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Summary

When the directional stability of a ship or any other sea going
vessel is investigated, it is usually assumed that the vessel
has an initial constant forward reference motion. This assumption
is relaxed in the note, the vessel being considered to have
instead an accelerating or decelerating motion straight ahead.
To permit this it is necessary to adopt some simplifying assumptions
and those adopted have been employed previously for ships even
though they are known not to be strictly valid; in particular, the
hydrodynamic actions are expressed in terms of slow motion derivatives
which are assumed to be constant and independent of forward speed
in their dimensionless form. The analysis suggests that criteria of
directional stability which are relevant to a steady reference motion
do not necessarily apply if the reference motion is not constant.



1. INTRODUCTION

In the dynamics of ships or any other sea going vessel in general
it is usual to investigate directional stability under two assumptions:

Slow motion derivatives provide an adequate description
of the relevant hydrodynemic actions.

The reference motion, whose stability is being assessed,
is forward with a constant velocity.

The writers know of no investigations in which these assumptions
are completely discarded in ship dynamics, though attempts have been
made to cope with varying velocity.

If, at an instability boundary departures from the reference motion
is both uni-directional (ie divergent) and infinitely slow, then
slow motion derivatives should indeed provide an adequate specification
of the hydrodynamic actions. But what if the vessel is accelerating
or decelerating (ie has an unsteady reference motion)?

The purpose of this note is to theoretically that accelerated
motions cannot just be ignored. It is possible fo' an illustrate
vessel to be stable at some constant reference speed U but to be
directionally unstable when passing through that same speed
during accelerated motion.

The comparable aeronautical problems appear to have received surpris-
ingly little attention. Mention should be made, however, of a paper
by Collar (1951) who seems to have been the first to show that the
stability of accelerated motions could be a problem; he showed,
inter alia, that questions arise as to what is meant by 'stability'
in this context.

The practical significance of all this in the context of general ship
dynamics is not only that, under certain extreme conditions,
directional stability may be lost. The additional point, to which
the writers would draw attention, is that if large changes of
stability occur during accelerated motion they could have profound
influence on handling characteristics, possibly with serious implica-
tions in the maintenance of a correct course.

This note is admittedly somewhat mathematical and possibly, artif±cia1.
It is solely concerned, with the logic (or lack thereof) of a
mathematical technique. In addition it relates only to "accelerated
motion" in a straight line. But it does cause one to wonder about
the stability of turning, for that is another form of accelerated
motion.



In other words, this is primarily an exercise to illustrate some
of the problems which can arise in solving equations with time
dependent coefficients and of the possibilities for stability which
ensue. It is realised that, in practice, there may be marked
differences between the flows in steady and unsteady reference
motions. In particular, in retardation the loss of directional
stability is probably due largely to the marked changes in flow
near the stern of the vessel when the screws are in reverse.
Nevertheless the present examples perhaps give some insight into
the difficulties of the problems.

There are at least two classes of time dependent coefficients which
can be present in the equations of motion, when the reference
motion is not steady. First the velocity of the reference motion
will be a function of time, which we will denote by u(t). Secondly
if we assume that the hydrodynamic actions produced by a disturbance
then these derivative are also likely to be functions of time.
Indeed the concept of a slow motion derivative is not clear for
unsteady reference motions and requires much further thought which
is beyond the scope of this paper. For the present we will assume
that constant slow motion derivatives can be defined. In this way
it is hoped to illustrate in a qualitative sense the effect of
including a time dependent term U(t) in the equations of motion.

Some indication of the results due to variations in the slow motion
derivatives with reference velocity can be made by a quasi-steady
analysis. In this approach the stability of the vessel is assessed
in a conventional manner with respect to a series of steady reference
speeds within the range of speeds encompassed by 13(t). The validity
of this technique would seem to be open to question and is only
plausible for very slowly changing reference motions. It is not
possible at present, however, to specify how "small" the magnitude of
U(t) must be, in order that the quasi-steady assumption should be
tenable.

2. STEADY REFERENCE MOTION

Let us initially consider the horizontal directional stability of a
surface ship having a constant reference forward velocity LI. The
general linearised equations of motion of the ship are obtained by
performing the following operations.

Setting up equations describing the reference motion.

Developing equations describing small perturbations
motions from this initial reference motion.
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c. Subtracting a. from b. and linearising the resultant
equations.

This procedure is discussed in the literature (see for example
Abkowitz (196)-f), Mandel (1967) and Bishop and Parkinson(1970)) and
the linearised equations for unsteady motion in the horizontal plane
are found to be

(m - Y.) ' - Y v - Y. + {mU - Y } r = 0
v v r r

- N.- - N v + (I - N.) 1' - N r = 0
v v z r r

in the usual notation.

Elimination of either v(t) or r(t) produces a single differential
equation, the constants involved being the same for v(t) and r(t).
That is,

aV + b' + cv = 0

ai + b? + cr = 0

where

a = (in - Y.) (I - N.) - N. Y.
v z r v r

b = N.(niU - Y ) - N Y. - N (m - Y.) - I (I - N.)
v r yr r v v z r

c=N (mU-Y)+YN
v r yr

If a > o, the reference motion is stable, when b > o and c > o.
The important stability criterion turns out to be c > o, that. is

N(mU-Y) +YN >0
v r yr

3. UNSTEADY REFERENCE MOTION

Now consider the directional stability of a surface ship which does
not possess a constant forward velocity but has, instead, i. reference

velocity u(t) and acceleration u(t). A positive value of ii(t) implies
acceleration and a negative one deceleration, of course. By applying
the procedure previously described, we obtain the linearised
equations of motion

(m - I.) ' - Y v - i.? + {mU(t) - y }r 0
v v r r

-N.'t'-Nv+(I -N.)?-Nr0
V V z r r

where the slow motion derivatives are assumed to be constants.
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r
The single equation of motion in the yaw variable r(t) is now

+ N.m u(t) + I N r = 0
v v rj

The equation in the sway variable, v(t), is more complicated since
it is difficult to eliminate the term IJ(t) r(t) from the coupled
differential equations.

The previous equations for the steady forward reference motion are
seen to be a special case of these more general equations. The form
of the latter now depends in part on the nature of U(t) and U(t) even
though it is still assumed that the fluid actions may be represented
in a satisfactory mariner by the coefficients of a Taylor's series.*

The solution of the uncoupled equation for r(t) poses many
difficulties. By way of illustration, let us consider the effect on
the stability of motion when u(t) and U(t) have certain simple forms.

4. ACCELERATING REFERENCE MOTION

A simple example of accelerating reference motion, can be found by
assuming that

u(t) = u(i + at), J(t)= Ua,

where a and U are both positive constants. The uncoupled equation of

free yawing motion reduces to:

ar + (b + dt) + (c + d + et)r = 0

where the forms of a, b and c have been given before, provided that
U is replace by U, and

*In fact, the fluid actions depend on the past history of the ship
motions and so the functional approach as developed by Bishop,
Burcher and Price (1971 a, b, c) would be a more appropriate formu-
lation of the fluid actions for arbitrary motions u(t) and U(t).
Presumably the concept of slow motion derivatives really needs
further examination if they are associated with small departures
from an unsteady reference motion; are they, for example, to be
regarded as time dependent? This is not something that we shall
follow up here however.

{(m - i.) (I - N.) - N. Y.} +v z r v r
N. {m u(t) - y }

L r

-N Y
v

-N (m-Y.) -Y (I -N.)
r r v v z r

N {mU(t) -Y }
V r



d IT1 N. U a
V 0

emN Ua
V 0

This equation can be rewritten in the form

r + (B + Dt) + (C + Et)r = 0

where

B = b/a, D = d/a, C = (c + d)/a, E = e/a

Towards solving this quation, let

r(t) = n() exp ( Et/D)

where

=J(D) (t BD-2E
D2

The equation describing the free motion then becomes

-3
r'+r' +D (E2+CD2-BED) no

(B2 + CD2 - BED) = o

As shown by Kamke (19)43) solutions of this equation depend on the
sign of D (= d/a).

Case I D > 0

Let

-3y=D (E2+CD2-BED)

Then the equation describing the free motion is

nil + n' + 'y fl = 0.

This equation has a solution in terms of a confluent hypergeometric
function F1 as follows

[F1 ( - ,

2

L

1 12
fl() = e

1F -
1

2

1 2
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if D < 0

if > 0

if y < 0



and for the solution in the time domain, the term

2
DI (t

ED - 2E)2

e =e D2

appears to be dominant a t - . Thus we find that

lim r(t) - 0

t-

indicating that the motion is stable provided that N. > 0, as we have

followed convention and expressed the equations in the form which makes
a > 0.

Case II D < 0

The relevant differential equation describing the free yaw motion may
be written in the form

-. + y T1 = 0

where

-D3 (E2+cD2-BED)

Now we must consider the implications of whether y is positive or
negative.

Case (a). y > 0

1

= e u()

so that

u" + u' + (1 + y)u = 0

This equation has a solution in terms of a hype'rgeometric function F1
as follows:

u() = e F
-1/2 2/14

(
1\ 1

1_ 2

For the solution in the time domain, the term

jD (t
BD - 2E)2

14

e =e D2

appears to be dominant when t + . Thus we find that

urn r(t) +
t-o

indicating that the motion is unstable.
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The condition -y > 0 and B < 0 therefore implies that

+ CD2 - BED > 0

or substituting for B, C, B and E we have,

N 2 (m - 1.) (I - N.) + m U a N.3 + N.2 Y Nv V z r 0 V V V r

+ N N. {N (in - Y.)+y (I - Nj} >v v r v v z r

Case (b). y < 0

Let = - > 0 so that

- - n = 0

This equation has a solution of the form

+ 2) (y + n)... (y + 2n - 2)
2n

}= C1{1 +
(2n)!n= 1

(y + i) (y + 3) ... + 2n - i)
2n+1

+ C2{ +
(2n + 1)!

}n1

The variation of () with time can be investigated in gener , but by
way of illustration consider the special cases for -y. = 0, 1 and 2.

In particular, if = 2 the solution reduces to

1 2n() = c1(1 + e I e dU + C2 e
J

2

and, in the time domain, this solution is dominated by the term e

Similarly, if 1 the solution of the equation becomes

1 2 1 2 ' _1 2n() = C1 e + C2 e
J

e

If = 0 on the other hand we have

n() c1 + c2
J
e2

d
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these solutions, the ter:

- 2E 2

D2

is dominant. Therefore,

urn r(t) --

t #-

implying that the motion is again unstable.

Thus we have the situation that, for all values of y, the motion is
unstable when

D=rnU aN. <
0 V

That is, instability occurs when N. < 0 provided that U > 0 and
0

If at the time t1, the instantaneous velocity of the ship is such that

u(i + at1) = U

then there evidently exists the possibiliy that the ship which is
stable with the steady reference motion, U, will be unstable while
accelerating through this instantaneous velocity - at least if
N. < 0.
v

To summarise the findings for the particular accelerating reference
motion considered we find that

e2 = e jDI (t

5. DECELERATING REFERENCE MOTION

Suppose that,

u(t) = U (i - t)

such that > 0 and u(t) 0 when t It is seen that this is

the case in Section in which $ = - a. Using the previous find-
ings we may conclude that

8

a N. D = m U a N. lim r(t)
t -

> 0 > 0 > 0 0 - stable motion

> 0 < 0 < 0 - unstable motion



Thus, for a given value of N., the stability of the motion is

dependent on the initial unsteady reference motion as shown in
the following table.

Let us again consider another unsteady decelerating reference motion.
Suppose that

u(t) = U (1 +

where U > 0, a > 0 and so U(t)
=

a (i + at)2

The uncoupled equation of free motion may now be written

A + {D + EU(1 + at)
1}

+ + GU(1 + at)
1

- EUa(1 + at) 2}r = 0

where

A = (m - Y.) (I - N.) - N. Y.;
V Z r V r

D - Y (I - N.) - N (m - Y.) - N Y. - N. Y . G = niN ;v z r r v V r V r V

E inN.;
V

With the substitutions

_1
r(t) = y(x) and x = (1 + at)U

the equation reduces to

x2 y" +(ax2 + bx)y' + (x2 + x - b)y = 0

9

F=Y N -N Y
v r V r'

a N.
v D = m U a N.

0 v urn r(t)

<0 <0 >0 0-stableniotion

< 0 > 0 < C - unstable motion

N.
v

a
Unsteady Reference

Motion Disturbance

> 0 > 0 acceleration stable

> 0 < 0 deceleration unstable

< 0 > 0 acceleration unstable

< 0 < 0 deceleration stable



where

UE FU2 GU2
6= 0

chA cA
a2A

This differential equation has the solution

1C
J (Ax) + C Y (Ax) if d > 0

1 p 2 p

y(x)
(1 - b)/2 a/2x

I (Xx) + C I (Ax) if d < 0
1 p 2 -p

where

where

a2
d. = 6 -

J (x) is a Bessel Zunction of the first kind
p

Y (x) is a Bessel function of the second kind

I (x) is a modified Bessel function of the first kind
p

When investigating stability, we are interestea in the behaviour of
the motion as time increases that is, in the urn r(t). In effect

this requires us to consider the behaviour of these Bessel functions
for large values of x. Whittaker and Watson (1950) show that for
large values of x,

j (x) = /(-) { cos
-

sin }p TtX

y (x) = /(-) { sinp ITX p 11)

+
cos

where

(2_J42) (32_Lp2) (1p2-12) ()4p2_32) (4p2_52) (p2-1)
+

p
2! (8x)2 4! (8x)

(lp2-12) (1p2-i2) (14p2_32) (Lp2_52) (Lp2-T2)
(x)

= 1!(8x)2
3!- (8x)3
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where R and R are remainders and
t S

= (x) = (- x)

(x) = (x) = - (- x)

It follows

urn J (x) - 0 and urn I (x) - 0
Dx-

It would thus appear that for d > 0 the solution.tends to zero when
x increases indefinitely. Hence

1 +

r(t)
(I ± nt)(1 - b)/2

e
a/2

( x
U 00

-1 -1 -I
r + )} + C2 xu (i + at)}

p 0
-J

and

urn r(t) - 0

t -*

provided that a > o.

When d < 0, so that 6 < a2/4, and p is not an integer, the solution is

(i - b)/2 - ax/2y(x)=x e {

When (Ax) is large enough and 0 phase (x) ii, the modified
function may be expressed as

Ax (1p2 - 12) (2 - 12) (2 - 32)

i (Ax)
e

p /(2Ax)
{i +

1! (8Ax)

C1 I(Ax) + C2 I(Ax))

(p + jir e+e /(2Xx) {1 + + }
1 (8Xx)

or, when - ri < phase (x)

11
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Xx

I (Xx) . e (Lp2 - 12) - 12) (1p2 - 32)

p (2rXx) - 1!(8Xx) 2!(8Xx)

XX- (p + e
{1

jn2 - 12)
+ e /(2Ax) 1(8Xx) + *

The dominant contribution from the series is e = x/a2/ -e

and the asymptotic solution for y(x) is of the form

- b/2
x/1 a/ - - a/2}

y(x) x e - 0(1/x)1

Instability of the motion occurs when

/a2
- a/2 > 0

since the solution then increases for increasing x. This inequality

is always true if

Y N -N Y <0.v r v r

provided A > 0.

Thus the motion is stable if

Y N -N Y >0
V r V r

However, we see that from the previous analysis there exist different
conditions for stability of the motion depending on the unsteady
decelerating reference motion considered.

It is interesting to note that this is, in fact, the criterion that is
found for a steady reference motion, but with U = 0. The physical
significance of this is by no means clear however, although it may
relate to the fact that in the limit as t - , which we consider in
assessing stability, u(t) -- 0. This indeed is a matter which poses a
philosophical difficulty in assessing stability, when the reference
motion is not steady. In the conventional approach the effect of a
small disturbance is examined as t - In the examples considered in
this note however,

U(t) , - or 0 as t -

Thus it is not clear in what sense the stability of a ship with unsteady
reference speed t.i(t) can be determined, when U(t) is really changing
through a finite range around a particular value of interest in a

finite time. For example, what is meant by claiming that a ship is
stable while accelerating from say 10 to 20 knots in a finite time!
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6. CONCLUSIONS

The foregoing analysis suggests that stability criteria that are
. relevant for a steady reference motion do not necessarily apply if

the motion is not constant. In this latter case, the equations des-
cribing the perturbed motion have some time dependent coefficients
and, while the instantaneous values of those coefficients can equal
those relating to the steady reference motion, the resulting stabil-
ity criteria may be completely different. A body that is/at
constant speed could be unstable at the same speed during acceler-
ation or deceleration.

Attempts have been made to examine the stability of accelerated
motion by Wagner Sinitt and Chislett (1972) and by Hooft (1969).
These authors have adopted the quasi-steady approach outlined in the
introduction to this note. In this way they investigate the direct-
ional stability of surface ships during deceleration by considering
various combinations of steady reference and propeller speeds. In this

note it is shown, in effect, that this type of approach is certainly
open to question. It is only likely to be valid for very slowly
changing reference motions.
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