =
√
g ∗ h

This relationship implies that the speed of a wave is directly proportional to the square root of the water
depth. As the depth increases, the wave speed increases, and vice versa. This equation is derived
from the linear theory of shallow water waves, which assumes that the wave height is small compared
to the depth of the water and that the flow is primarily horizontal [8]. The shallow water wave formula
can be derived from the fundamental principles of fluid mechanics. The derivation typically begins with
the Navier-Stokes equations, which describe the motion of fluid substances. By making the assumption
of incompressible and inviscid flow and applying the continuity equation and momentum conservation,
the linearized shallow water wave equation can be obtained.
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2.5. Describing the celerity with the kinematic Wave model

An other model to describe the celerity is with the use of the kinematic wave model. The model is
particularly significant for the fact that it has the ability to simplify complex fluid dynamics into more
manageable calculations. The celerity is now described as:

c =
dQ

dA

Where Q denotes the discharge and A represents the cross-section area of the flow. For the first cal-
culations the discharge will remain the same and the cross-sectional area is calculated by multiplying
the width with the depth. The model operates under several assumptions. It presumes that the flow is
primarily influenced by friction and gravitational forces and the effects of inertia and pressure gradients
are neglected [17].



3
Results and discussion

In this chapter, the results of the findings from Chapter 2 will be presented. All the data collected and
the calculations made have been compiled into a database. Using Python, graphs have been generated
to illustrate the various findings. First, the results found with the Manning’s equation will be displayed,
followed by an analysis of the effects of using different values for the parameters and variables. The
travel times are also calculated and because the goal of the study is to give an indication on when a
flood wave in the Black Volta will reach the Bui dam the ’worst-case scenario’ time for each method will
be presented as this will show how much time the dam operators at least have to take measure. After
all the results are presented the different results for the combinations of the depth and celerity methods
are discussed.

3.1. Results Manning's equation
First the results found with the Manning’s equation will be shown and thereafter the influence of different
values for the discharge and Manning’s coefficient will be given.

3.1.1. Results shallow water wave model

For the shallow water wave model the values from the MDP [7] have been taken first. All the celerity’s
for the different segments have been calculated and (as explained) put after each other. This gives a
graph showing the celerity for every given location from the Bui dam to Lawra. So left side is the Bui
dam and right side is Lawra. In figure 3.1.b a graph with the linear regression can be seen. One can
see that the celerity decreases from Lawra to the Bui dam. The reason for this is because the width
gradually increases from Lawra to the dam, which gives a smaller depth and a smaller depth results in
a lower celerity.

(a) Celerity over the length of the Black Volta (b) Celerity Over the Length of the River with Regression Line

Figure 3.1: Results for the black Volta river with shallow water wave model and Manning’s equation

Because for each segment the celerity is found, the total time needed for the flood wave to reach the

8



3.1. Results Manning's equation 9

dam can be approximated. this is done by making a summation of the division of the length of each
segment with the celerity for each segment. For the first parameters used this is a total of 9.82 hours,
or 9 hours and 49 minutes.

The width and the slope measurements where fairly accurately made. However, in reality the Manning’s
coefficient and the discharge can vary quite a bit. Up until now an assumption of these values were
used but in this section the effect of different values of these variables will be discussed, starting with
the Manning’s coefficient. In the previous chapter it was concluded that the coefficient can vary between
0.02 and 0.1. For comparison the linear regression’s of a couple of different values for the coefficient
have been plotted. In the figure below it can be seen that a higher Manning’s coefficient results in a
higher celerity.

Figure 3.2: Linear Regression of Celerity vs Length for Different Manning’s Coefficients

The different celerity’s of the different Manning’s coefficients also give different travel times for the flood
wave. This has been put in the table below:

Manning’s coefficient (n) Total travel time (hours)
0.020 12.53
0.045 9.82
0.065 8.80
0.085 8.12
0.100 7.73

Table 3.1: different travel times for the different values of the Manning coefficient

For these calculations the discharge was assumed to be constant. In chapter 2 a value of 840m3/s was
used, however the discharge in the black Volta river has a large variation and this has to be taken into
account. The discharge can actually vary between 500 to 1500m3/s. In the graph below the relationship
between the discharge (flow rate, Q) and the total travel time for the river segments is illustrated, while
considering different values of Manning’s coefficient (n). There are two trends which can be concluded
from the graph. The first one being that for all values of n, the travel time decreases as the discharge
increases. This is because higher discharge typically results in higher water velocities, reducing the
travel time for water to flow through the river segments. The second trend is that higher values of the
Manning’s coefficient result in longer travel times for the same discharge. This is because higher n values
indicate rougher channels, which slow down the flow of water. In typical hydraulic analysis, a higher
Manning’s n (rougher channel) would decrease the flow velocity due to increased resistance. However,
the derived formula shows that an increase in n leads to an increase in celerity. This unusual result
stems from the specific derivation and assumptions involved in the formula, particularly the relationship
between discharge, depth, and roughness.

It is an useful figure because it shows a lot of different scenarios for the variables which are not measured
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that well. A worst case scenario can be found. The worst-case scenario, which maximizes travel time,
occurs under conditions of high discharge and highManning’s coefficient. the combination of a discharge
of 1500m3/s and aManning’s coefficient of 0.1 results in the shortest travel time, reaching approximately
6.5 hours. For now, this is useful for the dam operators as they have at least this amount of time to take
measures and, for example, make a controlled spillage.

Figure 3.3: Effect of Discharge (Q) on Total Travel Time for Different Manning’s Coefficients

3.1.2. Results kinematic wave model

The celerity has also been described with the kinematic wave model. The same steps will be followed
as for the shallow water wave model giving two graphs, the celerity over the cumulative length of the
river and the corresponding linear regression. The graph shows how the flood wave will behave if it will
flow with the assumptions for the kinematic wave model.

(a) Celerity over the length of the Black Volta (b) Celerity Over the Length of the River with Regression Line

Figure 3.4: Results for the black Volta river with kinematic wave model and Manning’s equation

As can be seen from the linear regression line the celerity remains fairly steady over the length of the
river with the kinematic wave model. This happens because the model assumes that frictional forces
dominate the flow, which will dampen the rapid changes in velocity, resulting in a more stable wave
speed. It also neglects inertial effects, such as acceleration and declaration, which contribute further to
the consistency of wave celerity.

The method to evaluate the contribution of the variables described for the shallow water wave model will
also be used for the kinematic wave model, giving similar looking graphs. Again, the celerity and travel
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time where calculated for different combinations of discharge and Manning’s coefficient. Giving the two
graphs below:

(a) Linear Regression of Celerity vs Length for Different Manning’s
Coefficients

(b) Effect of Discharge (Q) on Total Travel Time for Different Manning’s
Coefficients

Figure 3.5: Results for the black Volta river with kinematic wave model and Manning’s equation

In figure 3.5.b the travel time for the corresponding discharge and Manning’s coefficient can be seen. It
differs quite a lot with the travel times of the shallow water wave function. For the initial discharge taken
the total amount of travel time for the different Manning’s coefficient can be seen in table 3.2.

Manning’s coefficient (n) Total travel time (hours)
0.020 46.78
0.045 76.09
0.065 94.88
0.085 111.45
0.100 122.86

Table 3.2: different travel times for the different values of the Manning coefficient, kinematic wave model

What is even more important to conclude than the fact that the travel times are longer, is that the celerity
decreases when the Manning’s coefficient increases. This is hydraulically correct because a higher
Manning’s coefficient indicates more friction, resulting in slower celerity. The difference between the
results for the two wave models will further be analyzed in the discussion.

3.2. Results Leopold and Maddock
Now the results found with the Leopold-Maddock theory will be presented. Again the celerity has been
found with the two different models and they will first be shown and thereafter also discussed.

3.2.1. Results shallow water wave model

The calculations were implemented using Python, iterating through each segment width to compute the
corresponding depth. The code, which can be seen in appendix A, reads the provided data, prepos-
sesses it, calculates the coefficients, and computes the depths for each segment based on the provided
widths. The results show a non-linear increase in depth with an increase in width, consistent with the
power-law relationships predicted by the Leopold-Maddock theory.

Once the depths of all the segments are found. A plot of the celerity over the length of the Black Volta
(again from the Bui dam to Lawra) can be made. Again, the celerity is calculated with the shallow water
wave equation first. Looking at the regression line, it can be seen in that the celerity increases from
Lawra to the Bui dam. This is because the width of the river steadily increases from Lawra to Bui and
with the Leopold-Maddock theory the depth also increases when the width increases. The total travel
time for this situation is 9.40 hours and as the discharge and Manning’s coefficient have no influence
this will be the worst case scenario.
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(a) Celerity over the length of the Black Volta with Leopold-Maddock (b) Celerity Over the Length of the River with Regression Line

Figure 3.6: Results for the black Volta river with Leopold-Maddock

3.2.2. Results kinematic wave model

The celerity can also be calculated with the depths found with the Leopold-Maddock method and with
the kinematic wave model. Using the depth found as described in the previous subsection the celerity
over the length of the river is determined. Giving the following two graphs:

(a) Celerity over the length of the Black Volta with Leopold-Maddock (b) Celerity Over the Length of the River with Regression Line

Figure 3.7: Results for the black Volta river with Leopold-Maddock and kinematic wave model

As the celerity is significantly less then for the shallow water wave function it shouldn’t come as a surprise
that the total travel time for the flood wave with the kinematic wave model is a lot longer, which is 88.09
hours.

3.3. Discussion
Now that the depths, celerity’s and total travel times are known for the different methods/models and the
combination of those it is time to discuss the findings. This will be done by first discussing the difference
for the two wave models for the Manning’s equation and after that for the Leopold-Maddock. At last the
results belonging to the two different methods of finding the depth will be discussed.

3.3.1. Manning's equation: Shallow water wave vs kinematic water

The first difference between the results of the shallow water wave and kinematic water models that can
be seen is the difference in celerity, resulting in a difference in total travel time. This significant differ-
ence in celerity is due to their differing emphasis on the gravitational forces and the frictional resistance.
Gravitational acceleration is prioritized by the shallow wave model. This results that the wave speed is
heavily dependent on the water depth and predicting much higher wave speeds in the deeper segments.
The kinematic wave model however also incorporates the effects of friction, giving more moderate and
realistic celerity values.

The second difference that can be seen is the fact that for a shallow water wave a higher Manning’s
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coefficient results in a higher celerity and for the kinematic wave model a higher n results in a lower
celerity. This is an interesting difference as in hydraulic theory, it is generally accepted that a higher
Manning’s coefficient results in lower flow velocity and, consequently, lower celerity. By substituting the
rewritten Manning’s equation into the shallow water wave equation the following formula is found:

c =
√
g · h =

√
g ·

(
Q · n

w · S1/2

)3/5

This formula gives a better overview of the relationship between n and the celerity. As n increases,
the depth increases, and thus, the celerity increases. This relationship is direct because a greater
depth leads to faster wave propagation in the shallow water wave model. Rewriting the kinematic wave
eqaution with manning’s equation gives:

c =
d

dA

(
A5/3S1/2

w2/3n

)
=

5

3
· A

2/3S1/2

w2/3n

In this formula, n is in the denominator, so as n increases, the celerity decreases. This reflects the
increased frictional resistance slowing down the flow, which is consistent with the physical expectation
that rougher channels (higher n) reduce flow velocity and celerity.

Understanding the differences between the shallow water wave model and the kinematic wave model
is crucial for accurately predicting flood wave behavior and implementing effective flood management
strategies for the Black Volta River in Ghana. Each method has its advantages and limitations, making
them suitable for different scenarios. The advantage of the shallow water wave model is the simplicity
and directness, the model uses a straightforward relationship between wave speed and water depth.
It is easy to implement and can provide quick estimates of wave celerity based on the depths. The
simplicity also has a downside as it assumes a constant wave height relative to depth, which might
not hold true in all real-world scenarios, particularly in complex or heavily vegetated channels. The
kinematic wave model on the other hand explicitly includes frictional effects, making it more accurate for
channels with significant roughness and variable flow conditions. By considering the balance between
gravitational forces and friction, it also provides a more realistic representation of wave propagation in
natural channels. A limitation of the model is that it assumes that inertial effects are negligible, which
might not be accurate in rapidly changing flow conditions.

3.3.2. Leopold and Maddock: Shallow water wave vs kinematic water

The Leopold and Maddock method provides a valuable empirical approach to estimate river depth and,
consequently, celerity of flood waves. Applying this method with both the shallow water wave model
and the kinematic wave model reveals distinct differences in the predicted behavior of flood waves in
the Black Volta River. Again the celerity values for the shallow water wave model are much higher then
for the kinematic wave model. The advantages and limitations of the two methods for the celerity where
already described in the previous subsection. Using the Leopold-Maddock means there are no other
variables to discuss as it relies heavily on the measurements of the observed location, in this case only
Chache. To apply this method accurately, having well-placed observation spots along the river is crucial.
Adding more than one observation location will increase the reliability of the method significantly.

3.3.3. Manning's equation vs Leopold and Maddock

The Leopold andMaddockmethod andManning’s equation are two distinct approaches used to estimate
river depth and, consequently, the celerity of flood waves. Each method has its unique principles and
applications, leading to differences in the results obtained for the Black Volta River.

As described in chapter 2 Manning’s equation is an empirical formula used to estimate the velocity
of water flow in open channels based on the channel’s roughness, hydraulic radius, and slope. The
depth is calculated by rearranging the continuity equation and this approach directly relates the depth
to discharge, width, slope and Manning’s coefficient. The advantages of the Manning’s equation are
the fact that it is widely validated and used in hydraulic engineering and that it directly incorporates
the channel’s roughness and slope, providing a practical estimation of flow velocity and depth. The
limitations are the fact that it assumes a simplified channel shape and uniform flow, which might not
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capture all the complexities of natural rivers and it is sensitive to the accuracy of theManning’s coefficient,
which can vary significantly.

The Leopold and Maddock method on the other hand uses empirical relationships to define hydraulic
geometry, linking river discharge to channel width, depth, and velocity through power-law equations.
The coefficients are calculated from the observed data at Chache. The advantages of this method are
the fact that it provides a detailed empirical relationship between discharge and channel geometry and
that it is suitable for data-scarce regions, as it relies on a few key measurements to estimate depths for
other segments. For the case of this study the disadvantage however is that there is only one observed
data location. Furthermore, an other limitation is that it may not account for local variations in channel
roughness and slope as effectively as Manning’s equation.

To summarize, for the Manning’s equation the depth estimates are derived from a combination of dis-
charge, channel width, slope, and roughness. This method is sensitive to variations in these parameters,
particularly the Manning’s n. For the Leopold and Maddock Method the depth estimates are based on
empirical relationships with discharge. This method is less sensitive to local variations in channel rough-
ness and slope but relies on the accuracy of the empirical coefficients. The combination of methods has
been summarized in the table below.

Model With Manning’s Depths With Leopold and Maddock
Depths

Shallow Water
Wave Model

Higher celerity values as depth
increases with higher n.

Depth increases with discharge,
leading to varying celerity
depending on segment-specific
widths and empirical
coefficients.

Kinematic Wave
Model

Lower celerity with higher n due
to increased friction.

Celerity varies based on
empirical depth estimates,
generally resulting in lower
values compared to the shallow
water wave model due to the
emphasis on frictional effects.

Table 3.3: Comparison of Wave Models with Different Depth Estimates



4
Conclusion and recommendations

4.1. conclusion
This study conducted on the Black Volta River in Ghana aimed to develop a simplifiedmodel to predict the
celerity of flood waves and determine the time it takes for this wave to travel from the town of Lawra to the
Bui dam. Through the application of Manning’s equation and the Leopold-Maddock method, combined
with the shallow water wave model and the kinematic wave model, various scenarios were analyzed to
provide insights into the behavior of a flood wave through this river.

The results demonstrated that the kinematic wave model is generally recommended for the Black Volta
River due to its ability to incorporate frictional resistance and provide more accurate predictions of flood
wave behavior. This model’s consideration of channel roughness and other real-world conditions makes
it well-suited for the detailed and variable nature of the river. Although the shallow water wave model
can be useful for initial assessments and theoretical insights, the kinematic wave model offers a more
reliable basis for developing effective flood management strategies. This ensures that dam operators
and other stakeholders can make well-informed decisions to mitigate flood risks and optimize water
resource management.

Manning’s equation is preferred for detailed and precise hydraulic analysis when sufficient data on chan-
nel roughness and slope is available. It offers more direct control over input parameters, making it suit-
able for engineering applications. On the other hand, the Leopold and Maddock method is valuable for
data-scarce regions, providing a practical way to estimate river depth and flow characteristics based on
empirical relationships. It is useful for broader regional studies and initial assessments.

Combining both methods may offer the best results for the Black Volta River. Manning’s equation can
be applied where detailed data is available, while the Leopold and Maddock method can fill gaps in data-
scarce areas. This approach ensures detailed and accurate flood wave predictions, ultimately helping
in effective flood management and optimal electricity generation at the Bui Dam.

In summary, the study uses a combination of different methods andmodels to approximate the behaviour
of a tidal wave. By doing so the study tries to answer various questions. The depth of of different parts
of the black Volta river has been calculated using the Manning’s equation and the Leopold-Maddock
method. In addition, the celerity of a tidal wave in the black Volta has been found by implementing the
Kinematic wave model and the shallow water wave model. These findings ultimately gave the opportu-
nity to answer the main research question:

“how long does it take for a tidal wave seen at Lawra to reach the Bui dam”

The time was found for the combination of the different models/methods and different scenario’s. These
combinations give a lot of different values for the total travel time. So, per combination a ’worst case
scenario’ was introduced which gives an indication of how long the Dam operators at least have before
the flood wave will reach the Bui dam.

15
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4.2. recommendations
This study can be improved quite a lot as assumptions had to be made to give a first indication of the
travel time of a flood wave in the Black Volta river. These assumptions include assuming the Discharge to
be constant. However, discharge can fluctuate due to seasonal variations, rainfall events, and upstream
water usage. The Manning’s coefficient was also assumed to be constant throughout the river segments.
In reality, channel roughness can vary significantly along different sections of the river. Furthermore, the
river was segmented and assumed to have a rectangular cross-section, which simplifies the actual river
geometry. At last,

To improve the precision of the study future studies could check if the assumptions are correct or improve
the uncertainty of the assumptions. This can be done by for example measuring and using segment-
specific Manning’s coefficients to account for variations in channel roughness. This can be achieved
through detailed field surveys and remote sensing data. The discharge can be more precise by incor-
porating a variable discharge model that accounts for seasonal and event-based fluctuations. This can
be done by integrating hydrological models that simulate rainfall-runoff processes and upstream water
usage. Using a more detailed river geometry will also improve the study, geometry data can be obtained
from high-resolution topographic maps and bathymetric surveys. Especially for the Leopold-Maddock
method using more data points will improve the depth estimations and as a result the reliability of the
flood wave warning system.

Future studies should also consider the impact the temporary storage of floodwater in designated areas
to reduce downstream flooding. Incorporating storage into flood wave models can improve predictions
and management strategies. An effect of storage is that it reduces the peak flow of the flood wave
by temporarily storing a portion of the floodwater. This can lower the risk of over topping riverbanks
and reduce the likelihood of downstream flooding. Researchers should explore methods to include
storage by integrating hydrodynamic models and identifying potential storage sites along the river, this
will improve reality of the flood wave model.

As for the different methods of enquiring the data of the depth a recommendation, in the context of the
Black Volta River, is combining both methods to offer the best results. Manning’s equation can be used
where detailed data is available, while the Leopold and Maddock method can fill gaps in data-scarce
areas, ensuring comprehensive and accurate flood wave predictions.

When deciding between the kinematic wave model and the shallow water wave model for future flood
wave studies, it’s essential to match the model to the specific characteristics and needs of the study
area. the kinematic wave model is ideal for areas with gentle slopes and channels that have significant
roughness or vegetation. It is also suitable for floodplain studies and overland flow scenarios where
frictional resistance is the dominant factor. The shallow water wave model should be used for regions
with steeper slopes and complex flow dynamics, such as those found near dams, reservoirs or sections
of the river with sudden drops. A recommendation would again be using a combination of both models,
for the Black Volta river the kinematic wave model will be used in most segments as the river mostly
has a gentle slope. Some parts of the river however have sudden drops or lots of rocks in the water,
changing the flow of the water. Then it could be better to use the shallow water wave model.
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A
Source Code

Listing A.1: Manning’s equation and shallow water wave code
1 # Load the Excel file
2 file_path = 'gegevensBEP.xlsx' # Update with your actual file path
3 spreadsheet = pd.ExcelFile(file_path)
4

5 # Load the data from the first sheet
6 data = pd.read_excel(file_path, sheet_name='Blad1')
7

8 # Convert the gradient column to its actual value by multiplying with 10^-4
9 data['verhang␣(10*-4)'] = data['verhang␣(10*-4)'] * 10**-4

10

11 # Rename the column to reflect the conversion
12 data.rename(columns={'verhang␣(10*-4)': 'verhang'}, inplace=True)
13

14 # Convert 'Lengte (km)' to meters
15 data['Lengte␣(m)'] = pd.to_numeric(data['Lengte␣(km)'], errors='coerce') * 1000
16

17 # Drop the original 'Lengte (km)' column
18 data.drop(columns=['Lengte␣(km)'], inplace=True)
19

20 Q = 840 # Flow rate in cubic meters per second (example value)
21 n = 0.045 # Manning's roughness coefficient (example value)
22

23 # Calculate depth h for each segment
24 data['depth␣(m)'] = ((Q * n) / (data['gem␣breedte␣(m)'] * np.sqrt(data['verhang']))) ** (3/5)
25

26 g = 9.81 # Acceleration due to gravity in m/s^2
27 data['celerity␣(m/s)'] = np.sqrt(g * data['depth␣(m)'])
28

29 # Calculate travel time for each segment
30 data['travel_time␣(s)'] = data['Lengte␣(m)'] / data['celerity␣(m/s)']
31

32 # Create a cumulative length column in kilometers
33 data['Cumulative␣Length␣(m)'] = data['Lengte␣(m)'].cumsum()
34 data['Cumulative␣Length␣(km)'] = data['Cumulative␣Length␣(m)'] / 1000
35

36 # Reverse the order to start from the highest length
37 data = data.iloc[::-1].reset_index(drop=True)
38

39 # Plot celerity over the length of the river
40 plt.figure(figsize=(10, 6))
41 plt.step(data['Cumulative␣Length␣(km)'], data['celerity␣(m/s)'], where='pre', marker='o')
42 #plt.title('Celerity Over the Length of the River')
43 plt.xlabel('Cumulative␣Length␣(km)')
44 plt.ylabel('Celerity␣(m/s)')
45 plt.grid(True)
46 plt.show()
47

48 import seaborn as sns
49

50 # Plot celerity over the length of the river with a regression line

18
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51 plt.figure(figsize=(10, 6))
52 sns.regplot(x=data['Cumulative␣Length␣(km)'], y=data['celerity␣(m/s)'], marker='o',

scatter_kws={'s':50}, line_kws={'color':'red'})
53 #plt.title('Celerity Over the Length of the River with Regression Line')
54 plt.xlabel('Cumulative␣Length␣(km)')
55 plt.ylabel('Celerity␣(m/s)')
56 plt.grid(True)
57 plt.show()
58

59 # Define the different values of Manning's coefficient
60 n_values = [0.02, 0.045, 0.065, 0.085, 0.1]
61

62 # Create a plot to show the regression lines for different values of n
63 plt.figure(figsize=(10, 6))
64

65 # Plot the regression lines for each value of n
66 for n in n_values:
67 # Calculate depth h for each segment
68 data['depth␣(m)'] = ((Q * n) / (data['gem␣breedte␣(m)'] * np.sqrt(data['verhang']))) **

(3/5)
69

70 # Calculate celerity for each segment
71 data['celerity␣(m/s)'] = np.sqrt(g * data['depth␣(m)'])
72

73 # Plot the regression line
74 sns.regplot(x=data['Cumulative␣Length␣(km)'], y=data['celerity␣(m/s)'], label=f'n␣=␣{n}',

scatter=False, line_kws={'label':f'n␣=␣{n}'})
75

76 # Add titles and labels
77 #plt.title('Regression Lines for Different Values of Manning\'s Coefficient')
78 plt.xlabel('Cumulative␣Length␣(km)')
79 plt.ylabel('Celerity␣(m/s)')
80 plt.grid(True)
81 plt.legend(title="Manning's␣n")
82 plt.show()
83

84 # Calculate the total travel time for each Manning's coefficient
85 travel_times = []
86

87 for n in n_values:
88 # Calculate depth h for each segment
89 data['depth␣(m)'] = ((Q * n) / (data['gem␣breedte␣(m)'] * np.sqrt(data['verhang']))) **

(3/5)
90

91 # Calculate celerity for each segment
92 data['celerity␣(m/s)'] = np.sqrt(g * data['depth␣(m)'])
93

94 # Calculate travel time for each segment
95 data['travel_time␣(s)'] = data['Lengte␣(m)'] / data['celerity␣(m/s)']
96

97 # Calculate total travel time in hours
98 total_travel_time_hours = data['travel_time␣(s)'].sum() / 3600
99 travel_times.append(total_travel_time_hours)

100

101 # Create a DataFrame to display the results
102 travel_time_df = pd.DataFrame({
103 "Manning's␣Coefficient␣(n)": n_values,
104 "Total␣Travel␣Time␣(hours)": travel_times
105 })
106

107 # Define the different values of flow rate Q
108 Q_values = [500, 700, 840, 1000, 1200, 1500]
109

110 # Prepare a dictionary to store travel times for each n and Q
111 travel_time_dict = {n: [] for n in n_values}
112

113 # Calculate the travel time for each combination of n and Q
114 for n in n_values:
115 for Q in Q_values:
116 # Calculate depth h for each segment
117 data['depth␣(m)'] = ((Q * n) / (data['gem␣breedte␣(m)'] * np.sqrt(data['verhang'])))

** (3/5)
118
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119 # Calculate celerity for each segment
120 data['celerity␣(m/s)'] = np.sqrt(g * data['depth␣(m)'])
121

122 # Calculate travel time for each segment
123 data['travel_time␣(s)'] = data['Lengte␣(m)'] / data['celerity␣(m/s)']
124

125 # Calculate total travel time in hours
126 total_travel_time_hours = data['travel_time␣(s)'].sum() / 3600
127 travel_time_dict[n].append(total_travel_time_hours)
128

129 # Plot the travel time vs discharge for different Manning's coefficients
130 plt.figure(figsize=(12, 8))
131

132 for n in n_values:
133 plt.plot(Q_values, travel_time_dict[n], marker='o', label=f'n␣=␣{n}')
134

135 #plt.title('Total Travel Time vs Discharge for Different Manning\'s Coefficients')
136 plt.xlabel('Discharge␣(m/s)')
137 plt.ylabel('Total␣Travel␣Time␣(hours)')
138 plt.grid(True)
139 plt.legend(title="Manning's␣n")
140 plt.show()

Listing A.2: Manning’s equation and dynamic wave model
1

2 #calculating area
3 data['area␣(m2)'] = data['depth␣(m)'] * data['gem␣breedte␣(m)']
4

5 #calculating celerity
6 data['celerity␣(m/s)'] = Q / data['area␣(m2)']
7

8 # Create a cumulative length column in kilometers
9 data['Cumulative␣Length␣(m)'] = data['Lengte␣(m)'].cumsum()

10 data['Cumulative␣Length␣(km)'] = data['Cumulative␣Length␣(m)'] / 1000
11

12 # Reverse the order to start from the highest length
13 data = data.iloc[::-1].reset_index(drop=True)
14

15 # Plot celerity over the length of the river
16 plt.figure(figsize=(10, 6))
17 plt.step(data['Cumulative␣Length␣(km)'], data['celerity␣(m/s)'], where='pre', marker='o')
18 #plt.title('Celerity Over the Length of the River')
19 plt.xlabel('Cumulative␣Length␣(km)')
20 plt.ylabel('Celerity␣(m/s)')
21 plt.grid(True)
22 plt.show()
23

24 import seaborn as sns
25

26 # Plot celerity over the length of the river with a regression line
27 plt.figure(figsize=(10, 6))
28 sns.regplot(x=data['Cumulative␣Length␣(km)'], y=data['celerity␣(m/s)'], marker='o',

scatter_kws={'s':50}, line_kws={'color':'red'})
29 #plt.title('Celerity Over the Length of the River with Regression Line')
30 plt.xlabel('Cumulative␣Length␣(km)')
31 plt.ylabel('Celerity␣(m/s)')
32 plt.grid(True)
33 plt.show()
34

35 # Define the different values of Manning's coefficient
36 n_values = [0.02, 0.045, 0.065, 0.085, 0.1]
37

38 # Create a plot to show the regression lines for different values of n
39 plt.figure(figsize=(10, 6))
40

41 # Plot the regression lines for each value of n
42 for n in n_values:
43 # Calculate depth h for each segment
44 data['depth␣(m)'] = ((Q * n) / (data['gem␣breedte␣(m)'] * np.sqrt(data['verhang']))) **

(3/5)
45

46 data['area␣(m2)'] = data['depth␣(m)'] * data['gem␣breedte␣(m)']
47
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48 # Calculate celerity for each segment
49 data['celerity␣(m/s)'] = Q / data['area␣(m2)']
50

51 # Plot the regression line
52 sns.regplot(x=data['Cumulative␣Length␣(km)'], y=data['celerity␣(m/s)'], label=f'n␣=␣{n}',

scatter=False, line_kws={'label':f'n␣=␣{n}'})
53

54 # Add titles and labels
55 #plt.title('Regression Lines for Different Values of Manning\'s Coefficient')
56 plt.xlabel('Cumulative␣Length␣(km)')
57 plt.ylabel('Celerity␣(m/s)')
58 plt.grid(True)
59 plt.legend(title="Manning's␣n")
60 plt.show()
61

62 # Calculate the total travel time for each Manning's coefficient
63 travel_times = []
64

65 for n in n_values:
66 # Calculate depth h for each segment
67 data['depth␣(m)'] = ((Q * n) / (data['gem␣breedte␣(m)'] * np.sqrt(data['verhang']))) **

(3/5)
68

69 data['area␣(m2)'] = data['depth␣(m)'] * data['gem␣breedte␣(m)']
70

71 # Calculate celerity for each segment
72 data['celerity␣(m/s)'] = Q / data['area␣(m2)']
73

74 # Calculate travel time for each segment
75 data['travel_time␣(s)'] = data['Lengte␣(m)'] / data['celerity␣(m/s)']
76

77 # Calculate total travel time in hours
78 total_travel_time_hours = data['travel_time␣(s)'].sum() / 3600
79 travel_times.append(total_travel_time_hours)
80

81 # Create a DataFrame to display the results
82 travel_time_df = pd.DataFrame({
83 "Manning's␣Coefficient␣(n)": n_values,
84 "Total␣Travel␣Time␣(hours)": travel_times
85 })
86

87 # Define the different values of flow rate Q
88 Q_values = [500, 700, 840, 1000, 1200, 1500]
89

90 # Prepare a dictionary to store travel times for each n and Q
91 travel_time_dict = {n: [] for n in n_values}
92

93 # Calculate the travel time for each combination of n and Q
94 for n in n_values:
95 for Q in Q_values:
96 # Calculate depth h for each segment
97 data['depth␣(m)'] = ((Q * n) / (data['gem␣breedte␣(m)'] * np.sqrt(data['verhang'])))

** (3/5)
98

99 data['area␣(m2)'] = data['depth␣(m)'] * data['gem␣breedte␣(m)']
100

101 # Calculate celerity for each segment
102 data['celerity␣(m/s)'] = Q / data['area␣(m2)']
103

104 # Calculate travel time for each segment
105 data['travel_time␣(s)'] = data['Lengte␣(m)'] / data['celerity␣(m/s)']
106

107 # Calculate total travel time in hours
108 total_travel_time_hours = data['travel_time␣(s)'].sum() / 3600
109 travel_time_dict[n].append(total_travel_time_hours)
110

111 # Plot the travel time vs discharge for different Manning's coefficients
112 plt.figure(figsize=(12, 8))
113

114 for n in n_values:
115 plt.plot(Q_values, travel_time_dict[n], marker='o', label=f'n␣=␣{n}')
116

117 #plt.title('Total Travel Time vs Discharge for Different Manning\'s Coefficients')
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118 plt.xlabel('Discharge␣(m/s)')
119 plt.ylabel('Total␣Travel␣Time␣(hours)')
120 plt.grid(True)
121 plt.legend(title="Manning's␣n")
122 plt.show()

Listing A.3: Leopold and Maddock and shallow water wave
1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import numpy as np
4

5 # Load the Excel file
6 file_path = 'gegevensBEP.xlsx' # Update with your actual file path
7 spreadsheet = pd.ExcelFile(file_path)
8

9 # Load the data from the first sheet
10 data = pd.read_excel(file_path, sheet_name='Blad1')
11

12 # Convert the gradient column to its actual value by multiplying with 10^-4
13 data['verhang␣(10*-4)'] = data['verhang␣(10*-4)'] * 10**-4
14

15 # Rename the column to reflect the conversion
16 data.rename(columns={'verhang␣(10*-4)': 'verhang'}, inplace=True)
17

18 # Convert 'Lengte (km)' to meters
19 data['Lengte␣(m)'] = pd.to_numeric(data['Lengte␣(km)'], errors='coerce') * 1000
20

21 # Drop the original 'Lengte (km)' column
22 data.drop(columns=['Lengte␣(km)'], inplace=True)
23

24 Q = 840 # Constant discharge in m³/s
25 d_1 = 12.25 # Known depth in meters
26 w_1 = 150 # Known width in meters
27

28 # Widths for other segments
29 widths = data['gem␣breedte␣(m)'] # widths in meters
30

31 # Empirical exponents
32 b = 0.5
33 f = 0.4
34

35 # Calculate coefficients a and c
36 a = w_1 / Q**b
37 c = d_1 / Q**f
38

39 # Calculate depths for other segments
40 depths = []
41 for w_i in widths:
42 d_i = c * (w_i / a)**(f/b)
43 depths.append(d_i)
44 #print(f"Segment with width {w_i} m has a calculated depth of {d_i:.2f} m")
45

46 data['depth␣(m)'] = depths
47

48 g = 9.81 # Acceleration due to gravity in m/s^2
49 data['celerity␣(m/s)'] = np.sqrt(g * data['depth␣(m)'])
50

51 # Calculate travel time for each segment
52 data['travel_time␣(s)'] = data['Lengte␣(m)'] / data['celerity␣(m/s)']
53

54 # Create a cumulative length column in kilometers
55 data['Cumulative␣Length␣(m)'] = data['Lengte␣(m)'].cumsum()
56 data['Cumulative␣Length␣(km)'] = data['Cumulative␣Length␣(m)'] / 1000
57

58 # Reverse the order to start from the highest length
59 data = data.iloc[::-1].reset_index(drop=True)
60

61 # Plot celerity over the length of the river
62 plt.figure(figsize=(10, 6))
63 plt.step(data['Cumulative␣Length␣(km)'], data['celerity␣(m/s)'], where='pre', marker='o')
64 #plt.title('Celerity Over the Length of the River')
65 plt.xlabel('Cumulative␣Length␣(km)')
66 plt.ylabel('Celerity␣(m/s)')
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67 plt.grid(True)
68 plt.show()
69

70 import seaborn as sns
71

72 # Plot celerity over the length of the river with a regression line
73 plt.figure(figsize=(10, 6))
74 sns.regplot(x=data['Cumulative␣Length␣(km)'], y=data['celerity␣(m/s)'], marker='o',

scatter_kws={'s':50}, line_kws={'color':'red'})
75 #plt.title('Celerity Over the Length of the River with Regression Line')
76 plt.xlabel('Cumulative␣Length␣(km)')
77 plt.ylabel('Celerity␣(m/s)')
78 plt.grid(True)
79 plt.show()
80

81 #total travel time
82 data['travel_time␣(s)'].sum() / 3600

Listing A.4: Leopold and maddock and kinematic wave model
1

2 # Load the Excel file
3 file_path = 'gegevensBEP.xlsx' # Update with your actual file path
4 spreadsheet = pd.ExcelFile(file_path)
5

6 # Load the data from the first sheet
7 data = pd.read_excel(file_path, sheet_name='Blad1')
8

9 # Convert the gradient column to its actual value by multiplying with 10^-4
10 data['verhang␣(10*-4)'] = data['verhang␣(10*-4)'] * 10**-4
11

12 # Rename the column to reflect the conversion
13 data.rename(columns={'verhang␣(10*-4)': 'verhang'}, inplace=True)
14

15 # Convert 'Lengte (km)' to meters
16 data['Lengte␣(m)'] = pd.to_numeric(data['Lengte␣(km)'], errors='coerce') * 1000
17

18 # Drop the original 'Lengte (km)' column
19 data.drop(columns=['Lengte␣(km)'], inplace=True)
20

21 Q = 840 # Constant discharge in m³/s
22 d_1 = 12.25 # Known depth in meters
23 w_1 = 150 # Known width in meters
24

25 # Widths for other segments
26 widths = data['gem␣breedte␣(m)'] # widths in meters
27

28 # Empirical exponents
29 b = 0.5
30 f = 0.4
31

32 # Calculate coefficients a and c
33 a = w_1 / Q**b
34 c = d_1 / Q**f
35

36 # Calculate depths for other segments
37 depths = []
38 for w_i in widths:
39 d_i = c * (w_i / a)**(f/b)
40 depths.append(d_i)
41 #print(f"Segment with width {w_i} m has a calculated depth of {d_i:.2f} m")
42

43 data['depth␣(m)'] = depths
44

45 #calculating the area
46 data['area␣(m2)'] = data['depth␣(m)'] * data['gem␣breedte␣(m)']
47

48 #calculating the celerity
49 data['celerity␣(m/s)'] = Q / data['area␣(m2)']
50

51 # Create a cumulative length column in kilometers
52 data['Cumulative␣Length␣(m)'] = data['Lengte␣(m)'].cumsum()
53 data['Cumulative␣Length␣(km)'] = data['Cumulative␣Length␣(m)'] / 1000
54
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55 # Reverse the order to start from the highest length
56 data = data.iloc[::-1].reset_index(drop=True)
57

58 # Plot celerity over the length of the river
59 plt.figure(figsize=(10, 6))
60 plt.step(data['Cumulative␣Length␣(km)'], data['celerity␣(m/s)'], where='pre', marker='o')
61 #plt.title('Celerity Over the Length of the River')
62 plt.xlabel('Cumulative␣Length␣(km)')
63 plt.ylabel('Celerity␣(m/s)')
64 plt.grid(True)
65 plt.show()
66

67 import seaborn as sns
68

69 # Plot celerity over the length of the river with a regression line
70 plt.figure(figsize=(10, 6))
71 sns.regplot(x=data['Cumulative␣Length␣(km)'], y=data['celerity␣(m/s)'], marker='o',

scatter_kws={'s':50}, line_kws={'color':'red'})
72 #plt.title('Celerity Over the Length of the River with Regression Line')
73 plt.xlabel('Cumulative␣Length␣(km)')
74 plt.ylabel('Celerity␣(m/s)')
75 plt.grid(True)
76 plt.show()
77

78 # Calculate travel time for each segment
79 data['travel_time␣(s)'] = data['Lengte␣(m)'] / data['celerity␣(m/s)']
80 data['travel_time␣(s)'].sum() / 3600
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