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A B S T R A C T

There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks obtained from
different modalities are usually treated in isolation, which is however contradictory to accumulating evidence that
these networks show non-trivial interdependencies. Even networks obtained from a single modality, such as
frequency-band specific functional networks measured from magnetoencephalography (MEG) are often treated
independently. Here, we discuss how a multilayer network framework allows for integration of multiple networks
into a single network description and how graph metrics can be applied to quantify multilayer network organi-
sation for group comparison. We analyse how well-known biases for single layer networks, such as effects of group
differences in link density and/or average connectivity, influence multilayer networks, and we compare four
schemes that aim to correct for such biases: the minimum spanning tree (MST), effective graph resistance cost
minimisation, efficiency cost optimisation (ECO) and a normalisation scheme based on singular value decom-
position (SVD). These schemes can be applied to the layers independently or to the multilayer network as a whole.
For correction applied to whole multilayer networks, only the SVD showed sufficient bias correction. For
correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for biases. By using
generative models as well as empirical MEG and functional magnetic resonance imaging (fMRI) data, we further
demonstrated that all schemes were sensitive to identify network topology when the original networks were
perturbed. In conclusion, uncorrected multilayer network analysis leads to biases. These biases may differ be-
tween centres and studies and could consequently lead to unreproducible results in a similar manner as for single
layer networks. We therefore recommend using correction schemes prior to multilayer network analysis for group
comparisons.
Introduction

The human brain is widely considered to be a complex network that
can be studied by graph theoretical approaches. In such a description,
nodes in the network correspond to anatomical regions and links typi-
cally refer to either structural or functional connections between those
regions. Graph or network theory has been applied successfully to net-
works derived from a wide range of modalities, for example from func-
tional magnetic resonance imaging (fMRI) (Bassett et al., 2008),
magnetoencephalography (MEG) (Stam, 2014), electroencephalography
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(EEG) (Stam et al., 2007), diffusion tensor imaging (Iturria-Medina et al.,
2008) and structural covariance (He et al., 2007). A key advantage of
such an approach is that network theory enables characterisation of both
the spatial organisation and the strength of the network connections
(Bassett and Sporns, 2017). Various metrics, describing both nodal and
global topological network characteristics, have been shown to provide
useful quantitative descriptions of networks in order to reveal common
pathways across diseases (Crossley et al., 2014), and to differentiate
brain states during cognitive tasks (Braun et al., 2015; Micheloyannis
et al., 2006). Despite its potential, the application of network theory to
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neuroimaging comes with several challenges, including: 1) How do we
integrate information from networks across different neuro-imaging
modalities from the same subject or group? 2) How do we compare
networks between groups and experimental conditions in an unbi-
ased way?

One of the advantages of network theory is the fact that it is modality
invariant, i.e. the same network concepts can be applied to a wide range
of data obtained from different modalities. However, networks obtained
from different imaging modalities or from different frequency bands in
the same subjects are usually treated in isolation using a single layer
network approach. Yet, the field is increasingly acknowledging and
elucidating how different types of networks are interrelated in a non-
trivial way (Garc�es et al., 2016). For instance, relationships between
anatomical and functional networks are now established and often
studied using computational models (Hlinka and Coombes, 2012).
Moreover, recent studies suggest that functional networks are shaped by
both monosynaptic and polysynaptic walks in the underlying structural
network (Mehta-Pandejee et al., 2017; Meier et al., 2016a; Robinson,
2012). Likewise, covariance in cortical myeloarchitecture and in fMRI
connectivity matrices can be explained by a nonlinear combination of
MEG functional connectivity matrices (Hunt et al., 2016; Tewarie et al.,
2016a). Importantly, for MEG and EEG, there is no reason why different
frequency-specific networks would operate independently from one
another (Tewarie et al., 2016b). All of this evidence advocates an inte-
grative approach.

A generic framework that enables integration of information from
different networks is the multilayer network approach. A multilayer
network can be considered as a ‘network of networks’, which consists of
individual network layers that are interconnected (Boccaletti et al., 2014;
Van Mieghem, 2016). Thus, a given node in the multilayer network can
be involved in different types of interactions. Multilayer networks can
show non-trivial properties that are not merely the result of the sum of its
layers (Kivel€a et al., 2014; Nicosia et al., 2013; Sahneh et al., 2015). This
approach has been applied effectively to several networks, such as social
networks, transportation networks, and synthetic networks, demon-
strating that empirical systems can be better understood when the in-
fluence of interacting networks are considered (De Domenico et al.,
2013; Granell et al., 2013; Hern�andez et al., 2014). Multilayer network
approaches have recently been introduced to the field of neuroscience
(Brookes et al., 2016; Buldú and Porter, 2017; Crofts et al., 2016; De
Domenico et al., 2016; Tewarie et al., 2016b; Yu et al., 2017), where
different layers can correspond to different frequency-band specific
networks or networks from different modalities. Lately, motif analysis of
a multilayer network – where individual layers were made up of DTI and
fMRI networks – was reported by (Battiston et al., 2017). Using the
multilayer framework an MEG study extracted meaningful connectivity
differences between patients with schizophrenia and healthy controls
(Brookes et al., 2016). Another study demonstrated a non-trivial rela-
tionship between frequency-band specific MEG networks for intermedi-
ate regimes of coupling between layers (Tewarie et al., 2016b).
Furthermore, a multilayer network approach has also been applied suc-
cessfully to the connectome of the C. elegans, where gap junctions and
neuromodulator layers were grouped into different layers (Bentley et al.,
2016; Nicosia and Latora, 2015; De Domenico et al., 2015a).

Despite the obvious promise of these approaches, a key issue in the
application of network theory is comparison between groups or condi-
tions. Group comparison at the level of single layer networks can be
challenging and biased by, for example, link density (van den Heuvel
et al., 2017; Van Wijk et al., 2010). In other words, network measures
depend on non-organisational properties of the network such as link
density and average connectivity. As a result, it proves to be challenging
to differentiate between alterations in the underlying ground truth that
are due to an experimental manipulation or a disease process from those
that are due to experimental choices. This can potentially inflate false
positives or false negatives when comparing networks between groups,
which we refer to here as the bias in group comparisons. There are no
372
reasons why multilayer networks would be exempted from these biases.
Given the recent studies on multilayer networks in different diseases
(Brookes et al., 2016; De Domenico et al., 2016; Guillon et al., 2016; Yu
et al., 2017), it is now crucial to elucidate how to compare multilayer
networks between groups. For single layer networks, several sampling
methods or schemes have been proposed to correct for the biases in es-
timates of topology that are due to link density or average functional
connectivity for unweighted and weighted networks respectively (Van
Wijk et al., 2010). Examples of schemes that result in an unweighted
subnetwork are multi-threshold permutation correction (Drakesmith
et al., 2015), the minimally connected component (MCC) (Jalili, 2016),
balance between network efficiency and costs (ECO) (Fallani et al.,
2017), a clustering optimization approach (Smith et al., 2015), the
minimum spanning tree (MST) (Stam et al., 2014; Tewarie et al., 2015)
and the union of shortest path trees (USPT) (Meier et al., 2015). The MCC
is based on a thresholding scheme, where a threshold is chosen just above
the level where the network gets disconnected into components. For
ECO, a threshold is chosen that maximises the ratio between network
efficiency and link density, whereas the MST corresponds to the tree (a
loop-less subnetwork) with the minimal sum of all weights that spans the
original network. The USPT corresponds to the union of shortest path
trees rooted at each node in the graph. While these approaches to extract
unweighted networks have demonstrated their value for single layer
networks, it remains unclear whether these approaches generalise to
multilayer networks. Approaches for weighted networks (Wang et al.,
2010), such as normalising by the mean or range of connectivity values
have so far been less promising (Van Wijk et al., 2010). In the current
study, we introduce a simple approach to correct for differences in
average connectivity between groups for weighted networks, based on
singular value decomposition of the multilayer connectivity.

This paper is organised in the following way. We start with a theo-
retical section (1) on the basic mathematical concepts and metrics for
multilayer networks, followed by a short description of generative
models for multilayer networks. These generative models allow us to
evaluate correction schemes for a given ground truth. We then show that
multilayer network metrics are biased in a similar fashion as single layer
network metrics (2), and evaluate existing and two new approaches as
solutions to correct for biases in link density and average connectivity
(3). We then demonstrate how sensitive a given approach is in revealing
the true changes in network topology (4) since correction schemes are
only useful if changes in the underlying topology can still be detected
after the correction. We use synthetic networks based on generative
models (e.g. a nonlinear preferential attachment model and a generative
model for multilayer community networks) as ground truth, and we also
apply the approaches to empirical MEG and fMRI data. Lastly, (5) we
analyse how sensitive multilayer network metrics can detect group dif-
ferences after application of the correction schemes.

Theory: multilayer network metrics

A multilayer network is the generic name for a complex network
structure consisting of multiple networks. Nodes exist in a set of layers
that correspond to different important features of the system under
consideration, and links encompass connections between all possible
combinations of nodes and layers. Specific widely-used special cases
include: multi-weighted graphs, multilevel or multi-scale networks,
multiplex networks, multi-relational networks or hyper-networks (Boc-
caletti et al., 2014). These different types of networks all fall under the
multilayer network framework and can be obtained after applying spe-
cific constraints (Boccaletti et al., 2014). Here it is worth noting that
multilayer network approach does not assume that the different layers
are necessarily integrated. The multilayer framework leaves space to
quantify the balance between distinctness and commonality among
layers. There are several review papers for mathematically oriented
readers on multilayer networks, please see (Boccaletti et al., 2014; De
Domenico et al., 2013; Kivel€a et al., 2014; Wang et al., 2013; Wider et al.,



K. Mandke et al. NeuroImage 166 (2018) 371–384
2016). For a recent review on multilayer networks applied to
neuro-imaging datasets see De Domenico (2017). Here, we focus on the
aspects of multilayer networks that can be readily translated to neuro-
imaging (Fig. 1).

A convenient representation of a multilayer network is its corre-
sponding block adjacency matrix (Gomez et al., 2013; De Domenico
et al., 2013; Van Mieghem, 2016). An f-layered multilayer network
written in terms of a block adjacency matrix reads (Sahneh et al., 2015)

A ¼

2
664

A1 H12 … H1f

H21 A2 ⋮
⋮
Hf 1 …

⋱
Af

3
775; (1)

where Aα corresponds to a symmetric, square adjacency matrix of a layer
α, 1 � α � f ; and Hkl to the coupling matrix between the layers k and l,
where 1 � k; l � f . Aα has the same dimensions for all layers (n x n). This
means that every layer has the same number of nodes or brain regions.
The between layer coupling matrix Hkl can take any form, e.g. fully
connected or a diagonal matrix (e.g. Hkl ¼ cI, where c is a constant and I
the identity matrix). In view of the focus of recent theoretical studies, we
concentrate on the following case where coupling matrices are special
diagonal matrices (Hkl ¼ cIÞ, i.e. only introducing links between the same
node (brain region) over all layers. In other words, we ignore cross-
frequency coupling between distant areas for now, but note that the
subsequent metrics can also be applied to the case of fully connected
interlayer coupling.

The available topological metrics can be divided into: 1) distance
class metrics 2) connection class metrics 3) spectral class metrics and 4)
between layer dependency metrics (Hern�andez and Van Mieghem,
2011). Spectral class metrics correspond to properties related to the ei-
genvalues of the network of interest (VanMieghem, 2010). Distance class
metrics are metrics where the geodesic distance or hops play a crucial
role, where a hop refers to a link along a path. Connection class metrics
refer to cohesive subgroups of nodes or the connectedness of a single
node in the network. Between layer dependency metrics correspond to
metrics that quantify relationships between layers.

1) Distance class metrics

Similar to single layer networks, characteristic path length, S, and global
Fig. 1. A schematic of the analysis pipeline including construction of MEG specific multilayer
special case of multilayer networks: multilayer networks with one-to-one between layer coupli
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efficiency, G, are measures of integration in the network and can be
similarly defined as (Boccaletti et al., 2014)

S ¼ 1
tðt � 1Þ

X
i;j;i≠j

sij (2a)

G ¼ 1
tðt � 1Þ

X
i;j;i≠j

1
sij
; (2b)

where the distances sij refer to the number of hops (links) that you must
traverse to travel from one node i to another node j along the shortest
path between them, and where t ¼ nf . Distances can be obtained using
Dijkstra's algorithm (Dijkstra, 1959). The global efficiency G can also be
evaluated for a subnetwork consisting of only the neighbours of node i.
This results in the metric local efficiency for every node, which is usually
averaged across nodes in the neuroscience literature, yielding a single
value per network (Rubinov and Sporns, 2010).

2) Connection class metrics

Several metrics exist in this class, such as metrics that quantify the
“importance” or “hubness” in a network and other metrics that quantify
clustering and community structure. A basic measure for “importance”
for a given node i in multilayer networks is the multilayer degree d. This
metric was introduced in its general form by (De Domenico et al., 2013),
and for the special case of multiplex networks by (Battiston et al., 2014).
We assume a node labelling such that node i belongs to the l-th block row
in A (Van Mieghem, 2016)

di ¼
Xf

l¼1
ðAluÞi þ

Xf

b¼1;b≠l

Xf

k¼1;k≠l
ðHbkuÞi

¼
Xf

l¼1 l
di þ

Xf

b¼1;b≠l

Xf

k¼1;k≠l
ðHbkuÞi; (3)

where ldi is the degree of node i in the multilayer network layer l, ðHbkuÞi
are the inter-layer links from node i towards nodes at layer k, and u is the
all-one vector. This multilayer degree metric is the extension of the de-
gree from single layer networks. Extensions for eigenvector centrality to a
multilayer framework also exist (Sol�a et al., 2013; Sol�e-Ribalta et al.,
2014), as well as other more sophisticated measures, such as versatility of
nodes and multilayer pagerank (De Domenico et al., 2015b; Halu et al.,
network and a multimodal (fMRI-MEG) multilayer network. Note that we are treating a
ng. rs: Resting state, fc: Functional connectivity.
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2013). Multilayer pagerank is a metric based on biased randomwalks in a
multilayer network. A very recent metric related to multilayer pagerank
is functional multilayer pagerank (Iacovacci et al., 2016). This metric uses

the concept of a multilink m!ij ¼ ða1ij ; a2ij ;…; afijÞ and m!¼ ðm1;m2;…;mf Þ,
where alij refers to a connection between node i and j in layer l. The
functional multilayer pagerank Xi depends on a tensor z with elements

z m!, and captures the probability ~α with which a random walker in the
multilayer network jumps from one node i to a neighbour j (first term in
Eq. (4a)) or to any other node in the multilayer network (second term in
Eq. (4a))

XiðzÞ ¼ ~α
Xn

j¼1
Bm
!ij

ij zm
!ij 1

κj
Xj þ βvi: (4a)

The first term contains the matrix B, which is called the multi-
adjacency matrix

Bm
!
ij ¼

Yf

l

h
mlalij þ ð1� mlÞ

�
1� alij

�i
; (4b)

and reflects the neighbours of a node that are connected through a
multilink. The probability that a random walker hops to a neighbour i is
normalised by the following expression

κj ¼
Xn

j¼1
Bm
!ij

ij zm
!ij

þ δ
0;
Pn

j¼1
Bm
!ij

ij zm
!ij ; (4c)

where δb; c corresponds to the Kronecker delta function. The product βvi
in Eq. (4a) describes a random jump to any other connected node in
the network

β ¼ 1
n

Xn

j¼1

�
ð1� ~αÞ

�
1� δ

0;
Pn

j¼1
Bm
!ij

ij zm
!ij

�
þ δ

0;
Pn

j¼1
Bm
!ij

ij zm
!ij

�
Xj (4d)

vi ¼ θ
�Xn

j¼1
Bm
!ij

ij zm
!ij

þ
Xn

j¼1
Bm
!ji

ji zm
!ij�

: (4e)

Here, θ corresponds to the Heaviside function. By tuning z, different
versions of XiðzÞ can be obtained, however, in our case we are interested
in the global ranking of the nodes, i.e. we are interested in
X*
i ¼ maxXiðzÞ. This maximum value can easily be found by expressing z

in spherical coordinates (Iacovacci et al., 2016). The input to Eq. (4) can
also be in the form of weighted adjacency matrices (Iacovacci
et al., 2016).

The clustering coefficient on single layer networks has been generalised
to multilayer networks. This metric captures the amount of segregation in
the network in terms of triangles. In the multilayer version of the clus-
tering coefficient Ci, a triangle can be formed by links in different layers
(Battiston et al., 2014)

Ci ¼
P

l

P
k≠l
P

j≠i;j0≠ia
l
ija

k
jj0a

l
j0 i

ðf � 1ÞPl ldiðldi � 1Þ ; (5)

where alij refers to a connection between node i and j in layer l. We note in
passing that the multilayer clustering coefficient given by Eq. (5) can be
extended to analyse (for example) structural–functional network re-
lationships, and in particular their divergence under certain dynamical
system conditions, in directed networks of relevance to neural systems
(Crofts et al., 2016). Such ideas can be extended to weighted temporal
(e.g. frequency band) networks.

Community detection algorithms have been widely applied to single
layer brain networks. Community structure in fMRI networks has been
shown to reveal similar clusters as resting-state networks obtained from
independent component analysis (Crossley et al., 2013; Meunier et al.,
2010). Details on multilayer community structure can be found in (Bas-
sett et al., 2013; Mucha et al., 2010). Communities gi are usually obtained
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after optimisation of a quality function, e.g. modularity (Newman, 2006),
that quantifies within-community connections relative to connections
between communities. The multilayer variant of modularity is expressed
as (Bassett et al., 2013)

Q ¼ 1
2utot

X
ijlk

��
Al;ij � γl

ldildj
2
P

i ldi
δlk

�
þ δijHlk;j

�
δgil ;gjk ; (6)

where utot corresponds to the total link weight in the network, γl to the
resolution parameter, gil stands for the community assignment of node i
in layer l. Another way to extract communities is motif partitioning
explained in (Benson et al., 2016), which has been applied to directed
MEG networks in (Meier et al., 2016b; M€artens et al., 2017).

3) Spectral class metrics

Spectral metrics are based on the (eigen)spectrum of the block-matrix
A or on the Laplacian Q of the multilayer network, obeying Qx ¼ μx,
where x and μ are an eigenvectors and eigenvalues (Van Mieghem,
2010), respectively, of Q, which is defined as

Q ¼

2
664
Δ1 � A1 0 … 0

0 Δ2 � A2 ⋮
⋮
0 …

⋱ 0
Δf � Af

3
775

þ

2
666664

X
l

H1l �H12 … �H1f

�H21
P
l
H2l ⋮

⋮
�Hf 1 …

⋱ P
l
Hfl

3
777775; with (7a)

Δl ¼ diagðld1; ld2;…; ldnÞ; (7b)

where ldi (1 � i � n) is the degree of node i in layer l (remember that
every layer has n nodes). Let μ1 � μ2 � … � μt be the ordered set of ei-
genvalues of Q, where t ¼ nf . The second smallest Laplacian eigenvalue
μt�1 is called the algebraic connectivity. This metric is related to the time to
synchronize phase oscillators in a network and also to the robustness of a
network: a higher algebraic connectivity means a higher inter-twined
subgraph structure, which makes it harder to fragment the graph
(Hern�andez et al., 2014). A relatively novel way to capture topological
information from the network is to analyse the pseudo-inverse Qy of the
Laplacian (Ellens et al., 2011; Van Mieghem et al., 2017). The effective
graph resistance ~RG and the zeta vector can be obtained from this
pseudo-inverse

~RG ¼ t trace
�
Qy	 (8a)

ζ ¼ �
Qy

11;Q
y
22;…;Qy

tt

	
(8b)

The effective graph resistance captures the overall transport ability:
the lower ~RG, the lower the resistance for flow in the network (Van
Mieghem et al., 2017). The zeta vector captures the information of nodal
spreading within the network. The effective graph resistance ~RG and the
zeta vector are defined in both weighted and unweighted graphs.

4) Between layer dependency

In addition to well-known metrics for single layer networks, multi-
layer networks can also be characterised by their between-layer re-
lationships, examples are: entropy of multilayer degree, multilayer
participation coefficient, conditional probability of finding a link in layer α
given a link in layer α’, degree correlations (Battiston et al., 2014; Wider
et al., 2016). Entropy of multilayer degree follows the definition of
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Shannon entropy with the probability replaced by ldi=di. Multilayer
participation coefficient is related to the entropy and quantifies whether
links of a given node i are uniformly distributed among layers (Battiston
et al., 2014)

PCi ¼ f
f � 1

"
1�

Xf

l¼1

�
ldi
di

�2
#
: (9)

Lastly, between layer degree correlations (DC) can be quantified by
computing a Pearson correlation between the degree sequences of
different layers (Battiston et al., 2014; Wang et al., 2014). These between
layer dependency metrics allow one to capture whether individual layers
act independently, in coherence with each other or in a regime between
these two extremes, as recently demonstrated in (Tewarie et al., 2016b).

Theory: generative models for multilayer networks

Non-linear preferential attachment for multilayer networks

The first model we used is a nonlinear preferential attachment model
(Nicosia et al., 2014). Here, the initial conditions are a small connected
multilayer network consisting of n0 nodes and with f layers. Then, for
every time step during the reconstruction of the network, a node i is
added to the multilayer network and connected to another node j with
probability Pri→j based on the multilayer degrees

Pri→j∝f
�
1dj; 2dj ;…; f dj

	
: (10)

If we consider the case of a two-layered multilayer network (duplex, f
¼ 2) we can choose the function f as

f
�
1dj; 2dj

	 ¼ �
1dj

	α�
2dj

	β
: (11)

By tuning α and β, different network configurations can be obtained,
for example by tuning α or β from negative to positive we can construct
layers with different correlations between their degrees (i.e. correlation
between the degree sequence layer one vs degree sequence layer two).
For the results section, we create a two-layer multilayer network con-
sisting of 200 nodes and tune β to alter the interlayer dependency.
Synthetic multilayer community networks

The second generativemodel we used creates multilayer communities
with tuneable between-layer dependency of these communities; details
of the algorithm can be found in (Bazzi et al., 2016). In short, the algo-
rithm consists of two sequential steps. First, a multilayer partition is
constructed: Partitions in each layer are initialised independently and
updated iteratively according to a user-defined interlayer dependency
tensor. Then, a random multilayer network is generated using the pre-
viously defined multilayer partitioning. This is done using a generalisa-
tion of stochastic block models to multilayer networks (Karrer and
Newman, 2011). A link is added in the multilayer network based on a
probability that is proportional to the product of the partition, expected
number of links between communities (user-defined), and the expected
number of links within communities. In addition, the multilayer net-
works can be constructed with a fraction of random links. In the simu-
lations presented in the results section the similarity of communities in
the different layers is tuned by altering the interlayer dependency tensor.

Methods

Empirical MEG and fMRI networks

We make use of a previously published MEG/fMRI dataset (Tewarie
et al., 2016a). A total of 15 participants (mean age 27.7 ± 6.5, 60% fe-
male) were used for analysis in this study. The study was approved by the
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University of Nottingham Medical School Ethics Committee, and all
subjects gave written informed consent prior to participation.

MEG data were acquired using a 275 channel CTF MEG system
(MISL, Coquitlam, Canada), at a sampling rate of 600 Hz and using a
150 Hz low pass anti-aliasing filter. Data were recorded during a task-
free, eyes-open condition for 10 min with the subject in a supine po-
sition. Subjects were asked to fixate on a red cross throughout. The
surface of the head was digitised using a 3D digitiser (Polhemus Inc.,
Vermont). Co-registration was achieved using surface matching of the
digitised head shape to an equivalent head shape extracted from an
anatomical magnetic resonance (MR) image. MEG data were inspected
for artefacts and trials deemed to contain excessive interference were
removed. Lead fields were based on equivalent current dipole models
(grid spacing of 4 mm) and a multiple local sphere head model (Huang
et al., 1999). Lead fields, the parcellated individual's cortex (automated
anatomical atlas (AAL); (Gong et al., 2009; Tzourio-Mazoyer et al.,
2002)), and sensor level MEG data were fed into a scalar beamforming
approach (Hillebrand et al., 2012). Data covariance was computed
within a 1–150 Hz frequency window and regularisation was applied to
the data covariance matrix using the Tikhonov method with a regu-
larisation parameter of 5%. Dipole orientation was determined using a
non-linear search for optimal signal-to-noise-ratio. Beamformer time-
courses were sign-flipped where necessary to account for the arbitrary
polarity introduced by the beamformer source orientation estimation.
Beamformer timecourses within a parcellated region were averaged
using a Gaussian weighting function to obtain a representative time-
course for every region. This complete process resulted in 78 electro-
physiological time courses, each representative of a separate cortical
AAL region. Time courses were frequency filtered into five frequency
bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz), gamma (30–48 Hz). This was followed by a multivariate
orthogonalisation to correct for signal leakage (Colclough et al., 2015).
Finally, a functional connectivity matrix was reconstructed by
computing amplitude envelope correlations between leakage-corrected
frequency-filtered timecourses (Brookes et al., 2011a).

MRI data were collected using a 7 T-MRI system (Philips Achieva)
with a volume transmit and 32 channel receive head coil. The
anatomical MR image (used for MEG source reconstruction as well as
fMRI processing) was acquired using an MPRAGE sequence (1 mm
isotropic resolution, TE ¼ 3 ms, TR ¼ 7 ms, flip angle ¼ 8�). Bias fields
were corrected using SPM8 and brain extraction for the MPRAGE was
achieved using the Brain Extraction Tool (BET v2.1, FSL (FMRIB's
Software Library, http://www.fmrib.ox.ac.uk/fsl)) (Smith et al., 2004).
Resting-state fMRI data were acquired using a gradient-echo echo
planar imaging sequence (TR ¼ 2 s, TE ¼ 25 ms, flip angle ¼ 75�, voxel
dimensions ¼ 2 � 2 � 2 mm3, 150 vol acquisitions). Participants were
asked to keep their eyes open during the scan and to fixate on a cross
presented on a back-projection screen and viewed via a mirror. Data
were motion corrected using SPM8 (Ashburner et al., 1999).
Subject-specific masks of grey matter, white matter, and cerebrospinal
fluid (CSF) were obtained via automatic segmentation of the MPRAGE
data (FAST v4.1 FSL (Smith, 2002)). The AAL atlas was used to par-
cellate the cortex into the same 78 regions of interest (ROIs) as used for
the MEG data. The fMRI data were registered to the corresponding
MPRAGE image, which was in turn registered to the MNI-152 template
brain (FLIRT v5.5, FSL). Inverse transformations were calculated and
used to register a grey matter mask and the AAL ROIs to the functional
space for each subject. To maintain the consistency between the fMRI
and MEG pipeline, a weighted average fMRI signal was computed to
obtain a single signal for every ROI. We then regressed out average
cerebrospinal fluid signal, average white matter signal, motion and 2nd
order polynomials (i.e. low frequency trends) from each regional BOLD
timecourse using a general linear model to remove non-neuronal sig-
nals. For each subject, pairwise Pearson correlation coefficients (abso-
lute values) were computed between all possible 78 fMRI AAL signal
pairs to obtain a connectivity matrix.

http://www.fmrib.ox.ac.uk/fsl


1 In general, the SVD is the eigenvalue decomposition of the Gram matrix, thus of ATA
(where A is an n x m matrix, and m can be different from n). In fact, for non-square
matrices, the SVD was originally used (Golub and Van Loan, 2012).
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Schemes for the correction of network biases

For now, we consider a special case of multilayer networks, for which
the interlayer coupling matrix HKM ¼ cI (i.e. no cross-frequency coupling
between different nodes). Here, c is a constant and I the identity matrix.
Fig. 1 shows two possible ways to construct a multilayer network, one
can either stack different frequency-band specific MEG networks as
layers into a multilayer network or one can stack two networks from two
different modalities, e.g. beta band MEG network (most similar to fMRI
networks (Brookes et al., 2011a; Tewarie et al., 2016a)) and the fMRI
network, into a multilayer network. There are of course other possible
ways to construct multilayer networks (e.g. all MEG networks together
with a structural network and fMRI network) that will be addressed in the
discussion, but here we will restrict the analysis to the former two cases.

When treating a multilayer network based on different MEG con-
nectivity matrices obtained with the same connectivity metric, the
weights contain meaningful information. We therefore argue that a
correction scheme should take the information regarding weight differ-
ences between the frequency bands into account. In the context of
multilayer networks this is important with respect to layer dominance
(Sahneh and Scoglio, 2014; Wang et al., 2014), i.e. one layer could be a
stronger driver of multilayer network characteristics than other layers.
Therefore, we propose a correction scheme that should be applied to the
block-adjacency matrix (A), rather than a correction scheme that is
applied to the adjacency matrices of every layer (Aα) separately. How-
ever, when treating a multilayer network based on different modalities,
or based on different metrics using the same modality, the range of the
link weights can be very different, and thus the differences in link
weights for the different layers are artificial. Therefore, in such cases, we
propose that a correction scheme should be applied to the individual
layers (Aα) separately.

We employ four network correction schemes: the minimum spanning
tree (MST), efficiency cost optimisation (ECO) and two new methods:
effective graph resistance cost minimisation and network normalisation
based on singular value decomposition (SVD). The first three approaches
usually result in unweighted networks and correct for biases due to
average degree or link density and aim to only include the backbone of
the network. The SVD approach corrects for differences in average con-
nectivity between groups and results in a weighted network (scaled
version of the original network).

1) MST: the minimum spanning tree is a loop-less subnetwork that spans
the original network using the minimum possible sum of link weights
(Kruskal, 1956). The number of links in a tree is always equal to n-1
(or nf-1 for multilayer networks), and therefore no biases due to
(differences in) link densities exist. After extracting the MST, link
weights in this subnetwork are set to one. Furthermore, as long as the
weight ordering is maintained, the MST is unaffected by manipula-
tions of the original network. Strictly speaking, the MST gives a
reduced topology rather than a correction, such as ECO. However, to
remain consistent across all approaches, we also consider the MST as
a correction scheme here.

2) ECO: efficiency cost optimisation is based on optimising the function
J ¼ ðGþ YÞ=ρ, where G and Y are the global and local efficiency of
the network (see Eq. (2)) and ρ the link density (fraction of links). It
has been demonstrated analytically that the maximum for this func-
tion for different types of network topologies obeys ρ � 3=ðn� 1Þ,
where n is the number of nodes (Fallani et al., 2017). In the case of
multilayer networks this becomes ρ � 3=ðnf � 1Þ. Therefore, for all
subsequent analyses, we only show results for this analytically ob-
tained link density.

3) Effective graph resistance cost minimisation: Since there is evidence that
large-scale communication in the brain is not merely shaped by effi-
ciency, as inferred by a function of the shortest paths (Go~ni et al.,
2014; Meier et al., 2016a,b) and because of the risk of disconnected
networks, we propose a different version of ECO. Instead of efficiency
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cost optimisation, we propose an effective graph resistance cost
minimisation F ¼ ~RG=ρ. Since there is no analytical expression to
determine the optimum value for F, we follow a numerical approach
to find the minimum (this entails computing F for a range of link
densities to determine the threshold that minimises F). This scheme is
based on Eq. (8) and thus the correction scheme is applied to the
block-adjacency matrix rather than to the individual layers
separately.

4) SVD normalisation: For any matrix (block adjacency matrix A or ad-
jacency matrix Aα) we can apply a singular value decomposition
A ¼ UΛVT , where U and V contain the left and right singular vectors
and Λ the singular values of A. To correct for average connectivity/
average link weight we can rescale Λ by the largest singular value λ1.

The rescaled matrix would thus become ~A ¼ U
�

10
λ1
Λ
�
VT . The

multiplication by 10 is used to ensure that the range of values in ~A is
not too small and varies between 0 and 1. If A is a symmetric and
square matrix, then a singular value decomposition returns the ei-
genvalues and eigenvectors. However, an eigenvalue decomposition
can result in complex eigenvalues if A is non-symmetric and square
(directed network) and therefore a singular value decomposition can
be used to exclude potentially complex eigenvectors and
eigenvalues.1

Results

Uncorrected multilayer networks are affected by average link weight or link
density

To show the biases that can be introduced when a correction scheme
is not applied, we first demonstrate how multilayer metrics vary as a
function of link density (ρ) or average connectivity strength (<FC>: sum
of weighted degrees) of an empirically based multilayer network. This
multilayer network has two layers, corresponding to the group averaged
alpha and beta band MEG networks. We applied different proportional
thresholds, tuned the average functional connectivity strength, and
subsequently computed four multilayer network metrics: degree corre-
lation between layers (DC), mean functional multilayer pagerank (X),
mean multilayer participation coefficient (PC) and multilayer modu-
larity (Q).

Fig. 2A shows the different multilayer network metrics as a function
of link density. Different thresholds for link density can non-trivially
influence network metrics. Thus, choosing an arbitrary threshold for
groups with different densities can artificially induce significant group
differences in terms of multilayer network metrics. Fig. 2B shows the
different multilayer network metrics as a function of average connec-
tivity. Q is affected, since it is optimised in terms of the degrees, which
scale with connectivity. Other metrics such as based on computing a
correlation (DC) or ratios (PC) are naturally unaffected by differences in
scale. However, to safely use all multilayer metrics on a weighted
network, one would have to correct for average connectivity.

Applying correction schemes to multilayer networks as a whole

We apply four correction schemes to the block-adjacency matrix of
the multilayer network in the previous section: MST, ECO, effective
graph resistance cost minimisation and SVD normalisation. The multi-
layer network has two layers viz., alpha and beta band. First, MSTs are
usually unaffected by a threshold, if a threshold applied to a network
does not discard links that would be included in the MST, the MST
computed on a thresholded network would be unaffected. However, this



Fig. 2. Metrics are affected by changes in link density (A) and average connectivity (B). The plots show that tuning arbitrary link density (i.e. an arbitrary threshold), or the average
connectivity, affects most of the metrics. However, this is not the case for DC and PC for changes in average connectivity. ρ ¼ density, DC: degree correlation, X: functional multilayer page
rank, PC: participation coefficient, Q: multilayer modularity, <FC>: average functional connectivity. The solid line and shaded areas show the mean and standard deviation across subjects,
respectively.
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stability is not observed in the case for MSTs computed on a multilayer
network (Fig. 3A), where the MSTs computed for different link densities
are not the same. The lack of uniqueness for theMST comes from the non-
unique values of Hkl ¼ cI (c is chosen as the mean of the connections
across all layers Aα). Furthermore, for most link densities, one of the
individual layers can become disconnected (denoted by red dots in
Fig. 3A). In Fig. 3B, we illustrate this, from layer one in this multilayer
network, it can be inferred that not all nodes within a layer form a fully
connected set in that layer, i.e. there are two connected components
within the layer. Results for ECO are more stable compared to the MST. If
the link density is above ρ � 3=ðnf � 1Þ, then the network with exactly
Fig. 3. The multilayer network made from participants' alpha and beta band networks. A
connected but with disconnected individual layers, denoted by the multiple red dots and illust
disconnected networks denoted by multiple green dots. C) SVD correction scheme on the who
shaded areas show the mean and standard deviation across subjects, respectively. ρ ¼ density, <
rank, PC: participation coefficient, Q: multilayer modularity, F: effective graph resistance cost
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this density is extracted. However, even after applying ECO, the resultant
multilayer network can be disconnected either on the level of individual
layers or the whole multilayer network (denoted by green dots in
Fig. 3A). In Fig. 3D, we show effective graph resistance cost minimisation
as a function of link density. Recall that the lower ~RG the lower the
resistance for flow in the network. There is apparently no clear minimum
for ~RG, but ~RG reaches a plateau at around ρ ¼ 0:3. Results for the SVD
normalisation are shown in Fig. 3C. SVD normalisation leads to stable
values for Q as a function of average functional connectivity (compare
with Fig. 2B, right panel). The other metrics do not vary as a function of
average connectivity either.
) MST correction scheme on the multilayer network. This may result in a network that is
rated in (B). ECO correction scheme on the multilayer network (A). This can also lead to
le multilayer network. D) Effective graph resistance cost minimisation. The solid line and
FC>: average functional connectivity, DC: degree correlation, X: functional multilayer page
minimisation.
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Applying correction schemes to individual layers in multilayer networks

We consider the case of a two-layered multilayer network, consisting
of layers obtained from a subject's beta band MEG network, and their
fMRI network, i.e. from different modalities. Again, we show results
based on individual subjects for which we illustrate the mean and stan-
dard deviation (Fig. 4). Instead of applying correction schemes to the
block-adjacency matrix, we apply the four correction schemes to the
individual layers. Fig. 4A shows the MST (red) and the ECO based net-
works (green) for different link densities. The stability of multilayer
network metrics after applying the correction schemes MST and ECO.
Unlike for the correction to the whole block-adjacency matrix (Fig. 3A),
the MST does not depend on the non-unique values of HKM , and therefore
the weights for calculating the MST are unique, which results in stable
and unique MSTs. Note though that non-unique link weights within in-
dividual layers can lead to non-unique MSTs. The SVD normalisation
again results in a correction for biases in average connectivity (Fig. 4B).
For effective graph resistance cost minimisation, a plateau is reached for
layer 1 (beta band MEG) for ρ ¼ 0:6 and ρ ¼ 0:25 for layer 2 (fMRI
network). Again, no local minimum is observed in this domain for ρ:
Lastly, the choice of correction scheme might affect the ability to detect
group differences (i.e. larger variability might hide genuine group dif-
ferences). The sensitivity to detect changes in network topology is
therefore assessed in the next paragraphs.

Nodal community assignment in multilayer networks after applying
correction schemes

The SVD correction scheme applied to the whole multilayer
network and the SVD, MST and ECO applied to individual layers are
able to adequately correct for differences in average connectivity or
link density. However, the magnitude of Q for instance gets altered
after applying correction schemes. It is therefore important to assess to
what extent the underlying communities change after applying a
correction schemes. In Fig. 5 we show the community assignment for
every node on a brain plot for the original multilayer network
(empirical alpha and beta band network) and the community assign-
ment for a node after applying the correction schemes. A sensorimotor
Fig. 4. The multilayer network made from participants' beta band MEG and fMRI network
scheme applied to individual layers. CD) Effective graph resistance cost minimisation in the tw
subjects, respectively. ρ ¼ density, <FC>: functional connectivity, DC: degree correlation, X: f
effective graph resistance cost minimisation.
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network (green) and a visual network (red) can clearly be identified,
which are dominant patterns in the beta and alpha band respectively.
It can be observed that only SVD is able to correctly identify the
original networks. Lastly, one should be cautious with community
assignment in a tree (MST) with conventional methods, i.e. there will
never be more links within a module than between modules. An
alternative is the hierarchical clustering method evaluated in (Yu
et al., 2015). The latter was not applied in the current work to keep
consistency for all correction schemes.

Sensitivity to genuine alterations in multilayer network organisation –

correction applied to multilayer networks as a whole

Given the ability of some of the schemes to correct for non-
topological biases, we now analyse the sensitivity of network metrics
to changes in network topology after applying correction to the block-
adjacency matrix. Sensitivity in this context is referred as the ability of
multilayer graph metrics to detect changes in the ground truth.
Analysis is only performed for the SVD normalisation, since results
from the previous paragraph showed that MSTs computed on the
entire multilayer network resulted in non-unique MSTs, the ECO
approach resulted in disconnected networks, and effective graph
resistance cost minimisation did not yield a unique global minimum
that could serve as a plausible link density. First, we use the multilayer
community model and the nonlinear preferential attachment model to
construct two layered synthetic multilayer networks with a known
ground truth. In each model, we tune between-layer dependencies,
which influences the similarity in communities or degree sequences
across the two layers, respectively. This is done by altering the inter-
layer dependency tensor for the multilayer community model or by
tuning β for the nonlinear preferential attachment model. Fig. 6A
shows the behaviour of the modularity Q as a function of between
layer dependency in the original multilayer network and in the SVD
corrected version. By applying SVD normalisation, there is a reduction
in sensitivity to similarity in communities between layers and an
overestimation of Q (Q from the corrected network is higher than from
the ground truth). Although, the Q values based on SVD normalisation
still correlate strongly with the underlying ground truth (Fig. 6C).
s. A) MST and ECO correction schemes applied to the individual layers. B) SVD correction
o layers. The solid line and shaded areas show the mean and standard deviation across
unctional multilayer page rank, PC: participation coefficient, Q: community structure, F:



Fig. 5. Community assignment of multilayer networks (alpha and beta band) after applying correction schemes. Nodes that have the same colour belong to the same community
(shown for the first layer here). On the outmost left, the original community assignment for every node is shown and further to the right the assignment after applying correction schemes is
visualized. Only SVD applied on the whole multilayer (SVDm) and on the individual layers (SVDi) are able to correctly identify the communities. ECO and MST applied to the individual
layers distort community assignments of nodes.
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Fig. 6B shows the degree correlation as a function of between layer
dependencies. The SVD normalisation clearly follows the degree cor-
relation of the underlying multilayer network. This can also be
observed from the strong correlation between ground truth and degree
correlation after SVD normalisation (Fig. 6D).

In addition to applying the correction scheme to synthetic data, we
now use empirical MEG data to analyse the sensitivity of SVD normal-
isation to underlying changes in network organisation. The multilayer
networks are again two layered networks with a subject's alpha and beta
band networks as layers. We alter a subject's given network organisation
Fig. 6. 1st row: sensitivity of network metrics to changes in network organisation of the (synth
networks: modularity (Q) as a function of between layer dependency on the ground truth (blu
correlation (DC) as a function of between layer dependency on the ground truth (blue) and SVD
obtained before and after SVD. D) Correlation between DC as obtained before and after SVD. 2n
multilayer networks. E) Q as a function of rewiring probability (P) for original networks (blue
probability for original networks (left) and SVD corrected networks. G) Correlation between Q
SVD. The shaded areas in A and B show the mean and standard deviation across realisations (
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in these empirical multilayer networks by adopting a rewiring scheme.
For a given probability P, we randomly swap matrix elements within the
layers without preserving the degree distribution. Fig. 6E shows how
multilayer network community structure alters as a function of
increasing rewiring probability for original multilayer networks and SVD
corrected multilayer networks. The SVD obtained Q values correlate
strongly with the Q values obtained from the original multilayer net-
works (Fig. 6G). The same is also observed for degree correlation, i.e.
SVD corrected DC values correlate strongly with the original DC values
(Fig. 6F, H).
etic) multilayer networks before and after applying SVD. A) Synthetic modular multilayer
e) and SVD corrected networks (red). B) Synthetic scale free multilayer networks: degree
corrected networks (red) (both are completely overlapping). C) Correlation between Q as
d row: sensitivity of network metrics to changes in network organisation of the (empirical)
) and SVD corrected networks (red). F) Degree correlation (DC) as a function of rewiring
as obtained before and after SVD. H) Correlation between DC as obtained before and after
A, B) or subjects (E, F).
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Sensitivity to genuine alterations in multilayer network organisation –

correction applied to individual layers in multilayer networks

We now demonstrate the sensitivity of network metrics after correc-
tion has been applied to individual layers. For both generative models,
we again tune interlayer dependency and analyse how sensitive the
correction schemes are (MST, ECO, SVD normalisation). Effective graph
resistance cost minimisation was not used any further since previous
analysis (see Fig. 4CD) did not yield in plausible link density for F. Fig. 7A
shows Q for the synthetic modular multilayer networks for both the
ground truth and correction schemes. All correction schemes over-
estimate Q and this overestimation is especially the case for MST and
ECO. Fig. 7C shows the correlation between Q obtained from the ground
truth and the correction schemes, and the slopes for MST and ECO are
smaller than for SVD, indicating that the latter correction scheme is more
sensitive to changes in community structure of the underlying ground
truth. Fig. 7B and D shows the degree correlation between layers as a
function of between-layer dependency and the correlation between
ground truth DC and DC obtained after application of the correction
schemes. DC values for all schemes are almost exactly preserved after
applying the correction schemes and correlate strongly to the underlying
ground truth.

In addition to synthetic networks, we again use empirical data to
analyse the sensitivity of network metrics changes in network organisa-
tion after correction using SVD normalisation, MST and ECO. Again,
corrections were applied to individual layers. The multilayer networks
consist of subjects’ beta band MEG network and their fMRI network. We
follow a rewiring scheme equivalent to that described in the previous
section. Fig. 7E, G shows Q as a function of rewiring probability for the
original multilayer network and Q values obtained after application of
Fig. 7. Sensitivity of metrics to changes in network organisation of the (synthetic) multilayer n
layer dependency on the ground truth and on corrected networks (A). Synthetic scale free multi
ground truth and corrected networks (B). Correlation between modularity as obtained before
schemes (D). Sensitivity of solutions to changes in network organisation of the (empirical) mul
probability (P) for original networks (black) and corrected networks (E). Empirical multilayer
networks (black) and corrected networks (F). Correlation between modularity as obtained before
schemes (H). The shaded areas show the mean and standard deviation across realisations (A–B
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the correction schemes. A good linear fit is obtained between the
modularity values for the original network and the values obtained after
application of the different correction schemes (Fig. 7G), although the
range of values for Q obtained after correction is very different compared
to those obtained for the original empirical multilayer network. Since
MST and ECO include less weak connections, less influence of noisy
connections is potentially driving up Q. Again, for DC, we clearly see that
correction schemes follow the original DC values (Fig. 7F, H).

Sensitivity for identification of group differences

Figs. 6ACEG and 7ACEG indicate how sensitive multilayer network
metrics are to changes in network topology after applying correction
schemes. However, such curves are usually not obtainable in empirical
studies where the interest lies in the detection of group differences. We
therefore simulate two different distributions of Qs, based on the
generative model for multilayer community networks, and analyse if
these differences in distributions can be detected after applying correc-
tion schemes. Analysis for DC is omitted since Figs. 6BDFH and 7BDFH
show that DC values are almost exactly preserved after applying
correction schemes. We simulate two conditions: I) two sets of multilayer
networks with a between layer dependency of 0.6 and 10% and 14%
random links, respectively; II) two sets with 10% random links, but with
a between-layer dependency of 0.4 and 0.7, respectively. Each set con-
sists of 200 multilayer network realisations. Fig. 8 shows two sets of Qs
for the original networks and for the networks obtained after applying
the correction schemes: Q after correction on the whole multilayer SVDm,
Q after correction on individual layers SVDi, and Q after MST and ECO
applied to individual layers. All metrics computed after correction
schemes can detect group differences for condition I and II (Fig. 8A, B).
etworks. Synthetic modular multilayer networks: Community (Q) as a function of between
layer networks: degree correlation (DC) as a function of between layer dependency on the
and after correction schemes (C). Correlation DC as obtained before and after correction
tilayer networks. Empirical multilayer networks: Community (Q) as a function of rewiring
networks: degree correlation (DC) as a function of rewiring probability (P) for original
and after correction schemes (G). Correlation of DC as obtained before and after correction
) or subjects (E–F).



Fig. 8. Distributions of Q for two groups. Group differences of multilayer network community structure for the ground truth (black), SVD approach (blue), MST (red), and ECO (green).
Both whole multilayer network correction as well as individual layer correction are applied for SVD, the former is denoted as SVDm and the latter as SVDi. A and B refer to two different
conditions: I) different number of random links for the two sets; II) different between layer dependency for the two sets.
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However, note that most of the correction schemes change the shape of
the original distributions (black). Furthermore, note that the two distri-
butions for the SVDm groups overlap more than the groups for the other
correction schemes, which is in line with the smaller slope in Fig. 6A (red
one) compared to the slopes in Fig. 7C.

Discussion

Multilayer network framework allows for integration of information
from different modalities in a unified network, where each layer of the
network corresponds to network obtained from different neuro-imaging
modalities or in the context of M/EEG data, to each frequency band
(Brookes et al., 2016; Tewarie et al., 2016b). Firstly, we evaluated four
different correction schemes to correct for biases in multilayer network
metrics that are due to differences in link density and average connec-
tivity. We examined two cases: 1) multilayer networks based on fre-
quency band specific MEG networks; 2) multilayer networks based on
networks from different modalities (fMRI and beta band MEG). For case
one: only the SVD normalisation sufficiently corrected for biases due to
average connectivity, while other schemes could not correct for biases
sufficiently. For case 2: our results showed that the correction schemes
MST, ECO and SVD normalisation all corrected successfully for biases due
to link density or average connectivity, while effective graph resistance
cost minimisation did not result in plausible link densities. Second, we
evaluated the sensitivity of these approaches to detect changes in
network organisation of the underlying ground truth, after these
correction schemes were applied. Results for case one showed that
metrics computed after SVD normalisation were indeed sensitive in
identifying alterations in underlying network organisation, while for case
two, metrics computed after MST, ECO and SVD were all shown to
be sensitive.

For corrections applied to the entire multilayer networks, only the
SVD approach resulted in appropriate correction for non-topological
biases since this approach corrected for differences in average connec-
tivity of the different layers. This approach can be applied to complete
weighted multilayer networks where different link weight distributions
in different layers contain relevant information. For example, in several
cognitive experiments, gamma band connections can be more dominant
and relevant in relation to the cognitive demand than other frequency
bands (Doesburg et al., 2008; Fries, 2009; Senkowski and Gallinat, 2015).
Thus, preserving the dominance of the gamma band in such conditions
would be in line with the relevant task modulations. However, this is not
strictly limited to modulations in gamma band. For example, a working
memory task may lead to changes in theta band (Jensen and Tesche,
381
2002). Therefore, it is important that the representation of dominant
frequency band (or layer) is preserved even at the network analysis stage.
It is worth noting that in conditions where there is a dominant frequency
band, individual layer normalisation would likely lead to equally
important frequency bands in a multilayer network, this would in turn
smear the underlying effects of interest.

The three other correction schemes, applied to the multilayer net-
works as a whole, did not result in sufficient correction. The ECO
correction scheme sometimes led to disconnected multilayer networks,
which limits its applicability. The effective graph resistance cost
approach led to a plateau of values rather than a local minimum, indi-
cating that not a single link density can be selected as a threshold that
maximises flow in the network. The MST applied to the entire multilayer
network did not yield unique MSTs. Reconstruction of the MST entirely
depends on the ordering of the link weights and non-unique matrix ele-
ments can lead to arbitrary ordering. In our case, we encountered non-
unique values as the interlayer coupling matrix was based on the iden-
tity matrix. The higher the threshold, the higher the probability of non-
unique values, which leads to the scaling of MST metrics with link den-
sity in Fig. 3A. In addition, the number of matrix elements in the block-
matrix is equal to ðnf Þ2, thus the more layers, the larger the probability to
encounter matrix elements with the same values. This problem can be
solved by estimation of, for example, one-to-one cross-frequency
coupling. Another option is to place random numbers on the diagonal of
the interlayer coupling matrices; however, this does not solve the prob-
lem, since different initialisations will result in different non-unique
MSTs. Lastly, whilst the MST of the whole multilayer network is by
definition connected, its application can lead to individual layers with
unconnected components. Empirically, this means that the brain within a
frequency band of interest, e.g. alpha band, does not form a connected
network. Given the vast literature on electrophysiological networks
(Bastos and Schoffelen, 2015; Larson-Prior et al., 2013), this seems bio-
logically implausible.

Unlike for the whole multilayer network, most correction schemes
applied to individual layers were successful in correcting for differences
in average connectivity or link density. This approach is sensible when
the natural range of link weights in different layers is distinct, due to, for
example, usage of different connectivity metrics or the extraction of
networks from different modalities. Only the effective graph resistance
cost approach applied to individual layers was not successful, as this led,
again, to a plateau of values rather than a local minimum, i.e. no single
link density could be selected as a threshold to maximise flow in the
network. In addition, the link density at which the plateau was reached
was a lot higher than the density of connectomes obtained after ECO (see
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(Fallani et al., 2017)). This indicates the arbitrary nature of this type of
corrections.

Metrics computed on the whole multilayer network after SVD
correction correlated strongly to network topology of the underlying
ground truth. This was more evident for empirical multilayer networks
than synthetic multilayer networks (compare Fig. 6A and E): although
metrics computed on SVD corrected synthetic networks followed the
direction of change of the underlying topology, there was a decrease in
sensitivity to changes in topology, i.e. the red curve (SVD) has a less steep
increase than the blue curve (original network) in Fig. 5A. The reason for
this decrease in sensitivity in synthetic networks is that the SVD approach
applied to a sparse network (as was the case for the synthetic networks)
can lead to an artificially small noise floor for links that were initially
zero in the original network. This is, however, not the case for the fully
connected networks found empirically, and as can also be seen from
Fig. 5EG, where metrics computed on SVD corrected empirical networks
correlated strongly to metrics computed on the original networks. Met-
rics computed onmultilayer networks after individual layer correction all
correlated strongly to network topology of the underlying ground truth.
This maintenance of sensitivity also resulted in the sensitivity to detect
group differences.

Some methodological choices and findings warrant some further
discussion.

1. The drawback of the SVD correction scheme is that it does not filter
potentially noisy connections. It leads to a rescaling that adequately
corrects for differences in average connectivity, but does not lead to
sparse networks like the MST or ECO. There are methods in image
processing to perform noise reductions for matrices based on SVD
(De Moor, 1993); however, non-smoothness in a weighted adja-
cency matrix can be genuine and does not necessarily imply noise. If
one is interested in obtaining a sparse multilayer network and when
correction to the entire multilayer network is required, one poten-
tial option to solve the problem of noisy connections could be a
sequential correction: first a link weight normalisation based on
SVD on the whole multilayer network followed by extracting an
MST or applying ECO on individual layers with preservation of the
link weights.

2. If a weighted adjacency matrix is symmetric, then an SVD approach is
equivalent to an eigenvalue-decomposition approach. This would
mean that we are normalising the eigenvalues of the weighted adja-
cency matrix by the largest eigenvalue. The advantage of SVD,
however, becomes apparent when directed networks are treated,
since these networks correspond to non-symmetric matrices for which
an eigenvalue-decomposition approach could lead to complex
eigenvalues.

3. Here we treated multilayer networks based on either different MEG
frequency-band specific networks obtained using the same connec-
tivity metric or a two-layered network consisting of MEG and fMRI
networks. However, the flexibility of the multilayer network also al-
lows the construction of networks of various kinds. Correction of such
networks can be performed by combining the currently explored
methods. Examples of different flavours of multilayer networks can
be: a number of frequency-band specific MEG networks obtained with
a connectivity metric, stacked with a number of MEG networks ob-
tained with a different connectivity metric or a multilayer network
consisting of different frequency-band specific MEG networks
together with a fMRI and structural network. In these cases, one could
apply correction schemes to specific subsets before joining the sets
together. For example, apply an SVD to all layers obtained with a
single metric as a whole, apply SVD on the individual fMRI network
layer, and apply SVD on an individual structural network layer.

4. Fourth, in the current setting and for simplicity, we evaluated one-to-
one coupling between layers, but there is no methodological hurdle to
apply the explored approaches to multilayer networks with richer and
more realistic between-layer coupling matrices.
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5. Fig. 7F shows the correlation between the degrees of MEG beta band
networks and fMRI network from individual subjects. These values
are very low, but can be explained by the fact that similarity between
fMRI and MEG networks are much more apparent when averaging
over subjects (Brookes et al., 2011b; Tewarie et al., 2016a).

6. Note that all multilayer network results from empirical data will be
influenced by methodological choices prior to calculation of multi-
layer network metrics such as the connectivity metric of choice
(Colclough et al., 2016), source localization method and forward
model for MEG (Hincapi�e et al., 2017) and the parcellation scheme
(Proix et al., 2016; Lord et al., 2016).

7. It is important to realise that any correction scheme or sampling
method comes with the risk of leaving out genuine connections.
Filtering can therefore influence group differences after applying
correction schemes. In addition, applying correction schemes can
leave the relative response to a perturbation intact, but the magnitude
of the network metrics may change.

8. Lastly, although a fair number of network metrics were enumerated
and evaluated, our choice of metrics could have influenced the sta-
bility of the results. It is important to stress that the proposed
correction schemes have been evaluated within the limits of the
current datasets, pipelines and network metrics. The evaluation of
other network metrics and approaches in the context of other
generative models and connectivity metrics also deserves further
attention in future work.

We used a specific set of four correction schemes in the current study,
despite the presence of more proposals in the literature. The reason to
restrict ourselves to this specific set of approaches is for clarity of the
paper and the ease by which these approaches can be applied. Other
approaches not explored in the current study include a recently intro-
duced statistical method to test the null-hypothesis that a sample of
networks are generated by the same random process (Fujita et al., 2017),
a multi-threshold permutation correction method (Drakesmith et al.,
2015), a clustering optimisation approach (Smith et al., 2015), the union
of shortest paths (Meier et al., 2015) and the minimally connected
component (Jalili, 2016). The disadvantage of the latter is, however, that
connectedness of the network is not guaranteed. In the current study,
some of the explored approaches (ECO and MST) guarantee a fixed link
density, which avoids biases due to differences in link density between
groups. The union of shortest paths does, however, the exact opposite: A
specific topological network is fixed, which allows one to detect for
which density this topology emerges.

To conclude, similar to single layer networks, multilayer networks are
also affected by non-topological biases of the network such as differences
in link density and average connectivity. Whenever these biases are left
uncorrected, this could lead to a risk of unreproducible results between
centres and studies in a similar manner as for single layer networks. We
therefore recommend using correction schemes prior to multilayer
network analysis for group comparisons. Given the current explorations
to correct for non-topological biases such as link density and average
connectivity we recommend the following correcting approaches for
multilayer networks: whenever a multilayer network consisting of net-
works obtained from different modalities is in question, one can apply
either MST, ECO or SVD correction schemes to its individual layers.
However, when treating a multilayer network where the layers corre-
spond to complete networks obtained from the same modality and con-
nectivity metric (based on the present analysis) SVD is a recommended
approach. Future studies should explore the applicability of other exist-
ing approaches in the context of multilayer networks.
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