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Summary
Growing competitiveness in the launch market will intensify the pressure to optimize structural efficiency.
Large thin-walled components—most notably metallic propellant tanks—will need to be pushed toward their
feasible mass limits without compromising performance. These cylinders are inherently imperfection-sensitive,
and their buckling behavior under combined axial loading and internal pressurization remains difficult to pre-
dict with confidence. Current design practices still rely on empirical knockdown factors derived from unpres-
surized tests or legacy structures, resulting in overly conservative margins. This work, therefore, investigates
viable alternatives based onmodern nonlinear imperfection-modeling approaches applied to pressurizedmetal-
lic launcher tank segments.

Weld-induced geometric imperfections are known to dominate the behavior of metallic shells, forming a char-
acteristic long half-waves at the weld land — the so-called imperfection signature. The literature shows that
existing modeling strategies fall into two categories: (i) approaches that attempt to replicate this manufactur-
ing signature by perturbing the geometry (measured or synthetic), and (ii) non-traditional methods that induce
collapse through controlled boundary or loading imperfections. From this landscape, five representative strate-
gies were selected and evaluated on a set of structures adopted from NASA’s Shell Buckling Knockdown Factor
Project: the 8-ft shells TA01, TA03, TA07, TA09, and the 27.5-ft external tank article ETTA1, analyzed at 3
loading cases of 0, 2, and 4 bar.

The methods considered include single and multiple perturbation approaches (SPLA/MPLA), the eigenmode
imperfection approach (EIA), measured (radial) geometrical imperfections (MGI), and a newly introduced dis-
tributed force perturbation approach (DFPA) that locally amplifies the load to trigger collapse. Given the ab-
sence of validated high-pressure test data, this study focused on assessing the behavior of these approaches
under different structure–pressure interactions and quantifying their reliability. Three statistical metrics were
used: the coefficient of variation (relative variability), Kendall’s W (agreement in ranking), and the intraclass
correlation coefficient (relative reliability).

The results showed that internal pressurization alters the buckling behavior of stiffened metallic shells, with the
extent varying with their design and imperfection strategy. In principle, it suppressed imperfection sensitivity
by increasing the geometric stiffness through longitudinal and hoop stabilization and progressively shifting the
response toward a pressure-dominated regime. Methods based on distributed or multiple perturbations (DFPA,
MPLA) demonstrated the highest reliability across pressures, but resulting in conservative buckling load es-
timates. Approaches relying on localized, geometry-driven, or manufactured imperfections (SPLA, MSI, EIA)
were considerably more pressure-sensitive. They exhibited poor consistency as the imposed shapes became
subordinate to the stabilizing hoop and axial stresses. At higher pressures, the buckling modes of nearly all
approaches started converging, indicating an upper bound on the stabilizing effect of internal pressure.

This study demonstrates that reliable prediction of pressurized buckling cannot be achieved by simply reproduc-
ing geometric imperfections or relying on stiffness-dependent modes. The consistency of a modeling approach
depends on how its imperfection mechanism interacts with pressure-induced stiffening and the structure’s
geometry. Methods strongly tied to shell stiffness or to manufacturing-driven imperfections lose reliability
as pressure increases, since their influence becomes highly configuration-dependent and is progressively sup-
pressed. Signature-based approaches show mixed behavior depending on the magnitude of the induced imper-
fection and the degree of resemblance to the signature imperfection. Methods that do not rely on traditional
imperfections (DFPA) benefit least from pressure stiffening and therefore provide the most stable predictions
across pressure levels, albeit remaining conservative. Collectively, the results highlight that accurate modeling
in the pressurized regime requires approaches whose imperfection mechanism remains stable under pressure
and does not depend on structural details that become irrelevant as imperfection sensitivity diminishes. The
results underscore the need for pressure-aware design strategies that go beyond traditional knockdown factors
to achieve higher performance.
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1
Introduction

The increasing demand for launch services - driven primarily by mega constellation-deployment has led to
rapid growth of the global launch market. Today, approximately 150 launch systems are operational or under
development [5], creating intense competition. To remain competitive, new launch vehicles must deliver high
performance at reduced cost, driving designers to minimize structural mass wherever possible. Achieving such
performance places significant demands on the vehicle’s primary load-bearing structures—particularly the pro-
pellant tanks. These large, cylindrical, thin-walled and pressurized structures, which account for the majority
of the structural weight, were found to be problematic in design.

Thin-walled circular cylinders are one of the fundamental geometrical shapes utilized for launch vehicle struc-
tures [50, 88], including tanks and interstages, as visible in Figure 1.1. Their favorable stiffness-to-weight ratio
makes them ideal for axial load transfer [40]. However, this simultaneously positions them as stability-critical
structures [32], with the buckling load being an essential consideration in their design [50].

In addition to stability-related issues, these structures are often exposed to extreme temperature gradients due
to the storage of cryogenic propellants, such as liquid oxygen (LOx) at −182∘C or liquid hydrogen (LH2) at
−252∘C [23]. Temperature effects not only induce significant thermal stresses in the vessel walls, but also
strongly affect the material properties [46]. Consequently, designers face a highly complex thermomechanical
problem when assessing the structural integrity of launch vehicle tanks.

Figure 1.1: Ariane 62 structure overview [22].
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Over the past decades, extensive efforts have been made to predict the collapse behavior of thin-walled cylin-
ders and to match simulations with experimental results. The discrepancy between analysis and testing was
attributed to geometric imperfections, which cause the shells to deviate from the theoretical behavior. To
account for this effect, empirically derived knockdown factors (KDFs) were proposed [86]. However, these
factors, today, are widely recognized as overly conservative, not reflecting modern manufacturing quality [88],
and leading to suboptimal designs [41].

NASA’s Shell Buckling Knockdown Factor (SBKF) Project addressed this shortcoming by testing state-of-the-art
metallic cylinders and establishing a new generation of KDFs. These updated factors yielded 5–8% structural
mass savings on the SLS Core Stage tanks and reduced material and machining costs by roughly $400k per
tank, with an estimated return on investment of $5.45M per launch [36].

Yet one critical aspect remains largely unexplored - internal pressurization, necessary to provide sufficient pro-
pellant flow and operating conditions for the pumps. Only a single test article - the Space Shuttle External
Tank- has ever been tested under pressure, and its collapse load significantly exceeded the analytical predic-
tions, highlighting a major gap in current design tools. Without pressurized KDFs, engineers must rely on
high-fidelity nonlinear analyses to more accurately estimate buckling performance.

While it has long been recognized that internal pressure increases shell stiffness andmitigates imperfection sen-
sitivity, the combined effect of pressure and modern imperfection-modeling strategies across different metallic
configurations is still poorly understood. The literature shows that welded aluminum tank segments exhibit
characteristic imperfection signatures driven by manufacturing processes. Existing numerical approaches ei-
ther attempt to reproduce these signatures or rely on artificial boundary or load imperfections to trigger col-
lapse. The extent to which these imperfection fields must be represented under operational pressure is still
unclear. This study investigates this gap by examining how representative each modeling strategy remains
once the shell is internally pressurized and whether these imperfections continue to govern the collapse be-
havior.

In this work, several state-of-the-art imperfection modeling approaches were examined and summarized in
Chapter 2, along with representative launcher-tank shell configurations. This review led to the formulation of
the main research question and hypothesis, followed by the identification of the relevant test articles’ geometry.

The adaptation of these approaches to pressurized buckling analysis, along with the shell modeling strategy and
finite element setup, is detailed in Chapter 3. As no pressurized test data exist for these configurations, the shell
models and analysis procedures were thoroughly verified against available unpressurized experiments and past
numerical studies. The full verificationworkflow and the associated sensitivity checks are detailed in Chapter 4.

The resulting buckling predictions and reliability assessment are presented in Chapter 5, where the findings
are interpreted in the context of imperfection signature behavior. Finally, key observations, answers to the
research question, and recommended directions for future work are summarized in Chapter 6.



2
Literature Review

In this chapter, the relevant shell buckling literature is reviewed and presented in the context of launch-vehicle
segments. First, a general overview of buckling behavior is provided together with currently employed analysis
methods, with emphasis on imperfection modeling approaches. The chapter then outlines the design of launch-
vehicle propellant tanks and identifies the primary sources of geometric imperfections. Subsequently, notable
studies on the buckling of launch-vehicle structures are discussed, concluding with an overview of pressurized
shell buckling behavior.

The review is followed by a dedicated discussion in which the identified limitations of existing approaches are
synthesized to expose a clear research gap. Based on this assessment, the research questions are formulated
together with the accompanying main hypothesis.

2.1. Buckling of Thin-Walled Cylinders
Numerous studies have been conducted in the past, trying to accurately predict the collapse load of thin-walled
cylinders and align them with experimental data. The large discrepancy between the test results and the pre-
dictions was associated with different forms of cylinder imperfections, causing the shell to deviate from the
perfect structure behavior [3, 39, 51].

The deviations from the ideal circular shape, or thickness variations, are known as geometric imperfections or
traditional imperfections. They are embedded in the structure and result from manufacturing processes [39].
Through testing and further research, additional imperfection sources have been identified and linked to the
testing setup. Known as non-traditional imperfections, they are affiliated with variations in boundary condi-
tions and/or nonuniform end-loading during the test [53].

The most commonly used classification of imperfections was proposed by Winterstetter and Schmidt [101].
The authors differentiated 3 basic types of geometric imperfections, each with distinct effects on the shell’s be-
havior. The ’realistic’ imperfections are those measured from the build geometry using contact or non-contact
optical measurement techniques [98]. These deviations degrade the structure’s behavior to the as-built one.
Second in the classification are the ’worst’ imperfections, which are mathematically defined as ”the worst pos-
sible imperfection pattern” [101]. Several authors concluded that they are conservative, as the pattern degrades
structural performance to an extent rarely observed in reality. Lastly, Winterstetter and Schmidt [101] differen-
tiated ’stimulating’ geometric imperfections. This group refers to imperfections generating equivalent patterns
to ’realistic’ imperfections a priori to the structure’s fabrication. The effect of these on the shell’s behavior is
uncertain, as it depends on the predicted pattern and its resemblance to manufactured imperfections, and/or
its effect on the buckling pattern.

It is worth noting that the concept of non-traditional imperfections was introduced after the classification
release. Hence, despite using the geometrically accurate ’realistic’ measured imperfections, the discrepancy
between the experimental results and simulations might persist [41, 98]. Altough today there are methods
capable of considering both geometric and loading imperfections [88].

3
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2.2. Knockdown Factor Approach
Initially, to align the test data with the results from linear bifurcation analysis, particularly for the design
of launcher structures [3], empirical knockdown factors (KDFs) have been introduced [41]. It is defined by
Equation 2.1, where 𝑁𝑐𝑟 is the predicted buckling load from an experimentally-validated, high-fidelity finite-
element model representing the buckling load for a geometrically imperfect structure, and 𝑁𝑐𝑙 represents the
linear buckling load [37].

KDF = 𝑁𝑐𝑟
𝑁𝑐𝑙

(2.1)

These factors (statically lower-bound curves [89]) were derived from a series of shell-buckling experiments con-
ducted on isotropic metallic shells between the 1920s and 1960s and compiled into a comprehensive guideline
known as NASA SP-8007 [86]. However, these design guidelines have not been updated since, and did not take
advantage of modern materials, precision manufacturing, and current structural concepts [37, 43], leading to
ultraconservative designs [41] and resulting in increased structural mass for short and large diameter launch
vehicle shells [94].

To address this issue, NASA started the Shell Buckling Knockdown Factor (SBKF) project, aiming to derive
analysis-based KDFs together with new design recommendations for selected metallic and composite launcher
cylindrical segments [37]. During the project, several integrally stiffened metallic cylinders were subjected to
compression testing, including eight subscale 8 ft-diameter articles and two full-scale 27.5 ft-diameter cylinders
based on the Space Shuttle external tank.

Based on the buckling results, a new series of KDFs for metallic orthogrid-stiffened shells was proposed [37].
These factors were differentiated into manufacturing classes: Class 1 for current-state-of-the-art production,
Class 3 for legacymanufacturing, and Class 2 for intermediate quality. However, the knockdowns are valid only
for shells with a slenderness ratio 𝑅/𝐿 < 2. Although the proposed KDFs set includes factors for pressurized
cylinders, it does not cover the full range of operational pressures, nor does it clearly specify the imperfection-
modeling strategies used during the derivation of the corresponding collapse loads [57].

2.3. Measured Geometric Imperfections Approach - MGI
Realistic imperfections can be introduced in the form of measured geometric imperfections (MGI), typically
captured with respect to the shell’s top or mid-surface - referred to as Mid-Surface Imperfections (MSI) [11].
After measurement, the data is implemented into finite element analysis by mapping the imperfections onto
the finite element mesh [17], after which a nonlinear buckling analysis is conducted.

Many authors have studied this method and have reported accurate results when compared with experimental
buckling results. However, its reliability varies significantly depending on the shell type and imperfection
shape, as discussed later in the report. As noted by Haynie and Hilburger [31], such imperfections are typically
not known a priori during the design and fabrication stages. As a result, engineers are often required to resort
to alternative prediction methods—particularly analysis-based lower-bound approaches to ensure conservative
design. Several ‘stimulating’ imperfection approaches have therefore been developed and investigated, aiming
to approximate the buckling response without relying on direct measurements.

2.4. Eigenmode Approach - EIA
One of the most commonly used imperfection modeling techniques is the linear buckling mode-shaped imper-
fection approach [11], which introduces one or more eigenmodes from a linear buckling analysis (LBA) into
an initially perfect shell model. Due to its simplicity, it remains widely used in the industry to estimate lower-
bound buckling loads [11, 33, 89].

Several design standards incorporate this approach. NASA SP-8007 recommends the Eigenmode Imperfection
Approach (EIA) for imperfection sensitivity studies when measured data is unavailable [86]. It suggests com-
bining multiple modes, with amplitudes scaled to a root-mean-square value equal to half the shell thickness.
Similarly, Eurocode 3, which applies to steel shell structures, advises using eigenmodes to define imperfection
shapes, with amplitudes dependent on manufacturing quality [1].
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Figure 2.1: Comparison of measured imperfections (a) and eigenmode (b) of a cylinder [91].

Despite its practical appeal, EIA is not without drawbacks. The eigenmode-shaped imperfections used in this
approach are not typically observed in real as-built structures - as showcased in Figure 2.1, and the selection of
modes is often arbitrary. Furthermore, the significant membrane stiffness degradation caused by these imper-
fection shapes is rarely observed in experimental tests [33].

Orifici and Bisagni [66] pointed out that eigenmode-based imperfections can lead to nonphysical behavior due
to excessive stiffness reduction. They recommended limiting imperfection amplitudes to no more than 0.5
times the shell thickness to avoid unrealistic responses.

Comparative studies highlight both the potential and the variability of EIA predictions. Castro et al. [11] demon-
strated that circumferential eigenmodes reduce membrane stiffness more than axial ones, leading to higher
knockdown factors, while axial modes can slightly improve buckling resistance. The study concluded that EIA
can predict lower-bound collapse loads, but the results depend heavily on the selected mode and amplitude.
Similarly, Arbocz and Williams [4] showed that both the combination and amplitude of modes are critical.
Their multi-mode EIA analysis revealed convergence of predicted knockdowns toward experimental data as
more modes were included, though with a consistent trend of decreasing collapse load as additional modes
were added.

Li et al. [55] found that for curved panels with cutouts, the first eigenmode could closely match measured im-
perfection fields, although the accuracy was dependent on cutout size. In some cases, EIA was even shown to
be more conservative than the empirical NASA SP-8007 knockdowns [99].

A persistent challenge is that compression-loaded circular cylinders often exhibit clustered eigenvalues, making
it unclear which eigenmode should serve as the imperfection basis [70]. Sosa et al. [78] concluded that the
critical load generally corresponds to the first eigenmode, and Speicher and Saal [79] recommended using it,
with amplitude tied to manufacturing tolerances. However, this is not always valid — other studies have shown
that the first mode is not necessarily the most detrimental or representative of as-built imperfections [31, 41].

2.5. Perturbation Induced Imperfection Approaches
Single Perturbation Load Approach - SPLA
The idea that a single dimple can represent the most detrimental imperfection originates from the work of
Horák et al. [44] and Deml and Wunderlich [19], who showed that the worst-case imperfection shape differs
significantly from classical eigenmodes and is often localized. This was further supported by experimental ob-
servations from Esslinger [25], who recorded single-buckle patterns initiating the buckling process. As such, a
single-dimple imperfection can be considered realistic, stimulating, and conservative [47].

Hühne et al. [47] proposed the Single Perturbation Load Approach (SPLA) for unstiffened composite shells. It
involves introducing a local dimple at the mid-height of a perfect shell using a transverse perturbation load
applied before the main axial compression [55]. As the magnitude of the perturbation load increases, the
buckling load drops until a threshold is reached, as shown in Figure 2.2, beyond which further increases in the
perturbation have minimal effect [91]. This threshold is linked to local snap-through behavior, as confirmed by
Castro et al. [10]. However, slight radial inward shifts beyond this point (caused by higher perturbation force)
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may still reduce the buckling load slightly, resulting in a decreased buckling load.

Figure 2.2: Idealized SPLA buckling convergence curve [47].

SPLA typically yields lower-bound estimates of buckling loads that are less conservative than those fromNASA
SP-8007, but still capture critical behavior [47]. For the same imperfection amplitude, SPLA showed higher
knockdown factors (KDFs) compared to EIA and axisymmetric imperfections in the comparative study by Cas-
tro et al. [11]. The SPLA approach was thoroughly studied under the DESICOS project (Design Guidelines for
Imperfection Sensitive Composite Launcher Structures) [27], which concluded that the original SPLA cannot
always guarantee a lower-bound buckling load [93].

Several limitations and sensitivities have been reported. For metallic orthogrid-stiffened shells, Hao et al. [30]
showed that the location and magnitude of the perturbation load strongly affect the collapse load. Conversely,
Arbelo et al. [2] found that angular position has little influence on composite shells. Moreover, Wang et al.
[98] highlighted the feasibility constraint on perturbation amplitude for launch vehicle structures, arguing that
exceeding this threshold results in non-representative geometries and overestimates collapse loads by up to
27.8

SPLA Variants
Due to SPLA’s load-controlled nature, it cannot reach metastable equilibrium points typical of real shell behav-
ior. To overcome this, the Single Perturbation Displacement Approach (SPDA) was introduced. It introduces
the dimple using displacement control, allowing the structure to settle into a metastable configuration more
representative of as-built imperfections [90, 91].

Figure 2.3: Overview of the SBPA method and its buckling convergence behavior [93].

Another evolution is the Single Boundary Perturbation Approach (SBPA), which combines geometric and load
introduction effects. It induces a dimple (via a shim or equivalent) at the load introduction edge, which travels
downward during compression [91, 92]. The overview of the method is shown in Figure 2.3. The angular width
of the dimple is typically 2∘ for slender shells (𝑅/𝑡 > 200) and 4∘ for thicker ones, based on convergence
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studies [93]. The height of the shim acts as a free variable, effectively serving as a perturbation load.

Degenhardt et al. [18] proposed integrating SPLA with stochastic modeling to account for both traditional
and non-traditional imperfections, such as thickness variations, which Hilburger and Starnes [39] identified as
especially relevant for composite structures.

Multiple Perturbation Load Approach (MPLA)
To capture more complex imperfection patterns, Arbelo et al. [2] extended SPLA into the Multiple Perturbation
Load Approach (MPLA). Here, multiple dimples are introduced via perturbation loads at predefined locations
and magnitudes to simulate worst-case imperfections. While more conservative than SPLA, it yields collapse
loads closer to those predicted by NASA SP-8007. It also introduced complexity regarding optimal selection of
dimple number, location, and intensity.

A further development was theWorst Multiple Perturbation Load Approach (WMPLA) proposed byWang et al.
[97]. This approach uses a surrogate-based optimization framework to determine the most detrimental combi-
nation of dimple positions and magnitudes, minimizing collapse load through iterative simulations [84, 98].

While WMPLA can provide highly accurate collapse predictions for isogrid metallic cylinders, it suffers from
high computational cost, involving hundreds of finite element simulations [99]. Like SPLA, its accuracy depends
on the perturbation load magnitude - too low a magnitude can lead to an overestimation of the buckling load
[98].

Cutout Approach
Many launch vehicle structures include cutouts that serve as access points or assembly doors. Under compres-
sive loading, these cutouts can initiate local buckling at loads lower than the general instability load of a perfect
shell [40].

Figure 2.4: Cutout buckling convergence plot [93].

Wagner et al. [93] proposed using cutouts to induce imperfections by introducing a small circular cutout at
the center of the shell and increasing its size until a diamond-shaped buckling pattern emerges. The authors
demonstrated that even a small 2 mm cutout can reduce the global collapse load of a composite shell by 40%.
In their analysis, the collapse load reached a lower-bound value at a cutout-to-radius ratio of 0.25. The knock-
down factor obtained for the composite shell was similar to those predicted byWMPLA and SBPA. However, for
stiffened metallic shells, the approach tended to overestimate the buckling load compared to the SBPA-derived
lower bound. The authors concluded that the cutout approach is the fastest and most accurate imperfection
strategy for cylindrical shells, although further investigation is necessary. Notably, the method may not be
suitable for short and thick shells, as also observed by Miladi and Razzaghi [61].

Nevertheless, past studies summarized in [87] suggest that for cylinders with small unreinforced cutouts, the
effect on buckling response is minimal, with other geometric imperfections often being the dominant factor.
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2.6. Imperfection Signature of Metallic Tank Segments
Arbocz and Starnes Jr [3] were the first to propose that each shell manufacturing process can be associated
with a unique imperfection pattern, also referred to as an imperfection signature. Based on observations from
composite shell tests, the authors concluded that shells fabricated using the same method contained shell-wall
ply gaps, resulting in characteristic geometric imperfections that were equally detrimental to buckling perfor-
mance. The idea was further developed by Hilburger et al. [41], who argued that imperfection signatures from
previous designs could serve as an early-stage tool for estimating the buckling load of as-built shells.

In contrast to the view presented by Arbocz and Starnes Jr [3] and Hilburger et al. [41], Wagner and Hühne [88]
suggested that cylindrical shells, regardless of fabrication method, exhibit a common diamond-shaped buck-
ling mode. This lower-bound worst-case mode becomes dominant if the imperfections are sufficiently large in
both magnitude and shape. It was identified using SBPA on an isogrid-stiffened aluminum shell, without prior
knowledge of the actual manufacturing imperfections. Although the predicted knockdown was less conser-
vative than the SP-8007 value, this method, like other lower-bound approaches, does not reward high-quality
manufacturing.

Tank Design Impact on Imperfections
Historically, several authors have studied the buckling behavior of metallic launch vehicle structures. Most
work has focused on integrally stiffened aluminum cylinders, which offer improved knockdown factors [93]
and reduced imperfection sensitivity compared to monocoque designs [45]. These segments are also cheaper
and faster to produce, can be easily tailored to specific loading conditions, and achieve lower structural mass
compared to riveted or fastened counterparts [65, 82]. Conventionally, internal stiffeners are favored over
external ones, despite the latter offering higher buckling resistance [82].

(a) Isogrid milled plate. (b) Orthogrid milled plate.

Figure 2.5: Grid stiffened configurations [63].

Stiffeners are typically arranged in grid patterns (Figure 2.5) — either orthogrid, spanning axial and circumferen-
tial directions to form rectangular bays, or isogrid, with helically intersecting ribs forming equilateral triangles
[21, 49, 82]. The shells are manufactured from machined plate segments, which are rolled and longitudinally
welded to form barrel sections [30] - the overview of the manufacturing steps is presented in Figure 2.6. These
barrels are then vertically stacked and circumstantially welded to create the final LV structure [64]. Thorn-
burgh and Hilburger [82] classified such structures as segmented shells with weld land discontinuities rather
than continuously stiffened shells. The number and height of the segments are typically limited by available
plate stock size [82].

Panel edges are thickened to compensate for the strength loss introduced by the welding process [46]. These
regions are referred to as weld lands [82]. A weld land is accompanied by the transition section. The weld-
section thickness is dictated by the strength required to withstand internal pressure. In contrast, the transition
thickness is selected to reduce local stress concentrations between the weld and the acreage skin [82].
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Figure 2.6: Barrel panel manufacturing overview for Saturn IV [23]

The panel grid pattern can transition into the weld land in two principal ways: by gradually tapering the
stiffeners down into the transition region (tapered stiffener transition), or by terminating the orthogrid at an
axial stiffener adjacent to the weld land (picture-frame design). The detailed geometry of both configurations
is shown in Figure 2.7.

(a) Tapered stiffener transition geometry .

(b) Picture frame stiffener transition geometry.

Figure 2.7: Stiffener transition designs at weld lands adopted by NASA [37].

Early work by Arbocz and Williams [4] and Nemeth et al. [64] demonstrated that welded barrel segments ex-
hibit significant imperfections near the welds, severely reducing buckling strength. A characteristic pattern
was identified near the weld land, consisting of one axial half-wave and multiple circumferential full waves,
with maximum inward deflection at the weld seam as visible in Figure 2.8. These imperfections were found
across various welding techniques and were common in large-scale, liquid-propelled launch vehicle structures
[64].

Thornburgh and Hilburger [82] studied the effect of longitudinal weld lands on the buckling of stiffened cylin-
ders. It was shown that the weld lands possess higher in-plane stiffness due to their increased thickness but
reduced bending stiffness. As a result, they attracted more load while being less able to resist inward defor-
mations. Using a smeared-stiffness approach (where the structure’s grid is represented with increased skin
thickness as explained in Appendix B), this effect was found to be less severe for shells with thicker skins,
where the thickness difference is smaller. Conversely, shells with taller stiffeners experienced amplified effects
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due to larger circumferential bending discrepancies. Axially stiffened shells were less affected by weld lands
than hoop-stiffened ones. For the original (non-smeared) geometry, the collapse load reduction was even more
pronounced. The authors recommended altering the stiffener layout—bringing stiffeners closer to the weld land
or adding an extra pair—to locally increase bending stiffness and reduce inward deformation.

Figure 2.8: Imperfection signature of a metallic cylinder with eight longitudinal weld lands [37].

For the SKBF study, Hilburger et al. [35] built, tested, and analyzed three stiffened metallic shells with differing
buckling behaviors: two sub-scale (8-ft diameter) and one full-scale (27.5-ft diameter) to validate that sub-scale
results translated to full-scale hardware. The first specimen, TA01, was a lightly stiffened, integrally machined
shell with an R/t ratio corresponding to lightly loaded upper-stage rocket segments. It was designed to fail
in global buckling, and additional longitudinal stiffeners were placed along the axial welds to prevent weld
buckling.

The second specimen was a scaled-down version of the Ares I liquid hydrogen tank barrel section, featuring
a denser orthogrid pattern [93]. It was expected to experience weld land buckling first. The full-scale struc-
ture relied on internal pressure to provide axial relief and hoop stabilization, precluding other failure modes.
Because the sub-scale model was not pressurized, the stiffener layout was modified to delay skin buckling in
favor of global buckling. The full-scale test article, ETTA1, was a segment from the Space Shuttle’s external
liquid hydrogen tank. It was expected to undergo both skin-pocket and weld land buckling.

Both sub-scale specimens consisted of three 120∘ longitudinally welded segments. The full-scale ETTA1 struc-
turewas constructed from eight identical segments joined by longitudinal friction stir welds. Post-manufacturing,
geometric imperfections were measured.

For TA01, the imperfection pattern did not exhibit the typical axial half-wave associated with welding (Fig-
ure 3.7). Instead, multiple low-amplitude, short-wavelength, delocalized imperfections occurred. No correlation
between the weld lands and imperfection pattern was found [42]. This was attributed to the added longitudinal
stiffeners adjacent to the welds, which reduced local buckling tendencies [93]. TA03 did show axial half-wave
distortions at the welds, although one weld had much larger distortions than the others. The full-scale ETTA1
exhibited significant geometric variation near the weld lands, with eight distinct axial half-waves observed [35].

During the ETTA1 test, knockdown due to weld imperfections was so severe that it prevented achieving test
objectives. Instead of proceeding through local skin buckling, weld land buckling, and finally global buckling,
the structure entered a benign buckling mode prematurely. To proceed, it had to be pressurized to 1 psi (0.06895
bar) to bulge out the imperfections and ”push the weld land back into circular geometry” [38].

In another SKBF study, a seamless cylinder was tested to demonstrate the benefit of eliminating weld lands
[69]. A flow-formed, integrally machined orthogrid cylinder (Seamless Test Article - STA8.1) was compared
with a three-segment welded counterpart (TA09). The latter exhibited typical axial half-wave imperfections
due to weld shrinkage. In contrast, STA8.1 showed no localized inward deformations, and its overall imper-
fections were smaller. Nonlinear geometric buckling analysis showed that STA8.1 had a 28% higher collapse
load than TA09. Further analysis revealed that in TA09, weld lands contributed more to the knockdown than
the measured imperfections. A model of TA09 with only the weld land geometry (no imperfections) had a 21%
lower collapse load than a model with just imperfections. Comparisons of only the geometrically imperfect
shells showed a 3% load reduction for STA8.1 and 12% for TA09 compared to the perfect case.
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In the study by Wang et al. [98], measured imperfections in an isogrid-stiffened shell composed of four welded
aluminum segments did not show the typical axial half-wave pattern at the welds. Instead of tapering the stiff-
eners near welds, the panels were welded along adjacent stiffeners. The radial imperfection map did not clearly
indicate the weld land location, nor could distortions be correlated to geometric features. The authors did not
perform imperfection signature analysis, nor did they provide details about the weld geometry or process.

Hao et al. [30] investigated both axial and circumferential welds using SPLA and WMPLA. Sequential and
staggered barrel configurations were examined. It was concluded that circumferential welds slightly reduced
imperfection sensitivity, and staggered axial welds, while offering higher imperfection tolerance, resulted in
lower collapse loads compared to sequential alignment.

NASA’s SKBF work identified welding signature and weld land geometry as features with significant influence
on analysis-based knockdown factors [37].

2.7. Notable Works on Buckling of Stiffened Metallic Shells
Several studies have addressed the imperfection sensitivity and buckling behavior of stiffened metallic shells
in the context of launch vehicle structures. This section outlines key contributions focusing on imperfection
characterization, perturbation-based analysis methods, and experimental benchmarking.

Imperfection characterization and prediction accuracy
Arbocz and Williams [4] investigated an orthogrid-stiffened welded cylinder using a multi-mode eigenvalue
approach to approximate measured initial imperfections. The geometric distortions were expressed using two
double Fourier series, enabling detailed analysis of axial and circumferential wave components. The study
concluded that accurate buckling predictions require not only appropriate mode selection but also precise am-
plitude representation based on Fourier coefficients. Therefore, understanding imperfection patterns specific
to a fabrication process can aid in a more reliable design.

Perturbation Load Methods: SPLA, MPLA, WMPLA
The same shell geometry analyzed by Arbocz and Williams [4] was reused by Hao et al. [30], who evaluated
its collapse load using SPLA, MPLA, and WMPLA techniques. The model included orthogrid stiffeners but ex-
cluded weld lands. An initial validation using explicit nonlinear dynamic analysis confirmed the buckling load
range reported in the earlier test.

In the SPLA study, convergence was evaluated using four axial positions, ranging from mid-weld to acreage,
at mid-cylinder length. Sensitivity to perturbation load magnitude and position was observed: low-magnitude
perturbations placed near the acreage yielded the lowest collapse loads, whereas higher-magnitude perturba-
tions showed critical sensitivity at weld land locations. To replicate the characteristic half-wave pattern, three
localized loads were applied at each longitudinal weld land in the middle bay. The most severe perturbation
reproduced the experimental lower-bound collapse load.

WMPLA was applied using a Multi-Island Genetic Algorithm (MIGA), yielding a conservative estimate of 2990
kN, below the tested lower limit of 3047 kN. A Monte Carlo extension of MPLA showed a wider buckling
load range than the test data, underlining the variability introduced by stochastic perturbation distributions.
Additional simulations on cylinders with sequential and staggered circumferential welds showed reduced im-
perfection sensitivity when welds were present.

Non-traditional Perturbation Methods: SBPA, EBC
Wagner et al. [94] compared experimentally and numerically obtained knockdowns for several SBKF shells—
including ETTA1, TA01, TA03, and STA8.1 —as well as TA01 derivatives used for 𝐿/𝑅 and 𝑅/𝑡 parametric
studies. The study compared knockdown factors (KDFs) derived from SBPA and Energy Barrier Concept (EBC)
against empirically proposed values by Hilburger [37] and Sim et al. [75]. SBPA yielded more conservative
estimates for global buckling, while EBC predicted higher KDFs and better matched test data. Two stiffener
modeling strategies (detailed and smeared) were evaluated, with recommendations for further investigation of
EBC’s applicability to various shell types.
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In [93], TA01 and TA03 shells were evaluated using SBPA, cutout approach, and a threshold KDF from [89].
While SBPA provided less conservative estimates than NASA SP-8007, none of the methods accurately repro-
duced the knockdown observed in the TA01 test, likely due to the high fidelity of the experimental setup. The
cutout method predicted the highest knockdown values among the methods tested.

Imperfection Sensitivity in Isogrid Cylinders
Wang et al. [98] performed a comprehensive comparison of numerical and experimental imperfection sensitiv-
ity on an isogrid-stiffened shell representative of the Changzheng-5 launch vehicle [88]. Imperfection modeling
techniques included eigenmodes, measured imperfections, SPLA, and WMPLA. Measured imperfections over-
estimated the buckling load, likely due to unmodeled effects such as material or loading imperfections. EIA
produced conservative estimates in line with previous findings by Haynie and Hilburger [31]. NASA SP-8007
(pre-2020 SKBF revision) yielded lower bounds unsuitable for lightweight design.

SPLA with a single perturbation load overestimated buckling by 28%, indicating the inadequacy of this method
in capturing full-field imperfections. In contrast, SPLA with stochastic perturbation loads reduced this error to
2%, though accuracy was shown to depend on the fidelity of the input probability density function. WMPLA
producedmode shapes closely resembling test results due tomultiple perturbation origins, though its sensitivity
to perturbation magnitude and location introduced uncertainty (predictions ranged from -0.19% to over 30%
error). Following Wang et al. [97], three perturbation loads were considered adequate, though future studies
were recommended to investigate the number and size of dimple imperfections. Notably, the authors noted
that “WMPLA cannot guarantee the consistency of buckling mode with test results by different manufacturing
processes” and should only be used to estimate lower-bound collapse loads.

Parametric Studies and Modeling Simplifications
Kim et al. [50] extended the work of [98] by conducting a parametric study of 𝑅/𝑡 ratios on the same baseline
isogrid shell, applying SPLA exclusively. The study used a displacement-controlled scheme (modified from [47],
[74]) instead of axial compressive loads, combined with artificial damping to stabilize post-buckling behavior
[100]. Perturbation magnitudes exceeded those in [98], though no analysis of induced imperfection amplitude
was provided (see 2.5).

Two modeling strategies were compared: an equivalent model with smeared stiffeners and a detailed geometry
model. Both produced similar buckling responses with relative error below 5%. For the baseline case, both
models overestimated the experimental buckling load by 5%—an improvement over the 28% overprediction in
[98]. The authors recommended equivalent models due to their accuracy and reduced computational cost.

2.8. Buckling of Pressurized Shells
In liquid-propellant rocket engines, ensuring a steady and reliable flow of propellants into the combustion
chamber is essential for sustained thrust and stable operation. Propellant delivery can be achieved via two
main feed systems: pressure-fed and turbopump-fed. In both cases, the propellant must enter the engine at a
specified pressure to ensure proper combustion and avoid issues such as cavitation, flow separation, or pump
damage. This is especially critical for turbopump systems, where sufficient inlet pressure is required to meet
the pumps’ net positive suction head criteria. To meet these requirements, the propellant tanks themselves
must be pressurized. Depending on the feed system, the pressure magnitude ranges from 30-100 psia (2.06 -
6.89 bar) for a turbopump-fed system to 100 to 400 psia (6.89 - 27.58 bar) for a pressure-fed system [46].

Since it is known that the internal pressure increases the buckling load of the cylinder [86], by decreasing the
sensitivity to initial imperfections and axial and hoop stabilization [35], the advantage is taken, leading to ex-
tremely thin-walled thickness [46].

Huzel and Huang [46] differentiated two tank configurations for booster stage systems: pressure-stabilized
and self-supported. For the former, the tank pressure must be continuously maintained above the specified
threshold to prevent the structure from collapsing. Such tanks, also known as balloon tanks, are usually mono-
coque structures and were applied for the Atlas Intercontinental Ballistic Missile (ICBM). The majority of cur-
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rent structures are self-supported and require reinforcement (such as stringers or grids). Compared to other
stiffened shells on launch vehicles, to avoid leakages, stiffeners are either integrally machined (best suited) or
welded [21].

Sim et al. [76] conducted a study to determine KDFs for pressurized orthogrid-stiffened shells used in launch
vehicle propellant tanks. The study used the ETTA1 cylinder geometry from NASA’s SKBF project as the
analytical model. Two imperfection modeling techniques were applied, SPLA & SBPA, and the results were
compared to empirical knockdowns from NASA SP-8007 (KDFs used were based on the pre-2020 revision). A
smeared-stiffness model was adopted, including weld land and transition region details. The analysis consid-
ered internal pressures ranging from 0 to 30 kPa, including the ETTA1 test pressures of 4.137 and 5.985 kPa.
The results confirmed a strong dependence of the buckling load on the magnitude of the pressure. However, the
increase in predicted load was highly dependent on the imperfection modeling approach, and the discrepancy
between methods grew with increasing pressure.

For pressures below 10 kPa, SPLA models — both perfect and disturbed- yielded similar buckling loads. At
the same time, SBPA predicted a continuous increase in the collapse load, with values consistently higher
than those of the other models. The behavior of SPLA-modeled cylinders was attributed to increased global
buckling resistance under internal pressure rather than to improved resistance to imperfections. For SPLA,
KDFs remained nearly constant below 10 kPa but increased rapidly beyond that threshold. SBPA KDFs also
increased with pressure, and similarly exhibited a sharp rise after 10 kPa. At ETTA1 test pressures, both
SPLA and SBPA produced knockdowns close to the experimental results. However, SPLA’s prediction exactly
matched the test-derived KDF, rendering it potentially unconservative. SBPA, with slightly lower KDFs, was
deemed more appropriate for highly stiffened shells due to its increased conservatism. The authors concluded
that SBPA is more suitable for predicting buckling in orthogrid-stiffened shells. Nevertheless, Sim et al. [76]
noted that the pressures used in the study are not representative of actual pressurization levels required by
operational propellant tanks.

Figure 2.9: Comparison of KDFs obtained by [77].

The effect of imperfectionmodeling on the buckling response of unreinforced pressurized cylinders was investi-
gated by Sim et al. [77]. Using a small-scale aluminum cylinder, the study compared the knockdown predictions
of MGI, SPLA, MPLA, and SBPA across three pressurization levels: 0 kPa, 40 kPa, and 100 kPa. Results were
validated against experimental data. The findings showed that internal pressure significantly increased the
buckling load, with collapse loads rising by up to 117% depending on the imperfection modeling method as
depicted in Figure 2.9. SPLA yielded accurate KDFs at lower pressures (0 and 40 kPa), while SBPA was more
conservative and better aligned with test results at 100 kPa. MPLA consistently underestimated the buckling
load, making it overly conservative. However, it was the only method that did not overestimate the knock-
down factor at the highest pressure. This was attributed to the severe geometric imperfections modeled, which
resulted in the largest reduction in the collapse load. Measured imperfections (MGI) produced results closest to
experimental values but showed the greatest overshoot at 100 kPa. The study confirmed that both pressure level
and imperfection modeling approach significantly influence the predicted collapse load. No single modeling
technique was found to be optimal across all pressures: SPLA was more reliable at lower pressures, while SBPA



2.9. Research Gap 14

offered more conservative results at higher pressures, where boundary-induced imperfections dominated. The
authors recommend that future research focus on full-scale launch vehicle structures using pressurization levels
representative of operational conditions.

2.9. Research Gap
It is evident from the literature that most work on metallic shell buckling focuses on deriving analytically more
accurate knockdown factors than those in NASA SP-8007. These studies typically compute KDFs for specific
launch vehicle shell geometries that have been built, measured, and tested. This approach limits the generality
of the results, as only a few such structures are sufficiently documented in the open literature. Various imper-
fection modeling techniques are used to create realistic imperfection fields, followed by nonlinear geometric
analysis to determine collapse loads. Authors usually compare predictions against experimental data and select
one or more approaches deemed most suitable for generating conservative knockdown factors. However, few
studies are truly comprehensive, analyzing a wide range of shells or evaluating the consistency and reliability
of a method across multiple configurations.

In the pursuit of improved knockdowns, a critical issue is often overlooked: knockdowns are inherently configuration-
dependent and not universal constants. The variation in imperfection patterns across configurations under-
mines the generality of any single KDF. Similarly, the accuracy of imperfection modeling methods strongly
depends on the shell geometry and boundary conditions considered.

Despite this variability, there is evidence of recurring imperfection patterns—so-called imperfection signature,
arising from specific manufacturing processes. When accurately reproduced, these signatures can yield more
reliable predictions than generic knockdown factors. For metallic launcher shells, the dominant imperfec-
tion signature is widely attributed to the welding process, which generates long, inward-oriented half-waves
along the weld lands. In some cases, the associated geometric features at the weld lands were shown to affect
structural performance more significantly than the initial geometric imperfections. Yet, limited work has been
devoted to identifying which modeling methods best replicate these signatures or to investigating whether
matching the imperfection shape to the signature is necessary for reliable and accurate buckling predictions.

Another major shortcoming is the treatment of internal pressure in studies involving launch vehicle shell seg-
ments. While pressurization has awell-documented effect on buckling behavior—stiffening the shell, increasing
collapse loads, and altering mode shapes—most studies either neglect it entirely or apply unrealistic pressure
levels. The interaction between pressurization and imperfectionmodeling accuracy remains largely unexplored.

Finally, earlier work did not examine the reliability of these modeling approaches across multiple structural
configurations, nor did it consider how the influence of imperfections evolves under the coupled effect of ge-
ometry and pressurization.

Main Objective and Research Question
The objective of this study is to determine whether the reliability of nonlinear buckling analysis for a pres-
surized metallic cylindrical tank segment depends on the imperfection pattern introduced. The main research
question is defined as follows:

To what extent does the reliability of imperfection modeling approaches for pressurized metallic
stiffened launch vehicle propellant tank segments depend on the recreation of the imperfection sig-
nature?

It is hypothesized that, among existing imperfection-modeling approaches, reliable predictions of collapse loads
for pressurized shells can be achieved by inducing a distortion field that does not reproduce commonly observed
imperfection signatures. Such an approach is expected to remain effective across different pressure levels and
shell configurations, without requiring prior knowledge of the actual geometric imperfections present in the
manufactured structure. If validated, this would reduce the reliance on extensive and costly geometric imper-
fection measurements and simplify the early-stage structural assessment of launch-vehicle tank segments.

To assess this hypothesis, buckling analyses will be performed on a set of realistic propellant-tank segments
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withwelding-induced imperfections, subjected to varying levels of internal pressurization. The selected designs
are adopted from the NASA SBKF project, as they represent current-generation launch vehicle structures. The
study includes shells featuring both weld-land configurations—tapered stiffener transitions and picture-frame
designs—to cover the relevant design space. The cylinders also span two diameter classes to capture variability
associated with different vehicle scales. In total, five structures were analyzed: four 8-ft (2.4 m) test articles
(TA01, TA03, TA07, TA09) and one 27.5-ft (8.4 m)full-scale segment (ETTA1).

To ensure that the selected shells could safely withstand the prescribed pressure range, their maximum proof
pressure was calculated using Equation 2.2, following the recommendations of [57]. This expression estimates
the highest internal pressure the cylinder can sustain without orthogrid-pocket yielding, typically verified
during proof testing. It should be noted that, depending on the applicable standard and whether the vehicle is
reusable or expendable, the resulting proof pressure may differ from the actual maximum expected operating
pressure (MEOP).

𝑝𝑝𝑟𝑜𝑜𝑓𝑚𝑎𝑥 =
𝑡 ⋅ 𝜎𝑦
𝑅 (2.2)

Based on the performance assessment, the selected pressure levels range from 0 bar (used to verify the models
against existing analyses and test data) to 4 bar. While this does not span the full feasible domain, the upper
limit is constrained by the designed yield margin of the structures. Applying higher pressures would require
increasing the skin thickness, thereby altering the shell behavior and invalidating the comparison. Buckling
analyses will therefore be performed in 2-bar increments. Unfortunately, the 4 bar pressure exceeds the yield
pressure of the space shuttle tank (ETTA1). However, the shell, being the only structure with a large diameter
and pressurized test results, was necessary in the study for completeness. To accommodate it, no analysis was
conducted at this load magnitude. Instead, to enable verification under pressurized conditions, a pressure of
0.06895 bar (1 psi) was included specifically for this structure.

To address the role of imperfection signatures, the study considers both modeling strategies that explicitly
replicate measured geometric deviations and approaches that induce representative buckling modes through
simplified, non-physical imperfection fields. This dual treatment allows separating signature-driven responses
frommode-driven responses and enables systematic assessment of how each method behaves under increasing
internal pressure. The methods included are:

• GNA (Geometric Non-linear Analysis): Baseline for perfect geometry performance under compres-
sion for non-linear analysis.

• MGI (Measured Geometric Imperfections Approach): Where available, will serve as reference cases
of the actual imperfection signature and for accuracy assessment.

• EIA (Eigenmode Imperfection Approach): Industry standard method commonly used for nonlinear
buckling analysis.

• SPLA (Single Perturbation Load Approach): Cited as one of the most accurate, though sometimes
considered conservative.

• MPLA (Multi-Perturbation Load Approach): A simplified alternative that avoids optimization, ca-
pable of reproducing weld signatures; The influence of the number of perturbation loads on prediction
quality will be studied.

• SBPA (Single Boundary Perturbation Approach): Capable of capturing both traditional and non-
traditional imperfection patterns, with improved accuracy under high pressure.



3
Methodology

In this chapter, the simulation set-up used for the shell buckling analyses is introduced and described in detail.
Firstly, in section 3.1, the modelling of the structure segment in the CAD environment, followed by the import
procedure into Abaqus CAE, is explained. Subsequently, the steps related to part generation, section partition-
ing, and material assignment are presented. In section 3.2, the FEA framework including: meshing strategies,
boundary conditions, and loading definition, is discussed. Section 3.3 provides a detailed explanation of the im-
plementation of the various imperfection fields considered in this study. The reliability assessment procedure,
including the statistical measures employed, is deliberated upon in section 3.4.

3.1. Shell Modeling
The structures were modeled in Autodesk Fusion 360, enabling full parametrization of the shells and rapid gen-
eration of multiple geometries. The cylinders were created as surface bodies using the surface workbench -
consequently, no thicknesses were assigned at the CAD stage. Several simplifications and modeling assump-
tions were introduced to accelerate the geometry creation process and streamline subsequent analyses.

For importing the measured imperfections, the Abaqus plugin developed within the DESICOS program was
used. To ensure the measured fields are applied seamlessly, the CAD model’s coordinate system followed the
plugin’s convention, with the vertical axis aligned with the positive 𝑧-direction. Each shell was modeled as
an individual curved panel segment (consistent with the real manufacturing approach) and later patterned in
Abaqus. The reference segment always started at the 𝑥𝑧 plane and was defined counter-clockwise around the
𝑧-axis, ensuring that the weld centerline consistently aligned with the global 𝑥-axis. This alignment was essen-
tial for matching the weld location with the measured imperfection data at the later stages. The small-diameter
cylinders consisted of three segments (each 120∘), while the Space Shuttle external tank consisted of eight
segments (each 45∘).

Compared to the originally manufactured SBKF test articles, the models were generated as idealized flight-
hardware propellant tank segments. The design parameters used correspond to the as-designed geometry, all
parameters are presented in Appendix A. The stiffened and extended ends required for the buckling jig were
removed, and the segments were terminated with circumferential weld land geometry. The total height of each
shell was reduced to exactly match the measurement window used in the structured-light/DIC setup described
in Hilburger et al. [43], eliminating the later stretching of the measured imperfection field to the FEM mesh
for the 8-ft cylinders. For ETTA1, the segment height was derived from Lovejoy et al. [58] based on Figure
11. Since the measurements were taken at the outer- mold-line (OML), the cylinder radius was set accordingly,
requiring the stiffener height to be increased by the skin thickness to preserve the designed internal geometry
- the impact of this assumption will be discussed by the end of this section.

Additionally, the stiffeners were modeled without tapering or fillets. This significantly reduced geometric com-
plexity and modeling time, though, as discussed in section 4.5, it might have reduced the structure’s effective
stiffness. Each segment included two weld land regions -longitudinal and circumferential, with respective tran-
sition widths. The final CAD geometry was exported as a .STEP file to preserve the quality during import.

16
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Figure 3.1: TA01 imported tank segment with indicated welds and transition regions.

In Abaqus, the import was performed using the ’combine into a single part’ option with a stitching tolerance
of 10−4, resulting in a uniform surface body. This avoided the need for numerous constraints or contact defi-
nitions otherwise required to connect shell skins with stiffeners, thereby reducing computational cost.

After import, a Python script assigned all surface regions to predefined sets to facilitate later section assign-
ments. A representative example of this stage is shown in Figure 3.1. The script grouped surface, faces, and
edges into desired sets, which were used later for shell and boundary condition assignments. An independent
instance of the segment was then created in the assembly module and patterned radially. This ensured that
identical faces on each repeated segment were consistently assigned to the same set. After patterning, the
copied instances were deleted, leaving the final assembled surface, shown in Figure 3.2.

Figure 3.2: Full barrel of TA01 in ABAQUS.

The script automatically generated material properties and section assignments. In this study, the material was
assumed isotropic and homogeneous. Although aluminum–lithium alloys exhibit slight orthotropy between
longitudinal and transverse directions, this effect is evaluated in section 4.5. For weld lands, the material was
assumed to be unaffected by friction-stir welding, consistent with previous studies [94].

The adopted material properties for Al–Li 2195 are listed in Table 3.1. The elastic modulus, density, and Poisson
ratio for Al–Li 2195-T8M4 are taken from Hilburger et al. [43], while the yield strength for the T8R7 temper is
taken from Lovejoy et al. [57]. It was noted that the small test articles were machined from 2195-T3 plate and
subsequently heat-treated to the T83 condition after bump-forming [43].
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Table 3.1: Material properties of Al–-Li 2195 alloy.

Material 𝐸 [GPa] 𝜎𝑦 [MPa] 𝜈 [-] 𝜌 [kg/m3]

Al–Li 2195 − T8M4 75.8 503.0 0.3 2712.6

Theshell sectionswere definedwith constant thickness and the default five Simpson integration points. Hilburger
[37] suggested using the inner-mold-line (IML) as the reference surface for the shell mesh to ensure that the
external surface remained flush, as shown in Figure 3.3.

Figure 3.3: Typical test article isometric view showing weld land, transition, and stiffener details [43].

Since the present work used OML-based geometries to enable direct application of measured imperfections,
the shell offset was set to the top, with the OML serving as the reference surface. For the orthogrid stiffeners,
the default mid-surface definition was used, placing the reference surface at the center of the modeled stiffener
height. The resulting offset strategy is illustrated in Figure 3.4, where the thick black lines indicate the CAD
surfaces assigned as reference surfaces for the shell elements’ thickness assignment. As discussed, because the
OML was selected as the reference, the stiffener design height ℎ𝑠 was increased by the skin thickness, yielding
a modeled stringer height 𝐻𝑠. The same modeling strategy was applied to the rings, whose width was similarly
adjusted by the skin thickness.

This assumption introduces a small amount of artificial stiffness, as portions of the stiffeners’ geometry and the
shell skin effectively overlap. Nevertheless, it was assumed that this additional stiffness would not significantly
influence the accuracy of the buckling simulations.

Figure 3.4: Shell modelling strategy overview.



3.1. Shell Modeling 19

3.1.1. Boundary Conditions
By default, the Python script automatically generated rigid-body tie constraints that coupled two remote points
(RPs) with the upper and lower cylinder edges. Using the cylinder centerline as reference, these RPs were po-
sitioned on the top and bottom ‘faces’ of the cylinder and tied to the corresponding shell edges using rigid
body tie constraints. The RPs were then constrained using appropriate displacement and encastre settings to
replicate simply supported boundary conditions.

[26] argue that the boundary conditions of built-in flight hardware strongly depend on the stiffness of the adja-
cent structures. Fully clamped-clamped boundary conditions are only realistic when the cylinder is attached to
axially stiff components, such as the y-rings located between the tank dome and skirts. The tank segment con-
sidered herein is intended to be welded above and below to neighboring segments. It is therefore not attached
to a sufficiently stiff structure to justify fixed boundary conditions at both ends. Furthermore, [35] describes
the simply supported boundary condition as conservative relative to the clamped-clamped condition used in
physical testing.

A known drawback of simply supported boundaries is the potential for edge warpage, which is not represen-
tative for a mid-span tank segment [26]. However, Wagner [96] demonstrated that the difference in knock-
down factor between a load-controlled dynamic analysis with warpage and a displacement-controlled dynamic
analysis with fixed edges is on the order of 4.4%. Additionally, the author notes that warpage is not solely a
consequence of the boundary condition itself, but also of how it is applied. When a rigid-body constraint is
active, the edge cannot deform out of plane, effectively preventing warpage.

Figure 3.5: Overview of rigid body constraints and boundary conditions on a barrel segment.

Overall, the top remote point retained a single unconstrained degree of freedom in the vertical (𝑧) direction,
while the bottom remote pointwas fully fixed, allowing the upper edge to displace axially. The applied boundary
conditions are shown in Figure 3.5. An identical setup with supported boundary conditions was used in [76]
and [77].

3.1.2. Shell Meshing
The shell (including the stiffeners) was meshed with standard quadrilateral linear reduced-integration shell el-
ements (𝑆4𝑅), consistent with past studies [43, 76, 94, 98]. The meshing process was performed manually to
maintain full control over element distribution and mesh quality. For each shell, three meshing attributes were
defined: a global part seed, local edge seeds, and sweep mesh control.

The element size was governed by the number of elements placed within each skin pocket. This number var-
ied from 3 to 10 across the pocket width and from 7 to 9 in the vertical direction, consistent with the mesh-
convergence findings of Hilburger et al. [43]. Such a mesh density was sufficiently fine to capture both local
and global buckling behaviour. Further refinement resulted in less than a 5% change in collapse load, while
achieving a 1% change would have required approximately doubling the total element count, significantly in-
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creasing simulation runtime.

At the weld land regions, Abaqus occasionally struggled to generate continuous level elements across the tran-
sition. As a result, elements near the weld centerline were more skewed compared to the average element in the
skin pocket. To ensure that these elements did not adversely impact the analysis, a mesh-quality assessment
was conducted. It was evaluated using Abaqus’ in-built shape metrics: the aspect ratio (with an upper limit of
5) and the default element corner-angle criteria for quadrilateral faces.

3.2. Analysis Set-Up
The analysis set-up, independent of the imperfectionmodeling strategy, consisted of three distinct phases. First,
the perturbation field was introduced to the geometrically perfect model. This was followed by a pressurization
step, during which the structure was subjected to internal pressure. Finally, the segment was compressed ax-
ially during the buckling step. To capture the tank segment’s nonlinear behavior, geometric nonlinearity was
enabled for all steps.

In the pressurization step, the internal pressure was applied using an Abaqus pressure load in a static step. The
load was assigned only to the internal surfaces of the cylindrical shell (including weld lands). It followed from
the definition of the pressure load, which must act normal to the surface onto which it is applied. Consequently,
applying pressure to the orthogrid stiffeners would result in sideways loading on the webs- not reflecting the
actual physics of internal pressurization. It was assumed that the increase in stiffness due to pressure acting
on the stiffener’s thickness would be negligible relative to the overall shell response. Nevertheless, further
investigation of this assumption is recommended.

For the compression step, two analysis procedures were considered: static and dynamic. Both have been used
previously in buckling studies—static in [43, 50, 94], dynamic explicit in [26], and implicit in [29, 69]. [26]
study revealed that displacement-controlled collapse loads obtained from nonlinear dynamic explicit analyses
are lower compared to the nonlinear static analyses. On the other hand, the findings of [29] revealed that im-
plicit buckling leads to higher collapse loads compared to the fully static arc-length approach, but on a conical
structure. However, all the past findings were based solely on unpressurized shell structures. More recent
studies involving internal pressure [76, 77] relied exclusively on static analysis. Therefore, a dedicated com-
parison was performed for TA01 to determine the preferred analysis type in terms of accuracy and runtime, as
presented in section 4.2.

Similarly, force and displacement-controlled compression have been examined extensively and summarized by
Friedrich and Schröder [26]. The authors reported that, for imperfect shells, the buckling loads obtained from
these two approaches differ, with the magnitude of the difference depending on the perturbation method used.
Bushnell [8] noted that displacement-controlled analysis permits stress redistribution around the perturbation
and allows the structure to sustain load beyond the local snap-through event until global collapse is reached,
later confirmed in [26]. Such characteristics are desirable when local buckling modes precede global instability,
as they enable identification of all relevant buckling events. Consequently, a displacement-controlled buckling
analysis was selected for this work.

3.3. Imperfection Modeling
Each perturbation was introduced differently depending on the corresponding approach, as outlined in this
section. First, the traditional imperfection methods are presented, progressing from perturbation-dependent
approaches through eigenmode-based and measured-imperfection techniques. Finally, the non-traditional im-
perfection approach is introduced.

3.3.1. SPLA & MPLA Set-Up
For SPLA and MPLA, a similar analysis procedure was applied. A nonlinear static step was defined in which
one or multiple lateral perturbation loads (P) were introduced. A concentrated horizontal force was applied at a
single node to generate an inward-facing dimple. The force components were calculated such that the resulting
vector pointed towards the cylinder axis, depending on the 𝑥- and 𝑦-coordinates of the selected node.
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Figure 3.6: Shell models with indicated weld lands and perturbation force locations for SPLA (left) and MPLA (right).

The choice of perturbation location and its influence has been discussed extensively in previous studies and
presented in section 2.5. In this work, the most suitable location was deemed to be the weld land centerline at
the cylinder’s mid-height (as presented in Figure 3.6), as this is the most likely region for inward dent formation
caused by welding-induced imperfection signatures [82]. However, as noted in [30], this location often requires
higher perturbation forces to achieve convergence andmay yield slightly more conservative collapse loads than
other positions on the segment. For MPLA, to avoid computationally intensive optimization of load locations,
perturbation loads were placed at each weld land centerline, which may yield very conservative results.

Both SPLA and MPLA can, as demonstrated by Wang et al. [98], converge for perturbation loads that produce
dimple amplitudes far exceeding any physically attainable manufacturing imperfection. To address this, the
authors imposed a hard cap on perturbation loads that generated amplitudes exceeding three times the skin
thickness. While this prevented unrealistic dimples, it rendered the method unconservative. In this work, a
different convergence approach was adopted. Instead of monitoring the lateral perturbation load directly, the
ratio of dimple amplitude to shell thickness was used. This provides a more direct indication of the perturba-
tion’s physical effect. To avoid overshoot, the maximum allowed amplitude-to-thickness ratio was limited to
10-14 (depending on the shell’s skin thickness, as a constant range of perturbation loads between 100 and 7000
N was used). Although high, this limit ensures that convergence occurs within a more conservative buckling
regime.

A key omission in previous studies concerns the definition of the convergence criterion. Earlier works ap-
pear to have selected convergence visually from the collapse-load–perturbation curve. However, as no explicit
procedure was reported, a more robust mathematical criterion was developed. The simulation results were
fitted using Python’s SciPy optimize.curve_fit [71] routine with a modified stretched exponential function [24],
defined in Equation 3.1, where 𝑁 is the collapse load and 𝑃 denotes the perturbation parameter.

𝑁𝑃 = 𝑁∞ + 𝐴 ⋅ 𝑒
−( 𝑃𝑃0 )

𝑛
(3.1)

Once the fitted parameters were obtained, a perturbation range bounded by the minimum and maximum sim-
ulated values was generated and used to construct the trend line. Convergence was defined as the point where
the collapse load reached the plateau region of this curve, evaluated using the parameter 𝛿𝑃 in Equation 3.2.
Convergence was assumed when 𝛿𝑃 ≤ 5%, ensuring that the identified perturbation lay within a stable and
physically meaningful regime.

𝛿𝑃 =
𝑁𝑓𝑖𝑡𝑡𝑒𝑑 − 𝑁∞
𝑁𝑓𝑖𝑡𝑡𝑒𝑑𝑚𝑎𝑥 − 𝑁∞

(3.2)

The corresponding perturbation load was then obtained using SciPy ’s PCHIP interpolation, and the resulting
load was subsequently reported and applied to verify the estimate.

In previous works, convergence was determined either at every considered pressure level [76] or only for the
unpressurized case [77] (the latter remains unclear due to poor reporting). In this study, both approaches were
evaluated to assess whether the difference is significant and whether the simplified approach (using a single
convergence study) can serve as a viable option for future work. Thus, the methods SPLAOG and MPLAOG
were introduced, with the perturbation load determined by convergence of the unpressurized baseline.
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3.3.2. EIA Set-up
The eigenmode imperfection approach followed the classical definition from literature, using the procedure
outlined by Castro et al. [11]. Unlike the other approaches, it required only two analysis steps: (i) applying the
imperfection together with pressurization, and (ii) performing the compression step.

First, a separate model was generated for a linear buckling analysis to obtain the imperfection shape. The LBA
used the same shell geometry and boundary conditions as the nonlinear model, but employed a force-controlled
compression step. A single concentrated force of magnitude 1 N was applied to the upper remote point. The
Lanczos eigensolver was used to extract a number of buckling modes. The number of retrieved modes depended
on the size of the structure. For the 8-ft diameter shells, the first mode was used, as it corresponded to the global
buckling shape. For the ETTA1, the first 100 modes were extracted to identify a global mode resembling the
pattern reported in [35]. Unfortunately, the exact match could not be determined. Consequently, the closest-
looking mode corresponding to mode 32 was selected instead.

In the nonlinear buckling model, the input file was modified to include the nodal displacement field of the
selected eigenmode. The imperfection magnitude was set to half the shell’s acreage thickness, following rec-
ommendations from literature (presented in section 2.4). The commands used to modify the input file were
copied from [11]. Subsequently, for the pressurization analysis, the internal pressure was applied directly to
the geometry perturbed step, followed by the vertical loading in the compression step

3.3.3. MGI Set-up
For the measured geometrical imperfection approach, the procedure involved altering the mesh node positions
to match the outer mold line measurements recorded under NASA’s SBKF programme. The mesh-alteration
routine was executed using the DESICOS plugin, with detailed documentation available in [9]. The plugin
requires a .txt file containing the vertical and circumferential coordinates of each node, together with the
measured radial displacement. It then interpolates these values to the mesh node locations and applies the
corresponding translations.

Because the measurement data in the required format were not publicly available, the imperfection fields were
reconstructed from the published measurement plots in the SBKF reports, such as the example shown in Fig-
ure 3.7.

Figure 3.7: Outer mold line radial imperfections for TA01 [83].

The plots were first cropped and cleaned in Adobe Photoshop to remove axis labels and other artifacts, and to
enhance color contrast for later processing. For TA03, no scale was provided on the published plot, and the
maximum amplitudes were estimated based on the reported ranges of other 2.4 m diameter shells. The imper-
fection extrema were therefore set to ±0.10 inches for consistency.

The cleaned imagewas then processed in Python. The plot borders and any residual white regionswere detected
and removed. The remaining color fieldwas then blurred to create a smoother transition between imperfections,
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as the original NASA plots were limited to a couple of levels, producing visibly stepped fields. Finally, each
pixel’s imperfection value was obtained by matching its RGB value to the nearest color in the processed scale.
The values were then normalized between 0 and 1 and scaled to physical units using Equation 3.3, where 𝛿𝑚𝑎𝑥
and 𝛿𝑚𝑖𝑛 denote the extreme outward (positive) and inward (negative) measured imperfection amplitudes. This
scaling is valid only when the image spans the full RGB range.

𝑈𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑓𝑖𝑒𝑙𝑑𝑠𝑐𝑎𝑙𝑎𝑟 ⋅ (𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛) + 𝛿𝑚𝑖𝑛 , (3.3)

In cases where the processing steps compressed the color range, an additional scaling was applied Equation 3.4.
It ensured that the extrema shown in the original plot are correctly reproduced in the final imperfection field.
Although effective, this approach is not optimal, and future work should investigate faster, more accurate RGB-
to-displacement conversion methods.

𝑈∗ =
𝑈𝑠𝑐𝑎𝑙𝑒𝑑 − 𝑈𝑠𝑐𝑎𝑙𝑒𝑑min
𝑈𝑠𝑐𝑎𝑙𝑒𝑑max − 𝑈𝑠𝑐𝑎𝑙𝑒𝑑min

(𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛) + 𝛿𝑚𝑖𝑛 . (3.4)

The number of reconstructed grid points corresponded to the number of pixels in the processed image. The
resulting continuous imperfection field is shown in Figure 3.8.

Figure 3.8: Reconstructed continuous radial imperfection map of TA01.

The extracted points were then written to the input .txt format required by the DESICOS plugin, the field was
applied, and themeshwas regenerated. The final geometry resulting from the process is illustrated in Figure 3.9.

Figure 3.9: TA01 shell model in Abaqus with applied MGI field (magnified 50 times).

The resulting geometrically imperfect model was then analyzed directly in a nonlinear buckling step, without
the need for an additional imperfection-application step. For pressurized analysis, the pressure loadwas applied
directly to the disturbed mesh, followed by the non-linear buckling analysis.
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3.3.4. Distributed Force Perturbation Approach
TheDistributed Force Perturbation Approach (DFPA) was a method developed to replicate the behaviour of the
Single Boundary Perturbation Approach (SBPA), while significantly simplifying the modeling process. SBPA
requires modeling a variable-height shim on top of the cylinder and a rigid plate compressing the structure.
The two must be connected through nonlinear contacts, which increases computational cost and modeling
complexity.

Figure 3.10: Schematic representation of DFPA.

Similar to SBPA, DFPA is a non-traditional imperfection method. Instead of introducing a geometric imperfec-
tion at the boundary, it induces buckling by varying the applied compression along the cylinder’s edge. Locally
increased compression triggers the formation of an inward-facing dimple, which subsequently propagates until
global collapse is reached. The approach proved to represent the buckling load mode obtained in past studies,
as demonstrated in Figure 3.11

(a) SBPA global buckling mode for ETTA1 at 1 psi internal pres-
sure, with indicated weld lands [76].

(b) DFPA global buckling mode for ETTA1 at 1 psi internal pres-
sure.

Figure 3.11: Comparison of global buckling modes obtained using SBPA and DFPA.

A user-defined Fortran subroutine was written to define a shell edge load with a variable magnitude along
the circumference. The perturbation is introduced as a cosine-shaped bump centered on one of the weld land
centerlines (the one positioned over the 𝑥 axis for easy visualization). At the same time, the remaining cir-
cumference is subjected to a constant compressive load. The load distribution magnitude 𝛼 over the predefined
angular width 𝑤 is defined by Equation 3.5, where 𝑞 - the constant shell edge load 𝛾 is the scaling factor and
𝑎𝑟𝑔 is the local angular coordinate within the selected width (ranging from 0 to 2, with 𝑎𝑟𝑔 = 1 at the bump
center).

𝛼 = 𝑞 ⋅ (1 + 𝛾 ⋅ 𝜔)
𝜔 = 0.5 (1 − cos (𝜋 ⋅ 𝑎𝑟𝑔)) (3.5)
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Both the angular width and the load magnitude were subjected to preliminary optimization, discussed in sec-
tion 4.3. A visualization of the loading pattern is provided in Figure 3.10.

As DFPA was load-controlled, it required a modification of the upper boundary condition. Instead of using a
remote point, the end nodes at the top of the barrel were constrained in the horizontal directions, while re-
maining free to move axially.

The weld land region was selected as the perturbation location, rather than the acreage, because it typically
results in buckling at a lower load level and therefore represents the more critical condition. As discussed in
[82], the increased local thickness combined with the reduced bending stiffness makes weld lands susceptible
to forming inward dimples at lower compressive loads than the acreage. However, for SBPA, [94] reported that
perturbing the weld land or the center of the acreage panel produced identical collapse loads.

For cases involving internal pressure, the analysis steps are ordered similarly to those applied for MGI and
EIA. Following the SBPA procedure adopted in [76], the geometrically perfect shell was first pressurized, after
which the unsymmetrical compressive load was applied. Similarly to SPLA/MPLA, a variant of the method with
converged scaling factor at unpressurized baseline - DFPAOG, was tested with higher pressures to determine
the possible discrepancy.

3.4. Reliability Analysis
To assess the reliability of the considered imperfect buckling approaches, several statistical reliability measures
were employed. Although the study is comprehensive in scope, covering five structures, seven imperfection
methods, and up to three pressure levels, the resulting dataset remains limited from a statistical standpoint.
Reliability analyses typically rely on substantially larger sample sizes. Nevertheless, the available data are suf-
ficient for the selected measures, while acknowledging that their robustness could be improved with additional
data points.

Further complications arise from the data structure itself. Not all shells were evaluated at identical pressure
levels. The ETTA1 shell could only sustain pressurization up to 2 bar, resulting in an imbalance across pressure
levels that had to be addressed individually for each statistical measure. Despite these limitations, the analysis
establishes a consistent framework for future extensions involving additional shells and pressure levels and
already provides insights that would otherwise remain inaccessible.

Prior to applying the statistical measures, the buckling data were normalized to eliminate issues with the col-
lapse load magnitude disparities. Conventionally, knockdown factors are defined by normalizing collapse loads
with experimentally obtained buckling loads. However, since the true buckling loads of the considered shells
under the selected pressure levels are unknown, an alternative normalization strategy was adopted. In this
work, the collapse loads for each structure were normalized by the mean buckling load obtained across all
applied methods. The mean, rather than the median, was selected to account for both the most and least con-
servative predictions, yielding a moderately conservative reference level.

3.4.1. Inter Quartile Range Analysis
The interquartile range (IQR) is a measure of data dispersion that can be easily visualized by a box plot. The
IQR provides information on the data’s central tendency (the data mean) and the overall dispersion [20].

IQR was the first step in the reliability analysis because it is easily visualized and interpreted. It allowed the
identification of outliers and thus possible abnormal shell behaviors, serving simultaneously as a sanity check
for the simulation runs. The IQR was interpreted using whisker/box plots and assessed visually on the nor-
malized spread. Imperfection approaches resulting in a more consistent, tighter spread were deemed more
reliable.
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3.4.2. Coefficient of Variation
Thecoefficient of variation is a statistical measure of relative variability or dispersion of data [20]. It is calculated
as the standard deviation of the data divided by its mean, as expressed by Equation 3.6.

𝐶𝑉 = 𝜎
𝜇 (3.6)

Applied in the context of this work—per buckling method across the structures at each pressure level—it as-
sessed the dispersion of the buckling approach overshoot. The higher the CV, the greater the dispersion in the
variable, and the lower the relative (within-method) reliability.

However, the coefficient of variation is appropriate only for datasets that exhibit heteroscedasticity, where the
residual variance increases with the mean [72]. Consequently, heteroscedasticity was first assessed using the
Breusch–Pagan test [7], one of the most commonly applied diagnostics for variance non-constancy in empir-
ical data [28]. Based on the test’s p-value, the null hypothesis of homoscedasticity (constant variance across
observations) is evaluated. For p-values below 0.05, the null hypothesis is rejected, and the data are considered
heteroscedastic. Had the buckling data been confirmed as homoscedastic, the coefficient of variation would
not have been applied.

The test was performed using statsmodels version 0.14.4 with the het_breuschpagan routine [81]. This imple-
mentation provides both the original Breusch–Pagan Lagrange Multiplier (LM) test and the Koenker–Bassett
variant, which offers a more robust variance estimator - independent of normally distributed errors [28]. In this
work, the robust Koenker version is used together with the associated F-statistic, which provides more reliable
small-sample inference compared to the original LM statistic [28]. To apply the Breusch–Pagan test, a simple
least‐squares regression model was first fitted using statsmodels.api.OLS [80]. The buckling load was regressed
against the combined effects of method and pressure, providing the residuals and fitted values required for the
BP heteroscedasticity diagnostic.

3.4.3. Coefficient of Concordance
Kendall’s coefficient of concordance, or Kendall’s W, is a non-parametric technique that measures the agree-
ment among several judges ranking a number of objects [54]. Kendall’s W is an ideal method for this work
because, as outlined by Legendre [54], the obtained data can be easily ranked in terms of its magnitude (for
this technique the buckling normalization is not necessary), does not require a normal data distribution (which
cannot be guaranteed with buckling data), and allows for more than two raters (structures or pressure levels)
to be used simultaneously.

The calculation starts by ranking the objects per judge (in Python using the rank() command, which orders the
values from lowest to highest). The ranks are then summed per object, denoted as 𝑅𝑖 , and their mean across all
raters is calculated as shown in Equation 3.7.

𝑅𝑖 =
𝑚

∑
𝑗=1
𝑟𝑖𝑗

𝑅 = 1
𝑛

𝑛

∑
𝑖=1
𝑅𝑖

(3.7)

Lastly, the sum-of-squares statistic is obtained across all the objects, allowing the calculation of Kendall’s co-
efficient as defined in Equation 3.8. A Kendall’s W of 1 indicates perfect agreement among raters (identical
rankings), whereas lower values indicate greater disagreement.

𝑆 =
𝑛

∑
𝑖=1
(𝑅𝑖 − 𝑅)2

𝑊 = 12𝑆
𝑚2(𝑛3 − 𝑛)

(3.8)

In this study, Kendall’s W was used in two ways. Firstly, it served to assess the relative order of the imper-
fection modeling approaches across pressure levels per structure. It indicated how consistently the methods



3.4. Reliability Analysis 27

estimated the buckling loads across the pressures. In this context, the W values of all structures were com-
pared. If the coefficients differed substantially between the structures, it implied that the pressure–structure
interaction affected the buckling behavior more strongly than the imperfection modeling approach, indicating
that the response of the method is structure or pressure-dependent.

Secondly, it was employed to check whether the structural responses across pressures remained consistent.
This established the absolute reliability between methods and determined the ranking variability — indicating
how constant the degrading effect of a given method remained across pressure levels. A higher W indicated
higher reliability in ranking the methods, independent of whether they were more or less conservative.

In both approaches, the objects (𝑛) were the methods, and the judges (𝑚) were the three pressure levels. In the
second approach, all buckling loads per pressure were ranked (a total of 9 objects), whereas in the first, only
one load per structure (5 objects in total) was considered.

3.4.4. Intraclass Correlation Coefficient
The intraclass correlation coefficient (ICC) “assesses the reliability of ratings by comparing the variability of
different ratings of the same subject to the total variation across all ratings and all subjects” [102].

It is widely used in reliability studies, particularly in medical and psychological research. The ICC values range
from 0 to 1, with values closer to 1 indicating stronger reliability [52]. Although no universal thresholds exist,
it is generally accepted that “ICC values less than 0.5 are indicative of poor reliability, values between 0.5 and
0.75 indicate moderate reliability, values between 0.75 and 0.9 indicate good reliability, and values greater than
0.90 indicate excellent reliability” [67].

In this work, ICC was applied in two principal ways. The first assessed the reliability of method performance
across structures at constant pressure — indicating whether the structures rated the methods consistently. By
comparing ICC values across pressures, it was possible to determine whether higher pressure led to greater
overall method reliability. In this case, the coefficient was computed per pressure level, with methods set as
targets and rated by the normalized buckling loads of the shells.

Secondly, ICCwas used to evaluatewhethermethods estimated buckling consistently across different pressures,
and whether the observed variance arose from structural behavior or pressure-related effects. This analysis re-
vealed whether a method’s reliability depended on pressure - that is, how likely its outcome was to change with
increasing pressure. It therefore assessed the reliability of each method with respect to pressure, determining
whether the imperfection introduction effect remained constant or pressure-dependent. Here, the coefficient
was computed per method, using the cylinders’ buckling loads as targets rated across all three pressure levels.
Different ICC forms utilize separate models, rater types, and definitions. To select the most appropriate ICC
form for the approaches outlined above, the guideline presented by Koo and Li [52] was followed.

Since all data obtained in the study had to be used, the raters could not be selected at random. Consequently,
a two-way mixed-effects model was adopted. This limited the analysis to the statement that “the results only
represent the reliability of the specific raters involved in the reliability experiment”.

A single-measure ICC formulation was adopted. First, single-measure ICCs provide a more conservative [52]
and therefore a more informative assessment of reliability. Second, averaging the pressure- or structure-
dependent response would be physically unjustified, as each pressure level represents a distinct loading condi-
tion rather than interchangeable repeated measurements.

Lastly, the ICC definition was set to consistency setting, as each rater evaluated a group of subjects rather than
repeatedly scoring the same one, which is required for absolute agreement.

In summary, based on the preliminary analysis, the ICC(3,1) form—following the convention of Shrout and
Fleiss [73] was employed. ICC estimates and their 95% confidence intervals were calculated using Penguin
package based on a single-rating, absolute-agreement, 2-way mixed-effects model [85]. Mathematically, the
ICC is represented by Equation 3.9, where𝑀𝑆 denotes the mean squares, with𝑀𝑆rows referring to the variation
between subjects and 𝑀𝑆error to the residual error, and 𝑘 denotes the number of raters, corresponding either
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to the number of structures in the per-pressure analysis, or to the number of pressure levels in the per-method
analysis.

𝐼𝐶𝐶(3, 1) = 𝑀𝑆rows −𝑀𝑆error
𝑀𝑆rows + (𝑘 − 1)𝑀𝑆error

(3.9)

However, ICC relies on two important data assumptions: normality (i.e., normally distributed data) and ho-
moscedasticity (homogeneity of variance) [60, 73]. As the behavior and distribution of buckling data were not
known a priori, both assumptions were verified.

To assess data normality, the Shapiro–Wilk numerical test was employed, as it is one of the most widely used
methods. The test uses the null hypothesis that the data are normally distributed. A p-value greater than 0.05
would confirm the hypothesis [62]. To test for homoscedasticity, the Breusch–Pagan test was applied again.
For ICC, unlike the coefficient of variation, the null hypothesis of equal variances had to be confirmed. There-
fore, practically, only one of the methods could have been applied, depending on the data heteroskedasticity.

Nevertheless, [6] challenged the assumption of homogeneity of variance, arguing that these conditions are
rarely met in practice. In their work, it was demonstrated that ICC could still be applied to assess reliability
provided that potential heteroscedasticity was acknowledged or statistically adjusted for. Consequently, the
final decision whether to include both ICC and CV in the reliability will be made post data generation and
method assumptions verification.

Lastly, the ICC model implemented in the Python Pingouin package required balanced data [85]—that is, all
targets had to be rated by the same number of raters. Since ETTA1 lacked the 2 bar pressure case, for the
second ICC calculation, the shell either had to be excluded or its buckling loads duplicated from the 2 bar case.
As the shell’s performance was still unknown, the final approach was to be established after the simulation
data were obtained.



4
Verification

In this chapter, the proposed analysis setup is verified against available literature data. Since no pressurized
buckling results exist for the selected shells within the required pressure range, most cylinders were neither
tested nor analyzed under pressure, a full validation is not feasible. Partial validation is, however, possible:
ETTA1 provides a limited pressurized reference, albeit at pressure far below those considered in this work.
Nevertheless, all shells can be verified in the unpressurized state, which primarily assesses the modeling of the
segments rather than their pressurized behavior.

Section 4.1 presents the geometric verification using the effective thickness formulation. The final selection of
the analysis procedure (static vs dynamic) is discussed in section 4.2. The optimization of the distributed-force
perturbation approach is detailed in section 4.3. The numerical model verification and investigation of identified
discrepancies are reported in section 4.4. Finally, a brief sensitivity assessment of the modeling assumptions is
provided in section 4.5.

4.1. Effective Thickness Verification
The initial verification of the gathered geometrical data (and unit conversion, as most data were published in
imperial units) was performed using the effective thickness-to-radius ratio (𝑅/𝑡𝑒𝑓𝑓). The effective isotropic
thickness 𝑡𝑒𝑓𝑓 provides a convenient means to represent the stiffness of a grid-stiffened cylinder in terms of
an equivalent isotropic shell. The corresponding slenderness is then characterized by the ratio 𝑅/𝑡𝑒𝑓𝑓 . For
orthogrid-stiffened structures, it is defined by Equation 4.1 [37], where 𝐴11 and 𝐴22 correspond to the axial
and circumferential membrane stiffness, and 𝐷11 and 𝐷22 to their bending stiffness counterparts. The detailed
stiffness matrix calculations are presented in Appendix B.

𝑡𝑒𝑓𝑓 = 4√144 ⋅ 𝐷11 ⋅ 𝐷22𝐴11 ⋅ 𝐴22
(4.1)

Table 4.1: Geometry verification based on slenderness ratios.

Structure 𝑅/𝑡𝑒𝑓𝑓 Reported 𝑅/𝑡𝑒𝑓𝑓
TA01 226.1 230.9 [35], 226 [94]
TA03 80.1 84.1 [35], 80.1 [43], 81 [94]
TA07 172.9 172.9 [43]
TA09 125.7 125.7 [43]
ETTA1 309.3 326.4 [35], 309 [94]

The calculated 𝑅/𝑡𝑒𝑓𝑓 ratios for the considered shells are presented in Table 4.1, the obtained thicknesses, in
principle, show good agreement with those reported in the literature. The largest deviations occur for TA01
and ETTA1, with a smaller discrepancy for TA03 when comparing to the SBKF dataset compiled by Hilburger

29
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et al. [35]. Both TA01 and ETTA1 calculated thicknesses underestimates the shell’s stiffness, reaching approx-
imately 98% and 95% of the reported values, respectively. Both segments were also investigated by Wagner
et al. [94], who reported 𝑅/𝑡𝑒𝑓𝑓 ratios identical to those obtained in this work.

A plausible explanation for observed discrepancies is that one or more grid parameters were reported incor-
rectly or rounded inconsistently in past work. The effective thickness of ETTA1 was additionally published by
[76], but when used, it yields 𝑅/𝑡𝑒𝑓𝑓 ≈ 38639, suggesting a reporting error.

For TA03, two values are listed in the SBKF dataset—one matching the ratio obtained here and another ap-
proximately 5% higher. Wagner et al. [94] reported a slightly elevated value as well, lying between these two.
The ratios obtained for the remaining shells are identical to those presented in [43], likely because the grid
parameters were taken directly from the same article. Interestingly, if the TA03 parameters had been adopted
from that source, the resulting ratio would be 54.3 instead of 80.1.

In summary, the cylinder parameters used in this study are in close correspondence with those documented in
the SBKF literature. Minor deviations in the effective stiffness of certain shells may, however, result in slightly
lower buckling loads compared to the SBKF reference results. This effect is examined further later in this
chapter.

4.2. Analysis Type
Dynamic and general static analysis methods have been proposed in past shell buckling studies, and in this
section, the results of both are discussed to determine the preferred approach for this work. The effect of both
analysis types was evaluated using the TA01 structure as reference, together with single and multiple per-
turbation loads, eigenmode imperfections, and measured imperfection mappings. A single shell was selected
due to the project time constraints and because analyzing only a subset of methods would make it difficult to
separate the shell–method behavior from the influence of the analysis type.

The general static analysis employed a nonlinear Newton–Raphson procedure. The maximum and minimum
increment sizes were set to 10−1 and 10−15, respectively. A constant damping factor of 10−6 was applied.
Stabilization values have varied in past works from 5 × 10−2 [37, 77] to 10−7 and 10−6 [26, 94]. The applied
stabilization introduces an artificial viscous damping force that dissipates residual energy during the Newton
iterations [14]. While this improves convergence, an excessively large factor can artificially elevate the effective
tangent stiffness at the bifurcation point, potentially increasing the predicted collapse load. The initial incre-
ment was set to 0.1, and the maximum number of increments was limited to 200–350 to ensure that the buckling
event and part of the post-buckling response could be captured. The maximum number of iterations per incre-
ment was increased to 25. Solver parameters not explicitly discussed in past studies were left at default settings.

Dynamic implicit analysis was also considered, as it does not rely on user-specified artificial stabilization and
therefore avoids the risk of selecting a damping value that could influence accuracy. It has been successfully
applied in previous shell buckling studies [29, 69]. ABAQUS uses the Hilber–Hughes–Taylor (HHT-𝛼) time in-
tegration scheme by default — an extension of the Newmark 𝛽-method, with a numerical damping parameter
of 𝛼 = −0.05 [14]. This numerical damping is an artifact of the numerical method, and it is not related to the
actual (physical) dissipation, i.e., viscous damping affecting the model’s stiffness for non-linear analysis. In the
HHT-𝛼 scheme, it suppresses high-frequency numerical oscillations (introduced by the variable time step) by
using weighted equations of motion, with damping-based weights. The application type was kept as transient
fidelity - indicating minimal energy dissipation, consistent with past work of Rudd et al. [69] and Guo et al.
[29]. Following the recommendation, 10% of the step duration was used for the maximum time step (0.1), while
the minimum was set to 10−10 [13]. The maximum number of iterations is set to 100-150. The load application
was ramped in time to mimic quasi-static loading and improve convergence.

For DFPA, both analysis types were attempted. The static solver, however, failed to converge under the pre-
defined stabilization value. Convergence required increasing the factor above 5%, which would significantly
influence the predicted buckling load due to the artificial suppression of instability. Dynamic implicit analysis,
therefore, remained the only viable approach for DFPA.
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For both analysis types, the simulations were parallelized using 10 processor cores with GPU acceleration. The
number of cores was selected based on an internal optimization study of the run-time behavior. The multipro-
cessing mode was set to MPI. To assess the analysis type, accuracy, CPU resource usage, and wall-clock time

(a) SPLA 0 bar (b) MPLA 0 bar

(c) SPLA 2 bar (d) MPLA 2 bar

(e) SPLA 4 bar (f) MPLA 4 bar

Figure 4.1: Convergence studies for MPLA and SPLA across pressure levels.

were considered. As noted in [29], static buckling analysis tends to yield lower collapse loads, making it more
conservative, it was vital to inspect the values for this behavior. CPU usage and runtime are especially relevant
for perturbation-based approaches, where many simulations are required for convergence. The comparison
was performed at three pressure levels to assess whether internal pressure alters the relative behavior of the
methods.

The collapse loads from both analysis types are of the same order of magnitude, as shown in Table 4.2. The
most significant differences occur in the unpressurized case between the measured and single perturbation
approaches, reaching up to 16%. With increasing pressure, the discrepancy decreases, yielding only a 2% dif-
ference for MPLA at 4 bar. Overall, the findings confirm the observations of Guo et al. [29] that static analysis
yields lower collapse loads. To further assess convergence behavior, the convergence curves for both analysis
types are presented in Figure 4.1 for the unpressurized, 2 bar, and 4 bar configurations.

Both analysis types exhibit similar convergence trends, consistentwith observations from Friedrich and Schröder
[26]. The largest differences occur for SPLA at 4 bar and MPLA at 2 bar. MPLA, however, converges to nearly
identical buckling loads across all pressure levels, with similar perturbation loads for both the unpressurized
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and 4 bar cases.

Table 4.2: Comparison of static and dynamic buckling loads across pressure levels. Methods marked with * denote per-iteration loads
(multiple iterations required).

0 bar

Method Static [N] Dynamic [N] Load Δ%
MSI 2.24 × 106 2.53 × 106 13.2
EIA 1.59 × 106 1.63 × 106 2.5
SPLA* 1.75 × 106 2.02 × 106 15.7
MPLA* 1.44 × 106 1.52 × 106 5.6

2 bar

Method Static [N] Dynamic [N] Load Δ%
GNA 3.52 × 106 3.58 × 106 1.7
MSI 3.45 × 106 3.58 × 106 3.9
EIA 3.00 × 106 3.00 × 106 -0.2
SPLA* 3.22 × 106 3.30 × 106 2.6
MPLA* 2.87 × 106 2.87 × 106 0.2

4 bar

Method Static [N] Dynamic [N] Load Δ%
GNA 3.83 × 106 3.86 × 106 0.8
MSI 3.84 × 106 3.89 × 106 1.5
EIA 3.65 × 106 3.69 × 106 1.1
SPLA* 3.66 × 106 3.67 × 106 0.3
MPLA* 3.33 × 106 3.34 × 106 0.4

Overall, the differences in predicted collapse loads and convergence behavior between static and dynamic im-
plicit analysis were sufficiently small that accuracy alone did not determine the choice. The CPU and wall-clock
performance, however, differed more noticeably. Static analyses generally exhibited lower average CPU usage
per increment, but identifying the peak reaction force required several post-buckling increments. In practice,
this stage became more computationally intensive in the static procedure, requiring significantly more incre-
ments than the implicit dynamic scheme, resulting in longer run times. Based on the combined accuracy and
run-time considerations, the dynamic implicit method was selected for this work.

4.3. DFPA Optimization
The introduction of the distributed load based imperfection modeling approach required preliminary optimiza-
tion of the bump width and scaling factor before applying DFPA to all shells. The optimization was performed
on ETTA01.

For the angular width, several values were considered, starting from 2∘, which is reported as optimal for SBPA
for cylinders with 𝑅/𝑡eff below 200 [93]. The sequence then continued through 5∘ and extended up to 120∘. For
the cosine-bump magnitude, scaling factors up to 14 were tested for widths up to 15∘, and up to 10 for wider
bumps. These limits were selected under the assumption that convergence would occur within this range. As
described in subsection 3.3.4, the convergence behavior for each width was analyzed to evaluate the method’s
general characteristics. The results of this study are presented in Figure 4.2.

Figure 4.2: Convergence study with respect to DFPA angular width.
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In practice, angular widths of 5∘ or more can be adequately modeled by a stretched-exponential function and
exhibit clear convergence. At low scaling factors, however, both 2∘ and 5∘ widths show nearly linear, constant
behavior. Inspection of the corresponding buckling modes reveals that, for scaling factors below 4 (for 5∘)
and below 8 (for 2∘), the deformation patterns are nearly identical, featuring two dominant half-waves located
away from the bump introduction at 0∘, as shown in Figure 4.3. As the perturbation amplitude increases,
these two waves migrate toward each other until they merge over the central weld, forming a single dominant
dimple. Further increase of magnitude broadens this dimple to the point that additional perturbations have no
measurable influence on the collapse load. The 2∘ width appears insufficient to capture this transition within
the selected perturbation-magnitude range, preventing convergence and resulting in the low 𝑅2 of the fitted
trend line.

(a) 2.0 scaling factor (b) 4.0 scaling factor

(c) 6.0 scaling factor (d) 8.0 scaling factor

Figure 4.3: Buckling mode evolution for increasing DFPA scaling factor for TA01 with 5∘ angular width.

Wider bumps (30∘–120∘) generally produce better fits with the stretched-exponential function and converge
at lower scaling factors compared to narrower bumps. Nevertheless, their converged collapse loads are overly
conservative, typically dropping below 50% of the initial value. Intermediate widths (10∘ and 15∘) also show
convergent behavior and are less conservative, although the resulting collapse loads remain undesirably low
compared to other modeling approaches.

Overall, a width of 5∘ provides the most balanced performance - convergence is achieved at a moderately high
scaling factor, and the corresponding collapse loads are less conservative than for wider bumps. Nevertheless,
DFPA remains more conservative than SBPA, despite producing a very similar buckling mode pattern. This
discrepancy may arise from the different boundary-condition assumptions. In the SBPA, all edge nodes are
tied together using a rigid loading plate, whereas in the DFPA, only local edge nodes experience increased
compression. Alternatively, the difference may be attributable to the loading mechanism itself. In SBPA, the
shim induces a bending moment at the edge, while DFPA relies solely on compressive loading.

4.4. Model Verification
For the FEM model verification, three buckling analysis methods were used: linear bifurcation buckling anal-
ysis, geometrically nonlinear analysis, and measured-imperfection buckling analysis.

These three analysis types were selected to enable direct comparison with collapse loads reported in the liter-
ature. Since data were not always available for every method, using multiple analysis routes ensured that at
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least one verifiable reference existed for each shell. The linear analysis additionally served to confirm that the
model was representative in terms of geometry, material properties, and mesh. The MGI primarily assessed
whether the DESICOS-basedmeshmodification, generated from the extracted imperfection plots, was adequate
and served as a sanity check of the overall behavior by confirming consistency with the deformation patterns
observed in the NASA study. The GNA served as an auxiliary verification method and was used in place of
LBA whenever no linear results were reported.

The collapse loads obtained for all shells using these three analysis methods are presented in Table 4.3.

Table 4.3: Buckling load verification for selected test articles. Buckling loads obtained from the NASA SBKF project and corresponding
sources are provided in Appendix A.

Structure LBA GNA MSI

NASA [N] This Work [N] Δ [%] NASA [N] This Work [N] Δ [%] NASA [N] This Work [N] Δ [%]

TA01 3.22 × 106 2.78 × 106 −13.6 3.18 × 106 3.00 × 106 −5.6 2.71 × 106 2.53 × 106 −6.5
TA03 3.24 × 106 2.66 × 106 −17.8 3.51 × 106 2.92 × 106 −16.7 3.28 × 106 2.62 × 106 −20.1
TA07 – – – 2.36 × 106 2.83 × 106 20.1 2.46 × 106 2.32 × 106 −5.9
TA09 – – – 2.60 × 106 2.46 × 106 −5.4 2.26 × 106 1.99 × 106 −12.3
ETTA1 2.61 × 106 2.49 × 106 −4.5 3.41 × 106 3.43 × 106 0.4 2.37 × 106 2.11 × 106 −10.7

The linear buckling loads generally did not match the values reported in previous studies and, overall, yielded
more conservative predictions. The collapse loads obtained from LBA underestimated the buckling capacity by
approximately 14–18%, except for ETTA1, where the deviation remained within 5%. For GNA, the accuracy
varied more widely, ranging from an underprediction of over 17% for TA03 to an overprediction of roughly
20% for TA07. For MGI, the collapse loads of all segments were underestimated, with deviations ranging from
20.1% to 5.9% for TA07. This behavior may indicate that extracting imperfection values from the published
plots inadvertently increased the amplitude of the reconstructed imperfections.

Given these discrepancies, the input parameters used in the structural model—geometry, material properties,
and shell section assignments were carefully re-examined. The design parameters were already verified in the
previous section, and although some differences in stiffness relative to NASA’s models were identified, they
were relatively small and not expected to induce deviations of 20% or more in the collapse loads. More inter-
estingly, the greatest deviations occurred for segments whose radius-to-effective-thickness ratios matched the
reference data exactly. Furthermore, since the modeled segments were slightly shorter than the original test
articles, the collapse loads should, in principle, have been marginally higher—or at least unaffected—across all
analysis types, as shell length is known to have a significant influence on buckling behavior [91].

The model parameters matched the grid properties used for the shell verification study, and the weld land
dimensions followed the values reported in the respective literature sources. The boundary conditions were re-
viewed and remained consistent with the definition provided in subsection 3.1.1, with only one unconstrained
degree of freedom at the upper remote point. Although the influence of adjacent rig structures in the NASA
tests may have been larger than anticipated - potentially contributing to slightly higher buckling loads, the
magnitude and inconsistency of the discrepancies observed here are too large to be attributed solely to stiffer
boundary regions. Lastly, the mesh was examined. If the meshes used in this work had been too coarse, the
linear buckling loads would have been artificially high, not low, thereby eliminating mesh coarseness as a pos-
sible explanation.

It should also be noted that some collapse loads used for comparison were not explicitly reported in the SBKF
documents and had to be extracted manually from published plots and converted to SI units (the full list of
extracted values is provided in Appendix A). This may have introduced minor inaccuracies, but the expected
impact is small.

All models were generated using the same script and served as a common baseline for all analysis types. No
modifications to structural properties were required beyond mesh generation. The only differences across
analyses were the approach-related procedures used. Given that the inconsistencies reached extreme values
for some shells—for example, TA07, where deviations ranged from +20.1% to -5.9% — two explanations appear
plausible: either the methods reported in the literature were not implemented exactly as described, or the ge-
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ometric imperfection maps were significantly distorted by the plotting, digitizing, and reprocessing steps used
to reconstruct them.

For the former, it was suspected that part of the disparity might be associated with the thickness assignment
of the shell element section. As explained in [37, 43], the outer mold line was used to record the imperfections.
They defined the reference surface at the inner mold line and offset the thickness outward to obtain the flush
OML. Although this approach ensured a smooth external surface, it introduced geometric complexity: every
region with a different thickness required a separate shell section, which had to be stitched together with rigid
ties - if one looks carefully at Figure 3.3, small gaps between the sections are visible. Consequently, the proce-
dure was computationally expensive due to the contact definitions required at transitions.

To simplify the process, and following the recommendations from [15] for varying-thickness models, the ref-
erence surface in this work was set directly on the CAD geometry, eliminating the need for contact-based
stitching. Using the top offset definition, the mid-plane of the assigned shell thickness was shifted inward
by half the thickness, aligning the mesh with the CAD-defined OML. This strategy was applied consistently
across the model, except for the orthogrid stiffeners, which retained a mid-surface definition, as presented in
Figure 3.4. However, in ABAQUS (and most commercial FEM software), the default shell section assignment

Figure 4.4: The shell thickness assignment offset strategies available in ABAQUS [14]

defines the thickness symmetrically about the reference surface (Figure 4.4), effectively placing the reference
surface at the mid-plane of the shell. When thickness varies discretely across adjacent regions—such as at the
weld land, this produces a stair-step effect on both the internal and external surfaces. In this configuration, the
OML is no longer flush and therefore deviates from the test articles’ actual geometry.

As explained in [15], all kinematic quantities in ABAQUS are computed with respect to the reference surface. It
is further noted that when the reference surface is not coincident with the shell mid-surface, the resulting offset
between these two creates a moment arm between the location where the load is applied and the midplane of
the shell [16]. This artificial moment arm induces additional bending moments and membrane forces in the
shell. As a result, in addition to the prescribed axial displacement (compression), the structure is inadvertently
subjected to an outward edge moment, which in turn bends the cylinder further inwards and alters the buckling
response. This issue is eliminated only when there is no offset between the reference surface and the midplane
of the surface of interest.

Figure 4.5: Shell modelling strategies employed by Wagner et al. [94].
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To assess the influence of this alternative shell-assignment approach, the study by [94] was examined in detail,
as it employed yet another modeling strategy based on the IML as the reference surface. The authors proposed
two possible strategies for modeling shell thickness in orthogrid-stiffened cylinders. In both cases, the inner
mold line radius was used, as illustrated in Figure 4.5. The first strategy adopts a mid-surface definition, ex-
tending the stiffeners by half of the acreage skin thickness. The second strategy uses the bottom definition,
where the most internal surface serves as the reference surface while keeping the stiffener height unchanged
relative to the design specification.

The authors argue that both modeling strategies yield comparable results, with the mid-surface definition being
slightly faster to compute and therefore adopted in their study. Their reported buckling loads were very close
to those presented in the SBKF reports, and the researchers provided input files upon request. The input file
for TA01 was examined carefully to identify another potential source of inconsistency. The geometry in their
model differed from that of the SBKF test articles in several respects: no circumferential weld lands were in-
cluded, the cylinder was slightly longer, and the boundary conditions were set to clamped–clamped. However,
the remaining modeling parameters (material properties, shell thicknesses, and mesh density) were similar or
identical to those used in this work. Notably, the shell section assignment in their model used the middle offset
definition rather than the bottom (IML-based) definition.

Thus, neither modeling strategy yielded a flush outer mold line, contradicting the recommendations of [37].
A second issue arose from the reported radius for TA01, listed as 1219 mm in [35]. In the original document,
however, this value corresponds explicitly to the OML radius. Wagner et al. [94] did not specify which inner
radius they adopted - this value depends directly on the location of the reference surface. Since the weld lands
are significantly thicker than the acreage skin, their inner radii are closer to the cylinder centerline.

Assuming the acreage region was used, the IML radius should be defined as the OML radius minus the acreage
thickness (reported as 2.54 mm), giving an IML radius of 1216.46 mm. However, in the provided input file, the
measured distance between the central axis and the cylinder surface node was approximately 1219 mm. This
indicates that the OML was treated as the IML and used as the reference surface for the middle-plane shell
assignment. As a result, the model’s outer radius was effectively increased, and the corresponding buckling
load rose accordingly. A quick verification showed that adopting a top-offset strategy for GNA (ensuring a
flush OML) reduced the collapse load by roughly 10% compared to the mid-surface definition. The baseline
model exhibited a linear bifurcation buckling load of approximately 3.41 MN. When the shell assignment was
switched to a top-offset definition, the collapse load dropped to 2.99 MN, a 14% reduction. In addition to the
lower load, the first buckling mode shifted from a weld-focused pattern to a fully global mode, matching the
behavior observed in the model developed in this work.

Based on this observation, an additional test was conducted using an alternative shell section assignment to
evaluate the influence of the offset definition within the modeling framework of this work. To accelerate the
study, the previous CAD geometry was reused—i.e., the stiffener height was defined initially relative to the
OML radius. When the OML is instead treated as the mid-surface radius, this effectively increases the stiffener
height and may artificially raise the buckling load. The results obtained using this modified configuration are
presented in Table 4.4.

Table 4.4: Buckling load verification for the mid-surface shell offset configuration.

Structure LBA GNA MSI

NASA [N] This Work [N] Δ [%] NASA [N] This Work [N] Δ [%] NASA [N] This Work [N] Δ [%]

TA01 3.22 × 106 3.29 × 106 0.6 3.18 × 106 3.52 × 106 10.8 2.71 × 106 3.07 × 106 13.6
TA03 3.24 × 106 3.24 × 106 0.0 3.51 × 106 3.21 × 106 −8.6 3.28 × 106 2.79 × 106 −14.9
TA07 - - - 2.36 × 106 3.56 × 106 50.9 2.46 × 106 2.96 × 106 20.2
TA09 - - - 2.60 × 106 3.22 × 106 23.6 2.26 × 106 2.45 × 106 8.1
ETTA1 2.61 × 106 2.50 × 106 −4.2 3.41 × 106 3.74 × 106 9.5 2.37 × 106 2.25 × 106 −4.8

The accuracy of the results was significantly affected by changes in the offset definition, although the extent of
the effect was strongly method-dependent. For the linear buckling analysis, the accuracy improved markedly
for the small-diameter shells, with collapse loads nearly matching the SBKF values. ETTA1 exhibited the small-
est change among all shells, likely because the thickness offset is negligible relative to its diameter. For LBA,
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the collapse load became essentially identical to the reference value, whereas GNA overshot the SBKF load
by roughly 10%. Interestingly, ETTA1 was also the only case where the MGI analysis improved in accuracy,
reducing the deviation to 4.8% compared to SBKF results.

For GNA, all structures except TA03 buckled at higher loads than reported in the literature, and compared to
the previous offset definition, the spread in deviations increased. The collapse load of TA07 increased by over
30%, while TA03 buckled at only about 8% below the reference value, compared to almost 17% under the top-
offset configuration. The measured-imperfection approach showed behaviour that was equally volatile relative
to the top offset definition. Three structures—TA01, TA07, and TA09—shifted from being overly conservative
to unconservative, whereas the remaining two improved in accuracy. In particular, ETTA1 deviated by only
4.8%. Nevertheless, TA03 continued to show very conservative behaviour (–15%). Its response can be partially
attributed to the estimated imperfection amplitude, as no measurement data were available and the extremities
were assumed to lie within ±0.1 inches.

The pressurized buckling verification was carried out only for ETTA1, as it is the sole structure tested and
analyzed under internal pressure during the SBKF programme. However, as explained in [38], the pressurization
in the experiment was applied primarily to suppress the influence of manufacturing-induced imperfections,
thereby altering the specimen’s natural behaviour. The internal pressure effectively pushed the weld land back
toward a more circular geometry and constrained the structure to buckle in a specific mode order, aligning the
test outcome with the intended objectives. During the campaign, the cylinder was subjected of 1.0 psi (later
reduced to 0.6 psi due to the safety concerns [34]), which are not representative of the pressure levels considered
in this study, and experienced during the tank operations of 34 psig (≈2.3 bar [12]).
In the available literature, from SBKF, only the measured-imperfection loading curve at 1.0 psi is reported.
However, the buckling loads at 1 psi obtained by [76] for SPLA and GNA are available (using identical boundary
conditions), together with GNA data obtained by [94]. The results of the verification are presented in Table 4.5.

Table 4.5: Buckling load comparison for ETTA1 at 1 psi.

Test* [N] MSI [58] [N] GNA [94] [N] GNA [76] [N] SPLA [76] [N] GNA [N] MSI [N] MSI** [N] SPLAOG [N] SPLA [N]

3.56 × 106 3.51 × 106 4.12 × 106 4.59 × 106 3.79 × 106 3.81 × 106 3.01 × 106 3.15 × 106 3.67 × 106 3.69 × 106

* Conducted by NASA [34], buckling was not reached.
** Middle shell thickness assignment offset applied.

The obtained collapse load (here computed using the top-offset strategy) deviates substantially from the NASA
reference value, with nearly a 15% difference. When the middle-surface definition is applied, the buckling
load increases to 3.2MN, reducing the discrepancy to approximately 10%. As discussed earlier, the source of
this mismatch may be linked to incorrectly reported geometry - specifically, a lower actual 𝑅/𝑡eff than stated,
or to inaccuracies in the extracted imperfection field. In fact, two imperfection maps were identified for this
shell: one exhibiting a slightly higher radial disturbance [37], and another with a lower amplitude but more
contour levels [58]. To remain conservative, the map with the largest recorded imperfections was used. How-
ever, combined with the uncertainty introduced during redigitization, this may have contributed to the overly
conservative predictions. Similarly, compared to the values obtained by Wagner et al. [94] and Sim et al. [76],
the collapse load obtained is substantially lower, corresponding to a discrepancy of 8% and 20%, respectively.
Nevertheless, the two previous works don’t agree on the collapse load either, which underlines the dependence
on individual research setup - including boundary conditions, meshing, and shell assignment offset strategy.
Based on the description of the analysis setup in both works, the former uses a clamped-clamped condition,
whereas the latter uses a simply supported condition. This makes the results even more confusing, as the stiffer
BC should lead to a higher collapse load, which is not the case. Interestingly, both SPLA variants obtained
are nearly identical to the collapse load obtained by Sim et al. [76], despite the significant difference in GNA
collapse loads.

Overall, based on the conducted research, three factors appear most likely to have introduced conservatism into
the results: the shell offset assignment strategy, geometric variations, and the analysis set-up (particularly the
boundary conditions). It is, however, not possible to pinpoint a single dominant cause of the deviations. The
observations—where the accuracy improved drastically for LBA or worsened for GNA depending on the offset
strategy—indicate that at least some of the reported reference values must be correct. This, in turn, suggests
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that the offset assignment may have been applied inconsistently in the previous works. The section assignment
definition strongly influences the structural response. When combined with other minor geometric and setup
differences, it can produce the significant dispersion observed when compared to the SBKF data.

Nevertheless, the intention of this work was not to reproduce the exact structural behavior reported in previ-
ous studies, but rather to employ the semi-optimized shell geometries used in past research. The verification
primarily served to obtain a rough estimate of the model’s accuracy and to assess whether the constructed
models behave consistently. For this study, the internal consistency across all modeled structures is far more
critical than achieving perfect agreement with historical results. The adopted modeling strategy appears to
yield conservative collapse loads for both unpressurized and pressurized cases, although its accuracy at higher
internal pressures remains uncertain. The results should therefore be interpreted with some caution. However,
the reliability trends identified in this study are not expected to be affected. A more detailed investigation into
the root cause of the discrepancies is strongly recommended, but falls outside the scope of the present work.

4.5. Model Sensitivity Study
Due to the project’s strict time constraints, no dedicated sensitivity study was conducted to quantify the influ-
ence of the modelling assumptions and simplifications. Fortunately, several aspects of these sensitivities have
been addressed in past studies, and their findings are briefly summarised in this section. Though it should be
noted that these investigations focused exclusively on unpressurised shells, and their validity under combined
pressure and axial loading is therefore limited. A dedicated study in a pressurised setting is required to assess
their impact on structural behaviour fully.

The most influential assumptions concern the geometry of the analysed shells. The present work adopted the
as-designed configuration, removed all fillets, and neglected the tapered ends of stiffeners. On TA07, this as-
sumption had the largest impact on the predicted buckling load from all considered aspects [43]. Using as-built
skin and stiffener thicknesses (measured after fabrication and averaged) increased the collapse load by nearly
8%, while the as-built stiffener height contributed an additional 1.1%. Since as-built parameters are only known
post-manufacturing, their influence cannot be reasonably predicted.

The effect of stiffener fillets has been studied more extensively. Their inclusion increases the effective skin–
stiffener junction stiffness and therefore enhances the axial rigidity [58]. Hilburger et al. [43] proposed a shell-
thickness tuning approach was used to correlate a 2D shell model (presented in Figure 4.6) with a full 3D solid
model including fillets. The authors reported that fillets increased the effective axial stiffness by less than 1%
but increased the buckling load by 4.2%. This study was performed on a representative plate segment with an
orthogrid pattern. Nonetheless, a similar value was reported in [69], based on an unpublished NASA document
indicating an expected increase of approximately 5%.

The omission of tapered stiffeners was also adopted in past studies, although its effect has not been explicitly
quantified [37, 94]. In practice, tapering provides a smoother transition between acreage and weld land regions
and may marginally reduce local stress concentrations.

Figure 4.6: Fillet modeling for a shell tank segment [43].
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Regardingmaterial behavior, a linear-elastic isotropicmodel does not fully capture the characteristics of aluminium–
lithium alloys. The compressive modulus is slightly higher than the tensile modulus (11.4 Msi vs. 10.8 Msi) [43].
This can be represented by an orthotropic model, where the longitudinal stiffness is taken as the compressive
modulus and the circumferential stiffness as the tensile modulus. Such a model increases the global stiffness
slightly [58]. Hilburger et al. [43] reported an increase of approximately 1.3% in buckling load when using
this improved material model. Conversely, Rudd et al. [69] observed a 1% decrease in collapse load relative to
the isotropic case, resulting in better agreement with test results. The authors noted that the benefit is case-
dependent, and in some instances, worsened the correlation with strain-gauge measurements. Furthermore,
the tank thermal environment effects were neglected after consultation with an ArianeGroup expert. However,
aluminum–lithium alloys experience a notable increase in stiffness and strength at cryogenic temperatures—
typically on the order of 5–10%, with values depending on the specific temper and temperature range (e.g.,
liquid oxygen or liquid hydrogen conditions). Such stiffening would increase the collapse load and enable
higher allowable pressurization. Thus, it is highly recommended to revisit this assumption in future research.

Lastly, the weld land material was assumed to be unaffected by the friction-stir-welding process [94]. In real-
ity, the weld zone exhibits a different microstructure and reduced elastic modulus. Its inclusion could modify
the load attraction in the weld region and potentially increase the collapse load. However, based on available
evidence, this effect is not expected to be significant.

Collapse Dependence on the Displacement Magnitude
During the verification runs, an unexpected sensitivity was observed: the predicted collapse load depended
on the magnitude of the imposed axial displacement. Initially, all shells were subjected to an identical end-
shortening of 0.03 m. However, at 4 bar, both ETTA1 and TA03 remained stable and did not buckle, which
required increasing the imposed displacement to 0.08 m. As a consistency check, the same displacement was
applied to TA01 to assess the assumed independence of the structural response from the prescribed compres-
sion level. This assumption was found to be invalid.

This displacement dependence was observed in both static and dynamic implicit analyses. To ensure con-
sistent comparison across all configurations, all verification analyses were therefore re-run using the higher
end-shortening.

The origin of this discrepancy appears to stem from the increment-selection procedure in nonlinear analysis.
At higher imposed loads, the solver typically reduces the time increment to satisfy convergence criteria, which
results in more frequent stiffness updates and improved tracking of local stiffness changes. This behavior is
evident when modifying the displacement in the input file of Wagner et al. [94]. Increasing the prescribed
displacement from 0.006 m to 0.01 m (no pressure) produces the curves shown in Figure 4.7.

Figure 4.7: Load–displacement curves for TA01 GNA input file from [94], with vertical displacements of 0.006 and 0.01 m.

From the zoomed view, it is evident that the lower imposed displacement (U6) bypasses a local bifurcation point
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and therefore follows a different equilibrium path, yielding a lower collapse load. Although both analyses share
an increment in which displacement and reaction force nearly match immediately before the bifurcation, their
gradients differ slightly, implying a small local stiffness mismatch. The U6 case exhibits marginally higher
stiffness, and the solver accepts a larger increment that still meets the default convergence tolerance of 0.5%.
This larger step skips the bifurcation, resulting in a predicted collapse load of 3.38 MN (higher than the 3.29
MN reported in the reference study). In contrast, the higher imposed displacement continues to follow the
post-local-buckling response and reaches a load of 3.51 MN.

Figure 4.8: Load–displacement curves for TA01 GNA with dynamic implicit analysis and vertical displacements of 0.03 and 0.08 m.

A similar tendency is observed in the dynamic implicit analyses (Figure 4.8), though the responses contain more
local fluctuations. When zoomed near the U3 buckling region, the local gradient decreases and the stiffness
drops, after which the solution diverges onto a different equilibrium branch. The resulting collapse load is 2.84
MN, compared to 3.0 MN for the higher displacement.

However, this trend is not uniform across all structures. In several cases the higher prescribed displacement
leads to lower collapse loads, whereas in others the opposite occurs, as shown in Table 4.6. This indicates that
the phenomenon is configuration-dependent and not monotonically related to the imposed end-shortening.

Table 4.6: Comparison of NASA GNA predictions with U3 and U8 results from dynamic implicit analysis.

Structure NASA GNA [N] U3 GNA [N] ΔU3 [%] U8 GNA [N] ΔU8 [%]

TA01 3.18 × 106 2.84 × 106 −10.8 3.00 × 106 −5.6
TA03 3.51 × 106 2.75 × 106 −21.4 2.92 × 106 −1.7
TA07 2.49 × 106 3.07 × 106 23.4 2.83 × 106 1.4
TA09 2.60 × 106 2.64 × 106 1.6 2.46 × 106 −5.4
ETTA1 3.41 × 106 3.00 × 106 −12.0 3.43 × 106 4.0

For consistency across the present study, an imposed displacement of 0.08 m was adopted for all structures
and pressure levels in both static and dynamic analyses. Nevertheless, this numerical sensitivity warrants
further investigation. The behavior appears largely independent of boundary conditions or analysis type, and
is more plausibly associated with increment selection and stiffness-update frequency in the nonlinear solver.
It is currently unclear whether a displacement threshold exists beyond which the effect diminishes. Until the
mechanism is fully characterized and mitigated, caution is advised when interpreting collapse loads obtained
from displacement-controlled nonlinear analyses.



5
Results and Discussion

In this chapter, the buckling analysis results are presented. The behavior of the convergence-based approaches:
SPLA, MPLA, and DFPA, is first examined in section 5.1. The broader collapse trends across all structures
and pressures are discussed in section 5.2. The reliability study follows in section 5.3, where the coefficient of
variation, Kendall’s W, and the intraclass correlation coefficient are evaluated. Finally, the key observations are
synthesized and interpreted in section 5.4.

5.1. Convergence Results
Before analyzing the obtained collapse loads, the convergence behavior of three perturbation-based methods
(SPLA,MPLA, andDFPA)was examined. As established in the literature, these approaches are expected to reach
a semi-stable collapse-load plateau at sufficiently large perturbation magnitudes. To identify such plateaus, a
curve-fitting procedure was applied to generate trendlines, combined with a basic convergence criterion.

In principle, for most structures, the curve-fitting methodology reproduced the response to increasing pertur-
bation magnitudes accurately, as reflected by the high coefficients of determination - all the plots are presented
in Appendix C. The associated three-sigma (99.7%) confidence intervals were generally narrow. These intervals
were obtained from the parameter covariance matrix returned by curve_fit, where each diagonal entry repre-
sents the variance of the corresponding buckling-load parameter. The confidence bounds were then evaluated
as three-sigma limits. In several cases, however, the intervals widened substantially because the covariance
matrix grew in magnitude or became nearly singular. This occurred when the fitted curve had already flat-
tened near its asymptote, and the parameters became weakly identifiable, or when strong parameter coupling
led to multiple near-equivalent solutions. In such cases, tightening the fitting bounds or reducing the number
of free parameters reduced the covariance matrix and yielded noticeably narrower confidence intervals.

(a) Original convergence plot. (b) Modified convergence plot.

Figure 5.1: Comparison of convergence behavior of ETTA1MPLA at 2 bar.

Nonetheless, some approach–pressure combinations did not exhibit the expected convergence behavior. The
most prominent example was ETTA1 under the MPLA at 2 bar, where the response was so irregular that se-
lected perturbation loads had to be removed or replaced (100 N, 6000 N removed and 1500 N, 8000 N added) to

41
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obtain a physically meaningful trendline and a reasonable converged perturbation magnitude as presented in
Figure 5.1.

Furthermore, for the TA03 SPLA analysis, the structure exhibited highly irregular behavior: the collapse load
varied noticeably with increasing perturbation magnitude, and at several higher perturbation levels, the cylin-
der buckled at higher loads than at lower perturbations. This behavior was also observed at 2 bar, with only
the 4 bar case stabilizing the response into a trend more consistent with the expected theoretical behavior. A
comparison between the unpressurized and 4 bar responses is shown in Figure 5.2.

(a) Convergence plot at 0 bar. (b) Convergence plot at 4 bar.

Figure 5.2: Comparison of SPLA convergence behavior for TA03 across pressure levels.

The simplest explanation for this inconsistent behavior would be an error in the load application. However, the
same setup script was used for all shells — including those exhibiting ideal convergence, and a direct inspection
of the input files confirmed that the load definition was correct. The observed “outlier” type responses are
more plausibly linked to a slight shift in the active buckling mode at specific perturbation magnitudes. This
phenomenon was also observed in shells with otherwise well-defined convergence behavior, such as TA07 in
the SPLA analysis (Figure 5.3), where the collapse load at P=3000 N exceeded that at P=2000 N, placing the point
outside the confidence interval. Once again, inspection of the underlying model did not reveal any errors, and
the only difference between the input files for these two runs was the magnitude of the perturbation.

Figure 5.3: TA07 SPLA convergence study with visible perturabtion outlier.

The pressure effect on the structural response also influenced convergence behavior, occasionally producing
counterintuitive results in which the converged perturbation magnitude was lower than in the unpressurized
baseline. This anomaly, despite the expectation that higher pressures should require larger imperfection magni-
tudes, appears to stem from the stabilizing effect of internal pressure on the shell, which suppresses sensitivity
to local perturbations. It is also possible that the current convergence criterion of 5% is too lenient, allowing
these shifts in the fitted asymptote to appear as converged behavior.
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(a) Convergence of TA01 DFPA at 4 bar. (b) Convergence of TA09 DFPA at 4 bar.

Figure 5.4: Comparison of convergence behavior between structures.

For DFPA, the proposed stretched exponential fit captured the response particularly well, yielding smaller
confidence intervals than the SPLA/MPLA counterparts and consistently very high 𝑅2 values. Notably, the
convergence checks were performed on the compressive load bump magnitude, not the displacement response
- like in SPLA/MPLA approaches, and in several cases, the inspected load range for the bump magnitude was
insufficient to reach a true asymptote. At the same time, DFPA remained the most conservative approach,
systematically producing the lowest collapse loads. Extending the bump-magnitude range could, in princi-
ple, improve convergence, but it would also push the predicted buckling performance even lower. This trend
was especially pronounced at higher pressures. Although increasing the upper bound (e.g., to 14 or 16) ini-
tially appeared to be a remedy, additional tests showed a continued degradation in the predicted collapse load.
Representative examples of this behavior are shown in Figure 5.4.

Table 5.1: Comparison of converged and check loads for SPLA, MPLA, and DFPA across ETTA1 and TA01.

ETTA1 – 0 bar

𝑁SPLA,𝑃=4665 [N] 𝑁Check [N] Δ [%] 𝑁MPLA,𝑃=4961 [N] 𝑁Check [N] Δ [%] 𝑁DFPA,𝑃=12.7 [N] 𝑁Check [N] Δ [%]

3.11 × 106 2.97 × 106 4.7 1.46 × 106 1.52 × 106 −3.9 1.90 × 106 1.82 × 106 4.2
ETTA1 – 0.06895 bar

𝑁SPLA,𝑃=2211 [N] 𝑁Check [N] Δ [%] 𝑁MPLA,𝑃=3918 [N] 𝑁Check [N] Δ [%] 𝑁DFPA,𝑃=11.81 [N] 𝑁Check [N] Δ [%]

3.69 × 106 3.67 × 106 0.6 2.65 × 106 2.72 × 106 −2.4 2.48 × 106 2.54 × 106 −2.4
ETTA1 – 2 bar

𝑁SPLA,𝑃=1962 [N] 𝑁Check [N] Δ [%] 𝑁MPLA,𝑃=1159 [N] 𝑁Check [N] Δ [%] 𝑁DFPA,𝑃=12.71 [N] 𝑁Check [N] Δ [%]

6.88 × 106 6.89 × 106 0.3 6.88 × 106 6.98 × 106 1.4 4.56 × 106 4.58 × 106 −0.3
TA01 – 0 bar

𝑁SPLA,𝑃=2338 [N] 𝑁Check [N] Δ [%] 𝑁MPLA,𝑃=3173 [N] 𝑁Check [N] Δ [%] 𝑁DFPA,𝑃=12.53 [N] 𝑁Check [N] Δ [%]

2.02 × 106 2.03 × 106 −0.5 1.52 × 106 1.56 × 106 −2.5 1.47 × 106 1.49 × 106 −1.4
TA01 – 2 bar

𝑁SPLA,𝑃=2243 [N] 𝑁Check [N] Δ [%] 𝑁MPLA,𝑃=5977 [N] 𝑁Check [N] Δ [%] 𝑁DFPA,𝑃=13.24 [N] 𝑁Check [N] Δ [%]

3.30 × 106 3.32 × 106 0.5 2.83 × 106 2.82 × 106 −0.3 2.42 × 106 2.43 × 106 0.4
TA01 – 4 bar

𝑁SPLA,𝑃=3594 [N] 𝑁Check [N] Δ [%] 𝑁MPLA,𝑃=5128 [N] 𝑁Check [N] Δ [%] 𝑁DFPA,𝑃=13.29 [N] 𝑁Check [N] Δ [%]

3.67 × 106 3.67 × 106 0.2 3.34 × 106 3.38 × 106 1.0 2.77 × 106 2.70 × 106 −2.4

Nevertheless, the very high 𝑅2 values may appear indicative of overfitting — typically arising when too many
model parameters are fitted relative to the number of data points. However, two points mitigate this concern.
First, the trend line is obtained using non-linear least-squares optimization [71], which by design does not in-
flate the coefficient of determination. Second, the fit accuracy can be directly verified by running simulations at
the converged perturbation magnitude. This check was performed for ETTA1 and TA01, with results shown in
Table 5.1. The fitted collapse loads closely match the actual simulation values, with deviations of approximately
−4% to+5%. This confirms that the high 𝑅2 values reflect genuine predictive accuracy rather than overfitting.
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Overall, the examples presented here are intended to highlight the absence of fully systematic convergence be-
havior across all structures. For brevity, not every deviation is discussed in detail, but the illustrated phenomena
should be kept in mind when interpreting the reliability results.

5.2. General Buckling Behavior
A summary of the collapse loads obtained for all considered shells, pressure levels, and imperfection-modeling
approaches is presented in Figure 5.5. In addition to the nonlinear analysis results, collapse-load estimates
based on the knockdown factors provided in SP-8007 [87] and those derived within the SBKF project [37]
are included to illustrate the level of conservatism inherent to current design practices. The derivation of the
applied knockdown factors is detailed in Appendix D. As observed, the KDF-based predictions are indeed
highly conservative compared to the majority of nonlinear imperfection-modeling approaches. Although the
newKDF formulation provided higher estimates compared to the SP-8007monograph, it is very limited in scope
for pressurized structures. The buckling curves are provided only for up to 10 psi (0.6895 bar), and thus, it was
solely applied for the ETTA1 - 1 psi case. The KDF in the new SBKF are significancy improved compared to
the traditionally used SP-8007 ones. For TA03, TA07, and TA09, the KDF estimates exceed the collapse loads
predicted by the DFPA methods, suggesting that these non-traditional imperfection-modeling approaches may
lead to very conservative or inaccurate predictions for certain configurations.

(a) Buckling loads of TA01. (b) Buckling loads of TA03.

(c) Buckling loads of TA07. (d) Buckling loads of TA09.

(e) Buckling loads of ETTA1.

Figure 5.5: Buckling loads of all structures, across three pressure regimes obtained in the study.

Overall, and in agreement with previous studies, increasing internal pressure consistently raises the buckling
load of the structures, irrespective of the modeling approach. However, the magnitude of this stabilizing effect
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varies substantially between shells and imperfection-modeling methods, underscoring the strong configuration
and approach dependence of pressurized buckling predictions.
To establish a baseline, the geometric nonlinear analysis was examined first, as it reflects the behavior of the
geometrically perfect shells. ETTA1 showed the largest relative improvement, with a 102% increase at 2 bar
compared to the unpressurized case, and already at 0.06895 bar, the load increased by 11%. For 2.4 meter in
diameter shells, the improvement at 2 bar ranged from 19.4% for TA01 to 60% for TA09. This disparity is pecu-
liar given that all test articles share the same diameter, but upon closer inspection TA01 has nearly twice the
slenderness (expressed in 𝑅/𝑡eff) of TA09. Despite the former having a thicker skin of 2.54 mm (vs. 1.73 mm),
the latter has a much denser grid pattern.

At 4 bar, the trend shifts slightly - TA01 again shows the smallest increase (29%), whereas TA03 reaches 101%,
followed by TA09 at 89%. The inconsistent performance between the shells suggests that pressure sensitivity is
strongly linked to their designed buckling behaviour. As discussed in [35], the test articles were intentionally
designed to trigger different governing buckling modes. Both TA01 and TA03 were intended to exhibit global
buckling prior to the onset of local modes or yielding. Moreover, TA03 was derived from a scaled Ares I core-
stage tank segment with built-in axial load relief and hoop-stiffening effects from internal pressure, and was
used to validate FEM predictions of weld land buckling. Finally, although the longitudinal weld geometries were
broadly similar, the transition-region width differed noticeably between shells. Combined with the varying
acreage stiffness and grid pattern, makes it difficult to attribute the observed performance increase to a single
structural feature.

(a) Shells buckling load at 0 bar.

(b) Shells buckling load at 2 bar.

(c) Shells buckling load at 4 bar.

Figure 5.6: Effect of internal pressure on the EIA buckling mode of TA03 (left) and TA09 (right).
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When non-geometrically perfect imperfection modeling strategies are applied, the absolute buckling-load be-
havior becomes evenmore volatile across the barrel segments. The data clearly indicate that the largest increase
between the unpressurized state and 2 bar occurs for MPLA. For the smaller shells, the increase ranges from
86% to 118%, and reaches a remarkable 371% for ETTA1. The MPLAOG variant behaves almost identically,
with nearly the same percentage increases. This suggests that MPLA, where loads are introduced at every weld
line, may be overly conservative in the unpressurized case and significantly amplified by internal pressure. The
perturbation load at which the collapse load converges is lower than in the single-load SPLA case, as the extent
of the stiffness degradation is greater. However, as visible in Figure 5.7, it still nucleates from a single dimple.
In theory, as the buckling load of both should be the same, the resulting dimples are therefore shallower, and
at higher pressures are bulged out to a greater degree, contributing to the observed large increases in collapse
load. The greater the number of perturbation locations, the more the dimple depth is reduced—explaining the
extreme increase observed for ETTA1 when eight perturbation loads were used, and thus recorded the greatest
increase in buckling load at 2 bar - 372%.

For SPLA, the collapse load increases from 82% for TA01 at 4 bar to over 114% for TA09, with the highest
increase again observed for ETTA1 (121.4%). The SPLA variant using unpressurized converged perturbation
loads shows a comparable trend. Overall, the SPLA and MPLA convergence approaches yield broadly similar
results, aside from a few notable deviations. These discrepancies are likely tied to the convergence calculation
itself and the shell-dependent buckling response mechanisms discussed in section 5.1.

Another noteworthy observation is made for the eigenmode imperfection approach, where the performance
increase remains within a narrow range: 77–88% at 2 bar, and 122% (TA07) to 126% (TA01) at 4 bar for all
small-diameter test articles. In contrast, the Space Shuttle external tank shows the lowest increase among the
considered shells, reaching only 95.8% at the highest pressure level.
The near-consistent behavior of the small-diameter shells can be linked to their bucklingmode patterns. Unlike

(a) Measured radial imperfections of TA01[83], with a corresponding buckling mode

(b) Measured radial imperfections of TA09 [69], with a corresponding buckling mode.

Figure 5.7: Comparison of imperfection signatures of TA01 and TA09, with their resulting bucklign modes.

ETTA1, these cylinders always buckle in the first linear global mode - characterized by a couple of deep dents.
Consequently, the eigenmodes imperfections remain highly similar across pressure, because the pressure lin-
early bulged them out as illustrated in Figure 5.6. This uniformity in the imposed imperfection shape naturally
limits the variation in pressure-induced performance gains. The small discrepancy, mostly stems from different
initial imperfection magnitude as for certain shells the first linear mode indicated deeper grooves. Though it is
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plausible that using the acreage skin thickness which is with 1 mm for the small shells, instead of the 𝑡effective
(which accounts for the added grid stiffness) sets the eigenmode imperfection amplitude to comparable levels,
further reducing the pressure effect.

The lowest collapse-load improvements (excluding ETTA1) were obtained for the measured-imperfection ap-
proach, ranging from 41.5–87.2% at 2 bar and 53.7–131.4% at 4 bar. The lowest gains correspond to TA01, while
the highest are observed for TA09. This highlights that similarity in imperfection shape is not the only driver
- the magnitude of the measured field plays an equally strong, if not more substantial, role in the structural
response. Notably, the imperfection signature of TA01 is unique in that its dominant disturbance is not cen-
tered on the welds, unlike TA09, which is reflected in their respective buckling modes (Figure 5.7) - further
explaining the reduced sensitivity to pressurization.

When the percentage improvement between consecutive pressure levels is examined, the variation in buckling
load becomes far less pronounced. For the 8-ft test articles, most methods fall within a 20–30% increase, with
the exception of TA01, where GNA and MGI show only about an 8% gain. This behavior suggests that the
pressure-dependent performance increase reaches a practical upper limit, set by the interaction between struc-
tural configuration and imperfection modeling, as foreseen in small-scale pressurized buckling experiments
[77]. The results for ETTA1 reinforce this interpretation: even at only 1 psi the structure exhibited more than
a 10% improvement across the approaches.

5.2.1. Normalized Buckling Trends
Knowing the general trends, the interquartile range of the normalized buckling data was evaluated. A wide
spread is immediately apparent across methods and structures, ranging from 1.60 for GNA to only 0.53 for
DFPA for the unpressurized case presented in Figure 5.8. Both perturbation-based approaches—DFPA and
MPLA, predict lower collapse loads on average compared to the remaining methods. However, DFPA, with
a mean normalized value of 0.69, also exhibits the smallest spread (≈0.25), confirming its highly conservative
but internally consistent behavior. A notable outlier is the MPLA result for ETTA1, which, combined with the

Figure 5.8: Normalized buckling loads of all shells at an internal pressure of 0 bar.

exceptionally large non-normalized performance increase, indicates that applying perturbation loads at every
weld land becomes overly conservative when the number of welds exceeds three.

In contrast, the most extensive spread is observed for the measured imperfections approach. Despite identical
manufacturing conditions, imperfection fields vary significantly across the shells, and this variability directly
affects buckling performance. As expected, TA01 (the only shell with additional reinforcement near the weld
land) shows the most favorable response within this method.

For the pressurized cases, the overall trends change markedly. The ranges of the normalized buckling loads,
both permethod and acrossmethods, for each structure are significantly smaller than those in the unpressurized
baseline. Consequently, the spread inmean normalized collapse loads contracts for all approaches except DFPA,
which retains a wider range due to its inherent conservatism.
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Figure 5.9: Normalized buckling loads of all shells at an internal pressure of 2 bar.

At 2 bar, the variation in mean values across methods is small, with a difference of only about 12% between the
most conservative (GNA) and MPLA. At this pressure level, the MGI, SPLAOG, and SPLA approaches produce
similar means and ranges, although the ordering of structures differs. The lowest spread is observed for the
eigenmode-based method. However, this result is statistically fragile because two of the five structures (TA03
and TA09) are flagged as outliers, reducing the number of reliable data points.

Figure 5.10: Normalized buckling loads of all shells at an internal pressure of 4 bar.

Another notable observation concerns the relative positions of the individual structures. Unlike the unpres-
surized baseline - where several shells had at least one method producing the highest buckling load, once the
pressure is applied, TA03 becomes the top-performing structure for nearly all approaches (except for the load-
induced imperfection methods), which is expected as it is the shell with the lowest slenderness. As a result,
the average collapse load increase shifts in its favor, and thus the most conservative DFPA predicts even lower
normalized performance for TA03 than at 0 bar.

The spreads for TA03 and ETTA1 are also the most consistent across the methods. This aligns with earlier ob-
servations: these two structures are the most strongly influenced by internal pressurization, which suppresses
method-dependent variability and drives the results toward a common pressure-dominated response. The case
of ETTA1 is particularly odd. Its normalized load variability remains below 26%, and when DFPA is excluded,
the difference between approaches becomes nearly constant, with a spread of approximately 0.4% - which is
clearly visible on Figure 5.5. To understand this behavior, the buckling patterns for the methods (except for
those using the unpressurized baseline converge perturbation) were plotted and are shown in Figure 5.11.

It becomes clear that the methods yield nearly identical collapse loads because they trigger almost identical
buckling patterns. While small-amplitude half-waves appear at each weld line, the response is dominated by
two half-waves spanning the entire circumference of the segment — a shallower one near the top and a much
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deeper one at the base. This behavior corresponds to the well-known elephant-foot buckling mode, named for
its visual resemblance to an elephant’s foot Figure 5.12.

(a) GNA at 2 bar (b) EIA at 2 bar

(c) SPLA with P=1962 N at 2 bar (d) MPLA with P=1159 N at 2 bar

(e) MSI at 2 bar

Figure 5.11: ETTA1 buckling modes at 2 bar pressure.

(a) Elephant foot [48]. (b) Elephant foot buckling on a steel tank[59].

Figure 5.12: Visualization of elephant-foot buckling.

As described by Rotter [68], elephant-foot buckling occurs in shells with high radius-to-thickness ratios (typ-
ically above 250) and is driven by the increase in bending stresses near the base under internal pressure. In
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this region, the tensile circumferential stresses dominate over the relatively low axial compressive stresses,
producing the characteristic plastically bulged deformation. At lower pressurization levels, however, the re-
sponse remains more elastic, and the buckling pattern resembles the unpressurized mode - consistent with the
behavior observed in this study at 0.06895 bar.

For TA03, the larger spread between methods is likely linked to the absence of this pressure-dominated buck-
ling regime. Its slenderness is insufficient to trigger an elephant-foot mode (𝑅/𝑡eff = 80.1), and the resulting
buckling shapes, as shown, do not converge toward a single dominant feature.

At 4 bar, the trends from 2 bar persist, as illustrated in Figure 5.10. The spread across methods decreases fur-
ther, including for DFPA, which contracts to only 0.05. The lowest spreads are again observed for the MGI
and SPLA variants. It can be partly attributed to the relatively small imperfection amplitudes they introduce,
which already yield the highest accuracy in the unpressurized baseline. Under internal pressure, these shallow
dents are effectively bulged out, pushing the response closer to that of a near-perfect cylinder and reducing
variability across methods. However, this explanation raises the question of why the geometrically perfect
GNA (nominally the true baseline) exhibits a wider spread. This can be rationalized by the fact that a perfect
structure buckles in a near symmetric manner governed by the orthogrid pattern. This dependence causes the
buckling response to diverge more noticeably between cylinders.

The larger range observed for the eigenmode approach follows similar logic, but is dependent on the magni-
tude instead. As proved, the smaller shells exhibit similar buckling patterns at high pressures, but the radial
displacement varies significantly. The initial imperfection pattern is a result of both the first mode shape and the
thickness magnitude. Even though the modes look similar - Figure 5.13, the depths of the introduced imperfec-
tions from the linear buckling analysis vary significantly, leading to a large discrepancy in the collapse values.
Combined with the method’s inherently conservative nature, this results in a broader spread of normalized
collapse loads.

(a) TA01 buckling pattern. (b) TA03 buckling pattern.

(c) TA07 buckling pattern. (d) TA09 buckling pattern.

Figure 5.13: Eigenmode buckling modes at 4 bar internal pressure.

5.3. Statistical Reliability
In this section, the results of the statistical measures are introduced and discussed, with a focus on the initial
statistical metrics in the following subsections. Where the application of a givenmethod depends on a particular
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data structure, the corresponding normality and heteroscedasticity test results are also presented. The methods
are discussed in the following order: coefficient of variation in subsection 5.3.1, Kendall’s𝑊 in subsection 5.3.2,
and ICC in subsection 5.3.3.

5.3.1. Coefficient of Variation Analysis
Based on the global trends discussed previously, pressurized buckling appears more consistent than its unpres-
surized counterpart. To quantify this behavior, a reliability assessment was carried out.

Table 5.2: Results of the Breusch–Pagan heteroscedasticity tests at dif-
ferent pressure levels.

Pressure [bar] BP p-value H0: Homoscedasticity

0 0.4550 Fail to reject
2 0.0770 Fail to reject
4 0.1781 Fail to reject

2+4 0.0015 Reject

As shown in Table 5.2, none of the individual pres-
sure levels satisfy the heteroscedasticity require-
ment for the coefficient of variation to be for-
mally applicable. The null hypothesis of constant
residual variance is rejected only for the combined
2 bar+4 bar dataset. CV values were therefore
computed for completeness and are reported in
Table 5.3, but comparisons across pressure levels
should be interpreted with caution. Nevertheless,
the CV results validate the interquartile trends: increasing pressure reduces the relative variability of the buck-
ling predictions, with CV decreasing monotonically across the considered pressure levels.

In the combined pressure case, the lowest CV values are obtained with the SPLA variants, followed by MGI and
SPLAOG, indicating that these imperfection-modeling strategies yield the most consistent structural response.
At the opposite end, the DFPA variants exhibit the highest variability. This lack of consistency is likely gov-
erned by the interaction between the DFPA-induced weld land imperfection field and the shell-specific weld
geometry, which will be further discussed in subsection 5.3.3.

Interestingly, the MPLA case using the unpressurized converged perturbation magnitude shows lower variabil-
ity (CV = 0.041) than the standard MPLA variant (CV = 0.058). This behavior aligns with the smaller dimple
amplitudes associated with the baseline convergence loads, which reduce stiffness degradation and yield more
uniform buckling loads across the structures.

Table 5.3: Coefficient of variation (CV) per method across pressure levels. Columns marked with * correspond to heteroscedastic data.

Method CV0 CV2 CV4 CV2+4*

SPLA 0.067 0.026 0.031 0.026
GNA 0.082 0.037 0.022 0.030
MGI 0.154 0.036 0.007 0.026
DFPA 0.179 0.172 0.143 0.150
MPLA 0.191 0.069 0.051 0.058
EIA 0.196 0.058 0.027 0.045

SPLAOG – 0.031 0.023 0.026
MPLAOG – 0.050 0.031 0.041
DFPAOG – 0.169 0.147 0.150

5.3.2. Coefficient of Concordance Analysis
Kendall’s W does not require assumptions on the underlying data distribution and can therefore be applied
directly. Unlike the coefficient of variation or ICC, it does not assess the absolute magnitude of the response -
only the rank ordering matters.

Firstly, the resulting coefficients per method are presented in Table 5.4. In this formulation, W measures how
consistently a given modeling approach ranks the structures across pressure levels—essentially, how stable the
relative buckling predictions remain as pressure increases.

The two most conservative approaches, DFPA and DFPAOG, show near-perfect agreement (W = 0.91). This in-
dicates that, for these methods, the relative ranking of the structures is almost unchanged across pressure levels
- pressure mainly scales the buckling loads but does not reorder the cylinders in terms of predicted buckling
strength. TheMPLAOG variant and the EIA approach followwithW= 0.78 andW= 0.73, respectively, implying
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moderate sensitivity to pressure changes while still maintaining a high degree of rank stability. MGI trails just
behind with W = 0.69, consistent with its higher variability, as both the magnitude and spatial character of the
measured imperfection fields differ between shells, leading to more frequent shifts in their estimated collapse
loads.

Table 5.4: Coefficient of concordance for all approaches across pressurization levels.

Method Kendall’s W

DFPA 0.91
DFPAOG 0.91

EIA 0.78
MPLAOG 0.73

MGI 0.69
MPLA 0.62
SPLAOG 0.62
GNA 0.51
SPLA 0.49

The lowest agreement is observed for SPLA (W = 0.49). This suggests that a single shallow local imperfection,
scaled only in amplitude, does not provide a uniform representation of the pressure-dependent buckling be-
havior across the cylinders. In this regime, the pressure effect becomes dominant, and the ranking tends to
align more closely with the geometrically perfect GNA response (W = 0.51), while the imposed perturbation
no longer governs the structural response consistently.

Kendall’s W was also calculated per structure to assess how consistently the modeling approaches estimate
collapse loads across pressure levels. Ideally, if the pressure–method interaction were independent of the barrel
design, each structure would exhibit an identical ordering of methods at all pressures. In this context, W
quantifies how stable the ranking of modeling approaches remains as pressure increases.

Table 5.5: Kendall’s W per structure, quantifying agreement between method rankings across pressure levels.

Structure Kendall’s W

TA01 0.97
TA07 0.97
TA09 0.94
TA03 0.86
ETTA1 0.61

The obtained results presented in Table 5.5 align well with the conclusions drawn from the IQR study. The
structures least sensitive to pressurization, TA01 and TA07, show the highest agreement across pressure levels
(W = 0.97), followed by TA09 (W = 0.94). TA01 includes additional stringers near the weld land, while TA07
and TA09 employ a picture-frame stiffener layout. In all three cases, the increased weld land stiffness reduces
the sensitivity of the buckling response to pressure-induced changes. For these cylinders, pressure primarily
scales the collapse load without altering the relative influence of the imperfection-modeling approaches, and
the ranking of methods is therefore preserved. TA03 shows lower agreement (W = 0.86), indicating that the
relative performance of the methods shifts as pressure increases, which has already been substantiated during
the interquartile analysis. The lowest agreement is obtained for ETTA1 (W = 0.61), confirming that this struc-
ture is most affected by pressure–structure interaction and the associated local deformation patterns.

For ETTA1, the normalized buckling loads from 2 bar were duplicated at 4 bar to maintain a balanced dataset,
since the shell could not be pressurized further without local yielding, and hence the ranking of the methods
is identical. Nevertheless, structure exhibits elephant-foot buckling - a mode dominated by global geometry
rather than amplitude-sensitive imperfections, and as a result, the normalized collapse loads are near-identical
across methods. Due to the small disparities between them, the method reshuffles the order extensively com-
pared to the non-pressurized case. The new ranking significantly varies from the first one, and despite the 4
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bar being identical to 2 bar, leads to reduced Kendall’s W relative to the other shells.

Overall, the analysis shows that the consistency of the modeling approaches is strongly structure-dependent,
withweld-reinforced configurations exhibitingmore uniform behavior acrossmethods. While some approaches
are inherently more rank-stable, the less conservative ones are more strongly influenced by the interaction be-
tween pressure and structural stiffness, leading to reduced agreement as the pressurization level increases.

5.3.3. ICC Analysis
The absolute reliability of the results was evaluated using the intraclass correlation coefficient. The ICC mea-
sures how consistently the modeling approaches predict the absolute collapse loads across shells and pressures.
Each value is reported together with a 95% confidence interval, which indicates the precision of the estimate
(Table 5.9). In several method-based cases, the intervals are wide, and the lower bounds extend into the negative
range—this reflects low statistical precision stemming from a small sample (15 data points) rather than “neg-
ative reliability” [52]. In contrast, the pressure-based ICC values exhibit much narrower intervals, primarily
due to the larger number of observations per pressure level (45 data points) [56]. Consequently, the ICC values
in this study should be interpreted as qualitative indicators of relative reliability, rather than strict statistical
limits, especially when the underlying assumptions are not fully satisfied. Similarly to Kendall’s W, for ETTA1,
the normalized buckling loads from 2 bar were duplicated at 4 bar to maintain a balanced dataset.

Table 5.6: AAssumption checks for ICC analysis: Breusch–Pagan (homoscedasticity) and Shapiro–Wilk (normality) tests.

Pressure [bar] BP p-value H0: Homoscedasticity SW p-value H0: Normality

0 0.4550 Fail to reject 0.4234 Fail to reject
2 0.0779 Fail to reject 0.0842 Fail to reject
4 0.1778 Fail to reject 0.0083 Reject

Table 5.7: Method-wise ICC assumption checks: Breusch–Pagan test for heteroscedasticity.

Method BP p-value H0: Homoscedasticity SW p-value H0: Normality

DFPA 0.7917 Fail to reject 0.0083 Reject
DFPAOG 0.8767 Fail to reject 0.0807 Fail to reject

EIA 0.1342 Fail to reject 0.7415 Fail to reject
GNA 0.0351 Reject 0.1529 Fail to reject
MPLA 0.2085 Fail to reject 0.1592 Fail to reject

MPLAOG 0.1504 Fail to reject 0.3383 Fail to reject
MGI 0.1209 Fail to reject 0.2610 Fail to reject
SPLA 0.1787 Fail to reject 0.0670 Fail to reject

SPLAOG 0.1448 Fail to reject 0.0942 Fail to reject

As outlined, the assumptions of homoscedasticity and normality required for ICC calculation were first eval-
uated. The results are presented in Table 5.6 for pressure-based ICC, and in Table 5.7 for method-based. Con-
sistent with the earlier coefficient of variation analysis, the data across pressure levels is not uniformly ho-
moscedastic, and the same behaviour is observable when inspecting individual methods. Likewise, the Shapiro–
Wilk test rejected normality for 4 bar cases and for the DFPA method. These tests already indicate how the
distribution of collapse loads evolves under increasing internal pressure.

The change in normality with pressure is directly related to the degree to which the collapse response remains
geometrically dominated. At 0 bar, the variability of the collapse load is broad and smooth, resulting in a high
Shapiro–Wilk p-value. With increasing pressure, the shell stiffens, and the response becomes less sensitive to
local geometric imperfections, reducing the spread of values, as visible in Figure 5.9 and Figure 5.10. At higher
pressures, this narrowing of the distribution is sufficient to suppress the tails, allowing the normality assump-
tion to fail.

For the distributed force perturbation approach, the loss of normality appears to arise from the relative struc-
tural performance of the shells under this loading rather than from variability in the method itself. As discussed
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previously, TA01 is the most resilient to the formation of the half-wave dents at weld lands owing to the pres-
ence of additional stiffeners. TA07 and TA09 feature the ‘picture-frame’ stiffener transition, where a stringer
runs adjacent to the weld land. This configuration improves their resistance to the DFPA-induced buckling
mode, though to a lesser extent than TA01. As shown in Figure 5.9,Figure 5.10, both TA07 and TA09 indeed
exhibit nearly identical performance.

By contrast, TA03 and ETTA1 employ a traditional tapered stiffener transition, where the first stiffener is
positioned at the end of the transition region. Based on this geometry alone, both would be expected to buckle
at comparatively lower loads, though this is not reflected in the results. The space shuttle external tank segment
performs significantly better, whereas TA03 persistently yields the lowest normalized buckling load across all
pressure levels for this imperfection type. The difference in performance is most likely due to the slenderness
difference 𝑅/𝑡𝑒𝑓𝑓 of 309.3 to 80.1 and possibly the article scale effect. As a result, the performance groups
form three distinct clusters: two shells (TA07 and TA09) with intermediate performance, one shell (TA03)
performing comparatively poorly, and two shells (TA01 and ETTA1) performing considerably better. This
clustering produces a skewed distribution rather than a symmetric one, which directly explains the observed
lack of normality for DFPA.

Table 5.8: ICC assumption checks excluding the 0 bar cases: Breusch–Pagan and Shapiro–Wilk tests.

Method BP p-value H0: Homoscedasticity SW p-value H0: Normality

DFPA 0.6119 Fail to reject 0.0083 Reject
DFPAOG 0.7166 Fail to reject 0.0807 Fail to reject

EIA 0.2862 Fail to reject 0.7415 Fail to reject
GNA 0.3857 Fail to reject 0.1529 Fail to reject
MPLA 0.5540 Fail to reject 0.1592 Fail to reject

MPLAOG 0.3980 Fail to reject 0.3383 Fail to reject
MGI 0.0559 Fail to reject 0.2610 Fail to reject
SPLA 0.7592 Fail to reject 0.0670 Fail to reject

SPLAOG 0.2084 Fail to reject 0.0842 Fail to reject

Theorigin of heteroscedasticity in GNA can be attributed to noticeable changes in variancewith pressure. A low
coefficient of concordance already showed that GNA is a pressure-sensitive method, and the structures exhibit
significant performance variability from unpressurized to 4 bar loading. When the Breusch–Pagan and Shapiro-
Wilk tests are repeated excluding the 0 bar baseline - results presented in Table 5.8, both homoscedasticity and
normality are obtained for all approaches.

Table 5.9: Intraclass Correlation Coefficient ICC(3,1) per method with and without the 0 bar condition.

Method ICC(3,1) 95% CI ICC(3,1) excl. 0 bar 95% CI excl. 0 bar

DFPA 0.90 [0.53–0.99] 0.89 [0.04–0.99]
DFPAOG 0.93 [0.63–0.99] 0.90 [0.11–0.99]

EIA 0.65 [0.00–0.97] 0.70 [-0.46–0.98]
GNA 0.07 [-0.37–0.85] 0.38 [-0.75–0.94]
MPLA 0.82 [0.29–0.99] 0.91 [0.15–0.99]

MPLAOG 0.71 [0.07–0.98] 0.83 [-0.18–0.99]
MGI 0.02 [-0.39–0.83] 0.09 [-0.86–0.90]
SPLA 0.76 [0.12–0.98] 0.79 [-0.29–0.98]

SPLAOG 0.62 [-0.04–0.97] 0.78 [-0.32–0.98]

The ICC per method (temporarily disregarding the assumption violation for DFPA) shown in Table 5.9 indicates
that MGI exhibits the lowest reliability (ICC = 0.03), and this remains the case even when the unpressurized
state is excluded (ICC = 0.09). This confirms that MGI predictions vary substantially with pressure and become
unreliable once pressurization stiffens the shell and partially suppresses the influence of the measured imper-
fection field. This behavior is noteworthy, given that MGI is typically regarded as the most accurate approach
for unpressurized analysis, as demonstrated on small-scale specimens by [77]. However, due to the strongly lo-
calized imperfection shape andmagnitude, despite strong evidence of imperfections’ signature pattern between
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the shells, at elevated pressure, the response becomes highly dependent on local shell behavior, reducing its
predictive robustness. Despite a relatively narrow spread in the IQR analysis, the corresponding performance
of structures shifts noticeably, as visible in Figure 5.9 and Figure 5.10. In this sense, MGI behaves similarly to
the geometric nonlinear analysis, which also shows poor reliability across cases (ICC ranging from 0.07 to 0.38).

At the opposite end, the MPLA and DFPA variants exhibit the highest reliability across the pressure levels. DF-
PAOG provides the most consistent predictions (ICC = 0.93) and performs slightly better than its per-pressure
variant (ICC𝐷𝐹𝑃𝐴 = 0.90). MPLA, when evaluated only for the pressurized states, also yields high reliability
(ICC = 0.82). For both considered cases, the remaining approaches show moderate reliability: SPLA ICC =
0.76-0.79, EIA ICC = 0.65-0.70, and SPLAOG ICC = 0.62-0.78.

When the unpressurized baseline is excluded, the reliability of both MPLA variants improves further, with the
per-pressure MPLA becoming the most reliable method (ICC = 0.91). The ICC for the DFPA variants decreases
slightly, but the analysis becomes valid, as both statistical assumptions are satisfied once the baseline is re-
moved. This marginal decrease may be linked to the visibly wider collapse-load spread at 2 bar relative to 4
bar.

Table 5.10: Intraclass Correlation Coefficient ICC(3,1) per pressure level.

Pressure [bar] ICC(3,1) 95% CI

0 0.72 [0.46–0.91]
2 0.88 [0.72–0.97]
4 0.93 [0.83–0.98]

Finally, the intraclass correlation coefficient was also evaluated per pressure level. In this formulation, the ICC
quantifies the reliability of all methods under a fixed internal pressure. The results in Table 5.10 mostly reaffirm
the trends already visible in the boxplots and do not introduce additional new insight. At 0 bar, the reliability
is only moderate, reflecting the large dispersion in collapse loads. With increasing pressure, the ICC rises to
good or excellent levels. This behavior is consistent with reduced imperfection sensitivity under pressurization.
Once the shell stiffens, the relative influence of the imposed imperfection shapes diminishes, leading to more
uniform predictions. However, the same pressure-induced narrowing of the collapse-load distribution leads
to the normality requirement failing at higher pressures. Consequently, the ICC values at 4 bar should be
interpreted with caution.

5.4. Discussion
In this work, several imperfect buckling-modeling strategies were applied to five cylindrical shells over three
internal pressure levels. The resulting response highlights a strong interaction between internal pressuriza-
tion and buckling behavior, which is highly structure-dependent and influenced by parameters such as shell
radius, skin stiffness, orthogrid layout, and weld land design. In general, the 2.4 m-diameter test articles ex-
hibit smaller pressure-induced performance gains than the 8.4 m Space Shuttle external tank segment. Among
shells of equal diameter, the magnitude of the pressure-induced stiffness improvement further depends on the
orthogrid pattern, stiffener height, skin thickness, and transition-region geometry.

Across all structures, the increase in collapse load between 0 bar and 2 bar is substantially larger than that
between 2 bar and 4 bar, indicating the presence of a pressure-effect threshold beyond which additional pres-
surization yields diminishing stiffening benefits. This trend is consistent with previously reported observations
for small-scale pressurized cylinders [77].

The following subsections evaluate the performance and reliability of each imperfection-modeling strategy in
light of these trends, with particular emphasis on the associated imperfection signatures and the statistical
reliability measures.

5.4.1. GNA Reliability
The geometric nonlinear approach - used as a benchmark of the performance, is inherently the least conser-
vative approach, producing the highest collapse loads for all shells. Simultaneously, it exhibits the lowest
reliability - both ICC and Kendall’s W confirm weak consistency and agreement across pressure levels. This is
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reflected in the wide spread of normalized buckling loads, indicating that GNA is strongly structure-dependent.

Despite this, comparison with unpressurized buckling tests for TA01 [42] and pressurised results from [58]
for ETTA1 suggests that the simplified GNA model may approximate the true buckling loads more closely
than some imperfect-shape methods, primarily due to modeling assumptions (listed in section 4.5) leading to
underestimating the structures stiffness. The method remains useful as a baseline but offers limited predictive
robustness in a pressurized environment.

5.4.2. EIA Reliability
The eigenmode imperfection approach, widely used in industry, shows moderate consistency (Kendall’s W =
0.73), suggesting that its shell-specific imperfection fields are only moderately influenced by increasing internal
pressure. The ICC values indicate moderate overall reliability.

This behavior reflects the method’s sensitivity to the interaction between pressure and structural stiffness.
Moreover, for some shells, the dominance of local eigenmodes over the global one in the linear buckling analysis
complicates the selection of an appropriate one. Furthermore, the choice of the reference thickness for mode
amplitude scaling significantly impacts the method’s effect on the structure’s stiffness. Lastly, EIA does not
reflect the imperfection signature associated with the manufacturing of the metallic segments - instead, it
results from the stiffness distribution.

5.4.3. MGI Reliability and Imperfection Signature Consistency
Themeasurements of the shells’ OMLs confirmed a strong association of manufacturingmethodwith the shell’s
radial displacement, validating that the imperfection signature fromwelding is present and impacts the buckling
performance for all considered structures. All shells exhibit weld land-dominated signatures (to a varying
degree), but their magnitudes differ substantially. The observed pattern for TA01 does not resemble the ones
observed for other test articles. Smaller shells were most likely manufactured at the same facility, roughly in
the same period, and yet exhibit different imperfection patterns and magnitudes. For TA03, the magnitude
of the radial deformation was not available in literature and thus was adapted from the other small articles’
measurements. The verification showed that, although it was a representative value, the assumed magnitude
was too large, leading to conservative buckling estimates. Further evidence is seen when comparing TA01 and
TA02 (built for combined axial and bending testing [83]) - Figure 5.14, which share the same orthogird design
yet display different imperfection patterns. The source of the imperfection for TA02 seems to be more related
to the forming phase of the manufacturing than the actual stir friction welding.

(a) Measured radial imperfections of TA01. (b) Measured radial imperfections of TA02.

Figure 5.14: Comparison of OML radial imperfections of TA01 and TA02, with identical grid pattern [83].

This highlights that knowing the imperfection signature is insufficient - its magnitude and spatial distribution
strongly influence the response, making MGI highly structure-specific.
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Statistically, MGI has one of the highest concordance measures (Kendall’s W) but very low ICC, driven by
significant changes in shell buckling performances across pressure levels. The IQR analysis shows significant
normalized buckling variability, except at 4 bar, where internal pressure nearly entirely suppresses the imper-
fection effect. The pressure effect leads to reaching collapse loads at the same level or even higher than those
obtained for GNA.This aligns with Sim et al. [77] findings, who reported that MGI may become unconservative
at higher pressures depending on the shell design and pressure range. High uncertainty and the need for actual
measurements of the designed specimen make this approach infeasible for the preliminary/detailed phases of
the development, with potential use only for qualification/verification.

Figure 5.15: Buckling performance comparison between the measured imperfections (MGI) and imposed radial imperfections (MGI-IS).

Nonetheless, this study relied on measured imperfections of the built shells, as all structures were physically
manufactured. In a real design environment, these data would not be available, and more generic imperfection
patterns would be required. To assess howmanufacturing variability influenced the analysis, a sensitivity study
was performed in which an identical imposed imperfection field was applied to all structures. The study was
limited to the 2.4-m shells due to their dimensional and manufacturing consistency. The radial imperfection
field was taken from TA09 (shown in Figure 5.7), as it was the most representative of the assumed signature,
exhibiting three distinct longitudinal half-waves at the welds and having the largest magnitude. The statistical
analysis was repeated with this sensitivity case included, but importantly, the newly obtained collapse loads
were not used for normalization. This prevented artificial bias, since the imposed imperfection pattern was
identical across the shells, and could lead to skewing data distribution. The comparison of normalized buckling
load spreads is illustrated in Figure 5.15.

(a) Buckling mode with the original imposed radial imperfections. (b) Buckling mode with the TA09 imposed radial imperfections.

Figure 5.16: Comparison of buckling mode of TA07 with different measured imperfections.

The imposed imperfection pattern reduces the shell performance more strongly than the original measure-
ments, as both the number of dents and their magnitude increase. At 0 bar, the difference between the actual
MGI and the artificial MGI-IS collapse loads ranged from −5.8% to −3.3%, decreasing gradually with pressure
to reach −2.8% to +2.5% at 4 bar. The largest deviation occurred for TA07, which collapse load (as the only
structure) increased notably under pressurization relative to its MGI baseline. This behavior is not fully under-
stood, as the measured OML imperfections for TA07 are narrower and shallower than those imposed. A closer
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inspection of the buckling modes at 2 bar (where the discrepancy is largest), shown in Figure 5.16, reveals a
fundamental mode change, including different half-wave numbers, locations, and amplitudes.

For the coefficient of variation across 2 and 4 bar, the imposed-pattern case gives the lowest scatter among all
methods, with a CV of 0.024, slightly outperforming the original MGI (CV = 0.026). As visible in Figure 5.15,
this reduction results primarily from the significantly smaller spread at 2 bar.

The copied imperfections result in a Kendall’s W of 0.62, lower than the original MGI, likely caused by the rank-
ing change of TA07. The intraclass correlation coefficient across all pressures is negative (ICC=−0.21, CI95%
=[−0.45, 0.67]). Since ICC(3,1) becomes negative only when 𝑀𝑆error > 𝑀𝑆rows, the result indicates that the
pressure-dependent variability dominates the structural variability, leading to a larger error. For the original
MGI, this error term is also large but slightly smaller, resulting in a very small yet positive ICC. It is plausible
that a larger set of shells would shift the value into a weakly positive range.

Together, these results show that MGI exhibits low reliability across the full pressure range. However, when the
0-bar condition is removed, the ICC increases to 0.72, substantially higher than the original MGI value (0.10).
This demonstrates that the MGI approach can appear reliable, but only when the imperfection effect remains
strong and uniform. Such conditions cannot be guaranteed in practice. Despite being nominally “equivalent”
to MGI in collapse magnitude, the subtle differences in collapse loads produced by MGI-IS lead to statistically
different reliability characteristics.

It is therefore difficult to draw firm conclusions about the mathematical reliability of the method. If a consistent
imperfection signature can be assumed for all structures — and reliably reproduced in future designs — the
method can demonstrate high reliability. Otherwise, if the imperfection pattern differs between shells, the
reliability quickly deteriorates.

5.4.4. SPLA & MPLA Reliability
The single and multiple perturbation approaches and their variants, with perturbation loads taken from the
unpressurized baseline convergence study, showed significantly different behaviors.

SPLA produces relatively high collapse loads—second only to GNA and MGI, but shows the lowest Kendall’s
W (0.49), indicating strong variation of the method’s influence across structures and pressures. The single per-
turbation dimple is highly sensitive to local shell stiffness and weld land geometry, and this sensitivity changes
with internal pressure. Nonetheless, SPLA maintains good absolute reliability (ICC).

MPLA shows the opposite trend, moderate concordance but excellent absolute reliability. It consistently pro-
duces collapse loads near the cross-method mean and is the only perturbation-based strategy that reproduces
the imperfection signature of all shells with reasonable accuracy (apart from MGI). However, its response is
strongly dependent on the magnitude of the converged perturbation. As demonstrated, some structures did
not exhibit a strong convergent behavior within the selected range of dimple amplitude-to-thickness ratio, par-
ticularly TA03, which recorded the highest normalized collapse loads despite lacking weld-reinforcement. The
convergence disturbance is governed by different phenomena. It is usually caused by one or more recorded
responses falling beyond the 3𝜎 interval due to the perturbation loads following a different convergence path.
The existence of these outliers was not fully studied, but it is also possible that they are influenced by the nu-
merical setting of the solver.

The simplified SPLA-OG and MPLA-OG variants, which use the unpressurized convergence load for all pres-
sures, track the behavior of their full counterparts closely and achieve higher Kendall’s W. Their reliability is
reduced compared to the standard methods because pressure-dependent stiffening is not reflected in the im-
perfection amplitude. Nevertheless, the approach has potential - it achieves collapse loads comparable to those
from full convergence studies while reducing computational cost.

Nevertheless, as reported by [77] for small-scale shells, both perturbation methods, after reaching a particular
pressure threshold, became unconservative in their results. Furthermore, the study confirmed the order of the
approaches in terms of magnitude of the collapse load, ranking the MPLA behind the SPLA and MGI.



5.4. Discussion 59

5.4.5. DFPA Reliability
The distributed force perturbation approach was introduced as a computationally efficient alternative to SBPA.
Although it reproduces SBPA-like buckling patterns, DFPA is significantly more conservative across all pres-
sure levels. This is partly due to the modeling assumptions - edge warping allowed and load-controlled analysis,
which are known to lower predicted collapse loads [88].

DFPA and DFPAOG consistently produce the lowest collapse loads, but they also yield the highest method con-
sistency (Kendall’s W) and the strongest absolute reliability. The collapse load remains heavily influenced by
shell design: reinforced weld land structures offer greater resistance to the localized loads, whereas conven-
tional weld land configurations lead to extremely conservative predictions.

The results confirm observations made by Sim et al. [77] that non-traditional imperfection methods are less
sensitive to pressure-induced stiffening. However, DFPA appears overly conservative relative to the other
approaches and should not be treated as the most accurate method for metallic launch-vehicle shells.



6
Conclusions and Recommendations

This thesis set out to compare the performance of several imperfection modeling buckling strategies across a
range of pressures for representative launch vehicle metallic propellant tank segments, to identify the most
relevant one for future use. Due to limited pressurized shell buckling test data, the currently used methods are
overly conservative, fail to leverage current high-precision manufacturing, and result in poor design selection
in the early stages of vehicle development.

An extensive literature study was conducted, establishing approaches that have been utilized in the past for
buckling assessment of launch vehicle structures, with potential application to the analysis of pressurized hard-
ware. These methods have been modified and adjusted for this work to account for internal pressure. The
imperfection modeling strategies are divided into those that aim to replicate the effects of manufacturing im-
perfections, called traditional imperfections, and those that rely on imperfect load transfer or distribution at
the boundary condition, referred to as non-traditional imperfections. The review identified the ideal structures
for the analysis, establishing that NASA’s Shell Knockdown Factor Project test articles are the most suitable
candidates, spanning nearly an entire feasible domain of launch propellant tank designs. The study revealed
that metallic propellant tank shells exhibit a common imperfection pattern, referred to as an imperfection sig-
nature, left by friction stir welding multiple curved tank panels into barrel segments. Simultaneously, newer
work showed that the weld land geometry itself dictates the buckling performance of shells more than the
imperfection signature.

The study led to the formulation of the following research question:

To what extent does the reliability of imperfection modeling approaches for pressurized metallic
stiffened launch vehicle propellant tank segments depend on the recreation of the imperfection sig-
nature?

Based on this question, the following hypothesis is proposed:

There exists an imperfection modeling approach that does not resemble the imperfection signature, but can provide
high reliability in the prediction of buckling behavior for pressurized cases.

Research Question Answer
The extensive analysis revealed several ambiguities in the relationship between reliability and imperfection-
modeling approaches.

Firstly, the reliability of a given method depends strongly on how reliability is defined. Depending on whether
relative agreement or absolute consistency is deemed more important, the results would change. Similarly,
whether reliability should reflect only the final collapse load or also the robustness of the intermediate model-
ing steps leads to different interpretations.

60
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In this study, agreement and consistency were treated as equally important, and the modeling procedure was
required to remain verifiable throughout the analysis chain. Under this definition, no method can be considered
universally reliable and accurate across all pressure levels.

Methods closely tied to shell stiffness, design features, or manufacturing-related imperfections tend to be less
consistent. Their performance becomes highly dependent on the specific structural configuration, increas-
ing scatter and reducing predictability. At 0 bar, the shell is susceptible to local geometric details, whereas
increasing pressure progressively suppresses radial imperfections and reduces the dependence on the exact
imperfection signature. When the initial imperfections are significant or their magnitude scales with pressure,
their influence persists longer, making the approach appear more reliable. However, the agreement observed
across shells under pressure remains configuration-dependent, making the consistency–agreement relation in-
herently ambiguous.

Signature-reproducing approaches - MPLA and MGI, show mixed behavior. MGI exhibits reduced reliability
because every measured shell is unique and reflects structure-specific variability. If the imperfection map ap-
plied were always identical, then the reliability would increase, but the pattern obtained can not be guaranteed
to match the prediction, based on the current evidence. MPLA, which aims to capture the dominant effect
of weld centerline indentations through multiple perturbation locations, is less affected by pressure but still
limited by a convergence criterion that can behave poorly for specific configurations.

The remaining methods that do not attempt to recreate the signature - SPLA, EIA, and GNA, either become
overly sensitive to pressure, resulting in uncorrelated performance between shells, or remain inherently depen-
dent on shell stiffness, producing significant performance variation across different designs. The loading-type
imperfection in DFPA is the only approach that does not modify the shell stiffness by altering its geometry, and
it therefore benefits cleanly from pressure stiffening, showing stable improvements with increasing pressure.

Overall, MPLA and DFPA become the most reliable in pressurized cases, yielding high Kendall’s W, strong ICC
values, and consistent trends across shells. However, MPLA’s convergence behavior limits its reliability (likely
inaccurate), while DFPA remains highly conservative and dependent on the weld land design.

Consequently, the hypothesis is both supported and contradicted depending on the interpretation. When ac-
curacy and reliability are considered together, MPLA, which partially recreates the imperfection signature,
offers the best balance, yielding collapse results between conservative DFPA and the highly overconservative
remainingmethods. If only reliability is prioritized, DFPA becomes the preferred option despite its conservative
bias.

Recommendations for future work
The current study focused almost entirely on numerical reliability, given the extremely limited validation op-
tions available to assess the accuracy of the considered methods. Therefore, the most important recommenda-
tion is to perform a dedicated buckling test campaign at representative pressure levels and structural scales.
Experimental data would allow direct comparison with numerical predictions, enable the calculation of pres-
surized knockdown factors, and provide a far deeper understanding of method reliability and the structure–
approach interaction.

Secondly, although this work concentrated on metallic shells, the growing adoption of composites in launch
vehicles makes it highly relevant to investigate imperfection-modeling strategies for pressurized CFRP tanks.
As reported in the literature, a composite shell’s sensitivity to specific imperfection fields depends strongly on
the laminate configuration - understanding how internal pressure modifies this relationship would be valuable.

Regarding the scope of this work, the study could be extended to additional shells with different stiffener
layouts—for example, the isogrid cylinders ITA01 and ITA02 from the SBKF programme [43]. To determine the
effect of weld land effects under pressure, the study can be extended to include a seamless integrally machined
cylinder, such as STA8.1 [69], which has been used in the unpressurized studies on the subject. Moreover, tank
designs with non-integrally machined stiffeners should be included in future studies, as these designs might
exhibit different imperfection signatures, influenced by sets of stiffener welds. Overall, extending the work
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with multiple manufacturing and stiffening concepts would reveal if the discovered trends and observations
are universal or specifically hold for tank designs assumed in the work.

In terms of general pressure-dependent behavior, it would be beneficial to identify which structural parameters
specifically control the extent of the stabilizing effect, which, as this study demonstrated, varies substantially
between shells. In addition, the threshold beyond which further pressurization no longer increases the collapse
load warrants detailed investigation. Small-scale tests conducted by Sim et al. [77] have already suggested
such a limit, but new test articles would likely be required, since SBKF cylinders reach skin pocket yielding at
roughly 5 bar.

With respect to numerical procedures, further work should explore the use of dynamic implicit analysis in
pressurized buckling. Alternatives such as quasi-static dynamic applications should be examined, and a sys-
tematic study should aim to determine the optimal non-default HHT damping parameter. In the same context,
the single boundary perturbation approach should be reincluded and evaluated under realistic pressure levels
and dynamic-implicit schemes, since previous studies used only low-pressure static Newton–Raphson analyses
[76, 77].

The distributed force perturbation approach proposed in this thesis should also be refined, particularly in opti-
mizing the perturbation width, as in this work, it was derived solely on one structure. Furthermore, alternative
boundary conditions should be explored in greater detail to identify ways to reduce shell warpage at the edges
and, consequently, increase the collapse loads of the analyzed shells.

Finally, the statistical analysis would greatly benefit from larger datasets. The intraclass correlation coefficient,
in particular, operates at the limit of stability with the small sample size available here. Increasing at least the
number of pressurization levels would significantly improve the robustness and precision of the confidence
intervals.
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A
SBKF Shells Data

Table A.1: Summary of reported buckling loads for all structures.

Structure Method lbf/in lbf N Source Comments

TA01
Linear Buckling 2406.0 7.24 × 105 3.22 × 106 [35] p.6
GNA 2368.2 7.14 × 105 3.18 × 106 [35] Figure 16, p.29
MSI Buckling 2017.7 6.09 × 105 2.71 × 106 [35] Figure 16, p.29
Test Buckling – 6.89 × 105 3.06 × 106 [42] p.47

TA03
Linear Buckling 2416.0 7.29 × 105 3.24 × 106 [35] p.9
GNA 2613.0 7.88 × 105 3.51 × 106 [35] p.10
MSI Buckling 2446.2 7.38 × 105 3.28 × 106 [35] Figure 20, p.33
Test Buckling – – – – No experimental data available

TA07
Linear Buckling – – – – Not reported
GNA – 5.30 × 105 2.36 × 106 [43] Calculated using MSI’s (inc. 4.5%), p.20.
MSI Buckling – 5.54 × 105 2.60 × 106 [43] p.14
Test Buckling – 6.47 × 105 2.88 × 106 [43] p.13

TA09
Linear Buckling – – – – Not reported
GNA – 5.85 × 105 2.60 × 106 [69] Table 2, p.7
MSI Buckling – 5.09 × 105 2.26 × 106 [69] Table 2, p.7
Test Buckling – – – – No experimental data available

ETTA1

Linear Buckling 565.6 5.86 × 105 2.61 × 106 [35] p.11
GNA 740.0 7.68 × 105 3.41 × 106 [35] p.11
MSI Buckling 513.7 5.33 × 105 2.37 × 106 [35] Figure 29, p.42
MSI Buckling at 1 psi 761.5 7.89 × 105 3.51 × 106 [35] Figure 32, p.45
Test Buckling at 1 psi – 8.01 × 105 3.56 × 106 [34] p.9-p.10

Table A.2: Geometry parameters of the investigated shells. ETTA1 height was estimated from a plot.

Structure 𝑡skin [in] 𝑅 [in] 𝐻 [in] ℎs [in] ℎr [in] 𝑡s [in] 𝑡r [in] 𝑏s [in] 𝑏r [in] 𝐿 [in] Sources

TA01 0.10 48.0 0.400 0.300 0.300 0.100 0.100 4.000 4.000 68.750 [35, 43]
TA03 0.06 48.0 0.723 0.663 0.663 0.065 0.060 1.813 4.314 68.750 [35, 43]
TA07 0.09 48.0 0.440 0.350 0.350 0.105 0.100 2.364 4.400 68.750 [43]
TA09 0.07 48.0 0.570 0.500 0.500 0.065 0.065 2.009 4.900 68.750 [43]
ETTA1 0.09 165.0 1.050 0.960 0.960 0.090 0.100 10.800 15.320 237.000 [35, 43, 58, 95]

Table A.3: Weld land and transition region parameters of the investigated shells.

Structure 𝑤weld [in] 𝑡weld [in] 𝑤trans. (axial/circ) [in] 𝑡trans. [in] Sources

TA01 1.26 0.250 1.016 / 1.688 0.160 [35, 42, 43]
TA03 1.26 0.300 1.530 / 1.333 0.100 [35, 43]
TA07 1.26 0.200 2.364 / 0.666 0.145 [43]
TA09 1.27 0.200 2.009 / 0.774 0.135 [43]
ETTA1 2.00 0.325 3.0 / 3.0 (assumed) 0.208 [37, 95]
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B
Effective Thickness Calculations

The membrane and bending stiffness’s for isotropic cylinders with rings and stringers were defined in [86] as
presented in Equation B.1, Equation B.2.

𝐴11 =
𝐸𝑡

1 − 𝜈2 +
𝐸𝑠𝐴𝑠
𝑏𝑠

𝐴22 =
𝐸𝑡

1 − 𝜈2 +
𝐸𝑟𝐴𝑟
𝑏𝑟

(B.1)

𝐷11 =
𝐸𝑡3

12(1 − 𝜈2) +
𝐸𝑠𝐼𝑠
𝑏𝑠

+ 𝑧2𝑠
𝐸𝑠𝐴𝑠
𝑏𝑠

𝐷22 =
𝐸𝑡3

12(1 − 𝜈2) +
𝐸𝑟𝐼𝑟
𝑏𝑟

+ 𝑧2𝑟
𝐸𝑟𝐴𝑟
𝑏𝑟

(B.2)

The parameters E and 𝜈 refer to material Young’s modulus and posisson ratio respectively. The subscript s in
variabels refers to the stringer properties, wheras r to ring ones. Variables 𝑡, 𝑡𝑠, and 𝑡𝑟 corressponds to cylinder,
stringer and ring thciknesses. Moments of inertia 𝐼𝑠 and 𝐼𝑟 are dependent on the heights ℎ𝑠, ℎ𝑟 of the stiffeners.

Figure B.1: Stiffened shell geometry with indicated centroid distances [87].

As the stiffeners are integrally milled the rings and stringers stiffenss moduli - 𝐸𝑠 and 𝐸𝑟 , are identical as the
cylidner stifness 𝐸. The distance of stiffener centroid from reference surface 𝑧 - (as indicated in Figure B.1 ), is
a sum of half the acrage thickness and the stiffener height. All relations (listed in Equation B.3) were adopted
from [94].
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𝐴𝑠 = ℎ𝑠 ⋅ 𝑡𝑠
𝐴𝑟 = ℎ𝑟 ⋅ 𝑡𝑠

𝐼𝑠 =
1
12ℎ

3
𝑠 𝑡𝑠

𝐼𝑟 =
1
12ℎ

3
𝑟𝑡𝑠

𝑧𝑠 = −
ℎ𝑠 + 𝑡
2

𝑧𝑟 =
ℎ𝑠 + 𝑡
2

(B.3)



C
Shells’ Convergence Study
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TA01— SPLA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.1: Convergence behavior of TA01 for SPLA.
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TA03— SPLA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.2: Convergence behavior of TA03 for SPLA.
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TA07 — SPLA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.3: Convergence behavior of TA07 for SPLA.
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TA09 — SPLA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.4: Convergence behavior of TA09 for SPLA.
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ETTA1 — SPLA

(a) 0 bar

(b) 0.06895 bar

(c) 2 bar

Figure C.5: Convergence behavior of ETTA1 for SPLA.
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TA01— MPLA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.6: Convergence behavior of TA01 for MPLA.
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TA03— MPLA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.7: Convergence behavior of TA03 for MPLA.
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TA07 — MPLA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.8: Convergence behavior of TA07 for MPLA.
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TA09 — MPLA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.9: Convergence behavior of TA09 for MPLA.
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ETTA1 — MPLA

(a) 0 bar

(b) 0.06895 bar

(c) 2 bar

(d) 2 bar

Figure C.10: Convergence behavior of ETTA1 for MPLA.
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TA01— DFPA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.11: Convergence behavior of TA01 for DFPA.
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TA03— DFPA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.12: Convergence behavior of TA03 for DFPA.
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TA07 — DFPA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.13: Convergence behavior of TA07 for DFPA.
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TA09 — DFPA

(a) 0 bar

(b) 2 bar

(c) 4 bar

Figure C.14: Convergence behavior of TA09 for DFPA.
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ETTA1 — DFPA

(a) 0 bar

(b) 0.06895 bar

(c) 2 bar

Figure C.15: Convergence behavior of ETTA1 for DFPA.



D
Shell Knockdown Factor Calculations

In this work, two different knockdown-factor formulations were employed. The first is the original knockdown
approach from the revised NASA SP-8007 buckling monograph [87]. In this formulation, the knockdown factor
consists of two components: a baseline term for the unpressurized case, computed using Equation D.1, and an
additional pressure-dependent increment, obtained from Figure D.1.

For the baseline knockdown factor, the parameter𝜙 is evaluated for an orthotropic cylinder using Equation D.2.
The corresponding bending and membrane stiffness calculations are detailed in Appendix B.

𝛾 = 1 − 0.901 (1 − 𝑒−𝜙) (D.1)

𝜙 = 1
29.8

⎡
⎢
⎢
⎣

𝑟
4√𝐷11𝐷22
𝐸11𝐸22

⎤
⎥
⎥
⎦

1
2

(D.2)

The SP-8007 monograph does not provide pressurization-dependent knockdown data for orthotropic cylinders.
Consequently, the isotropic-cylinder pressure correction curve shown in Figure D.1 was adopted. To account
for the presence of internal stiffeners in the definition of the pressure parameter 𝑝𝑟

2

𝐸𝑡2 , the skin thickness 𝑡 was
replaced by the effective skin thickness 𝑡eff.

Figure D.1: Pressure-dependent knockdown increment Δ𝛾 from SP-8007 [87].

The final knockdown factor is obtained by summation of the baseline and pressure-dependent components, as
shown in Equation D.3. The buckling load is then calculated by multiplying the resulting knockdown factor by
the linear eigenvalue buckling load for the unpressurized case, and by the geometrically nonlinear bifurcation
load for pressurized cases, since LBA with internal pressure yields negative eigenvalues.

𝐾𝐷𝐹SP-8007 = 𝛾 + Δ𝛾 (D.3)
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Figure D.2: Γ2 values for different manufacturing classes [37].

The second approach is based on the SBKF project methodology, which is more elaborate, as both the base-
line knockdown and the pressure increment are curve-dependent. In this study, Manufacturing Class 1 was
selected, as the investigated shells are considered representative of state-of-the-art structures. The detailed-
design formulation, based on the linear bifurcation buckling load, was adopted (Equation D.4).

𝑃detailed design = Γ2𝑃bif (D.4)

The knockdown factor Γ2 was obtained from the curves presented in [37], but was conveniently approximated
using the analytical fit proposed by [94], given in Equation D.5.

Γ2Class 1 = 0.867 − 0.0159√
𝑅
𝑡eff

+ 0.000340 𝑅𝑡eff
(D.5)

For pressurized buckling, a pressure-dependent modifier ΔΓ is added to the knockdown factor, analogous to the
Δ𝛾 correction in SP-8007. This increment is estimated directly from Figure D.3, which provides data only up to
1 psi. The resulting pressurized buckling load is computed using Equation D.6, with the GNA load obtained in
this study.

Figure D.3: ΔΓ values for different pressure levels [37].

𝑃press
detailed design = (Γ2 + ΔΓ)(1 − Γ2)𝑃

press
GNA (D.6)



E
Buckling Loads

Table E.1: Buckling loads for TA01 across pressure levels.

𝑁GNA [N] 𝑁MGI [N] 𝑁SPLAOG [N] 𝑁SPLA,𝑃=2338 [N] 𝑁MPLAOG [N] 𝑁MPLA,𝑃=3173 [N] 𝑁DFPAOG [N] 𝑁DFPA,𝑃=12.53 [N] 𝑁EIA [N]

0 bar 2.999×106 2.531×106 2.020×106 2.020×106 1.521×106 1.521×106 1.470×106 1.470×106 1.633×106

2 bar 3.580×106 3.581×106 3.292×106 3.299×106 2.979×106 2.829×106 2.498×106 2.422×106 2.997×106

4 bar 3.864×106 3.891×106 3.728×106 3.669×106 3.496×106 3.343×106 2.858×106 2.766×106 3.693×106

Table E.2: Buckling loads for TA03 across pressure levels.

𝑁GNA [N] 𝑁MGI [N] 𝑁SPLAOG [N] 𝑁SPLA,𝑃=6065 [N] 𝑁MPLAOG [N] 𝑁MPLA,𝑃=6415 [N] 𝑁DFPAOG [N] 𝑁DFPA,𝑃=11.8 [N] 𝑁EIA [N]

0 bar 2.921×106 2.622×106 2.716×106 2.716×106 2.356×106 2.356×106 1.123×106 1.123×106 2.612×106

2 bar 4.605×106 4.654×106 4.607×106 4.612×106 4.488×106 4.481×106 2.057×106 2.020×106 4.633×106

4 bar 5.870×106 5.851×106 5.746×106 5.765×106 5.577×106 5.575×106 3.104×106 3.101×106 5.844×106

Table E.3: Buckling loads for TA07 across pressure levels.

𝑁GNA [N] 𝑁MGI [N] 𝑁SPLAOG [N] 𝑁SPLA,𝑃=2854 [N] 𝑁MPLAOG [N] 𝑁MPLA,𝑃=3887 [N] 𝑁DFPAOG [N] 𝑁DFPA,𝑃=11.25 [N] 𝑁EIA [N]

0 bar 2.832×106 2.320×106 2.113×106 2.113×106 1.594×106 1.594×106 1.161×106 1.161×106 1.847×106

2 bar 3.731×106 3.460×106 3.602×106 3.514×106 3.299×106 3.274×106 2.082×106 1.991×106 3.365×106

4 bar 4.394×106 4.184×106 4.227×106 4.229×106 3.960×106 3.939×106 2.369×106 2.303×106 4.098×106

Table E.4: Buckling loads for TA09 across pressure levels.

𝑁GNA [N] 𝑁MGI [N] 𝑁SPLAOG [N] 𝑁SPLA,𝑃=2854 [N] 𝑁MPLAOG [N] 𝑁MPLA,𝑃=4545 [N] 𝑁DFPAOG [N] 𝑁DFPA,𝑃=10.78 [N] 𝑁EIA [N]

0 bar 2.463×106 1.986×106 2.095×106 2.095 1.617×106 1.617×106 1.142×106 1.142×106 1.995×106

2 bar 3.931×106 3.717×106 3.630×106 3.710×106 3.569×106 3.525×106 2.073×106 1.967×106 3.647×106

4 bar 4.656×106 4.595×106 4.557×106 4.539×106 4.332×106 4.315×106 2.613×106 2.478×106 4.507×106

Table E.5: Buckling loads for ETTA1 across pressure levels.

𝑁GNA [N] 𝑁MGI [N] 𝑁SPLAOG [N] 𝑁SPLA,𝑃=4665 [N] 𝑁MPLAOG [N] 𝑁MPLA,𝑃=4961 [N] 𝑁DFPAOG [N] 𝑁DFPA,𝑃=12.7 [N] 𝑁EIA [N]

0 bar 3.427×106 2.114×106 3.105×106 3.105×106 1.458×106 1.458×106 1.898×106 1.898×106 3.513×106

1 psi 3.807×106 3.008×106 3.718×106 3.693×106 2.648×106 2.653×106 2.387×106 2.480×106 3.868×106

2 bar 6.921×106 6.850×106 6.877×106 6.876×106 6.880×106 6.882×106 4.577×106 4.561×106 6.879×106
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