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Abstract

The visualization of objects within or beyond a turbulent medium is hampered by the aber-
rations the medium induces in the wavefront. The sharpness of an image is maximal when
the incoming wavefront is flat, with aberrated wavefronts yielding distorted images of limited
utility. In the particular case of astronomy, the flat wavefront of the light from a distant
target is aberrated as it moves through the atmosphere, before reaching our telescopes. The
field of Adaptive Optics (AO) is dedicated to the correction of these aberrations, with the goal
of enabling the imaging of objects through turbulent media with as much detail as possible.

Due to a delay inherent to the AO control loop, each control input is used to correct an
aberration slightly ahead in time, which means that, for the correction to be effective, the
controller must be equipped with predictive capabilities. Prediction demands a model, and
fortunately, the dynamics of atmospheric turbulence can be effectively modelled using a linear
system. This makes the Kalman filter, the statistically optimal state estimator for linear
systems, a natural choice for prediction. However, the steady-state Kalman filter requires a
solution to the computationally intensive Discrete-time Algebraic Riccati Equation (DARE),
which precludes its application to large-scale systems. Furthermore, the Kalman filter assumes
a precise model with particular properties is available, which often is not the case in practise.

The advent of extremely large telescopes demands prediction algorithms that can handle
likewise extremely large system dimensions, which means that application of the steady-state
Kalman filter, in its conventional form, is unfeasible. This thesis proposes a data-driven
approach to Kalman filtering that exploits the intuitive sparsity pattern of the matrices
involved in the modelling of an AO system. The developed algorithm replaces the DARE and,
with knowledge of the system matrices, estimates the Kalman gain from measurement data,
with the exploitation of sparsity providing a substantial drop in complexity when compared
to the DARE, and with its data-driven nature inherently compensating, to a certain extent,
for modelling errors.

This thesis further proposes a two-stage approach to reduce the burden of the online prediction
operation. While the measurement and state-transition matrices of the AO system are sparse,
the Kalman gain is generally dense, consequentially slowing down prediction, which should
accompany the sampling period of the loop. Our proposal splits prediction into a sparse
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stage for prediction of local structures in the wavefront phase, and a low-dimensional dense
stage for prediction of the remaining low-frequency aberrations. The two-stage predictor is
inherently suboptimal, but allows for quicker prediction and identification for extremely large
systems. Via tuning, the user strikes a balance between performance and execution time.
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Chapter 1

Introduction

Atmospheric turbulence proves itself an obstacle to the imaging of celestial objects. Origi-
nally flat wavefronts are aberrated as light travels through the atmosphere, resulting in an
undesirable loss of detail that can not be circumvented via increases in the telescope diameter
alone [1]. Adaptive Optics (AO) systems employ a deformable mirror to counteract the distor-
tions of the incoming wavefront before it reaches the camera; a sensor acquires the necessary
information for a controller to decide which shape the mirror should take.

The AO control loop has a one-step delay, which means that each control input is used to
correct an aberration slightly ahead in time. Successful control must therefore account for the
dynamics of turbulence throughout the delay, effectively predicting the shape of the wavefront
one time-step ahead, demanding a model. The turbulence is herein modelled with an AR-1
model, and the AO loop is modelled with a state-space model whose outputs are the slopes
measured by a Shack-Hartmann sensor, and states are each pixel of the wavefront phase
measured at the corners of the lenslets of the sensor:

φk+1 = Aφk + wk

yk = Gφk + vk

where φk ∈ Rn is the vectorized wavefront phase, yk ∈ Rm comprises the slope measurements,
and wk ∼ N (0, Q) and vk ∼ N (0, R) are, respectively, uncorrelated white process and mea-
surement noises. In the context of AO, A and G are highly sparse, and consequentially, so
are many other matrices that arise in equations that involve them.

The state-space model structure makes the Kalman filter an immediate choice for prediction,
as it provides minimum-variance unbiased estimates of the state. The design of a steady-state
Kalman filter requires a solution to the Discrete-time Algebraic Riccati Equation (DARE),
which because the process and measurement noises are assumed uncorrelated, takes the form

P = APAT +Q−APGT(GPGT +R)−1GPAT (1-1)

where P is the steady-state state-prediction-error covariance matrix. Finding a solution to
(1-1) takes O(n3) time, which prevents its application to systems with extreme amounts of
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2 Introduction

states. The Kalman filter additionally requires a precise linear model with the aforementioned
noise properties to be optimal. Although effective [2, 3, 4], the Auto-Regressive (AR)-1 model
carries inherent imperfections in case the turbulence is multi-layered or its movement is sub-
pixel, unless special precautions, which may not always be applicable, are taken; furthermore,
finding the matrices A,Q, and R for the model is a problem in itself, leading to additional
possible modelling errors.

The dimensions n and m of an AO system whose sensor has a width of L lenslets are given by
(L+ 1)2 and 2L2, which means that not only do the dimensions grow quickly with the array
size, but that complexities such as O(n3) are effectively equivalent to O(L6). Future extremely
large telescopes [5, 6, 7] will thus pose a problem, and as the number of sensors reach the tens
of thousands [2], more efficient approaches than the DARE are required for Kalman filtering.
The introduction of Kalman filtering to these extremely large telescopes in approximate form
is addressed in several works, among which [4, 8], with the former tackling the burden of
the DARE, and the latter attacking both the DARE and the online prediction operation,
whose time conventionally scales as O(nm). The sparse data-driven approach to Kalman
filtering presented in this thesis tackles both the issues of computational burden and erroneous
modelling. The DARE is replaced by a far lighter set of least-squares problems upon which
sparsity is imposed to massively reduce complexity. Indeed, the aforementioned sparsity of the
system matrices results in similarly sparse Markov parameters, the identification of which is
one of the main steps of the evaluated data-driven Kalman filtering procedures; by identifying
only the known non-zeros, the scale of the problem is drastically reduced, allowing obtention
of the Kalman gain for extremely large systems, without the DARE. Additionally. the data-
driven nature of the algorithms, which implicitly identify the process and measurement noise
covariances, covers for modelling errors by accounting for them as extra noise [9].

As suggested above, there are works dedicated as well to the reduction of the complexity of
the online reconstruction or prediction operations [8, 10, 11]. In Kalman filtering:

φ̂k+1 = Aφ̂k +K(yk −Gφ̂k) (1-2)

whereas A and G are sparse, K is normally dense, and the benefits of sparsity of A and G for
prediction are entirely overshadowed by the O(nm) complexity of the matrix-vector product
between K and ek = (yk−Gφ̂k). A two-stage prediction algorithm is further proposed in this
thesis to reduce the complexity of the prediction operation. This algorithm splits prediction
into a sparse stage in the original large array, which employs a forcefully sparse gain in (1-2)
to predict local structures in the wavefront phase. Because the Kalman gain is dense, the
wavefront will not be entirely predicted; in particular, the low-frequency components will be
missing. These are then predicted on with a low-dimensional system (a coarse stage), on
which dense operations can be made with little computational burden. Two-stage prediction
is inherently suboptimal, and while it will yield more error than a Kalman filter, it allows
for quicker prediction and identification in extremely large systems, and reduces the memory
requirements for storage of the gain. The tuning parameters decide how much performance
is exchanged for time.

The thesis further describes a novel algorithm for data-driven Kalman filtering and several
miscellaneous insights into the AR-1 modelling of turbulence. The thesis is organized as
follows:

Paulo Cerqueira Master of Science Thesis
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• Chapter 2 briefly presents the basics of AO necessary for the description of our tech-
niques for identification and prediction. AR-1 modelling of the turbulence is described
therein, along with several sources of error in that model structure. The final section
of the chapter introduces sparsity to the modelling of turbulence, as described in [2].

• Chapter 3 overviews the field of data-driven Kalman filtering and elaborates upon the
relevant algorithms, including a novel proposal.

• Chapter 4 combines the previous two chapters to introduce sparse data-driven Kalman
filtering to AO. The two-stage algorithm is subsequently introduced and elaborated
upon.

• Chapter 5 presents an analysis of the performance of the previously described algo-
rithms on simulator-generated data. This chapter should both motivate the use of the
algorithms and provide guidelines for their tuning.

• Chapter 6 concludes the main matter of the thesis with a summary of the contributions
and proposals for further research.

The appendix provides additional off-topic insights and research proposals.
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Chapter 2

Basics of Adaptive Optics

This chapter is dedicated to a bare-bones description of the Adaptive Optics (AO) system
and turbulence modelling techniques for its control, in the context of astronomy. The content
of the chapter encompasses only the essentials for the understanding the remainder of the
thesis; for the underlying theory and details on the assumptions, the reader is referred to
[12, 13, 14, 15, 16].

2-1 The adaptive optics system

The AO system, an example of which is depicted in Figure 2-1, comprises a wavefront sensor,
a wavefront corrector, and a feedback controller [1]. The wavefront corrector is commonly a
deformable mirror, onto which the incoming light shines before travelling to the wavefront
sensor and the camera. The controller decides the shape the deformable mirror should take so
as to nullify the wavefront aberrations before light is sent to the camera. Ideally, the mirror
would take the inverse shape of the incoming wavefront, but inherent limitations in the system
and its components mean the results will be inevitably suboptimal, and a residual wavefront
will nevertheless reach the sensor and camera. The sensor then sends this information to the
controller, which will use it to determine the shape of the deformable mirror for the next
time-step.

Naturally, a one-step delay is implied in the circuit. The light received by the sensor, and
therefore the information sent to the controller, pertain to the time-step previous to that
when the deformable mirror applies the correction. This means that the controller must
be equipped with predictive capability: given the current residual wavefront, the controller
must predict which shape the incoming wavefront will take one time-step ahead, so that the
deformable mirror can correct it. The lack of an exact model or noiseless measurements are
among the reasons for which the correction can not be expected to be perfect. Section 2-2
ahead describes modelling techniques that, along with a Kalman filter, serve to predict the
shape of the future wavefront.

Master of Science Thesis Paulo Cerqueira



6 Basics of Adaptive Optics

Figure 2-1: Schematic representation of an AO system. Image from [1], slightly altered to match
notation.

2-1-1 Shack-Hartmann sensor

The wavefront sensor here considered is the Shack-Hartmann sensor, arranged with Fried
geometry. The sensor consists of an L × L array of square lenslets, each focusing incoming
light into a bright spot over a light sensor. The lenslets are assumed small enough such that
the wavefront aberration can, locally over each lenslet, be approximated as a tip and/or a
tilt (tip-tilt). The x- and y-displacements of the centroid of the bright spot with respect to
the center of the light sensor are proportional, respectively, to the x- and y-slopes of the local
tip-tilt. The measurement of these slopes is used to reconstruct the turbulent phase. Let i
and j indicate the x- and y-positions, respectively, of a certain lenslet or wavefront sample
point (pixel). Under the assumption of local tip-tilt, the slopes y(i,j)

x and y(i,j)
y measured by

lenslet (i, j) are given by [1]:[
y

(i,j)
x

y
(i,j)
y

]
= 1

2

[
ϕ(i+1,j) + ϕ(i+1,j+1) − ϕ(i,j) − ϕ(i,j+1)
ϕ(i,j+1) + ϕ(i+1,j+1) − ϕ(i,j) − ϕ(i+1,j)

]

= 1
2

[
−1 −1 1 1
−1 1 −1 1

]
ϕ(i,j)
ϕ(i,j+1)
ϕ(i+1,j)
ϕ(i+1,j+1)


(2-1)

where ϕ(i,j) to ϕ(i+1,j+1) denote the values of the phase at the corners of the lenslet. With
the slopes from all L2 lenslets stacked into vector y, and the values of the wavefront phase at
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2-1 The adaptive optics system 7

ϕ1,1

ϕ1,2

ϕ1,3 ϕ2,3 ϕ3,3

ϕ3,2

ϕ3,1ϕ2,1

ϕ2,2

y
(1,1)
y

y
(1,1)
x

y
(2,1)
y

y
(2,1)
x

y
(1,2)
x

y
(1,2)
y y

(2,2)
y

y
(2,2)
x

Figure 2-2: Shack-Hartmann sensor geometry and notation, exemplified with a 2 × 2 lenslet
array. The black dots represent the pixels at which the phase is sampled, and the gray squares
represent the lenslets.

all (L+ 1)2 pixels stacked into vector φ, one arrives at the relationship:

y
(1,1)
x

y
(1,1)
y

y
(1,2)
x

y
(1,2)
y
...

y
(L,L)
x

y
(L,L)
y


︸ ︷︷ ︸

y

= G


ϕ(1,1)
ϕ(1,2)

...
ϕ(L+1,L)
ϕ(L+1,L+1)


︸ ︷︷ ︸

φ

where G ∈ R2L2×(L+1)2 is the measurement matrix, built from (2-1). An example G is shown
in Figure 2-3. Note that G does not have full column rank: two modes, piston and waffle, are
not detected by the sensor. The piston mode corresponds to an offset in the wavefront; from
(2-1), considering an arbitrary offset a:

[
y

(i,j)
x

y
(i,j)
y

]
= 1

2

[
−1 −1 1 1
−1 1 −1 1

]
a
a
a
a

 =
[
0
0

]

In the absence of other aberrations, an offset wavefront is still flat, and the quality of the image
is unaffected, making piston mode irrelevant. The waffle mode corresponds to a checkerboard
pattern in the wavefront:

[
y

(i,j)
x

y
(i,j)
y

]
= 1

2

[
−1 −1 1 1
−1 1 −1 1

]
a
−a
−a
a

 =
[
0
0

]
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8 Basics of Adaptive Optics

Although undetectable in a single time-step of measurements, unlike piston mode, the waffle
mode does affect image quality. It is, however, of little significance, given the relatively low
power of high-frequency modes [2]. Throughout the remainder of the thesis, the subscript
k in yk or φk and whatever numerical value it takes indicates the time-step (note that the
subscripts x and y beneath y still specify the axis). Considering additive measurement noise
vk, one finally arrives at:

yk = Gφk + vk (2-2)

In the experimental chapter (Chapter 5), computation of the slopes for simulation is done
by simply applying (2-2) to the simulated wavefront phase screens, with added Gaussian
white measurement noise of diagonal covariance. This enables control of the Signal-to-Noise
Ratio (SNR) of the measurement noise directly, albeit neglecting the approximate nature of
(2-1), as a real wavefront will not be exactly tip-tilt over each lenslet.

Figure 2-3: Example G matrix. White entries equal 0.5, gray entries equal −0.5, and black
entries are 0.

2-1-2 Deformable mirror

The deformable mirror, used for correction of the aberrations of the incoming wavefront,
consists of a malleable, or otherwise deformable, reflective surface and a system of actuators
that set its shape. Given an input uk, the shape φm

k+1 of the mirror at the next time-step can
be given by:

φm
k+1 = Huk (2-3)

where the columns of H represent the influence function of each input, sampled at the location
of each actuator. The range of H defines a basis for the set of possible shapes the mirror can
take [2].
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2-2 Modelling 9

2-2 Modelling

As mentioned in the beginning of the section, there is an inevitable one time-step delay be-
tween the computation of the control input and the correction by the deformable mirror.
This makes one-step-ahead prediction of the wavefront phase vital for control, as the aber-
rated wavefront will have changed in-between time-steps. The modelling of the turbulence
dynamics, on which prediction relies, is the subject of this section.

2-2-1 The dynamics of turbulence

The evolution of the turbulent phase at a fixed point in space is the result of punctual changes
in the phase screen, and of its "mean" motion as it is carried by an air stream. According to
Taylor’s frozen flow hypothesis [16], when the rate of change of the phase screen is insignificant
in comparison to the velocity of the air stream, i.e the wind speed, the evolution of the phase
at the fixed point is well justified by the movement of a frozen phase screen, drifting over the
aperture. Put simply, future wavefront phases are given by mere spatial shifts of past phases.
Given a wind speed of νx along the x-axis and of νy along the y-axis, the phase at point (x, y)
and time t+ τ is given by [2]:

ϕ(x, y, t+ τ) = ϕ(x− νxτ, y − νyτ, t) (2-4)

When modelling these dynamics with an AR-1 model, frozen flow gives rise to distinct struc-
tures in the transition matrix A. In particular, when the wavefront moves an integer amount
of pixels each time-step, A represents a shift in the direction of the movement, except at the
entries corresponding to points on the border of the pixel array where new infomation enters
(see Figure 5-2). In any other case (and again, except at the array borders), A becomes a
weighted average between shifts, a structure henceforth referred to as "shift-like", and seen in
Figures 2-4 and 5-1.

2-2-2 AR-1 wavefront modelling

This thesis adopts the AR-1 structure to model the turbulence dynamics, a popular model
due to its simplicity and efficacy [2, 3, 4]. Befitting the goal of Kalman filtering, this model
structure is particularly apt for the definition of a state-space model whose outputs are the
slopes measured by the Shack-Hartmann sensor and whose state is the wavefront phase screen.
The AR-1 turbulence model is given by:

φk+1 = Aφk + wk (2-5)

where φk is the vectorized wavefront phase screen, and wk is white process noise, uncorrelated
with φk. It is assumed that E[φk ] = E[wk ] = 0. While it is common for authors to preset
A, often as diagonal [4, 17, 18], the data-driven approach of [2] is adopted herein. When the
system is in steady-state, the state-transition matrix A is given by:

A = Cφ,1C
−1
φ,0 (2-6)
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10 Basics of Adaptive Optics

If wavefront phase data up to time-step N is gathered into "future"- and "past"-data matrices
defined as:

Φ1,N =
[
φ2 · · · φN

]
Φ0,N =

[
φ1 · · · φN−1

]
then (2-6), with estimated covariances due to the finiteness of data, is equivalent to

Â = Φ1,N (Φ0,N )†

Put differently, Â is the solution to

Â = argmin
A

N∑
k=1

∥∥∥φk+1 −Aφk
∥∥∥2

2
= argmin

A

∥∥∥Φ1,N −AΦ0,N
∥∥∥2

F
(2-7)

However, the assumptions behind (2-5) do not always hold, and in such cases, a model so
identified might be found wanting. This is the case for multi-layer turbulence, possibly war-
ranting a change of state variable, and for sub-pixel movements per time-step, in which case
a possible modelling alternative is passingly proposed in Appendix A-1.

Modelling error for multi-layer turbulence

For multi-layer turbulence, the process noise will span the entire array, while neccessarily
breaking one of the previous assumptions: wk will not be white. One implication is that such
a model is subpar for application of a Kalman filter. Consider that the dynamics of layer i
are

φ
(i)
k+1 = A(i)φ

(i)
k + w

(i)
k

where w(i) is assumed to be indeed white and uncorrelated with φ(i)
k and all other φ(j)

k . Then,
for example, the dynamics of two-layer turbulence are given by

φ
(1)
k+1 + φ

(2)
k+1 = A(1)φ

(1)
k +A(2)φ

(2)
k + w

(1)
k + w

(2)
k (2-8)

Imagine now that the turbulence is modelled as

φ
(1)
k+1 + φ

(2)
k+1︸ ︷︷ ︸

φk+1

= A
(
φ

(1)
k + φ

(2)
k

)︸ ︷︷ ︸
φk

+wk (2-9)

then, substituting (2-8) into the left-hand-side of (2-9):

wk = A(1)φ
(1)
k +A(2)φ

(2)
k −A

(
φ

(1)
k + φ

(2)
k

)
+ w

(1)
k + w

(2)
k

= (A(1) −A)︸ ︷︷ ︸
6=0

φ
(1)
k + (A(2) −A)︸ ︷︷ ︸

6=0

φ
(2)
k + w

(1)
k + w

(2)
k

(2-10)
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2-2 Modelling 11

Finally, with A taken from (2-6) and noting that Cφ,0 = C
(1)
φ,0 +C

(2)
φ,0, and Cφ,1 = C

(1)
φ,1 +C

(2)
φ,1,

then,

E[wkφT
k ] = (A(1) −A)C(1)

φ,0 + (A(2) −A)C(2)
φ,0

= C
(1)
φ,1 + C

(2)
φ,1 − Cφ,1 = 0

and,

E[wk+jw
T
k ] = (A(1) −A)C(1)

φ,j (A
(1) −A)T + (A(2) −A)C(2)

φ,j (A
(2) −A)T 6= 0

hence breaking the key assumption of whiteness of the process noise in (2-5). Kalman filters,
whose design assumes white process noise, designed for these models will be suboptimal,
which can be verified in their colored prediction-error sequences. This simple example can
easily be generalized to an arbitrary number of layers.

Remark 2.1. Note that wk and φk remain uncorrelated even if the phases at each layer are
cross-correlated, just as long as each w(i) is truly uncorrelated with φ(i)

k .

Rather, for AR-1 modelling in the multi-layer case, each layer should be separated within the
state. For example, for q layers of turbulence, the following model

φ
(1)
k+1
...

φ
(q)
k+1

 =


A(1) 0 0

0 . . . 0
0 0 A(q)



φ

(1)
k
...

φ
(q)
k

+


w

(1)
k
...

w
(q)
k



yk =
[
G · · · G

] 
φ

(1)
k
...

φ
(q)
k


(2-11)

would indeed be such that the process noise is white and remains uncorrelated with the state
as long as each w(i)

k is uncorrelated with all φ(j)
k . However, identification of the dynamics of

this model would require individual knowledge of each of the layers φ(1)
k to φ(q)

k . In Chapter 5,
the erroneous model in (2-5) will be used for multi-layer turbulence, implying an underlying
assumption that the only available wavefront phase data has all the layers added up, which
is the case if the wavefront phases are drawn from the slopes.

Modelling error for sub-pixel movement

Consider single-layer turbulence. Let the wavefront phase move one pixel per time-step in a
hypothetical dense grid, and indicate variables in this dense grid by a superscript (d):

φ
(d)
k+1 = A(d)φ

(d)
k + w

(d)
k

where w(d)
k is assumed white and uncorrelated with φ(d)

k . Consider a coarser "true" grid with
which the wavefront is sampled. In this true grid, the wavefront moves a fraction of a pixel
each time-step. Define Z as the selection matrix of ones and zeros such that

φk = Zφ
(d)
k
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12 Basics of Adaptive Optics

where φk represents the wavefront phase in the true grid. Then,

φk+1 = ZA(d)φ
(d)
k + Zw

(d)
k (2-12)

Say, again, that the turbulence is modelled as

φk+1 = Aφk + wk (2-13)

Comparing (2-12) and (2-13), yields:

wk =
(
ZA(d) −AZ

)
︸ ︷︷ ︸

6=0

φ
(d)
k + Zw

(d)
k (2-14)

From (2-6), one has that

A = ZC
(d)
φ,1Z

T(ZC(d)
φ,0Z

T)−1

= ZA(d)C
(d)
φ,0Z

T(ZC(d)
φ,0Z

T)−1
(2-15)

Finally, again assuming w(d)
k is white and uncorrelated with φ(d)

k ,

E[wkφT
k ] = (ZA(d) −AZ)E[φ(d)

k φT
k ]

= (ZA(d) −AZ)C(d)
φ,0Z

T

= ZA(d)C
(d)
φ,0Z

T − ZA(d)C
(d)
φ,0Z

T = 0

and,

E[wk+jw
T
k ] = (ZA(d) −AZ)C(d)

φ,j (ZA(d) −AZ)T 6= 0

Meaning that wk is colored. Regardless, this model is used in Chapter 5. In Appendix A-1,
we propose the use of lagged AR-1 models as a potential solution for slower cases: imagine,
for example, that the wavefront moves 0.5 pixels per time-step; this is equivalent to 1 pixel
every two time-steps, therefore making the dynamics of a model of lag 2 represent whole-pixel
movement that can be accurately modelled without (or with minimally) colored process noise.

2-2-3 State-space and closed-loop descriptions

The AO system, as per Figure 2-1, is a closed-loop control system whose sensor measures
the slopes of the residual wavefront, and feeds them to the controller, which then shapes the
deformable mirror accordingly. As such, in the closed AO loop, (2-2) becomes instead:

yk = Gεk + vk (2-16)

where εk = φk − φm
k is the residual wavefront, resulting from incomplete correction of the

incoming aberration by the deformable mirror. Combining (2-3), (2-5), and (2-16) yields the
closed-loop system:

εk+1 = Aεk −Huk +AHuk−1 + wk

yk = Gεk + vk
(2-17)
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2-3 Sparse AR model identification 13

Notice how the stochastic part of the state update equation of (2-17), which is the target
of the Kalman filter (see Remark 3.1), is the same as that of the incoming turbulence, as
in (2-5). Indeed, minimization of the 2-norm of a prediction of εk+1 is equivalent to the
minimization of the 2-norm of a prediction of φk+1 − Huk. Because the goal of this thesis
pertains to prediction, then rather than using (2-17), we will ignore the deformable mirror,
and instead focus only on the turbulence itself, with the model:

φk+1 = Aφk + wk

yk = Gφk + vk
(2-18)

knowing that a Kalman filter designed for (2-18) is equivalent to one designed for (2-17),
minus the input term. Let n = (L + 1)2 denote the number of states and m = 2L2 denote
the number of outputs throughout the remainder of the thesis; then, φk ∈ Rn, and yk ∈ Rm.
Both of these scale as O(L2), and O(n) is equivalent to O(m); hence, in Chapter 5, when
scaling and complexities are mentioned, these are given in terms of the outputs only.

2-3 Sparse AR model identification

Recall that, under the frozen flow hypothesis, the temporal evolution of the phase is explained
by the drift of a frozen pattern over the aperture [16]. Say the wind moves with a speed of
ν =

√
ν2

x + ν2
y m/s and the sampling period is τ . Then, (2-4), rewritten here:

ϕ(x, y, t+ τ) = ϕ(x− νxτ, y − νyτ, t)

establishes that, even without knowledge of the wind direction, as long as the wind speed
is over-estimated as ν, it is known as well that information travels only within a radius of
r = τν meters around a certain point of origin in between time-steps [2]. Indeed, (2-4) gives
rise to the sparse "shift-like" structure of the state transition matrix A of the AR-1 turbulence
model, seen in Figure 2-4.

Moreover, not only is the AR-1 model for the phase sparse, but so is an AR model for the
slopes. Naturally, however, when considering the measured slopes, one has to also account for
the measurement noise, which is smoothed out with data from previous time-steps, generally
demanding orders over 1, and with data from adjacent measurements, forcing a radius larger
than r = τν. Let the slopes be modelled with an AR model of order s:

yk = A1yk−1 +A2yk−2 + . . .+Asyk−s

Given a base distance-constraint of r meters imposed upon A1, the other coefficients Ai
should have a radius of ri = i ·r meters, reflecting motion across i time-steps. If one considers
the wind speed in meters per second, the sparsity pattern naturally depends as well on the
inter-lenslet or (inter-pixel) distances. As established above, only an over-estimate of the
wind-speed is necessary, and the inter-lenslet distances are available. However, in truth, the
sparsity pattern, known á priori, depends solely on the over-estimate of the wind speed if it
is given in lenslets or pixels per time-step (both of which should be almost the same, and
will not be distinguished). Let the wind speed given as such be denoted by ω. Then, ∆k
time-steps apart, there is only need to consider inter-lenslet (resp. inter-pixel) interactions
for lenslets (resp. pixels) separated by less than ω∆k lenslets (resp. pixels).
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14 Basics of Adaptive Optics

Exploitation of this sparsity pattern in identification procedures massively reduces the amount
of parameters to identify, decreasing the necessary amount of data, execution time, and storage
requirements, hence enabling application to extremely large-scale systems. Identification of
such sparse models is dealt with in this section.

Figure 2-4: Example A, identified as full, for a wind speed of 0.25 pixels per time-step.

2-3-1 Wavefront phase model

Return to the AR-1 turbulence model (2-5):

φk+1 = Aφk + wk

Frozen flow is reflected in the shift-like structure of A, with the process noise accounting for
the entrance of new data at the edges. Arranging the wavefront phase data, available from
time-step 0 to N , into the following matrices:

Φ1,N =
[
φ1 · · · φN

]
Φ0,N =

[
φ0 · · · φN−1

]
then, a simple procedure for retrieving an estimate of A is given in (2-7).

Â = argmin
A

∥∥∥Φ1,N −AΦ0,N
∥∥∥2

F

This procedure identifies a full matrix with a time complexity of O(Nn2 +n3) (assuming the
RQ-factorization is used), but as argued above, given an over-estimate of the wind speed of ω
pixels per time-step, it is known that entries of A that establish relationships between pixels
separated by more than ω pixels should be zero.

Now, the least-squares problem in (2-7) consists, in fact, of n independent least-squares
problems corresponding to each row of Â. Let idx denote the non-zero indices of the jth row
of A (and Â), and the superscript (?, ?) indicate the row and column indices of a matrix in
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2-3 Sparse AR model identification 15

MATLAB notation. With the sparsity pattern established, a set of n least-squares problems,
one for only the non-zeros of each row of Â can be solved:

Â(j,idx) = argmin
A(j,idx)

∥∥∥Φ(j,:)
1,N −A

(j,idx)Φ(idx,:)
0,N

∥∥∥2

2
(2-19)

Each row must be solved for independently because the regressor Φ(idx,:)
0,N is different for each

row, given the different sets of non-zero indices idx. For an average number q of non-zeros
per row of A, the time complexity of (2-19) is given by:

n times


O(Nq2) for the RQ-factorization
O(Nq) to form Y

(j,:)
s,N QT

O(q2) for the back-substitutions

for a total of O(Nnq2) operations. Note also that since the least-squares problems for each
of the rows are all independent, these can be solved in parallel.

With (2-19), one has obtained an estimate of A with sparsity imposed. The matrix A is
expected to be very highly sparse (see Figure 2-4), and so (2-19), compared to (2-7), brings
higher estimate quality, due to the reduced amount parameters to identify, and consequently
the data required; shortened prediction times; and reduced time and memory complexities.

2-3-2 Slope model

The output of asymptotically stable models of the form (2-18) can be represented by an AR
model of adequate order. Consider the time-update of the Kalman filter designed for (2-18):

φ̂k+1 = (A−KG)φ̂k +Kyk

yk = Gφ̂k + ek
(2-20)

The output (slopes) can be written as

yk = GKyk−1 +G(A−KG)Kyk−1 +G(A−KG)2Kyk−2 + . . .+
+G(A−KG)kφ̂0 + ek

(2-21)

Given asymptotic stability of the Kalman filter, then for some s, for all j ≥ s, it holds that
(A−KG)j ≈ 0. Cutting off all such terms from (2-21) yields a finite-order AR model for the
outputs:

yk = A1yk−1 +A2yk−2 + . . .+Asyk−s (2-22)

where Ai = G(A−KG)i−1K are the Markov parameters of the observer-form Kalman filter
2-20. Using the same reasoning as for the wavefront phase, one can establish a similar sparsity
pattern, with a caveat: the slope measurements are affected by noise, and a successful model
of form (2-22) will smoothen the noise at each lenslet by using information not only from
previous time-steps, but also from nearby lenslets. This use of information from adjacent

Master of Science Thesis Paulo Cerqueira



16 Basics of Adaptive Optics

lenslets must be accommodated by a choice of distance-constraint that exceeds the wind
speed (in lenslets per time-step). Arrange the data into matrices

Yi,j,N =


yi yi+1 yi+2 · · · yi+N−1
yi+1 yi+2 · · · yi+N
yi+2
...

...
yi+j−1 yi+j · · · yi+j+N−2


Yi,N =

[
yi yi+1 yi+2 · · · yi+N−1

]
and define

A =
[
As As−1 · · · A1

]
Normally, without exploiting sparsity, from (2-22), A would be obtained from the following
least-squares problem:

Â = argmin
A

∥∥∥Ys,N −AY0,s,N
∥∥∥2

F
= Ys,NY

†
0,s,N (2-23)

where the superscript † indicates the appropriate pseudo-inverse. Problem (2-23) takes
O(Ns2m2+s2m3) time (assuming the RQ-factorization is used) [19]. Similarly to the previous
subsection, (2-23) consists of m independent least-squares problem, each corresponding to a
row of Â. Rather than solving for a full A, then, introduce the sparsity pattern [2]:

Â(j,idx) = argmin
A(j,idx)

∥∥∥Y (j,:)
s,N −A

(j,idx)
Y

(idx,:)
0,s,N

∥∥∥2

2
(2-24)

Given the very high sparsity of A, (2-24) is much faster than (2-23) for large systems, while
requiring far less data as well. Indeed, for an average of q non-zero elements per row, the
computational complexity of an implementation of (2-24) is given by

m times


O(Nq2) for the RQ-factorization
O(Nq) to form Y

(j,:)
s,N QT

O(q2) for the back-substitutions

For a total of O(Nmq2) operations, scaling linearly with m for a fixed average number q of
non-zeros. The m independent problems in (2-23) or (2-24) can all be solved in parallel as
well, further dividing the complexity per processor. The AR modelling of the slopes arises
naturally in prediction-error data-driven Kalman filtering, and this sparse implementation
is key to enable the implementation of data-driven filtering to large-scale AO. This sparse
implementation increases the estimate quality due to the reduced necessary amount of data,
and reduces both the time and memory complexity of the operations.

2-3-3 Setting distance constraints

The base distance-constraint for A or the Markov parameters is straightforward: it is given
lenslets (for the Markov parameters) in pixels (in the case of A), and a distance of zero forces
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2-3 Sparse AR model identification 17

a lenslet (resp. pixel) to influence only itself, while a distance of ω sets a radius of influence of
ω lenslets (resp. pixels). Note that fractional distances are possible (for example, diagonally
adjacent lenslets are separated by a distance of

√
2 lenslets). Figure 2-5 shows an example

distance-constraint applied to a lenslet; the application to pixels is analogous.

Figure 2-5: Example distance-constraint in terms of lenslets. The distance is here selected
as slightly above 2. The bright red square represents the lenslet whose interactions are to be
constrained, the red circle depicts the distance around the lenslet, and the pale orange squares
represent the lenslets that fulfill the distance-constraint. The crosses mark the center of each
lenslet.

The discrete nature of lenslets and pixels also implies that meaningful distance-constraints are
discrete as well; that is, for example, all distance-constraints within the interval [

√
2, 2[ result

in the exact same sparsity pattern, as do any within [2,
√

5[. When mentioning the chosen
distance-constraints in Chapter 5, then, peculiar numbers will be avoided: for example, rather
than saying that a constraint of

√
2 was chosen, 1.5 will be stated instead.

Figure 2-6: Exaggerated non-zero pattern of an AR-2 model of the slopes for a small-scale
system. White entries are non-zeros, black entries are zero. The second (leftmost) Markov
parameter has a constraint of double the radius of that of the first (rightmost) Markov parameter
imposed. A third Markov parameter would triple it, and so forth.
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Chapter 3

Data-Driven Kalman Filtering

Underlying the modelling of Adaptive Optics (AO) systems for control and estimation pur-
poses are multiple assumptions regarding the atmospheric turbulence, beyond the frozen flow
assumption; parameters such as the wind speed and direction, the number of turbulence lay-
ers, the covariance of the measurement noise, among others, must be set to determine the
model for which a Kalman filter is designed. Data-driven identification of the Kalman gain
is thus motivated:

• Determines the steady-state Kalman gain from data, implicitly determining the stochas-
tic parameters, and additionally accounting for possible modelling errors by covering
them as fictitious process noise.

• Allows direct determination of the steady-state Kalman gain, avoiding the computa-
tionally intensive Discrete-time Algebraic Riccati Equation (DARE), while providing a
setting for the exploitation of sparsity of the system matrices for great computational
benefits.

• With a dedicated implementation, enables automatic adaptation to changing turbulence
statistics.

This self-contained chapter pertains to both a short survey of existing literature on algorithms
for identification of the Kalman gain with special focus on the most relevant algorithm, and
to the introduction of a novel approach. These two algorithms will be described and derived
in a general setting, setting aside the specificity of the AO context, which will be reintroduced
in Chapter 4 along with the changes it incurs. The derivations of the algorithms herein will
serve to justify some alterations made for AO.

3-1 Introduction

The literature regarding data-driven Kalman filtering (usually referred to as adaptive Kalman
filtering) has traditionally divided existing algorithms into four categories: Bayesian estima-
tion, maximum likelihood methods, correlation methods, and covariance matching [20, 21].
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20 Data-Driven Kalman Filtering

This distinction remains useful, but does not cover all algorithms, namely prediction-error
methods, a fifth category adopted in this thesis.

Most algorithms in the field of data-driven Kalman filtering estimate the process and measure-
ment noise covariances, rather than the Kalman gain; the gain is then obtained through the
cumbersome DARE, whose execution time scales with the cube of the state dimension. Nat-
urally, then, in the context of large-scale AO systems, algorithms that estimate the Kalman
gain directly, skipping the DARE, are preferred.

The first two approaches, Bayesian [22, 23] and maximum likelihood [24, 25, 26] use prob-
abilistic arguments to derive cost functions that are then minimized using computationally
expensive optimization algorithms, hampering application to large-scale systems.

Correlation methods, among which [20, 27, 28, 29], draw information from the lagged au-
tocovariances of the prediction errors of a suboptimal initial filter or the unfiltered outputs
themselves. The main contenders among these algorithms then solve a set of linear equations
for the process and measurement noise covariances Q and R in a least-squares setting, enabled
by the use of vectorization [27, 29]. Although suitable for application in small or moderately
sized systems, the use of vectorization in the process leads to execution times and storage
requirements scaling with the fourth power of the output dimension, which precludes use of
the algorithms for large-scale systems. In the same category, Bélanger and Carew’s iterative
algorithm [28], which estimates the Kalman gain directly without vectorization, has proved
to be somewhat unreliable in its convergence [30].

Covariance matching methods [31, 32, 33], under very rough abstractions, update the noise
covariance matrices in such a way that the resulting estimates may converge to the true
covariances. No guarantees of convergence are given, and the estimators are highly biased.
In particular, the results of the literature survey leading up to this thesis [30] show that the
popular algorithm by Myers and Tapley [31] is, for the reasons above, suitable only for small
corrections to an already good initial guess.

Prediction-error methods prove the most promising for large-scale application. These set a
cost function JN (K) of the form

JN (K) = 1
N

N∑
k=1

∥∥∥yk − ŷk|k−1(K)
∥∥∥2

2
= 1
N

N∑
k=1
‖ek(K)‖22 (3-1)

which can be minimized for an estimate of the Kalman gain in a least-squares setting, without
vectorization, scaling with the cube of the output dimension rather than the fourth power as
with correlation methods, while also providing a good setting for exploitation of the sparsity
of system matrices, when applicable. These estimators also boast smaller covariances than
those obtained from correlation methods [30]. Two methods in this category will be the focus
of the remainder this chapter: the algorithm developed by Juang and Chen [34], and a novel
proposal. Further improvements to the computational complexity are detailed in Chapter 4,
given the sparsity of the system matrices in AO.
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3-1 Introduction 21

Preliminary definitions

Throughout this chapter, consider the system

xk+1 = Axk + wk

yk = Cxk + vk
(3-2)

where xk ∈ Rn and yk ∈ Rm. The system is assumed observable, and wk and vk are uncorre-
lated white Gaussian process and measurement noises, with covariancesQ and R, respectively;
that is:

[
wk
vk

]
∼ N

([
0
0

]
,

[
Q 0
0 R

])

The time-update (prediction) of the corresponding steady-state Kalman filter, in both ob-
server and innovation form, is given by [35]

x̂k+1 = (A−KC)x̂k +Kyk (3-3)
x̂k+1 = Ax̂k +Kek (3-4)
yk = Cx̂k + ek (3-5)

The time-update of the Kalman filter is referred to as "Kalman predictor" in this thesis.
Further define the matrices

Yi,j,N =


yi yi+1 yi+2 · · · yi+N−1
yi+1 yi+2 · · · yi+N
yi+2
...

...
yi+j−1 yi+j · · · yi+j+N−2


Yi,N =

[
yi yi+1 yi+2 · · · yi+N−1

]
Matrix Yi,j,N ∈ Rjm×N is an N−column block-Hankel matrix with j block-rows containing
output information, and Yi,N ∈ Rm×N is equivalent to Yi,1,N . Other variables, x̂k and ek,
will similarly have matrices so constructed, following the same definition and notation; in
particular, X̂i,N ∈ Rn×N = [ x̂i x̂i+1 · · · x̂i+N−1 ] is an N−column block-row-vector
comprising entries from the optimal state prediction sequence. Matrix Oj ∈ Rjm×n is an
extended observability matrix up to power j − 1 of A:

Oj =
[
CT (CA)T · · · (CAj−1)T

]T
Remark 3.1. When the system in question includes an input term, the time-update of its
Kalman filter is given by

x̂k+1 = Ax̂k +Buk +Kek
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22 Data-Driven Kalman Filtering

and the stochastic part can be isolated to yield (3-2). The state prediction x̂k can be separated
into its stochastic part x̂(s)

k and its deterministic part x(d)
k

x̂k = x
(d)
k + x̂

(s)
k

x
(d)
k+1 = Ax

(d)
k +Buk

x̂
(s)
k+1 = Ax̂

(s)
k +Kek

y
(s)
k = yk − Cx

(d)
k

(3-6)

where y(s)
k is then the yk considered in (3-2). The input-less formulation is the one used

throughout this thesis: recalling Subsection 2-2-3, ε̂k would take the place of x̂k in (3-6), and
φ̂k would be x̂(s)

k .

3-2 Single AR fitting

This section describes the data-driven Kalman filtering algorithm developed by Juang and
Chen [34].

Assume data is available from time-step 0 to Nd, for a total data batch length of Nd + 1,
and take system (3-2) and the time-update of its Kalman filter in observer form (3-3); the
resulting predicted state sequence follows

x̂1 = (A−KC)x̂0 +Ky0

x̂2 = (A−KC)2x̂0 + (A−KC)Ky0 +Ky1
...

x̂k = (A−KC)kx̂0 +
k−1∑
i=0

(A−KC)k−1−iKyi (3-7)

Since the error dynamics of the Kalman filter are asymptotically stable, it is possible to assume
that s is chosen such that, for any j ≥ s, then (A − KC)j ≈ 0; then, all terms including
(A−KC)j can be neglected from the extension of (3-7) to time indices k ≥ s, yielding

x̂k ≈
s−1∑
i=0

(A−KC)s−1−iKyk−s+i (3-8)

which can be written as

x̂k ≈
[
(A−KC)s−1K · · · (A−KC)K K

]
︸ ︷︷ ︸

L


yk−s
...

yk−2
yk−1

 (3-9)
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3-2 Single AR fitting 23

Then, introducing (3-9) into (3-5) for all time-steps for which data is available yields

[
ys · · · ys+N−1

]
︸ ︷︷ ︸

Ys,N

≈ CL


y0 y1 y2 · · · yN−1
y1 y2 · · · yN
y2
...

...
ys−1 ys · · · ys+N−2


︸ ︷︷ ︸

Y0,s,N

+
[
es · · · es+N−1

]
︸ ︷︷ ︸

Es,N

(3-10)

where N = Nd− s+ 1, so that ys+N−1 = yNd
. An estimate ĈL of CL is extracted from (3-10)

by solving a least-squares problem:

ĈL = argmin
CL

‖Ys,N − (CL)Y0,s,N‖2F = Ys,NY
†

0,s,N (3-11)

where the superscript † denotes the appropriate pseudo-inverse (right pseudo-inverse, in this
case), and it is assumed that Y0,s,N has full row rank.

Remark 3.2. The formulation here presented differs slightly from that of Juang and Chen
in the original article in that instead of equation (3-10), Juang and Chen take Y1,Nd

in the
left-hand-side and zero pad the block-Hankel matrix of the right-hand-side [34]:

Y1,Nd
≈ CL


0 · · · 0 y0 y1 · · · yNd−s
... ... ... ... · · · yNd−s+1

0 y0 y1
...

y0 y1 y2 · · · yNd−1

+ E1,Nd

Naturally, the formulation in (3-10) presents a more general case, without the assumption
that the output signals prior to the first time-step are all zero.

With ĈL obtained, the Markov parameters of the filter in observer-form ((3-3)) have been
estimated up to power s− 1. That is,

CL =
[
C(A−KC)s−1K · · · C(A−KC)K CK

]
(3-12)

From these, one now proceeds to obtain the first p Markov parameters of the innovation-form
in (3-4), with p ≤ s, such that the extended observability matrix up to power p − 1 has full
column rank. For simplicity, with j ∈ {1, . . . , p}, define the coefficients

αj = C(A−KC)j−1K

βj = CAj−1K

The system Markov parameters βj can be computed recursively by the following equation:

βj = αj +
j−1∑
i=1

βj−iαi (3-13)
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24 Data-Driven Kalman Filtering

So the estimate ĈL is used to retrieve estimates α̂j of the observer-form Markov parameters
as per (3-12), and using (3-13) one obtains estimates β̂j of the innovation-form parameters
up to a desired j = p. These are stacked into an estimate ÔpK

ÔpK =


β̂1
...
β̂p

 =


ĈK
...

̂CAp−1K

 (3-14)

which is used in a second least-squares problem to retrieve K̂:

K̂ = argmin
K

∥∥∥ÔpK −OpK∥∥∥2

F
= O†pÔpK (3-15)

where Op should have full column rank.

Theorem 3.1. Consider the asymptotically stable observable system (3-2), its Kalman filter
(3-3)-(3-5), and the estimators given by (3-12) and (3-15). Assume steady-state operation
and ergodicity of the signals ek, x̂k, and yk, and full row rank of Y0,s,N . Then

lim
N→∞
s→∞

ĈL = CL and lim
N→∞
s→∞

K̂ = K

Furthermore, both estimators are asymptotically unbiased in s.

Proof. Consider the exact version of (3-10):

Ys,N = CLY0,s,N + C(A−KC)sX̂0,N + Es,N (3-16)

Introducing (3-16) into the formula for the estimator ĈL yields:

ĈL = Ys,NY
†

0,s,N = CL+ C(A−KC)sX̂0,NY
†

0,s,N + Es,NY
†

0,s,N

Among the properties of the innovation sequence is that it is uncorrelated with past outputs:

E[Es,NY T
0,s,N ] = 0

Hence,

E[ĈL] = CL+ E[C(A−KC)sX̂0,NY
†

0,s,N ]

and, given asymptotic stability of the system, (A −KG)s vanishes in the limit of s, leading
to:

lim
s→∞

E[ĈL] = CL

That is, ĈL is asymptotically unbiased in s. With this established, since (3-13) is exact, it
follows that the same conclusion applies to ÔpK. Then,

lim
s→∞

E[K̂ ] = lim
s→∞

E[O†pÔpK ] = lim
s→∞

E[O†pOpK ] = K

Ergodicity of the random variables involved implies that as N tends to infinity, the product
Es,NY

†
0,s,N equals its expected value, concluding the proof.

Paulo Cerqueira Master of Science Thesis



3-2 Single AR fitting 25

Remark 3.3. In truth, the data equation is true as well when considering an unbiased
suboptimal filter given by:

x̂∗k+1 = (A− KC)x̂∗k + Kyk
x̂∗k+1 = Ax̂∗k + Ke∗k
yk = Cx̂∗k + e∗k

where Kdenotes a suboptimal gain. In this case, the data equation reads

Ys,N = C LY0,s,N + Es,N

where,

L=
[
(A− KC)s−1 K · · · (A− KC) K K

]
and Es,N denotes a suboptimal counterpart to Es,N . In the suboptimal case, it is no longer
true that the prediction errors are uncorrelated with past outputs; that is: E[ Es,NY T

0,s,N ] 6= 0.
Following the steps of the proof of Theorem 3.1, it can be shown that it is also true that,

lim
s→∞

E[ĈL] = C L+ E[ Es,NY †0,s,N ]

from which follows that,

CL = C L+ E[ Es,NY †0,s,N ]

The procedure can be summarized as follows:

1) Gather the data into Ys,N and Y0,s,N as in (3-10), with s such that (A−KC)s ≈ 0

2) Solve the least-squares problem in (3-12) for an estimate ĈL of CL

3) Compute estimates of the innovation-form Markov parameters using (3-13) and
construct ÔpK according to (3-14)

4) Solve the final least-squares problem in (3-15) for an estimate K̂ of K

Time complexity

The scaling of the computational complexities of each step of Juang and Chen’s algorithm
with respect to the system dimensions, measured in floating-point operations (flops), are given
in Table 3-1.
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26 Data-Driven Kalman Filtering

Step Flop scaling

Solution of the first
least-squares problem1 (3-11) O(Ns2m2 + s2m3)

Computation of the p Markov
parameters as per (3-13) O(p2m3)

Solution of the second
least-squares problem1 (3-15) O(pmn2 +mn2)

Total O(Ns2m2 + (s2 + p2)m3 + pmn2)

Table 3-1: Time complexities per step of Juang and Chen’s algorithm

Remark 3.4. Note that, for the second least-squares problem, the QR decomposition of
Op need only be computed once, ideally offline, for all further use, thereby reducing the
complexity of this step for all subsequent runs (say, in online application with new data
batches). Because the regressor Y0,s,N of the first least-squares problem is built with data, its
decomposition must be always be done.

3-3 Multiple AR fitting

The novel algorithm described in this subsection, henceforth named MARK, standing for
"Multiple Auto-Regressive" with a "K" for "Kalman", was motivated by the introduction of
knowledge of A and C in the equations from which subspace identification algorithms were
derived. It is closely related to the previous algorithm, and its derivation follows the same
steps up to equation (3-9). The state prediction of the optimal filter at time k is given by

x̂k =
[
(A−KC)s−1K · · · (A−KC)K K

]
︸ ︷︷ ︸

L


yk−s
...

yk−2
yk−1

+ (A−KC)sx̂0

Notice again that the last block-column of L is K. From the innovation form of the Kalman
filter in (3-4), and (3-5), one obtains for an arbitrary time index k and lag j:

yk+j = CAj x̂k +
j−1∑
i=0

CAj−1−iKek+i (3-17)

It is now assumed that s is chosen such that, for k ≥ s, then (A−KC)k ≈ 0; this assumption
is possible given asymptotic stability of the system. Then, from (3-9) and (3-17), it follows
that:

Ys,p,N = OpX̂s,N + SpEs,p,N (3-18)
X̂s,N = LY0,s,N + (A−KC)sX̂0,N︸ ︷︷ ︸

≈ 0

(3-19)

1Assuming the least-squares problems are solved using the QR decomposition. The flops are given in [19]
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where

Sp =


I
CK I
CAK CK I

... . . . . . .
CAp−2K . . . CK I


Introduction of (3-19) into (3-18) yields the data equation:

Ys,p,N = OpLY0,s,N +Op(A−KC)sX̂0,N︸ ︷︷ ︸
≈ 0

+SpEs,p,N (3-20)

Discarding the negligible term, the data equation reads:

Ys,p,N ≈ OpLY0,s,N + SpEs,p,N (3-21)

The following least-squares problem is thus proposed to estimate the Kalman gain:

L̂ = argmin
L

∥∥∥Ys,p,N −OpLY0,s,N
∥∥∥2

F
= O†pYs,p,NY

†
0,s,N (3-22)

from which an estimate K̂ of K is drawn from the last block-column of L̂. Problem (3-22) is
equivalent to finding the solution to two least-squares problems, one row-wise with Y0,s,N as
the regressor matrix, and one column-wise with Op as the regressor matrix:

ÔpL = argmin
OpL

∥∥∥Ys,p,N − (OpL)Y0,s,N
∥∥∥2

F

L̂ = argmin
L

∥∥∥ ÔpL −OpL∥∥∥2

F

(3-23)

(3-24)

Theorem 3.2. Consider the asymptotically stable observable system (3-2), its Kalman filter
(3-3)-(3-5), and the estimators given by (3-23) and (3-24). Assume steady-state operation
and ergodicity of the signals ek, x̂k and yk, and full row rank of Y0,s,N . Then

lim
N→∞
s→∞

ÔpL = OpL and lim
N→∞
s→∞

L̂ = L

with both estimators being asymptotically unbiased in s.

Proof. Recall equation (3-20)

Ys,p,N = OpLY0,s,N +Op(A−KC)sX̂0,N + SpEs,p,N

Introducing (3-20) into the formula for ÔpL results in

ÔpL = Ys,p,NY
†

0,s,N = OpL+Op(A−KC)sX̂0,NY
†

0,s,N + Es,p,NY
†

0,s,N

Master of Science Thesis Paulo Cerqueira



28 Data-Driven Kalman Filtering

Since the innovation sequence is uncorrelated with past outputs,

E[Es,p,NY T
0,s,N ] = 0

then,

E[ÔpL] = OpL+ E[Op(A−KC)sX̂0,NY
†

0,s,N ]

Because the system is asymptotically stable, in the limit as s tends to infinity (A − KG)s
vanishes, yielding

lim
s→∞

E[ÔpL] = OpL

Then,

lim
s→∞

E[L̂] = lim
s→∞

E[O†pÔpL] = lim
s→∞

E[O†pOpL] = L

Ergodicity of the random signals involved implies that, as N tends to infinity, the product
Es,p,NY

†
0,s,N equals its expected value, concluding the proof.

A remark analogous to Remark 3.3 can be made for this algorithm. It is also possible to
obtain an estimate of K by solving directly for only the last block-column of L̂ in (3-24). In
MATLAB notation:

ÔpK = ÔpL( : , end−m+ 1 : end)

K̂ = argmin
K

∥∥∥ ÔpK −OpK ∥∥∥2

F

(3-25)

(3-26)

Meaning that once the Auto-Regressive (AR) models are fit to data with (3-23), only their
first Markov parameter is further relevant for the process. Our implementation of choice has
the problem split into (3-23) and (3-26), reducing the number of parameters to estimate, and
thus the computational burden.

The procedure can be summarized as follows:

1) Gather the data into Ys,p,N and Y0,s,N as in (3-20), with s such that (A−KC)s ≈ 0

2) Solve the least-squares problems in (3-22) for an estimate L̂ of L

3) Extract the last m columns to obtain an estimate K̂ of K

Time complexity

The scaling of the computational complexities of each step of MARK with respect to the
system dimensions are given in Table 3-2, considering the problem is split into (3-23) and
(3-26) so that only the last block-column ÔpK of ÔpL is used to retrieve K̂.
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Step Flop scaling

Solution of the first
least-squares problem1 (3-23) O(Ns2m2 + ps2m3)

Solution of the second
least-squares problem1 (3-26) O(pmn2 +mn2)

Total O(Ns2m2 + ps2m3 + pmn2)

Table 3-2: Time complexities per step of MARK

Remark 3.4 is applicable to MARK as well.

3-4 Concluding remarks

From equations (3-12) and (3-23), it is visible that the initial step of both algorithms is
to fit AR models of order s to data; Juang and Chen’s algorithm fits a single AR model,
whereas MARK fits a series of AR models with increasing lag up to p. The former algorithm
then combines the estimated Markov parameters of the observer-form Kalman filter to obtain
estimates of p of the innovation-form Markov parameters, whence K̂ is extracted. In turn,
MARK takes the first Markov parameters of each of the p AR models to build the system
Markov parameters.

Given the goal of application to extremely large systems, Juang and Chen’s algorithm benefits
from fitting for only one AR model, which keeps its execution time significantly lower than
that of MARK. In the context of this thesis, MARK’s main merit is the additional possible
choice of model order s, s = 1: whereas Juang requires at least two observer-form Markov
parameters to compute the minimum of two innovation-form parameters, MARK can, instead,
identify two models of order s = 1 to retrieve the two innovation-form Markov parameters
from which K̂ is extracted.

This additional choice of s, even if of limited utility, proves the most robust to modelling
errors, and should be useful for prediction when A is expected to poorly represent the system
dynamics.

1Assuming the least-squares problems are solved using the QR decomposition. The flops are given in [19]
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30 Data-Driven Kalman Filtering

3-4-1 Reconstruction

The Kalman filter is usually formulated with two distinct steps: the measurement-update,
and the time-update, given respectively by [35]:

x̂k|k = x̂k|k−1 +Kr(yk + Cx̂k|k−1) (3-27)
x̂k+1|k = Ax̂k|k−1 +K(yk + Cx̂k|k−1) (3-28)

where x̂k|k and x̂k+1|k denote the state estimates for time k and k+1, respectively, using data
up to time k. The latter, x̂k+1|k, was referred to as just x̂k+1 up until this point; the notation
x̂k+1|k is used only in this section, where the distinction between x̂k+1|k and x̂k|k is relevant.

In [35], the resulting state estimates of each update are referred to as "filtered state" for the
measurement update, and "one-step-ahead predicted state" for the time-update. In this the-
sis, the filtered state is referred to as "reconstructed state" instead, keeping in line with the
use of "wavefront reconstruction" in the adaptive optics context; gain Kr is here referred to
as "reconstructor gain", and K as either "predictor gain" (when standing in opposition to the
reconstructor gain) or just "Kalman gain". Similarly, (3-27) is labelled "Kalman reconstruc-
tor".

When the process and measurement noises are uncorrelated, K = AKr (and x̂k+1|k = Ax̂k|k),
and estimation of Kr requires only a minor change to the second least-squares problem of
both algorithms: take (3-15) and (3-26) and replace the regressor Op with OpA, yielding:

K̂r = argmin
Kr

∥∥∥ ÔpK − (OpA)Kr
∥∥∥2

F
(3-29)
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Chapter 4

Methods for Large-Scale Adaptive
Optics

This chapter is focused on the reduction of the complexity of data-driven and prediction
procedures for their application to Adaptive Optics (AO). The data-driven Kalman filtering
procedures from Chapter are brought 3 to AO by introducing the sparsity patterns established
in Chapter 2. A novel algorithm is then proposed to reduce the burden of the prediction
operation, whose execution time normally suffers from the use of a full Kalman gain.
Resume use of notation and the AO state-space system as described in Chapter 2:

φk+1 = Aφk + wk

yk = Gφk + vk

where φk ∈ Rn, and yk ∈ Rm, with n = (L + 1)2, m = 2L2, and L being the width of the
array, measured in lenslets. Notice that the measurement matrix is now denoted by G again,
rather than C as in chapter 3.

4-1 Identification of the Kalman gain for large-scale AO

Several adaptations are necessary when bringing data-driven filtering to large-scale AO. First,
one of the assumptions made in the derivation of the algorithms of the previous chapter does
not hold in the AO context, and has to be worked around. Second, the extremely large
dimensions of the systems involved make direct application of the algorithms unfeasible; it is
paramount, then, to exploit the sparsity of the matrices to reduce computational complexity.

4-1-1 Removal of the mean

In chapter 3, the terms involving (A−KC)s were discarded as negligible as it is assumed that
s is such that (A−KC)s ≈ 0. This then yielded the important equations given in (3-10) and
(3-21) that led to the development of their corresponding algorithms.
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32 Methods for Large-Scale Adaptive Optics

In the AO context, this is not true for any small s. The error dynamics of the Kalman filter
for the AR-1 turbulence model will have an eigenvalue close to 1 corresponding to a constant
mode (an offset in the wavefront phase), which illustrates how, although possible (even if
irrelevant), it takes long before the Kalman filter can accurately predict the mean of the
phase.

Nevertheless, the approximations in equations (3-10) and (3-21) still hold because although
(A − KG)s is not almost zero, Op(A − KG)s is negligible for low p (hence why p is kept
at its minimum of 2 in Chapter 5). Indeed, when left-multiplying a constant vector by G,
the result is zero, and given the shift-like structure of A, then left-multiplication by GA is
expected to be almost zero as well. So when every mode but the constant one has decayed,
then Op(A−KG)s ≈ 0 holds satisfactorily.

A problem arises when solving for K̂ (or L̂), however: the system is observable, so Op has
full column rank, and is cut by its pseudo-inverse when solving (3-15), (3-24), or (3-26). In
terms of L̂, substituting (3-20) into (3-24):

lim
N→∞

L̂ = L+��
��*IO†pOp(A−KG)sX̂0,NY

†
0,s,N

= L+ (A−KG)sX̂0,NY
†

0,s,N︸ ︷︷ ︸
Assuming all modes but the offset have decayed from (A−KG)s, the underbraced term will
be a column-wise-constant distortion of L̂. Now, K̂ is retrieved from the last block-column
of L̂, and will share these distortions. Let the distorted gain K̂ be given by K plus the
column-wise-constant distortions:

K̂ = K +

 | | |
d1 d2 · · · dm
| | |


︸ ︷︷ ︸

D

then, the predicted wavefront is given by

φ̂k+1 = Aφ̂k +Kek +Dek

Because wavefront phase offsets do not affect image quality, the mean of φ̂k can (and should)
be removed every time-step. Removal of the mean is equivalent to projecting out the column-
wise means, since the phase is a column vector, which ends up removing the distortions. Say
this projection matrix is Π; then:

Πφ̂k+1 = ΠAφ̂k + ΠKek +���*
0

ΠDek
= ΠAφ̂k + ΠKek

Meaning that not only does the distortion of K̂ by D not affect image quality, but also that
it is trivial to remove from the predictions. Nonetheless, it is advised to remove the column
means from the gain K̂ itself as well, otherwise it is rendered unrecognizable, as shown in
Figure 4-1.
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4-1 Identification of the Kalman gain for large-scale AO 33

Remark 4.1. When the Kalman gain is identified, the constant mode of the error dynamics
might actually be unstable, rather than just having an eigenvalue close to, but smaller than
1, especially if the column-means of the gain were preemptively removed. Although irrelevant
in theory, instability of the constant mode will lead to numerical problems unless the means
of the predicted wavefront phases are removed.

Remark 4.2. Subsection 4-1-2 describes identification of a sparse, distance-constrained gain.
This sparse gain does not fit for the distortions, and removal of its column means is not
required; in fact, doing so would destroy its sparsity, much like with A, and should not be
done.

Figure 4-1: Identified Kalman gain with-
out the column means removed.

Figure 4-2: Identified Kalman gain with
the column means removed.

4-1-2 Sparse identification

Recall the first least-squares problems (3-11) and (3-23) of the algorithms described in Chapter
3. In their application to AO, both of these problems consist of fitting AR models to the slope
data, which means that the sparsity patterns established in Subsection 2-3-2 are applicable.
Begin with Juang and Chen’s algorithm, and introduce AO notation into (3-11):

ĜL = argmin
GL

‖Ys,N − (GL)Y0,s,N‖2F

After establishing a sparsity pattern via distance-constraints as per Section 2-3-2, then rather
than identifying the full GL, one can identify only the known non-zeros by separating the
problem into its m independent rows, and solving instead

ĜL
(j,idx) = argmin

(GL)(j,idx)

∥∥∥Y (j,:)
s,N − (GL)(j,idx)

Y
(idx,:)

0,s,N

∥∥∥2

2
(4-1)

for each row j (out of m rows), where idx denotes the non-zero indices of the jth row of
GL, and the superscript (?, ?) indicates the row and column indices of a matrix in MATLAB
notation. Analogously, consider MARK’s (3-23):

ÔpL = argmin
OpL

∥∥∥Ys,p,N − (OpL)Y0,s,N
∥∥∥2

F
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which involves fitting p AR models of increasing lag, indicated by a superscript (i):

OpL =



| A(1) |

| A(2) |

...

| A(p) |

 =


A(1)
s . . . A(1)

1
A(2)
s . . . A(2)

1
...

A(p)
s . . . A(p)

1


Now say a radius of r is chosen as the base distance-constraint; remember that each Markov
parameter A(1)

i = G(A −KG)i−1K has a distance-constraint of r(1)
i = i · r imposed upon it

to accommodate the time-step delay between the terms it relates. Then, following the same
reasoning, the distance-constraint of Markov parameter A(j)

i should be r(j)
i = i · j ·r. Problem

(3-23) thus becomes:

ÔpL
(j,idx) = argmin

(OpL)(j,idx)

∥∥∥Y (j,:)
s,N − (OpL)(j,idx)

Y
(idx,:)

0,s,N

∥∥∥2

2
(4-2)

for each row j out of a total of pm rows.

Sparse Kalman gain

As for the second least-squares problem given in (3-15) and (3-26):

K̂ = argmin
K

∥∥∥ÔpK −OpK∥∥∥2

F

Its regressand ÔpK is taken from the solution to (4-1), and is hence sparse, and the regressor
is the highly sparse extended observability matrix Op known beforehand. The high sparsity
of these two matrices is such that this least-squares problem can be solved quickly using
dedicated sparse QR solvers. MATLAB’s backslash operator applies one such solver [36].
Figure 5-29 suggests the time is roughly O(m) in practise.

Nonetheless, for the two-stage algorithm described in the next section, consider an alternative
gain K with a sparsity pattern such that each pixel is influenced only by measurement points
within an area around itself. Then following the previous steps, the least-squares problem
can be split into its m independent columns and solved only for the non-zeros:

K
(idx,j) = argmin

K(idx,j)

∥∥∥ÔpK(:,j) −O(:,idx)
p K(idx,j)

∥∥∥2

2
(4-3)

However, the Kalman gain is usually not sparse, and this sparse distance-constrained gain will
fail to predict the the modes of the wavefront that span larger distances. The next section
will detail a two-stage prediction procedure that employs this sparse gain as a first prediction
step, together with a second step for prediction of the low frequencies of the wavefront.

Sparse identification of a gain has merits with respect to storage: a full Kalman gain has
nm entries, which, for extremely large systems, will far exceed Nm (where N is the data
batch length), since the sparsity of the Markov parameters makes the required amount of
data depend on the number of non-zeros, which is fixed for a given wind speed in lenslets per
time-step, rather than the system dimensions.
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4-1 Identification of the Kalman gain for large-scale AO 35

Remark 4.3 (Regularized least-squares). Unlike the full Kalman gain, it is normally not
necessary to remove the mean of the sparse gain, as (4-3) does not fit for the column-wise
constant distortions unless the distance-constraint is too large for the gain to truly be sparse
in the first place. It is also undesirable to remove the column means, as doing so destroys the
sparsity of the gain.

In any case, it is worth mentioning that, rather than subtracting the mean, it is possible to
truly ensure the distortions do not affect the gain, without destroying sparsity, via regularized
least-squares, at the expense of efficiency:

K
(idx,j) = argmin

K(idx,j)

∥∥∥ÔpK(:,j) −O(:,idx)
p K(idx,j)

∥∥∥2

2
+ λ

∥∥∥Π(:,idx)K(idx,j)
∥∥∥2

2

where Π = [1 1 · · · 1]. The means of the non-zero entries of each column of K are thus
penalized in the cost function with weight λ, which, kept small, retains performance.

4-1-3 Setting the distance constraint for the gain

Because the gain relates pixels and lenslets, and the former outnumber the latter, its distance-
constraint is set differently: a constraint of zero forces a pixel to be influenced only by the
four lenslets immediately around it, with increased distances expanding the square outward.
Figure 4-3 displays the acceptable interactions for the distance-constraints of 0 and 1.

z = 0 z = 1

Figure 4-3: Example distance-constraint of the gain. The central dark red dot represents the
pixel whose interactions are being constrained, the red squares represent the lenslets that fulfill a
distance-constraint of z.

Note that having a zero distance include the immediately adjacent four lenslets is a mere
design choice, and the user can choose a different convention. In fact, the area set with the
constraint need not be square, but was chosen was as such for simplicity. Nonetheless, this is
the convention with which the results of Chapter 5 were obtained.
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36 Methods for Large-Scale Adaptive Optics

Figure 4-4: Exaggerated non-zero pattern of a sparse gain for a small-scale system. White entries
are non-zeros, black entries are zero.

4-2 Two-stage prediction

The previous section outlined a technique for the identification of a sparse gain with compu-
tational benefits for the online prediction operation. However, although some authors argue
that the spatially decaying structure of the Kalman gain enables sole consideration of the
relationships between pixels and lenslets at a certain maximal distance [37, 38], generally,
this distance will be too large for the resulting gain to be sparse; if picked too small, the dete-
rioration of the results will be significant. Indeed, when prediction should rely heavily on the
measurements rather than the model, a sparse distance-constrained gain fails to predict some
modes of the wavefront phase that span larger distances. Figure 4-5 displays a particularly
egregious example, showing a case in which an artificially sparse gain is able to predict local
structures in the phase, but fails to account for the overarching shape.

Figure 4-5: Example prediction with a sparse gain and a noisy model (left) and phase of the
incoming wavefront (right). High sparsity was imposed to obtain a clear display of the nature of
the error induced by distance-constrained sparsity.
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4-2 Two-stage prediction 37

Albeit to a lesser extent than shown, this will be the general case. Reliance on the measure-
ments is reduced by increasing model quality, which might be lacking for multiple reasons,
among which imperfect measurements, and those listed in Section 2-2-2. With this in mind,
a two-stage approach to the prediction problem is proposed in this section:

• The high-frequency, local components of the wavefront are predicted with a sparse gain.
This predictor is applied in the original fine array. Depending on the sparsity and the
array width, most of the prediction should happen in this step.

• The remaining low-frequency components are predicted on a low-dimensional coarse
array. These are then interpolated and added to the high-frequency predictions to yield
the predicted wavefront phase.

The goal is to perform only fast sparse operations in the original large array, with further
corrections done on a low-dimensional coarse array that allows operations on full matrices
without significant computational burden.

However, while the two-stage predictor will use data-driven procedures that seek to attain
prediction errors with the properties of the (optimal) innovation sequence, it should be noted
that the obtained predictor will not be a Kalman predictor, as the separation into stages and
use of interpolation will necessarily preclude optimality. Regardless, while not theoretically
optimal, the two-stage approach may still yield better results in practice than the "theoret-
ically optimal" Kalman filter, given the possibility of erroneous modelling and finiteness of
data.

4-2-1 Formulation

Denote by K the distance-constrained fine gain. The first filter predicts all that is possible
with K:

φ̂
(f)
k+1 = Aφ̂

(f)
k +K

(
yk −Gφ̂

(f)
k

)
(4-4)

where the superscript (f) stands for "fine". The error dynamics of (4-4) are given by

ξk = φk − φ̂
(f)
k

ξk+1 = (A−KG)ξk +Kvk − wk
e

(f)
k = Gξk + vk

(4-5)

with e(f)
k denoting the prediction-error sequence of the fine filter. Consider now a second filter,

with gain J , that seeks to predict ξk+1:

ξ̂k+1 = (A−KG)ξ̂k + J(e(f)
k −Gξ̂k) (4-6)

The idea underlying the proposed two-stage filter is that ξk contains only low frequencies
that can be reliably predicted with a coarser array (and the very-high-frequencies that can
not be predicted at all). Let Mc and Mi denote sparse combination and linear interpolation
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matrices, respectively; the combination matrix Mc is elaborated upon below. Then design
the coarse second predictor:

φ̂
(c)
k+1 = (A−KG)′φ̂(c)

k +K ′(Mc[yk −Gφ̂
(f)
k ]−G′φ̂(c)

k ) (4-7)

where the primes denote coarse counterparts to the matrices to which they are applied, except
K ′, which merely denotes the gain applied to the coarse predictor. How to obtain the matrices
for the coarse array (and Mc) is described ahead. The fine and coarse predictors, (4-4) and
(4-7), are finally combined to yield the two-stage predictor:


φ̂

(f)
k+1 = Aφ̂

(f)
k +K(sk −Gφ̂

(f)
k )

φ̂
(c)
k+1 = (A−KG)′φ̂(c)

k +K ′
(
Mc[yk −Gφ̂

(f)
k ]−G′φ̂(c)

k

)
φ̂k+1 = φ̂

(f)
k+1 +Mi[φ̂(c)

k+1]
(4-8)

Remark 4.4. If K equals the optimal gain K, then the optimal J in (4-7) is zero, so if the
first predictor is already optimal, adding a second one can not improve the results further.

Time complexity

Let nc and mc denote the number of states and number of outputs of the coarse system,
respectively. Because both n and m scale as O(L2), and nc and mc as O(L2

c), O(n) is
equivalent to O(m), and so is O(nc) to O(mc), so the complexities will therefore be given in
terms of just m and mc.
For a fixed wind speed in lenslets per time-step, distance-constraint z, and coarse array width
Lc, the non-zeros of A, K,Mc, andMi scale linearly with their numbers of rows (or columns),
and each has at least one non-zero per row. Hence, terms that scale with the non-zeros of
any of these sparse matrices will be said to scale as O(m).
The time complexity of (4-8) is given in Table 4-1:

Step Flop scaling

Fine prediction (sparse) (4-4) O(m)
Coarse prediction (full) (4-7) O(m+m2

c)
Final combination O(m)

Total O(m+m2
c)

Table 4-1: Time complexities per step of two-stage prediction, assuming fixed tuning parameters.

If z and Lc are not kept fixed, the terms nnz(K), nnz(Mc), and nnz(Mi) appear in the
complexities, or alternatively, m times the average non-zeros per column or row.

4-2-2 Description of the coarse system

Note that (4-7) and (4-8) refer to a particular formulation, in which the coarse stage predicts
the state-prediction-error of the fine stage. Rather, here the coarse description is given for a
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4-2 Two-stage prediction 39

general system whose fine counterpart has its measurement matrix given byG, and whose state
dynamics are irrelevant. Define y′ and φ′ as the slopes and state, respectively, corresponding
to the coarse system such that

y′ = G′φ′ (4-9)

The description herein is directly applicable to (4-7) nonetheless, with the slopes then being
Mc
(
yk −Gφ̂

(f)
k

)
, and the state φ̂(c)

k . In that case, the fine counterpart to the coarse system is
(4-6), and not (4-4) (which is instead the fine stage of the two-stage algorithm).

The coarse array is built of units, the coarse equivalent to lenslets, which encompass multiple
lenslets from the fine array. Let the superscript i indicate lenslet i of the coarse array, and
(j) indicate lenslet j of the fine array within a given coarse unit, counted in column-major
order. As a simple example, consider a 2 × 2 array of lenslets, used as the fine array of the
two-stage predictor (see Figure 4-6). In this example, the coarse array consists of a single
lenslet, obtained by combining the slope measurements of the fine array. The slopes of the
fine array are given by:

2y(1)
x = ϕ5 + ϕ4 − ϕ2 − ϕ1

2y(1)
y = ϕ5 + ϕ2 − ϕ4 − ϕ1

...2y(4)
x = ϕ9 + ϕ8 − ϕ6 − ϕ5

2y(4)
y = ϕ9 + ϕ6 − ϕ8 − ϕ5

(4-10)

where the superscript number indicates the corresponding lenslet, and the subscript indicates
the axis along which the slope is computed. The slopes of the coarse array are determined
such that they fill a role equivalent to the original slopes, applied instead to the coarse array.
That is,

{
2y 1

x = ϕ9 + ϕ7 − ϕ3 − ϕ1

2y 1
y = ϕ9 + ϕ3 − ϕ7 − ϕ1

(4-11)

This concept can be generalized to fine coarse arrays of different sizes as long as the coarse
units are square and the width of the fine array can be divided by that of the coarse array.
Keep this example in mind, as its use will resume ahead, but consider as well consider arbitrary
widths fulfilling both of these conditions: let L denote the width of the fine array, Lc that of
the coarse array, and Lu that of the coarse units.
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ϕ1

ϕ2

ϕ3 ϕ6 ϕ9

ϕ8

ϕ7ϕ4

ϕ5

y
(1)
y

y
(1)
x

y
(3)
y

y
(3)
x

y
(2)
x

y
(2)
y y

(4)
y

y
(4)
x

ϕ1

ϕ3 ϕ9

ϕ7

y
1
x

y
1
y

Figure 4-6: Example fine (left) and corresponding coarse (right) arrays. Because the example
has only one coarse unit, the per-unit notation matches that of the entire fine array. Note that in
the notation of this section, each coarse unit would look like the left image, indices included (so
with the indices beginning from 1 and ending at (Lu + 1)2 for the pixels, and L2

u for the lenslets).

Determining the combination

The slopes y i
x and y i

y corresponding to the coarse unit i are obtained by combining the fine
slopes of that same unit:

y i
x =

[
α

(1)
x α

(1)
y · · · α

(L2
u)

x α
(L2

u)
y

]
︸ ︷︷ ︸

Cx



y
(1)
x

y
(1)
y
...

y
(L2

u)
x

y
(L2

u)
y



y i
y =

[
β

(1)
x β

(1)
y · · · β

(L2
u)

x β
(L2

u)
y

]
︸ ︷︷ ︸

Cy



y
(1)
x

y
(1)
y
...

y
(L2

u)
x

y
(L2

u)
y



(4-12)

where Cx and Cy comprise coefficients to be set such that (4-11) is verified, knowing (4-10).
These depend solely on the width of the coarse unit. Define the vector Φ containing the
wavefront phases within an arbitrary coarse unit:

Φ =
[
ϕ1 ϕ2 · · · ϕ(Lu+1)2

]T
Then, each slope from (4-10) or (4-11) is given by multiplying a vector of ones and zeros to
1
2Φ: y

(j)
x = 1

2v
(j)
x Φ

y
(j)
y = 1

2v
(j)
y Φ

{
y i

x = 1
2v
′
xΦ

y i
y = 1

2v
′
yΦ

(4-13)
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Returning to the example above, with a coarse unit width of 2, it should be visible that, for
instance, 

y
(1)
x = 1

2

[
−1 −1 0 1 1 0 0 0 0

]
Φ

y
(1)
y = 1

2

[
−1 1 0 −1 1 0 0 0 0

]
Φ

...
y

(4)
x = 1

2

[
0 0 0 0 −1 −1 0 1 1

]
Φ

y
(4)
y = 1

2

[
0 0 0 0 −1 1 0 −1 1

]
Φ

and y
1
x = 1

2

[
−1 0 −1 0 0 0 1 0 1

]
Φ

y 1
y = 1

2

[
−1 0 1 0 0 0 −1 0 1

]
Φ

(4-14)

The vectors of ones and zeros corresponding to the fine slopes within the (arbitrary) unit
define a basis for the space of possible combinations. Say these vectors, labelled v(j)

x and v(j)
y

are stacked into Vx and Vy:

Vx =



| v(1)
x |

| v(2)
x |

...

| v(L2
u)

x |

 Vy =



| v(1)
y |

| v(2)
y |
...

| v(L2
u)

y |


Let v′x and v′y the coarse counterpart to these vectors, as in (4-14); that is, y i

x = 1
2v
′
xΦ and

y i
y = 1

2v
′
yΦ. Then, from (4-12), for any Φ:

v′xΦ = CxVxΦ
v′yΦ = CyVyΦ

(4-15)

Because (4-15) must hold for all Φ, it is true only when{
v′x = CxVx

v′y = CyVy
(4-16)

which is possible only when the units are be square. In such a case, least-squares solutions are
exact, but not unique, so one can use the truncated SVDs of A and B to obtain the unique
minimum-norm solution to each of the equations in (4-16). Let the superscript † indicate the
pseudo-inverse computed from the truncated SVD:

Cx = v′xV
†

x

Cy = v′yV
†

y
(4-17)

Again, as long as the coarse units are square, (4-17) is such that (4-16) is exact, with error
zero. Finally, define the (sparse) combination matrix Mc that converts the fine slopes into
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coarse slopes: 
y 1

y 2
...

y L2
c


︸ ︷︷ ︸

y′

= Mcy

where

y i =
[
y i

x
y i

y

]

To build this matrix, determine the entries of the original slopes to which each y(i)
k corresponds,

for all coarse units, and assign Mc the entries of Cx and Cy accordingly, analogously to how
G is built. Let idx i be a vector containing the indices of all y(j)

x and y(j)
y corresponding to

unit i within the vector y of original slopes; then, in MATLAB notation:

Mc( 2i− 1 : 2i , idx i ) =
[
Cx
Cy

]
(4-18)

with 2i− 1 and 2i (i ≥ 1) being the row indices of the entries of Mc corresponding to y i
x and

y i
y , respectively, i.e. the indices of y i

x and y i
y in y′.

Remark 4.5. Keep in mind that "MATLAB notation", rather unfortunately, implies that
the spots of the row- and column-indices in (?, ?) are reversed with respect to the normal x-
and y-axis notation. In MATLAB notation, the first entry of (?, ?) is the row index (y-axis)
and the second is the column index (x-axis).

Obtaining the system matrices

A benefit of this particular combination is that G′ is built exactly as G is, as described in
Subsection 2-1-1, but considering the dimensions of the coarse system instead.

As for the state-transition matrix, let Z be the selection matrix of ones and zeros such that

φ′ = Zφ (4-19)

Consider a dataset containing wavefront phase data φk, available for identification. The
state-transition matrix can be computed as per Subsections 2-2-2 and 2-3-1. In the two-stage
algorithm, the coarse state is given by

φ
(c)
k = Z

(
φk − φ

(f)
k

)︸ ︷︷ ︸
ξk

which takes the spot of φ′ in (4-9) and (4-19). Chapter 5 briefly describes a way to obtain
filtered wavefront data from slopes, which is therein used to obtain a noisy model. To obtain
(A−KG)′, one follows the steps:
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1) Identify gain K in (4-4) from data using the sparse procedure in (4-3).

2) Apply the sparse predictor to the the wavefront phase dataset, using (4-4):

φ̂
(f)
k+1 = Aφ̂

(f)
k +K

(
yk −Gφ̂

(f)
k

)
beginning from an arbitrary initial condition; a simple choice is all zeros.

3) Estimate the coarse wavefront-prediction-errors as

φ
(c)
k = Zξk = Zφk − Zφ̂

(f)
k

where φk is wavefront data from an available identification dataset. Rather than explicit
left-multiplication by Z, it is faster (and theoretically equivalent) to merely sample the
variable to which it is multiplied at the pixels of the coarse array. This wavefront data
must correspond to the slope data used in step 2! That is, this yk must be the slopes
measured from φk, including the measurement noise.

4) Form "future"- and "past"-data matrices Φ(c)
1,N and Φ(c)

0,N :

Φ(c)
1,N =

[
φ

(c)
1 · · · φ

(c)
N

]
Φ(c)

0,N =
[
φ

(c)
0 · · · φ

(c)
N−1

]
5) Identify (A−KG)′ via least-squares (see subsection 2-2-2):

̂(A−KG)′ = Φ(c)
1,N

(
Φ(c)

0,N

)†
(4-20)

or employ the sparse procedure from subsection 2-3-1.

It is common for authors to directly preset A from preliminary assumptions [3, 4], eliminating
the need for a wavefront dataset for its identification. Even in such a case, wavefront data is
necessary for identification of (A −KG)′ (see Remark 4.6), which can be obtained from the
slopes (say, by pseudo-inverting G, G′, or using more robust methods).

Remark 4.6. The state transition matrix (A−KG)′ as seen in (4-8), albeit being the coarse
counterpart to (A −KG), should not just be a selection of the entries of (A −KG) shared
with the coarse grid. Defining (A−KG)′ as shown, one arrives at the relationship:

(A−KG)′ = Z(A−KG)PZT(ZPZT)−1

where P is the state error covariance of the sparse predictor.

Identifying the coarse gain

Identification of the coarse gain K ′ requires measurement data for the data-driven identifica-
tion procedures. Equation (4-5) establishes that the output of the error dynamics of the fine
filter is its slope-prediction-errors, given by:

e
(f)
k =

(
yk −Gφ̂

(f)
k

)
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The measurements for the coarse filter, then, are these combined into their coarse counter-
parts:

y
(c)
k = Mce

(f)
k = Mc

(
yk −Gφ̂

(f)
k

)
With these measurements computed, and G′ and (A − KG)′ obtained previously, the user
now has all that is necessary to apply either MARK or Juang to obtain K ′:

K ′ =


MARK

(
(A−KG)′, G′, y(c)

?

)
Juang

(
(A−KG)′, G′, y(c)

?

) (4-21)

4-2-3 Summary

The two-stage prediction algorithm is summarized into the following steps:

1) Decide the tuning parameters: s, p, sc, pc, Lc, and all the distance-constraints (Markov
parameters and gain). The subscript c indicates the coarse-stage counterpart of a pa-
rameter.

2) Build G, and G′, Mc, and Mi for the coarse stage. Acquire A, preferably from wave-
front phase data, and using the procedure from Subsection 2-3-1. Form the extended
observability matrices for both the fine and coarse stages.

3) Identify the sparse gain K in (4-4) from slope data and A using the sparse procedure
in (4-3).

4) Apply the filter with gain K to the slope data, following (4-4), and compute the wave-
front prediction errors φ(c)

k = Zφk − Zφ̂
(f)
k .

5) Identify (A−KG)′ from the wavefront prediction errors as per (4-20).

6) Compute the slope prediction errors and combine them to yield the measurements for
the coarse filter: y(c)

k = Mc
(
yk −Gφ̂

(f)
k

)
.

7) Identify the coarse gain as per (4-21) using y(c)
? and (A−KG)′.

8) Apply (4-8) online for prediction.

Remark 4.7. The construction of the coarse system here described considers only square
units. Rectangular unit shapes can not be made to follow (4-11), as (4-16) will not hold
without an error term, thus demanding different construction. That is,[

v′x
v′y

]
/∈ row space

([
Vx
Vy

])

One obvious shortcoming, then, is that this description of the two-stage algorithm requires
the width of the original array to be divisible by that of the coarse array, limiting the possible
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choices (especially if the width turns out to be a prime). To apply it to circular arrays
and accommodate the square units, a possible approach (not evaluated in this thesis) is to
artificially set the slopes outside the aperture to zero when combining them with (4-11);
another possibility is to define a measure of error between the interpolated and original
wavefront (in the fine grid), and set these slopes to values that minimize the measure within
their corresponding coarse unit.
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Chapter 5

Results and Tuning

This chapter is dedicated to an analysis of the algorithms developed in this thesis. These are
the sparse data-driven procedure for identification of the Kalman gain detailed in Section 4-1,
and the data-driven two-stage predictor detailed in Section 4-2. These algorithms were created
with the aim of lessening the computational complexity of their conventional counterparts
(respectively, data-driven Kalman filtering and the standard Kalman filter time-update) with
as little detriment to performance as possible. The chapter explores the following points:

• Tuning the data-driven Kalman filtering algorithms: how the model order, sparsity
pattern of the Markov parameters, and the amount of data affect the quality of the
identified gain.

• Prediction performance: comparison of how each among standard and data-driven
Kalman filtering, two-stage prediction, and MVM fare for varying model qualities and
measurement noise variances.

• Execution times: analysis of the run times of each algorithm for increasing system
dimensions.

A short summary of the main results concludes the chapter. As mentioned above, both the
Matrix-Vector-Multiplication (MVM) approach and the standard Kalman filter that uses the
Discrete-time Algebraic Riccati Equation (DARE) will serve as baselines for comparison. The
former approach, MVM, is described in its own subsection below.
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For the analyses that follow, the setting is the following:

• The adopted sensor geometry is the Fried geometry, and the arrays are all L×L square
arrays of lenslets. That is, their width, given in number of lenslets, is L. Whenever
"array width" is mentioned, it is given in lenslets.

• The measure of performance is the mean 2-norm (or sample variance, as the mean
is removed) of the error, normalized by the mean 2-norm of the incoming wavefront,
henceforth referred to as Normalized Mean Squared Error (NMSE). With mean-re-
moved data from N time-steps, it is given by:

N∑
k=1

∥∥∥φ̂k − φk∥∥∥2

2

N∑
k=1
‖φk‖22

(5-1)

It is important to remove the mean at each time-step when evaluating performance, as
offsets in the wavefront do not affect image quality, yet, if not removed, affect the mean
squared error.

• Regarding the quality of the wavefront data available for model identification, both
ideal and noisy cases will be considered. The ideal case assumes the identification
dataset includes true (noiseless) wavefront phases, to identify the model, and slope
data with measurement noise, to identify the gains. The noisy dataset is described
below. The models used in the identification and prediction algorithms are obtained as
in Subsection 2-3, with a penalty on the squared Frobenius norm of A when its absence
leads to instability.

• The cases of single-layer and three-layer turbulence are considered. In both cases, the
system is modelled using the procedure from Subsection 2-3-1, which incurs errors in the
three-layer case, as described in Subection 2-2-2. The idea behind erroneous modelling
of the three-layer case is to illustrate data-driven compensation for modelling errors.

• The turbulence parameters are set to standard values of r0 = 0.1 and L0 = 25 m. The
algorithm itself is concerned only with the wind speed given in lenslets per time-step ω,
which is given by

ω = Lν

Dftel

where L is the width of the array, ν is the wind speed in meters per second, D is the
diameter of the telescope in meters, and ftel is its sampling frequency. For example, for
L = 80, ω = 15 m/s, D = 8 m, and ftel = 500 Hz, the wind speed is 0.2 lenslets per
time-step.

• The "default" system considered in this chapter consists of a 36 × 36 array of lenslets,
subject to single-layer turbulence with a wind speed of 0.25 lenslets per time-step,
with slope measurements with a Signal-to-Noise Ratio (SNR) of 10 dB. Each section
may change any of these parameters, in which case, only the changed parameters are
specified, unless reiteration is particularly relevant.
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• When performance is addressed, Monte-Carlo simulations are performed with different
datasets with the same underlying turbulence parameters, and different measurement
noise sequences drawn from the same Gaussian distribution. The noise at each mea-
surement point (lenslet) is additive, white, its expected value is zero, and its covariance
matrix is diagonal. For the comparison of execution times, the different Monte-Carlo
simulations are mere repeats of the same operation, usually for the same dataset; longer
operations will involve fewer Monte-Carlo simulations.

• Unless specified otherwise, Juang and Chen’s algorithm (Section 3-2), henceforth re-
ferred to as just "Juang", is used whenever the chosen Auto-Regressive (AR) order s is
larger than 1, and MARK (Section 3-3) will be used whenever the order is set to 1. The
gain for the coarse system of the two-stage algorithm is always identified with MARK
with AR order 3, however. The number p of innovation-form Markov parameters is set
to 2 in all cases.

• The data-driven gain identification procedure of Subsection 4-1-2 employs sparsity in
either just the Markov parameters or both the Markov parameters and the identified
gain itself. Whenever MARK or Juang are labelled "full", it refers to the former case,
in which the gain is full, while Markov parameter sparsity is indeed exploited. The
Markov parameters are only considered full when explicitly stated to be so.

• Simulation data is obtained with the OOMAO simulator [39]. We altered the code of
the simulator to correct a bug that led to incorrect wind speeds whenever a wind speed
over 1 lenslet per time-step was selected. Additionally, to avoid having interpolations
affect the wavefronts, all datasets are from turbulent atmospheres simulated in a 4×
denser grid such that the wind speeds are all integer lenslets per time-step. These were
then downsampled to yield the stated wind speeds. For example, a wind speed of 0.25
lenslets per time-step is equivalent to 1 lenslet per time-step in a grid 4× as dense.

The Matrix-Vector-Multiplication (MVM) method

The MVM method evaluated here consists of pseudo-inverting the measurement matrix G
using its truncated SVD, since it lacks full column rank, right-multiplying it by the latest
measurement, and left-multiplying it by A:

φ̂k+1 = AG†yk

The computation of the pseudo-inverse of G and its left-multiplication by A are performed
offline. This is equivalent to wavefront reconstruction using G†, followed by a one-time-step
progression using A:

φ̂k|k = G†yk

φ̂k+1|k = Aφ̂k|k

 φ̂k+1|k = φ̂k+1 = AG†yk

Note that the reconstructions φ̂k|k suffer principally from integration of the measurement
noise:

G†yk = G†Gφk +G†vk︸ ︷︷ ︸
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where G†G is approximately equal to the identity matrix. Implications of the main source
of error of these wavefront reconstructions being the measurement noise present in the under-
braced term, are that not only are MVM predictions generally better than the reconstructions,
but, in particularly noisy cases, poorer models may actually yield better predictions. Consider
single-layer turbulence: for fractional-pixel movements per time-step, A will consist approxi-
mately of a weighted average between two shifts of the wavefront (see Figures 5-1 and 5-2),
which will smoothen out the measurement noise.

Figure 5-1: Example A for a wind speed
of 0.5 pixels per time-step.

Figure 5-2: Example A for a wind speed
of 1 pixel per time-step.

Consequences of this will be visible in plots that follow: in Figure 5-23, MVM predictions
are worse as the wind speed approaches an integer value of pixels per time-step. In contrast,
Kalman filtering performance is less susceptible to measurement noise, and will instead show
worse results for worse models, with performance being maximal at integer-pixel movements
per time-step.

Remark 5.1. The MVM approach can be formulated as resorting to regularized least-squares
[4, 40]. However, it is also usually formulated without the product by an A as designed in
Subsections 2-2-2 or 2-3-1. Multiplication by A was observed to not only generally yield a far
better result, but also to eliminate the benefit of regularization.

Remark 5.2. The use of lagged AR-1 wavefront models is briefly explored in Appendix A-1.
It is expected that lagged models improve Kalman filtering performance in certain conditions,
yet drop MVM performance due to reduction (or elimination) of the averaging effect of A.

The noisy model identification dataset

The following is applicable to all subsections except for the one pertaining to how performance
varies with the chosen AR order. Note that the procedure outlined here is meant solely to
obtain a realistic noisy model on which to test the algorithms, and not to establish a standard
for obtaining A.

For the noisy cases, the wavefront phase data is obtained by first pseudo-inverting G (using its
truncated SVD) and multiplying it with the noisy slope data to obtain preliminary wavefront
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estimates to get an initial A. To improve the wavefront estimates, this preliminary A is
used to identify a Kalman predictor, which retrieves better estimates of the wavefronts, using
which A is re-identified.

Remark 5.3. Unless slope data for each individual layer is available, this approach for
obtaining A is not applicable to multi-layer turbulence modelled with the augmented system
given in (2-11). This because pseudo-inverting [G G] and multiplying it to the slopes yields
an estimate of the sum of the phase at all layers, rather than that of each individual layer,
thus bringing us back to the erroneous model given in (2-5).

Remark 5.4. Rather than using a Kalman predictor, one could conceive of obtaining im-
proved wavefront estimates using the reconstructor given in (3-27) instead. However, when
obtaining the reconstructor gain from (3-29), it is assumed that the process and measurement
noises are uncorrelated. Because the initial model is computed with wavefront estimates ob-
tained from noisy measurements, the process and measurement noises are correlated.

5-1 Tuning the data-driven Kalman filtering algorithms

An analysis of the performance of the data-driven Kalman filtering algorithms as a function
of its tuning parameters is given in this section. The performance is measured by the NMSE
of the predictor built with the identified gain.

5-1-1 AR model order

The order s chosen for the AR model of the slopes, defined in Chapter 3, is of vital importance
to the performance of the data-driven Kalman gain identification algorithms. Recall that the
slopes are the output of the asymptotically stable state-space model given in (2-18), which
means that they can be described by a high-order AR model. However, in practice, for
identification of the Kalman gain, erroneous state-space modelling and the finite amount of
available data limit the order one should choose.

Additionally, this is a parameter whose influence in the execution time is critical: as argued
in Subsection 4-1-2, each unit increase in the AR order s introduces a new matricial Markov
parameter to identify, each with more non-zeros than the previous. Even for small orders,
increases in the model order add considerable overhead, with, for example, s = 3 generally
involving more than double the non-zeros of s = 2. It is paramount, then, to evaluate how low
s can be kept while maintaining performance. Note also that setting s = 1 is only possible
with the MARK algorithm.

Only in this section, the noisy wavefront dataset for identification of A is obtained by adding
Gaussian white noise to the ideal dataset with varying SNR to show how the model quality
changes the optimal AR order. The SNR of the model identification dataset (comprising
wavefront data, not slopes) is indicated by "model SNR" in the plots, and should not be
confused with the SNR of the measurement data (which is used to identify the Kalman gain,
rather than A).

To ensure correctness of the noiseless model, the turbulence wind speed is set to 1 lenslet
per time-step (approximately 1 pixel per time-step). Figures 5-3 to 5-5 show performance for
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AR orders s up to 5 and varying amounts of noise in the model identification dataset. The
dashed blue lines ease comparison between MARK with order s = 1, and Juang with order
s = 2, since the latter does not allow s = 1.

Figure 5-3: Data-driven Kalman filtering performance as a function of the AR order s (noiseless
model).

Figure 5-4: Data-driven Kalman fil-
tering performance as a function of the
AR order s (model SNR = 30 dB).
"Model SNR" refers to the SNR of the
phase data from which the model is
identified.

Figure 5-5: Data-driven Kalman fil-
tering performance as a function of the
AR order s (model SNR = 15 dB).
"Model SNR" refers to the SNR of the
phase data from which the model is
identified.

Given an ideal model, increasing the order is expected to improve the results. As the model
quality lowers, higher orders worsen in performance more quickly than lower orders: for both
the noisy cases of Figures 5-4 and 5-5, s = 2 boasted the best results. Figure 5-6 below
displays all results on the same axes, along with the results of the DARE.
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Figure 5-6: Performance of standard and data-driven Kalman filtering for varying AR order
and model quality. "Model SNR" refers to the SNR of the phase data from which the model is
identified.

The higher the model order, the less robust it is shown to be to erroneous modelling, with
each choice of order seeing its performance deteriorate more quickly than smaller orders.
Notice that gains identified with adequate orders outperformed the DARE ones for these
noisy models, illustrating compensation for modelling errors.

Moreover, the noisier the measurements, assuming an ideal model, the higher the AR order
must be for the performance to match that of the DARE. Indeed, it should be expected that
noisier measurements demand larger orders to adequately smoothen out the noise with previ-
ous information. Subsection 5-2-3 illustrates this further. Less intuitively, more measurement
noise may incur additional robustness to modelling errors; when the measurements are noisier,
the predictions rely more on the measurements for further smoothing, reducing the weight
given to the model, hence making performance less susceptible to noise in the model. When
the measurement noise is low, the predictor expects to have an accurate prediction of the new
data that entered at the borders shortly after it does, trusting the model afterwards.

The choice of AR order s will balance on three principal factors, then: the execution time,
which rises substrantially with s, driving the user to keep it as low as possible; the user’s
confidence on the model, which allows for larger orders to be chosen for better performance;
and the measurement noise, which normally incurs necessity for larger orders. Orders s = 1
and s = 2 are also particularly useful to improve A from a bad preliminary estimate, as done
in the noisy model cases.
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Remark 5.5. Figures 5-3 to 5-6 establish as well that while MARK might perform marginally
better for ideal and low-noise models, Juang is more robust to modelling errors.

AR order for fractional wind speeds

In Section 2-2-2, it was established the presented AR-1 modelling technique is expected to
perform worse when the turbulent wavefront moves a fraction of a pixel each time-step; the
further from the integers, the worse. As stated earlier, higher values of s behave poorly when
the model is inadequate, meaning that for fractional pixels (or, approximately, lenslets) per
time-step, even when the model is noiseless, a behavior akin to that shown in Figures 5-4 and
5-5 is expected. Figures 5-7 and 5-8 show the results for a wind speed of 0.25 lenslets per
time-step, up to s = 4.

Figure 5-7: Data-driven Kalman fil-
tering performance as a function of the
AR order s (sub-pixel movement).

Figure 5-8: Performance of standard
and data-driven Kalman filtering for
varying AR order and model quality
(sub-pixel movement).

It is indeed evident that when the wind speed, in lenslets per time-step, is fractional, arbi-
trarily increasing s does not lead to better performance due to the inherent AR-1 modelling
error. The same applies to the multi-layer case, if modelled as (2-5), and for sparse gains
when the Kalman gain is dense instead.

AR order for sparse gains and two-stage prediction

When identifying a sparse gain for the two-stage procedure, the imposition of sparsity when
the Kalman gain is not sparse is effectively analogous to erroneous modelling in that s should
not be increased arbitrarily, lest the performance deteriorate. Figures 5-9 and 5-10 show the
NMSE for prediction with both the identified Kalman filter and with the two-stage predictor
for s = 2 and s = 3. The system here considered is single-layer turbulence sampled by a
120 × 120 array, and the performance is shown as a function of the distance-constraint z of
the gain and the coarse width Lc.
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Figure 5-9: Two-stage prediction per-
formance as a function of z and Lc
(s = 2).

Figure 5-10: Two-stage prediction
performance as a function of z and Lc
(s = 3).

While the increase in s improved the results for the full filter, it worsened them for most of
the differently-tuned two-stage predictors, improving only those where both the coarse width
and the distance-constraint of the gain were set high. Nonetheless, near-best performance
can be attained for s = 2, with some error over the best attainable performance with the full
filter. This increase in error will have to be considered against the improvement in prediction
time (and storage) that defines the merits of the two-stage approach.

5-1-2 Data batch length

The assumed sparsity of the Markov parameters and the consequential drastic decrease of the
number of variables to identify for their retrieval leads not only to the benefits in execution
time shown above, but also to a reduction of the necessary amount of data for identification
of the Kalman gain. Additionally, showing that the necessary amount of data is determined
by the non-zeros per row, rather than the number of outputs m, is fundamental to argue
that the scalings O(Nmw2) and O(Npmw2) indeed represent linearity with respect to m (see
Subsection 4-1-2).

The system parameters considered herein are the default values described in the chapter
introduction. The SNR of the slope data is 10 dB. Figure 5-11 illustrates the performance of
Juang with s = 2 for growing amounts of data and distance-constraints of 1.5, 2.5, 3.5, and
4.5 lenslets.
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Figure 5-11: Data-driven Kalman filtering performance for varying data batch length and
distance-constraint of the Markov parameters. The legend indicates the average non-zeros per row
for the distance-constraints of 1.5, 2.5, 3.5, and 4.5. Some points are missing due to instability
of the filters when the amount of data is too low for the amount of non-zeros.

The increasing flatness as the distance-constraint is reduced illustrates the dependency of the
required amount of data on the average non-zeros per row. It should be noted that attempts
to identify gains without exploiting sparsity of the Markov parameters up to a data batch
length of N = 5000 always yielded unstable filters.

The dependence of the amount of data on the number of non-zeros rather than the system
dimensions means that "tall" datasets, with more measurements than time-steps of data, are
entirely suitable for data-driven identification of the Kalman gain, whereas any covariances
computed (say, for the DARE) would never have full rank. That the identification algorithms
work for the large systems of Subsection 5-4 supports this point.

Measurement noise also affects the necessary amount of data: the less the noise, the flatter the
curve, and the quicker the best performance is attained. Figure 5-12 shows, for a fixed Markov
parameter distance-constraint of 1.5, the NMSE as a function of the data batch length for
varying measurement SNR. Because, naturally, larger measurement noises incur more error,
even for hypothetical infinite datasets, the curves had their minima subtracted so that their
flatness can be directly compared.
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Figure 5-12: Data-driven Kalman filtering performance for varying data batch length and mea-
surement SNR. The curves had their minima subtracted so that the flatness can be easily com-
pared, hence the omission of the y-axis scale.

5-1-3 Markov parameter distance-constraint

The distance-constraint of the Markov parameters (again, measured in lenslets) is another
paramount parameter to evaluate. The principal merit of the methodology for identification
of the Kalman gain presented in this thesis is its applicability to large-scale AO systems,
which is a result of the sparsity of the Markov parameters, and therefore reliant on the chosen
distance-constraint. Figures 5-13 to 5-16 show how performance depends on the constraint
for different wind speeds.

Figure 5-13: Data-driven Kalman fil-
tering performance vs. Markov param-
eter distance-constraint (0.25 lenslets
per time-step). Notice the tight range
of the vertical axis: because of the low
speed and the constraint beginning at
1 lenslet, performance varied little.

Figure 5-14: Data-driven Kalman fil-
tering performance vs. Markov param-
eter distance-constraint (0.75 lenslets
per time-step).
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Figure 5-15: Data-driven Kalman fil-
tering performance vs. Markov param-
eter distance-constraint (1.5 lenslets
per time-step). Minimal error was
achieved for a constraint of 3.

Figure 5-16: Data-driven Kalman fil-
tering performance vs. Markov param-
eter distance-constraint (2 lenslets per
time-step). The distance-constraint of
1 resulted in an unstable gain, and far
over the limits of the plot, 1.5 resulted
in a NMSE of 1.48.

The distance-constraint of the Markov parameters should be just large enough to account for
wind speed and to accommodate the spatial smoothing of the noise done by the Kalman fil-
ter, which, as evident in the figures, is such that the constraint should exceed the wind speed
in lenslets per time-step. Under-estimations severely worsen performance. Over-estimations
above the optimal constraint add unnecessary parameters to identify, slightly negatively im-
pacting performance.

Remark 5.6. Notice the slight jitter visible in Figures 5-14 and 5-15. In both examples, the
error increases from constraint

√
5 ≈ 2.24 to

√
8 ≈ 2.83, and decreases further at constraint

3. This because the simulated turbulence moved horizontally, and increasing the constraint
from 2.24 to 3 adds lenslets horizontally (and vertically), along the direction of the movement,
while increasing it to

√
8 ≈ 2.83 adds lenslets diagonally instead. These latter ones proved

unnecessary, and thus merely added more parameters to identify, decreasing performance.

5-2 Prediction performance

This section explores and compares the performance of the different prediction algorithms
(Kalman filter, two-stage predictor, MVM), and of the two discussed methods for obtaining
the Kalman gain (DARE and data-driven). Two-stage performance is presented as a function
of the distance-constraint z of the sparse gain and the width Lc of the coarse system.

All considered systems consist of single-layer turbulence sampled by 36 × 36 lenslet arrays.
The wind speed is 0.25 lenslets per time-step, and the Markov parameter distance-constraint
is fixed at 1.5 in all cases. Results are shown for measurement SNRs of 10 and 5 dB.
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5-2-1 Single-layer turbulence

Figures 5-17 and 5-18 illustrate performance for a noiseless and noisy 36× 36 model, respec-
tively, and a measurement SNR of 10 dB. The AR order is set to s = 3 in both cases.

Figure 5-17: Predictor performances:
single-layer turbulence, SNR = 10 dB,
noiseless model

Figure 5-18: Predictor performances:
single-layer turbulence, SNR = 10 dB,
noisy model

The performances for a measurement SNR of 5 dB are shown in figures 5-19 (noiseless model)
and 5-20 (noisy model). The orders are s = 3 in both cases.

Figure 5-19: Predictor performances:
single-layer turbulence, SNR = 5 dB,
noiseless model.

Figure 5-20: Predictor performances:
single-layer turbulence, SNR = 5 dB,
noisy model

The identified Kalman gain is able to match the DARE gain in performance in the noiselessly
modelled cases, while improving upon it when the model is noisy. The two-stage predictor is
seen to approximate the performance of the identified Kalman filter as the width Lc of the
coarse array is increased and the distance-constraint z of the gain is relaxed. In all of the
cases, the basic MVM performed the worst.
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5-2-2 Multi-layer turbulence

AR-1 models for the dynamics of three-layer turbulence, designed as per Subsections 2-2-2
and 2-3-1, are inadequate for Kalman filter design due to their colored process noise. Figure
5-21 demonstrates how data-driven Kalman filtering compensates for this shortcoming, with
s = 3.

Figure 5-21: Predictor performances: multi-layer turbulence, SNR = 10 dB, noiseless model

The identified Kalman filter and two-stage predictor now both boast better performance than
the DARE-based Kalman filter and MVM. An implication is that, even if the separation into
stages and subsequent interpolation are done at the expense of performance, the data-driven
compensation for modelling errors is applicable as well to the two-stage predictor. In fact,
the two-stage algorithm behaved better than the identified Kalman filter for some of the
parameter choices.

Remark 5.7. Albeit not the case in Figure 5-21, given the inherent modelling error in multi-
layer cases (see Subsection 2-2-2), the DARE gains identified for noisy multi-layer models may
be better than those identified for noiseless models. This because noise in the model identi-
fication dataset results in a flattened A matrix and an enlarged process noise covariance Q,
thus reducing the importance of the model in the Kalman filter in favor of the measurements;
since the model is nonetheless inherently wrong, performance might see a boost. In any case,
a similar effect can be achieved by artificially reducing the measurement noise covariance
matrix R, increasing the weight of the measurements.

5-2-3 Increasing wind speed

This subsection deals with how performance tends to vary with increasing wind speed. Take
note that although adequate parameters were sought, the tuning might not be optimal at all
wind speeds (namely in Figure 5-23) because a balance was struck between performance and
time, and high AR orders are cumbersome for the identification procedure.

For the two-stage algorithm, the distance constraint of the gain and the coarse width were
both kept at 6. The results are shown in Figures 5-22 and 5-23.
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Figure 5-22: Predictor performances
for varying wind speed (measurement
SNR = 10 dB).

Figure 5-23: Predictor performances
for varying wind speed (measurement
SNR = 5 dB).

An increasing trend in the error is visible for all algorithms, with the identified Kalman filter
and the two-stage algorithm consistently displaying less error than MVM, and performance
similar, albeit worse, to that of the DARE-based filter. Naturally, for worse measurement
noise (lower measurement SNR), higher orders are required to keep up with the DARE, which
is reflected in the larger discrepancy seen in Figure 5-23.

Remark 5.8. Notice in Figure 5-23 how the quality of MVM increases as the wind speed
becomes more distant from integer lenslets-per-time-step. As explained in the chapter intro-
duction, the main reason for the lack of quality of MVM predictions is the integration of the
measurement noise, and the state-transition matrices Â at these speeds are averaging some
of this noise out.

Remark 5.9. In the ideal single-layer case, whenever the two-stage algorithm outperforms
prediction with the full identified gain, expect that performance-oriented tuning would im-
prove the results further, particularly for the full case, until it is better than two-stage.
Two-stage prediction happens to be more robust to under-selected AR orders.

Figure 5-24 shows performance varying with wind speed for the mismodelled multi-layer case.

Figure 5-24: Predictor performances for varying wind speed (multi-layer turbulence).
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The data-driven procedures now consistently boast better performance than the DARE and
behave better than MVM as speed increases. Note that MVM outdid two-stage by a slight
margin for a wind speed of 0.5 lenslets per time-step, which is when the modelling error due
to fractional pixel-wind-speeds is at its worst.

5-2-4 Sparse and two-stage

Two-stage prediction consists of a sparse stage in the original grid, for local prediction, and
a coarse one for the prediction of the overarching shape of the wavefront. This subsection
discusses the necessity of both stages by the sparse stage alone to the two-stage algorithm.
The coarse stage alone, with linear interpolation, naturally leads to very poor results.

Depending on the quality of the model and on the distance-constraint in comparison to the
array width, the sparse stage might suffice for prediction. When the model is of a high quality,
the Kalman filter relies upon it more heavily than otherwise, reducing the importance of the
measurements. Because the weight put upon the measurements, as seen in (2-20), is the
Kalman gain itself, reduced reliance on the measurements is reflected in a smaller, sparser
gain. This means that, for small arrays, similarly small distance-constraints suffice for near-
optimal prediction when the model is reliable; for instance, in the noiselessly modelled 36×36
case of Figures 5-17 and 5-19, the sparse gain with a constraint of 6 performs most of the
prediction, with the coarse stage improving it only slightly:

Figure 5-25: Performance comparison between sparse and two-stage prediction (36×36, noiseless
model).

The utility of the coarse stage becomes evident once faulty models are introduced, as the
measurements will be given increased importance, rendering the sparse stage insufficient for
correction. The utility of the coarse stage is demonstrated in Figure 5-26 for a noisy model;
the same is applicable to erroneous models of the natures described in Subsection 2-2-2.
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Figure 5-26: Performance comparison between sparse and two-stage prediction (36× 36, noisy
model).

Furthermore, most noticeably for very large system dimensions, the coarse stage allows the
constraint to be kept tight, resulting in a remarkably high sparsity of the gain. Figure 5-27
shows results for a noiselessly modelled 120× 120 system:

Figure 5-27: Performance comparison between sparse and two-stage prediction (z, noiseless
model).

Notice how a coarse stage of width Lc = 10, which is less than the square root of the original
array width, reduces the error from using only the sparse stage down to almost the best
attainable performance, even for tight distance-constraints.

5-3 Execution time

The increases in running time of the different algorithms with the system dimensions are
compared in this section. The main takeaway should not be the absolute times, but rather
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how quickly these rise for each algorithm as the system becomes larger. Nonetheless, the
algorithms were implemented in MATLAB version 9.6.0.1150989 (R2019a), and executed on
a system with an Intel Core i7-8750H CPU at 2.20 GHz, 24 GB of RAM, running Windows
10.

5-3-1 Identification

Figures 5-28 and 5-29 compare execution times for the DARE (implemented in MATLAB’s
idare function), and full and sparse identification with both MARK (s = 1) and Juang (s = 2
and s = 3), with the base Markov parameter distance-constraint set to 1.5.

Figure 5-28: Execution time comparison
between MATLAB’s idare, and MARK
and Juang for multiple values of s. The
error bars have a length of two standard
deviations.

Figure 5-29: Execution time comparison
between MARK and Juang for multiple
values of s. The error bars have a length
of two standard deviations.

The DARE sees its execution time quickly rise far above that of the identification procedures.
Notice that for the considered dimensions, the sparse gains take slightly longer to identify than
full gains: the high sparsity of the observability matrix is already such that the least-squares
problem for the gain can be solved quickly without enforcing sparsity in the gain itself, so the
overhead due to the repeated QR-factorizations necessary for algorithm (4-3) dominates.

As for the difference between MARK and Juang when both use their minimal s and p, MARK
with parameters s = 1 and p = 2 solves least-squares problems with matrices of the same
size as those for Juang with parameters s = 2 and p = 2, so the absence of the intermediate
conversion from observer-form to innovation-form Markov parameters (step 3 of Juang as
per the summary of Section 3-2) could be furnishing a, nonetheless insignificant, reduction
in execution time. Most importantly, a trade-off is made between more QR-factorizations
(MARK) or QR factorizations of bigger matrices (Juang); because the time to perform these
QR-factorizations scales with the square of the non-zeros per row, Juang’s increased non-zeros
per row offset MARK’s increased amount of QR-factorizations.

Remark 5.10. For extremely large systems, as shown in Section 5-4 for arrays of width equal
to and over 90 lenslets, it is no longer the case that full identification is faster than sparse.
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5-3-2 Prediction

As far as prediction goes (as per (3-3) or (3-4)), once the Kalman gain is obtained, it is
irrelevant whether the DARE or an identification procedure were used to obtain it, as the
operation is the same. As such, this subsection will only distinguish full and sparse gains,
the two-stage operation, and MVM. Figure 5-30 compares the times taken for the online
prediction operation with the full gain and a sparse one, MVM, and the two-stage procedure.
Figure 5-31 isolates the sparse gain and the two-stage procedure.
The state-transition matrix A is sparse, and the distance-constraint for the sparse gain and
the width of the coarse system are both kept constant at 6 throughout. The removal of the
means done every iteration is included in the displayed times. Particularly, in the two-stage
procedure, the means of all components are removed; that is, φ̂k, φ̂

(f)
k , and φ̂(c)

k all have their
means removed.

Figure 5-30: Prediction time compari-
son between MVM, full and sparse time-
update, and the two-stage algorithm.
The error bars have a length of two stan-
dard deviations.

Figure 5-31: Prediction time compari-
son between the sparse time-update and
the two-stage algorithm. The error bars
have a length of two standard deviations.

The times taken for full Kalman filtering and MVM rise significantly faster with the width
than those for sparse and two-stage filtering, as expected with their m2 scaling. Figure 5-31
shows that the coarse system operations of two-stage prediction add little burden to sparse
prediction for fixed distance-constraint and coarse system width.

5-4 Extremely large systems

Tables 5-1 and 5-2 show the algorithms at work for far larger dimensions than previously. The
wind speed is 0.25 lenslets per time-step, the measurement SNR is 10 dB, and the Markov
parameter distance-constraint is set to 1.5 lenslets. The order s is set to s = 2. The wavefront
and slope datasets consist of only 5000 time-steps of data, while the numbers of states range
from 8281 to 32761, and the numbers of outputs from 16200 to 64800; this means that all
the datasets are "tall", and that any covariances estimated with these datasets would only be
positive semi-definite (and not definite).

Master of Science Thesis Paulo Cerqueira



66 Results and Tuning

Note that, although z was kept constant at 6 here, both z and Lc should be tuned in an
attempt to avoid either becoming too large, striking a balance between them.

Ident. time [s] Prediction time [s]Dimensions Lc
Time for

pinv(G) [s] Full Sparse MVM Full Sparse Two-stage
90× 90 10 204.6 210.5 169.7 0.043 0.043 0.0031 0.0033

120× 120 10 1067.5 492.6 333.6 0.14 0.13 0.0053 0.0057
10 0.0089150× 150
15

4085.5 | 679.3 0.32 0.32 0.0084
0.0092

10 0.016
15 0.014180× 180
20

| | 995.3 0.67 0.69 0.012
0.014

Table 5-1: Identification and prediction times for very large systems. Distance-constraint z of
the gain was fixed at 6. Missing results (marked by a dash) are due to either insufficient memory
to handle identification of the full K, or the large time taken to pseudo-invert G. Gray cells
indicate hypothetical results, where the operations were done with artificial matrices.

Normalized Mean Squared Error (NMSE)Dimensions Lc MVM Full Sparse Two-stage
90× 90 10 1.22× 10−3 4.82× 10−4 1.93× 10−3 4.78× 10−4

120× 120 10 8.98× 10−4 3.43× 10−4 4.00× 10−3 3.62× 10−4

10 5.19× 10−4
150× 150

15
1.11× 10−3 | 6.21× 10−2

4.54× 10−4

10 5.65× 10−4

15 4.83× 10−4180× 180
20

| | 2.65× 10−2

4.50× 10−4

Table 5-2: Prediction performance for very large systems. Distance-constraint of the gain was
fixed at 6. Distance-constraint z of the gain was fixed at 6. Missing results (marked by a dash)
are due to either insufficient memory to handle identification of the full K, or time-consuming
pseudo-inversion of G.

Two-stage prediction shows execution times up to almost two orders of magnitude smaller than
those taken by MVM or the full time-update. As for identification, it is already faster than
pseudo-inverting G via SVD (using MATLAB’s pinv) for arrays of a width of 120 lenslets; in
particular, for these large systems, identification of the sparse gain is quicker than that of the
full gain. Setting the sparsity patterns and the matrices required for the two-stage operation,
i.e. (A−KG)′,K ′,Mc,Mi among others, takes comparably negligible time, but note that low
coarse widths may reduce the sparsity of Mc and Mi, possibly increasing prediction time (see
the two-stage times for the 180× 180 array).
Two-stage prediction proves itself far better than just the sparse time-update, with Table 5-2
showing reductions in the NMSE of up to almost two orders of magnitude. It is also consis-

Paulo Cerqueira Master of Science Thesis



5-5 Two-stage overview 67

tently better than simple MVM while incurring much smaller prediction times. Subsection
5-5 further elaborates these points.

5-5 Two-stage overview

The previous subsections have established that the two-stage algorithm allows the user to
customize a balance between error and execution time. The figures herein display surface
plots of the two-stage NMSE as a function of the distance-constraint z of the gain, and the
coarse width Lc with execution time generally increasing with both z and Lc.

Figure 5-32: Two-stage performance for
varying distance-constraints z and coarse
widths (120× 120, s = 2).

Figure 5-33: Two-stage performance for
varying distance-constraints z and coarse
widths Lc (120× 120, s = 3).

In combination with Figures 5-9 and 5-10, it is visible that, even for very large systems,
the two-stage performance is near-maximal for small z and Lc. In the 120 × 120 example,
z = 10, Lc = 10, both of which are smaller than

√
120 ≈ 11, provide performance close to

that of the identified Kalman gain, and significantly better than MVM (which had an NMSE
of 8.98× 10−4 not shown in the plots).

While increasing the order s improves the results at larger values of z and Lc, it does so at the
expense of performance for lower values. The two-stage algorithm always implies a trade-off
between time and performance, and the general undesirability of large coarse widths or lax
distance-constraints due to the resulting larger execution times means that lower values of s
should be favored, which also leads to faster identification.

It is nevertheless hard to tell how free the distance-constraint z of the gain and the width Lc
of the coarse system really are, as the coarse width must divide the original width, limiting
the choices; if, say, the hypothetical "best" choice of coarse width were Lc =

√
L, such a claim

could only be evaluated if the studied original system widths were squares of integers, which
very quickly grow out of hand. Tables 5-1 and 5-2 do nonetheless show that, employing the
two-stage procedure, it is possible attain great identification and prediction times for very
large systems, even if it is not conclusive that, for satisfactory performance, these truly do
scale linearly with the system dimensions.

Master of Science Thesis Paulo Cerqueira



68 Results and Tuning

Figures 5-34 and 5-35 extend the analysis to a 150 × 150 array, showing similarly good
performance for early values of z and Lc.

Figure 5-34: Two-stage performance for
varying distance-constraints z and coarse
widths Lc (150× 150, s = 2).

Figure 5-35: Two-stage performance for
varying distance-constraints z and coarse
widths Lc (150 × 150, noisy model, s =
1).

5-6 Summary

This chapter has provided examples and remarks to not only guide the tuning of the data-
driven Kalman filtering and two-stage algorithms, but also to motivate their use. To conclude
the chapter, the summary herein recapitulates the main conclusions drawn.

Tuning The order s of the AR model of the slopes should be chosen by weighing the following
factors:

• Model quality, which if expected to be low should be accompanied by a likewise lower
choice of s. Ideal models allow s to be arbitrarily increased for performance that asymp-
totically tends towards that of the DARE-based Kalman filter. Identification of the
sparse constrained gain is behaves akin to a lower-quality model in that increases of s
will eventually lead to worse performance.

• Execution time, which increases quickly with s, and should drive the user to keep s low.

• Measurement noise demands larger orders s, as AR model will attempt to smoothen
out the noise using information from previous time-steps.

The required amount of data for identification is shown to be independent of the system
dimensions, and dependent on the non-zeros per row (or column) of the Markov parameters
instead. This means that datasets with less time-steps of data than measurement points are
suitable for identification of the Kalman gain, whereas the consequential lack of full rank of
any covariances computed with these datasets could be problematic for the DARE.
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The base distance-constraint of the Markov parameters, used to enforce their sparsity pattern,
can be decided based on the wind speed given in lenslets per time-step. The lower the wind
speed, the tighter the constraint can be kept. It must be taken into account that the AR
model will smoothen out measurement noise using information from adjacent measurements,
so this constraint should exceed the wind speed (in lenslets per time-step).

The examples provided throughout the chapter establish functional selections of these tuning
parameters for particular cases, which can serve as a starting point for application in different
scenarios.

Performance and time The data-driven Kalman filter was demonstrated to be able to match
its DARE-based counterpart in terms of NMSE, and the identification procedure was shown
to scale far better than the DARE with the size of the system. However, matching the
performance of the DARE should not be a strict goal, as depending on the characteristics
of the turbulence, it may imply sacrificing speed; for example, if the measurements are very
noisy, the DARE is matched only for high orders s, which will consequently substantially
slow down identification. Instead, it should be kept in mind that one of the principal merits
of this data-driven approach is its speed, and the choice of s should reflect this, even if it
carries a slight cost in performance. In case A is erroneously designed, the data-driven filter
proved itself capable of some compensation for the error, yielding better performance than
the DARE-based Kalman filter.

As for the two-stage predictor, it always implies a sacrifice in performance in exchange for
better scaling of the prediction operation. Its data-driven nature still carries the benefits
of data-driven Kalman filtering, namely the and added robustness to modelling error with
respect to the DARE-based filter, and its Kalman-filter-inspired structure still provides di-
minished susceptibility to measurement noise when compared to MVM. The main tuning
parameters that determine error and time, the distance-constraint imposed upon the sparse
gain and the width of the coarse array, can be kept low to attain short prediction times, all
the while boasting competitive performance. As these parameters are increased, the NMSE
tends towards that of the identified Kalman filter, with additional error as the inherently sub-
optimal coarse stage becomes redundant. Furthermore, the two-stage predictor was shown to
scale well for arrays of dimensions up to 180× 180.

Note that the order s for identification of the Kalman gain of the coarse system was preset
to s = 3 and left unchanged for simplicity of the analysis. This is, nonetheless, an addi-
tional tuning parameter, along with p for both the fine and coarse gain, but the latter is
recommended to be kept at p = 2, as justified in Section 4-1.
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Chapter 6

Conclusions and Recommendations

In Chapter 3, a novel algorithm for data-driven Kalman filtering was proposed. The algo-
rithm is based on the subspace-identification equations, and stands beside Juang and Chen’s
algorithm [34] as a prediction-error method for direct identification of the Kalman gain (as
opposed to identification of the noise covariances). In the context of Adaptive Optics (AO),
this novel proposal provides an estimator that is especially robust to modelling errors.

Data-driven Kalman filtering algorithms were brought to AO via exploitation of sparsity in
Chapter 4. Both of the evaluated data-driven Kalman filtering algorithms involve fitting an
Auto-Regressive (AR) model to measurement data; the matricial coefficients of the model
are intuitively sparse, a property that when exploited massively drops complexity. These
sparse identification methods compete with the DARE, boasting a time complexity of O(m),
rather than O(m3), and allowing use of "tall" datasets with far less time-steps of data than
measurements. Their data-driven nature also relaxes the assumption of known statistics and
compensates, to a certain extent, for modelling errors.

Finally, a two-stage approach to prediction was proposed to reduce the time complexity of
the online prediction operation to O(m), down from the conventional O(m2). Prediction
was split into a sparse stage for prediction of local structures in the wavefront phase, and a
low-dimensional stage to correct for the remaining low-frequency components. This algorithm
exchanges some of the performance of the conventional Kalman filter for significantly improved
prediction times. Adequate tuning should allow the user to minimally sacrifice Kalman filter
performance while achieving significant improvement of the online execution times.

6-1 Recommendations

• The two-stage predictor is still missing a formulation for circular arrays, in which case
the square coarse units will necessarily include points outside the aperture. As pro-
posed in Chapter 4, hypothetical measurements at points outside the aperture can, for
example, be considered to be zero, or alternatively, one could artificially set them such
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that they minimize a measure of error between the interpolated and original wavefronts
within each coarse unit. These proposals remain to be formalized and evaluated.

• The interpolation from the coarse grid to the original fine one used in the implementation
presented herein was simple linear interpolation. More realistic methods of interpola-
tion, in that they better replicate the shape of a wavefront, should be explored, possibly
reducing the performance difference between the two-stage predictor and a Kalman
filter, or allowing even lower choices of width of the coarse grid.

• Alternative descriptions of the coarse system could be explored to extend the applicabil-
ity of the two-stage predictor. Subsection 4-2-2 formulates the coarse system such that
its units are square, forcing the width of the coarse array to divide that of the original
fine array. It would be relevant to find descriptions that allow more general unit shapes
to increase the freedom of choice of both the coarse and original array widths. As it
stands, the original width can not, for example, be a prime.

• Unfortunately, this thesis lacks a comparison to other methods dedicated to the reduc-
tion of the computational burden of the Kalman filter. Examples are [4, 8]. Such an
evaluation is particularly important for the two-stage predictor, whose trade-off between
performance and time should be compared against those of state-of-the-art methods.

• While the complexity of the sparse data-driven identification algorithms is low, these
require a QR-factorization to be done every iteration, which adds a lot of overhead.
The sparsity patterns involved are particular in that the non-zero pattern of a given
row (resp. column) is a shift of that of a previous row (resp. column), with or without a
few added non-zeros. This makes re-utilization of previous QR-factorizations, explored
in works such as [41], an interesting topic to explore to reduce the execution time in
practise.

• Data-driven Kalman filtering, in combination with identification of the A matrix, should
permit online adaptation to changing turbulence statistics via re-identification every few
time-steps. Although not in the scope of the thesis, this is a research topic of relevance.

Several additional possible off-topic research proposals are presented in the Appendix. These
range from modelling alternatives to potential improvements to MARK.

Paulo Cerqueira Master of Science Thesis



Appendix A

On the modelling of turbulence

A-1 Lagged AR-1 turbulence modelling

It was mentioned in Subsection 2-2-2 that fractional-pixel movement per time-step yields
AR-1 turbulence models that are suboptimal for application of a Kalman filter. As the
difference between the pixel-wind-speed and the nearest integer increases, the error becomes
more noticeable (see Figures 5-22 and 5-23). Consider then increasing the lag of the model,
making A represent several time-steps’ worth of movement, such that this movement is closer
to a whole-pixel shift. For example, for a wind speed of 0.5 pixels per time-step, lagging the
model one time-step further results in an A matrix that represents a shift of 1 pixel, which
is accurately modelled. Consider that the standard AR-1 model as in (2-5) has lag 1. Then,
take the example of an AR-1 model with lag 2:

φk+1 = Aφk−1 + wk−1 (A-1)

which is described by the following state-space model:[
φk
φk+1

]
=
[

0 I
A 0

] [
φk−1
φk

]
+
[

0
wk−1

]

yk =
[
0 G

] [φk−1
φk

]
+ vk

(A-2)

and whose Kalman filter is given by:[
φ̂k|k
φ̂k+1|k

]
=
[

0 I
A 0

] [
φ̂k−1|k−1
φ̂k|k−1

]
+Kyk

yk =
[
0 G

] [φ̂k−1|k−1
φk|k−1

]
+ ek

(A-3)
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Say the state prediction error covariance P of the Kalman filter is divided into four blocks:

P =
[
P1 P3
PT

3 P2

]

The process and measurement noises of this model are uncorrelated, and hence the Kalman
predictor gain can be developed into:

K =
[

0 I
A 0

]
Kr

=
[

0 I
A 0

]
P

[
0
GT

]([
0 G

]
P

[
0
GT

]
+R

)−1

=
[
P2G

T(GP2G
T +R)−1

AP3G
T(GP2G

T +R)−1

]

While the Discrete-time Algebraic Riccati Equation (DARE) is[
P1 P3
PT

3 P2

]
=
[

0 I
A 0

] [
P1 P3
PT

3 P2

] [
0 AT

I 0

]
+
[
0 0
0 Q

]

−
[
P2G

T(GP2G
T +R)−1GP2 P2G

T(GP2G
T +R)−1GP3A

T

AP3G
T(GP2G

T +R)−1GP2 AP3G
T(GP2G

T +R)−1GP3A
T

]

or, instead,[
P1 P3
PT

3 P2

]
=
[
P2 PT

3 A
T

AP3 AP1A
T

]
+
[
0 0
0 Q

]

−
[
P2G

T(GP2G
T +R)−1GP2 P2G

T(GP2G
T +R)−1GP3A

T

AP3G
T(GP2G

T +R)−1GP2 AP3G
T(GP2G

T +R)−1GP3A
T

] (A-4)

The equations for the supra-diagonal blocks are solved for P3 = 0, thus:

P =
[
P1 0
0 P2

]

K =
[
P2G

T(GP2G
T +R)−1

0

] (A-5)

Note now that

P1 = E[(φk − φk|k)(φk − φk|k)T ]
P2 = E[(φk+1 − φk+1|k)(φk+1 − φk+1|k)T ]

and that, from (A-4),

P1 = P2 − P2G
T(GP2G

T +R)−1GP2

P2 = AP1A
T +Q

Paulo Cerqueira Master of Science Thesis



A-1 Lagged AR-1 turbulence modelling 75

A quick comparison with the standard Kalman filter equations (with uncorrelated process and
measurement noises) shows that P is thus just the state reconstruction and prediction error
covariances arranged block-diagonally, and that the top block-row of K is the reconstructor
gain of a standard Kalman filter for a lag 1 system with A as its state-transition matrix and
Q as its process noise covariance. Indeed,

P2 = AP2A
T +Q−AP2G

T(GP2G
T +R)−1GP2A

T

Now define

K(s)
r = P2G

T(GP2G
T +R)−1

K(s) = AK(s)
r = AP2G

T(GP2G
T +R)−1

where the superscript (s) stands for "standard". Then, substituting it into (A-3), skipping
the reconstruction step, yields:

φ̂k+1|k = Aφ̂k−1|k−2 +AK(s)
r yk−1 (A-6)

or, resuming use of the usual notation and substituting AK(s)
r for K(s):

φ̂k+1 = Aφ̂k−1 +K(s)yk−1 (A-7)

where K(s) is simply the predictor gain designed for matrices (A,G,Q,R). That is, using the
MATLAB function idare (and ignoring the output for P ):

K(s) =
[

idare(AT, GT, Q,R)
]T

Remark A.1. Notice that in (A-3) or (A-6), the wavefront prediction does not actually use
information up to time-step k. With (A-6) established, it should be noted that, to be more
rigorous, φ̂k+1|k should actually be referred to as φ̂k+1|k−1 instead.

As for downsides of the lagged model, notice that model (A-1) and its Kalman filter (A-3)
effectively split the data between even and odd time-steps. That is, according to the model,
the phase and slopes at even time-steps depend only on those from previous even time-steps,
and the same applies to odd time-steps. This means that, in truth, two Kalman filters are
in alternate operation, and their transient states are handled separately, doubling the time
it takes to reach steady-state. This is reflected in an extended observability matrix of (A-2),
which only has full rank if it includes the third power of the state-transition matrix. Using
the Op notation from Chapters 3 and 4:

O4 =


0 G
GA 0
0 GA

GA2 0


meaning that it takes four time-steps of future data, as opposed to the usual two (see that
O2 has been used throughout the thesis, rather than O4), to reconstruct a certain state.
Moreover, lagging the model implies working in a higher-speed regime, which, as seen in
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Figures 5-22 to 5-24, tends to increase the error; higher-speed regimes also require more lax
distance-constraints, increasing execution times. It might thus not be advisable to lag the
model when the wind speed substantially exceeds 0.5 lenslets per time-step.

Working with a lagged AR-1 model further incurs trivial changes in the data-driven Kalman
filtering algorithms if the Kalman filter is written in form (A-7), rather than (A-3); the latter
model could be used as-is, but the user would end up fitting for a lot of known zeros, or
otherwise complicating the problem further to apply redundant sparsity patterns. Instead,
organize the data into two matrices, one for even time-steps, and one for odd ones:

Yi,j,N ≡


yi yi+2 yi+4 · · · yi+2(N−1)
yi+2 yi+4 · · · yi+2N
yi+4
...

...
yi+2(j−1) yi+2j · · · yi+2(j+N−2)


Yi,N ≡

[
yi yi+2 yi+4 · · · yi+2N yi+2(N−1)

]
where if i is even then Yi,j,N comprises data from even time-steps, and if i is odd, it does
so for the odd time-steps. If measurements are taken from time-step 0 onward, the first
least-squares problem from Juang and Chen’s algorithm can be written as

ĜL = argmin
GL

∣∣∣∣∣∣∣∣ [Y2s,N Y2s+1,N
]
− (GL)

[
Y0,s,N Y1,s,N

] ∣∣∣∣∣∣∣∣2
F

and that from MARK is analogous. Once an estimate of GL (Juang) or L (MARK) are
obtained, K̂ is retrieved as usual.

Standard model (1-step lag) 2-step Lagged modelWind Speed
DARE Ident. Full Two-stage DARE Ident. Full Two-stage

0.5 0.0030 0.0031 0.0031 0.00079 0.0012 0.0015
1.5 0.0032 0.0036 0.0035 0.0046 0.0052 0.0055

Table A-1: NMSE comparison between the standard (lag 1) AR-1 model and a 2-step lagged
counterpart. The array is 36 × 36 and the wind speed is given in lenslets per time-step. The
values within the cells are the NMSE.

For a wind-speed of 0.5 lenslets per time-step, one sees a substantial reduction in error when
the lagged model is applied, near a third of the NMSE of the non-lagged model. In fact, the
results now match those for a wind speed of 1, seen in Figure 5-22, as the model is effectively
the same. For 1.5 lenslets per time-step, the increase in error due to the larger wind speed
offset any gain from lagging the model, resulting in worse performance.

Wind speeds below 0.5 should be lagged over two steps. For example, a wind-speed of 0.25
should be approached with a model of lag 4. Nonetheless note that it may not be necessary
to equal the wind speed to an integer, but rather merely bring it closer to the integers instead
(in fact, modelling quality depends on the pixel-, not lenslet-movement, so although these are
approximately the same, this is the case in Table A-1 already).
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A-2 Iterative data-driven model refinement

The "noisy model" case of Chapter 5 relied on first obtaining a poor estimate of A and then
using a single iteration of data-driven filtering to compensate for the modelling error and
obtain a better Â. One can wonder how far this can be taken, i.e. if Â can be seen to
converge to a final best estimate as additional iterations of data-driven filtering are executed.

The process is as follows: begin from initial noisy wavefront phase data, obtained, for example,
from pseudo-inversion of G and multiplication with noisy measurements; then, obtain an
estimate A from the noisy phase data using the procedures in Chapter 2; with this poor first
A and the measurements, identify a Kalman gain and apply it to the measurements to obtain
better phase data; use this filtered phase data to estimate a new A, and repeat:

Estimate phase data Identify A

Identify K

Figure A-1: Iterative model refinement cycle: identify A from phase data, identify K with A
and the measurements, improve estimates of the phase with K, repeat.

The use of data-driven Kalman filtering should compensate somewhat for the erroneous noisy
modelling, and the goal is for it to continuously yield better estimates of A until convergence
is observed over the training data. Unfortunately, as it stands, convergence is observed only
for low speeds, and divergence is seen otherwise. Being outside the scope of this thesis, this
is a topic for further research. Preliminary experiments in an especially noisy scenario with
a wind speed of 0.25 lenslets per time-step yielded:

Figure A-2: Evolution of the NMSE of the identified Kalman filter for progressively improved A
matrices through iterative refinement.
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whereas divergence was observed for speeds of 0.5 and over, after a few iterations. The initial
and final A matrices are given below, along with a side-by-side comparison between the final
and true matrices:

Figure A-3: Initial Â before iterative re-
finement.

Figure A-4: Final Â after iterative re-
finement.

Figure A-5: Side-by-side comparison between the final Â after refinement and the true A.

A-3 Data-driven prediction for mismatched models

One of the points repeated throughout the thesis was that data-driven filtering covers for
modelling errors. This is explored further here: the turbulence is two-layered, but the model
accounts only for the dominant bottom layer. The DARE gain is designed also with the
statistics of the bottom layer, meaning that A and Q are both ignorant of the second, less
influential, layer. Measurement data, however, is true noisy slope data, and accounts for both
layers. Simulation was done in OOMAO, where "dominance" was set via the "fractional r0"
parameter: the bottom layer had it set to 0.7, whereas the top layer had it set to 0.3.

This would, for example, be the case if A is preset under wrong assumptions. Because
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(A−KG)′ depends on K, it can not be preset and will be obtained normally from the phase
data obtained pseudo-inversion of G and multiplication with the slopes. Figures A-6 and A-7
show the results.

Figure A-6: Predictor performances:
two-layered turbulence modelled with a
single-layer model.

Figure A-7: Predictor performances:
two-layered turbulence modelled with a
single-layer model (DARE ignored).

The DARE-based gain suffered immensely from mismodelling, whereas the identified filters
successfully compensated the error.
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Appendix B

On MARK

B-1 Pre-filtered data

Correlation methods [20, 27, 28, 29] have been traditionally formulated under the assumption
that the measurement data is pre-filtered by default. The performance of these algorithms is
particularly sensitive to the choice of initial filter, and the lack of any pre-filtering will often
make these algorithms yield estimators with relatively high covariance [30].

MARK has the benefit of performing better than correlation methods not only if both are
directly using output data, but also when they share the initial filter. Because correlation
methods are usually evaluated under the assumption that the output data is pre-filtered [42], a
fair comparison would supply filtered data to MARK as well. To this end, define a suboptimal
initial filter with gain J , state prediction x̂∗k and prediction error e∗k:

x̂∗k+1 = Ax̂∗k + Je∗k

yk = Cx̂∗k + e∗k

Now define a filter-error system, whose state is the error ξk between the optimal state predic-
tion x̂k and its suboptimal counterpart x̂∗k:

ξk = x̂k − x̂∗k
ξk+1 = (A− JC)ξk + (K − J)ek
e∗k = Cξk + ek

(B-1)

where ek are the (optimal) innovations. One can see this as a more general formulation
that replaces the innovation-form of the optimal filter, whose state is ξk = x̂k − 0, i.e. the
suboptimal filter is nonexistent. These suboptimal prediction errors e∗k are the pre-filtered
(whitened) output data to be used by MARK.

Denote the block-Hankel matrices formed with the suboptimal prediction errors by Ei,j,N ,
following the notation of Chapter 3, and form the extended observability matrix of the sub-
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optimal filter:

Op =


C

C(A− JC)
...

C(A− JC)p−1


Then L, now defined as

L =
[
(A−KC)s−1(K − J) · · · (K − J)

]
can be estimated with

L̂ = argmin
L
‖Es,p,N −OpLE0,s,N‖2F (B-2)

which is of almost the exact same form as the original problem in (3-23), requiring only the
additional step of prefiltering the data, replacing Y0,s,N and Ys,p,N with E0,s,N and Es,p,N . The
gain K is now the last block-column of L plus the initial gain J .

B-2 Weighted formulation

It is known that the minimum-variance unbiased linear estimator of x, such that

y = Fx+ ε

where E[ε] = 0 and E[εεT ] = L, is obtained via weighted least-squares [35], rather than with
the standard least-squares solution used in Chapter 3. Vectorization prior to weighting is
undesirable as it turns the matrix sizes unwieldy. Instead, the original form of the problem
will be maintained as much as possible. In matrix-form, the equation | |

y1 · · · yN
| |


︸ ︷︷ ︸

Y

= F

 | |
x1 · · · xN
| |


︸ ︷︷ ︸

X

+ E

is equivalent to a set of independent equations, one for each column of X. The minimum
variance unbiased estimator for each ith column ofX is the solution to a weighted least-squares
problem of the form:

yi = Fxi + εi

and if E[εiεT
i ] = L, then,

x̂i = (GTL−1G)−1GTL−1︸ ︷︷ ︸
M

yi

If E[εiεT
i ] = L is applicable to all i, then

X̂ =

 | |
My1 · · · MyN
| |

 = MY

If, instead, E[εiεT
i ] = Li, with Li different across different i, then each xi should be solved

for independently and weighted accordingly.
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Application to MARK

Although, throughout the thesis, MARK (and Juang) had the row-wise problem (3-24) solved
first so that sparsity can be exploited, in general, it is indifferent whether the row- or the
column-wise problem is solved first. Solving for the columns first makes the formulation of
the weighted problem simpler; note however, that this weighted approach is applicable just
the same to the column-wise problem if one solves the row-wise one for ÔpL first (using non-
weighted least-squares). If MARK is solved column-first, then, recalling that X̂s,N = LY0,s,N ,
the first problem is to find an estimate of X̂s,N such that

Ys,p,N = OpX̂s,N + SpEs,p,N

Notice that each column of SpEs,p,N has the same covariance matrix S. Denoting the output
prediction-error (or innovation) covariance by Re, S is given by:

S = Sp(Ip ⊗Re)ST
p

Following the reasoning above, set the weight W , found by estimating S with a previous
estimate of K. The prediction-error sequence can be drawn from the error of the least-
squares problem, and with it, Re can be easily estimated. With S estimated as Ŝ using K̂
and R̂e,

W = Ŝ−1

The optimal state prediction sequence can now be solved for in a weighted least-squares
setting:

X̂s,N = argmin
Xs,N

∥∥∥W 1
2Ys,p,N −W

1
2OpXs,N

∥∥∥2

F

whose solution is merely

X̂s,N = (OpWOp)−1OT
pWYs,p,N

The matrix L is then obtained as usual

L = X̂s,NY
†

0,s,N

from which K̂ is retrieved, and the weighted problem can be solved again with a new weight
obtained from the new K̂, and the problem solved iteratively. The idea is that if previously
estimated gains are somewhat representative of the optimal gain, then they can be used to
decide a weighting factor.

Remark B.1. Online application of the weighted procedure does not necessarily require iter-
ations over a single data batch. The inherently repetitive nature of an online implementation
allows for the weight to be recomputed as the gain is updated for the next batch.

Remark B.2. Proper conditioning of W must be ensured. Because it depends on estimated
covariances R̂e, robust covariance estimation techniques could be explored. For large-scale
problems, a popular reference for a well-conditioned covariance estimator is [43].
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Consider a 1-output, 2-state system, so that the Kalman gain has two entries which can be
plotted in the x- and y-axes. 200 simulations were run in both the unweighted and weighted
case, and both cases had the tuning paramters set equally, and were subjected to the same
process and measurement noise sequences. The weighted MARK was iterated 20 times each
simulation for a final estimate of K. The results are shown in Figures B-1 and B-2.

Figure B-1: Results of the unweighted
MARK algorithm over 200 simulations.
The large cross marks the optimal gain.
Mean-squared-error: 0.09027

Figure B-2: Results of the weighted
MARK algorithm, using 20 iterations,
over 200 simulations. The large cross
marks the optimal gain. Mean-squared-
error: 0.06044

Abusing language, increasing p brings the unweighted problem further from the optimal
weight. Over the optimal value of p, one sees deterioration of the results if the algorithm
is unweighted. In contrast, the weighted version allows large increases in p without deterio-
ration of the results, and in fact, these increases result in improved mean-squared-errors over
the unweighted algorithm with its best p.

This does mean that the unweighted and weighted algorithms should not be tuned equally,
although such was done in the figures for direct comparison. The weighted version should
exploit large values of p as much as possible
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List of Acronyms

AO Adaptive Optics

AR Auto-Regressive

DARE Discrete-time Algebraic Riccati Equation

MVM Matrix-Vector-Multiplication

SVD Singular Value Decomposition

SNR Signal-to-Noise Ratio

NMSE Normalized Mean Squared Error
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