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Preface
This thesis marks one of the final steps in completing my Master’s in Biomedical Engineering at Tech-
nical University (TU) of Delft. The project was carried out from December 2024 to September 2025
and focused on identifying the strengths, limitations and feasibility for clinical trials of current motor unit
number estimation (MUNE) methods, and developing a new algorithm to estimate the number of motor
units from compound muscle action potential (CMAP) scans with the aim to improve disease monitoring
in patients with amyotrophic lateral sclerosis (ALS).

This topic is very close to me. I chose to work on a project that involved ALS because someone
I care about was affected by the disease. First of all, I am grateful that I have gotten the chance to
work on this project, for which I want to thank Dr. ir. W. Mugge and Dr. ir. D. J. L. Stikvoort García in
special. I am very thankful to Dr. ir. W. Mugge for his clear feedback and guidance in areas outside my
expertise throughout the process. Secondly, I want to thank Dr. ir. D. J. L. Stikvoort García for all his
practical input and ideas, feedback, shared knowledge and experience, and for his time to endure all
my questions − it really helped me shape the direction of my thesis. I would also like to thank Prof. dr.
ir. A. C. Schouten for his role in the committee, as well as the people at the UMC Utrecht for their help,
data, and feedback I received during the project, with special thanks to Dr. ir. Boudewijn Sleutjes. Last
but not least, I would like to thank all my friends and family for their support over the past months.

During the development of the novel program: ”Wavolution”, ChatGPT 5.0 Thinking was used. This
Artificial Intelligence (AI) model was used to assist in writing the Python and JavaScript code that serves
the application, as well as writing the Python code that was used to develop the algorithm and results
present in this report. The use of AI was not a replacement for my own work, but rather a supportive
tool to help accelerate programming tasks. During this project, I have gained a lot of experience in
formulating clear prompts and carefully refining instructions were essential in obtaining relevant outputs
for such tasks. Finally, I would like to point out that any errors or inaccuracies remain my responsibility.

P.L. Ottenhoff
Utrecht, September 2025
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Abstract

Introduction
Compound muscle action potential (CMAP) scans are detailed stimulus-response curves that provide
information on the activation of motor units (MUs) and can be used to provide a motor unit number
estimate (MUNE). As loss of MUs is the hallmark of amyotrophic lateral sclerosis (ALS), accurateMUNE
will be a valuable biomarker for monitoring disease progression in patients with ALS. MScanFit, the
current gold standard in CMAP scan-based MUNE, is efficient and widely used, but underestimates
MUNE in muscles with a high number of MUs.

Methods
The current study introduces Wavolution, a waveform-based algorithm that estimates MUNE from
CMAP scans. Whereas MScanFit assigns solely numerical values to MU properties in its fitting proce-
dure, Wavolution assigns single MU action potentials (SMUAPs) to MUs to account for physiological
phenomena such as phase cancellation and temporal dispersion present in CMAP recordings. Further-
more, Wavolution has a highly efficient way of simulating CMAP scans by matrix multiplication. The
fitting procedure of simulated CMAP scans onto a target CMAP scan consists of two stages: (1) an
initialization phase that generates preliminary MU pools based on amplitude and threshold density dis-
tributions of the input scan, and (2) an optimization phase, in which a genetic-like algorithm iteratively
updates the simulated MU pools to minimize the error between simulated and target CMAP scans.

Results
Wavolution was validated on 920 simulated CMAP scans, ranging from 5 to 150 MUs with each MU
number containing various noise levels ranging from 1.0 to 100.0 µV. Wavolution achieved significantly
lower percentual MUNE discrepancy compared to MScanFit (13.2% vs. 25.5%) and had a significantly
reduced computation time (67.8 vs. 92.9 seconds per scan). Wavolution achieved higher accuracy in
the mean amplitude size of the MUs in the estimated MU pool than MScanFit when MU counts are high
and reproduced reductions in maximum CMAP amplitude caused by phase cancellation and temporal
dispersion, although it tended to overestimated their magnitude.

Discussion
Wavolution provides a physiologically transparent and computationally efficient approach to CMAP
scan–based MUNE. By modeling SMUAP waveforms, it accounts for phase cancellation effects and
reduces the ceiling effects of MScanFit in muscles with high MU counts, where muscles are still largely
intact. A Windows application was developed to enable bulk processing, reducing operator workload
in large-scale ALS trials. Future research should focus on extending the algorithm to make full use
of the information available in CMAP recordings, validating Wavolution on experimental CMAP scans,
and improving noise estimation. With further development, Wavolution could become a valuable tool
for disease monitoring in ALS clinical trials.

vii





1
Introduction

Amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disorder characterized by the
degeneration of central and peripheral motor neurons, causing progressive weakness, paralysis and
eventually death [1, 2]. With the exception of Riluzole, no effective disease-modifying treatments have
been approved for the general population of ALS patients [3, 4]. For patients with the rare SOD1
mutation, however, the recent approval of Tofersen, an antisense oligonucleotide, has proved that
slowing ALS is possible. Reliable biomarkers are critical to demonstrate slowing of the disease [5, 6].
However, the heterogeneous presentation and a lack of reliable biomarkers for the disease prohibit
early diagnosis and challenge accurate monitoring of disease progression, especially when muscles
are largely intact [7–9]. With current biomarkers, the sample size required to obtain adequately powered
results for drug efficacy is considerable (> 200 participants) and even further amplified by missing data,
dropouts and death [10]. Biomarkers that are sensitive throughout the entire disease duration observed
in clinical trials will, therefore, be integral to the validation of new treatments for patients with ALS.

As loss of motor units (MUs) is the hallmark of ALS, quantifying the remaining number of MUs
is a sensible measure of the disease’s progression. Although this actual number cannot be directly
measured, it can be approximated using various motor unit number estimation (MUNE) methods [11].
Compound muscle action potential (CMAP) scan-based MUNE is increasingly being included in ALS
trials as outcome measure due to its ease of application, reproducibility, and non-invasiveness [12–17].
The CMAP scan, colloquially referred to as the “muscle scan” or “MScan”, is a highly detailed stimulus-
response curve that represents the relationship between stimulus intensity and CMAP size. As MUs
in a muscle have distinct activation thresholds, the number of firing MUs in a muscle decreases with a
decreasing stimulus current. A CMAP scan records the response size of a muscle for supramaximal to
subthreshold stimulus currents, providing a detailed stimulus-response curve of the entire muscle [18].

MScanFit is a program for MUNE that functions by means of minimizing the discrepancy between a
CMAP scan of an estimated MU pool and a target CMAP scan [12]. Due to its high processing efficiency
and reproducibility, it is the current gold standard in CMAP scan-based MUNE (Appendix A). However,
results are influenced by initial user settings of the program and in muscles with a large number of MUs,
MScanFit lacks precision and underestimates MUNE [12]. As a result, this method encounters ceiling
effects in early disease stages when muscles are largely intact. In large-scale clinical trials, additionally,
the total operator time becomes substantial, as multiple muscles of all participants are measured over
multiple visits. Every fitted CMAP scan has to be evaluated manually before and after performing the
fitting procedure. A reduction in computation time and manual operator time with bulk processing can
therefore offer large benefits in large-scale clinical trials, making it more practical for routine application.

Therefore, the aim of the current research was to develop a new algorithm that: (1) is less sensitive
to ceiling effects than MScanFit MUNE and (2) has a reduced computation time. This algorithm, termed
”Wavolution”, contains a computationally efficient but extensive model for generating realistic MU pools
and simulating CMAP scans, as well as an algorithm for the fitting procedure of estimated MU pools,
which consists of two stages: an initialization stage and an optimization stage. The performance and
accuracy on performing MUNE from CMAP scans of Wavolution were evaluated by comparing key
metrics, including the percentual MUNE discrepancy and computation time, to MScanFit.
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2
Methods

2.1. Simulating CMAP scans
A CMAP scan represents the amplitude size of individual CMAP recordings over a range of stimulus
intensities, where the CMAP recordings consist of superimposed waveforms of SMUAPs. Wavolution
assigns an actual recorded SMUAP to each MU in an estimated MU pool to generate a CMAP scan.
Five distinct normalized SMUAP waveforms (𝐴max = 1 µV) varying in shape were extracted from ALS
patient recordings of the abductor pollicis brevis (APB) muscle (Appendix B) to serve as fundamental
waveforms for MU pools (Figure 2.1A). To generate realistic MU pools, transformation were applied to
these fundamental waveforms’ amplitude (𝐴), phase (𝜑), distal motor latency (𝛿), activation threshold
(𝑡), and relative spread (RS) of the activation threshold (𝜌). As such, parameters 𝐴, 𝜑, and 𝛿 describe
the shape and size of the simulated SMUAP (Figure 2.1B). This is an extension of the MScanFit model
that assigns only scalar amplitude value to each MU rather than actual waveforms [12]. Parameters 𝑡
and 𝜌 describe the probability of firing of a MU, which is defined by a cumulative Gaussian probability
function with mean 𝜇 = 𝑡 and standard deviation 𝜎 = 𝜌⋅𝑡

100 [19] (Figure 2.1C). As MUs exhibit ”all-or-
none” firing behavior, this probabilistic firing results in alternation effects in the responses of individual
MUs, of which > 99% is captured within 𝜇 ± 3𝜎 (Figure 2.1D). When these regions of alternation of
MUs overlap, it is hard to determine if CMAP amplitudes stem from alternation effects or from contribu-
tion of newly recruited MUs. Furthermore, SMUAPs typically have an initial positive phase (upward) in
their bi-phasic waveform (SMUAP 1 in Figure 2.1B). However, in cases of advanced reinnervation, in-
verted SMUAPs (e.g. an initial negative phase (downward) in the bi-phasic waveform) can be recorded
(SMUAP 2 in Figure 2.1B) [20]. As CMAP recordings are superpositions imposed by individual wave-
forms, opposing phases of SMUAPs in CMAP recordings exacerbate phase cancellation, where the
positive and negative phases of SMUAPs interfere and cancel each other out [21]. These phase can-
cellation effects can decrease the maximum CMAP amplitude up to 40% and can lead to a decrease
in CMAP amplitude with a newly recruited MU (Figure 2.1B and D) [21]. Similarly, the contribution to
CMAP amplitude by the actual amplitudes of individual SMUAP waveforms can be masked by temporal
dispersion, which is caused by distal motor latency and shape of the SMUAP waveform (Appendix A).
The effects of temporal dispersion and phase cancellation subsequently impact the estimation of MU
pool sizes and MU properties.

Wavolution stores various transformed waveforms of SMUAPs of MU pools in a matrix, 𝑀SMUAP,
with each row denoting a different MU and each column the amplitude of the SMUAP at each timepoint
(Appendix B). The activation thresholds (𝑡) and relative spreads of the activation thresholds (𝜌) of the
MUs are stored in in a firing matrix 𝑀firing of size 𝑁 × 𝑆; for every MU 𝑁, firing values 0 (no activation)
and 1 (activation) are randomly drawn from the distributions in Figure 2.1C for each stimulus intensity
𝑆 (Appendix B):

𝑀𝑁×𝑆 =
⎡
⎢
⎢
⎣

0 1 0 0 1 0 1 1 1 ⋯
0 0 0 1 1 0 0 1 1 ⋯
0 0 0 0 0 0 1 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎦

(2.1)

Multiplying the matrix of transformed SMUAPs (one per MU) by the firing matrix results in a matrix
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4 2. Methods

of accumulated SMUAPs for every stimulus intensity:

𝑀𝑇
SMUAP(𝑁×𝑇) ×𝑀firing (𝑁×𝑆) = 𝑀CMAP (𝑇×𝑆) (2.2)

Figure 2.1D shows a small region of a CMAP scan, with the accumulated SMUAP waveforms of the
MUs presented in Figure 2.1B. For every stimulus intensity, the maximum amplitude (baseline-peak)
of the CMAP was extracted and baseline noise was added (Figure 2.1D and E). As such, Wavolution
simulates realistic CMAP scans, taking into account interference between SMUAP waveforms. The
use of matrix multiplication is highly computationally efficient − the generation of 1000 CMAP scans
takes approximately 6.5 seconds on a personal computer (Windows 11, Intel i7).

Figure 2.1: Generation of a MU pool and simulation of the CMAP scan using single SMUAP waveforms: (A) 2
distinct normalized (𝐴max = 1 µV) SMUAPwaveforms extracted from ALS patient recordings of the abductor pollicis
brevis (APB) muscle. (B) Transformation are applied to the normalized waveforms, changing amplitude (𝐴), distal
motor latency (𝛿), and phase (𝜑). (C) The activation threshold and relative spread of the MUs describe the firing
behavior of each MU for the stimulus range. (D) CMAP amplitudes are extracted from the accumulated CMAP
waveforms of B. As the second SMUAP is inverted (e.g. an initial negative (downward) phase in the bi-phasic
waveform), there is a decrease in CMAP amplitude. Baseline noise (𝜎 = 5 µV) is added to simulate realistic
CMAP scans. (E) A typical CMAP scan that shows CMAP amplitudes over a range of stimulus intensities, where
the first and last data points, called the pre- and post-scan regions, are used for noise estimation.

2.2. Novel algorithm for MUNE from CMAP scans: “Wavolution”
The novel algorithm of Wavolution for the fitting procedure consists of two main stages: (1) the initializa-
tion stage, which assesses a target CMAP scan to obtain model parameters and generate preliminary
estimated MU pools; and (2) the optimization stage, which makes use of a evolutionary-like algorithm.
A flowchart of the general fitting process is shown in Figure 2.2. Wavolution aims to optimize the fitness
of multiple MU pools such that the resulting estimated CMAP scans match the target CMAP scan.

2.2.1. Error score
To quantify the error between an estimated and target CMAP scan, a combined error function of 4
error metrics was created. The error metrics quantify the absolute error, global trend of the stimulus-
response curve, amplitude densities and densities of the differences in amplitude. Consequently, the
error function captures local and global differences between the estimated and target CMAP scan. The
error function quantified as follows:

𝐸total = (𝑤1 ⋅ 𝐸abs, mean) + (𝑤2 ⋅ 𝐸amp, PDF) + (𝑤3 ⋅ 𝐸fit, mean) + (𝑤4 ⋅ 𝐸thresh, PDF) (2.3)
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Figure 2.2: Flowchart ofWavolution, including the initialization stage in green and the optimization stage in purple.
In the initialization stage, preliminary estimated MU pools are generated based on an amplitude and threshold
density of the target scan. These preliminary estimated MU pools are sorted based on their error score, where
the top 50 MU pools are selected as the starting population for the evolutionary algorithm. In the optimization
stage, this starting population of MU pools is optimized for multiple generations to find the MU pool with the lowest
error score. First, MU pools are checked for possible merging MU pairs based on their amplitudes or thresholds.
Consequently, mutations and cross-overs are performed to the 10 best MU pools of a population and stored as the
next population: mutations are performed by updating a MU pool based on its amplitude density and cross-overs
are generated by combining two MU pools. The mutated MU pools are mutated again, where MUs are added and
removed to generate 100 new MU pools. The top 15 MU pools of these 100 are added to the next population as
well, after which the iterative process starts again.

where 𝑤𝑖 are the weights in the error function. The weights of the error function were chosen such
that each error score contributes an approximately equal proportion to the total error and were kept
fixed throughout the optimization process for all target scans (Appendix C). 𝐸abs, mean is the absolute
mean error between the estimated CMAP scan and the target scan (Figure 2.3A) and is used to reflect
the absolute error of all data points in the CMAP scan. 𝐸amp, PDF is the difference in area between
amplitude probability density function of the estimated and target CMAP scans, where large distances
and height differences are amplified (Figure 2.3B). The amplitude probability density function is used
to analyze the amount of data points at each unique amplitude of the CMAP scan and is not affected
by alternation effects. 𝐸fit, mean is the mean error of the smoothed fit through the CMAP amplitudes
of the estimated and target CMAP scans (Figure 2.3C) and is used to reflect the global trend of the
CMAP scan. 𝐸thresh, PDF is the difference in area between threshold probability density function of the
estimated and target CMAP scans (Figure 2.3D). The threshold probability density function is used to
analyze the locations of steps over the whole stimulus range of the CMAP scan and is not affected by
alternation effects.
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Figure 2.3: The separate error score metrics for an estimated and target scan. (A) The absolute amplitudes
are used for the mean absolute error. (B) The difference between the target and estimated amplitude PDF is
used for a summed error score. (C) A smoothed trend line is used for the mean smoothed fitting error. (D) The
difference between the target and estimated threshold PDF is used for a summed error score. The error score for
this estimated MU pool is relatively high, as there is a large amplitude difference from 16 mA, leading to a high
absolute error score (A), a high amplitude PDF error score (B) and a high smoothed error score (C).

2.2.2. Initialization stage
A CMAP scan is typically recorded with pre- and post-scan sweeps at constant supramaximal and
subthreshold stimulus levels to assess the variability of the responses and the baseline noise [12].
Wavolution first estimates the noise level of the target scan as the standard deviation of the pre- and
post-scan regions (Figure 2.1E) − the first 10 and last 10 data points of the target scan. These 20
data points are only a small region of the target scan, which can lead to an underestimation of the
true noise. To account for uncertainty and underestimation of the actual noise, the noise estimate
was multiplied by a range of factors between 1.0 and 2.5. For every scaled estimated noise value,
preliminary estimated MU pools were generated and the associated noise value was stored, as this
value is used for generating additional noise to estimated CMAP scans (Figure 2.1D and E), as well as
for generating an amplitude density distribution of a CMAP scan.

Subsequently, an amplitude and threshold density distribution are generated of the target scan.
The amplitude and threshold probability density functions are generated by Gaussian smoothing of a
histogram of the amplitude values and stimulus values of amplitude differences of a CMAP scan. The
spread of the smoothing of the amplitude and threshold histograms is determined by the estimated
noise and threshold spread (Appendix C). Unique contributing amplitude values of a CMAP scan are
extracted by taking the peaks of the amplitude density distribution. The threshold peaks in the threshold
density distribution are assigned to a unique amplitude peak and are used to generate the threshold
values of the SMUAPs. To ensure coverage of the entire potential range of MUNE values, Wavolution
generates preliminary estimated MU pools with maximum MU counts up to 200. If 𝑁peaks < 200, 𝑁peaks
is maximum MU count for the preliminary MU pools. For a MU pool of 𝑁 MUs, the 𝑁 largest peaks in
the amplitude density distribution are selected. As these peaks have corresponding stimulus intensity
values, we estimated a threshold value for each unique amplitude. Subsequently, 𝑁 SMUAPs are
generated and assigned threshold and amplitude values, sorted by increasing stimulus intensity. An
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SMUAP is assigned a phase value (𝜑 = +1 or −1) based on if there is an increase or decrease in
CMAP amplitude with respect to the previous CMAP amplitude peak, such that the SMUAP waveform
either increases or decrease the amplitude of the CMAP waveform. Then, we assigned a random value
from a Gaussian distribution based on Sleutjes et al. [19] ((𝜇, 𝜎) = (1.65, 0.43)) for the relative spread
of the activation threshold to each MU in the MU pool. Finally, all preliminary MU pools are ranked
based on their error score and the best 50 are kept as the starting population in the optimization stage.

2.2.3. Optimization stage
The optimization stage of Wavolution contains a evolutionary-like algorithm that optimizes a population
of MU pools for multiple generations. The individual MU pools in a population are evaluated based on
their average error score, where the individuals with the lowest average error score of a generation are
called the best individuals. Figure 2.2 shows the sequence of steps in the evolutionary process, which
are discussed in more detail below.

Checking for merging MU pairs
First, every MU pool in the population is checked for the possible presence of MU pairs that should
be ’merged’. A MU pair is merged if: one MU in the pair is too small (< 5 μV); or the difference in
activation thresholds of the MU pair is below the step size of the decremental stimuli, which is 0.2% of
the stimulus intensity at that point (|𝑡1 − 𝑡2| < 0.2% 𝑡1) (Appendix C).

Performing mutations (updating MUs)
Then, the whole population of multiple MU pools is ranked based on their error score according to
Equation 2.3. The 10 fittest MU pools of generation 𝑋 are mutated: for every MU pool, MUs are
removed and added based on the amplitude density distribution, which indicates the errors in unique
amplitudes between the target and estimated CMAP scan (Figure 2.4). A density peak is considered an
erroneous peak if it has a minimum distance of 5 µV to another peak, as this is subjectively chosen to
be the minimum size that a MU can be distinguished from noise, or if the estimated threshold distance
is too large (𝐷peaks > 𝐷threshold (Appendix C)). An estimated MU pool is updated in one iteration such
that the estimated amplitude PDF matches the target amplitude PDF, where the amount of MUs can
drastically increase or decrease: first, all MUs at the locations of the erroneous peaks in the estimated
scan are removed, after which MUs are added at the locations of the erroneous peaks of the target
scan. These 10 mutated MU pools are added to the population of generation 𝑋 + 1.

Figure 2.4: An example of updating MUs based on erroneous peaks in the amplitude density distributions of the
target scan and an estimated scan. All erroneous peaks are updated in one iteration: all MUs at the erroneous
peaks of the estimated CMAP scan are removed (orange peaks) and new MUs are added with properties corre-
sponding to the erroneous peaks of the target scan (black peaks).
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Performing mutations (adding/removing MUs)
Consequently, 1 − 5 MUs are added and removed to each of the 10 mutated MU pools based on the
location of the largest absolute error between the target and estimated CMAP scan. This results in 10
additional mutated MU pools, with a total of 100. The MU merging procedure is applied to these 100
mutated MU pools after which the MU pools are ranked based on their average error score. The fittest
15 MU pools are added to the population of generation 𝑋 + 1.

Generating cross-overs
Finally, the 10 fittest MU pools of generation 𝑋 are used to generate cross-overs: a cross-over MU
pool is generated by taking one half of MUs of MU pool 𝐴 and the second half of MUs of MU pool
𝐵 (Appendix C). With pairwise combinations of 10 unique parent MU pools, this leads to a total of
(102 ) = 45 new cross-over MU pools, which are added to the population of generation ’𝑋 + 1’ as well
and the iterative process starts again (𝑋 = 𝑋 + 1). All estimated MU pools of each generations are
stored. After 5 generations, the best 15 MU pools of all generations each generate 10 scans and are
ranked by their average error score. The MU pool with the lowest average error score is decided to be
the optimal MU pool.

2.3. Validation of Wavolution
2.3.1. Training and validation set
Using the five distinct SMUAP waveforms that were extracted from ALS patient recordings of the ab-
ductor pollicis brevis (APB) muscle (Appendix B), a training and validation set was built. In total, 16
different MU numbers ([5, 10, 20, 30, 40, … , 130, 140, 150]) were tested. For each MU number, 10 dif-
ferent MU pools were generated, leading to 160 distinct MU pools. As MUs have probabilistic firing
characteristics, two scans were generated from each MU pool, a ’test’ and ’retest’ scan. To assess the
robustness of Wavolution at various noise levels, 5 distinct levels of increasing baseline noise were
added to each scan. Thus, for every MU pool, 10 scans were simulated (2 (test/retest) × 5 (noise
levels)), resulting in 160 × 10 = 1600 scans. This dataset was split up into a training (40%) set to
empirically determine hyperparameters and develop the model, and validation (60%) set to assess the
performance of Wavolution.

2.3.2. Validation of accuracy and performance
We compared the accuracy and performance of Wavolution to MScanFit, with the main outcome mea-
sure being the percentual MUNE discrepancy (100% ⋅ (MUNE−𝑁MU, true

𝑁MU, true
)). This assessment was per-

formed at all noise levels included in the validation set. Similarly, the computation times of both algo-
rithms were evaluated. To assess whether Wavolution accurately captures the individual amplitudes of
MUs in theMU pool, we compared the absolute error in mean SMUAP size ofWavolution andMScanFit.
Finally, to assess whether Wavolution accurately captures temporal dispersion and phase cancellation
effects of the MU pool, we compared the amount of reduction in maximum CMAP amplitude due to
temporal dispersion and phase cancellation of the estimated MU pool to that of the target MU pool.

2.4. Statistical Analysis
Differences in the validation metrics of the accuracy and performance between MScanFit and Wavolu-
tion were assessed at each noise level using a Mann-Whitney U-test with paired samples. To control
for false positives, 𝑝-values were adjusted using the Benjamini-Hochberg method. Adjusted 𝑝 < 0.05
were considered significant.



3
Results

3.1. Single scan accuracy and performance of Wavolution

Figure 3.1: Nine examples of target and estimated CMAP scans by Wavolution chosen by their varying MU count
and complexity. The top row depicts three scans with low MU numbers (𝑁MU < 50) with increasing complexity
from left to right. Similarly, the middle and bottom row contain three scans with medium (50 ≤ 𝑁MU < 100) and
high (𝑁MU ≥ 100) MU numbers, respectively.

9
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In Figure 3.1, nine fitted CMAP scans are shown over their target scan to evaluate Wavolution’s
ability to fit MU pool properties and perform MUNE. Wavolution was able to capture the global CMAP
amplitude curve and the overlap between the estimated and target CMAP scan shows the model’s
ability to replicate the MU firing behavior. The top middle figure shows Wavolution’s ability to include
inverted SMUAPs as there is a decrease in CMAP amplitude in both the target and estimated CMAP
scans at 31 − 32 mA stimulus intensity. However, Wavolution had difficulty to fit the top right target
scan, containing a high noise level and a large inverted SMUAP (at around 18 mA). The exclusion of
such a large inverted SMUAP leads to an underestimation of the true amount of MUs in the target scan.
For other noise levels of the same target scan, the CMAP scan of the estimated MU pool was fitted
more accurately.

3.2. Comparison with MScanFit
3.2.1. Single CMAP scan
In Figure 3.2, fitted CMAP scans by both MScanFit and Wavolution are shown over their target scan.
Both algorithms are able to capture the global CMAP amplitude curve and match CMAP amplitudes.
The computation time of MScanFit was 73.2 seconds, whereas Wavolution performed the fitting proce-
dure in 28.0 seconds. Although MScanFit MUNE has a higher accuracy, MScanFit is not able to fit a
decrease in CMAP amplitude caused by phase cancellation effects as it is not able to include SMUAPs
with a negative amplitude contribution. Wavolution, on the other hand, has the ability to include inverted
SMUAPs and can thus include a decrease CMAP amplitude, which results in a more accurate fit in the
higher stimulus intensity region of the scan (> 29 mA).

Figure 3.2: An example of target and estimated CMAP scans by MScanFit and Wavolution. At the locations of the
red arrows, Wavolution is able to decrease CMAP amplitude by including inverted SMUAPs, whereas MScanFit
assumes a monotonically increasing CMAP amplitude.

3.2.2. Accuracy
Taken over the entire range of MU numbers, the MUNE accuracy of Wavolution outperformedMScanFit
at all noise levels, except for the low MU range at noise levels of 𝜎4 = 31.6 µV and 𝜎5 = 100.0 µV
(Table I). A summary of the accuracies at a noise level of 𝜎2 = 3.16 µV is presented in Figure 3.3). At
this noise level, the decrease in percentual MUNE discrepancy of Wavolution compared to MScanFit
was 5.0%, 7.1%, and 21.6% at low (𝑁MU < 50), medium (50 ≤ 𝑁MU < 100) and high (𝑁MU ≥ 100) MU
numbers, respectively; over the full range the decrease in percentual MUNE discrepancy was 12.5%
(𝑝 < 0.001). The largest increase in accuracy was reached at high MU numbers 𝑁MU ≥ 100, which was
as expected. For all noise levels, similar results were found (Table I), except for the low MU range of
noise levels of 𝜎4 = 31.6 µV and 𝜎5 = 100.0 µV, where no decrease in percentual MUNE discrepancy
was found.
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Table I: Average percentual MUNE discrepancy (𝐸MUNE (%)) for different MU number ranges and noise levels.

Noise Level 𝐸MUNE, low (%) 𝐸MUNE, medium (%) 𝐸MUNE, high (%) 𝐸MUNE, total (%)
Wavolution MScanFit Wavolution MScanFit Wavolution MScanFit Wavolution MScanFit

𝜎1 = 1.0 µV 5.8 10.0 9.4 20.0 14.3 32.7 10.0 24.0
𝜎2 = 3.16 µV 5.0 10.0 9.3 17.1 12.5 33.6 9.1 21.7
𝜎3 = 10.0 µV 10.0 15.0 10.0 18.2 14.5 32.3 11.0 22.9
𝜎4 = 31.6 µV 21.3 17.5 13.1 22.1 18.2 33.0 17.9 25.0
𝜎5 = 100.0 µV 20.0 20.0 12.9 32.3 18.6 38.8 17.9 34.0
Mean 12.4 14.5 11.0 21.9 15.6 34.1 13.2 25.5

Figure 3.3: Average percentual MUNE discrepancy of Wavolution and MScanFit for a noise level of 𝜎2 = 3.16 µV.
(A) shows the average percentual MUNE discrepancy for a total over 192 scans. (B) shows the average percentual
MUNE discrepancy for low (60 scans), medium (60 scans) and high (72 scans) MU range. **Adjusted 𝑝 < 0.01;
***adjusted 𝑝 < 0.001.

3.2.3. Computation time
Taken over the entire range of MU numbers, the computation time of Wavolution was lower than that of
MScanFit at all noise levels (Table II). A summary of the computation times at a noise level of 𝜎2 = 3.16
µV is presented in Figure 3.4. At this noise level, the decrease in computation time of Wavolution with
respect to MScanFit was 57.1 s, 27.9 s, and 24.1 s at low, medium and high MU numbers, respectively;
over the full range the decrease in computation time was 31.5 s (𝑝 < 0.001). For all other noise levels,
similar results were found (Table II), except for the high MU range at a noise level of 𝜎5 = 100.0
µV, where there was no significant decrease in computation time. Results for the other noise levels
(𝜎1 = 1.0 µV, 𝜎3 = 10.0 µV, 𝜎4 = 31.6 µV, and 𝜎5 = 100 µV) are included in Appendix D.

Table II: Average computation time (𝑇comp (s)) for different MU number ranges and noise levels.

Noise Level 𝑇comp, low (s) 𝑇comp, medium (s) 𝑇comp, high (s) 𝑇comp, total (s)
Wavolution MScanFit Wavolution MScanFit Wavolution MScanFit Wavolution MScanFit

𝜎1 = 1.0 µV 36.1 89.4 64.4 89.1 76.4 101.4 62.9 94.5
𝜎2 = 3.16 µV 35.9 93.0 64.2 92.1 78.5 102.6 64.2 95.7
𝜎3 = 10.0 µV 35.5 87.6 64.7 93.0 75.1 103.5 63.1 95.7
𝜎4 = 31.6 µV 39.2 81.9 70.0 85.5 83.9 101.1 67.3 90.6
𝜎5 = 100.0 µV 46.4 76.5 84.2 89.1 99.4 100.8 81.4 87.9
Mean 38.6 85.7 69.5 89.8 82.7 101.9 67.8 92.9
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Figure 3.4: Average computation time of Wavolution and MScanFit for a noise level of 𝜎2 = 3.16 µV. (A) shows the
average computation time for a total over 192 scans. (B) shows the average computation time for low (60 scans),
medium (60 scans) and high (72 scans) MU range. ***Adjusted 𝑝 < 0.001.

3.2.4. MU pool properties
Mean SMUAP size

Table III: Mean SMUAP size discrepancy (𝐸SMUAP, mean (µV)) for different MU number ranges and noise levels.

Noise Level 𝐸SMUAP, low (µV) 𝐸SMUAP, mid (µV) 𝐸SMUAP, high (µV) 𝐸SMUAP, total (µV)
Wavolution MScanFit Wavolution MScanFit Wavolution MScanFit Wavolution MScanFit

𝜎1 = 1.0 µV 15.5 22.6 23.2 18.5 24.7 36.1 21.4 25.7
𝜎2 = 3.16 µV 16.0 20.2 23.5 11.9 24.2 39.0 21.7 24.4
𝜎3 = 10.0 µV 17.2 30.6 27.3 18.2 25.5 32.3 24.2 28.3
𝜎4 = 31.6 µV 40.9 35.2 32.5 21.8 23.3 39.4 31.3 29.0
𝜎5 = 100.0 µV 44.5 39.0 29.7 33.7 20.8 46.9 29.7 42.5
Mean 26.8 29.5 27.3 20.8 23.7 38.8 25.7 30.0

Figure 3.5: Average mean SMUAP size error in µV of Wavolution and MScanFit for a noise level of 𝜎2 = 3.16 µV.
(A) shows the average mean SMUAP size error for a total over 192 scans. (B) shows the average mean SMUAP
size error for low (60 scans), medium (60 scans) and high (72 scans) MU range. *Adjusted 𝑝 < 0.05; **adjusted
𝑝 < 0.01.
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A summary of the mean SMUAP size errors of Wavolution and MScanFit is shown in Table II. A
summary of the mean SMUAP size errors at a noise level of 𝜎2 = 3.16 µV is presented in Figure 3.5.
Especially at the high MU range, the error in mean SMUAP size is significantly smaller for Wavolution
than for MScanFit, whereas for the medium MU range, MScanFit obtained lower errors. For all other
noise levels, similar results were found (Table III), except for the low MU range at noise levels of 𝜎4 =
31.6 µV and 𝜎5 = 100.0 µV, and the medium MU range at a noise level of 𝜎5 = 100.0 µV. Results for
the other noise levels (𝜎1 = 1.0 µV, 𝜎3 = 10.0 µV, 𝜎4 = 31.6 µV, and 𝜎5 = 100 µV) are included in
Appendix D.

Reduction in maximum CMAP amplitude
As a result of temporal dispersion and phase cancellation effects, the maximum CMAP amplitude of
a CMAP scan is generally lower than the summed absolute amplitude of all contributing individual
SMUAPs in the MU pool that is used to generate a CMAP scan. This reduction in maximum CMAP
amplitude was quantified as:

1 − CMAPmax
∑𝑖 |𝐴MU𝑖|

(3.1)

Figure 3.6 shows the absolute difference in this reduction between estimated and target MU pools at
a noise level of 𝜎2 = 3.16 µV. Ideally, the difference is 0%, meaning the estimated MU pool perfectly
captures phase cancellation and temporal dispersion.

Figure 3.6: The absolute difference in reduction in maximum CMAP amplitude between the estimated and target
MU pools for a noise level of 𝜎2 = 3.16 µV. Ideally, the absolute difference should be 0%. Wavolution generally
overestimates the effects of temporal dispersion and phase cancellation, while MScanFit completely neglects the
presence of temporal dispersion and phase cancellation.

As MScanFit does not account for phase cancellation and temporal dispersion effects, it always un-
derestimates these effects when they are present in CMAP scans. Wavolution, however, has the ability
to quantify these effects in the estimated MU pools. Especially when interference between SMUAPs is
strong (> 25% reduction in maximum CMAP amplitude), Wavolution more accurately captures these
effects in the estimated MU pool, which indicates that it more accurately estimates the sizes of individ-
ual SMUAPs, particularly those with negative phase contributions. This is consistent with Figure 3.5,
whereWavolution more accurately estimates the mean SMUAP size in larger MU pools, which naturally
contain more phase cancellation and temporal dispersion effects due to the higher amount of interfer-
ence between SMUAP waveforms. When the reduction in maximum CMAP amplitude in the target MU
pools is smaller (< 25%), however, Wavolution overestimates the effects of phase cancellation and
temporal dispersion, which is also reflected in Figure 3.5. For a noise level of 𝜎2 = 3.16 μV, Wavolution
systematically overestimates the reduction in maximum CMAP amplitude with 18.1 ± 28.2 % (mean +
SD), indicating that Wavolution exaggerates the effects of temporal dispersion and phase cancellation
in the estimated MU pools. However, when the effects of phase cancellation and temporal dispersion
are larger, this overestimation outperforms MScanFit, which cannot capture these effects at all.





4
Discussion

In this study, we introduced a novel algorithm that performs MUNE on CMAP scans. Wavolution outper-
forms MScanFit in terms of accuracy and computational efficiency, with a reduction of 12.3% in overall
percentual MUNE discrepancy and 25.1 s in overall computation time over 920 CMAP scans. Further-
more, Wavolution makes use of actual SMUAP waveforms and is able to simulate inverted SMUAP
waveforms, which can contribute to a higher MUNE accuracy in CMAP scans with high MU counts,
suggesting that the algorithm has improved utilization of the available information.

4.1. Key findings
In comparison to the reference outcome, MScanFit, Wavolution has substantially higher MUNE accu-
racy, particularly in scans with a larger number of MUs. Current CMAP scan-based MUNE methods do
not account for the presence of inverted SMUAPs in CMAP responses, assuming all MUs contribute
positively to the CMAP amplitude. The incorporation of inverted SMUAPs in Wavolution more closely
reflects real physiological behavior and can be an explanation for the underestimation of MScanFit in
CMAP scans with larger number of MUs. Furthermore, while MScanFit relies on a preliminary estimate
of the MU count for its fitting process, Wavolution covers the possibility that every CMAP scan can
contain up to 200 MUs, reducing potential operator and estimation bias. A Windows application was
developed with the capability to bulk process CMAP scans, where manual operation time is minimized
(Appendix E). Together with the significantly reduced computation time, Wavolution can decrease the
total operation time for bulk processing of CMAP scans in large-scale ALS clinical trials.

4.2. Impact of using SMUAP waveforms
To the best of our knowledge, current CMAP scan-basedMUNEmethods do not incorporate SMUAPs in
the fitting process. Instead, they assign numerical values to MU properties, such as amplitude, thresh-
old, and relative spread. Although computationally efficient, this approach limits these methods’ ability
to fully capture complex physiological effects such as phase cancellation and temporal dispersion, both
of which strongly influence the shape and amplitude of the CMAP. Also an AI–based approach to CMAP
scan–based MUNE is, at present, unlikely to be adopted in clinical practice. AI models generally be-
have as “black box” models, which limit the transparency between raw CMAP recordings and MUNE.
Additionally, AI models rely on simulated training data, which can introduce modeling assumptions and
can neglect phenomena present in experimental scans, which can limit interpretability and clinical trust.
A Convolutional Neural Network approach to MUNE from CMAP scans was proposed by Junjun et al.
[22]. While the method demonstrated high accuracy and short execution time, the approach is not able
to capture waveform-level interactions such as phase cancellation and temporal dispersion, both of
which strongly affect CMAP morphology.

Wavolution addresses these limitations by modeling the CMAP scan as successive, superimposed
SMUAP waveforms, combining them into a CMAP using highly efficient matrix multiplications. As such,
Wavolution allows for complex interactions between MUs without adding much computational cost.
Additionally, the use of SMUAP waveforms makes Wavolution physiologically transparent: it enables
quality control, such as inspection of individual simulated CMAP waveforms, and facilitates reasoning
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about phenomena such as baseline drift, temporal dispersion, and phase cancellation. Furthermore,
waveform-based modeling allows future iterations of the algorithm to incorporate other SMUAP prop-
erties, such as area, duration, distal motor latency, and shape.

Currently, Wavolution uses only five fundamental SMUAP waveforms of the APB muscle extracted
from ALS patient recordings in its database for simulating CMAP scans. The same fundamental wave-
forms have also been used to simulate the target CMAP scans, which could in theory introduce bias in
favor of Wavolution’s performance. In practice, however, this effect is expected to be small, as each
MU is assigned a random waveform which is extensively transformed in distal motor latency, temporal
scaling, amplitude and phase. These transformations ensure that the use of the same fundamental
SMUAP yields different interactions between the waveforms. As a result, target SMUAP sizes can be
under- or overestimated, even when the compound CMAP amplitude is matched with high accuracy.
Due to temporal dispersion and phase cancellation, two SMUAPs with different properties may produce
similar contributions to CMAP amplitude (Appendix B). Moreover, Wavolution systematically overesti-
mates the reduction in maximum CMAP amplitude and the proportion of inverted SMUAPs in the target
MU pools. This effect may be partly explained by alternation, where thresholds of successive MUs
of the target MU pool are estimated incorrectly. In such cases, two small target SMUAPs can be esti-
mated as one larger SMUAP followed by a small inverted SMUAP, incorrectly increasing the proportion
of inverted SMUAPs in the estimated MU pools. However, for all CMAP scan-based MUNE methods,
such ambiguities are inherent when making use of solely baseline-to-peak CMAP amplitudes, as these
only represent limited information present in the CMAP recordings.

For future research, Wavolution could be extended to exploit more information contained in CMAP
waveforms rather than only the baseline-to-peak CMAP amplitudes. Successive CMAP recordings can
be subtracted to obtain isolated increments due to the contribution of newly recruited MUs. These in-
crements can then be characterized by area, shape, duration, distal motor latency and phase structure
and be used to mitigate ambiguities arising from temporal dispersion, phase cancellation, and alterna-
tion. Other transformations such as time shifting, and time warping could be used to fit CMAP wave-
forms rather than the CMAP amplitudes. Together with physiological constraints as bounded SMUAP
duration, realistic distal motor latencies and limited phase counts, controlled reshaping of simulated
SMUAPs can result in a more accurate estimation of individual MU properties. AI methods could assist
Wavolution in this reshaping of simulated SMUAPs by optimizing the SMUAP parameters to match
CMAP waveforms. The use of AI should, however, be limited to this optimization process only to pre-
serve the traceability of individual SMUAP contributions and to ensure the transparency of Wavolution’s
fitting process. Furthermore, Wavolution’s dataset of fundamental SMUAPs can easily be expanded
with more diverse SMUAPs, as well as with SMUAPs of other muscles, provided that isolated SMUAP
recordings are available. Using more diverse fundamental SMUAPs can minimize the amount of trans-
formations required to fit SMUAPs to CMAP waveforms present in a target CMAP scan. Furthermore,
expanding the dataset of SMUAPs beyond solely SMUAPs of the APB muscle enables Wavolution to
be applied to CMAP scans of different muscles. For instance, simulating scans of the tibialis anterior
(TA) would only require the inclusion of isolated, fundamental SMUAPs recorded from that muscle.

4.3. Feasibility for clinical trials
A CMAP scan–based motor unit number estimate (MUNE) is an attractive outcome measure for clinical
trials. It directly reflects lower motor neuron loss which precedes the loss of clinical function, thereby in-
creasing sensitivity to treatment effects [23, 24]. The Windows-based application of Wavolution makes
this approach globally accessible, requiring only stimulus–response recordings that can be obtained
with relatively simple EMG hardware. This broad compatibility facilitates application in both research
and clinical trial settings worldwide.

Wavolution is significantly faster than MScanFit due to: (1) its efficient generation of CMAP wave-
forms due to matrix multiplication; and (2) the use of modern computing strategies, such as parallel
processing. This significant improvement in computation time can be used to further improve the ac-
curacy of the model, but also decreases operator workload. MScanFit requires manual preparation of
numerous individual CMAP scans by selecting the pre- and post-scan limits in separate files. Wavolu-
tion´s feature to complete all manual preparation at the start of a session for all CMAP scans reduces
the total operator time and minimizes practical hurdles of using CMAP scan-based MUNE as an out-
come measure in large-scale clinical trials.
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At present, Wavolution has only been validated using simulated CMAP scan data. While these
simulations were designed tomimic real physiological responses as closely as possible, they do not fully
capture the variability and complexity present in human EMG recordings. Factors such as unpredictable
noise, baseline drift, or electrode placement differences could affect performance when applied to real
data − common limitations for every CMAP scan-based MUNE technique. Therefore, one of the key
next steps is to validate the algorithm using recordings from human subjects. As MUNE provides only
an estimate rather than an absolute ground truth, it is difficult to determine whether one method is
better than another. However, Wavolution demonstrates higher accuracy in CMAP scans with larger
MU populations, making it more sensitive in disease stages where other approaches typically lose
reliability. This enhanced sensitivity could extend the clinical utility of CMAP scan–based MUNE and
improve the statistical power in clinical trials. With further development and validation, Wavolution has
the potential to become a valuable tool in the early monitoring stages of patients in ALS clinical trials.

4.4. Signal quality
Research on the effects of baseline noise on MUNE values is limited, even though baseline noise is a
critical parameter in all CMAP scan-based MUNE methods [12, 25, 26]. Whereas MScanFit explicitly
estimates the noise level directly from the CMAP scan, other CMAP scan-based MUNE methods in-
stead rely on various predefined or assumed values for the noise present in the recordings. The noise
level is often used to set the minimum size for MUs. In cases of high noise levels, this can mask the
presence of small MUs and in turn affect MUNE values. This effect is stronger in CMAP recordings with
high MU counts, as there is a strong inverse relationship between MUNE and mean SMUAP size [27].
Reducing noise in CMAP recordings could therefore improve the accuracy of CMAP scan-based MUNE
methods, especially in early stages of disease progression, where muscles are still largely intact.

The noise estimate of Wavolution in target CMAP scans is not always accurate, as it relies on
the pre- and post-scan limits, which only provide partial information of the actual noise present in the
whole scan. A deviation in noise estimation can introduce high discrepancies between MUNE and the
true amount of MUs present in a scan, as the estimated noise level plays a significant role in various
functions of the algorithm, such as the amplitude density function. If the noise level is underestimated,
low-amplitude responses are more likely to be interpreted as contributions of small MUs leading to an
overestimation of MUNE values. Conversely, if the noise level is overestimated, low-amplitude changes
are masked by spread in the amplitude density function, which can lead to underestimation of the MU
count. As such, high accuracy in noise estimation is critical for the performance of Wavolution.

As MUNE accuracy decreases with increasing noise levels, an improvement to Wavolution (and
other CMAP scan-based MUNEmethods) would be to pre-process the target scan before it is analyzed
for the fitting process by detrending and denoising the individual CMAP recordings. Detrending is useful
when the EMG recordings contain baseline drift, which ’masks’ the actual amplitude of the CMAP
measurements (Figure F.1). Detrending ’removes’ this baseline drift from each measurement such
that the CMAP scans represent the actual EMG recordings from baseline to peak. Secondly, an EMG
signal of a CMAP recording to a stimulus can be seen as a discrete, one-dimensional wavelet signal
that contains noise. By using wavelet decomposition, coefficients that separate the signal into low-
and high-frequency bands can remove signal noise (Appendix F). Therefore, wavelet denoising can
decrease the overall baseline noise in CMAP recordings and thus improve the accuracy of CMAP
scan-based MUNE methods. Future iterations of Wavolution could include a pre-processing module.

4.5. Conclusion
The main goal of this study was to improve accuracy and computation time compared to MScanFit.
The proposed Wavolution algorithm achieves both aims: it lowers overall percentual MUNE discrep-
ancy by 12.3% and reduces average runtime by 25.1 s per scan relative to MScanFit. Wavolution
achieves these improvements by combining a waveform-based representation of CMAP responses
with efficient population-based optimization. By superimposing SMUAPs, including inverted SMUAPs
to represent temporal dispersion and phase cancellation, a higher MUNE accuracy is reached, es-
pecially at higher MU counts, where current MUNE methods typically lose sensitivity. Together with
efficient, population-based optimization that updates all units per generation without relying on a pre-
liminary estimate, Wavolution is able to search for the best solution in a large range of possible MUNE
values, introducing robustness against local minima and ceiling effects. Wavolution is compatible with
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standard EMG hardware and usable as a Windows application, making it feasible for worldwide clinical
trial use. As such, Wavolution can be used to produce disease progression biomarkers for multi-center
ALS studies, where sensitivity to early motor neuron loss, time-efficiency, and accessibility are critical.
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A
Background Information

Amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disorder characterized by the
degeneration of central and peripheral motor neurons, causing progressive weakness, paralysis and
eventually death [1, 2]. ALS is clinically and genetically heterogeneous, with various phenotypes and
disease trajectories in terms of symptom spreading and progression rates. In most cases, the disease
ultimately ends in respiratory failure with a median survival of approximately 3 years [28]. ALS can
be classified as familial ALS (10% of the cases), which suggests an autosomal dominant genetic in-
heritance, or sporadic ALS (90% of the cases), which has no affected family members. In addition to
the multiple underlying pathophysiological mechanisms, which are not fully understood, more than 40
ALS-related causative genes have been identified [29, 30]. This clinical and genetic heterogeneity cre-
ates various challenges in early diagnosis of the disease, as well as accurate tracking of the disease’s
progression in the early stages of the disease.

Diagnostic criteria of ALS have been revised multiple times over the years, from the revised El
Escorial diagnostic criteria (rEEC) and Awaji criteria (AC), to the ’Gold Coast’ criteria (GCC) [31–33].
While varying in specific criteria, the diagnostic process has consistently encompassed three funda-
mental steps: (1) a documented history that demonstrates progressive motor impairment after a period
of normal motor function; (2) the presence of both upper and lower motor neuron signs in at least one
body region, or lower motor neuron dysfunction in at least two body regions; (3) thorough investiga-
tions must be conducted to rule out any other potential disease process [33]. The clinical and genetic
heterogeneity of ALS causes delays in the diagnosis, as accurately diagnosing ALS at the early stage
of the disease remains a challenge [34]. Removing diagnostic doubt at the suspicion of the disease
would be a major advance, allowing earlier and possibly more inclusive enrollment to clinical trials in
ALS [35]. Inclusion in clinical trials is still a challenge, as the majority of patients with ALS is excluded
from trial participation at diagnosis [36]. At the same time, early inclusion in clinical trials is crucial for
the efficacy of the treatment, as early initiation of riluzole may improve absolute survival in ALS [37].

To examine whether a new drug has disease modifying properties, clinical trials need to identify a
slowing in the rate of functional decline followed by a prolongation in survival. The progression and pro-
gression rate of the disease is most commonly monitored using the ALS functional rating revised scores
(ALSFRS-R), which is a questionnaire that evaluates the severity of ALS, including respiratory func-
tion. However, there are various limitations with the ALSFRS-R as an outcome measure. A one-point
change may indicate either a minor or significant functional shift, depending on the specific question
and item, and thus, it does not serve as a consistent or measurable unit of functional change across
the scale [38]. Furthermore, a study on the ALSFRS-R using data from a pooled clinical trial database
found that 25% and 16% of patients in the placebo group exhibited no change in their ALSFRS-R score
over six months and 12 months, respectively [39]. To summarize, the ALSFRS-R score has significant
implications for clinical trials evaluating treatments designed to slow disease progression by a reduced
ability and sensitivity to detect treatment effects and early alterations in disease progression rate [8,
40]. In addition to this, the inability to determine drug efficacy in a single, definitive and timely trial
may lead to re-evaluation of the same investigational medicinal products in subsequent trials, which
is inefficient in time, cost and patient resource [10]. ALS is an expensive disease, with annual costs
per-patient exceeding 70,000 dollars [41]. This calls for the need of a marker that is sensitive in the
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early monitoring process in clinical trials, as treatment effects may have greater benefit if treatment is
initiated earlier.

As loss of motor units (MUs) is the hallmark of ALS, obtaining estimates of the number of living MUs
in a muscle is a sensible measure of the disease’s progression. It would be ideal to have an actual
measure of the number of functional MUs, but current methods are not able to provide this number [11].
Over the past decades, various methods have emerged for estimating this number based on electro-
physiological methods – so-called motor unit number estimation (MUNE) methods. MUNE was first
performed via manual incremented stimulation. Stimulation of a peripheral nerve evokes an electrical
response, the muscle action potential, of the muscle (or group of muscles) that can be recorded. It
is possible to recruit successive single MUs by carefully grading the strength of an electrical stimulus,
leading to single MU action potential (SMUAP) amplitude; the response of the total population of units,
also called the compound muscle action potential (CMAP), is then evoked by a maximal stimulus to the
nerve [42]. The final estimate of the functional number of MUs was then defined as the CMAP amplitude
divided by the average SMUAP. Since then, many methods have been introduced for MUNE, includ-
ing multiple point stimulation (MPS) MUNE, the spike-triggered averaging technique, the F-response
Method, MUNIX, High Density Surface EMG (HDSEMG) and CMAP-scan analysis methods, including
Bayesian statistics, D50, and MScanFit [12, 25, 43–48].

MUNIX and CMAP-scan analysis methods are both convenient and automated, making them most
suitable for inclusion in larger clinical trials. MUNIX, however, highly correlates with CMAP amplitude
and is less sensitive for detecting early MU loss compared to CMAP-scanning methods, limiting the
feasibility for clinical trials, especially in the early stages of ALS [49]. In addition, the method uses
voluntary activation for the MUs instead of electrical stimulation. There is no consensus on which
provides a better estimation of the response size. However, factors such as fatigue can introduce
challenges when voluntary activation is required. Electrical stimulation is often less dependent on
the participant, especially in severe disease cases. This reduces variability between operators and
participants, making it more suitable for inclusion in clinical trials. Earlier MUNE methods, including the
incremental and F-response method, are less suitable for clinical use, as improvements in reliability
have been made over the years. Techniques that require skilled and trained operators with expertise,
such as MPS, HD-sEMG and invasive methods, are less suitable for larger clinical trials due to their
complex recording protocols and required hardware that is not everywhere accessible. Methods that
require voluntary activation are less suitable for clinical trials as this can be challenging for patients with
severe symptoms of ALS. Compared to MUNIX and statistical methods, CMAP-scan analysis methods
are currently the most suitable, as they analyze the entire MU pool, are efficient, automated, and non-
invasive. Furthermore, the method does not require highly skilled operators and can be performed
on standard EMG equipment, making it a feasible method for clinical use. Compared to other MUNE
methods, CMAP-scan analysis is a non-invasive, highly-reproducible, and less labor intensive way to
estimate MUs controlling a muscle [40, 50], making it a promising technique for clinical application.
However, as complexity increases with the number of MUs, the accuracy of the estimates reduce when
muscles are largely intact. Therefore, especially in the early stages of ALS, accurate estimation of MUs
is challenging, even though crucial for effective monitoring of the disease and treatment effects. Key
challenges for accurate estimation of MUs include alternation of MU firing, phase cancellation effects,
and baseline noise.

MScanFit, the most widely used CMAP-scanning method, has high efficiency in its processing,
taking a few minutes to provide an estimate [12]. It covers amplitude, threshold, and relative spread
of the threshold in the simulated scans, increasing the physiological reliability, but neglects waveform
shapes, which can provide additional information. It has been evaluated with experimental data by
comparing MUNE values of patients and healthy controls, represented by the Area under the Curve
of a Receiver-operating characteristic curve (ROC). MScanFit showed very high AUC values when
discriminating patients and healthy controls [15, 23]. Also for a longitudinal study, MScanFit MUNE
showed to be the most promising candidate biomarker in terms of the required sample size for clinical
trials [40]. As such, MScanFit is the current ’gold’ standard as a MUNE technique. However, in these
studies, baseline MUNE was already relatively low, suggesting that the population was already affected
by MU loss. When MU numbers are high, MScanFit lacks precision and underestimates MUNE [12].
Given the ceiling effects of MScanFit, it is unclear whether these results are equally promising for clinical
trials where the population is less affected by MU loss.



B
Simulating CMAP Scans

B.1. SMUAPs from ALS patient recordings
Five distinct SMUAPs were extracted from ALS patient recordings of the abductor pollis brevis (APB).
These SMUAPs originated from MUs with a clear separated threshold and were the only MUs that
were firing at certain stimulus intensities in the CMAP scan. As such, clear isolated SMUAPs could
be extracted from a single CMAP recording of the total CMAP scan and could be used to serve as
fundamental waveforms for the simulation of CMAP scans. These five distinct SMUAP waveforms are
shown below in Figure B.1.

Figure B.1: Five distinct SMUAPs extracted from ALS patient recordings of the abductor pollis brevis (APB).

B.2. Temporal dispersion and phase cancellation
SMUAPs have various other properties, such as shape, duration, and distal motor latency, assigning
actual SMUAPs toMUs replicates real world scenario’s more closely. CMAPmeasurements contain su-
perpositions of individual SMUAP waveforms (Figure B.2). The actual amplitudes of individual SMUAP
waveforms can be masked by temporal dispersion, which is caused by distal motor latency and shape
of the waveform. Additionally, CMAP recordings typically exhibit an initial negative deflection in their
bi-phasic waveform. However, in cases of advanced reinnervation, CMAPs may demonstrate an initial
positive deflection, according to Carvalho et al. [20]. This induces effects of phase cancellation, which
can reach up to 40% decrease in maximum CMAP amplitude [21]. This subsequently impacts MUNE
values estimated from CMAP scans.
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Figure B.2: Individual MU potential and compound muscle action potential (CMAP) measurements are shown
schematically in A and B. The individual SMUP measurements are shown in top table in C and the CMAP mea-
surements in D. Due to temporal dispersion and phase cancellation, the total amplitudes and areas of the CMAP
measurement are smaller than the sum of the individual SMUP measurements [51].

B.3. Simulating a CMAP scan with matrix multiplication
A MU pool of 𝑁 MUs consists of 4𝑁 variables: 𝑁 activation thresholds (𝑡), 𝑁 values for the relative
spread of the threshold (𝜌), 𝑁 SMUAP waveforms of time-length 𝑇 (with 𝑁 amplitudes 𝐴), and 𝑁 phase
values (𝜑). These variables are used to generate two matrices: an SMUAP matrix (𝑁 × 𝑇), consisting
of the waveform amplitude values over time of each MUs, and a firing matrix (𝑁 × 𝑆), consisting of the
firing behavior of every MU at each stimulus intensity value 𝑆𝑖.

The SMUAP matrix contains the SMUAP waveform of every MU in the MU pool, with each row
denoting the waveforms’ phase and amplitude 𝜑 ⋅ 𝐴𝑖 at time point 𝑇𝑖. An example of such a matrix is
shown below, where each row and column represents an SMUAP and time point in the top figures of
Figure B.3 .

𝑀𝑁×𝑇 =
⎡
⎢
⎢
⎣

0 0 4.3 15.3 174.3 211.4 51.2 ⋯
0 0 2.1 −62.5 −77.4 −71.9 −7.3 ⋯
0 0 −3.4 86.9 192.6 203.2 141.6 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎦

(B.1)

The activation threshold and relative spread of the activation threshold determine the firing behavior
of MUs at each stimulus intensity. Figure B.4 shows the firing probability of a MU depending on the
activation threshold (𝜇) and relative spread of the activation threshold, which is used to determine the
standard deviation, 𝜎, of the all-or-none response [19]:

𝜎 = 𝜇 ⋅ RS
100 (B.2)

where 𝜇 is the mean activation threshold and RS is the value of the relative spread of the activation
threshold.

The probability of firing is determined by the accumulated probability density, indicated by the sig-
moid curve in Figure B.4. By randomly sampling 0 (no activation) and 1 (activation) from this probability
density function at each stimulus intensity value 𝑆𝑖, a firing matrix of size 𝑁 × 𝑆 is obtained for 𝑁 MUs:

𝑀𝑁×𝑆 =
⎡
⎢
⎢
⎣

0 1 0 0 1 0 1 1 1 ⋯
0 0 0 1 1 0 0 1 1 ⋯
0 0 0 0 0 0 1 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎦

(B.3)

Multiplying matrix of SMUAP values of MUs by a firing matrix results in a matrix of accumulated
SMUAPs for every stimulus intensity represented in each column (shown in the left bottom figure of
Figure B.3):

𝑀𝑇
SMUAP (𝑁×𝑇) ×𝑀Firing (𝑁×𝑆) = 𝑀CMAP (𝑇×𝑆) (B.4)
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Figure B.3: Part of a CMAP scan with the three MUs presented in the top figures. The left bottom figure shows
the accumulated SMUAPs, resulting in the accumulated amplitudes in the right bottom figure.

Figure B.4: The firing probability of a MU with the mean activation threshold, 𝜇, and standard deviation, 𝜎, de-
pending on the stimulus intensity [19].

𝑀𝑇×𝑆 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 …
0 0 0 0 0 0 0 0 0 …
4.3 0 0 4.3 6.4 4.3 6.4 4.3 6.4 …
15.3 0 0 15.3 −47.2 15.3 −47.2 15.3 −47.2 …
174.3 0 0 174.3 96.9 174.3 96.9 174.3 96.9 …
211.4 0 0 211.4 139.5 211.4 139.5 211.4 139.5 …
51.2 0 0 51.2 43.9 51.2 43.9 51.2 43.9 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(B.5)

For every stimulus intensity, the maximum amplitude (baseline-peak) of the CMAP waveform (in-
dicated in blue) is extracted, leading to a CMAP scan of amplitude values (shown in the right bottom
figure of Figure B.3). This matrix multiplication very high compuational efficiency: generating 1000
CMAP scans takes approximately 6.5 seconds.





C
Optimization Stage

C.1. Discrepancy score
The weights in the discrepancy score (Equation 2.3) are chosen such that they contribute approximately
equal;y to the total error score. The weights are kept fixed throughout the optimization process. These
weights are:

𝑤1 ∶ 750
𝑤2 ∶ 2
𝑤3 ∶ 0.1
𝑤4 ∶ 1𝑒5

C.2. Values for amplitude and threshold density distributions
The differences in amplitude and threshold density distributions between the simulated and target scans
are used in the error score. The density distributions are generated by smoothing histograms of the
occurrence of amplitudes and locations of amplitude differences, as this was > 100 times faster than
directly generating a probability density function.

The histograms (𝑁bins = 10×𝑁stimuli) are smoothed using Gaussian smoothing. The spread for the
amplitude density distribution is 0.5 ⋅max(𝐴min, 𝐴min ⋅ (1+ log(estimated noise)), where 𝐴min = 5 µV, as
this is considered to be the minimum amplitude. Due to a higher spread of data points with increasing
noise, the estimated noise level is included as a multiplier. The spread for the the threshold density
distribution is calculated according to the stimulus spread based on the average estimated value of the
relative spread [19]. Each stimulus intensity has a width of relative spread:

𝑤𝑖 = 2 ⋅
𝑅𝑆
100 ⋅ 𝑆𝐼𝑖 (C.1)

where 𝑅𝑆 = 1.65. Consequently, the amount of stimulus samples within this range is computed for
every stimulus intensity:

𝑆𝑖 =∑[𝑆𝐼𝑖 −
𝑤𝑖
2 , 𝑆𝐼𝑖 +

𝑤𝑖
2 ] (C.2)

The average of this width over the quantiles (25th, 50th, and 75th percentiles) is the threshold spread:

𝑇𝑠 =
𝑄1(𝑆) + 𝑄2(𝑆) + 𝑄3(𝑆)

3 (C.3)

Additionally, the MUs of the top 10 MU pools of each population are updated according to the
amplitude density distribution. The amplitude density distribution indicates where errors between the
simulated scan and the target scan occur. Based on erroneous peaks in the amplitude distribution,
simulated MUs are removed and added. For the identification of erroneous peaks, peaks of the density
distributions of the simulated and target scan need to have a certain distance between them. The
minimum distance in amplitude between a simulated and target peak is 5 μV, as this is considered to
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be the minimum amplitude for a MU. Secondly, an amplitude peak is considered an erroneous peak
if the mean stimulus intensity of simulated and target amplitude peaks has a minimum distance in
stimulus intensity. This minimum distance is calculated with the threshold spread:

𝐷 = 𝑆𝐼max − 𝑆𝐼min
𝑛/𝑇𝑠

(C.4)

where 𝑆𝐼min and 𝑆𝐼max are the minimum and maximum stimulus intensity value respectively, 𝑛 is the
amount of stimulus points, and 𝑇𝑠 is the threshold spread.

C.3. Additional figures of fitting procedure
The figures below correspond to important steps in the fitting procedure. Figure C.1 shows the various
ways of possible merging of MU pairs based on their amplitudes or thresholds. Figure C.2 shows an
example of the generation of a cross-over MU pool, based on two separate MU pools.

Figure C.1: Merging of MUs occurs if a MU amplitude is too small, or if the activation threshold of two adjacent
MUs are smaller than the decremental size of stimuli.

Figure C.2: An example of a cross-over MU pool consisting of the lowest threshold MUs of MU pool 1 and the
highest threshold MUs of MU pool 2.
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C.4. Alternatively explored optimization methods
A hybrid fitting model was tested, making use of the evolutionary characteristics in combination with
global optimization methods. Multiple derivative-free optimization algorithms have been explored, such
as Differential Evolution (DE), Bayesian optimization, Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) and Particle Swarm Optimization (PSO). The latter optimization method was found most
suitable in terms of computation time and convergence.

Particle SwarmOptimization usesmultiple particles in the parameter landscape to investigate search
directions and minima. These particles have a cognitive component (e.g. self-exploratory component),
a social component (e.g. a component that ’draws’ them towards better performing particles), and a
momentum component (which determines the ’velocity’ and ’overshoot’ at which a particle moves).
By adjusting these parameters, particles may be more sensitive to individual exploration or to faster
convergence at the risk of ending up in a local minimum. In the particular case of CMAP scan fitting,
however, the parameter space grows quickly with increasing MU numbers as it scales with𝑀×𝑁 for 𝑁
MUs with𝑀 parameters. Additionally, due to the probabilistic firing of MUs, the error score of each scan
of the same MU pool varies. This creates a very ’rugged’ landscape for the parameter space, requiring
a lot of particles and iterations to avoid local minima. It was found that these optimization methods
therefore did not add enough value in terms of error minimization compared to the computation time
needed for the algorithm. Therefore, it was decided not to use this optimization in the evolutionary
process of FitWave.





D
Additional Results

D.1. MUNE accuracy

Figure D.1: Average percentual MUNE discrepancy of FitWave and MScanFit for a noise level of 𝜎1 = 1.0 µV. (A)
shows the average percentual MUNE discrepancy for a total over 192 scans. (B) shows the average percentual
MUNE discrepancy for low (60 scans), medium (60 scans) and high (72 scans) MU range. *Adjusted 𝑝 < 0.05;
***adjusted 𝑝 < 0.001.

Figure D.2: Average percentual MUNE discrepancy of FitWave and MScanFit for a noise level of 𝜎3 = 10.0 µV. (A)
shows the average percentual MUNE discrepancy for a total over 192 scans. (B) shows the average percentual
MUNE discrepancy for low (60 scans), medium (60 scans) and high (72 scans) MU range. *Adjusted 𝑝 < 0.05;
***adjusted 𝑝 < 0.001.
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Figure D.3: Average percentual MUNE discrepancy of FitWave and MScanFit for a noise level of 𝜎4 = 31.6 µV. (A)
shows the average percentual MUNE discrepancy for a total over 192 scans. (B) shows the average percentual
MUNE discrepancy for low (60 scans), medium (60 scans) and high (72 scans) MU range. *Adjusted 𝑝 < 0.05;
**adjusted 𝑝 < 0.01; ***adjusted 𝑝 < 0.001.

Figure D.4: Average percentual MUNE discrepancy of FitWave and MScanFit for a noise level of 𝜎5 = 100.0 µV.
(A) shows the average percentual MUNE discrepancy for a total over 192 scans. (B) shows the average percentual
MUNE discrepancy for low (60 scans), medium (60 scans) and high (72 scans) MU range. ***Adjusted 𝑝 < 0.001.

D.2. Computation time

Figure D.5: Average computation time of FitWave and MScanFit for a noise level of 𝜎1 = 1.0 µV. (A) shows the
average computation time for a total over 192 scans. (B) shows the average computation time for low (60 scans),
medium (60 scans) and high (72 scans) MU range. ***Adjusted 𝑝 < 0.001.
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Figure D.6: Average computation time of FitWave and MScanFit for a noise level of 𝜎3 = 10.0 µV. (A) shows the
average computation time for a total over 192 scans. (B) shows the average computation time for low (60 scans),
medium (60 scans) and high (72 scans) MU range. ***Adjusted 𝑝 < 0.001.

Figure D.7: Average computation time of FitWave and MScanFit for a noise level of 𝜎4 = 31.6 µV. (A) shows the
average computation time for a total over 192 scans. (B) shows the average computation time for low (60 scans),
medium (60 scans) and high (72 scans) MU range. ***Adjusted 𝑝 < 0.001.

Figure D.8: Average computation time of FitWave and MScanFit for a noise level of 𝜎5 = 100.0 µV. (A) shows the
average computation time for a total over 192 scans. (B) shows the average computation time for low (60 scans),
medium (60 scans) and high (72 scans) MU range. *Adjusted 𝑝 < 0.05; ***adjusted 𝑝 < 0.001.
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D.3. MU pool properties

Figure D.9: Average mean SMUAP size error in µV of FitWave and MScanFit for a noise level of 𝜎1 = 1.0 µV.
(A) shows the average mean SMUAP size error for a total over 192 scans. (B) shows the average mean SMUAP
size error for low (60 scans), medium (60 scans) and high (72 scans) MU range. *Adjusted 𝑝 < 0.05; **adjusted
𝑝 < 0.01.

Figure D.10: Average mean SMUAP size error in µV of FitWave and MScanFit for a noise level of 𝜎3 = 10.0 µV.
(A) shows the average mean SMUAP size error for a total over 192 scans. (B) shows the average mean SMUAP
size error for low (60 scans), medium (60 scans) and high (72 scans) MU range. *Adjusted 𝑝 < 0.05.

Figure D.11: Average mean SMUAP size error in µV of FitWave and MScanFit for a noise level of 𝜎4 = 31.6 µV.
(A) shows the average mean SMUAP size error for a total over 192 scans. (B) shows the average mean SMUAP
size error for low (60 scans), medium (60 scans) and high (72 scans) MU range. **Adjusted 𝑝 < 0.01.
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Figure D.12: Average mean SMUAP size error in µV of FitWave and MScanFit for a noise level of 𝜎5 = 100.0 µV.
(A) shows the average mean SMUAP size error for a total over 192 scans. (B) shows the average mean SMUAP
size error for low (60 scans), medium (60 scans) and high (72 scans) MU range. ***Adjusted 𝑝 < 0.001.

D.4. Reduction in maximum CMAP amplitude

Figure D.13: The reduction in maximum CMAP amplitude in estimated and target MU pools for a noise level of
𝜎1 = 1.0 µV.

Figure D.14: The reduction in maximum CMAP amplitude in estimated and target MU pools for a noise level of
𝜎3 = 10.0 µV.
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Figure D.15: The reduction in maximum CMAP amplitude in estimated and target MU pools for a noise level of
𝜎4 = 31.6 µV.

Figure D.16: The reduction in maximum CMAP amplitude in estimated and target MU pools for a noise level of
𝜎5 = 100.0 µV.



E
Wavolution Application

In order to make sure that Wavolution is accessible everywhere/worldwide, a Windows application was
developed. This appendix chapter contains descriptive information on how to use this application. To
ensure that Wavolution can be used for bulk processing, the application has not only the option to fit
one CMAP scan, but also the option to upload a .zip file containing multiple target scans for the analysis
of multiple scans.

E.1. Uploading target scan(s)
In Figure E.1, the upload screen is shown. Clicking the button ’Upload’ opens the local file explorer,
from which a target CMAP scan can be uploaded. The accepted formats are .xlsx, .xls, .mem (MScan-
Fit QtracP software file format) and .csv. For bulk processing, a .zip file can be uploaded. The .zip file
should contain target CMAP scans in similar format as the target CMAP scans used for single process-
ing. By clicking the ’Continue’ button, the uploaded files can be used for selecting pre- and post-scan
limits.

Figure E.1: The upload page of the Wavolution application.
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E.2. Selecting pre- and post-scan limits
After uploading the target scan(s), the pre- and post-scan limits have to be set for estimating the base-
line noise in the target scan(s). For a single scan, this page is shown in Figure E.2. By selecting the
”Set pre-scan limits” button, the pre-scan limits can be selected by clicking anywhere on the target scan
twice. This selects the two boundaries in which the pre-scan region falls. In a similar way, the post-scan
region can be selected. By clicking and holding a region, it can be ’shifted’ horizontally. When clicking
and holding one of the two boundaries of a region, the region can be enlarged or decreased by sliding
horizontally. Additionally, the number of generations for the genetic-like process in Wavolution can be
selected (default is 5). By clicking the ’Run Wavolution’ button, the fitting process is started. In the
case of bulk processing, however, the fitting process can only be started when all pre- and post-scan
limits are selected. The user can switch between scans in the .zip file by clicking on the ’Next scan’
or ’Previous scan’ buttons. After all pre- and post-scan regions in the bulk file are selected, the button
’Run Wavolution’ can be selected.

Figure E.2: The page of the Wavolution application where pre- and post-scan limits are selected. For bulk pro-
cessing, the user can switch between scans with the buttons in the top right of the application.

E.3. Wavolution’s fitting process
In the next screen, shown in Figure E.3, the fitting process of Wavolution can be seen. At the top, the
elapsed time is shown, including a blue progress bar and the current generation. The left plot shows
a simulated CMAP scan of the best current MU pool of all generations. The right top plot shows the
mean + SD MUNE values of the population for each generation. The right bottom plot shows the error
score of the best MU pool of each generation. In the case of bulk processing, another progress bar is
shown all the way at the top, indicating how many scans have been processed and how many are left
for processing. When the fitting process for all uploaded scans has been completed, the user can click
the button ’Export results’ in the right bottom of the screen.
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Figure E.3: The live fitting page of the Wavolution application that shows the current best MU pool and the popu-
lation and error over the generations. Once all scans have been processed, the results can be exported by clicking
the ’Export Results’ button in the bottom right.

E.4. Exported results
The results are exported to a folder of the user’s choice, where the folder is named:

{SCAN_ID}_Wavolution_Results_{DD/MM/YYYY_HH/MM}

In the case of bulk processing, multiple folders are stored in one folder named:

Wavolution_Results_{DD/MM/YYYY_HH/MM}

For each scan that is processed, Wavolution creates five files:

• {SCAN_ID}_MU_properties.xlsx
This file contains one sheet of all the numerical MU properties (amplitude 𝐴, relative spread 𝜌,
activation threshold 𝑡, and phase 𝜑), as well as one sheet with the actual SMUAP signals of every
simulated MU in the estimated MU pool.

• {SCAN_ID}_CMAP_Scan.xlsx
This file contains one sheet with all the stimulus intensity values, as well as one sheet with the
actual CMAP signal values for every stimulus intensity value.

• {SCAN_ID}_ScanResults.xlsx
This file contains one sheet with an overview of the scan results, including MUNE, runtime, mean
MU amplitude, largest MU amplitude, smallest MU amplitude, and mean relative spread.

• {SCAN_ID}_CMAP_Scan.png
This file shows a figure of the CMAP scan described in the file above.

• {SCAN_ID}_TotalResultsOverview.png
This file shows an overview of the CMAP scan and fitting process, including the CMAP scan, the
smoothed line, the absolute and smoothed error, and the mean + SD MUNE plot and the error
score plot of Wavolution’s fitting process.





F
Pre-processing of CMAP recordings

F.1. Detrending
Baseline drift can lead to atypical CMAP scans of the actual muscle responses, which in turn has an
effect on the MUNE value. Detrending individual CMAP recordings ’removes’ this baseline drift from
each measurement such that the CMAP scans represent the actual EMG recordings from baseline to
peak. Detrending occurs based on the ’trend’ that is present in the separate CMAP recordings. The
baseline of these measurements is estimated by a spline that is fitted through the first and last data
points of the measurement. By subtracting this spline from the baseline, the difference is removed,
resulting in an amplitude measurement from 0 to 𝑉max (baseline-peak). An example of baseline cor-
rection for a recorded EMG signal is shown in Figure F.1. Baseline correction based on low frequency
removal was also tested, but spline-based correction resulted in more accurate baseline correction.

Figure F.1: Baseline drift correction for an EMG signal recorded from the abductor pollis brevis.

F.2. Denoising
One-dimensional signals that contain noise can be seen as the original signal with additional noise
through linear superposition:

𝑋(𝑘) = 𝑆(𝑘) + 𝐸(𝑘) (F.1)

where 𝑋(𝑘) is the noisy signal, 𝑆(𝑘) is the original signal, and 𝐸(𝑘) is white Gaussian noise, subject to
𝑁(0, 𝜎2) distribution [52].

An EMG recording of a CMAP response to a stimulus can be seen as a discrete, one-dimensional
wavelet signal that contains noise. Especially at lower stimulus levels, where the responses have lower
magnitudes, the noise affects the measurements of amplitude and area of the recording, which in turn
affects the CMAP-scan. Therefore, wavelet denoising can be performed based on wavelet decompo-
sition. An input signal is decomposed into wavelet coefficients using a discrete wavelet transform:
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coeffs = pywt.wavedec(signal, wavelet=wavelet, level=level)

This returns a list of coefficients separating the signal into different frequency bands, where coeffs
[0] contains the approximation coefficients (e.g., the low-frequency components), and the higher levels
contain the detail coefficients (e.g., the high-frequency components). Large amplitude wavelet coeffi-
cients may be produced by the useful signal, and the small amplitude is likely to represent the noise
[52].

There are many ways to estimate the noise level based on these coefficients. The universal thresh-
olding method introduced by Donoho [53] is widely used in wavelet-based denoising. It automatically
estimates the noise level in the wavelet coefficients, making it suitable when noise levels are unknown
or variable. It is defined as:

𝑇 = 𝜎√2 log𝑁 (F.2)
where 𝜎 is the average variance of the noise and 𝑁 is the signal length. The average variance, 𝜎, is
calculated using the median estimate method:

𝜎 = median(|𝑊1,𝑘|)
0.6745 (F.3)

where𝑊1,𝑘 represent all the wavelet coefficients in level 1 [52].
Based on this threshold, hard thresholding is performed, where wavelet coefficients smaller than

threshold 𝑇 are removed. The performance of wavelet denoising depends on the type of wavelet
used for decomposition and the level of wavelet decomposition. In order to investigate which type
of wavelet and level provide the most accurate denoising, wavelet denoising was performed for all
types of discrete wavelets and levels 2 to 6 (the denoising parameters). A simulated set of clean and
noisy signals was used, where the noisy signals were denoised. The resulting denoised signals were
compared to the clean signals in terms of root-mean-squared error (RMSE), where the lowest RMSE
values corresponded to the most accurate denoising parameters.

As there are 127 discrete wavelets in the wavelet decomposition program, first, a preliminary anal-
ysis was done, where the RMSE values of all levels were summed for the discrete wavelets. From
this, the 10 discrete wavelets with the lowest total RMSE values were selected. These wavelets were
tested at levels 2 to 6 for single MU action potentials (MUAPs) of CMAP recordings. For simulated
CMAP recordings of 5, 40, 80, and 120 MUs, responses at 4 different stimulus intensities were ana-
lyzed, leading to a total of 16 different CMAP recordings. An example of the denoising process of one
of these recordings is shown in Figure F.2.

Figure F.2: Wavelet-based denoising for an EMG signal recorded from the abductor pollis brevis.

For all the recordings, the RMSE was summed for each level of every wavelet. The wavelet and
corresponding level with the lowest total RMSE was found to be the ’coif5’ wavelet with level 3.
Therefore, these denoising parameters were used in the wavelet denoising process of CMAP record-
ings. One should keep in mind that the recordings used in this analysis of wavelet families and levels
are based on the abductor pollicis brevis (APB) muscle. Therefore, when analyzing other muscle re-
sponses in CMAP recordings, it could be that other wavelet families or levels lead to a more accurate
denoised signal.
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