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Multi-vehicle automated driving as a generalized
mixed-integer potential game

Filippo Fabiani and Sergio Grammatico

Abstract—This paper considers the multi-vehicle auto-
mated driving coordination problem. We develop a dis-
tributed, hybrid decision-making framework for safe and
efficient autonomous driving of selfish vehicles on multi-
lane highways, where each dynamics is modeled as a
mixed-logical-dynamical system. We formalize the coordi-
nation problem as a generalized mixed-integer potential
game, seeking an equilibrium solution that generates almost
individually-optimal mixed-integer decisions, given the safety
constraints. Finally, we embed the proposed best-response-
based algorithms within distributed open- and closed-loop
control policies.

I. INTRODUCTION

The imminent revolution in road traffic, due to the envi-
sioned uptake of autonomous vehicles, holds the promise
to enhance traffic security, comfort and efficiency. At the
same time, it poses severe engineering challenges. A fun-
damental milestone towards Automated Driving (AD) will
be providing a high degree of decision autonomy to each
vehicle. In this context, motion planning for Multi-Vehicle
Automated Driving (MVAD) has been addressed via op-
timal control and Model Predictive Control (MPC) algo-
rithms [2], [3], [4], multi-layer and probabilistic decision-
making frameworks [5], [6], [7], [8].

Such a literature, however, does not entirely catch
a key feature of the road traffic environment: human
drivers are selfish decision makers. In fact, typically, each
driver behaves according to its own individual interests,
while sharing the road space-time with the other drivers.
Thus, game theory has been adopted to model and cope
with noncooperative behaviors. For example, [9] adopted
a Stackelberg decision policy for motion coordination,
while [10] proposed a receding horizon, dynamic cooper-
ative game with heuristic rules and [11] a single-vehicle,
extensive-form game approach based on the prediction of
the surrounding traffic.

A preliminary version of this paper with a simplified problem
setup and one simplified solution algorithm is in [1]. At the time
of the work, F. Fabiani was with the Department of Informa-
tion Engineering, University of Pisa, Italy. Currently, the authors
are with the Delft Center for Systems and Control (DCSC), TU
Delft, The Netherlands. E-mail addresses: {filippo.fabiani,
s.grammatico}@tudelft.nl. This work was partially supported
by 3mE/TU Delft under research project Intelligent Autonomous Vehicles
and by the ERC under research project COSMOS (ERC-StG 802348).

Differently from the aforementioned literature, in our
multi-lane, multi-vehicle scenario, we first provide a dis-
tributed, hybrid decision-making framework that couples
the decisions of all vehicles involved in the MVAD co-
ordination problem (§II-IV). Specifically, we assume that
each vehicle has a cost function that reflects its individual
interests, e.g. minimize travel time or fuel consumption,
given the driving decisions of the other vehicles (communi-
cated or estimated), individual and safety constraints. The
peculiarity of our approach is to equip each vehicle with
both continuous and discrete decisions over a prediction
horizon, i.e., longitudinal velocity, acceleration and lane
selector, direction indicators, respectively. We also propose
some AD rules to prevent potential sources of collision that
would emerge with a standard, model-predictive, formula-
tion, and massage each individual decision problem into a
Mixed-Logical-Dynamical (MLD) system [12].

Since the dynamics of the vehicles are mutually coupled,
the solution of the overall inter-dependent decision-making
problem is non-trivial, as conflicts may arise [13]. For
this reason, we formalize the MVAD coordination problem
as a Generalized Mixed-Integer Potential Game (GMIPG)
[14], [15], [16], where an equilibrium solution is a set
of almost individually-optimal decisions, given the safety
constraints (§V). Unfortunately, the mixed-integer nature
of the proposed framework places enormous challenges to
the computation of a standard equilibrium. Thus, we rely
on potential games [17], where all players unconsciously
minimize the same (potential) function and hence are
suitable to design iterative procedures seeking a minimum
of the potential function, which corresponds to an equilib-
rium of the game. In this context, we propose distributed
algorithms to compute an approximate equilibrium of the
GMIPG, also via a novel Gauss-Seidel iteration scheme.
The computed equilibrium solution is then embedded
within open- and closed-loop control policies (§VI). Fi-
nally, in §VII, we simulate two MVAD scenarios.

II. HYBRID MOTION PLANNING

In this paper, we consider a set of vehicles I :=
{1, . . . , N} driving on a multi-lane environment (highway)
with lane set L := {1, . . . , L}, as illustrated in Fig. 1. We
assume that each vehicle controls a set of hybrid decision
variables, namely, both continuous and discrete decision
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Fig. 1: A set of vehicles driving along a highway.

variables, over a prediction horizon T := {0, . . . , T},
T ≥ 1, as described next.

1) Continuous decision variables: each vehicle i con-
trols its longitudinal acceleration ai ∈ Ai := [ai, āi] ⊂ R,
with ai < 0 < āi, assuming that the cruise speed
vi ∈ Vi ⊂ R follows a standard forward-Euler scheme,
i.e.,

vi(t+ 1) = vi(t) + τai(t),

where τ > 0 denotes the length of a predefined time
interval. Hence, the continuous decision variables over the
horizon T are ai := [ai(0); . . . ; ai(T − 1)] ∈ ATi and
vi := [vi(1); . . . ; vi(T )] ∈ VTi .

2) Discrete decision variables: we assume that each
vehicle i selects the traveling lane zi ∈ L. Inspired
by a common practice in a multi-lane environment, we
adopt direction indicators to allow lane change maneuvers.
Specifically, we introduce two binary decision variables,
namely lri, l

l
i ∈ B := {0, 1}, such that lri = 1 (respectively,

lli = 1) denotes that vehicle i has its right (left) direction
indicator on, hence wants to change its current lane,
moving to the right (left). It seems reasonable to assume
that, at each time t ∈ T , the vehicles may turn on only one
indicator, i.e., they shall satisfy the following constraint:

lri(t) + lli(t) ≤ 1. (1)

Thus, the discrete decision variables over T are zi :=
[zi(1); . . . ; zi(T )] ∈ LT , lr

i := [lri(0); . . . ; lri(T − 1)] ∈ BT
and ll

i :=
[
lli(0); . . . ; lli(T − 1)

]
∈ BT .

We denote by di,j(t) ∈ R the inter-vehicle distance at
time t ∈ T between the pair of vehicles i and j, which
we assume evolves according to a forward-Euler scheme:

di,j(t+ 1) = di,j(t) + τ (vj(t)− vi(t)) . (2)

By referring to d̄ > 0 as a predefined interaction distance,
which may depend, for example, on the on-board sensors,
di,j allows us to introduce the set of vehicles in the
neighborhood of i that can affect its driving over T
as Ni := {j ∈ I | |di,j(t)| ≤ d̄, t ∈ T }. From
now on, we refer to j as a generic vehicle in Ni so
that, according to (2), if each vehicle knows the current
velocity of its neighbor vj(t) (via communication or direct

measurement), it can estimate the relative longitudinal
distance in the next time interval.

Within the proposed framework, we assume that each
road user aims to pursue its selfish interest, e.g., tracking
a desired speed profile vd

i ∈ VTi or driving along a target
lane zd

i ∈ LT . Therefore, each vehicle i seeks for a
sequence of hybrid decisions towards its individual goals.
We preliminary formulate a MPC motion planning as an
optimization problem with mixed-integer variables:

min
vi,ai,zi,lr

i,l
l
i

Ji(vi,ai, zi)

s.t. vi(t+ 1) = vi(t) + τai(t), ∀t ∈ T
ai(t) ∈ Ai, vi(t+ 1) ∈ Vi(t), ∀t ∈ T
zi(t+ 1) ∈ Li(t), ∀t ∈ T
lri(t), l

l
i(t) ∈ B, lri(t) + lli(t) ≤ 1, ∀t ∈ T

(3)
where Ji : VTi ×ATi ×LT → R is a continuous objective
function for vehicle i. The sets Vi and Li ⊂ L shall be
defined to limit the speed variation and the selected lane
between consecutive time intervals. Given the maximum
velocity of vehicle i, v̄i > 0, we can define for instance:

Vi(t) := [0, v̄i] ∩ [vi(t) + τai, vi(t) + τ āi] , (4)

Li(t) := L ∩
[
zi(t)− lri(t), zi(t) + lli(t)

]
. (5)

From (5), the direction indicators allow the lane-change
maneuver in the next time interval, without forcing it.

The MPC motion planning in (3) is far from being
“safe”, since it considers local decision variables only (i.e.,
those of vehicle i) and completely ignores the actions
of the neighboring vehicles. In the next section, we set
up some coupling constraints between vehicles i and all
j ∈ Ni by exploiting their longitudinal distance di,j and
their discrete lateral “distance”, defined in terms of relative
lane difference by the integer variable zi,j := zj − zi.

By defining ds
i, d̂ > 0 as the safety distance on the

longitudinal direction for vehicle i and the inter-distance
between vehicles that could lead to a lateral collision,
respectively, let us consider the following definitions.

Definition 1 (Longitudinal safety): A pair of vehicles
(i, j) ∈ I2 is longitudinally safe over the prediction
horizon T if, for all t ∈ T such that zi,j(t) = 0,
|di,j(t)| ≥ ds

i and, furthermore, if zi,j(t + 1) = 0,
di,j(t + 1) · di,j(t) ≥ 0. The system is longitudinally
safe over the prediction horizon T if any pair of vehicles
(i, j) ∈ I2 is longitudinally safe. �

Definition 2 (Lateral safety): A pair of vehicles (i, j) ∈
I2 is laterally safe over the prediction horizon T if, for
all t ∈ T such that |di,j(t)| ≤ d̂ and |zi,j(t)| = 1, zi(t +
1) 6= zj(t) and zj(t + 1) 6= zi(t). The system is laterally
safe over the prediction horizon T if any pair of vehicles
(i, j) ∈ I2 is laterally safe. �

Finally, we aim at designing a mixed-integer decision-
making framework capable for safely coordinating a set of
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Fig. 2: Two vehicles traveling on the same lane.
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Fig. 3: Example of longitudinal collision: (a) Velocity
profiles. (b) Relative and safety distances.

vehicles traveling on a multi-lane environment. Therefore,
we do not address the issue of communication among
vehicles and for the remainder we assume that: i) each
vehicle is (autonomously) driven by the solution of the hy-
brid decision-making framework; ii) vehicles can exchange
information, i.e., their decisions, without communication
delays or packet losses.

III. AUTOMATED DRIVING RULES

The hybrid motion planner in (3) requires some ad-
ditional arrangements to ensure collision-free trajectories
to each vehicle. A naı̈ve formulation, indeed, may allow
unsafe driving scenarios as those in Figures 2–3, 4–5.

1) Safety on a single lane: We focus on those vehicles
j ∈ Ni that, in the prediction of vehicle i, travel on
the same lane, i.e., zi,j = 0, either behind or ahead of
it (|di,j | ≥ 0). We shall ensure that the relative distance
di,j(t) must be greater or equal than the safety distance
ds
i(t), here conceived as a linear function of the current

cruise speed, i.e., ds
i(t) = ds

i(vi(t)). This comes from the
common drive experience: compared to driving at high
speed, we are induced to get closer to the vehicle ahead at
low speed. Hence, by denoting with ∧ and ∨ as the logical
AND and OR, respectively, for all t ∈ T we impose:

[zi,j(t) = 0]∧[|di,j(t)| ≥ 0] =⇒ [|di,j(t)| ≥ ds
i(t)] . (6)

However, the safety distance constraint is not sufficient
to prevent collisions on a lane, see Fig. 3. A feasible sce-
nario foresees that vehicle i accelerates, to e.g. minimize

j

i

Fig. 4: Two vehicles traveling side by side along two
consecutive lanes. Vehicle j (left lane) has the right
indicator on, while i (right lane) has the left one on.

its traveling time, while vehicle j reduces its speed, to e.g.
minimize fuel consumption. In terms of control decisions,
an optimal strategy exists for both vehicles (Fig. 3(a)), i.e.,
the optimization problem in (3) with additional constraints
(6) is feasible. Since the vehicles travel on the same lane,
such strategies are clearly not implementable (Fig. 3(b)).

In view of Definition 1, we do not want to directly im-
pose di,j(t+1)·di,j(t) ≥ 0, since it would lead to nonlinear
constraints. Given a pair of vehicles (i, j) ∈ I2 traveling
on the same lane across two consecutive time intervals,
such a constraint demands that di,j(t) and di,j(t+1) shall
have the same sign. Therefore, this limits their relative
velocity, namely vi,j := vj − vi, allowing each vehicle to
(selfishly) exploit a portion of the free longitudinal space.
Then, for all j ∈ Ni and t ∈ T , we have:

{[zi,j(t) = 0] ∧ [zi,j(t+ 1) = 0]} ∧ [di,j(t) ≥ 0]

=⇒
[
vi,j(t) ≥ −di,j(t)τ

]
, (7a)

{[zi,j(t) = 0] ∧ [zi,j(t+ 1) = 0]} ∧ [di,j(t) ≤ 0]

=⇒
[
vi,j(t) ≤ −di,j(t)τ

]
. (7b)

Proposition 1: Given a pair of vehicles (i, j) ∈ I2,
assume that vi(0), vj(0) are feasible. The hybrid MPC
motion planner in (3) with safety distance constraints (6)
and rule (7) guarantees the longitudinal safety. �

Proof: By referring to the case di,j(t) ≥ 0 (the same
holds for di,j(t) ≤ 0), the constraint in (6) forces the safety
distance between all pair of vehicles traveling on the same
lane over T , i.e., di,j(t) ≥ ds

i(t) > 0, while from (7a),
0 ≤ di,j(t) + τvi(t) = di,j(t+ 1), which premultiplied by
di,j(t) gives the conditions in Def. 1.

2) Prevent lateral collision with direction indicators:
By referring to Fig. 4, due to the small relative distance
between vehicles i and j, the safety distance constraint
in (6) does not allow to change lane individually over T .
However, in the case that both vehicles aim to swap the
lanes, they predict that the destination lane will be free
during the next time intervals. Therefore, it is possible that
by keeping their own speed unchanged, as well as relative
distance (Fig. 5(b)), the two vehicles perform the lane
change at the same time (Fig. 5(a)), causing a collision.
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Fig. 5: Example of lateral collision between two vehicles:
(a) Lane profiles. (b) Relative distance. (c) Collision during
simultaneous lane change for t ∈ [2T, 3T ].

To prevent this unsafe scenario, we propose to exploit
the direction indicators, by designing an additional mixed-
logical rule. Two vehicles (i, j) ∈ I2 travel side by side
on consecutive lanes if |di,j(t)| ≤ d̂ and zi,j(t) = 1. If
both vehicles express the will of change lane performing a
swap, i.e., vehicle i turns on the left indicator lli and vehicle
j the right one lrj at the same time, we impose that the
vehicle traveling on a lower lane keeps it, zi(t+1) = zi(t).
In fact, higher lanes are usually deputed for overtaking
maneuvers, hence vehicles should facilitate the re-entry
towards lower lanes. Thus, we design the following rule:

[zi,j(t) = 1] ∧ [|di,j(t)| ≤ d̂] ∧ {[lli(t) = 1] ∧ [lrj(t) = 1]}
=⇒ [zi(t+ 1)− zi(t) = 0] (8)

Proposition 2: Given a pair of vehicles (i, j) ∈ I2 and
d̂ > 0 sufficiently large, assume that [vi(0); zi(0)] and
[vj(0); zj(0)] are feasible. The hybrid MPC motion planner
(3) with rule (8) guarantees the consecutive lane safety. �

Proof: By Def. 2, two vehicles may be unsafe on
consecutive lanes if zi(t+1) = zj(t) and zj(t+1) = zi(t).
In view of (5), this is possible only if |zi,j(t)| = 1 and
each vehicle turns on the proper direction indicator, i.e.,
lli(t) = 1 and lrj(t) = 1 (or lri(t) = 1 and llj(t) = 1).
If |di,j(t)| > d̂ the vehicles may swap the lanes without
collision; otherwise the condition in (8) forces the vehicle
driving on a lower lane to keep it.

IV. MIXED-LOGICAL-DYNAMICAL MODEL

We now translate the AD rules in (6), (7) and (8) into
mixed-integer linear constraints to be imposed for each
neighboring vehicle j ∈ Ni and for each time t ∈ T .

By referring to (6), (7), we introduce three additional
logical implications, to be handled with variables α, β, γ ∈
B. Specifically, α discriminates the vehicles that effectively
travel along the same lane of the i-th at time t, either ahead
(β = 1) or behind it (β = 0), while γ discriminates those
vehicles that will be on the same lane at t+ 1:

[αi,j(t) = 1] ⇐⇒ [zi,j(t) ≤ 0] ∧ [zi,j(t) ≥ 0] , (9a)
[βi,j(t) = 1] ⇐⇒ [di,j(t) ≥ 0] , (9b)
[γi,j(t) = 1] ⇐⇒ [zi,j(t+ 1) ≤ 0] ∧ [zi,j(t+ 1) ≥ 0] .

(9c)

Hence, equations (6), (7) can be preliminary rewritten as
nonlinear inequalities:

αi,j(t) [βi,j(t) (ds
i(t)− di,j(t))

+ (1− βi,j(t)) (ds
i(t) + di,j(t))] ≤ 0, (10a)

αi,j(t)γi,j(t) [−βi,j(t) (τvi,j(t) + di,j(t))

+ (1− βi,j(t)) (τvi,j(t) + di,j(t))] ≤ 0. (10b)

In a similar way, it is possible to handle (8) with δ, ζ,
η ∈ B that lead to the following logical implications:

[δi,j(t) = 1] ⇐⇒ [zi,j(t) ≤ 1] ∧ [zi,j(t) ≥ 1] , (11a)

[ζi,j(t) = 1] ⇐⇒ [lli(t) = 1] ∧ [lrj(t) = 1], (11b)

[ηi,j(t) = 1] ⇐⇒ [di,j(t) ≤ d̂] ∨ [di,j(t) ≥ −d̂], (11c)

then (8) can be equivalently reformulated as:

δi,j(t)ζi,j(t)ηi,j(t) (zi(t+ 1)− zi(t)) = 0. (12)

We henceforth rely on the pattern of inequalities
summarized in Tab. I to handle both the logical
implications and nonlinear constraints. For instance, let
us consider the right-hand side in (9a): by introducing
θ, κ ∈ B, [θi,j(t) = 1] ⇐⇒ [zi,j(t) ≤ 0] translates
into S≤(θi,j(t), zi,j(t), 0), while [κi,j(t) = 1] ⇐⇒
[zi,j(t) ≥ 0] into S≥(κi,j(t), zi,j(t), 0). Moreover,
[αi,j(t) = 1] ⇐⇒ [θi,j(t) = 1] ∧ [κi,j(t) = 1]
corresponds to S∧(αi,j(t), θi,j(t), κi,j(t)). Finally, (9a)
reads as the following system of inequalities:

(9a) =⇒


S≤(θi,j(t), zi,j(t), 0),

S≥(κi,j(t), zi,j(t), 0),

S∧(αi,j(t), θi,j(t), κi,j(t)).

(13)

Thus, it follows that:

(9b) =⇒ S≥(βi,j(t), di,j(t), 0). (14)

(9c) =⇒


S≤(λi,j(t), zi,j(t), 0),

S≥(µi,j(t), zi,j(t), 0),

S∧(γi,j(t), λi,j(t), µi,j(t)).

(15)

(11a) =⇒


S≤(νi,j(t), zi,j(t), 1),

S≥(ξi,j(t), zi,j(t), 1),

S∧(δi,j(t), νi,j(t), ξi,j(t)).

(16)

(11b) =⇒ S∧(ζi,j(t), l
l
i(t), l

r
j(t)). (17)



TABLE I: Basic logical implications and associated system of inequalities.
(f : R→ R linear function, M := maxx∈Xf(x), m := minx∈Xf(x), X compact set; c ∈ R, ε > 0, δ, σ, γ ∈ B)

Name Logical Implication System of Inequalities

S≥(δ, f(x), c) [δ = 1] ⇐⇒ [f(x) ≥ c]
{
(c−m)δ ≤ f(x)−m
(M − c+ ε)δ ≥ f(x)− c+ ε

S≤(δ, f(x), c) [δ = 1] ⇐⇒ [f(x) ≤ c]
{
(M − c)δ ≤M − f(x)
(c+ ε−m)δ ≥ ε+ c− f(x)

S∧(δ, σ, γ) [δ = 1] ⇐⇒ [σ = 1] ∧ [γ = 1]


−σ + δ ≤ 0

−γ + δ ≤ 0

σ + γ − δ ≤ 1

S∨(δ, σ, γ) [δ = 1] ⇐⇒ [σ = 1] ∨ [γ = 1]


σ − δ ≤ 0

γ − δ ≤ 0

−σ − γ + δ ≤ 0.

S⇒(g, f(x), δ) [δ = 0] =⇒ [g = 0], [δ = 1] =⇒ [g = f(x)]

{
mδ ≤ g ≤Mδ

−M(1− δ) ≤ g − f(x) ≤ −m(1− δ)

(11c) =⇒


S≤(ρi,j(t), di,j(t), d̂),

S≥(σi,j(t), di,j(t),−d̂),

S∨(ηi,j(t), ρi,j(t), σi,j(t)).

(18)

Next, we follow the procedure in [12] to recast the inequal-
ities in (10) and (12) into a linear formulation by means
of both real and binary auxiliary variables [18]. Specif-
ically, by starting from (10), we define φi,j := αi,jβi,j ,
χi,j := φi,jγi,j and ψi,j := αi,jγi,j as binary variables
which satisfy the following systems of inequalities

S∧(φi,j(t), αi,j(t), βi,j(t)), (19)
S∧(χi,j(t), φi,j(t), γi,j(t)), (20)
S∧(ψi,j(t), αi,j(t), γi,j(t)). (21)

By referring to (10a), we also define the real auxiliary vari-
ables fi,j := φi,jdi,j , gi,j := αi,jd

s
i and hi,j := αi,jdi,j

that shall satisfy S⇒ in Tab. I as follows:

S⇒(fi,j(t), di,j(t), φi,j(t)), (22)
S⇒(gi,j(t), d

s
i(t), αi,j(t)), (23)

S⇒(hi,j(t), di,j(t), αi,j(t)). (24)

Thus, the nonlinear inequalities in (10a) become:

−2fi,j(t) + gi,j(t) + hi,j(t) ≤ 0. (25)

Now, let us consider (10b). We define four real auxiliary
variables, ki,j = χi,jvi,j , mi,j = χi,jdi,j , pi,j = ψi,jvi,j
and qi,j = ψi,jdi,j , that satisfy:

S⇒(ki,j(t), vi,j(t), χi,j(t)), (26)
S⇒(mi,j(t), di,j(t), χi,j(t)), (27)
S⇒(pi,j(t), vi,j(t), ψi,j(t)), (28)
S⇒(qi,j(t), di,j(t), ψi,j(t)). (29)

Hence, (10b) is rewritten in linear form:

−2(τki,j(t) +mi,j(t)) + qi,j(t) + τpi,j(t) ≤ 0. (30)

Finally, we proceed with the same procedure as for (12) by
introducing two auxiliary binary variables, υi,j := δi,jζi,j
and ωi,j := υi,jηi,j , that satisfy the systems

S∧(ρi,j(t), δi,j(t), ζi,j(t)), (31)
S∧(ωi,j(t), υi,j(t), ηi,j(t)), (32)

and two discrete variables, ri,j := ωi,jzi(t) and si,j :=
ωi,jzi(t+ 1), so that we obtain:{

−si,j(t) + ri,j(t) ≤ 0

si,j(t)− ri,j(t) ≤ 0.
(33)

Then, the variables ri,j and si,j satisfy the inequalities

S⇒(ri,j(t), zi(t), ωi,j(t)), (34)
S⇒(si,j(t), zi(t+ 1), ωi,j(t)). (35)

All those mixed-integer linear inequalities are then rear-
ranged within the final hybrid framework for each vehicle:

min
vi,ai,...,si

Ji(vi,ai, zi)

s.t. vi(t+ 1) = vi(t) + τai(t), ∀t ∈ T
ai(t) ∈ Ai, vi(t+ 1) ∈ Vi(t), ∀t ∈ T
zi(t+ 1) ∈ Li(t), ∀t ∈ T
lri(t), l

l
i(t) ∈ B, lri(t) + lli(t) ≤ 1, ∀t ∈ T

(13)− (35), ∀j ∈ Ni, ∀t ∈ T
(36)

The number of constraints for vehicle i is ci :=
(88|Ni| + 7)T , while for the whole neighborhood is
c := (

∑
j∈Ni

cj) + ci. Note that the coupling constraints
in (13) − (35) contain the strategies of the neighbors as
affine, given terms. We define xi := [vi;ai; . . . ; si] ∈ Rni ,
ni := (28|Ni|+5)T , as the i-th vector of decision variables
and x := (xi,x−i) ∈ Rn, n := (

∑
j∈Ni

nj) + ni, as the
vector of all the decision variables in the neighborhood Ni,



where x−i ∈ Rn−ni stacks the variables of the neighbors.
Finally, the hybrid motion planner in compact form is:

∀i ∈ I :

{
min
xi

Ji(xi)

s.t. Ax ≤ b
(37)

for some suitable A ∈ Rc×n, b ∈ Rc.

V. GAME-THEORETIC PERSPECTIVE

In principle, by computing a solution to (37), each
selfish road user i ∈ I can be driven towards its goal
over the horizon T by a (optimal) sequence of mixed-
integer decision strategies. However, the linear constraints
introduced above couple the dynamics of pair of vehicles,
making the strategies inter-dependent. Moreover, each
control sequence is computed by assuming the strategies
of the neighbors be given: if at least one of these latter
changes, then the computed strategy may not be optimal
anymore, or even unsafe. Thus, we aim at designing
suitable sequences of decision variables that safely control
each vehicle towards its own goal. To achieve such a
trade-off, we propose to formalize the MVAD coordination
problem as a GMIPG [14], i.e., an instance of the class of
Generalized Nash Equilibrium Problems (GNEPs) [19].

Therefore, we preliminary define the feasible set of each
player (i.e., vehicle), namely Xi(x−i) := {xi ∈ Rni |
A(xi,x−i) ≤ b}, and X := {x ∈ Rn | Ax ≤ b}. More-
over, by noticing that each Ji(xi) depends only on the
local variable xi, we introduce the function P : Rn → R,
defined as P (x) :=

∑
i∈I Ji(xi), that satisfies for all

i ∈ I, for all x−i, and for all xi, yi ∈ Xi(x−i),

P (xi,x−i)− P (yi,x−i) = Ji(xi)− Ji(yi).
By [14], P is an exact potential function for the proposed
MVAD coordination game. Let us now introduce the
mixed-integer best response mapping for player i, given
the strategies of its neighbors x−i:

x?i (x−i) ∈

argmin
xi

Ji(xi)

s.t. (xi,x−i) ∈ X .
(38)

Given the selfish nature of road users, let us define the
notion of equilibrium solution.

Definition 3 (ε-Mixed-Integer Nash equilibrium): Let
ε > 0. x∗ ∈ X is an ε-Mixed-Integer Nash Equilibrium
(ε-MINE) of the game in (38) if, for all i ∈ I,

Ji(x
∗
i ) ≤ inf

xi∈Xi(x∗
−i)
Ji(xi) + ε.

�
In view of [16, Th. 2], the set of ε-approximated minimum
over X of P is a subset of the ε-MINE of the game.
Then, any x∗ ∈ X such that P (x∗) ≤ P (x) + ε for all
x ∈ X (ε-approximated minimizer of P ) is an ε-MINE
of the GMIPG (the converse does not hold in general).

Algorithm 1: Gauss-Southwell method (open loop)
Choose a feasible starting point x(0) ∈ X , set
k := 0

while x(k) is not an ε-MINE do
Broadcast xi(k) to Ni, ∀i ∈ I
Choose a player i = ik ∈ I

xi(k + 1) :=

{
x∗i (k) if ∆Ji(k) ≥ ε
xi(k) otherwise

Set xj(k + 1) := xj(k), j ∈ I \ i, and
k := k + 1

end

Informally, an ε-MINE is a set of driving strategies that are
almost individually optimal, given the safety constraints.

VI. SOLUTION METHODS

Solving a GNEP is known to be challenging, even in
the presence of continuous variables only [19]. Here, we
propose distributed, best-response based, algorithms for
computing an ε-MINE of the MVAD game via iterative
procedure, despite the mixed-integer nature of (37).

From now on, we refer to temporal step as a sample
step of the decision variables over T , and to algorithmic
step as an iterative step to compute a solution of the
game. xi(k) and x−i(k), k ∈ N, denote the vectors of
decision variables at the k-th algorithmic step of player
i and of its neighbors, respectively. We refer to xi(t|k)
as the i-th vector of decision variables at time t com-
puted at the algorithmic step k. Finally, we introduce the
cost variation ∆Ji(k) := Ji(xi(k)) − Ji(x

∗
i (k)), with

x∗i (k) ∈ x?i (x−i(k)).

A. Open-loop Gauss-Southwell algorithm
First, we propose a Gauss-Southwell method in open

loop, i.e, each vehicle directly implements the whole
equilibrium sequence of decision variables over T .

From Algorithm 1, at each iteration k, only a selected
player i = ik ∈ I computes a best response to the
strategies adopted by the other players, updating its de-
cision vector only if it leads to an ε-improvement in terms
of minimization of Ji. Under suitable conditions on the
sequence {ik}k∈N, Algorithm 1 converges to an ε-MINE
[16, Th. 4]. Thus, the overall control method reads as:
S1) At time t, set Tt := {t, . . . , t+ T};
S2) Find an ε-MINE, x∗, via Algorithm 1;
S3) Implement x∗i , ∀i ∈ I, set t = t+ T , and go to S1.

Algorithm 1 ensures the feasibility of the full horizon
strategy by allowing only the ik-th player to modify the
shared constraints, Ax ≤ b. By focusing on practical
aspects, as long as the convergence is not achieved, the
vehicles have to broadcast in real-time each other the
whole vector of strategies.



Algorithm 2: Gauss-Seidel method (open loop)
Choose a feasible starting point x(0) ∈ X , set
k := 0

while x(k) is not an ε-MINE do
Broadcast xi(k) to Ni, ∀i ∈ Ot
for all i ∈ Ot do

xi(k + 1) :=

{
x∗i (k) if ∆Ji(k) ≥ ε
xi(k) otherwise

Broadcast xi(k + 1) to all j �t i
end
Set k := k + 1

end

B. Gauss-Seidel algorithm

A typical Gauss-Seidel method is reported in Algo-
rithm 2. To compute an equilibrium of the GMIPG, the
algorithm follows a certain ordering to consecutively solve
an optimization problem for each player. As an example,
we adopt the same approach in [2] by defining an inter-
vehicle ordering relation at time t, i.e., ≺t. Given any pair
of vehicles (i, j) ∈ I2, we say that j has lower order than
i at time t, namely j ≺t i, when

1) di,j(t) > 0, or
2) di,j(t) = 0 and vi,j(t) > 0, or
3) di,j(t) = 0, vi,j(t) = 0 and zi,j(t) > 0.

Thus, for each temporal step t ∈ T , we define the set of the
ordered vehicles as Ot ⊆ I. From now on, the subscripts
refer to vehicles which follow the ordering in Ot. For any
vehicle i, x−i(k) is obtained by stacking xj(k+1) for all
j ≺t i and xj(k) for j �t i. Therefore, vehicle i computes
the best-response mapping using the “new” information
from the players with lower order in Ot, and the “old”
one from those with higher order.

Lemma 1: Let Ot ⊆ I be an ordered set of vehicles.
For all i ∈ Ot and k ∈ N, the collective strategy
(xi(k),x−i(k)) generated by Algorithm 2 is feasible. �

Proof: The proof goes by induction over k. Take
an arbitrary i ∈ Ot, by assuming (xi(k),x−i(k)) fea-
sible, i.e., (xi(k),x−i(k)) ∈ X , we show that also
(xi(k + 1),x−i(k)) is feasible. The claim is true if player
i keeps its strategy, i.e., xi(k + 1) = xi(k). On the other
hand, if player i updates the strategy, by definition of best
response mapping xi(k+ 1) ∈ x?i (x−i(k)), hence xi(k+
1) ∈ Xi(x−i(k)) and (xi(k + 1),x−i(k)) ∈ X . The proof
follows by noticing that x(0) ∈ X , (x1(k),x−1(k)) =
x(k) and that (xN (k+ 1),x−N (k)) = x(k+ 1) ∈ X .

Proposition 3: Let Ot ⊆ I be an ordered set of vehicles
and ε > 0. Algorithm 2 computes an ε-MINE, x∗ ∈ X ,
of the GMIPG. �

Proof: By definition, if there exists some k̄ ∈ N such
that xi(k̄) = xi(k̄+1) ∈ X for all i ∈ Ot, then x(k̄) = x∗

Algorithm 3: Gauss-Seidel method (closed loop)

Choose a feasible point x(0) ∈ X̂ t, set k := 0
while x(k) is not an ε-MINE do

Broadcast xi(t+ 1|k) to Ni, ∀i ∈ Ot
for all i ∈ Ot do

xi(k + 1) :=

{
x∗i (k) if ∆Ji(k) ≥ ε
xi(k) otherwise

Broadcast xi(t+ 1|k + 1) to all j �t i
end
Set k := k + 1

end

is an ε-MINE. Let us introduce U(k) ⊆ Ot as the set of
players that update their strategy at the k-th iteration. In
view of Lemma 1, xi(k) ∈ Xi(x−i(k)) for every k ∈ N
and i ∈ Ot. Moreover, we have

Ji(xi(k))− Ji(xi(k + 1)) ≥ ε, ∀i ∈ U(k), k ∈ N.

Since P is an exact potential function, we obtain, for every
k ∈ N, ∆P (k) := P (x(k)) − P (x(k + 1)) ≥ ε̄(k),
where ε̄(k) := |U(k)| ε ≥ 0. Therefore, {P (x(k))}k∈N
is a non-increasing, bounded from below sequence, thus it
converges to some finite value P̄ ≥ 0. Hence, we have

0 = lim
k→∞

∆P (k) = lim
k→∞

∑
i∈U(k)

∆Ji(k) ≥ lim
k→∞

ε̄(k).

Finally, since ε > 0, limk→∞ |U(k)| = 0, i.e., there exists
some k̄ ∈ N such that, for all k ≥ k̄, none of the vehicles
deviate from x(k̄).

Algorithm 2 is tailored for an open-loop control scheme
where we shall assume that Ot is fixed for the horizon Tt.
Then, the overall control policy reads as:
S1) At time t, define Ot and set the horizon Tt;
S2) Find an ε-MINE, x∗, via Algorithm 2;
S3) Implement x∗i , ∀i ∈ I, set t = t+ T , and go to S1.

Note that also Algorithm 2 requires intensive communica-
tion efforts among vehicles. To mitigate them, we inves-
tigate a closed-loop implementation of the Gauss-Seidel
procedure, where the vehicles implement only the first
temporal step of the equilibrium solution and, successively,
play again. Thus, each vehicle i ∈ Ot is interested in
the “next” action of its neighbors, limiting the amount of
communication to xi(t+ 1|k), k ∈ N.

With this aim, we introduce Algorithm 3, where at
the generic time t, each player is assumed to have some
estimates for the remaining part of the strategy, i.e.,
x̂(h|k), ∀h ∈ Ht := {t+ 2, . . . , t+T}, k ∈ N. This turns
into additional linear constraints that fix some components
of the collective strategy x, namely Âtx ≤ b̂t for some
matrix Ât and vector b̂t of appropriate structure and



dimensions. The MVAD coordination problem has then
a restricted feasible set,

X̂ t := {x ∈ Rn | Atx ≤ bt} ⊆ X , (39)

where At := [A; Ât] and bt := [b; b̂t]. We shall assume,
however, that the estimates are “reasonable”.

Assumption 1: For all t, the set X̂ t in (39) is non-
empty. �

Since each best-response mapping in (38) is computed
by using an estimated strategy for the neighbors, we can
not guarantee to achieve an ε-MINE over X and the
full horizon strategies computed on the basis of possibly
incorrect estimates may be unfeasible. In view of a closed-
loop policy, we show that Algorithm 3 provides feasible
(hence implementable) decisions at t + 1 and returns an
ε-MINE over the restricted domain X̂ t.

Lemma 2: Let Assumption 1 holds true and let Ot ⊆ I
be an ordered set of vehicles. For all i ∈ Ot and k ∈ N,
Algorithm 3 provides a feasible collective strategy (xi(t+
1|k),x−i(t+ 1|k)). �

Proof: Since the estimate x̂(h|k), ∀h ∈ Ht, does not
affect the constraints at t+1, we can restrict the analysis to
the case with T = 1, i.e., no estimates needed and X̂ t =
X . Thus, for all i ∈ Ot and k ∈ N, (xi(k),x−i(k)) =
(xi(t + 1|k),x−i(t + 1|k)), which is feasible in view of
Lemma 1.

Proposition 4: Let Assumption 1 holds true and let
Ot ⊆ I be an ordered set of vehicles and ε > 0.
Under Assumption 1, Algorithm 3 computes an ε-MINE,
x̄ ∈ X̂ t, of the GMIPG. �

Proof: For all i ∈ Ot and k ∈ N, the mechanism
in Algorithm 3 leaves xi(k) as a decision variable over
the entire horizon, to be updated by “freezing” the non-
communicated components in x−i(k) and by negotiating
xi(t+ 1|k). Hence, we have xi(k) ∈ Xi(x−i(k))∩{xi ∈
Rni | SiÂt(xi,x−i(k)) ≤ Sib̂t}, for some suitable matrix
Si that allows to fix the appropriate elements in x−i(k).
If X̂ t is non-empty, by discarding the fixed part of xi(k),
i.e., xi(h|k), ∀h ∈ Ht, and by appending xi(t + 1|k),
feasible in view of Lemma 2, with the estimates x̂i(h|k),
we obtain (xi(k),x−i(k)) ∈ X̂ t for all i ∈ Ot and k ∈ N.
Thus, the proof follows the one for Prop. 3.
Finally, we propose the closed-loop control policy that
embeds the Gauss-Seidel algorithm:
S1) At time t, define Ot, set Tt and X̂ t;
S2) Find an ε-MINE, x̄ ∈ X̂ t, via Algorithm 3;
S3) Implement [v̄i(t + 1); . . . ; l̄li(t + 1)], ∀i ∈ Ot, set

t = t+ 1, and go to S1.

VII. NUMERICAL SIMULATIONS

This section shows the solution of the MVAD coordi-
nation problem applied to two scenarios via open- and

TABLE II: Parameters for simulations in §VII.

Parameter τ d̂ Q R ε

Value 3 [s] 5 [m] diag(1) diag(10) 10−12

closed-loop control policies. The numerical simulations are
performed in MATLAB with solver GUROBI by choosing
a quadratic objective function for the problem in (37),
i.e., Ji(xi) =

∥∥vi − vd
i

∥∥2
Q

+
∥∥zi − zd

i

∥∥2
R

with the nu-
merical values summarized in Tab. II. Thus, each vehicle
solves a Mixed-Integer Quadratic Programming (MIQP)
to iteratively compute an ε-MINE. We consider heteroge-
neous vehicles, with the main parameters sampled from
normal distributions, v̄i ∼ N (41.7 [m/s], 2.9 [m2/s2]) and
āi ∼ N (1.39 [m/s2], 0.4 [m2/s4]) (ai = −āi), ∀i ∈ I.

A. Multi-lane traffic

A typical MVAD scenario is shown in Fig. 6, where
nine vehicles are disposed side-by-side on three lanes
(Fig. 6(a)). Here, a solution is computed by means of Al-
gorithm 1 over a prediction horizon of length T = 4. The
resolution of each MIQP takes about 70 [ms] on average,
and the open-loop control policy requires 27 iterations to
converge to an ε-MINE. As shown in Figs. 6(b)–(e), the
collective strategy vector x∗ safely drives each vehicle
i ∈ I over the horizon T to a randomly chosen target lane,
zd
i , while tracking a randomly chosen reference speed, vd

i .

B. Merging a platoon of vehicles

The second scenario involves six vehicles disposed as
in Fig. 7(a), where vehicle 1 aims at merging the platoon
of vehicles, while vehicle 3 aims at leaving the latter to
accelerate. Here, we propose a comparison between the
open- and closed-loop implementation of the Gauss-Seidel
algorithm. In both cases, vehicle 3 moves to the second
lane at the first control step. Since the closed-loop policy is
based on the estimates obtained by freezing the observed
strategies at time t, vehicle 3, with a lower ordering than
vehicle 1, decides to accelerate at t + 1 (Fig. 7(b)). As
shown in Fig. 7(c), vehicle 1 decides to accelerate as
well, and at the third step takes the free spot left by
vehicle 3 within the platoon (Fig. 7(b), (e)). On the other
hand, the open-loop policy exploits the communicated full
horizon strategy, which induces vehicle 1 to decelerate as
a feasible initial sequence of decisions. Vehicle 3, despite
a lower ordering, adopts a conservative strategy to fulfill
the constraint in (7b) over the full horizon. Thus, at the
fourth control steps, vehicle 1 merges the queue of the
platoon (Fig. 7(b), (d)) and vehicle 3 freely accelerates.

VIII. CONCLUSION AND OUTLOOK

A hybrid decision-making framework, shouldered by
some AD rules, can model and solve the multi-lane MVAD



problem in highways, hence ensure a safe use of the
road space-time, despite the presence of selfish vehicles.
Computational game theory is the key tool for solving the
MVAD coordination problem, as it intrinsically catches the
selfish behaviour of each road user. Generalized potential
games allow us to bypass the mixed-integer nature of
the problem by computing an approximated minimum
of the underlying potential function, and are suitable to
coordinate vehicles via both open- and closed-loop control
policies. In the former case, a minimum of the potential
function corresponds to an almost Nash equilibrium that
satisfies the constraints over the full prediction horizon. In
the latter, by introducing estimates to limit the communi-
cation efforts, feasibility guarantees are limited to the first
control step.

This work can be extended in several directions, since
systems of coupled hybrid systems model many relevant
applications. Control design via game theory is a promis-
ing approach to handle noncooperative agents, with several
open questions, e.g. equilibrium stability and robustness.
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Fig. 6: (a) Initial configuration of the nine numbered vehicles. (b) 0–3 [s]. (c) 3.1–6 [s]. (d) 6.1–9 [s]. (e) 9.1–12 [s].
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Fig. 7: (a) Initial configuration of the six numbered vehicles. (b) Comparison between lane profiles for vehicles 1 and
3. (c) Comparison between velocity profiles for vehicles 1 and 3. (d) Merging maneuver with the open-loop policy -
9.1–12 [s]. (e) Merging maneuver with the closed-loop policy - 6.1–9 [s].
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