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Chapter 1

Introduction

In recent years, there has been an explosion efest in virtual reality systems. Virtual reality
(VR) is relevant to many applications involving @aatsualization, communication, and immersive
entertainment. In virtual reality concepts, a useepresented by a virtual self or virtual represe
tative 'living' or existing in a virtual world. Tienand place boundaries are no longer present. A
simple example of virtual presence is 'always-aoinfisg on the internet combined with a user
homepage. Physical mobility of ‘on-line' end-usateoduces a new dimension to virtual reality
and virtual presence.

A similar area, with perhaps even more commergplieations than virtual reality, is augmented
reality (AR). Whereas in VR systems the user plajsicemains in place and moves only virtually,
in AR systems the user moves in the physical wthrdd is augmented with virtual objects and
scenes. When physical mobility is added, it impiies the users experience in addition a dynamic
physical environment, meaning that:

« the virtual environment can influence the behawiod decisions taken in the physical world

» the changing physical environment and the usefgbior therein can influence the virtual
environment of the user and the services desirdtbanffered in this environment.

Augmented reality systems differ from virtual reéalsystems in that the user is not completely
immersed in the virtual environment. In augment=lity systems, a heads-up display is used to
superimpose computer-generated graphics on this wsew of the real world. The superimposed
images supplement the information available tauger in the natural scene. For example, an aug-
mented reality system could be used to help a ewamice technician find the appropriate adjust-
ment points in a complicated piece of machineryodrelp a surgeon by superimposing CT or MRI
data on a patient’s body, essentially giving a sangX-ray vision.

Despite its potential, the development of functigkia systems faces several technical challenges.
In most AR applications, it is crucial that the gyatic images are registered precisely with the rea
world. The degree of accuracy required dependsienask, but in many cases the requirements
are quite stringent. Furthermore, many tasks redaige motions of the user’s head with high
accelerations, which place certain demands ondhsass that track the head motion. Finally, in
nearly all cases, display updates must occur widtemcy of only a fraction of a second. These
technical challenges have hampered the developofietdble, inexpensive AR systems for pre-
cise applications.

Inertial measurement components, which sense értmeslational acceleration or angular rate, are
being embedded into common user interface devices frequently. Examples include the VFX1
virtual reality headtracking systems[l], the Gyroole (a wireless 3D pointer)[2], and
Microsoft's SideWinder tilt-sensing joystick[3]. 8u devices hold a number of advantages over
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other sensing technologies such as vision systacheagnetic trackers: they are small and robust,
and can be made wireless using a lightweight r&eiguency link.

However, in most cases, these inertial systempuatréogether in a very ad hoc fashion, where a
small number of sensors are placed on known fixed,aand the data analysis relies heavily on a
priori information or fixed constraints. This reqgs a large amount of custom hardware and soft-
ware engineering to be done for each applicatioti, httle possibility for reuse.

The pose of the head is defined as the positioroaedtation of the head in a 3D world. There are
two aspects to the problem of head-tracking: nedegensing of the head pose and absolute sensing
of the head pose. Relative sensing can be perfobyatertia tracking systems based on acceler-
ometers and gyroscopes and use the human heagirasame of reference. Although these sys-
tems can be made fast, they usually build up ematiser quickly. Consequently they must be
calibrated using the world/earth as a frame ofregfee. For this, the pose must be sensed with the
earth as a frame of reference. Systems that aectalulo this are magnetometers, that sense the
earth’s magnetic field, inclinometers, that seihsedarth’s gravitation, computer vision based sys-
tems, that are able to measure features in there&siield of view, and GPS systems that are based
on line of sight to satellites with fixed orbitsoand the earth.

This thesis proposes to solve the problem of heaking for augmented reality systems based on
optical see-through head-mounted displays, by dgual a compact, lightweight, low power, six
degrees-of-freedom inertial measurement unit (INMB§ed on gyroscopes and accelerometers, for
relative positioning, combined with an absoluteifiasing framework based on the sensing of the
earth’s magnetic and gravitation fields, GPS anchmater vision. The system should be light,
small and should easily be incorporated into almasgtinterface or device so that AR systems and
applications can be simply and quickly developee ystem software should run on standard
computer hardware with standard operating system,im the near future inexpensive back or
waist mounted versions should be easily developed.

1.1 Previous Work

Current augmented reality systems differ from eabler primarily in three ways: the display tech-
nology used to overlay synthesized graphics orutte’s field of view, the sensing technology
used to track the user’s head, and the calibratiethod used to determine system parameters.

Many research projects in augmented reality hagd optical see-through head-mounted displays
[5], [7], [9]. These displays work by optically ceming light from the environment with the over-
lay images. The combination is done using lensaé;siivered mirrors, or other optical compo-
nents. The principal advantage of this type of ldigfis that the user’s view of the real world is
substantially unobstructed. Consequently, the kigera high resolution, high contrast view of the
workspace. One disadvantage of optical see-thrbegld-mounted displays is that the optics used
to combine the images typically have a narrow falgiew, and also somewhat decrease the light
intensity reaching the user’s eyes. Another disathge is that the software in the augmented real-
ity system has no access to the combined imagarélacene plus overlay), so correcting regis-
tration errors and establishing system calibragigndifficult.

A second category of display system for augmergality is a video-based display, which is typ-
ically used in medical augmented reality appliaagi¢l0]. In this type of display, the user views
the workspace through one or two video cameras;iwimay be head mounted. The real and syn-
thesized images are merged as video signals, asémqed to the user through a video display
which occludes the user’s natural view of the esrvinent. While this type of display provides
flexibility in video composition strategies, and/igs the underlying software access to the com-
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bined images, the workspace view lacks the fidalftypatural vision, and the user’s view of the
workspace is from the perspective of the systeraosithmera(s), which generally does not match
that of the user’s eye(s).

Four types of sensors have traditionally been @iseldead tracking in augmented reality applica-
tions. Mechanical sensors measure the positioheotiser's head using an attached linkage. This
type of sensor is typically very accurate, and et the bandwidth requirements of augmented
reality, but is often somewhat cumbersome, andicesthe user’s range of motion. Magnetic posi-
tion sensors (Polhemus, etc.) have seen wide ugduial reality applications, and limited use in
augmented reality [9], [7]. These sensors are iapgwe and readily available, but data rates are
typically slow, and their accuracy suffers in apations where a large working volume is required,
or where there are nearby ferromagnetic objects assteel wall studs. Acoustic position sensors
are inexpensive, fast, and accurate, but lateragases with distance between the acoustic trans-
mitter and receiver [11]. Optical sensors usinguwidameras have the potential to be inexpensive,
fast, accurate, and offer large working volume.dstuinately, systems to date require either large
arrays of markers, such as LEDs, to be install@deatise locations in the workspace, or use custom
camera hardware [5], or have a limited working wadu[9]. One disadvantage of optical position
sensors is that there must be an unobstructedflisight between the sensor and a target [11].

Inertial measurement devices have a very evenitoty. The field began with motion-stabilized
gunsights for ships and was later driven by guidasystems for aircraft and missiles (dating back
to the V2 rocket), providing a large body of wookdraw on. Because of the relatively large cost,
size, power and processing requirements of thesersg, they were previously not appropriate for
human-computer interfaces and consumer applicatldowever, recent advances in micro-elec-
tromechanical systems (MEMS) and other microfatincatechniques have led to lower costs,
more compact devices, while at the same time, thegssing power of personal computers has
been increasing exponentially. Therefore, it is mpmssible for inertial systems, which previously
required large computers and large budgets, tdiread-users. The Intersense[16] inertial-acous-
tic tracking system is an example of a commeraiatipct exploiting this new market.

There is currently a number of six degree-of-frevdystems commercially available, and several
of them are targeted at either the high-end userfate market or the motion capture market. The
Ascension Technology miniBird 500[17] magnetic kmacis the smallest available at 10mm x
5mm x 5mm making it particularly easy to use. Hogrethe closed-loop nature of the sensor
requires that it be wired, and the base unit idyf@umbersome. The Intersense 1S-600 inertial-
acoustic system[16] offers excellent accuracy evegry large range, but requires a fair amount of
infrastructure for the sonar grid (used in posittoacking). Crossbow Technologies offers the
DMU-6X inertial measurement unit[18] which has die& accuracy, but is quite large (> 600
cm3). Also, all these systems are fairly expensive mmae matches our specification in terms of
ease of use (small, wireless, low-cost, low pov@rgpter 1.3].

Inertial tracking systems such as Intersense’&m@oe/n as strapdown systems, because the sensors
are fixed to the local frame of the instrumentepgtob Many of the early military applications were
closed-loop systems, where the inertial sensorgramented on a controlled gimbaled platform
which attempts to remain aligned with the worldvieg regardless of the motion of the body. Such
systems can operate over a much smaller dynanger@amd therefore provide higher accuracy, but
they also tend to be fairly large and costly. Themes for low-cost human interface applications,
open-loop strapdown systems are more appropriate.

Recent uses of inertial sensors in major produat® hended toward the automotive sector. The
first major application of MEMS accelerometers vegsa cheap, reliable trigger mechanism for
airbag deployment and they have since been apgliadtive suspension control, as well as other
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applications. Gyroscopes are most often used twagedurn rate information to four-wheel steer-
ing systems to help the front and rear tires haatehing speed. They have very recently been used
to provide heading information for in-vehicle trauk systems (which obtain position from the
speedometer or a Global Positioning System unit).

1.2 Problem Formulation and Requirements Outline

Augmented Reality (AR) differs from Virtual RealifyR) in the sense that virtual objects are ren-
dered on a see-through headset. As with audio heags, which make it possible to hear sound
in private, partly in overlay with the sounds frdme environment, see-through headsets can do that
for visual information. The virtual objects areawerlay with the real visual world. It can also be
used to place visual information on otherwise engéges, such as white parts on the walls of a
museum. The 3D vector of position and orientateneferred to as pose. Knowing the pose of
those walls and the pose of a person's head, Jdstialcan be perfectly inlayed on specific spots
and kept there while the head is moving. To loek\tiitual objects in the scene, the head move-
ments must be sampled with such a frequency arithspacuracy that the rendering of virtual
images does not cause motion sickness. AugmentaitdyRe/stems can be applied in Tour Guid-
ing, Remote Maintenance, Design Visualization aath€s.

Mobile augmented reality [4] is a relatively newdantriguing concept. The ability of augmented
reality to present information superimposed onwew on the world opens up many interesting
opportunities for graphical interaction with ouretit environment. Combining this with mobility
further increases the potential usage of this telciyy for direct daily use.

However, the technical problems with mobile augredneality are just as great. As with other
head-mounted display systems, augmented-realipfagis also require an extremely high update
rate. Simple head movements may, in short times gse to significant changes in viewing posi-
tion and viewing direction. The virtual informati@ssociated with objects in the scene and dis-
played within the viewing window will then have lbe updated to maintain the proper alignment
with the objects in the real world. The viewpoihtiages will therefore have to be tracked and fed
back to the display system, in order to re-rendenirtual information in time at the correct posi-
tion.

No research has been reported yet on the effegitsenfon virtual environment users, although it
seems obvious that jitter which is visible will vee the illusion of presence, and may even con-
tribute to simulator sickness if it is too extreriiée threshold of being detectable is not known,
although it would be a very easy experiment to cahdFrom experience, it seems that jitter of
0.05° r.m.s. in orientation and 1 mm r.m.s. in posiis generally unnoticeable in an HMD with
magnification of 1, but becomes fairly visible imigual binoculars simulator or virtual set camera
tracker with 7X zoom. Note that when viewing distairtual objects, tracker position jitter
becomes irrelevant, and orientation jitter mulaglioy zoom factor is all that matters. For viewing
close objects, translational jitter becomes dontinkins an interesting question whether we are
sensitive to perceived jitter in world space oreser space (pixels), or some combination. If the
former scenario is the case, than we might be mdggically more forgiving of an object jittering

2 pixels at 1 meter apparent depth (4 mm in wgelts) than an object jittering 1 pixel at 10 meters
apparent depth (2 cm in world space). This agaamisasy experiment. Other factors which affect
the perception of jitter are display resolution arigkther or not the graphics are anti-aliased. Sum-
marizing, we may say that the alignment criterighidor accurate positioning and for time lag are
extremely high.
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Not all AR systems require every virtual objecb® precisely registered on a real object. Some
applications consists of displaying virtual objetttat appear to be floating in mid-air within the
user’s view of the real world. This is useful foRAyaming, in which virtual beasts might jump in
through the windows and attack the player, or f@ared AR visualization, in which a 3D model or
dataset might hover above a table while multipleigpants view it from different angles. In this
type of applications precise registration to tharast mm or even cm level may not be required.
Thus a slight spatial distortion such as a systienadiiset or nonlinearity may be less noticeable,
but sensitivity to latency is probably nearly tlsan®. The threshold for noticing latency in see-
through display modes is thought to be lower thanvideo see-through immersive displays
because there are real objects having zero latg@sibje for comparison. On the other hand, the
unconscious effects of latency such as decreassdipece or simulator sickness are probably worse
in video see-through because the whole world lasgserceived stability.

1.3 System Concept

The Ubicom System [8] is an infrastructure for n@nulti-media communication. The system
consists of a backbone compute server, severakbatsens, and a possible large number of mobile
units. The base stations maintain a wireless (radiafrared) link to the mobile units. The radio
transmission will account for approximately 10 Mbif data bandwidth per user, enough to trans-
mit compressed video with high quality. The cetksfdistance between the base stations) is in the
order of 100 metesr: typically the distance betwlaemp posts to which the base stations may be
attached.

The mobile unit consists of a receiver unit anceadiset. The head-set contains a light-weight
head-mounted display that offers the user a mpeaf and virtual information. This may be rea-
lised by superimposing the virtual information & treal world or by replacing parts of the real
world with virtual information. In the latter casee need partial visual blocking of the view on the
outside world. In addition to the display facilgighe head-set will also have a light-weight video
camera that is used for position tracking and tome video data. In order to keep the power con-
sumption low, the head-set and receiver unit willydhave limited processing and memory capa-
bilities.

The headtracking system for Augmented Reality ih@roposed in this thesis is a system based
on a cascade of three sensor systems:

» A system that detects the user’s pose in the wdtds is based on the use of a differential glo-
bal positioning system (DGPS). The user’s positsosssumed to be in the range of meters, his
orientation in steps of 45 degrees, his velocittheorder of a few km/h, with an update fre-
guency in the order of a few minutes. This sengstesn is a virtual sensor, it involves a vari-
ety of calculations.

» A system that detects the coarse user’s head pbgeis based on the use of a Vision system.
The user’s head position is assumed to be in tigeraf a few centimeters, his head orientation
in steps of a few degrees, his head velocity irotider of a a few m/s, with an update fre-
guency in the order of a second. This sensor systenvirtual sensor, it involves a variety of
image processing operations and possibly commuorcatth some backbone system to
match data with a GIS or CAD system.
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» A system that detects the fine user’s head pdsis.i§ based on the use of an Inertia Tracking
system. The user’s head position is assumed to theeirange of a few millimeters, his orienta-
tion in steps of a few arc seconds, his velocitthmmorder of a a few mm/10msec, with an
update frequency in the order of 10 msec. This@esystem is a virtual sensor, based on the
fusion of many small sensors. This fusion is dosiagitKalman filtering.

Position tracking is done in three steps. A firgsifon estimation is done using GPS or similar
position detecting techniques. One option is tacuate the position relative to the base stations.
A second level of position tracking is using objantl scene recognition. Given a 3D description
of the environment (e.g. a CAD-model) and an ihjiiasition estimate, an accurate position may
be calculated iteratively. However, the model d@thonly be available at the backbone and most
of the calculations to derive the viewing positwitl have to be performed at the backbone as well.
Part of this computation could be offloaded to déleive base station. The latency introduced by
first sending the video-captured scene informafiiom the mobile unit to the backbone, then the
processing at the backbone or base station anchtiemission of the obtained viewing parameters,
will be too large to update of the visual displaiierefore to be able to anticipate on small pasitio
changes immediately, the direction and acceleratiadhe movement will be sensed with an iner-
tial tracker and directly fed back to the displggtem. In the same way, the orientation tracking
will be based on object recognition and direct ek from the inertial tracker.

1.4 Objectives

This thesis addresses the issue of providing adast, high integrity, aided inertial navigation
system for mobile augmented reality applications.

Inertial Navigation is the implementation of inattsensors to determine the pose (position and ori-
entation) of a mobile user. Inertial sensors aaesified as dead reckoning sensors since the turren
evaluation of the state of the mobile user is fatrbg the relative increment from the previous
known state. As such, inertial navigation has umided error growth since the error accumulates
at each step. Thus in order to contain these eisomse form of external aiding is required. In this
thesis, the aided information will derive from GébiNavigation Satellite Systems (GNSS) such as
the Global Positioning System (GPS) for outdoodiappons, and from vision for indoor applica-
tions.

In summary, the goal of this thesis is to providea&ed inertial navigation system which can be
used cost-effectively by the civilian sector fogewented reality applications and autonomous nav-
igation.

The objectives of this thesis in order to reach toal are:
» To understand the implications of implementing lowst inertial units for navigation.

e High grade inertial sensors can be an expensipeoaph to navigation. However, by imple-
menting low cost inertial sensors one corresporgimgroduces greater errors to the naviga-
tion solution. The sources of these errors nedxetonderstood in order to minimize their
impact on the performance of the system.

» To understand the effect of GNSS accuracy on ngpland vehicles. High accuracy satellite
navigation receivers are generally produced fovesging purposes and not for dynamic move-
ment. Furthermore, associated errors such as rathitgnd satellite signal blockage, common
with terrain-based navigation, need to be compreééén
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» To develop navigation algorithms which assistinmting the errors of the inertial navigation
system while also detecting multipath errors armyioling data during satellite blockages, and
hence increasing the integrity of the navigatiorplo

» To develop this algorithm in real time so as tovile navigation data to an autonomous con-
trol system. Furthermore, address the issue ofldeacy commonly associated with satellite-
based navigation systems and its effect on re& &ipplications.

» To investigate the addition of mobile user modglio the navigation system in order to
increase the performance and integrity of the retiog data.

» Furthermore, to address the issue of multiple@eaisling to a single inertial unit for further
improvement in performance.

» To investigate and develop a redundant inertiéliarorder to provide the foundations for
future work and to address the issues behind iserganavigation performance and autono-
mous fault detection techniques. Redundancy irlsateumbers and its effect on navigation
and fault detection are well documented for sagebased positioning systems. This theory is
in turn reflected in the development of this redamidnertial unit

1.5 Contributions

The scale of the human motion-tracking problemeasstly different from that of global navigation.
Tracking is only required over a small area, bgumes precision in the order of a centimeter or
less, while with navigation a kilometer is ofterfifsient. The size and cost of the sensors must als
be scaled down tremendously for human body-mouttedsumer” use. Thus inertial human
motion tracking would need to achieve far higheruaacy using tiny sensors than navigation sys-
tems are able to achieve using instruments faetaagd more costly.

The main contributions presented in this thesisaarfollows:

* We present an overview of position measurememini@ogy, with both advantage and disad-
vantage.

* We present sensors that are often used in posendattion with their advantages and disad-
vantages. Based on the requirements formulateiigmented Reality Applications, we
select some and combine them in an Inertial Measemé Unit.

» Since existing technology or sensor alone canmlgeshe pose problem, we combine informa-
tion from multiple sensors to obtain a more ac®ueatd stable system. This integration is
achieved using a Kalman filter. We present the fdation for a new Kalman filter implemen-
tation based on quaternions.

» We present the development of an entire poserdetation system using off-the-shelve exist-
ing sensors integrated using separate Kalmandilt&here the research and implementation
were not complete due to the time constraint, veeide simulations to prove the validity of
the concept. Still, a unified solution is preseniadrtial measurement integration for orienta-
tion and GPS in combination with a differential rgation unit for positioning. The accuracy
obtained is 0.5 degrees for orientation, at an tgdde of 100 Hz, and 5 m accuracy for posi-
tioning at 1 Hz.

* We present all the necessary steps for implemgiativision positioning system. Integration
with the other sensor systems is left to futureaesh.
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1.6 Thesis Outline

The thesis is organized as follows. In Chaptersvwa3ackle the problem of pose determination.
In Chapter 2 we present the most used pose detaionrtechnologies together with requirements
for Augmented Reality tracking.

Chapter 3 surveys the existing sensors for posgrdetation, presenting their operating principle
and their characteristics. It also makes a seledtmm among them based on the requirements for-
mulated for Augmented Reality pose, and combinesitim an Inertial Measurement Unit.

In Chapter 4 we proceed with the design of an i@lentavigation system based on sensor data
fusion using a novel approach: Kalman filteringngsquaternions. It contains an overview of the
estimation theory necessary to understand the muateKalman filter. This chapter also presents
results of the field tests conducted to study #reeliits of integration under various environments.

As the Vision subsystem is far more complex, duthéperception and segmentation issues of
complex objects in a 3D world, the Vision subsystetneated in a subsequent chapter: Chapter 5.
This complex “real-time sensor” can be plugged ih® sensor data fusion system described in
Chapter 5.

In Chapter 6 we summarize the presented work vaticleiding remarks. Here, we also present
ideas and possibilities for future research.
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Chapter 2

Survey of Positioning Technologies

2.1 Introduction

In this chapter we will review a variety of exiglitechniques and systems for position determina-
tion [78]. Nowadays, due to the complexity of melslystems and in particular those of the auton-
omous nature, navigation is encapsulated by tlemseiand technology of being able to determine
the position, velocity and orientation of a sysiameal time with a greater demand on accuracy.

A navigation system provides the required informatoy either sensing the relative movement of
the mobile system, or by determining where theesyss with respect to external features, or both.
This is accomplished through the implementatioreittier dead reckoning or absolute sensors.
Dead reckoning sensors measure the relative movesh#re vehicle with respect to a previously
known state. Examples include inertial units, whesedoders and air data systems. Absolute sen-
sors observe the external environment and relatedhicle's state to those observations. Examples
include vision, radar and the Global Positioningt®yn (GPS). Dead reckoning sensors usually
output their data at high frequencies, however tddieeir relative accumulation of data, error®als
accumulate with time. The errors associated wittphlte sensors on the other hand are fixed.
However, the update rates are generally low.

To enjoy the benefits of both, navigation systeersegally include both types of sensors and either
select which is the most appropriate/correct pegdaformation, or employ a system which fuses
the data from both in some optimal fashion. A commuethodology for fusion is through the
implementation of a statistical filter.

2.2 Types of AR Systems

In order to combine the real world with virtual ebjs in real-time we must configure camera and
display hardware. The three most popular displayigarations currently in use for augmented
reality are Monitor-based, Video See-through antid@apSee-through.

2.2.1 Monitor-based Display

The simplest approach is a monitor-based dispkgiepicted in Figure 2-1. The video camera con-
tinuously captures individual frames of the reari@nd feeds each one into the augmentation
system. Virtual objects are then merged into taenf, and this final merged image is what users
ultimately see on a standard desktop monitor. Thvamtage of this display technology is its sim-
plicity and affordability, since a consumer-levé& Bnd USB or FireWire video camera is all that
is required. Additionally, by processing each franavidually, the augmentation system can use
vision-based approaches to extract pose (positidnoaientation) information about the user for
registration purposes (by tracking features orepas#t, for example). However, this simplicity
comes at the expense of immersion. Clearly, viewhegeal world through a small desktop mon-
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itor limits the realism and mobility of the augmeatworld. Additionally, since each frame from
the camera must be processed by the augmentastensythere is a potential delay from the time
the image is captured to when the user actually thexfinal augmented image. Finally, the quality
of the image is limited by the resolution of thenema and display.

]
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Figure 2-1.Monitor-based display

2.2.2 Video See-through Display

In order to increase the sense of immersion iru&irteality systems, head-mounted displays
(HMD) that fully encompass the user’s view are camiy employed. There are two popular meth-
ods to bring HMDs into the augmented reality envinent. Figure 2-2 shows a schematic for a
video see-through augmented reality system. Indbigiguration, the user does not see the real
world directly, but instead only sees what the cotapsystem displays on the tiny monitors inside
the HMD. The difference between this and a virteality HMD is the addition of video cameras
to capture images of the real world. While thisfaquration is almost identical to the monitor-
based technology in terms of functionality, the aka stereo camera pair (two cameras) allows
the HMD to provide a different image to each epereéby increasing the realism and immersion
that the augmented world can provide. Like the noorbased setup, the video see-through display
is prone to visual lags due to the capture, pracgsaugmentation, and rendering of each video
frame. Additionally, a large offset between the eaas and the user’'s eyes can further reduce the
sense of immersion, since everything in the cagtsoenes will be shifted higher or lower than
where they should actually be (with respect touber’'s actual eye level).
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Figure 2-2.Video see-through display

10



2.3 Relative Position Measurements

2.2.3 Optical See-through Display

The other popular HMD configuration for augmentedlity is the optical see-through display sys-
tem, as depicted in Figure 2-3. In this setup, ser is able to view the real world through a semi-
transparent display, while virtual objects are nedrgnto the scene optically in front of the user’'s
eyes based on the user’s current position. Thusiwkers move their heads, the virtual objects
maintain their positions in the world as if theyrev@ctually part of the real environment. Unlike
video see-through displays, these HMDs do not eixttie limited resolutions and delays when
depicting the real world. However, the quality loé tvirtual objects will still be limited by the pro
cessing speed and graphical capabilities of thenautation system. Therefore, creating convinc-
ing augmentations becomes somewhat difficult stheereal world will appear naturally while
virtual objects will appear pixilated. The otherjoradisadvantage with optical see-through dis-
plays is their lack of single frame captures of teal world, since no camera is present in the
default hardware setup. Thus position sensors nitite HMD are the only facility through which
pose information can be extracted for registrafiorposes. Some researchers [61] have proposed
hybrid solutions that combine position sensors witteo cameras in order to improve the pose
estimation.
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Figure 2-3.Optical see-through display

2.3 Relative Position Measurements

Perhaps the most important result from surveyimgviist body of literature on mobile user posi-
tioning is that, to date, there is no truly elegsoitition for the problem. The many partial solnsio

can roughly be categorized into two groups: reéasiad absolute position measurements. Because
of the lack of a single, generally good method,aligvers of automated guided vehicles (AGVSs)
and mobile navigation usually combine two methaa® from each category. The two categories
can be further divided into subgroups.

Acquiring relative measurements is also referredstalead reckoning, which has been used for a
long time, ever since people started traveling mdo@riginally, this is the process of estimating
the position of an airplane or a ship, only basedhe speed and direction of travel and the time
that has passed since the last known positioneSirecposition estimates are based on earlier posi-
tions, the error in the estimates increases one.ti

2.3.1 Odometry

Odometry works by integrating incremental inforroatiover time. By using wheel encoders to
count the number of revolutions of each wheelrth®t measures the distance it has traveled and

11
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its heading direction. Odometry is widely used,aese it gives good short-term accuracy, is inex-
pensive, and allows for very high sampling rates.

However, due to drift and slippage the integrabbthe wheel revolutions leads to errors in both
traveled distance and orientation. These errorsraatate over time unless an independent refer-
ence position is used periodically to reduce theretn particular, errors in the orientation cause
large positioning errors.

2.3.2 Inertial Navigation

This method uses gyroscopes and sometimes accelEnsno measure rate of rotation and accel-
eration. Measurements are integrated once (or Jwocgeld position. Inertial navigation systems
also have the advantage that they are self-contade the downside, inertial sensor data drifts
with time because of the need to integrate rata tlatyield position; any small constant error
increases without limit after integration. Inert&#nsors are thus unsuitable for accurate position-
ing over an extended period of time. Another problgith inertial navigation is the high equip-
ment cost. For example, highly accurate gyros, usatplanes, are prohibitively expensive. Very
recently fiber-optic gyros (also called laser gyrdlsat are very accurate[18], have fallen dramat-
ically in price and have become a very attractolaetson for mobile navigation.

In inertial navigation, acceleration sensors[18]ased for making distance measurements. Inertial
measurements are frequently required in the trgokfrplanes, boats, and automobiles over long
distances and long time constants. Inertial naigas an extremely demanding application for
sensors and many factors contribute to the perfocem®f an inertial navigation system. Align-
ment, scale factor errors, and offset errors aueial, because a constant error in these readings
will result in a quadratically growing position erras given in the following Equation 2-1.

1 2

XError = éAccError- T eq. 2-1.

A simple 1 dimensional system is shown in the ieégtre 2-4. This configuration would be used
for measuring the distance traveled by a projefitiel down a tube, or the quarter-mile time of an
automobile on a straight track. The acceleratidntegrated into a velocity signal and a position
signal.

Vel Pos

CXLM 1-Axis J’ J’

Accelerometer
Figure 2-4.1 Dimensional Position Measurement

w
W

The double integration leads to an unacceptabéeafapositional drift and must be corrected fre-
quently by some external source. The techniquésséaan use to correct the error are:

 for indoor operation, we can use acoustic (ulwas) range measurement
» for outdoor operation, we can use GPS systemdatepthe position

« for both indoor and outdoor operation, we caninsgye processing to extract features like:
corners of the room or of buildings, straight limésuildings or roads, object matching or ste-
reo vision.

A more complex inertial measurement is that ofdegree-of-freedom system as found in an air-
plane or spacecraft. These systems are free to maugy direction. Figure 2-5 shows the block

12



2.3 Relative Position Measurements

diagram of such a system. The GPS system providesdic updates in order to prevent error
build-up within the navigation solution. This feed loop typically makes use of a control algo-
rithm such as a Kalman filter. Also notice that #eeeleration readings have to be transformed
(rotated) to the Earth frame. This rotation is rssegy because the accelerations, as measured by
the sensors, are referenced to the local (body)douate frame. The distances that the system
reports are measured with respect to the Earth.

Body to

Earth
3-Axis Frame

Acceleration Rotation

Orientation
Measurement

Kalman Filter/
GPS Updates Inertial Corrections

. Inertial . GPS

Figure 2-5.6 DOF Inertial Measurement

. Feedback/Control

Inertial sensors [13] are used in applications whetational and linear movements are to be mea-
sured without reference to external coordinateso&yopes and accelerometers can measure these
movements. A major user of such sensors and sysseawgation, with its widespread use of arti-
ficial horizon and other navigational systems.

2.3.2.1 Accelerometers

An accelerometer is a precision instrument, whimlpdes a mass to an instrument case through an
elastic, viscous, or electromagnetic restraint.idalby, the mass is only allowed a single degree of
freedom, which may be either linear or rotary. Aecemeters are typically divided into two
classes, depending upon their intended use.

» Guidance accelerometers are those intended fanuseasuring the steady state accelerations
of rigid bodies. One might use a guidance acceletenfor measuring the acceleration of an
automobile.

» Vibratory or seismic accelerometers are thosented to measure sinusoidal accelerations.
They are used to measure vibrations in applicatengried as structural testing, and earth-
guake and tsunami detection.

All accelerometers operate on the same princigeely, measuring the relative displacement of
a small mass, called a proof or seismic mass, @net within an accelerating case. Generally,
the constraining device is a transducer that retarsignal proportional to the displacement of the
proof mass.

An accelerometer measures platform acceleratiorchdan be integrated to produce the velocity,

and double integrated to produce the distancenthattraveled. Other uses for accelerometer data
include the detection of impacts for air bag depient, and inclination measurement through sens-
ing of the Earth’s gravitation. Vibration measurenseare used to detect potential engine damage
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or failure. Sensor drift makes regular zero velpajppdates (ZUPTs) necessary for periods without
an accurate external reference, since the doulglgral can accumulate substantial errors. The drift
is mostly temperature related, so we investigatedvarious compensation schemes. The use of
constant temperature ovens can ensure good stadfiigr warm-up, but an oven uses too much
power and space for a mobile user. A possible Wdu@chnique for a mobile user is to generate
a temperature profile and count on temperatureatapdity. The temperature profile can be done
a priori or built up over time in a real time ajgaliion.

Accelerometers are generally based on observindisipgacement of a suspended mass caused by
inertia. Two common implementations are a dampedg@and a pendulum. Methods such as dif-
ferential capacitance, inductance, or optical méshoan be used to measure the displacement.
Sometimes a magnetic field or servo is employeketp the mass in a fixed position. A damped
spring will allow a suspended mass to displace uadeeleration. The movement of the mass
would be sensed through capacitance, an optic&ladgor otherwise. Damping is usually accom-
plished by the use of a viscous fluid medium. Tispldcement can be described by:

2
- _ o ldx dx ]
F=ma= F{Fj +c(a) + KX eq. 2-2.

whereF is the applied forcemis the mass of the suspended mess the damping coefficient (a
function of the mediumX is the spring stiffness is the displacement of the spring relative to
resting position.

Many modern designs use MEMS technology, e.g. tfiase Analog Devices (2000). Here, a
small proof mass is suspended from two sides Jattilfle coils. When the platform is accelerated,
the displacement of the mass is measured by aditial capacitance as shown in Figure 2-6

Sensitive Axis

Capacitor
Electrode 1

Capacitor
Electrode 2

Attachment
Point to Base

Floating
Proof Mass

. N
Varible Center Fixed Capacitor
Capacitor Plates Plates

Figure 2-6.A diagram and die photo of the ADXL105 MEMS sensor

2.3.2.2 Gyroscopes

Gyroscopes (or gyros) measure rotational valuelsowttreference to external coordinates [94].
Most gyros measure the speed of rotation (also kresvrates') in one axis and are known as 'sin-
gle axis gyros'. Speed of rotation is normally nuead in units of degree per second or hour (°/sec.
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or °/h). The operating principle of these sensarslme split into two groups: Mechanical and Opti-
cal.

The mechanical gyroscope, a well-known and reliadtigion sensor, is based on the inertial prop-
erties of a rapidly spinning rotor. One of toddyigh precision gyros is still the mechanical, rotat
ing gyro; however, it is dependent on linear aacegien because of its mechanical measuring
principle.

The optical group comprises the fiber optic an@ddgpes. These use the Sagnac Effect (hamed
after its French discoverer), which, when the serssturned, results in a difference in transitdim
between two light waves passing through the sartieabpath but in opposite directions. Optical
gyros therefore do not depend on acceleration @sgy the mechanical group. This is one of their
biggest advantages, and for this reason we prefasé this type of gyroscope in standard mid-
range systems (for high dynamic performance appics).

A single gyro measures rotation on a single pléng,a triad of gyros is mounted, preferably
orthogonally, in a single enclosure to monitorttiree possible rotations in 3-D space. Many types
of gyros are available, ranging in price and stigbiGyros are classified into gimbaled or strap-
down varieties, where gimbaled gyros maintain adigrientation in an inertial frame. Low cost,
or potentially low cost, gyro alternatives -alltbé strapdown variety- will be presented below with
some examples. Table 2-1 summarizes some low costtgghnologies with associated cost and
accuracy.

Table 2-1.Comparison of low cost Gyro Technologies

Gyro Type Principle of Operation Cost($) Stabil§n)

Rotating Conservation of Angular | 10-1000 1-100+
Momentum

Fiber Optic Sagnac Effect 50-1000 5-100+

Vibrating Coriolis Effect 10-200 50-100+

Piezoelectric

Strapdown gyros measure rotation on a fixed plaitie iespect to the vehicle, which is generally
not on a plane orthogonal to the gravitation veclberefore, they do not sense the entire rotation
in heading, but they also sense rotations in @twthroll.

Piezoelectric materials exhibit the piezoelectAE) effect; a vibrational motion of crystals create
an electric potential within the material. The neseepiezoelectric effect is also used, whereby
application of an electric field to a PE crystallwause it to vibrate. This process is used in the
operation of most wristwatches. Quartz is usedamyrPE applications, however it tends to have
temperature instability and physical limitationstthhave given rise to recent advances in PE
ceramics. Piezoelectic applications usually maleaigesonant or harmonic frequencies, which
are a function of the size, shape, and dielectopgrties of the piece of material. Vibrating gyro-
scopes are usually designated as micro-electro-amgedl-system (MEMS) sensors, i.e. sensors
that couple electrical and mechanical interactiwitls microchip fabrication methods.

Two basic types have been constructed, the freedae and the tuning fork. Both use an excitation
signal to drive the oscillation of a piezoelectrigstal, then sense rotation through a piezoelectri
cally generated output signal. The tuning fork @gris simply a tuning fork that is made of piezo-

electric material. The name free-free-bar comem ftioe use of a slender bar, with PE ceramics
attached, which is fixed at the centre and has botls free to vibrate.
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Piezoelectric gyros are essentially Coriolis sesisbhe Coriolis force is a fictitious force exerted
on a body when it moves in a rotating referencaé&alt is a fictitious force as, like the centriéig
force, it is a by-product of measuring coordinatéh respect to a rotating coordinate system as
opposed to the acceleration of a mass in an ih&diae. It is given by the cross product

- >
F. = 2m(?/>< w) eq. 2-3.

wheremis the mass of the objewtis the velocity vector of the object aads the angular rotation
rate vector.

The excited vibration of the bar or fork createsaoanillating velocity vector. If this system is
rotated around the sensitive axis, an oscillatongd will be induced, which causes vibration of the
piezoelectric crystal. This vibration can be sere®d varying voltage, which is then processed into
an output signal. The operation of the Murata GyoBee-free-bar implementation, which was
the gyro used for our project, is described beldwexample of the tuning fork type can be found
in the Systron Donner GyroChip series [84].

2.4 Absolute Position Measurements

Absolute position measurements supply informatioouathe location of the robot, irrespective of
previous location estimates; the location is notvee from integrating a sequence of measure-
ments, but directly from one measurement. Thigli@advantage that the error in the position does
not grow without limit, as is the case with relatposition techniques. Absolute measurements can
either supply the full location, or just a partitpiike for example the orientation.

2.4.1 Active Landmarks

Active landmarks, also called beacons, are landsniwdt actively send out location information.
Active landmarks can take on the form of satelldesther radio transmitting objects. A mobile
system senses the signals sent out by the landimadtermine its position. Two closely related
methods are commonly used to determine the abgwdsigon of the robot using active landmarks:
triangulation and trilateration. Triangulation teajues use distances and angles to three or more
active landmarks; trilateration techniques only ds¢ances. The angles and/or distances are then
used to calculate the position and orientatiorhefrhobile user.

2.4.1.1 Wireless Location Systems

Though wireless users are mobile by nature, knoydeaf their dynamic location is very useful
information. In emergency situations, it is ess@rit know a wireless user's location to be able to
manage the emergency effectively. On the other htite technology is available to accurately
determine the location, location-specific contesg( closest airport, closest restaurant, closest
hotels, etc.) can be delivered to the user as droadvireless service. Transport companies spend
a large amount of money on proprietary solutiomgriacking their fleet. A wireless phone-based
solution will be very suitable in such cases, sibhéeglobal and likely to benefit from economies
of scale. A vast geographical region is broken dovmsmall areas called “cells”. Each cell has a
radio tower and serves the area where its radiabkig strong enough. The radio towers are con-
nected to the Base Transceiver System (BTS) whiokigies the signal processing capability.
Radio resources for a group of BTSs are managadase Station Controller (BSC). Connections
from a group of BSCs are managed by the Mobile @&ing Center (MSC), which is also the gate-
way to the Public Switched Telephone Network. Timusetwork hierarchy, MSC is the top-level
entity followed by the BSCs, followed by the BT $sldinally the mobile stations. The connectiv-
ity between the mobile station and the base staitmough radio signals. As mobile moves from
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one cell to another, its connection is broken withformer and re-established with the latter. &inc
all communications from the mobile station happémsugh radio waves, one has to rely on the
properties of the radio waves in order to figuréwhere the source of the signal might b.e

2.4.1.2 Ground-Based RF Systems

Active beacons have been used for many centuriaselmble and accurate means for navigation.
Stars can be considered as active beacons witkategpnavigation; and lighthouses were early
man-made beacon systems. Typical applicationsclibreabeacon navigation include marine nav-
igation, aircraft navigation, race car performara®lysis, range instrumentation, unmanned
mobile target control, mine localization, hazardowgerials mapping, dredge positioning and geo-
detic surveys.

Modern technology has vastly enhanced the capabilif active beacon systems with the intro-
duction of laser, ultrasonic, and radio-frequeriRlF) transmitters. It should be noted, though, that
according to manufacturers, none of the RF systemse used reliably in indoor environments.

Ground-based RF position location systems are ajlgiof two types:

» Passive hyperbolic line-of-position phase-measergmystems that compare the time-of-
arrival phase differences of incoming signals stamgously emitted from surveyed transmitter
sites.

» Active radar-like trilateration (triangulation) ®ms that measure the round-trip propagation
delays for a number of fixed-reference transpondeaissive systems are generally preferable
when a large number of vehicles must operate irsdéinee local area, for obvious reasons.

2.4.1.3 Loran

An early example of the first category is seenandn (short for long range navigation). Developed
at MIT during World War I, such systems compare time of arrival of two identical signals
broadcast simultaneously from high-power transmstigcated at surveyed sites with a known sep-
aration baseline. For each finite time differereereasured by the receiver) there is an associated
hyperbolic line of position. Two or more pairs oaster/slave stations are required to obtain inter-
secting hyperbolic lines resulting in a two-dimemsil (latitude and longitude) fix.

The original implementation (Loran A) was aimeasgisting convoys of liberty ships crossing the
North Atlantic in stormy winter weather. Two 100 k8ave transmitters were located about 200
miles on either side of the master station. Noe-hifrsight ground-wave propagation at around
2MHz was employed, with pulsed as opposed to coatis-wave transmissions to aid in sky-wave
discrimination. The time-of-arrival difference wsimply measured as the lateral separation of the
two pulses on an oscilloscope display, with a tggpaccuracy of around 1 ps. This numerical value
was matched to the appropriate line of positiom@pecial Loran chart of the region, and the pro-
cedure then repeated for another set of transsif@r discrimination purposes, four different fre-
guencies were used, 50 kHz apart, with 24 diffepeiide repetition rates in the neighborhood of
20 to 35 pulses per second. In situations wherbayhperbolic lines intersected more or less at right
angles, the resulting (best-case) accuracy was dbokilometers.

Loran A was phased out in the early '80s in fadrayan C, which achieves much longer over-
the-horizon ranges through use of 5 MW pulses tadirom 400-meter (1300 ft.) towers at a
lower carrier frequency of 100 kHz. For improvedwaacy, the phase differences of the first three
cycles of the master and slave pulses are tracketidse-lock-loops in the receiver and converted
to a digital readout, which is again cross-refeeehto a preprinted chart. Effective operational
range is about 1000 miles, with best-case accigatithe neighborhood of 100 meters (330 ft.).
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Coverage is provided by about 50 transmitter sdedl U.S. coastal waters and parts of the North
Atlantic, North Pacific, and the Mediterranean.

2.4.1.4 Cell-based tracking

An example of such a system is the current cellpteme system[27],[30]. How and why should
the cellular system know the location of a phors th just quietly monitoring a paging channel,
waiting either for the user to place a call ordarall to come in?

It has to do with efficiency. If cell phone userdyplaced calls and never received them, there
would not be any need to track their locationsnewien idle. But a substantial fraction of calls
are made to cellular phones. When someone ca#tl pltione, a message is sent over the paging
channel to the phone. This is why the phone masitus channel whenever it is on but idle. But
which cell's paging channel should the system agage the mobile? The system may have liter-
ally hundreds of cells or sectors, and the usehtig in any one of them -- or indeed, nowhere at
all if he's out of town or has his phone switchéfd Bhe system could simply send the page over
every cell in the system repeatedly until the n®kihswers or the system gives up -- a practice
called flood paging - but this is obviously ratleefficient. It was done in the early days, before
the number of cells and customers made it impralctifter all, each paging channel is only 10
kb/s, and each unanswered page has to be re-ssa@able number of times before the system
can give up.

The alternative to flood paging is registrationdzhpaging. That's where the phone announces
itself to the system with a short message on teesscchannel so that the system knows exactly
where to direct a page should an incoming call comE the mobile moves to another cell, it re-
registers in that new cell and the system upd&etatabase accordingly. The mobile also re-reg-
isters occasionally even if it stays in the sanlk pest to refresh the database entry (the phone
might be switched off without warning, or its bayteould run down). The precision of such a
system is limited by the cell dimension, and carnnperoved by measuring the signal strength
[28],[29].

Another solution would be for the cell base stagitmtransmit their own signal, and the phones to
be able to work out where they are from the retasikew of the signal from the nearest 3 or 4 base
stations (similar to GPS with very low satellites).

2.4.1.5 The GUIDE system

The GUIDE [26] system has been developed to proeitjevisitors with a hand-held context-
aware tourist guide, and used in the city of Laterg®JK). The GUIDE end-system is composed
of a TeamPad running Windows 95, and equipped aiBCMCIA-based wireless networking
card. The network infrastructure that is used ley@UIDE system comprises a number of inter-
connected cells. The wireless network is basedumeiht Technologies' 802.11 compliant Wave-
LAN system, operating in the 2.4GHz band, and offea maximum bandwidth of 2 Mbps per
cell. Currently, six communication cells have bdeployed within a region of the city that is pop-
ular with tourists.

Although, the range of WaveLAN is approximately 20th free space, WaveLAN signals have
very poor propagation characteristics through lngjd and therefore, by strategic positioning of
cell-servers, it is possible to create relativehai, asymmetric cells. Within the context of GUIDE

this is a positive feature because by creatinglsmalon-overlapping cells more accurate position-
ing information can be provided.

When visitors leave the cell coverage and up-te-gasitioning information becomes unavailable,
the GUIDE system tries to locate the visitor byabBshing a form of partnership between itself
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and the visitor. In more detail, the visitor is simoa series of thumbnail pictures showing attrac-
tions in the vicinity of the visitor's last locatioProviding the visitor is then able to recogranel
select one of the pictures, the GUIDE system tniese again to ascertain the visitor's location
within the city.

2.4.1.6 Ultrasonic Tracking

The CONSTELLATION tracking system, proposed by Eoxlin [15] from InterSense, is similar

in its basic principles of operation to an aidegtimal navigation system (INS), except that it eper
ates indoors, has much finer resolution and acgueatd uses acoustic rather than RF technology
for range measurements.

Figure 2-7.General Idea of Constellation system

Figure 2-7 illustrates the system, configured facking an HMD (Head Mounted Display) in a
wide-range VR or AR application. The HMD is equidpeith an integrated inertial sensing instru-
ment called the InertiaCube™ and, in this examplaltrasonic range-finder modules (URMS).
The range-finder modules communicate with a colagteh of transponder beacons, which may
be mounted at any known locations in the envirortmen

Eric Foxlin describes the hardware that uses ari&@ube [16] to sense angular rate and linear
acceleration along each of three orthogonal boeg.aWe present it below.
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beacon
URM \ //
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interface e /
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Figure 2-8.Hardware overview

Figure 2-8 illustrates the main hardware componehthe tracking system. Just as GPS has a
space-based constellation of satellites and a eeharne receiver with antennae, this system has
a ceiling-based constellation of transponder bemeod a camera or tracker unit worn by a person
with ultrasonic range-finder modules (URMS) andrartiaCube™ inertial sensing device.
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2.4.1.7 Global Positioning Systems (Space-based Ra8ystem)

The GPS (Global Positioning System) tracking ppieciuses 24 satellites (Figure 2-9) and 12
ground stations. The ground stations control tleeiecy of the atomic clock and the orbit drift of
the satellites. The system can determine the pagiti a user having a GPS receiver by the recep-
tion of three signals from three satellites anddabeaputation of the TOF by subtracting the time
of emission of the signals coming from the satslifrom the time of reception. In practice, the
receiver clock is not precise and has a bias, wisicilnknown. The use of a signal coming from
another satellite eliminates the unknown bias. fEselution accomplished with such a system is
in the order of the decameter. A more precise Bystiee differential GPS, uses emitting ground
stations that refine the resolution to the ordemeters.

Figure 2-9.GPS Constellation - 24 Satellites in 6 Orbital [B&n

The absolute three-dimensional location of any GR®8iver is determined through simple trian-
gulation techniques based on time of flight forqusly coded spread-spectrum radio signals trans-
mitted by the satellites. Precisely measured sigradagation times are converted to pseudoranges
representing the line-of-sight distances betweendheiver and a number of reference satellites in
known orbital positions. The measured distanceg babe adjusted for receiver clock offset, as
will be discussed later, hence the term pseudosang®wing the exact distance from the ground
receiver to three satellites theoretically allows ¢alculation of receiver latitude, longitude, and
altitude.

Although conceptually very simple, this design pedphy introduces at least four obvious techni-
cal challenges:

* Time synchronization between individual satellié@sl GPS receivers.
* Precise real-time location of satellite position.
» Accurate measurement of signal propagation time.

» Sufficient signal-to-noise ratio for reliable opgon in the presence of interference and possi-
ble jamming.

With the exception of multi-path effects, all ofetlerror sources can be essentially eliminated
through use of a practice known as differential GBSPS). The concept is based on the premise
that a second GPS receiver in fairly close proxirfiie., within 10 km) to the first will experience
basically the same error effects when viewing Hraesreference satellites. If this second receiver
is fixed at a precisely surveyed location, its akdted solution can be compared to the known posi-
tion to generate a composite error vector reprasigatof prevailing conditions in that immediate
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locale. This differential correction can then begel to the first receiver to null out the unwanted
effects, effectively reducing position error fomwmercial systems to well under 10 meters. The
fixed DGPS reference station transmits these ctioresignals every two to four minutes to any

differential-capable receiver within range. Manyrcoercial GPS receivers are available with dif-

ferential capability, and most now follow the RTCIN4 standard developed by the Radio Tech-
nical Commission for Maritime Services to promateeroperability.

Table 2-2.Summary of achievable position accuracies for verinplementations of GPS

GPS IMPLEMENTATION POSITION ACCURACY

METHOD

C/A-code stand alone 100 m SEP(Spherical Errof
Probability) (328 ft.)

Y-code stand alone 16 m SEP(52 ft.)

Differential (C/A-code) 3 m SEP(10 ft.)

Differential (Y-code) unknown (TBD)

Phase differential (codeless) 1 cm SEP(0.4 in)

2.4.2 Passive Landmarks

If the landmarks do not actively transmit signafey are called passive landmarks. The mobile
system has to actively look for these landmarkadquire position measurements. Techniques
using passive landmarks in determining the posiithe mobile system rely on detection of those
landmarks from sensor readings. The detectionraintearks depends on the type of sensor used.
For example, in detecting landmarks in images faowision system, image processing techniques
are used. When three or more landmarks are detbegtde system, it can use the triangulation or
trilateration techniques to compute its locatioas$tve landmarks can be either artifcial or natural
and the choice of which kind of landmarks to use glay a significant role in the performance of
the localization system.

« Atrtificial Landmark Recognition - In this methodstinctive artificial landmarks are placed at
known locations in the environment. The advantdgatiicial landmarks is that they can be
designed for optimal detectability even under asg@nvironmental conditions. As with active
beacons, three or more landmarks must be “in vievallow position estimation. Landmark
positioning has the advantage that the positioore@re bounded, but detection of external
landmarks and real-time position fixing may notays be possible. Unlike the usually point-
shaped beacons, artificial landmarks may be defasedl set of features, e.g., a shape or an
area. Additional information, for example distancan be derived from measuring the geomet-
ric properties of the landmark, but this approacbamputationally intensive and not very
accurate.

» Natural Landmark Recognition - Here the landmaniesdistinctive features in the environ-
ment. There is no need for preparation of the enwirent, but the environment must be known
in advance. The reliability of this method is nethagh as with artificial landmarks.

2.4.2.1 Geomagnetic Sensing

Vehicle heading is the most significant of the gation parameters in terms of its influence on
accumulated dead-reckoning errors. For this reasarsors which provide a measure of absolute
heading or relative angular velocity are extremeiportant in solving the real world navigation
needs of a mobile user. The most commonly knowsaeor this type is probably the magnetic
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compass. The terminology normally used to desc¢hbentensity of a magnetic field is magnetic
flux density B, measured in Gauss (G).

The average strength of the earth's magnetic ifseld5 Gauss and can be represented as a dipole
that fluctuates both in time and space, situateghty 440 kilometers off center and inclined 11
degrees to the planet's axis of rotation. Thised#fce in location between true north and magnetic
north is known as declination and varies with bithe and geographical location. Corrective
values are routinely provided in the form of deatian tables printed directly on the maps or charts
for any given locale.

A magnetometeror magnetic compass is the only low cost absdiataling reference presently
available for augmented reality applications. Othbsolute references, such as north-seeking
gyros, are far too expensive. The serious drawbaaking a magnetic compass for a mobile user
is the hostile magnetic environment that can be@emtered during navigation.

A magnetic compass senses the magnetic field oE#rth on two or three orthogonal sensors,
sometimes in conjunction with a biaxial inclinonretgince this field should point directly North,
some method can be used to estimate the headatyeelo the magnetic North pole. There is a
varying declination between the magnetic and geoditrth poles, but models can easily estimate
this difference to better than one degree.

The magnetic sensors are usually flux-gate sensbesoperation of a fluxgate is based on Fara-
day’s law, which states that a current (or voltag&yeated in a loop in the presence of a changing
magnetic field. A fluxgate is composed of a saingatmagnetic core, with a drive winding and a
pair of sense windings on it. The drive windingvsapped around the core, which is normally a
toroid. These sense windings are often wound fliathe outside of the core and are arranged at
precisely 90° to each other. When not energizdllixgate’s permeability ‘draws in’ the Earth’s
magnetic field. When energized, the core saturaelsceases to be magnetic. As this switching
occurs (hence the name fluxgate), the Earth’s nmagfield is drawn into or released from the
core, resulting in a small induced voltage thairigportional to the strength and direction of the
external field.

2.4.2.2 Inclinometers

An inclinometer is a sensor used to measure the angle betwegnatviey vector and the platform

to which it is mounted. This can be in a singlediion, i.e. for sensing vehicle roll only, or two
directions to estimate pitch as well. Inclinomet&rffer an error due to vehicle accelerations since
it is not possible to separate them from the gyaxéictor. It is possible to make corrections to the
inclinometer output using gyros. However, GPS pmsilhg cannot provide an accurate estimate
of acceleration to compute this correction.

The liquid-bubble inclinometer uses a vial, palyidilled with a conductive liquid, to determine
the tilt of the platform in one or more axes. Eledes around the vial estimate the liquid height or
height difference between sensors. These measutem@enconverted to pitch or roll measure-
ments. A diagram of a typical sensor is found iguiFé 2-10
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Figure 2-10.Bubble Inclinometer

The acceleration-related error suffered by bubiériometers is due to the fact that vehicle accel-
eration will make the liquid rise up one side o thal. Also, there will be some sort of damped
oscillation in the fluid even after the accelerati@as finished. The error due to mobile unit accel-
eration can be given by:

n= atar(a—g) eq. 2-4.

whereg is the magnitude of gravity arag is the acceleration of the mobile unit (see Fidi4©).

2.4.2.3 Vision-Based Positioning

A core problem in mobile person tracking is theedsination of the position and orientation
(referred to as the pose) of a mobile person ientgronment. The basic principles of landmark-
based and map-based positioning also apply ton#dsased positioning or localization, which
relies on optical sensors [23] in contrast to sland, dead-reckoning and inertial sensors.
Common optical sensors include laser-based rander and photometric cameras using CCD or
CMOS arrays.

Visual sensing provides a tremendous amount ofnmtion about a mobile person's environment,
and it is potentially the most powerful sourcerdbrmation among all the sensors used on mobile
persons to date. Due to the wealth of informatimwever, extraction of visual features for posi-

tioning is not an easy task. The problem of loedian by vision has received considerable atten-
tion and many techniques have been suggested.ade domponents of the localization process
are:

* representations of the environment,
» sensing models, and
* localization algorithms.

Most localization techniques provide absolute tatiree position and/or the orientation of sensors.
Techniques vary substantially, depending on the@sntheir geometric models, and the represen-
tation of the environment. The geometric informatabout the environment can be given in the
form of landmarks, object models and maps in twihare dimensions. A vision sensor or multiple
vision sensors should capture image features asnedghat match the landmarks or maps. On the
other hand, landmarks, object models, and mapddpoovide necessary spatial information that
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is easy to be sensed. When landmarks or mapsesharmonment are not available, landmark selec-
tion and map building should be part of a local@amethod.

2.4.2.4 Camera Model and Localization

Geometric models of photometric cameras are atatitmportance for finding the sensors’ geo-

metric position and orientation. The most commordehdor photometric cameras is the pin-hole

camera with perspective projection as shown infei@411. Photometric cameras using an optical
lens can be modeled as a pinhole camera. The cabedsystem (X, Y, Z) is a three-dimensional

camera coordinate system, and (X, y) is a sens@gg@) coordinate system. A three-dimensional
feature in an object is projected onto the imaga@l(x, y).

R: Rotation
T: Translation
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Figure 2-11.Perspective Camera Model

Although the range information is collapsed in frigjection, the angle or orientation of the object
point can be obtained if the focal length f is kmoand there is no distortion of rays due to lens
distortion. The internal parameters of the cameeacalled intrinsic camera parameters and they
include the effective focal length f, the radialdedistortion factor, and the image scanning param-
eters, which are used for estimating the physizal af the image plane [21]. The orientation and
position of the camera coordinate system (X, Y¢@) be described by six parameters, three for
orientation and three for position, and they atkedaextrinsic camera parameters. They represent
the relationship between the camera coordinate¥ (X) and the world or object coordinates (Xw,
Yw, Zw). Landmarks and maps are usually representéte world coordinate system. The prob-
lem of localization is to determine the positiom amientation of a sensor (or a mobile person) by
matching the sensed visual features in one or mage(s) to the object features provided by land-
marks or maps. Obviously a single feature wouldpnovide enough information for position and
orientation, so multiple features are required. &wng on the sensors, the sensing schemes, and
the representations of the environment, localiretéxhniques vary significantly.

The representation of the environment can be ginghe form of very simple features such as
points and lines, more complex patterns, or thigeedsional models of objects and environment.
In this section, the approaches based on simptkriark features are discussed.

If a camera is mounted on a mobile person witlotsical axis parallel to the floor and vertical
edges of an environment provide landmarks, therptstioning problem becomes two-dimen-
sional. In this case, the vertical edges providmtpi@atures and two-dimensional positioning
requires identification of three unique featuréshé features are uniquely identifiable and their
positions are known, then the position and oriémtatf the pin-hole camera can be uniquely deter-
mined as illustrated in Figure 2-12a. However, ita$ always possible to uniquely identify simple
features such as points and lines in an imageicéktines are not usually interpretable unless a
strong constraint is imposed. This is illustratedrigure 2-12b.
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Figure 2-12.L ocalization using landmark features

2.4.3 Model-Based Approaches

Another group of localization techniques are magelgositioning or model matching techniques.
These approaches use geometric features of thepament to compute the location of the mobile
system. Examples of geometric features are the linat describe walls in hallways or offices.

Sensor output from, for example sonars or camerthan matched with these features. Model
matching can be used to update a global map imardic environment, or to create a global map
from different local maps.

In this method, information acquired from the mehiker computer onboard sensors is compared
to a map or world model of the environment. If teas from the sensor-based map and the world
model map match, then the vehicle's absolute lmeatan be estimated. Map-based positioning
often includes improving global maps based on #he sensory observations in a dynamic envi-
ronment and integrating local maps into the globap to cover previously unexplored areas. The
maps used in navigation include two major typesngetric maps and topological maps. Geomet-
ric maps represent the world in a global coordirsgstem, while topological maps represent the
world as a network of nodes and arcs.

A priori information about an environment can beegi in more comprehensive form than features,
such as two-dimensional or three-dimensional moaiedsvironment structure and digital eleva-
tion maps (DEM). The geometric models often incltidee-dimensional models of buildings,
indoor structure and floor maps. For localizatithe, two-dimensional visual observations should
capture the features of the environment that candtehed to the preloaded model with minimum
uncertainty. Figure 2-13 illustrates the match betwmodels and image features. The problem is
that the two-dimensional observations and the tdreensional world models are in different
forms. This is basically the problem of object mpaition in computer vision: (1) identifying
objects and (2) estimating pose from the identiGbgects.
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Figure 2-13.Finding correspondence between an internal moakbarobserved scene.

2.5 Multi-Sensor Fusion and Inertial Navigation

Algorithms that solve the localization problem congbinitial information and relative and abso-
lute position measurements to form estimates ofoibetion of the mobile system at a certain time.
If the measurements are considered to be readings different sensors, the problem becomes
how to combine the readings from different sensmferm a combined representation of the envi-
ronment. This problem is studied by research intinsehsor fusion.

Fusion of information from multiple sensors is imgamt, since combined information from mul-
tiple sensors can be more accurate. Particulargnwiot all sensors are able to sense things to the
same extent. Some features may be occluded for sensors, while visible to others. Together
the sensors can provide a more complete pictuaesoéne at a certain time. Multi-sensor fusion is
also important since it can reduce the effectsmire in measurements.

A person walking around with an AR headset is caaple to a vehicle roaming around the earth.
In the previous chapter we elaborated on the reqents of such an AR system, strapped onto the
“human vehicle”, whose parameters differ from maadmearthbound or airborn vehicles, in terms
of: a high update frequency, low latency, low powensumption, low ground speed, high head
accelerations. Theavigation frameworKor the “human vehicle” and man-made vehicles, how
ever, remains the same.

Inertial navigation is the process of measuringbation on board a vehidland then integrating
the acceleration to determine the vehicle’s vejoartd position relative to a known starting point.
Accelerometers are used to sense the magnitudeeadceleration, but acceleration is a vector
quantity having direction as well as magnitude. #ids reason a set of gyroscopes are used to
maintain the accelerometers in a known orientatitth respect to a fixed, non rotating coordinate
system, commonly referred to as thertial space This does not mean that the accelerometers
themselves are kept parallel to the axes of thisrotating coordinate system, although some sys-
tems are implemented this way.

Inertial navigation systems can be classified atiogrto the way they perform the basic operations
of inertial navigation. A navigation system is eallgeometric or gimbaled if the orientation of the
navigation frame is physically maintained by systgmbals, and analytic or strapdown if the ori-

entation of the navigation platform is maintaingdie navigation algorithm.

1. Human, earthbound or airborne
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Figure 2-14.Gimbaled and Strapdown INS

Mounting frame

In gimbaled navigation systems (see Figure 2-14)jribrtial sensors are mounted on an actuated
platform whose orientations are nominally statignalative to the reference coordinate system.
The gimbal angles are commanded to maintain thépha frame alignment with a specified nav-
igation coordinate system. This is achieved byngtéeng to maintain the gyro outputs at the rota-
tional rates computed for the navigation framethl§ is achieved, then the platform does not
experience any rotation relative to the navigaticame, in spite of vehicle motion. In this
approach, accelerometers aligned with the platfoeasure the specific force along the navigation
coordinate system axes. Scaling and integratidmi®measured acceleration yield the desired nav-
igation-frame position and velocity vectors. Vehialtitude is determined by measurement of the
relative angles between the vehicle and platforesax

In a strapdown inertial navigation system, theneagimbal to be maintained in alignment with a
reference frame, so the orientation of a referdrazee is maintained in the navigation algorithm
as a mathematical coordinate transformation. Stnapdinertial navigation systems are rigidly
fixed to the moving body. In this approach, thesees move with the body, their gyros experienc-
ing and measuring the same changes in angulaasdates body in motion, therefore higher band-
width rate gyros with higher dynamic ranges areuiregl. The strapdown INS accelerometers
measure changes in linear rate in terms of the'bdicted axes. The body's fixed axes are a moving
frame of reference as opposed to the constantahfeme of reference. The navigation computer
uses the gyros' angular information and the acoeleters' linear information to calculate the
body's 3D motion with respect to an inertial franfi@eference.

Actuated systems have smaller computational burdadsexpose the inertial sensors to a more
benign inertial environment, but are typically largind more expensive than strapdown systems
because of the requirement of the actuated platfStand-alone INSs require high accuracy for
long periods of time (multiple days) and are banitiund accurately calibrated sensors and actuated
platforms. Advances in sensor and computer tecignedover the past decades have resulted in a
shift towards strapdown systems. Aided strapdovetesys are receiving renewed interest in appli-
cations, requiring high-accuracy and high rate otstpwhile also being inexpensive, small, and
low power.
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Chapter 2 Survey of Positioning Technologies

2.6 Summary of Sensing Technologies

There are several sensing technologies [12],[14]s&, with the most common being magnetic,
acoustic, and optical technologies. Table 2-3 prewidn overview of the different technologies
and their advantages and disadvantages.

duce magnetic fields
Magnetic sensors (in a
receiver) determine the
strength and angles of the
fields

Pulsed magnetic field may b
AC or DC

No LOS problems
Good noise immunity
Map whole body motion
Large ranges; size of a sma
room
e

Table 2-3.Tracking Technologies
TECHNOLOGY | DESCRIPTION STRENGTHS WEAKNESSES
Mechanical Measure change in positior) Accurate Intrusive, due to tethering
by physically connecting the| Low lag Subject to mechanical part
remote object to a point of | No line of sight (LOS) prob- | wear-out
reference with jointed link- | lems
ages No magnetic interference
problems
Good for tracking small vol-
umes accurately
Magnetic Use sets of coils (in a transt Inexpensive Ferromagnetic and/or metal
mitter) that are pulsed to prg-Accurate conductive surfaces cause

field distortion
Electromagnetic interference
from radios

| Accuracy diminishes with
distance

High latencies due to filterin

D

J

Sourceless, Non-
inertial

Use passive magnetic senso
referenced to the earth's maj
netic field, to provide mea-
surement of roll, pitch, and
yaw, and as a derivative,
angular acceleration and
velocity

rinexpensive
gfransmitter not necessary
Portable

Only 3 DOF

Difficult to mark movement
between magnetic hemi-
spheres

object is computed by jointly
integrating the outputs of the
rate gyros whose outputs ar
proportional to angular velog
ity about each axis. Change
in position can be computed
by double integrating the ou
puts of the accelerometers
using their known orienta-
tions

No LOS problems

No magnetic interference
eproblems

-Senses orientation directly
sSmall size

Low cost

Optical Use a variety of detectors, | High availability LOS necessary
from ordinary video cameras Can work over a large area | Limited by intensity and
to LEDs, to detect either Fast coherence of light sources
ambient light or light emitted No magnetic interference | High weight
under control of the position| problems Expensive
tracker. Infrared light is often] High accuracy
used to prevent interference
with other activities
Inertial Use accelerometers and gyrdJnlimited range Only 3 DOF
scopes. Orientation of the | Fast Drift

Not accurate for slow positio
changes
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2.6 Summary of Sensing Technologies

Table 2-3.Tracking Technologies

TECHNOLOGY | DESCRIPTION STRENGTHS WEAKNESSES
Acoustic Use three microphones and| Inexpensive Ultrasonic noise interference
(Ultrasound) three emitters to compute theNo magnetic interference | Low accuracy since speed df
distance between a source anmgroblems sound in air varies with envi
receiver via triangulation. UsgLight weight ronmental conditions
ultrasonic frequencies (abovie Echoes cause reception of
20 kHz) so that the emitters “ghost” pulses
will not be heard LOS necessary
Radio / GSM Use three or more transmis-| Inexpensive because the Radio noise interference
based location sion radio emitters to computeexisting GSM infrastructure | Low accuracy
the distance between a sourcean be used. Problem with multi-path
and receiver via triangula- | Light weight reception and interference
tion. Can use different modal-
ities to obtain the location:
measuring signal attenuation,
angle of arrival, time differ-
ence of arrival

Position and orientation trackers can be desciilbéelms of a small set of key characteristics that
serve as performance measures for their evaluatidncomparison. Meyer et al. (1992) define
these characteristics as resolution, accuracysgstém responsiveness (additional characteristics
of robustness, registration, and sociability areaomsidered here).

* Resolution. Measures the exactness with whiclstesy can locate a reported position. It is
measured in terms of degrees for orientation ang@ntm of transmitter and receiver separa-
tion for position.

» Accuracy. The range within which a reported positis correct. This is a function of the error
involved in making measurements and often it isesged in statistical error terminology as
degrees root mean square (RMS) for orientationcam@®MS for position.

» System responsiveness. Comprises:

» Sample rate: The rate at which sensors are chdokelata, usually expressed as fre-
quency.

» Data rate: The number of computed positions peors# usually expressed as fre-
quency.

» Update rate: The rate at which the system remans position coordinates to the host
computer, also usually given as frequency.

» Latency: also known as lag, is the delay betwhemtovement of the remotely sensed
object and the report of the new position. Thiseasured in milliseconds (ms).

These characteristics provide some guidance fokergperformance. One of the most important
is latency. Durlach [24] states that delays gretitan 60 msec. between head motion and visual
feedback impair adaptation.

Latencies between systems are difficult to commeause they are not always calculated the
same. Bryson [25] identifies several sources efay: delays in the tracker signal, delays in com-
munication between the tracker and the computdesysdelays due to computations required to
process the tracker data, and delays due to gr@pieicdering. However, several manufacturers
suggested that 1/frequency is the preferred measure
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Chapter 2 Survey of Positioning Technologies

Sometimes the application also requires the heagment information. One important parameter
of a head tracker is its responsiveness. With rdpaesponsiveness, Durlach [24] contends that
head movements can be as fast as 1,000°/sec. jrajthmaugh more usual peak velocities are 600°/
sec. for yaw and 300°/sec. for pitch and roll. Tleguency content of volitional head motion falls
off approximately as 1% with most of the energy contained below 8 Hz mathing detectable
above 15 Hz. Tracker-to-host reporting rates nthstefore, be at least 30 Hz.

An additional important characteristic that is umd is working volume or range, which may be
bound by intrinsic limitations such as mechanicdtdge or signal strength. This is the volume in
which a position tracker accurately reports positio

2.7 Conclusions

Each tracking approach has limitations. Noise peation error, and the gravity field impart errors
on the signals, producing accumulated positionarhtation drift. Position requires double inte-
gration of linear acceleration, so the accumulatibposition drift grows as the square of elapsed
time. Orientation only requires a single integnatd rotation rate, so the drift accumulates lihear
with elapsed time. Hybrid systems attempt to corspenfor the shortcomings of each technology
by using multiple measurements to produce robssiie

No single tracking technology has the performaecgiired to meet the stringent needs of outdoor
or indoor positioning. However, appropriately combg multiple sensors may lead to a viable

solution sooner than waiting for any single tecbgglto solve the entire problem. The system

described in this paper is a first step in thixpss.

To simplify the problem, we assume real-world otgexe distant (e.g., 50+ meters), which allows
the use of GPS for position tracking. In order ¢évelop a robust system, one set of sensors must
provide information in the case of data loss oftaan For example, accelerometer data could be
used for short periods to get the position whenGR& sensor has not enough satellites in view.
Also one set of sensors could be used to estinmate@mpensate for the inaccuracy of another, for
example, the inclinometer data could be used topemsate for gyro drift.

In summary:

» The following are fast relative pose sensors: Aeroeneters, Gyroscopes, Tilt sensors, Magne-
tometers.

» The following are absolute positioning sensorsgd®f active beacons (IR, Ultrasound, RF),
Cell-Based Tracking, Differences in time-of-arrivaéasurement on multiple receivers , GPS,
Vision-based sensors.

» Visual sensing provides a tremendous amount ofinétion about one's environment, and it is
potentially the most powerful source of informatemmong all tracking sensors. However,
extraction of visual features and filtering them pasitioning is not an easy task. The geomet-
ric information about the environment can be giirethe form of active and passive land-
marks, both artificial and natural, object modeld aenaps in two or three dimensions. In every
cases, the features found should be matched wadtlkalge of the environment provided by
the network. Although much is possible in this tealogy, a severe constraint is processing
time.

e Sensor data fusion can be performed by Kalmarxterifled Kalman filtering
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Chapter 3

Sensor Selection, Errors and
Calibration

3.1 Introduction

A major issue in headtracking for augmented realjtstems is to create such a high speed, low
latency system that the chance of the user expmmnigmotion sickness is low. In this chapter we
will review the various physical sensors, such ggropes, accelerometers, magnetometers,
inclinometers and DGPS, that are available for goseking. We will subsequently discuss the
realization of a sensor cube and end this chaptbrtiae initial calibration and alignment of stand-
alone sensors.

This chapter presents the hardware componentswveedeseloped to operate interactive AR appli-
cations in an outdoor environment [8]. AR requitest equipment such as an HMD, computer, and
tracking hardware be worn outdoors, with some eaxigmples being the Touring Machine by
Feiner et al. [4]. This research requires new hardwcomponents capable of supporting the
desired interactions. While commercially availatienponents are used in many cases, these must
be modified to suit the requirements of the moBiRetask. In some cases, components cannot be
purchased off the shelf, and so must be designg@ad@mstructed. This chapter describes the inte-
gration of existing components and the developrokaicustom backpack, helmet, and positioning
system to support the research in this thesis.

The computer currently being used is a Pentiuni-RIGHz processor, 512 MB of memory, and a
20 GB hard drive. Most importantly of all, it comta two VOODOO graphics cards that are capa-
ble of rendering complex 3D texture-mapped graphits hardware accelerated OpenGL support
[73]. Using two Lithium-lon batteries it can opexdbr more than 2 hours.

The head-mounted display is an iGlasses ProTekamntiaximum resolution of 800x600. This dis-
play can be used for either video or optical-bamegimented reality, and has one of the highest
guality displays available.
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Figure 3-1.UbiCom AR demonstrator - the system and headset

The body position tracker used is a a Garmin 25,6#&h is low quality with 5-10 meter accu-
racy. This device is a low power and low cost solutThe device outputs NMEA 0183 updates
via an RS-232 serial port at 1 Hz, making it suadbr position sensing in outdoor AR. The head
orientation tracker is an custom-made hybrid magraetd inertial tracker, with the sensor cube
mounted on the helmet. This device produces updaesn RS-232 serial port at up to 100 Hz.
The development process of this hybrid inertial soe@ament unit is described in this chapter.

3.2 Building an Inertia Measurement Unit

The instrument cluster that implements an inerteasurement unit (IMU), usually includes a
number of gyros and accelerometers which providasmxements of angular rates and specific
forces respectively. Such a unit may contain tlsiagle-axis gyros, as well as three single-axis
accelerometers, all attached to a rigid block witiah be mounted on a mobile user. The sensors
on such a cube can be augmented with other sdiksotisree magnetometers, two axis liquid incli-
nometers, etc. The sensitive axes of the sensemmast commonly mutually orthogonal in a Car-
tesian reference frame. This arrangement of theuiments allows the components of angular rate
and acceleration in the three mutually orthogomreltions to be measured directly, thus providing
the information required to implement the strapdamomputing tasks.
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Figure 3-2.0rthogonal sensor cluster arrangement

In selecting components, we consider two sets afsggleaned from the above design. The first

are the functional requirements - 6 DOF sensing.Sdtond are the usability goals - small, as well
as low cost and low power.

In the case of the accelerometers, the Analog @Beviomponents are notably superior for our
applications. They provide adequate accuracy andwialth as well as excellent power drain and
price per axis. The ability to switch between threqgompatible 2 g and 10 g version is very useful

as well, as are the dual analog and digital outgtitelly, ADXL202 is small, with a footprint of
5.0 x 5.0 x 2.0 mm.

In selecting gyroscopes, the matter is not quitgraple. While the Gyration[2] gyroscope has the
best power drain and price, as well as good acguitas simply far too large for our design. While
far from perfect, the Murata gyroscopes are snmalllzave reasonable performance and price, and
will therefore be used in this design. The Crosdi@\gyroscopes’ specifications clearly demon-
strate that an order of magnitude increase in pvitdouy an order of magnitude increase in noise
performance, these are not appropriate in thisloasause of their large size, cost and power drain.

3.2.1 Position and Orientation Sensing Hardware
The hardware that we used in our design was:

* A Garmin GPS 25 LP receiver combined with an ROEBM2000 system to form a DGPS unit
A Precision Navigation TCM2 compass and tilt s&nso

Three rate gyroscopes (Murata)

Three accelerometers (ADXL202)

A light-weight, low power LART platform for (mols) data processing

The LART platform was developed at the Delft Unsigr of Technology [96] (Figure 3-3). This
Linux-based system contains an 8-channel fast tLBdbiconverter to acquire synchronous data

from the accelerometers, gyros and -in future- ftemperature data. The latter is useful to com-
pensate the drift due to temperature variatiorteérsensors.
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Figure 3-3.The LART board and the sensor cube (IMU)

The Garmin GPS provides outputs at 1 Hz, with aor@f 5-10 m and an error of 2-3 m in a DGPS
configuration. The TCM2 updates at 16 Hz and clatth$ degrees of error in yaw. The gyros and
the accelerometers are analog devices, which anpled at 100 Hz by an AD converter on the
LART board. The other sensors are read via a dev@[74].

3.2.2 Gyroscopes

The Murata Gyrostar piezoelectric vibrating gyresisin equilateral triangular bar composed of
elinvar (elastic invariable metal) with three PEatrics attached to the sides. The ceramics are
made from Murata’s patented Piezotite materialsciviclaim better temperature stability and
electro-mechanical coupling than other PE matef&d§ The bar is excited into motion from two
sides, and the third side is used to drive a fegdlmop, which controls the bar’s oscillation. The
drive ceramics are also used to detect the moticheobar. A diagram of the bar is shown in
Figure 3-4.

Force Generatt .

-

By Rotatior 4
Perpendicular tr~
Ceramit Ceramic
Used for
Feedback
2 Ceramic%
for Driving
and Detection
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Figure 3-4.Gyrostar Free-Free-Bar and Ceramics

The bars can be very easily tuned to match thendyiresonant) and detecting frequency of both
detectors compared to the rectangular bars that developed in earlier days. This is because
adjustments tothe edges of the prism only affeetflaxural mode of vibration. Rotation detection
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is also innovative due to the process of differegdhe output from the two detectors. The phase
angles and magnitudes of the vibration are compargive a direction and magnitude of rotation.
The specifications of Murata gyro (ENC-03J ser&g)found in Table 3-1.

Table 3-1.Selected Murata Gyrostar Specifications

Characteristics Min. Std. Max Unit
Supply Voltage +2.7 +3.0 +5.5| VDC
Current @3.0VDC 25 3.2 4.5 mA
Max Angular Rate -300 - +300| deg/s
Output at zero rate +1.25 +1.35 +1.45 VDC
Scale Factor -20% 0.67 +20% mV/degys
Temperature Scale -20 - +10 %FS
Linearity -5 - +5 %FS
Response DC-50 Hz
Offset Drift - - >9 degl/s
Dimension 15.5x8.0x4.3 mm

This gyro was selected in our project for its lavgic(approximately $15 in large quantities), small
size, light weight, and good performance relatosehe others in its class. The voltage output from
the gyro is about 1.35 V when stationary and exeimbut 0.201 V in each direction under 300°/
s of rotation.

The Murata gyro has instability in both the zertatimn output voltage and the scale, mainly due

to temperature variations. Since we are aimingdiila users, the sensor cannot be kept in a con-
trolled environment, and since the cost of usingraperature-controled enclosure is restrictive,

regular calibration of these values is requirede glgro also demonstrated limited endurance to
shock and some susceptibility to vibration.

Difficulties also arise in trying to calibrate bathe zero-rotation offset and scale factor simulta-
neously without a precise reference. The zeroimtaiffset is the primary cause of heading drift
and is easier to calibrate. The scale factor cnlmncalibrated by analyzing a series or histdry o
turns to see if there is a tendency to overestimatenderestimate rotation. The scale factor does
not seem to vary nearly as much as the zero-rotafifset. The scale factor was determined by
scaling the integrated output of the gyro over itfles (A6=10*(2m) ), on a level surface. The
resulting value was used throughout the testing.

3.2.3 Accelerometers

The sensors are surface micro-machined as in siameéasd integrated circuits (IC), and are there-
fore available in standard IC sizes ready to bentexlion a printed circuit board (PCB). The
moving parts are cast in place using a sacriflaijg@r of material that is then dissolved, making th
positioning of the parts highly accurate. On thgk silicon die, there is the mass-spring system
and also the entire electrical circuit to calculdte acceleration from the measured displacement
of the mass. This is the circuit surrounding th@opmass. Analog Devices named this technology
IMEMS, for integrated MEMS. The final output of thkip is an analog voltage, ranging from 0 to
5 volts, linearly proportional to the acceleration.
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The specifications of Analog Devices ADXL105 accefeeter are found in Table 3-2.

Table 3-2.Selected ADXL105 Specifications

Characteristics Min. Std. Max Unit
Supply Voltage +2.7 +5.25| VDC
Current @3.0VDC 1.9 2.6 mA
Measurement Rangel +5 +7 g
Nonlinearity 0.2 %FS
Scale Factor 225 250 275 mVv
Temperature Scale +0,5 %
Alignment Error +1 deg
Response 10 12 kHz
Offset Drift 50 mvV
Noise Performance 225 325 | pg./Hz

The typical noise floor is 2283./Hz  allowing signalsdel2mg to be resolved. A 10kHz wide
frequency response enables vibration measuremplicaions. The ADXL105 can measure both
dynamic accelerations (vibrations), or static a&@lons (such as inertial force, gravity or tilt).
Output scale factors from 250mV/g to 1.5V/g casékeusing the on-board uncommitted amplifier
and external resistors. The device features aroandiemperature sensor with an output of 8mV/
OC for optional temperature compensation of offsettemperature for high accuracy measure-
ments.

3.2.4 Magnetometers

It should be possible to compensate for the magfietd of the mobile system since it is constant
and keeps its orientation with the user, whileEaeth’s magnetic field always points North. How-
ever, disturbances such as moving metal objeatsciéks, or a variable magnetic field generated
by high voltage lines can change the magnetic.fielach temporary external disturbances such as
nearby vehicles cannot be calibrated out. Sincddte magnetic field strength should not vary
with orientation, magnetic disturbances are oftlntified by checking that total measured field
strength variation does not exceed a threshold.magnetic field of the Earth has a strength of
about 0.5 G, but this value, or certainly its hontal component, can easily be exceeded by the
magnetic field of the mobile system.

The horizontal components of the magnetic fieldreeeded to compute the heading relative to the
North magnetic pole. If the sensor is tilted wiispect to the local level plane, some amount of the
vertical component will be sensed by the horizoaxas sensors. For this reason, a two-axis sensing
compass can not properly determine the headirtgeofehicle if the vehicle is tilted. A sensor with
three magnetic sensing axes can determine thetatitam of its axes only if the magnitude of the
magnetic field is known or assumed. The additioaroinclinometer allows for full determination

of the strength and orientation of the magnetid figth respect to the sensing apparatus. A method
developed by Plessey Overseas for handling a congpleof three magnetic sensing coils and a
biaxial inclinometer, similar to the Precision Ngaiion TCM-2 [20] used for this project, is pre-
sented below.

If a three-axes magnetometer is operated with@ptbsence of spurious magnetic fields, the mea-
surement locus of the magnetic field of the Eartluld appear as a sphere by allowing all values
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of pitch, roll, and heading for the sensor. In¢hse of the sensor being mounted on a mobile unit
which has a static magnetic field, the locus besameellipsoid [20] that is shifted from the origin
and has arbitrary orientation and size, dependmthe permanent magnetic field of the mobile
unit.

The TCM2 uses a patented magneto-inductive seristithique that makes use of a material
whose inductance varies with the magnetic fieldrgith to which it is subjected. The compass pro-
vides RS232 proprietary or National Marine Electtemssociation (NMEA) format output, but
a proprietary format can be chosen if an increésesl of detail is needed. The unit specifications
are given in Table 3-3.

Table 3-3. TCM2-50 Digital Compass Specifications (Precisicawvidation 1999)

Parameter Specifications Unit
Heading Accuracy (Level) 1.0 degree RMS
Heading Accuracy (Tilted) 15 degree RMS
Tilt Accuracy 0,2 degree

Tilt Range +50 degree
Magnetometer Accuracy 0,2 MT
Magnetometer Range +80 MT

Supply Current 15-20 mA

Interface Digital: RS232C, NMEAQ0183

It is possible to calibrate the TCM2 sensor to take account the static magnetic field of the
mobile unit. The calibration process involves magkstow turns through varied pitch and roll. A
calibration score is given which indicates whe#@ough data with varied heading, pitch, and roll
variation was collected to estimate the field & tkehicle. To avoid saturation of the sensors and
difficulty in eliminating the permanent field, tlwentribution of a car should be less than 0.3 G.

3.2.5 Global Positioning

Each satellite broadcasts a unique coarse acguigi€/A) pseudo-random noise (PRN) code,
modulated onto the L1 carrier. Selective availab(i5A) was used until May 1, 2000, to degrade
the performance of civilian users in single-poirdda through dithering of the satellite clock off-
set. A 50 bps navigation message, which givesithe of transmission of the PRN sequence and
other necessary information, and a second codaréPnodulated on both the L1 and L2 carriers.
This P code is intended primarily for military usend provides better resolution (less receiver
noise) and immunity from the SA, but is encryptecbtigh a procedure known as anti-spoofing
(AS). Civilians can still make use of the P codd,®loss is suffered through correlation technsque
used to sidestep the encryption, and the SA isembved.

The master control station (MCS) processes rangesunements taken at the five monitoring sta-
tions and develops predictions for the orbits aatdlbte clock behavior. The MCS then sends this
data to the monitor stations for upload of the gation message to the satellites. The navigation
message also includes the health of the satedlitdsan almanac that can be used to predict the vis-
ibility of satellites for any time and place.
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3.2.5.1 GPS positioning

Four or more satellites are normally required tmpate a GPS position due to the use of low cost
oscillators in commercial GPS receivers [95]. K tteceiver clock were synchronized with GPS
time, only three range observations would be reguio compute the receiver coordinates in 3D
space. The fourth unknown, referred to as recailgak bias, is the difference between the time
estimated by the receiver and the GPS time. A ramggsurement with an error in time synchro-
nization is referred to as a pseudorange. Pseuglesaare most often used in a least squares (LS)
parametric model to solve the four unknowns in goolgtioning.

Three observations are normally made from the sigaaking procedures of a GPS receiver.
These are the pseudorange, carrier phase, andéopgasurements. The code pseudorange mea-
surement is derived from a delay lock loop (DLL)igéhcorrelates the incoming signal with locally
generated versions of the signal. The discriminasas the output of the correlators to make a
pseudorange measurement. The carrier phase measirisnan accurate measure of the phase
angle and accumulate cycles of the incoming sigirted. carrier signal is normally tracked using a
Costas phase locked loop (PLL). A standard didtdl is not used since the navigation message
is usually left modulated on the carrier, making torrelation positive or negative depending on
the bits of the navigation message. When usingaSadiscriminators, the tracking error must be
kept below 90°, unlike a standard PLL, which cdertte errors of up to 180°. The Doppler is an
estimate of the frequency difference between tballp generated carrier and the Doppler shifted
incoming signal. It is noted that the ionosphengses a code delay and an equivalent advance of
the carrier phase. The ranges are subject to d&revasources, which are summarized in Table 3-
4 for a typical C/A code receiver [90].

Table 3-4.Typical Errors for C/A Code Receiver

Error Sources Typical Values
Troposphere Delay 2-30m
lonosphere Delay 2-30m
Ephemeris (Orbital) Error 1-5m

Clock Dirift 0.1-3m
Selective Availability 1-70m

Carrier Noise 0.001-0.006m
Carrier Multipath 0.001-0.02m
Code Noise 0.1-3m

Code Multipath 0.1-100m

GPS errors are a combination of noise, bias, amaddeirs:

* Noise errors are the combined effect of code n@ssund 1 meter) and noise within the
receiver noise (around 1 meter). Bias errors régutt Selective Availability and other factors.

» Selective availability (SA): SA is the intentiorgggradation of the GPS signals by a time vary-
ing bias. SA is controlled by the DoD to limit acaay for non-U. S. military and government
users. However, SA was removed as of May 2, 20@d ks has increased the location accu-
racy by 10 times (Figure 3-5).

» Other bias error sources include clock errorsemors due to atmospheric effects
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3.2 Building an Inertia Measurement Unit

* Blunders can result in errors of hundreds of kiddens and can be caused by control segment
mistakes, and human mistakes; receiver errors $mitware or hardware failures can cause
blunder errors of any size.
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Figure 3-5.The effect of SA

Noise and bias errors combine, resulting in ertgpgally ranging around fifteen meters for each
satellite used in the position solution. Atmospbeonditions influence accuracy because the ion-
osphere and troposphere both refract the GPS sighlails causes the speed of the GPS signal in
the ionosphere and troposphere to be different tterspeed of the GPS signal in space. There-
fore, the distance calculated from “Signal Speéldme” will be different for the portion of the
GPS signal path that passes through the ionosphdraoposphere and for the portion that passes
through space.

3.2.5.2 The Garmin GPS25 GPS receiver

The GPS 25LPs [19] is simultaneously tracking umelve satellites providing fast time-to-first-
fix, one-second navigation updates and low powesomption. Its far-reaching capability meets
the sensitivity requirements of land navigatiomedl as the dynamics requirements of high per-
formance aircraft.

Some performance figures for the GPS25 receiveasfellows:
1. It tracks up to 12 satellites (up to 11 with RP&se per second) active)
2. Update rate: 1 second

3. Acquisition time: 15 seconds warm (all data knpwis seconds cold (initial position, time and
almanac known, ephemeris unknown), 1.5 minutes lfadateTM (almanac known, initial
position and time unknown), 5 minutes search tlye(sk data known)

4. Position accuracy:
Differential GPS (DGPS): Less than 5 meters RMS
Non-differential GPS: 15 meters RMS (100 meter$\gielective Availability on)

5. Velocity accuracy: 0.2 m/s RMS steady state @xtlip Selective Availability)
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6. Dynamics: 999 knots velocity, 6g dynamics

7. One-pulse-per-second accuracy: +1 microsecondiag) edge of PPS pulse (subject to Selec-
tive Availability)
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Figure 3-6.GPS navigation session visualization
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We used the program VisualGPS to display and aealye data from the Garmin GPS board.
Figure 3-6 presents a short navigation sessionpidgram displays also the number of satellites
in view and the signal strength.

3.2.5.3 GPS protocols

All standard GPS hardware communications use th&NN183 standard for marine electronic
devices. Most GPS hardware also supports a vafetgditional proprietary communication pro-
tocols, but NMEA-0183 is the ubiquitous standast th supported by most software libraries. The
NMEA-0183 standard specifies that communicatiomien devices takes place through a stan-
dard serial link running at 4800 bps. The NMEA-0X88tocol consists of ASCII “sentences”
which are sent repeatedly by the GPS receiver.elbestences always start with the character $
and end with a carriage return/newline (CRNL) segee The format is:

${talker id}{sentence id},{comma separated list ofields...}{optional checksum}\r\n

The talker id is a two-letter code that indicates type of device sending the message. This will
always be “GP” when reading data from a GPS receivge sentence id is a three-letter code that
indicates the type of information being sent aredfttrmat of the following data fields. The differ-
ent sentence types that can be parsed by the Gplenmented library are:

* GGA
« GLL
* RMC

These are common sentence types supported by aath@®S systems. A detailed description of
these sentences can be found in Chapter A.7.
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3.2 Building an Inertia Measurement Unit

3.2.5.4 Spatial reference systems

To measure locations accurately, a selected eitiwuld fit an area of interest. Therefore, a hor
izontal (or geodetic) datum is established, whechn ellipsoid but positioned and oriented in such
a way that it best fits the area or country ofiese. There are a few hundred of these local hori-
zontal datums defined in the world. Vertical datuems used to measure heights given on maps.
The starting point for measuring these heightsnaean-sea-level (MSL) points established at
coastal sites. Starting from these points, thettigigf points on the earth's surface can be medsure
using levelling techniques.

To produce a map, the curved reference surfackeoEarth, approximated by an ellipsoid or a
sphere, is transformed to the flat plane of the mameans of a map projection. In other words,
each point on the reference surface of the Eartih geographic coordinate$,(A\) may be trans-
formed to a set of cartesian coordinateg) (representing positions on the map plane.

Most countries have defined their own local spag&rence system. We speak of a spatial refer-
ence system if, in addition to the selected refegesurface (horizontal datum) and the chosen map
projection, the origin and axes of the map coordirsgstem have been defined. The system used
in the Netherlands is called the “Rijks-Driehoekgstem. The system is based on the azimuthal
stereographic projection, centred in the middl¢hefcountry. The Bessel ellipsoid is used as the

reference surface. The origin of the coordinatéesydhas been shifted from the projection centre

towards the south-west.

The RijksDriehoeksmeting is also a division of lwtch Cadaster that is responsible for the main-
tenance of surveying networks in the Netherlandsveéyors work with coordinates and a certain
choice had to be made. The choice in the Netheslaras to apply a stereographic projection on
an imaginary plane whose origin coincides withtipeof the O.L. Vrouwe Church in the city of
Amersfoort. Tips on the towers of churches aresquiible throughout the countryside, this is the
only reason why churches are so popular with suangewho, after all, need benchmarks for their
measurements. The stereographic projection is ohfisepure convenience, the reason is that
angles measured in the terrain become identicahgfles measured in the projected coordinates.
RD coordinates can be found on all topographic npapgided by the Topografische Dienst in the
city of Emmen. Large bookstores sell topographigpsnar carry catalogs from which you can
order the maps in Emmen. The RD coordinate sysseasifar as | know, a very common system
used by most surveyors in the Netherlands. RD doatels apply only to the Netherlands, and
should not be extended beyond the largest bourmirgso to speak, excluding the Dutch colonies.

WGSB84 is a completely different type. This is abgloreference system that hinges on the use of
a reference ellipsoid. GPS ephemerisxas are usually represented in this system. A canver
between the WGS84 latitude and longitudesyt®D coordinates is what will be presented. The
conversion itself is described exactly in a pultiama available from the Netherlands Geodetic
Commission. In a nutshell, the conversion works as follows:

1. Thex andy RD coordinates are projected oBessel ellipsoid

2. Thelatitude andlongitudeon the Bessel ellipsoid are converted to WGS84

The Bessel ellipsoid is an invention of the RDs i so-called best fitting reference surfacelfier t
Netherlands. Latitudes and longitudes on Dutchgoggohic maps are (unless otherwise indicated)
represented on the Bessel ellipsoid.

1. Thijsseweg 11, 2629 JA Delft, The Netherlands
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The x-coordinate is called Easting (E) and theoordinate Northing (N) and both are given in
meters. So the position of the centre of the smalhd island in the Hofvijver in The Hague (at the
seat of the government) is noted as 081322E 455215N

The Easting starts at about 012000 and rises nanfigher than 276000. The Northing starts (in
Zuid Limburg) with 306000 and ends up north witl66@0. So, the Easting number (west-east
direction) is always smaller than 300000 and Nagmumbers are always bigger then 300000.

There are many ways to write down these coordinaissally (but not always) first the Easting
then the Northing values. Sometimes they are ginedlometers like 81.4 / 455.2 but mostly in
meters, yielding 6 (sometimes 5 when no leading ewritten, when the Easting <100000) digits
for the Easting and 6 for the Northing.

3.2.6 Differential GPS

Differential GPS (DGPS) is a technique of reduding error in GPS-derived positions by using
additional data from a reference GPS receiver lata@vn position. The most common form of
DGPS involves the determination of the combinedaf of navigation message ephemeris and
satellite clock errors (including propagation dslayd the effects of SA) at a reference station and
transmitting pseudorange corrections. This is domreal time to a user’s receiver, which applies
these corrections in its position-determining pssce

DGPS can be used to minimize the errors of singletgGPS by canceling the parts of the error
that are common to receivers in close proximityffddential GPS is normally implemented by dif-
ferencing the ranges to common satellites fromrseeivers. If the coordinates of one station are
known, an accurate position of the second stateonhbe determined. Alternatively, a coordinate
difference between stations can be computed ugipgpaimate coordinates for one of the stations.
Differential GPS reduces or eliminates errors cdigesatellite clock and orbital errors, and atmo-
spheric propagation. It does not reduce multipatbre, when the noise of a differenced observa-
tion is larger than that of an individual measurati®y a factor of/2 .

As we can see from both figures below, the DGPSgadion is comparable in accuracy with GPS
alone and that is in the range of 5 meters RMS.iifipeovement is that the position information
iIs more decorrelated; in Figure 3-8 we can obsdraextandy position information looks corre-
lated. This inefficiency of the DGPS correctiorpartially due to the distance to the station that
sends RTCM correction messages, which in our caseapproximately 150km.

y position [m]

| | |

L L L L L L L L ) | | 1
5 -4 3 2 1 0 1 2 3 4 5 0 200 400 600 800 1000 1200 1400
X position [m] time

Figure 3-7.GPS navigation session with DGPS correction (aulEI&DS data)
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Figure 3-8.GPS navigation session without DGPS correction

3.3 Sensor Errors

In order to realize the navigation and alignmegbethms, the calibration of the sensor errors has
to be done beforehand, stand alone. The sensomeodel is:

6abx = Oy + Uy xBpx + axyaby + Oy

08y, = Oy + Oy, 8y, + Oyyay, + Ay,ay, eq. 3-1.
day,, = O, + a8, + 0,8y, 0,48,
Oy = By + By Byypy + By, Wpy +
(Bxyx@ox T Bxyy@py t Byz2p,) Wpy +
(Bxz@px t BxzyBoy * Bz A2 Db
Owpy = By + ByxWpyx + ByyWpy * By Wy +
(Byso@bx T Byxy@py t ByxAp) Wpy + eq. 3-2.
(By2@0x t ByzyBoy T ByzAp,) Wy,
0wy, = B+ Byt Bywpy B, 00, +
(Bzx@px t Brxypy T BrxApz) Wpx +

(Bzyxabx + Bzyyaby + Bzyzabz) ('Oby
With:

day;, dwy,;, (I =X, Y, 2) - the accelerometer and gyro errors in projectmmshe body frame;

a; -the accelerometer biases;

a;; -the accelerometer scale factors;

o - the accelerometer installation erroeg)i
B; -the gyro biases;

Bi; -the gyro scale factor;
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Bj - the gyro installation errors#;

Bijk - the gyro drift depending on the acceleratioexire errors);
In our subsequent discussions we will not takegi® flexure errors into consideration. The
model parameters; arfiji are assumed to be cortmtamtith unknown values. The goal of the
calibration is to estimate the values of the patameabove. A calibration procedure was realized
by the installation of the inertial measurement onto a turning table, whereas the axes were ori-
ented precisely with respect to a local-level fraWv@en rotating the IMU axes with respect to the
local-level frame to different angles, a calibratimeasurement model can be generated. As the
gyros are low cost and not capable of detectingetiéh’s rotation rate we use for the calibration
of the gyros a precise angle measure. For theercreéter calibration we use the projection of the
apparent gravity vecta on the body frame in different positions of theUM

3.3.1 Accelerometer calibration procedure

The accelerometers are calibrated by comparingrhég or digital signals produced by the sen-
sors with a known applied motion. For example, fittwnrate transfer test the output signals from
a gyroscope can be compared with an accurately kmotation rate and a scale factor, defined as
x milli-volts per degree per second of rotation r&inilarly, using the gravity vector as an accu-

rate reference, the scale factor of an acceleraratebe defined. To observe the need for calibra-
tion, the measurements over 10 hours for thredercoreters are presented below.
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Figure 3-9.10 Hours of accelerometer measurement

A long drift calibration of the acceleration is @&fed by fitting a linear function to the data. Bag
dratic, cubic or an exponential fit did not yieldagl results. This experiment confirmed the error
model that we assumed for the accelerometers:pliageslowly varying drift.

All sensors are sampled at 1 kHz. As we can see figure 3-9, all accelerometer signals are quite
noisy. To reduce the noise we implement an ellifaticth-order low pass filter with a cut-off fre-
guency of 200 Hz. The filter was implemented in@uix kernel driver, and all measurements were
synchronized.

To calibrate the scale factor and bias of the &cogleter, we use the projection of an apparent
gravity vectorg on the body frame in different positions of theUMr his calibration procedure has
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the disadvantage that it requires a precise otientaf the IMU with respect to the local-level
frame. If not, the orientation error will influentlee calibration accuracy.

The thermal bias drift rate of the accelerometacgdl at room temperature was found by experi-
ments to be 0.1Q&)/s.

For each accelerometer:
 take the first measurement when the sensor ieg#yfleveled (angle 0):

1 _
Z(a,) = 0;—a;9-9g eg. 3-3.
» the second measurement is taken after the ses\sutated 189

2

Z(a,) = a,+0;9+g eq. 3-4.
Using the above measurements, the estimates gf yrendz scale factors and biases of the accel-
erometer can be computed as:

_ Zay) + Z(ay) _ Z(ay) —Z'(ay) - 29
a; = 5 i = 79 eq. 3-5.

3.3.2 Gyroscope calibration procedure

Micromachined solid-state gyroscopes use vibratieghanical elements to sense rotation. They
have no rotating parts that require bearings, ep tlan be easily miniaturized. All vibration gyro-
scopes are based on the transfer of energy betweeribration modes of a mechanical structure,
caused by Coriolis acceleration. The highest raasiensitivity is obtained when the drive and
sense modes have the same resonant frequency.

Resolution, drift rate, zero-rate output, and séat¢or are the most important factors that deter-
mine the performance of a gyroscope. When a gypesinertially static, the output signal is a

random function that is the sum of white noise amyclic noise function of the mechanical reso-
nant frequencies.

The Murata Gyrostar piezoelectric vibrating gyroswesed for our IMU. This gyro was selected
for its low cost, small size, and good performaratative to others in its class. The voltage output
from the gyro is proportional to rotation rate, amdampled at 1 kHz using the A/D converter of
the LART system. In the actual implementation,sheples were filtered inside the kernel driver
on the LART platform, and integrated at 100 Hz keeghe absolute angles. The initial angles are
set by the TCM2 sensor.

To develop an error model for the Murata gyroscotyesr outputs were recorded over long peri-
ods of time, subjected to zero input, i.e. the ggopes were fixed stationary on the laboratory
bench. The result of this experiment over a peoiotlO hours is shown in Figure 3-10.

Ideally, the output for zero input would be a canstvoltage level corresponding to the digital

output of 32768 for a 16-bit A/D converter. As wancsee from Figure 3-10, the gyros have two
types of errors. First of all, the zero level, teasly state, differs greatly between gyros from the
same production lot. This is because we elimin#ttecbutput high pass filter from the electronic

circuit that was suggested by Murata. The reaspthfse was that we observed a derivative effect
on the output signal for low rotation rates, whizds unacceptable for our application. This means,
however, that we need first to calibrate the zewel. Also this obliged us to make a sensor selec-
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tion in order to get those sensors with output @slalosest to ideal zero value, which is 32768.
Another problem is the variation of this zero lewéh time.
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Figure 3-11.Long term gyro calibration

For a Murata gyro, the real output data is at eelolvel than the ideal at start-up, and the mean
gradually increases with time in an exponential (fay- e-/b) ). The repeatability of these results
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indicates that apparently a small time-varying lisasharacteristic for these gyros. The time vari-
ation of the bias is attributed to thermal effdmised on the observation that the gyroscope units
gradually heat up during operation. The bias cpartaff to a negative or positive value depending
on the ambient temperature.

Long-duration gyro drift calibration is achieved filging an exponential function to the data. A
nonlinear parametric model of the exponential foras fitted to the data from the gyroscope using
the Levenberg-Marquardt iterative least-squarméthod.

We tried two exponential error model functions, enlh an exponential defined by three param-
eters, and the second containing two exponenteflaetl by four parameters.

Emodeft) = a(1—eP) +c eq. 3-6.
Zmodeft) = a(€h) +c(et) eq. 3-7.

Figure 3-11 presents the signal for the three ggres a 10-hours period, together with their fit
function, as represented in Equation 3-7. For eagbtion fit we present the residuals from the fit.
In general, a model fitted to experimental dategarded as being adequate if the residuals from
the fitted model constitute a white, zero-mean esscand with smadi. Hence, one can start with
any reasonable model based on inspecting the aligata and test its residuals for whiteness. If
the test fails, the model can be further develap#d the residuals pass the whiteness test. We can
test the whiteness using the autocorrelation fonciThe autocorrelation function for a white pro-
cess is well approximated by a narrow Gaussianiloliston (theoretically it is a Dirac function).
We present in Figure 3-12 the residuals of therftt the spectrum of the residuals.
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Figure 3-12.Residuals of the fit and spectrum of the residuals

For comparison purposes we present (in Figure 3HS)wo fitting functions overlayed over the
original data. One can see that the second funofiens a better approximation for the drift vari-
ation. The advantage of the first fit functionhsit one of the parameters is more meaningful.

The gyro has instability in both the zero-rotateuriput voltage (bias) and the scale factor, mainly
as a result of temperature variations. The spetifios for the zero-rotation bias and scale factor
vary by 20%, so independent calibration of each igmequired. The high temperature variations
require regular calibration of these values, howeNf#iculties arise in trying to calibrate botheth
zero-rotation offset and scale factor simultangouShe zero-rotation bias can be easily deter-
mined when the unit is not rotating, i.e. whengleform is stationary, but calibration of the &cal
factor requires rotation of the sensor with an ez®uheading reference.
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Figure 3-13.Comparison between the two fitting functions

General model Exp2:
f(x) = a*exp(b*x) + c*exp(d*x)

X gyro:

Coefficients (with 95% confidence bounds): Goodness of fit:
a= 2.139e+004 (2.139e+004, 2.139e+004) SSE: 1.091e+006
b= 2.115e-009 (2.108e-009, 2.122e-009)  R-square: 0.9926

c= -196.3 (-196.8, -195.8) Adjusted R-square: 0.9926
d =-3.768e-006 (-3.787e-006, -3.748e-006) RMSE: 6.021

Y gyro

Coefficients (with 95% confidence bounds): Goodness of fit:

a = 3.468e+004 (3.467e+004, 3.468e+004) SSE: 4.245e+006
b= 1.638e-009 (1.628e-009, 1.649e-009) R-square: 0.9884

c= -334.1 (-335.1, -333.2) Adjusted R-square: 0.9884
d =-2.994e-006 (-3.013e-006, -2.974e-006) RMSE: 11.88

Z gyro

Coefficients (with 95% confidence bounds): Goodness of fit:

a= 2.976e+004 (2.976e+004, 2.976e+004) SSE: 1.739e+006

b = 3.089e-010 (2.953e-010, 3.224e-010)  R-square: 0.9715

c= -156.7 (-157.6, -155.8) Adjusted R-square: 0.9715
d =-1.878e-006 (-1.9e-006, -1.857e-006) RMSE: 7.601

The sensor is linear for low rotation rates. Fghhiotation rates the calibration is achieved by fi
ting a fifth order polynomial function to the meamment. In Figure 3-14 we present the error after
the calibration (a nearly straight line), and th@ewithout calibration (an S curve).

Note that a fiber optic gyro (FOG) has a rangealbitity of several degrees per hour. The big dis-
advantage of these type of sensors is their sidevarght. In Figure 3-15 we present the signals of
two gyros, a FOG gyro from DMU and a Murata gyrce 0an see that the FOG gyro has a drift
stability with an order of magnitude higher thaa Murata gyro.
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Figure 3-15.Fiber Optic Gyro stability

3.3.3 Overall Sensor Alignment

The alignment of the sensors on the IMU is donketgling. In a strapdown inertial system this is

a mathematical operation. The idea is to calculaebiases of the sensors. The scale factors are
assumed to remain the same. The IMU is placedharizontal position and during leveling the
IMU should remain stationary. If the IMU has ti#trssors the leveling equation can be corrected
with their angles. From the measurements we coedltitat misalignment and cross-axis sensitiv-
ity were negligible compared with drift and scadetbr nonuniformity.

AccelerometersVe know the normal vectors of the acceleromdtera calibration or from incli-

nometer measurements. The local gravity vectaagpted onto the sensor axes. We can then cal-
culate the theoretical readout from the sensor.sEmsors are sampled over a period of time. The
bias is the difference between the theoreticalevzahd the calculated mean, and is calculated using:

N
_ 1 .
Paco(y = SFacep| Mace) U~ 2 Mace(p(i) eq. 3-8.
i=1
with: ny..- the normal vector of accelerometer j, SF theelrometer scale factor, and,gathe
accelerometer measurements.
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Rate GyrosWhen the IMU is stationary we know that its aifié remains the same. Therefore, the
mean value of the sampled rotation rates shoultbbe

N

1 .
_ 1 1 ]
Bayra(i) = SFayro(i| 0= 2 Mayro(j)(1) eq. 3-9.
i=1

In this way we can compute an estimate for thelaommeter bias and gyro drift, and this estima-
tion can be use to initialize a Kalman filter.

3.4 Results and Conclusions
Conclusions on relative sensors

Relative (local) localization consists of evalugtthe position and orientation through integration
of encoders, accelerometers and gyros. The int@mnreg started from initial position and orienta-
tion and is continuously updated in time. Thoughtdthnique is simple, it is prone to error due to
impercision in modeling, noise, and drift. Subs&nimprovement is provided by applying
Kalman filtering techniques, as shown in Chapter 4.

The Murata Gyrostar piezoelectric vibrating gyras mmeasure up to 300 °/s. They are inexpensive
but have a large bias that varies with time up #s9Consequently, we had to correct for this.bias
After our correction, the noise level is around U2when sampled at 100Hz. The accelerometers
(ADXL202) also have a varying offset. This offsencbe 0.5 mfsand the residual noise level is
around 0.06 mfswhen sampled at 100Hz. The maximum acceleratiancéin be measured is 2g
in both directions.

Conclusions on absolute sensors

Absolute (global) localization permits the mobijestem to determine its position directly using
navigation beacons, active or passive landmarkp,meching or satellite-based signals like GPS.
Global sensor measurements can drastically incrémesaccuracy of the estimate and keep the
associated uncertainty within certain bounds.

The TCM2-50 liquid inclinometer uses a viscousdlto measure the inclination with respect to
the gravity vector with an accuracy of 0.2°. Thadiag is calculated using three magnetometers
with an accuracy of 0.5-1.5°. Because the liquilli siosh slightly when accelerations are applied,
we have to cope with an error of about 20°.

Differential GPS reduces or eliminates errors cdigethe satellite clock, orbital errors, and atmo-
spheric propagation. It does not reduce multipatbre, when the noise of a differenced observa-
tion is larger than that of an individual measurati®y a factor of/2 .

In this chapter we saw that DGPS navigation is cmaiple in accuracy with GPS alone, i.e. in the
range of 5 meters RMS. The improvement is thatpth&tion information is more decorrelated.
This inefficiency of the DGPS correction is patgialue to the distance to the station which sends
RTCM correction messages, which in our case wasoappately 150 km.

Conclusions on the making of the system

The performance requirements for the sensors aneeddrom the attitude determination and nav-
igation accuracy requirements. The designer mustriiéne that all of the important variables,
including sensor drifts or biases, are observailm the chosen set of measurements. The sensor
set should have bandwidth at least a decade abevedvement dynamics. The correctly tuned
estimation algorithm adjusts its bandwidth to takfermation from each sensor at the frequency
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range where the sensor performance is best. Thienprary requirements on accuracy of sensors
are derived from measurement equations. For exaarfpig accelerometer bias when used to cor-
rect low frequency gyro drifts will result in a Idinequency error in estimation of local vertical of
.005(1801) = 0.3degrees. In more complicated cases the defitpe @stimation algorithm has to
be performed and covariance simulation run to dates the impact of errors.

Based on the analysis of the technologies presantdde previous chapter and the sensors
described in this chapter, we selected a set afogsrirom which to acquire and fuse the data in
order to achieve the required robustness and ancuvde selected for the inertial system three
accelerometers (ADXL105) and three gyroscopes (MUENCO05). To correct for gyro drift we
use a TCM2 sensor that contains a two axis incletemand a three axes magnetometer (compass).
Indoors we use a Firewire webcam to obtain thetiposand orientation information. Outdoors we
use, in addition, a GPS receiver in combinatiormwitadio data system (RDS) receiver to obtain
DGPS correction information.

The LART platform, that is used for data acquisitand preprocessing, has an 8-channel fast 16-
bit AD-converter to acquire synchronous data fromdccelerometers, gyros and temperature data.
The platform is running the Linux operating systand has very good real-time behavior. The
gyros and the accelerometers are analog devicashwahe sampled at 100 Hz by the AD con-
verter. The TCM2 updates at 16 Hz and is read giarial line. When the TCM2 and the gyros are
read out simultaneously, there is an unknown difiee in the time of the physical events. This
difference was measured and the average was tateeadcount in the Kalman filter.

Conclusions on calibration

It is possible to build a look-up table based amdpparent relation between drift rate and sensor
temperature. Doing so may provide a notable impreard in many applications. From an initial
drift of 9 degree/second the drift dropped dowb+t0 degree/minute. For this reason, the LART
platform comes with a digital A/D channel for a fgmature sensor that can be read during opera-
tion. However, we found out that even with a dofik-up table the resulting bias-drift estimate is
not accurate enough.

The thermal bias drift rate of the accelerometacgdl at room temperature was found by experi-
ments to be 0.1Q&)/s. The effect of the random bias drift on theoe#l and position error is quite
important. The bias deviation is about 2-3mg feréhtire accelerometer measurement range. Nav-
igation grade accelerometers have about 0.1mg namiks. The velocity and position eror build-
up can be computed with formulas:

Velocity error = 0.589m/s pergmper min
Position error = 17.66m pergyper mirf

Thus, for a bias of 2g) the velocity error built up in one minute is 18h7/s and position error is
35.2m. Thus, if the random bias can be modeledguhppthe accuracy in distance measurement
can be greatly improved.

52



4.1 Introduction

Chapter 4

Inertial Navigation and Sensor
Data Fusion

4.1 Introduction

In this chapter we will proceed with the desigragfosition and orientation tracking system for an
Augmented Reality system. We will elaborate on dowte frames and their transformations and
introduce sensor data fusion tuned to our problesmg Kalman filtering. Specifically, we will
elaborate on sensor data fusion using quaterngs®r as we know, a novel approach.

This chapter will provide the necessary backgrokmalvledge on inertial sensors and their asso-
ciated errors. Furthermore, the chapter will prey@s a contribution, the inertial navigation equa-
tions needed for mobile systems. The inertial natvdg equations are then linearized to develop
error equations. These equations provide the mattiesh foundation to analyze the propagation
of errors in inertial navigation.

When designing the overall fusion algorithm, we tiake into consideration the multi-rate sensor
collection, and design our algorithm appropriat@ligat is, we need to fuse inertial and GPS data,
when we are sampling our inertial sensors at 108rdizreceiving GPS data at 1 Hz. Here, the term
‘fusion’ refers generally to the process of combgniwo sets of data to produce a better output.
Sensor fusion can be accomplished with Kalmarrifiitg or it can be done by weighting each set
of data based on a set of rules.

There are a number of remarkable advantages ybuatite just in the form of the filter. First off
all, the Kalman gain is computed from scratch gauk you wish to incorporate a new measure-
ment. This makes it very easy to track systems tiitle-varying dynamics or measurement pro-
cesses. For adaptive filtering, one can adjustnie@surement noise covariance, Rr each
measurement to weight the measurement more ohnéassly depending on the distance to the tar-
get, signal strength, or any other indicator ofghabable quality of that measurement. This ability
to handle time-varying models is also the key iogithe Kalman filter with nonlinear systems or
nonlinear measurement models. Linearizing abouttieent state estimate produces linear equa-
tions for the residual errors, with, (the state transition matrix) and, kbutput matrix) matrices
which are functions of the current states. One #gimply runs a time-varying standard Kalman
filter on the error model, recomputidy and H, at each step based on the current pose. This is th
basis of the Extended Kalman Filter (EKF).
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4.2 Coordinate Frames

A coordinate frame is an analytical abstractionraef by three consecutively numbered (or let-
tered) unit vectors that are mutually perpendictdasne another in the right-hand sense.

In the literature on inertial navigation, coordm&itames are defined in the following ways:

* TheE frame is the Earth fixed coordinate frame usecdfmsition location definition. It is typi-
cally defined with one axis parallel to the Earghddar axis and with the other axes fixed to the
Earth and parallel to the equatorial plane.

* TheN frame is the navigation coordinate frame, havieZiaxis parallel to the upward verti-
cal at a position location with respect to the ldearth surface. It is used for integrating accel-
eration into velocity and for defining the angubaientation of the local vertical in the E frame.

« The B frame is the strapdown inertial sensor coateé frame (Body frame) with axes parallel
to nominal right-handed orthogonal sensor inpusaxe

» The | frame is the non-rotating Inertial coordm&itame used as a reference for angular rota-
tion measurements.

4.2.1 Strapdown Attitude Representations

4.2.1.1 The Euler angle representation

A transformation from one coordinate frame to arottan be carried out as three successive rota-
tions about different axes. This type of repredsonas popular because of the physical signifi-
cance of the Euler angles which correspond to angléch would result by integrating the signal
from three orthogonal gyros in a stable platforeriial navigation system.

The coordinate frames referred to in this thegsoathogonal, right-handed axis sets in which pos-
itive rotations around each axis are taken to lzedlockwise direction looking along the axis from
the origin, as can be seen in Figure 4-1. The mtaround th& axes is calleoll, the rotation
around theY axes is calle®itch, and the rotation around tFeaxes is calle¥aw Roll, Pitch and
Yaw are the names of angles in avionics books pptications. They are also referred tgoas,

tilt andheading e.g. in computer graphics and image processiplicapions

X
\S7% >
PositiveY PositiveX
Rotation Rotation
Y PositiveZ
é Rotation
Z
v

Figure 4-1.Definitions of rotation axis
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4.2.1.2 Propagation of Euler angles in time

If angular rate gyros are rigidly mounted on a eihithey will directly measure the body-frame
inertial angular rate vectop(q, 1 resolved along the vehicle axis. Hence it is seagy to trans-
form (p, q, n to (@ 8, ) [83]. This overall transformation is givey Equation 4-1:

do
. dt
p 1 0 —sin(0)
al = |0 cos(@) sin(q)cos(B) g_? eq. 4-1.
r 0 —sin(@) cos(y)cos(0)
ay
_dt_
The inverse transformation is:
do
dt 1 sin(@)tan(B) cos(@)tan(0)
de| = |0 coo) —sin(o) q eq. 4-2.
dt 0 sin( @) cos(@)
dy cog(0) cos(0)
dt

Equation 4-2 allows the calculation of the Euler landerivatives for integration. Note that the
solution requires integration of three first oraemlinear differential equations. This approach
requires numerous trigonometric operations, ancemaer, their use is limited as the solutions of

¢ andy become undetermined whrs +90°

4.2.1.3 The direction cosine matrix representatiofDCM)

The direction cosine matrix denoted By , is a 3malrix, where the columns represent unit
vectors in body axes, projected along the referexes. The element in thi row and thgth
column represents the cosine of the angle betwesrakis of the reference frame gpnaixis of the

body frame. The transformation from body to refeeeaxes is given by:

cosy —siny cosB OsinB||1 O 0
b = CICICI = |siny cosy 0 1 O [|0cosp-sing =
0 0 —sin® 0 cosB| |0 sing cosyp

eq. 4-3.

cosBcos —cospsiny + sin@sinBcosyP  sin@siny + cospsind cosy
cosBsiny cospcosy + sin@sinBsin¥ —singcosy + cospsindsiny
—sind singpcoso cospcosd

The three rotations are expressed mathematicalligras separate direction cosine matricés
C2 andC3, wherey represents rotation around thaxis, 0 represents rotation around thexis,
and@ represents rotation around thexis.
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cos siny cosH 0-sind 1 0 0
Ci = |=siny cosp C;=101 o0 C3; = |0 cosp sing| €d.4-4.
0 0 1 sin@ 0 cosH 0 —sing cosyp

Thus a transformation from reference to body franag be expressed as the product of the sepa-
rate transformations.

Cb = CpT = C,C,C, eq. 4-5.
For small angle rotations, whestn@ - @ sin@ - 8 siny - Y and the @ssof those angles

approach unity and ignoring second order terms, DsaWbe expressed in terms of Euler angles
as a skew symmetric matrix.

1 -y 6
Ch= v 1 —@ eg. 4-6.
-0 ¢ 1
This form of matrix is used sometimes to represbatsmall changes in attitude which occur

between successive updates in real-time computatibady attitude, and to represent the error in
the estimation of a direction cosine matrix.

4.2.1.4 Propagation of the direction cosine matrix time
The rate of change @}  with time [83] is given by:

d 0 —r q
aCQ = CSQ Q = r O -p eq. 4-7.
—qp O

The value®, g, andr represent the angular rate around each axis &-fir@me with respect to the
N-frame. An observatiop, g, r is noted in some papers and booksog,swy, andw,

An equation in the form of Equation 4-7 needs tadiged by the computer in a strapdown inertial
navigation system to keep track of the body atétwith respect to a chosen reference frame. It can
be expressed in close form as:

sino 1-coso
Chtrs) = CR(t(1 +20%A+ - A2) eq. 4-8.
with:
0-rgq
A=t 0 —plAT 0 = Jp2+Q2+r2AT
—qp O
eq. 4-9.
, —(g2+r2)  pq pr ,
A= pg @+ ar |AT
pr ar  —(p?+q?)

The derivation of Equation 4-8 is presented in sec8ection A.2 on page 149.
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4.2.1.5 The quaternion representation

The quaternion attitude representation is a fouampater representation based on the idea that a
transformation from one coordinate frame to anothay be effected by a single rotation about
vectoru defined with respect to a reference fraiie quaternion, denoted heredpyis a four-
element vector, the elements of which are functadniis vector and the magnitude of the rotation.

do cos(6/2) cos(6/2)
qy| _ |(/H)SIN®/2)| _ lqsin(a/2) eq. 4-10.
q, (Ky/H)sin(8/2) Bsin(6/2)
Us (1,/ W) sin(8/2) ysin(8/2)

The meaning ofi, B, andy is as follows: the quaterniap makes the angle cés, cos!B and cos
1y with the inertial axeg, y, andz. In figure Figure 4-2 this is presented as a vestbat is rotated
around vectoqg with, as result, vectar, andp is a unit vector.

Figure 4-2.Representation of rotation using quaternion

It can be shown (see Section A.3) that the quaterméztor elements can be used to compute the
direction cosine matriC})

(@3+09f-093-03) 2(9;0,—9pd3)  2(0;03 * 0pdy)
Cb = | 2(qa,+0003) (a§—af+az—aj) 2(a,093-900;) €q. 4-11.
2(0,05-9%)  2(G,03+dod;) (a§—af—a3+a3)

4.2.1.6 The quaternion norm
The norm of the quaternion vector should alwayste and it is used to correct for accumulated

computational errors.

lgl = Jad+a2+q3+0a3 = eq. 4-12.
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If we look at Equation A-18 on page 153 we see thé¢Eangles are computed using all elements
of the quaternion vector. This can introduce somg&anted effects. If one of the quaternion ele-
ments has a small error, this will affect all thkey elements when the normalization is done.

4.2.1.7 The propagation of the quaternion in time
The quaterniong, propagates in accordance with the following eignat

O—-p—q-r
_ 1 _p0r— _
q = 5Q,L0 Qq = eq. 4-13.
2 q-r 0 p
rq-pao
Quantitiesp, g, andr represent the angular rate about each axis d-name with respect to the

N-frame. For the situation in which the orientatadrthe rate vector remains fixed over an interval,
the solution to the above equation may be writken a
o
. = Cog 3

y Co(ty) sin@) eq. 4-14.

a, —a,0, —a,0, —as.0, a

y
att, ) = a0, a, ao, —a0
+

a0, -a0, a; ag, >

a0, a0, —a0, a S p

with:

tk+1 tk+l tk+1

o, = jpdt g, = J'th g, = jth 0= JoZ+oZ+c?  eq.4-15.

ty ty ty

The derivation of Equation 4-14 is presented inisackection A.3 on page 151.
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4.3 Inertial Navigation

4.3.1 Navigation Frame Mechanization

In order to navigate over large distances arouadttrth, e.g., in a vehicle, navigation information
is most commonly required in the local geographiaavigation axis in terms of north and east
velocity components, latitude, longitude and heahdve the Earth. In this mechanization, ground
speed is expressed in navigation coordinates ®\dlv The rate of change uf  with respect to
navigation axes may be expressed in terms oftiésafachange in inertial axes as follows:

dv,
dt

= ?’e — Wi X Vo= Wg X Vg eq. 4-16.
n t

The speed rate of change in inertial axes is:

dv

ae = a—W XVt g eq. 4-17.

i
wherea represents the specific force acceleration to wthe navigation system is subjected.
Substituting Equation 4-17 in Equation 4-16 we have:

dv,

5 = a—2W;e X Vg—We, X Vo + g eq. 4-18.

n

This equation may be expressed in navigation axésllaws:

n — nab n n n n n
vg = ClaP—2w{, x vi —wi,xvi+g eq. 4-19.

whereCJ is the direction cosine matrix used to fiamns the measured specific force vector into
navigation framer(in the previous equation is not an exponentightia but represents the nav-
igation frame).

It is necessary to consider the physical signiteaof the various terms in the navigation
Equation 4-19. From this equation, it can be seean ttie rate of change of the velocity, with
respect to the surface of the Earth, is made ulpeofollowing terms:

» The specific force acting on the vehicle, as mesby a triad of accelerometers mounted
within it;

» A correction for the acceleration caused by th@ale’s velocity over the surface of a rotating
Earth, usually referred to as the Coriolis acceiena

» A correction for centripetal acceleration of theicle, resulting from its motion over the
Earth’s surface. The force is equal to the prodfids mass, its linear velocity and its turn rate
with respect to the Earth.

» Compensation for apparent gravitational forcergctin the vehicle. This includes the gravita-
tional force caused by the mass attraction of #aghE-and the centripetal acceleration of the
vehicle resulting from the rotation of the EartlheTatter term arises even if the vehicle is sta-
tionary with respect to the Earth.
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4.3.2 Navigation Equations in Body Frame

We have[u, v, w] as the true vehicle acceleration in tliy i@ame. This acceleration is not the

acceleration measured by the IMU (Inertial MeaswaeintUnit). The IMU accelerometer sensors
will measure the gravity vector, the vehicle accien, the centripetal acceleration and some
noise. The radius of curvature of the path i€he acceleration due to angular velocity is:

agy = — = —— = WV eq. 4-20.

cf r r
In vector form this will be:

al = wxvb = wx(wxr) eq. 4-21.

In the figure below we illustrate the forces actorgthe moving body.

Figure 4-3.Specific force as a function of acceleration congras

Figure 4-3 explains the forces acting upon the roatise accelerometer as a function of the linear
acceleration, the apparent centripetal acceleraiwhthe corresponding axial component of the
static gravitational acceleration. The supersciydgnote the vector components in boelyref-
erence system. The vectorial form for the navigaéquation, with the specific force acceleration
beinga and the correction terms of centripetal and gyaadtcelerations expressed in the body coor-
dinate system is:

ab = a—wxvP+Chgn eq. 4-22.

Here we ignore the Coriolis acceleration. If thgigation system is meant to work over long dis-
tances we need to take into account the Corioliglatation caused by the rotation of the Earth.
The Coriolis acceleration will be non-zero if thehicle is traveling such that the latitude is chang
ing.

The IMU will also measure the gravity accelerataod can not know the difference between this
acceleration and true vehicle acceleration. Toestte vehicle acceleration we must subtract the
known gravity components from the measured acdedesa This gives us Equation 4-22, where
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[a,, ay, a,] are the measured acceleration in body frame{g;]cgy, g,] thewgravity components
expressed in body frame. The gravity vector irbihd@y frame is not dependent on the yaw or head-
ing of the vehicle.

Ox 0 —gsin®
9y = CPlo| = |gcoBsing eq. 4-23.
g, g gcosfcosp

We get thé andg angle from the IMU and can calculate the gravitnponents in the body frame.
The rotation matrix from the local coordinate systeto the body coordinate systdmis noted
with CP.

If the IMU is not placed in the center of gravitewave another term. Suppose that the IMU is
placed at coordinatl,, Fys rJgopy relative tothe center ofigyathen there will be a centripetal
acceleration when the vehicle turns. This acceteratan be noted &g, and the magnitude is
dependent on the rotation rates and the placenfi¢giné dMU. This acceleration can be computed
with the following equation:

A Mux p p| |["x
aIMUy = q X q X ry eq. 4-24.
Amuz r r Iy

The equation that takes all the influences intaantis:
U=-Vr+wq+ g +ayyyx = a
V+ur-wp+g tayy, = 8 eq. 4-25.
W-uq+vpt g tayy, = &,

We can solve the true vehicle acceleration fromafqn 4-25. We assume that the IMU is placed
at the center of gravity and hergg,, = O:

u 0 -w v||p| [& [
v = |w 0 —uflg|*|ay |9y eq. 4-26.
W v u Of|r a, g,

The flow-chart [71] of the strapdown navigationaithm implementing the equation presented
above is presented in Figure 4-4.

In order to verify the model, we simulated accateeter and gyro signals and we computed the
navigation solution as in Figure 4-4. The sensa@<ansidered to be perfect, without noise or drift.
The result of this simulation is presented in Fegdu5.
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Figure 4-5.Navigation Simulation Results

A conclusion that can be drawn looking at navigaggjuations is related to accelerometer error
and gyro drift. Drift in the linear position deteimad by an INS arises from several sources. First,
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there are accelerometer instrument errors like lihg&e noise, calibration errors and bias instabil
ity. Since position is obtained by double integrgtacceleration, a fixed accelerometer bias error
results in a position drift error that grows quaidily in time. It is therefore critical to accuedy
estimate and eliminate any bias errors. A much raetieal cause of error in position measurement
is error in the orientation determined by the gyAas error ofd0 in tilt angle will result in an error

of 1g-sindB) in the horizontal components of the acceleratialculated by the navigation com-
puter. Thus, to take proper advantage of pg-acewatelerometers, the pitch and roll accuracy
must be better than 1 prad = 0.000057° for thetouraf the navigation session, which is a far
more difficult task for gyros than accelerometémspractice, it is the gyroscopes, not the acceler-
ometers which limit the positional navigation a@y of most INS systems, since the effects of
gyroscopic tilt error will soon overtake any snmadcelerometer biases.

4.4 Sensor Data Fusion with Kalman Filters

4.4.1 The Kalman Filter

Kalman filtering is the main analysis techniqueifaartial data and is used almost exclusively for
inertial tracking, i.e. the determination of pasitiand orientation from inertial readings and an in
tial state. As inertial components have become mmoremon in user interfaces, particularly for
head-tracking, a number of variations on the oabialgorithms have been created to ensure
robustness and accuracy when working with low-costponents and processing hardware.

Kalman filtering (KF) is a state-based recursivgoathm, which works in two stages. The first is
the prediction stage where, given the (possiblgiirect) current state of the system and a mapping
of how the system progresses in time, a predicifaihe state at the next time step is calculated.
The second is the correction stage where, givesisy mbservation (not necessarily full or direct)
of the state at the new time step, the prediciae sind the measured values are combined to give
a new, more accurate estimate of the state ofyhem®. Given certain assumptions described
below, Kalman filtering is a least-squares optitirear method of estimating a system’s state.

The strength of Kalman filtering lies in its optihty, its minimal memory requirements for the
state (only a single time step), and its abilityntdude a model of the system dynamics. There are
a number of limitations which must be consideredval. The most troublesome is that it is the
linear optimal solution, while most physical sysgenmcluding tracking, are non-linear. In such
circumstances the Extended Kalman Filter (EKF)mansed, which, although it can no longer be
proven to be optimal (or even to converge), itilb\gery successful in practical applications [92]
The next problem (for either type of filter) ligsthe process noise models, which are assumed to
be white and Gaussian.

4.4.1.1 The discrete Kalman filter

The Kalman filter addresses the general probletryofg to estimate the staxd 1 [ " ofadiscrete-
time controlled process that is governed by a liséachastic difference equation and a measure-
ment, given by:

Xer1 = PX +Tu +wy

Yk

eq. 4-27.

HX, + Vv,

The random variablesy, andv, represent the process and measurement noisectigsfye They
are assumed to be independent of each other, vamitewith normal probability distributions. In
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practice, the process noise covariaz@nd measurement noise covariaftenatrices might
change with each time step or measurement, ircéss, however, we assume they are constant.

Then x nmatrix ® in the difference equation in Equation 4r@lates the state at the previous time
step to the state at the current step, in the alesafreither a driving function or process noiseteN
that in practice it might change with each timegstaut here we assume it is constant. fihel
matrix I relates the optional control input to th&tex. Them x nmatrixH in the measurement
equation relates the state to the measuremeimt practice, it might change with each time siep
measurement, but here we assume it is constant.

We definex 00" to be aa priori state estimate at st&pgiven knowledge of the process prior
to stepk, andx [ 0" to be an posterioristate estimate at st&pgiven measurement. We can
define a priori and a posteriori estimate errors as

e =X, —X
KTk eq. 4-28.
€ = X — Xy
The a priori and a posteriori estimate error carase is then:
Py = E(e, )
“ “ eq. 4-29.
P, = E(q, &)

In deriving the equations for the Kalman filter, segin with the goal of finding an equation that
computes am posterioristate estimat&,  as a linear combination o @miori estimateX; and

a weighted difference between an actual measurerpemd a measurement predictibiX; as
shown below in Equation 4-30.

X = X+ K(z,—HXp) eq. 4-30.

The differencg(z, —H%;) in Equation 4-30 is called the meas@ntinnovation or theresidual
The residual reflects the discrepancy between théigted measurement and the actual measure-
ment. A residual of zero means that the two amplete agreement.

We can write the a posteriori estimate (updategqgance as:

o o o 0T
P = EX[(%—=%) —K(HX, + v, —HX)], [ (X = &) = K(HX, + v, —H&X)] ) eq. 4-31.
= (I —=KH)P(I —=KH) " + KRK'
Then x mmatrixK in Equation 4-30 is chosen to be tiaen or blending factothat minimizes the
a posteriori error covariance. This minimizatiom & accomplished by performing the indicated

expectations, taking the derivative of the tractheP, with respect t (see Equation 4-32), set-
ting that result equal to zero, and then solvirfgrK.

;—K(tracde) = —2(HP) T+ 2K(H P|'(HT+ R)

3 3 eq. 4-32.
il = BT - I =
3 A(traceA\B) B 3 A(traceA\CA ) = 2AC
One form of the resulting that minimizes Equation 4-31 is given by:
K = PiH(HPH' +R)™ eq. 4-33.
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Looking at Equation 4-33 we see that as the measmneanror covarianck approaches zero, the
gainK weights the residual more heavily. Specifically,

lim K = H1 eq. 4-34.
R-0

On the other hand, as the a priori estimate eowamganceP; approaches zero, the daineights
the residual less heavily. Specifically,

im K =0 eg. 4-35.

Another way of thinking about the weighting Kyis that as the measurement error covaridce
approaches zero, the actual measuremastrusted more and more, while the predicted oreas
mentHX; is trusted less and less. On the other remnthe a priori estimate error covariarge
approaches zero the actual measurerggisttrusted less and less, while the predicted aoreas
mentHg; is trusted more and more.

Another form for Equation 4-31 to compute the a posti covariance matrix is obtained by sub-
stituting in the above mentioned equationKor

P, = (I-KH)P; eq. 4-36.

The Equation 4-31 is sometime called the Joseph &narthis helps to overcome ill-conditioning.
Note that the right-hand side of Equation 4-31 & shmmation of two symmetric matrices. The
first one is positive definite and second is noratieg definite.

The Kalman filter estimates a process by usingima fof feedback control: the filter estimates the
process state at some time and then obtains feledbte form of (noisy) measurements. As such,
the equations for the Kalman filter fall into twoogps:time update equatiorsndmeasurement
update equationsThe time update equations are responsible fgegting forward (in time) the
current state and error covariance estimates @irotite a priori estimates for the next time step.
The measurement update equations are responsilitfeefteedback, for incorporating a new mea-
surement into the a priori estimate to obtain aprowed a posteriori estimate. The time update
equations can also be thought ofaadictor equationswhile the measurement update equations
can be thought of arrector equations

The equations derived in this section are summauieze. The basic steps of the computational
procedure for a discrete Kalman filter are as fetio

» Discrete Kalman filter time update equations

K = ®X,_,+Iy, - state estimation extrapolat
' . eq. 4-37.
Py = ®P,_,®T+Q - error covariance extrapolati

The time update equations project the state anddwariance estimates forward from skep to
stepk.

» Discrete Kalman filter measurement update equatios
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K = PH(H P[(HT+ R)_1 - Kalman gain matrix
K = %+ K(z—H%) - state observation upd eq. 4-38.
Py = (I -KH)Py - error covariance upd:

The first task in the measurement update stagedsrhpute the Kalman gait The next step is
to actually measure the process to obggimnd then to generate an a posteriori state estibya
incorporating the measurement. The final step abtain an a posteriori error covariance estimate.

4.4.1.2 The discrete extended Kalman filter

A Kalman filter that linearizes around the currergan and covariance is referred to as an extended
Kalman filter or EKF. To estimate a process wittinear difference and measurement relation-
ship, we begin by writing the equations that limearan estimate around Equation A-62 on
page 161:

(1) = F(x(0), u(t), t) + w(t)

y(t) = h(x(9, 1) +v(1)

A eq. 4-39.
X=X+ P(X g =K _q) +TWy_y g

7z, =2+ H(X = %) + Vv,
with:
* X, andz, are the actual state and measurement vectors

o % = (% _q u) andz, = h(X,) are the approximate state and measuremetatrvand
X _1 Is an a posteriori estimate of the state (fronmeipus time ste)

» the random variablew, amng represent the procebmaasurement noise

» Fis the Jacobian matrix of partial derivatived wiith respect tx, andW is the Jacobian
matrix of partial derivatives dfwith respect tav () was defined in Equation A-51 on
page 159):

d. . 0 ;.
F=f®epu) W= of(R g u) eq. 4-40.

®=1+Fy T =G

* His the Jacobian matrix of partial derivativesafith respect te, andV is the Jacobian
matrix of partial derivatives df with respect tw:

_ 9 _ 9
H=Sh(x) V= 5oh(x) eq. 4-41.

The fundamental matrix, required for the discretec&i equations, can be approximated by the
Taylor-series expansion for exp(FT) and is giverEquation 4-40. Often the series is approxi-

mated by only the first two terms. In our applioas of extended Kalman filtering, the fundamen-
tal matrix will only be used in the calculation K&lman gains. Because the fundamental matrix
will not be used in the propagation of the staitesas demonstrated in Chapter 5 from Zarchan
[92] that adding more terms to the Taylor-serigsagsion for the fundamental matrix will not gen-

erally improve the performance of the overall filte

The basic steps of the computational procedurdigmrete extended Kalman filter are as follows:
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» Discrete extended Kalman filter time update equatins

Xy = jf()‘(k_ 1 Ug) - state estimation extrapolat
eq. 4-42.
P = ®P,_;®T+Q - error covariance extrapolat

The old estimates that have to be propagated fdrd@anot have to be propagated with the funda-
mental matrix, but instead can be propagated djrbgtintegrating the actual nonlinear differen-
tial equations forward at each sampling interval. &ample, Euler integration can be applied to
the nonlinear system differential equations, yiedi, = X, _; + X, _; T, where the derivative is
obtained fromx, _; = f(X,_q) .

» Discrete extended Kalman filter measurement updatequations

K = PH(H P[(HT+ R)_1 - Kalman gain matrix
% = X+ K(z—h(%)) - state observation upd eq. 4-43.
Py = (I -KH)Py - error covariance upd:

The first task on the measurement update stagecismpute the Kalman gaih The next step is

to actually measure the process to obggimnd then to generate an a posteriori state dstinya
incorporating the measurement. As was already meedi, the approximations for fundamental
and measurement matrices only have to be used tothputation of the Kalman gains. The actual
extended Kalman filter can be written in termshadf honlinear state and measurement equations.
With EKF the new state estimate is the old statien@se projected forward to the new sampling or
measurement time plus a gain times a residualfifaestep is to obtain an a posteriori error cova-
riance estimate.

Because of their didactic value, sub-sections 84ahd 4.4.1.4. are quotes from the (Roumeliotis,
Sukhatmey, Bekey [99]).

4.4.1.3 Indirect versus direct Kalman filters

“A very important aspect of the implementation d¢€aman filter in conjunction with inertial nav-
igation systems (INS) is the use of the indirestead of the direct form, also referred to as the
error state and the total state formulation respelgt (Maybeck [89]). As the name indicates, in
the total state direct formulation, total stateshsas orientation are among the variables in ttez fi

and the measurements are INS outputs, such agyrme and external source signals. In the error
state indirect formulation, the errors in orieraatiare among the estimated variables, and each
measurement presented to the filter is the difieedretween the INS and the external source data.

There are some serious drawbacks in the direet filhplementation. Being in the INS loop and
using the total state representation, the filteadddave to maintain an explicit accurate awareness
of the vehicle’s angular motion as well as attetoguppress noisy and erroneous data. Sampled
data require a sampling rate of at least twicdrdguency of the highest frequency signal of inter-
est (in practice, a factor of 5-10 is used) forcagee reconstruction of the continuous time system
behavior. The filter would have to perform all tlegjuired computations within a short sampling
period. In most cases, only a small portion ofttvpute resources of a central processor is usually
allocated to the estimation algorithm and thugh&éoKalman filter, and moreover, it often runs in
the background at a lower priority than more caitiglgorithms, such as real-time vision, obstacle
avoidance, fault detection, etc.
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In addition, the dynamics involved in the totaltstdescription of the filter include a high fre-
guency component and are only well described byrdimear model. The development of a
Kalman filter is based upon a linear system maalad, as such a total state model does not exist.

Another disadvantage of the direct filter desigthest if the filter fails (e.g. through a temporary
computer failure) the entire navigation algoritharld. The INS is useless without the filter. From
a reliability point of view, it would be desirabie provide an emergency degraded performance
mode in the event of such a failure. A direct filluld be ideal for fault detection and identifica
tion purposes.

The Indirect error state Kalman filter estimatesdirors in the navigation and attitude information
using the difference between the INS and extemmaices of data. The INS itself is able to follow
the high frequency motions of the vehicle very aatrly, and there is no need to model these
dynamics explicitly in the filter. Instead, the dynics upon which the Indirect filter is based are a
set of inertial system error propagation equatioviich have a low frequency behavior and are
adequately described as linear. Because the ifilteut of the INS loop and is based on low fre-
quency dynamics, its sample rate can be much ldveer that of the Direct filter. In fact an effec-
tive Indirect filter can be developed with a sampégiod of the external source, in the order of
minutes [89]. This is very practical with respexthie amount of computer time required. For this
reason, the error state formulation is used inresdly all terrestrial inertial navigation sys-
tems.”[99]

4.4.1.4 Feedforward versus feedback indirect Kalmafilters

“The basic difference between the feedforward aedliback Indirect Kalman filter is mainly in the
way it handles the updated error estimate. Initise dase, the updated error estimate is being fed
forward to correct the current orientation estimai#out updating the INS. In the feedback for-
mulation the correction is actually fed back to iN& to correct its new starting point, i.e. thatst
from which the integration for the new time stepl wtiart. In a sense, the difference between the
feedforward and feedback forms is equivalent todifierence between the Linearized Kalman
filter and the Extended Kalman filter. In the sed@ase, the state propagation starts from the cor-
rected, updated state right after a measuremeiit whthe Linearized filter the propagation con-
tinues at the state that the propagation has rdaghen the measurement appeared, thus ignoring
the correction just computed. The Linearized Kalrfither and the feedforward Indirect Kalman
filter are free to drift with unbounded errors.”|]99

The EKF assumes the measurement residual is sondttid first order approximation in the calcu-
lation of Kalman gain to be accurate enough. B #ssumption fails, the navigation states are erro-
neous and the solution may become unreliable.

4.4.2 Feedback Indirect Kalman Filter Equations

4.4.2.1 Gyro noise model
In the approach here, we use a simple and reatigitgtel. In this model the angular velocityis
related to the gyro outpud},, according to the equation:

0 =w,+b+n eq. 4-44.

whereb is the drift bias and, is the drift noise. Only, is assumed to be a Gaussian white-noise
process, with zero mean and variance:
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E[n(t)] = O

eq. 4-45.
Eln(t), n,(T)] = Q,8(t—7)

The drift bias is not a static quantity. The outpiithe gyro is known to err by an unknown slowly
time-varying bias. The turn on bias is known ancbaated for in the gyro calibration. Therefore,
it is accurate to model the residual time-varyirgglerror as a random walk (a Brownian motion).

t

b(t) = jnw(r)dr b=n
0 eq. 4-46.
E[n,(®] =0

E[n,(t), n,(1)] = Q. 0(t—1) = 03

One often-quoted measure of sensor accuracy rsutimkam walk parameter. For example, a fiber-
optic gyro might list its random walk parameteb&5,0 /JF\ The/h in the denominator of the
specification reflects that the standard deviadiod the variance of the random-walk variable grow
with the square root of time and linearly with timespectively.

4.4.2.2 Quaternion error equations
The error state includes the bias error and quateerror. The bias error is:

> > >
Ab = btrue—Dbi eq. 4-47.

The quaternion error is not the arithmetic differgrbut is expressed as the quaternion which must
be composed using the estimated quaternion torothtaitrue quaternion:

dq = Oye D Ot eq. 4-48.
or, equivalently:

Oirue = 09 U G eq. 4-49.

The advantage of this representation is that siheencremental quaternion corresponds very
closely to a small rotation, the first componerit i close to the unit and thus, the attitudernnfo
mation of interest is contained in the three vectomponent of the quaternion:

oq {1} eg. 4-50.

54

The physical counterparts of the quaternions aredtation axis and the rotation angithat are
used in the Euler theorem regarding finite rotatibimat is, taking the vector part of a quaternion
and normalizing it, we can find the rotation axght away, and from the first parameter we can
obtain the angle of rotation. The unit quatern®nated as:
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do
q= g eq. 4-51.
dz
R
with the constraint:
qTq =1 qu +qf+qgi+qgf = 1 eq. 4-52.

The real and vector part of the quaternion carxpesssed using the rotation ariand the rotation
angle0 as:

Qo = cos@) q, = nxsin(g) q, = nysin(g) 0z = nZsin(g) eq. 4-53.

with:
nX
n=in, eq. 4-54.
nZ
The rate of change of a quaternion with time caexygessed as:
d _1_ >
aq(t) = EQ(w(t))q(t) eq. 4-55.
with:
[ 0 —w; —w, —w;
Q) = |9 0 s @ eq. 4-56.
W, w3 0 -
w;-w, w; 0
Starting from the equations:
dqt 1 > 1 0 |
Tt e = éQ(etrue)qtme =505 | D %mue eq. 4-57.
etrue_
and
do 1 (9) _ 1|0
il EQ Bi|qg, = 53 O q eq. 4-58.

where the operator] represents the quaternion madipn (see Chapter A.3.1). From
Equation 4-48 we have:
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d d 4y _ d _ d _
Gi09 = Gi(Grue 0 A7) = Fhrue U O+ Gyrye 0 ™ eq. 4-59.
From Equation 4-57 we can express:
d D.—lzlg(g y ngt=% °os eq. 4-60
qgttrue - Gi 522 Otrue) Gyrye H G AR q g. :
Btrue
To deduce the second term from Equation 4-59 anatitqu4-57 we can write:
d 1.y = d 4 _ -1dqi -1
a(qi q) = Ozaqi = (a)qi
eq. 4-61.
d.1__1 -1 0 -1
qtrueaqi - _éqtrueD q U 3 o U
Bi
From the previous equation we have the result:
d 1 0
qtrueaqi_:L = _éaq u 3 eq. 4-62.
Bi
Substituting Equation 4-60 and Equation 4-62 in Eigne4-59 we obtain:
d. _ 1/ 0 1 0
aESq =55 O 6q—§6qD s eg. 4-63.
true 0i

The true orientation is noted lﬁ{;ue , the orientaastimate obtained by integrating the gyro
signal is noted by, , wherea, is the angular rate measured by the gyro:

Birue = Com+ Dirue +

true — m true r eq. 4-64

3 > >

Bi = wm+ bi

Substituting this in Equation 4-63 and rearrangingd obtain:
0 0
%6q = % N O 6q—%6qD 5 s eq. 4-65.
Wm + btrue + Ay wm + bi

NI
NI =

(RECN = (W EEE

At this point we need to use knowledge about combitwo quaternion vectors. With:
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a= [a(i b = [b:i eg. 4-66.
| b

agh,—a'h

then their product is:

allb = eq. 4-67.

agh + byd— Ax

9
Now we can simplify the first term in Equation 4-&8d knowing thaB xa=-axb ,we have:

NEMEENE

0(8qp) —wmdd | | (89p)0-8&Tom | _ _2[ 0 ]
> > > > 2
10(34) + OmdG —m* 3G | (56)0 + dGwm— G X Wm

meESa

Similarly the second part of Equation 4-65 can biten as:

5 ° 0 Fq(i - [6%] O [S] = eq. 4-69.
| btrue + Flr 5a 5a bi

0(801g) — (Burue + Ar) 34 | (300)0-58"h
0(88) + 80ig(Btrue + fr) — (Brrue + ) x 53] | (58)0 + Bagbi — 54 x b

> > T
~(btrue—bi + ;) 8§ _ |05y | 5084
> > > > = ||~ >
80g(btrue—bi + fir) — (Burue—bi + i) x 5G| (0% 30 x 3§
with:
50 = brue—bi + A = Ab+ By eq. 4-70.
For very small rotations we can assume that
>
3q, 01 3¢ 00 eq. 4-71.

Then, Equation 4-69 can be written as:
0
, 0 |®%| - %%l 5|90 © eq. 4-72.
btrue + ﬁr 5a 5a bi ow
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Now substituting Equation 4-72 and Equation 4-68 Btuation 4-65 we have:

%5(1 = s ° +% CL eq. 4-73.
wm % 5 oW
Now if we know that:
0 —Wnz Wmp
> >
omx8G = {[n]]88 = | g 0 —wyy| 30, 39, 3y eq. 4-74.

—Wp Wy 0

Then from Equation 4-70, Equation 4-73 and Equatidi4and separating the vector from the
scalar terms, we obtain the equation that is uséde Kalman filter:

d

_6q0 =0
d; . 1 eq. 4-75.
giod = [[em]134+ 5(Ab+ )

By using the infinitesimal angle assumption in Bogua4-53, that isin(a) = a, we can write the
difference of the quaternion vector part as:

66 = %66 eq. 4-76.

Now, using Equation 4-75 and Equation 4-76, we aaeydo write the equation that it is used to
describe the Kalman error state in terms of Eubgjies:
d

> > > >
00 = [[wm]]30 + (Ab+ fir) eq. 4-77.

4.4.2.3 The quaternion error in an indirect Kalmanfilter
The continuous differential equation expresseduiaternion error is derived from Equation 4-75.
The matrix form is useful to determine the F matrix

o 00 0o 0000 -
qO 1 6q0 _O_
5q, 0 0 —wz wy 5 00 50, 0
64, 0wz 0 —wxO % ol |99 1 0
0d3| = 119%] 5 0 eq. 4-78.
Ab, O-wy wx O O 0§ Ab, Ney
abj [0 0 0 0 o0o0Qlab |Mv
Ab, 0O 0O 0O O 00d¢d _Abz_ | Mrz]
— % 00 0 0 00¢

73



Chapter 4 Inertial Navigation and Sensor Data Fusio

4.4.2.4 The Euler angle error in an indirect Kalmanfilter
The continuous differential equation with quatemerrors is derived from Equation 4-77. The
matrix form is useful to determine the F matrix.

56 r 11606
X 0 -wzwy 100]| * 0
36y wz 0 -—wxo01d|%y 0
56, — |-wywx 0 001 662 + 0 eq. 4-79.
AB{ | O 0 0 000Q|ab| [N
AR
gl 7|ab,| "

The Euler angles are observable if we have incleteminformation. The angle observation equa-
tion, and observation matrix are:

6Zexyszyz = Hexyszy26X + SXYZ

eq. 4-80.

Hexy b = |:| 3x3 03x3€|
Ideally, Qi is supposed to reflect the magnitude of a whiteeneequence. If all error sources in
the inertial attitude system are taken care of fnedeled in the state propagation matrix), thgn
should be entirely due to the noise floors of thgudar rate sensors. In this case, it should be pos
sible to calculate the optimal value @f by measuring the noise covarian@e,of the stationary
gyros in advance, then at each time step contpyteGkQGkT.

However, there are many nonwhite error sourceslbsdiias, such as nonlinearity, hysteresis, mis-
alignment, g-sensitivity, and a scale factor terapee coefficient, none of which are modeled in
the state propagation matrix. This is due to tlee thzat for low cost silicon gyros the most impor-
tant source of errors is the bias. A simpler apghhda the implementation of those errors in the
state propagation matrix, which sometimes worksoatras well [88], is to just ignore the unmod-
eled states, but make tegandR matrices account for the noise in the statesviea¢ discarded.

The model of gyro dynamics for a long durationdpanential, butris in the order of 30 - 60 min-
utes. For the run time of the Kalman filter we cansider that the drift error is linear. We assume
the following error sources in the process equation

* gyro noise: from digital analysis, for stationgmyros, we foundr= 0.01 rad/s. The covariance
per step is (0.Q1t)2.

 integration rule error: zero because the integnais achieved by an exact formula.

« scale factor error: This is a composite of a madrity and a temperature-dependent scale fac-
tor variation. Assuming a scale factor accuracy%ffull scale,oc= 0.0lwrad/s. The covari-
ance per step is (0.a4\)2.

Q is constructed as follows:

02 0 0
=]002 0 eq. 4-81.

0 002
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whered,, = 108(1+a#), assuminght = 0.01 sec.

R, is modeled in a similar experimental way. The measent noise is extremely nonwhite. The
major source of measurement noise for the fluidinometers is “slosh” caused by transverse
linear accelerations [77]. Linear motion is notlied in the state vector, and therefore, thisrerro
cannot be modeled in the measurement matrix. Funibre, the magnitude of the low-frequency
“slosh” errors are sometimes extremely large: upGalegrees (0.35 radian). On the other hand,
when the head is still, there is no slosh and thiide angles measured by the inclinometer are
very accurate. The algorithm & is therefore designed in a heuristic way to fdreeKalman
filter to take advantage of the measurements, wihepnare likely to be meaningful, and to ignore
them when they are likely to be erroneous. Thech@asnciple is thai, should approach 1 when
slosh is likely, and approach the static accurddi@inclinometer/compass measurements, about
0.2 degree (0.004 radian), when slosh is very ahlikn the absence of a model for human head
motion, we use the information from gyros and amweheters. The longer the period of time that
the head has 1) zero angular velocity, and 2) ¢gjuare root of the sum of square accelerations
approximates 1, the higher the probability thattiead is still. Based on this, the algorithm used
to setRy is:

1. compute the “stilltime’r since the last non-zero gyro reading OR the las tvhen
faZ+aZ +a2 »1, and when the magnetic alarm from the magnetonf€@12) is set, seti to 1.
2. setg, = 1/(1+40Q), and if magnetic alarm is 0 sgt = g,
3. if g, < 0.004, set;, = 0.004, andy; < 0.002, set; = 0.002.
4. setR, as in Equation 4-82.
020 0
Re=10 02 0 eq. 4-82.
0 0o

According to this algorithm, the measurement egavariance for inclinometer roll and pitch
ranges from 1, during periods of likely slosh, daeri0?, during periods of likely stillness. The
covariance of the compass yaw error is 1 when thgnatic alarm is set. It varies with the incli-
nometer information because it is used in the cdatfmn of the yaw angle and comes down only
to 0.002, corresponding to 1.5 degrees, the heaiogracy.

Typical input signals from gyros and inclinometadanagnetometer (TCM2 sensor) are:

o.o6

degree

o.o2

degree

o.o04a
|
|
|

‘ i 'W |; il

’ Hh

-

—o. -
o 2000 aoo0 o 2000 4000 o 2000 4000

time [sec.] time [sec.] time [sec.]

Figure 4-6.The input signals for the Kalman filter
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To demonstrate the behavior of the Kalman filieq tatasets were collected. In the first dataset,
the complementary Kalman filter block is disablgddgetting K, the Kalman gain, equal to zero.
During a test period of approximately 35 secorus sensor was repeatedly turned through $180
and -180 around the z axis (yaw). The yaw angle is plotigdinst time in blue in Figure 4-7,
which demonstrates the problem with unaided inleritagration: the accumulated drift error by
the end of the run is abou?. 7This dataset was acquired after the sensors vaaupédor 1 hour,
and a zero scale calibration of 1 second. The skdataset is created by a similar motion sequence,
but with the Kalman filter in use; the results pletted in red. The filter incorporates the drifed

but noisy measurement from inclinometers and cos)@asl effectively compensates the drift of
the inertial system.
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Figure 4-7.Kalman filter results

Due to the time-varyin&, strategy which shuts out the measurements duxitensive motion, a
certain amount of error accumulates each timeehsa is rolled over and back, and the Kalman
filter corrects it once the sensor returns to aistary pose. The graph in Figure 4-8 shows thé drif
estimated signals over time. This signal is estdity a Kalman filter and subtracted from gyro
measurements in order to obtain the corrected aftdeintegration.
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Figure 4-8.Drift estimated by Kalman filter
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Figure 4-9.Kalman filter Covariance
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Figure 4-9 displays plots of the error variance &snation of time. The variance grows between
the time instants (time updates) at which anglesmesaments are available. The angle measure-
ments decrease the error variance of each stateagss at an 0.1 sec. (measurement update) inter-

val.
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Figure 4-10.Covariance variation over time

Results showed that the orientation Kalman fileamerges quickly (Figure 4-10). The stability of
the gyros provides very accurate orientation vathiggng motion, but due to the resolution of the
inclinometer (0.2 degrees) the overall accuracynotbe higher than 0.2 degrees, even when the
0.5 degrees accuracy in the heading has no systesnir.

4.4.2.5 A linear error model
A very common linear error model is found in [87].

oy _ _|ory _O_

5 000100 0 0 Of X

B loooo10 0 0 ofl E

op| |o0oo0001 0 o of[dp |O©

dvy| 000000 0 ap -ag||dvy |"aN

Ovg| = |000000-a, 0 ay||dvg|*|"aE eq. 4-83.

dvp| |[000000a —ay O ||avy |"aD
50, 000000 O wz -wy||36 Nox

X

59y 000000-wz 0O wx 59y Ngy
000000wy —wx O | n

56, 00, L9z

We explain it using Figure 4-11, in which we have #tcelerationsa), ag, ap] in a navigation
frame. The IMU is misaligned with small angles § ¢. We want to know the resulting acceler-
ation on the frame axes caused by the misalignment.
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Figure 4-11.IMU misalignment

From the figure we compute the resulting accelenat and we see that the misalignment angles
wand@will project the acceleratiosy andag to thex-axis (N). From the figure we set up the equa-
tion:

VN = apsin(B) —agsin(y) eq. 4-84.

If ¢ and@are small we can approximate the equation with:

Vy = apb-agy eq. 4-85.

We getsv = A xdw , werd\, is a skew symmetric matrix.

Ay = l-ap 0 ay eq. 4-86.

This model works fine if the trigonometric functeoan be approximated with a first order Taylor

expansion. We can use this model in the levelimggss. The misalignment angles can be found
if the IMU is stationary and if the readouts froliU say that the person is moving. We can notice
that the misalignment on a stationary person wijgrt the acceleration caused by the gravity for-
ward if we have a small roll angle, and to the ifiefte have a small pitch angle.

4.4.2.6 A linear model for position estimation
We consider that the delta speed and the deltéigqoare represented in the navigation coordinate
system, and the delta acceleration (the drifth ihe body reference coordinate system.
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eq. 4-87.

eq. 4-88.

Figure 4-12 shows how the accelerometer bias is laddes a random walk process. The bias is
modeled as an integrated white noise with a popectsal density (PSD) &W. The complete pro-
cess is modeled by three integrators in cascaden Bris model, the exact expressionsdfrand

Q can be worked out to the form as shown above.pbieer spectral density of the input white
noiseW is 1 (m/$)%(rad/s), and the sampling tind¢ equals to 1/100 s. The value \&f was
obtained after performing some experiments aimguideide better results for the bias estimation.

The result for the Kalman filter simulation for aterometer signals with drift are:
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Figure 4-12.The process model of the accelerometer for KalnikarF
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Figure 4-13.Position Kalman filter simulation results

As we can see, the filter is able to correct theebzometer bias and the estimated trajectory is
maintained closer to the actual one. Another caietuis that the accuracy of the estimated trajec-
tory depends on the absolute measurement updatessamon the accuracy of those updates.

4.4.2.7 A nonlinear model with quaternions
The nonlinear state transition matrix is:

(g8 +a2-0a3-093)U + (20,05 + 29,0;)V + (2050, + 2q,0,) W
(20,0, + 20903)U + (=93 —0Z + g8 + a3)V + (20,0, + 2050,)W
(2050;,—20,0,) U + (20,0, *+ 2030,)V + (- g5 — g2 + 95 + g3)W
VR-WQ + 9(2050,—20,0,) + a,

WP-UR+ g(2q,0; +2030,) + ay
UQ-VP+g(— ¥—-qg2+0g2+02) +a
f(x, u) = Q . o qi a1 q13 %) * 2, eq. 4-89.
—2'0I1P + —Z'qu + §0I3R

1 1 1
éqOP + _Z‘Q3Q + EQ2R

1 1 -1
ECI3P + Zqu + _Z-qu

-1 1 1
—Z'qu + équ + équ

The state vector of this nonlinear model has teenehts position, velocity in the body frame and
attitude expressed by the quaternions; [X, Y, Z U \V W ¢, 04, 05, 03] . The quates have
the advantage that we use polynomials of orderitvibe continuous time transition state matrix.

The nonlinear state transition function is lineadzo obtain the matrix for the extended Kalman
filter. The matrix contains the partial derivativedsf with respect to x.
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t1 = q0*q0; t2=ql*ql; t3=093*q3; t4=q2*q2;

t6 = q0*q3; t7=q92*ql, 119=q3*ql; t10=q0*qz;

t15 = q0*U-q3*V+q2*W,;  t19 = q1*U+g2*V+q3*W,

t23 = -q2*U+ql*V+qO0*W; 127 = -q3*U-q0*V+ql*W,

t30 = gq0*ql; t31 =q3*q2;

t37 = 2.0*g*g2; t39 = 2.0*g*q3; t41 = 2.0*g*q0; t432.0*g*q1l,

t44 = P/2.0; t45=Q/2.0; 46 =R/2.0;

dfx[0][0...9] = [0.0; 0.0; 0.0; t1+t2-t3-t4; -2.08t2.0*t7; 2.0*t9+2.0*t10; 2.0*t15; 2.0*t19;
2.0*t23; 2.0*t27];

dfx[1][0...9] =[0.0; 0.0; 0.0; 2.0*t7+2.0*t6; -t8+t1+t4; -2.0*t30+2.0*t31; -2.0*t27; -2.0*t23;
2.0*t19; 2.0*t15];

dfx[2][0...9] = [0.0; 0.0; 0.0; 2.0*t9-2.0*t10; 2*B0+2.0*t31; -t4-t2+t3+t1; 2.0*t23; -2.0*t27
-2.0*t15; 2.0*t19];

dfx[3][0...9] = [0.0; 0.0; 0.0; 0.0; R; -Q; -t3739; -t41; t43];
dfx[4][0...9] = [0.0; 0.0; 0.0; -R; 0.0; P; t43;14t39; t37];
dfx[5][0...9] =[0.0; 0.0; 0.0; Q; -P; 0.0; t4141; -t37; t39];
dfx[6][0...9] = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0; 0.944; -t45; -t46];
dfx[7][0...9] = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0; t4@.0; t46; -t45];
dfx[8][0...9] =[0.0; 0.0; 0.0; 0.0; 0.0; 0.0; t4546; 0.0; t44];
dfx[9][0...9] = [0.0; 0.0; 0.0; 0.0; 0.0; 0.0; t48t5; -t44; 0.0];

The derivative matrix was computed with Maple, whieas also used to generate the C code. In a
later stage we used a dedicated C library to coenjnat matrix exponential to get tllEmatrix. For
a complicated matrix it is impossible to obtainamalytic form for the matrix exponential.

4.4.2.8 Observation Models
* Position Observation Model

The position is observable if we have GPS posititormation. The position observation equation
and observation matrix are:

0Zyyz = Hyy DX+ &yyz

Hyyz = [| 3x3 07x3€| eq. 4-90.

* \elocity Observation Model

Some GPS receivers are able to compute velocitynmdtion as well. When we have velocity
information then the observation matrix for speedanzero. The velocity in the state vectis
represented in body axis. The velocitiasy, w) need to be transformed to the navigation frame,
and this is done with:

Hyyz = [03"3 Ch O3X3] eq. 4-91.

whereC]} is the rotation matrix from body to navigaticame.
» Attitude Observation Model
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Because we use quaternions in the state vectadharabservations are in an Euler angle represen-
tation we need to do a conversion. Tenction is presented below (see Equation A-18),\aa

can see that it is nonlinear.

(2e,e, + 2e,€5)

arctan > h 273
(e§

~ef-ere)
hy,e,o(X) = | arcsin 2,e,—2e5€)

(2eye5 + 2e48,)

arctan
2 . o2
(e5+ef

2 _ a2
—e5—e3)|

eq. 4-92.

It needs to be linearized along the trajectorgives the expression for the attitude observation

matrix

ohy, 6, o(X) 0Ny, g o(X) Ohy g o(X) 0Ny, g o(X)
g, oe; oe, 0e;

H 03x6

va 9,(p

where the partial derivatives are:

-2ele@-2e1B 2eleZ+2eled 4e2e0e3
el + 2e(Pel?22e(Fe2 + 2e(PeF + el + 2el2e222eFel? +e2* +2e2e3? +e3* +8e0e2e3e
2e2
J1-4e®e® + 8e0e2e3et 48212

-2e3e@ + 2e3ef +-2e3eZ +-2e3F +-4e2e0el
|e0* + 2e(Pel?-2e(Pe2 + 2e(Ped? + el + 2elle2-2eFel? +e2* +2eXeF +e3* +8e0e2e3¢

6hw’ 6, (p(x) _
oe,

2e0® +2e0ef 2e0eZ + 2e0ed + 4e3ele?
et + 2e(Pel?2e(Fe? + 2e(PeF + el + 2el2e222eFel? + e +2e2e3? +e3* +8e0e2e3e
-2e3
J1-4ePe2 + 8e0e2e3el 48212
2e2e@ 2e2e?-2e2B 2e2e8 4e3elel
|e0* + 2e(Pe1?-2e(Pe® + 2e(Ped + el* + 2el2e2-2eFel? +e2* +2e2eF +e3* +8e0e2e3¢

Ohy, 0, (¥) _
oe;

2e3e@ 2e3ef +2e3e2 +2e3 +4e2e0el
el + 2e(Pel?22e(FPe2 + 2e(PeF + el + 2e2e222eFel? +e2* +2e2e3? +e3* +8e0e2e3e
2e0
J1-4e®e® + 8e0e2e3et 48212

2ele@ +2e1d +2ele? +-2eled +4e2e0e3
|e0* + 2ePel?-2e(Pe2® + 2e(PeF + el* + 2ePPeR-2eFel? +e2* +2e2eF +e3* +8e0e2e3€

6hw’ 6, (p(x) _
oe,

2e2e@ 2e2ef-2e2B 2e2e3 4e3elel
et + 2e(Pel?2e(Fe? + 2e(PeF + el + 2el2e222eFel? +e2# +2e2e3? +e3* +8e0e2e3e
-2el
J1-4ePe2 + 8e0e2e3el 48212
2e®+2e0e? 2e0e2 + 2e0e3 + 4e3ele2

Ohy, 0, ¢(X) _
oe;

eq. 4-93.

eq. 4-94.

=

eq. 4-95.

(=

eq. 4-96.

eq. 4-97.

|e0* + 2e(Pe1?-2e(Pe® + 2e(Pe + el* + 2el2e2-2eFel? +e2* +2e2eF +e3* +8e0e2e3¢

The control matrixG has the form:
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100 0 0 O
010 0 0 O
001 0 O O
000 0 -W V

ooowW 0 -1

000-v U O
N | B
du ~ |da, da, da, 0P 0Q oR| |0 0 05elze27ed
1 .-1,.1

000 560 583 §e2

1 1..-1
000 263 ée -é-el

0002e2 Le1 deo

eq. 4-98.

2 2 2

which results from the simulation.

4.4.3 Alternative Implementations and Improvementdor Kalman Filters

4.4.3.1 Checking the covariance symmetry and the pitive definiteness

The error covariance matrRR = E(dX, 6xT> is, by its definitigmsnetric. However, numerical
errors can result in a representatiof?dhat becomes nonsymmetric. This affects the perdoice
and stability of the Kalman filter.

Square-root filtering is designed to ensure thatdbvariance matrix of estimation uncertainty
remains symmetric and positive definite. Otherwike,fidelity of the solution of the Riccati equa-
tion can degrade to the point that it corruptskthBnan gain, and that in turn corrupts the estimate
The implementation of square-root filtering is moagnplex and computationally more expensive
because it involves replacing the covariance m&mith its Cholesky factor (see Chapter A.1).

If we do not choose square-root filtering, thennged some assurance that the algorithm is numer-
ically stable. It was shown[90] that asymmetryPdE one of the factors contributing to numerical
instability of the Riccati equation. The covarianmoatrix can be symmetrized occasionally by
adding it to its transpose and rescaling it:

- %(P +P eq. 4-99.

The error covariance matrik = E(dx, 6xT> is, also by definitpositive semidefinite. Com-
puted values dP can lose this positive semidefinite property. Wtt@s occurs, the Kalman filter
gains for corresponding states have the wrong sigh the state may temporarily diverge. Even if
the sign eventually corrects itself, subsequerfopmance will suffer, since the covariance matrix
is no longer accurate.

Any symmetric matrix, in particuld®, can be factored as:
P = uDU' eq. 4-100.

Special-purpose algorithms have been derived tlogiagate the factdy andD instead oP itself.

The factors contains the same informatio athe factorized algorithm can be shown to be theo-
retically equivalent to the Kalman filter, and thigorithm automatically maintains both the posi-
tive semidefiniteness and the symmetry of the damae matrix.
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4.4.3.2 Serial measurement processing

It is shown in [90], that it is more efficient toqeess the components of a measurement vector seri-
ally, one component at a time, than to process th&m vector. This may seem counterintuitive,
but it is true even if its implementation requieesansformation of measurement variables to make
the associated measurement noise covarilacgiagonal matrix, which means that noise is uncor
related from one component to another.

It is possible to make the measurements uncorckl#téhe covariance matriR of the measure-
ment noise is not a diagonal matrix, then it camiagle so by)DUT decomposition and changing
the measurement variables,

Reorr = URDRUR
Rdecorr = DR

eq. 4-101.
ydecorr = UR/ycorr

Hdecorr = UR/Hcorr

whereR.q,, is the nondiagonal measurement noise covarianteximand the new measurement
vectoryyecorr N@s a diagonal measurement noise covariance nigrix,r and measurement sen-
sitivity matrix Hgecorr

The components ofjecorr CaN NOW be processed one component at a time t@raprresponding
row of Hyecorr @S its measurement sensitivity matrix and theesponding diagonal element of
Ryecorr @S its measurement noise variance. The implenmentat serial measurement update is
presented in the following code:

X=X ]

P=R¢,

for j=1:1
y=Yk();
H=H,(.,);
R=Ryecorfi));
K=PH/(HPH'+R);
x=K(y-Hx);
P=P-KHP;

end;

X =%

P+ = (P+P)/2;

Figure 4-14.Serial measurement update implementation
The last line from this code is a symmetrizing gaare designed to improve robustness.

4.4.3.3 A separate bias Kalman filter

In the application of Kalman recursive filteringckamiques, an accurate model of the process
dynamics and observation is required. In our seentdnis model contains parameters which may
deviate by constant but unknown amounts from theminal values. Using nominal values of the
parameters in the filter design may lead to largers in the estimate provided by the filter. lais
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common practice to augment the state vector obtiggnal problem by adding additional compo-
nents to represent the uncertainty parametersfiliérethen estimates the bias terms as well as in
the original problem. But when the bias terms ammgarable to the number of state variables of
the original problem, the new state vector hasketsutially higher dimension than the original
problem, and the computations required by theriiltealgorithm may become excessive. In our
particular situation when the algorithm runs onlthRT board, the filter does not run in real time
and the bias estimates have unacceptably largesjudme solution is to apply the Friedland’s sep-
arate bias formulation [91], which will replacelathora of 6x6 multiplications and one 6x6 inver-
sion by a somewhat larger number of 3x3 multipiczad and one 3x3 inversion.

The linear error equation (see Equation 4-79 on @&ydas been written in a form in which the
error gyro biases are assumed constant, thus pegnhie direct application of the results of Fried
land’s separate bias Kalman filter.

Switching to Friedland’s notation, we define theoerstate vectox, = 86(t,) and a bias state
error vectorb, = Ab(t,) , wherg is the time at th&" iteration of thfF Kalman filter algorithm.
By adjoiningb andx we obtain an augmented state ve@pr |:Xk bk:| , Which sgtisifie fol-
lowing equation:

2 = Fz + Hwk F, = [Ak Bk} eq. 4-102.
0 0 I

The additive white noise, with variance, only effects, sinceb is assumed constant. The mea-
surement equation is:

Y = Lz + vy eq. 4-103.
wherey is white noise with variandg. In Friedland’s papet,, = |H, C,| , butin our applica-
tion the measurement from inclinometers and compasmeasur& and not, soC, = 0. This

fact will be used in the following formulas and Wwisult in a simplification of Friedland’s formu-
lation.

Now applying a Kalman filter to this model, the iopal estimate of the statas:

2.1 = Fg+K(k+1)(Ye+1—-LF2Z)
; T 1 eq. 4-104.
K(k+1) = P(KIL [LP(K)L +Ry]

The Riccati equations for the recursive computadibtine estimation error covariance mateik)
needed in the Kalman gain equation can be rollgdtteer into a single predictor, the predictor
covariance update equation:

P(k) = (I -K(K)H)P(k)
P(k+1) = F,P(KFI+G +GT}
() = BPIORc 6Qc eq. 4-105.
P(k+1) = F [l —K(K)H]P(KF] + MQKHD o]

To proceed further we partition matiXk) into 3x3 matrices as:
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P(k) = Pl Peolk) eq. 4-106.
Plo(K) Py(k)

In this way the expression for Kalman gain, seedfiqn 4-104, may be rewritten in partitioned
form as:

-1

]
" Rk} eq. 4-107.

K9 = PO o | [ g P([H g

_ [Py BT uT Rr
s (AR

_ | PKHTHP,(HT+ R ™| _ K (K)
PILOHTHP,(HT+RJ|  [Ky(K)

We have split the Kalman gain becalsés used for estimatingandKy for estimating. To com-
pute these two Kalman gair§, andK, covariance submatric& andP,, are needed. These are

updated by the partition version of Equation 4-10%] also for further simplification we introduce
H=I:

.

P+ 1) Pk + 1)l _ 1A qul ﬂ_ [ Cﬂj Px P |ACB 4 | Oleq 4108

Pl(k+1) P(k+1) 0 1[\[0I] [K, PJ, Pyl 0O | 00

_ | A AR B, By [PA+ PGB Pyl QO
K, | ||PLAT+P.BI P,| |0 O

We considere#l =1 because the inclinometer and compass measurearergge-processed inside

the TCM2 magnetometer board to give direct measenesrof the Euler angles. The valuesRar
Py, Py are computed from Equation 4-108 and we obtairedpeession:

Ty = Ac-AK=BK, T, = PACHPBY T3 = PRAC+ PpBg
Py(k+1) = Py—KyPyy
Pk +1) = T;P,,+ BP,
P (k+1) = T,T,+BT;

eq. 4-109.
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After simplification the fastest possible code fieeasurement updates is:

T1=(Px+R);
Tl.invert();
IIKx = ( Px * H3.transpose() ) / ( H3* Px * H3.trgpmose() + Rx );
Kx = Px *T1;
/Kb = (Pxb.transpose()*H3.transpose())/(H3*Px*Hartspose()+Rx);
T3 = Pxb.transpose();
Kb= T3*T1,;
//My derivation based on Friedland paper
T1=A-A*Kx - B*Kb;
T2 = Pb - Kb*Pxb;

T3 =B*T3;
Pxb = T1*Pxb + B*Pb;
Pb=T2;

Px = Pxb*B.transpose()+(T1*Px + T3)*A.transpose(@3;

and for time update:

T1 = A*Pxb + B*Pb;
Px=T1*B.transpose()+(A*Px+B*Pxb.transpose()*A.transe();
Pxb =T1;

Figure 4-15.Code for Separate Bias Kalman Filter

The timing evaluation of both implementations, gsif®0000 runs, reveals that the speed approx-
imately doubled, from 89(is to 550us on a PIIl 500 MHz. The implementation on the LART
embedded system is running almost in real timapatut 80 Hz. In order to make the system run
in real time, the Kalman filter should be implenmeghtising integer arithmetic.

4.5 Results and Simulation

The Euler angle and quaternion models are useddment the two extended Kalman filters. For
analysis of the output, the error metric used @-sum-square (RSS) of the difference between
true and estimated value of bias.

Estimates of bias error will be compared by exangriow fast the error converges below certain
percentages of bias. The simulations run with teffé bias values showing that both Euler angle
and quaternion EKF are asymptotically stable.

The results of the Kalman filter simulation for gywias error:
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Figure 4-16.Comparison of bias RSS error between QuaterniorEaet angle EKF

The simulation results for Euler angle and quateritKF show that the two implementations are

comparable, as expected. The quaternion implementappears to be performing better than

Euler angle implementation. Quaternion implemeatationverges to 1% from the maximum error

range in 6.4s compared with 8.6s for the Eulerenighe steady state bias error for quaternion EKF
is also slightly lower than the steady state foleEangle EKF.

The same quaternion EKF runs on LART system, opeyainder Linux. The implementation on
the LART embedded system is running at about 8(Rézsults showed that the orientation Kalman
filter converged in less then 1 sec. The stabdityhe gyros provided accurate orientation values
during normal head motion. The overall accura@bisut 0.2 degrees.

4.6 Conclusions

Aided strapdown systems are receiving reneweddsten applications requiring high accuracy
and high rate outputs, while also being inexpenswueall, and low power. A much more critical
cause of error in position measurement is errdrerorientation determined by the gyros. An error
of d@ in tilt angle will result in an error of 1g-sirffdin the horizontal components of the acceler-
ation calculated by the navigation computer. Ircpce, it is the gyroscopes, not the accelerometers
which limit the positional navigation accuracy obsh INS systems, since the effects of gyroscopic
tilt error will soon overtake any small acceleroerdiiases.

A great difficulty in all attitude estimation apfrches that use gyros is the low frequency noise
component, also referred to as bias or drift, thalates the white noise assumption required for
standard Kalman filtering. This problem has atwddthe interest of many researchers since the
early days of the space program. Inclusion of §r® goise model in a Kalman filter by suitably
augmenting the state vector has the potential toige estimates of the sensor bias when the
observability requirement is satisfied. An estimaitéhe attitude would imply the derivation of the
dynamics of the moving body, which we wish to aviegtause of the complexity. In order to do
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so we relate the gyro output signal to the biasthedangular velocity of the vehicle, using the
simple and realistic model.

In this chapter we decompose the localization ohinto attitude estimation and, subsequently,
position estimation. We focus on obtaining a gottifugle estimate without building a model of
the vehicle dynamics. The dynamic model was repléagegyro modeling. An Indirect (error state)
Kalman filter that optimally incorporates inertravigation and absolute measurements was devel-
oped for this purpose. The linear form of the syst&d measurement equations for the planar case
derived here allowed us to examine the role ofithknan filter as a signal processing unit. The
extension of this formulation to the 3D case shthessame benefits. A tracking example in the 3D
case was also shown in this chapter.

In order to extract the actual body accelerationngumotion, the local projection of the gravita-
tional acceleration vector has to be subtracteah ftte accelerometer signals. Even small errors in
the attitude estimat@ can cause significant efrotise calculation of the actual body accelera-
tions. This is more prevalent during slow motiongwvsmall body accelerations, such as the ones
used in this experiment. The estimated velocitres@ositions through the integration of the IMU
are susceptible to large errors due to the magmitdidhe gravitational acceleration compared to
the minute body accelerations that the vehicle eepees during its actual motion.

Another advantage is that the filter is very e#fidi with computer memory requirements. Every-
thing it needs to know about the initial conditicared all the past measurements and motion are
contained in the covariance matrix Pk. An outstagdienefit of the Kalman filter is that it is very
flexible about timing and the order in which it eéees and processes measurements. There is no
requirement for periodic time updates or measurémgaates. In a typical run-time implementa-
tion, the KF program will have a main loop thatgesses time updates at a high update rate, and
slightly interrupts this cycle to squeeze in a nie@sient update whenever one becomes available
from a sensor. This enables flexible integratiodath from disparate sensors that are not even syn-
chronized.

The advantage of quaternion representation issihat the incremental quaternion corresponds
very closely to a small rotation, the first componeill be close to unity and thus the attitudeomf
mation of interest is contained in the three vectonponents of the quaternion. The equations used
to update the Euler rotations of the body with eesfgo the chosen reference frame are imple-
mented using a 4th order Runge-Kuta integratioorélgm, since a closed form solution does not
exist. However, their use is limited since the tohs of @ andy become undetermined when
6 = +90°. By comparison, quaternion update equations de hatosed form solution and do not
have singularities.

The quaternion implementation appears to be perfayipetter than the Euler angle implementa-
tion. Quaternion implementation converged to 1%nfthe maximum error range faster than the
Euler angle. The steady state bias error for qneterEKF is also slightly lower than the steady
state for Euler angle EKF.

Quaternion EKF implementation in real time représamother issue. After the filter implementa-
tion was proven to be stable and running on an Replatform, the next step was to reduce filter
computation complexity, but try to maintain filjeerformance. A separate bias filter formulation
was implemented and run on the LART platform almostal time, providing an update rate of
about 80Hz.
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Chapter 5

Vision-based Pose Tracking

5.1 Introduction
The pose tracking system for outdoor augmentedtyeahcompasses the following subsystems:

» A DGPS system that tracks the human position witheters, heading within steps of 45
degrees, and update rates of within a minute

» A Vision system that tracks the head position wittentimeters, the orientation within
degrees, and an update rate of within a second.

* An Inertial Tracking system that tracks the heaithiwv millimeters and its orientation within
tenths of degrees and an update rate of within 4€cm

This chapter describes the algorithms that aressaecg to obtain a robust vision system for track-
ing the motion of a camera based on its obsernatbthe physical world. We will look at feature
detection algorithms, camera calibration issuesd, @wse determination algorithms. Traditional
approaches to tracking planar targets are basédding correspondences in successive images.
This can be achieved by computing optical flowyniatching a sparse collection of features [67].

5.2 Feature Extraction

Our tracking system is based on the real-time pAdge) tracking of features, such as corners, line
segments and circles / ellipses in the image. Riwse features, pose determination algorithms
can calculate the motion of the camera.

5.2.1 Corner Detection

Intuitively, a corner is a location in the imageex, locally, the intensity varies rapidly in bath
and Y directions. The gradients of the imagarid |, measure the variation of intensity. If we look
at the typical distribution of land |, in a small window when it is a corner we haveavgriations

in both directions.

!
%’T Corner:e,~ ,>>0

v Iy

—>
&

Figure 5-1.Corner feature characteristics
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For an ideal corner with sides parallel to Xrendy axis, some of the gradients atg Q) (for the

part of the corner on the vertical edge))oocthe horizontal edge) and (0,0) in the uniformgioas

of the window. More realistically, the values Wik spread out in between those three points. The
key observation is that the set bfI{) values is elongated in both directions.

The corners are selected as basic primitives toc#tibration and pose recovery processes for two
reasons:

» Simplicity: The corners encode particular geometric relatipssthus matching them involves
less ambiguity than matching individual image feasy since there are fewer possible alterna-
tives and more information to be able to judge &mdn addition, there are fewer corners
than image features.

* RobustnessCorners are less likely to be completely occludedpposed to line features. Due
to the target geometry, the corners are relatigtdple against partial occlusions. Even if the
corner point is occluded, its position can be fobgdntersecting the corresponding line seg-
ments. Also, the position of a corner is genenadgasured with more precision than the posi-
tion of an isolated feature.

Sobel first derivative operators are used to thkedierivativex andy of an image, after which a
small region of interest is defined for corner déten. A 2x2 matrix of the sums of the derivatives
x andy is created as follows:

{%l': zzl 'ﬂ eq. 5-1.

The eigenvalues of C are found. For the 2x2 malfithe equation above, the solutions may be
written in a closed form:

IR GO AR

If A1, A, >t, wheret is some threshold, then a corner is found atltizattion. The threshold, can
be estimated from the histogramAf as the latter has often an obvious valley near. ze

A= eq. 5-2.

Foerstner’s [42] corner detection is based on déimeesgradient method. It uses the eigenvalues of
the same matri. If the two eigenvalues of the mati@ are large, then there is an important
change of gray level. The trace of this matrix barused to select image pixels which correspond
to image features.

If tr(C) is higher than a threshold, the pixel is considereorner candidate pixel. Next, the interest
points have to be distinguished from pixels belaggio edges. This can be done using the ratio
v = A\,/A; Which describes the degree of orientation or egmtrA, = O indicates a straight edge,
while v = 1, thusA, = A, indicates a gradient isotropy caused by a corner ldob. The corner
response function is given by:

4eq Q) _ 40 DA
tr2(C) (AL +A,)?

q= eq. 5-4.

This value has to be larger than a threshold forel representing a corner. Sub-pixel precision is
achieved through a quadratic approximation (fitogelcorder polynomial to 9 points). To avoid
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corners due to noise, the images can be smoottliedv@aussian kernel. But instead of doing this
smoothing on original images, it is done on thegagof the squared image derivatives contained
in matrix C. Figure 5-2 shows the corners found in two exarmpbeges. We can see that our fea-

ture points include image corners and T-junctiogsegated by the intersection of object contours,
but also corners of the local intensity patterncatesponding to obvious scene features.

i pp - lab_c.
Fle Edit view window Hel

T
I

5.2.2 Target Recognition

A target can be used to track fiducials in an im&gkducial is a known pattern with a known posi-
tion in the world. Fiducials are used in the pngtindustry, and printed circuit board and VLSI
production to align layers. A bar or dot code carcbnsidered as a fiducial when used to identify
objects and their position. In our case, we assataeget is based on a pattern of squares, which,
for instance, can be used for calibration purpdSes.Figure 5-2. The target recognition algorithm
we used is derived from an algorithm implementethaIntel OpenCV library, it was enhanced
in order to gain robustness. The algorithm work$o#lew. A video frame from the camera is
passed to the functidindTargef), which looks for a target pattern. The numbepaihts to look

for, and an array in which found point coordinades stored, are passed as parameters to this func-
tion. The way in whictindTarge() finds the intersections is a bit indirect: ibks for the square,
performs an opening operation on them and calculdieir intersection using corner detection.
Figure 5-3 shows an extreme example of the resiitisi® function. The actual library function
only requests that a single iteration is donehsosgjuares are only slightly opened. Note that the
squares maintain their shape after this operatimy, are smaller, but still squares.

The image is then passed to a threshold functidrsahsequently processed by an outline detector
from the library. It finds the outlines around ceoted blocks of pixels such as the quadrangles
(projected squares) that we are looking for. filh@Targe() function is based on the generation of
a list of all the contours that can be approximdigd polygon (using the Douglas-Peucker[97]
method, see Chapter A.6.2), and discard objectslthabt have four vertices, are too small, or just
do not look like a projected square. Anything squamough is added to a list.

The function loops through all the found squaresmatches up all their intersecting corners. The
list of intersecting corners is sorted. Beforeiagrtwe first determine the 4 extreme corners. Base
on these points and the 4 corresponding model puiatcompute the homography matixWe

use theH matrix to reproject all the model points in theame and select the points closest to each
corresponding detected corner. TimedTargef) function is able to find the corner intersection
points to a precision of a single pixel. If a g@ad of intersections were found, the number ofinte
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sections is returned as a positive value. Othentligenumber of intersections found is returned as
a negative number.

If the function returns a positive value, furthefinement of the corner locations can be performed
using another function of the CV library, tbeFindCornerSubP@ call, which is able to do sub-
pixel location of the intersections to a precistdrD.1 pixel. It appeared however that the refined
corners were sometimes several pixels away frontrtireecorners. It seemed that as the angles
between the edges of adjacent corners approaced@@ek, the accuracy got worse. At exactly 90
degrees the function is off completely; the reficedners can be located several pixels away from
the true corner. When we used the function to dtatic camera calibration, we checked the sub-
pixel locations visually by plotting the cornerstire image. When they were wrong the intrinsic
calibration gave bizarre results. Hence, we implae@ a new subpixel corner detector algorithm.

Figure 5-3.Subpixel corner detection

Corners remain relatively stable across a sequefnogages in a video. For this reason, a number
of corner finding algorithms for tracking purposes/e been proposed in the literature. The most
popular is the Harris corner finder that computesmer strengtil,, for each pixep in a search
window W of a grayscale video image. This is determinedgiai symmetric 2x2 matrix:

Q Q
& YEE,

C, = eq. 5-5.

Q Q
>EE Y&
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whereQ is a (N + 1)x(2N + 1) neighborhood of pixels aroupdwe useN=3), andE, andE, are
respectively thex andy spatial image gradients aroupdising Sobel edge filters. Geometrically,
the two eigenvectors @, define edge directions at pixgl and the two eigenvaluely and A,
define the edge strengths. A strong corner is demsted by two large eigenvalues, whéye A,.

A point is a corner if the smaller of the two eigatuesA, = A, is larger than some predetermined
corner strength thresholg-.

Note thatdt is dependent on the size of the chosen neighbdrbigm Therefore, a histogram anal-
ysis of thed, values of an entire image can be used to determigtable threshold. The best
threshold for corners will be located to the righta large peak in the histogram. Note that this
should not be performed for each frame, since traer finding algorithm is computationally
expensive (O‘(I3)) when performed on an entire image. For our systeuser-defined threshold
was used. Since the corner finder computés\alue for each pixel iV, the strongest corner will
be denoted by the pixel with the largest value. ptablem with this method of corner finding is
the lack of subpixel precision on the computed epooordinate. This could lead to corner features
exhibiting full pixel jitter from frame to frame, mch could affect homography stability in subse-
guent stages of the tracking system.

It has been demonstrated[57] that the approxineeiation of a grid point can be estimated by fit-
ting a quadratic surface through the points in sdogigenvalue image space. Subsequently, the
maximum (or minimum) can be calculated analyticibyn the fitted surface. The pseudocode for
the subpixel corner detection is:

% fit a 2nd order polynomial to 9 points
% using 9 pixels centered on irow,jcol
u = f(ypeak-1l:ypeak+1, xpeak-1:xpeak+1);

u=u();
xy=[-1-1;-10;-11;0-1;00;01;1-1; 1D1];
X =xy(:,1);

y =xy(.2);

% u(x,y) = A1) + A(2)*x + A(3)*y + A(4)*x*y + A(B)*Xx"2 + A(6)*y"2
X =[ones(9,1), x, y, X.*y, x."2, y."2];

% u = X*A

A = X\u;

% get absolute maximum, where du/dx = du/dy =0

x_offset = ( 2*A(2)*A(6) - A(3)*A(4) ) I (A(4)*A(4) - 4*A(5)*A(6) );
y_offset = -( A(2) + 2*A(5)*x_offset ) / A(4);

% return only one-tenth of a pixel precision

x_offset = round(10*x_offset)/10;

y_offset = round(10*y_offset)/10;

Figure 5-4. Subpixel corner detection using a quadratic surféce

A faster method for finding a subpixel corner isus®eA,. Non-maximal suppression is first used
to locate the strongest corner positgn (X, y) in the pixel neighborhood. A subpixel location is
then computed based on weighting the corner stnergftthe 4-connected neighbors as follows:

(Aa—Ap) (Ac—Aq)

= X0t o o e ay  Ysuseixel = YT 05T 5o

Xsubpixel -

eq. 5-6.
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where/; represents the corner strength of pixel Figure 5-5.

C
a S b
d

Figure 5-5.Four-connected neighborhood for a corner pixel s.

The findTargef) function works on the original, grayscale imaged the initial guesses of the
intersection pointers. For each point, the functierates until the image gradient at the subpixel
intersection location is below a threshold. The snead precision of this subpixel corner location
is better than 0.1 pixel [62].

5.3 Camera Calibration

5.3.1 Changing Coordinate System

The purpose of this section is to describe howpt#rspective projection matri varies when we
change the retinal plane and world coordinate systevhich will reveal more of the interesting
structure of the matrix. This information is impant since, in practical applications, these changes
of coordinates systems occur quite often.

5.3.1.1 Changing coordinates in the retinal plane

Let us consider the effect of changing the oridithe image coordinate system and the units on
theu andv axes on the matriR. These units are determined by the number of hemsiells for
CCD and CMOS cameras.

The corresponding situation is shown in Figure Sv¥&. go from the old coordinate system to the
new coordinate system, which is centered at a pgimt the image. For a pixeh we have:

c,m = g,.C+cm eq. 5-7.
Unew
A Uold
........... m
i
A ] Vold
[
P >
Cn J Vnew

Figure 5-6. The intrinsic parameters and normalized camera

Writing cm = u,,4i + V4 in the old coordinate system and introahgcthe scaling from the old
coordinate systeni,(j) to the newl( J), we have:
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g= |k O eq. 5-8.
0 k,

We can denote,c byt in the new coordinate system, and this allowsuswrite Equation 5-7 in
projective coordinates as:

m = HemMyyq

new

T

eq. 5-9.
1

Note that matrid defines acollineationof the retinal plane considered as a projectiaag@l This
collineation preserves the line at infinity andhigrefqre an affine transformation. Since we have
Moy = PoldM , we conclude that Mhew = HPoldM  "and thus:

Prew = APqiq eq. 5-10.

An (n+1)x(n+1) matrixA, such that def) is different from 0, defines a linear transforioator a
collineationfrom the projective spac@,n , onto itself. The madssociated with a given collinea-
tion is defined up to a nonzero scale factor.

If we denote the coordinatestdfy uy andvy, then the most general matfx , when the world ref
erence frame is the standard coordinate systenamkr@ (Equation A-70), can be written as
(wheref is the focal length of the optical system,):

—fk, 0 uyO
P=1o —fk, Vo O eg. 5-11.
0O 0 1

Leta, = —fk, anda, = —fk, . The parametens, a,,u,, awgd  do not depertdeoposition
and orientation of the camera in space, and theyhais calledntrinsic.

We now define a special coordinate system thaivallgs to normalize the retinal coordinates. This
coordinate system is called thermalized coordinate systemfithe camera, and it is widely used
in motion and stereo applications because it allosvio ignore the specific characteristics of the
cameras and to think in terms of ideal system. GavenatrixP , we can change the retinal coor-
dinate system so that matf’x aHd can be written:
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oo
P=1010

001

1 % eq. 5-12.

aU GU
|:|= \V;

0_1___9

GV GV
0 0 1]

Therefore, according to Equation 5-9, the new rétinardinates are given by:

u-—u B
o v = 0
o a,

eq. 5-13.

If we consider the plane parallel to the retinaina and at a unit distance from the optical center
(Chapter A.5.1), this plane, together with the adticenter, defines a normalized camera (see
Figure 5-7), and represents the geometric interpoetaf a normalized camera.

normalized
retina

Figure 5-7.Relationship between the real and normalized rititaae

5.3.1.2 The use of intrinsic parameters

Knowledge of the intrinsic parameters allows upadform metric measurements with a camera,
to compute the angle between r&sandC,, determined by two pixels andn. The easiest way

to see this is to consider the absolute canidhe absolute conic could be seen as an imaginary
circle located in the plane at infinity. This comi@ys the role of a calibration pattern because it
imagewis independent of the camera'’s position and aiemt and depends only upon the intrinsic
parameters of the camera.

Let the camera(, R) undergo a rigid motio®, a combination of rotation and translati@his the
optical center an® the retinal plane.
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C 0
b N

Figure 5-8.How to compute the angle between optical rays <Camd><C,n> using the image of the absolute conic

«w

The equation of2is [47]:
X*+Y?+Z2=0=T  (or M'M=0) eq. 5-14.

The imagem of a poinl  of2 satisfies the equation:

m=PM = PM
M = [M} eq. 5-15.
0
M = Pim

whereP is the leftmost 3x3 submatrix 6f . According touatjon 5-14MM=0, the equation of
wis:

mP P m=0 eq. 5-16.

Using Equation 5-11, this is found by simple compatato be equivalent to:

- | _
l | O | uO
~2! I
C(u: : Gu
|
T ! \Y
m o:iz: % |m=o0 eq. 5-17.
: ay : ay
! 2 2
Uy, Vg! US V
n.d. 0
L agr oy, oy av_

Going to pixel coordinates, this can be rewritten a

U—Up2 (V—Vp?2
( ) +( ) +1 =0 eq. 5-18.
au GV

This equation shows thatcontains the intrinsic parameters.
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5.3.1.3 Changing the world reference frame

Just as it is important to study how matfix ~ changben we change the image coordinate sys-
tem, it is likewise important for many applicatidnssee how matri®  varies when we change the
3D coordinate system.

If we go from the old coordinate system centerethatoptical cente€ to the new coordinate
system centered @t by a rotatiorR followed by a translatiof, in projective coordinates this will
be:

Ivlold = RIVlnew
5 R T eq. 5-19.
K =
ol 1

Matrix K represents a collineation that preservespiane at infinity and the absolute conic. The
matricesR andT describe the position and orientation of the caméth respect to the new world
coordinate system. They are calledeé&insicparameters of the camera. Using Equation 5-19 we
have:

m = Py gV
ool eq. 5-20.
M = Po1dKMpew
Therefore we have:
ﬁnew = ﬁ0|dr< eq 5'21

This tells us how the perspective projection ma#ighanges when we change coordinate systems
in three-dimensional space. If we now combine Equdi-10 and Equation 5-21, we obtain the
more general equation:

ﬁnev\ﬂ_ = Hﬁ0|dl~< eq 5'22

5.3.2 Direct Parameter Calibration and the Tsai Algrithm

Consider a 3D poirie, defined by its coordinateX[, Y,,, Z,]" in the world reference frame. Let
[Xe Yo, ZJ " be the coordinate &fin a camera reference frame (Witk»O if P is visible). As usual,
the origin of the camera frame is the center ofgmtoon, andZ is the optical axis.

Xe Xw
Y| = RJY, T
Ze Zy

5.3.2.1 Camera Parameters from the Projection Matst
The method consists of two sequential stages:

1. Estimate the projective matrix linking world ainghge coordinates
2. Compute the camera parameters as closed-forrtidneof the entries of the projective matrix

Estimation of the Projection Matrix
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The relation between a 3D point in space and @geption in the 2D image is given by:

XW
|
Ui My My, Myz3 My
v Moy Moy Mosy M A eq. 5-23
i b1 Moy Mp3 My, o : :
Wi [M3g Mgy Myz Mgyl |
- 1_
with:
w w
o= U My XY+ MY+ mypZi +myy
A w w
i Mg X+ Mgy YW+ MgV +myy eq. 5-24
w w ) )
y = Vi My X+ My Vi myaZit 4 myy
A w w
Wi Mgy X+ Mgy YW+ Mg +myy

The matrixM is defined up to an arbitrary scale factor and thasefore only 11 independent
entries, which can be determined through a homamengystem of linear equations for at least 6
world-image point matches. However, through theafsmlibration patterns like in Figure 5-9:

Figure 5-9.Camera Calibration Target

many more correspondences and equations can bheexbtnd\V can be estimated through least
squares techniques. Rdmatches we have the homogeneous linear sygtem= 0 ith:, w

X, Y, 2,10 0 0 0-xX XY, %2,
0 0 00X Yy 2Zy1-yX -v1Y; Vi) 1
X, Y, Z,1 0 0 0 0-,X, XY, 2,
A=10 0 00X, Y, 2,1 X, Y, o2, Vs eq. 5-25.

10 0 00Xy Yy 2Zy1-ynXn—InYyYndy N

andm = [my;, My, Myg, ..., Mgz, Mg,] .
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SinceA has rank 11, the vectorcan be recovered using SVD-related techniqueseasalumn of
V corresponding to the zero (in practice the sm@lEagular value oA, with A = UDV. This
means that the entries Mif are obtained up to an unknown scale factor [48].

Computing Camera Parameters

We now want to express the intrinsic and extrigaimiera parameters as a function of the estimated
projection matrix. Sinc#/ is recovered up to a scale factor in the preveqysroach, the matrix
obtained from above through SVD will be noted

-f.ry +or31I f.rq +or32l f.rq +or33.—fT +0,T,

M = =frp + 0y f gy —firop+ Oyl o' =fir o3+ 0 r3g —f, Ty + 0T, eq. 5-26.

a1 ! 32 ! 33 ! T,

whereo,, o, are the coordinates of the image cerf;efy presents the focal length in thand
y directions, and andT represent the elements of the rotation matrixteantslation vector respec-
tively.

In what follows we also need the 3D vectors:
- — — I
1 = [Myy, My, Mgl

T
Oy = [Myy, My, My

eq. 5-27.
ot e 4T
3 = [Mgg, Mgy, Mgy
ot e o qT
4 = [Myg Myy Myl
SinceM is defined up to a scale factor we can wkite= yM . dbsolute value of the scale fac-

tor, |4, can be obtained by observing thats the last row of the rotation matifik Hence R is
normalized: the squares of the elements in anyaioeolumn have the sum of 1),

/\/r_ngl+r_n§2+m§3 = |y| “’§l+r§2+r§3 = |y| eqg. 5-28.

We now divide each entry of the matik Iy And observe that the resulting, normalized pro-
jection matrix differs fronM by at most a sign change. Then we can recovenrtafisic and extrin-
sic parameters:
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T,=0om,,
Iy =om,,
0, =0,
0, =0, ds
fo=4d,'d, -0,
f, =yd, d,-0,°

— O(oxmi _mi)
i~ f
_ O-(Oymi _mi)
Iy = - 1
y
Tx - O-(OxTz _m4)
f,
— 0-(OyTz _WE4)
y fy eq. 5-29

As usual, the estimated rotation matrix is not @gttnal, and we can find the closest orthogonal
matrix (in the sense of the Frobenius norm [48JpHiews: R = UDV' = R= UIV', Using SVD
decomposition and since the three singular valdies 83x3 orthogonal matrix are one, we can
simply replaceD by, so that the resulting matrix is exactly orthogona

We are left to discuss how to determine the sigihe signo can be obtained from, = om,,
because we know whether the origin of the worlénerfce frame is in front off (>0 ) or behind
(T,<0) the camera.

Estimating the Image Center

Vanishing pointsietL;, i = 1,..,N be parallel lines in 3D space, andhe corresponding image
lines. Due to the perspective projection, the lipgppears to meet in a pomtcalled the vanishing
point, defined as the common intersection of alithage lines;.

Orthocenter Theorem [48]-et T be the triangle on the image plane defined bytee vanishing
points of the mutually orthogonal sets of parditeds in space. The image center is the orthocenter
of T.

What is important is that this theorem reducesptiedlem of locating the image center to one of
intersecting image lines, which can be easily ecating a suitable calibration pattern.

The algorithm runs as follows:

1. Compute the three vanishing points [p%] p2 andp3, determined by three bundles of lines
obtained using a Hough transform.

2. Compute the orthocenté®; of the trianglgplp2p3.
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Figure 5-10.Image Center estimation

5.3.2.2 The Tsai Camera Calibration Algorithm

Under the assumption that only a radial distorboours in the camera, Tsai [65] proposed a two-
stage algorithm to calibrate the camera. Assumipg@ in the image is only distorted along the
radial direction, the radial alignment constraiRAC) can be employed to make the calibration
process linear. This algorithm has been well teatebldocumented. For the purposes of this thesis,
we will only touch on the two stages of the aldamit

1. Compute the 3D posR,; T (only x andy are calculated) and the scale facgrands;
2. Compute the effective focal lendtiradial distortion coefficieritl, and thez component of.

With these two stages, the whole computation besdmear and therefore, this algorithm is very
efficient and has been adopted extensively in dmepaiter vision field.

Whereas this algorithm requires that the scaleofaahd the position of the principle point are

known in advance, we tried several ways to caleula¢ scale factor. Moreover, the RAC model
requires that the angle of incidence between thiead@axis of the camera and the calibration plane
is at least 30°. It can be observed that oncedtational matrix is known, the remaining extrinsic

and intrinsic parameters can be easily obtainegpdated, following the same thought as Tsai,
starting from a pose estimation.

5.3.3 Camera Calibration by Viewing a Plane in Unkown Orientations

Camera calibration is a necessary step in 3D coenpidion in order to extract metric information
from 2D images. Much work has been done, startirige photogrammetry community ( [44], [46]
to cite a few) and more recently in the computsioni community ([49],[50],[51],[52], [65], [68],
[66] to cite a few). We can classify these techagjroughly into two categories: photogrammetric
calibration and self-calibration.

« Photogrammetric calibrationCamera calibration is performed by observing écation
object whose geometry in 3D space is known witly ygrod precision. Calibration can be
done very efficiently[47]. The calibration objecdually consists of two or three planes orthog-
onal to each other. Sometimes, a plane undergopnrgasely known translation is also used.
These approaches require an expensive calibrgpiparatus and an elaborate setup [65].

» Self-calibration.Techniques in this category do not use any cdldrabjects. Just by moving
a camera in a static scene, the rigidity of thesg&ovides in general two constraints [17, 15]
on the camera’s internal parameters from one cathgpéacement by using image information
alone. Therefore, if images are taken by the saameeca with fixed internal parameters, corre-
spondences between three images are sufficieattver both the internal and external
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parameters which allow us to reconstruct 3D stmactyp to a similarity [16, 13]. While this
approach is very flexible, it is not yet mature][48s there are many parameters to estimate,
one cannot always obtain reliable results.

Our proposed technique only requires that a caotesarves a planar pattern shown in at least two
different orientations. This pattern can be prinbeda laser printer and attached to a reasonable
planar surface (e.g., a hard book cover). Eithercmera or the planar pattern can be moved by
hand. The motion does not need to be known. Thegsexd approach lies between the photogram-
metric calibration and self-calibration, becauseuse 2D metric information rather than 3D or a
purely implicit one. Both computer simulation arghlrdata have been used to test the proposed
technique, and very good results have been obta@mdpared with conventional techniques, the
proposed technique is considerably more flexiblem@ared with self-calibration, it acquires a
considerable degree of robustness.

5.3.3.1 Basic Equations

We examine the constraints on the camera’s intriparameters provided by observing a single
plane. A 2D point is denoted g =[u, v]'. A 3D point is denoted byl = [X, Y, Z]T. We usex to
denote the augmented vector by adding 1 as thelsienth =4, v, 1] andM = [X, Y, Z, 1]".

A camera is modeled by the usual pinhole modelrétegionship between a 3D poikit and its
image projectiomm is given by:

sih = A[R t]M eq. 5-30.

wheresis an arbitrary scale factoR(t), called the extrinsic parameters, are the ratedind trans-
lation which relate the world coordinate systenth®camera coordinate system, &pdalled the
camera intrinsic matrix, is given by:

ay ug
A=1op Vo eg. 5-31.

001
with (ug, Vo) the coordinates of the principal point, am@ndf3 the scale factors in imageandv

axes, and the Tparameter describing the skew of the two inga@s. We use the abbreviatiai
for (AT or (A1) L.

5.3.3.2 The homography between the model plane aitd image
Without loss of generality, we assume the modeigla onZ = 0 of the world coordinate system.
Let us denote thd" column of the rotation matriR by r;. From Equation 5-30, we have:

X

u X
S|lv| = Alry ryorgt] ; = Alryryt]|y eq. 5-32.
1 1
1

By abuse of notation, we still us&to denote a point on the model plane, Mut [X, Y]" sincez
is always equal to O. In turly) XY, 1]T. Therefore, a model poiM and its imagen is related
by a homographtA:
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sm=HM with H = A[r,r,t] eq. 5-33.

As is clear, the 3x3 matri{ is defined up to a scale factor.
Letx = [h], h], hST,]2 . Then Equation 5-33 can be rewritten as [48]:

o T
UMy =9 eg. 5-34.

When we are given points, we have of these equations, which can be written in a matjua-
tion asLx = 0, wherel is a 21x9 matrix. Asx is defined up to a scale factor, the solution &l w
known to be the right singular vectorlofassociated with the smallest singular value (oiveg
lently, the eigenvector df'L associated with the smallest eigenvalue).

In L some elements are constant 1, some are in psaise are in world coordinates, and some are
multiplications of both. This makesnumerically poorly conditioned. A much better riésan be
obtained by performing data normalization.

The reasons for data normalization will be desdfiideSection 5.3.3.3 on page 107. Here we give
only the steps and formulas required at each step:

1. The points are translated so that the centraiat pat (0,0)

N N
_1 _1
a—NZui b——l\-lZvi eq. 5-35.
i=1 i=1

2. The coordinate points are scaled so that the miistance from the points to the center (cen-
troid) is 1. The scale factor is given by:

N
1 2 2
S = N z J(ui —Uy)" + (v, =V,) eg. 5-36.
i=1
In Equation 5-36 we denote withv the normalized points coordinates, aRav, unscaled ones.

Thenu = (u;—a)/s v = (v, —b)/s . We also denote with; the elements of the homography
matrixm . Then the coordinates,v, have the expression:

_ (a gy + myq LB)X, + (@ g, + my, [8)Y, + a g+ My /[3
Mgy Xy, + MgoYy, + Myg

(b Ongy + My )Xy + (0 [y + Myy [8) Yy, + b Mgt My5 3
Mgy Xy + MapYy,+ Mag

up
eq. 5-37.

Vq =

If now we use the normalized pointsy to compute the homograply , then the resultingdgem
raphy for the pointsiy,v, will be:

(a gy + my, [8) (a gy + My, [8) & lingg+ my3 /8
(b [igy + My, [8) (b [y + My, [8) b [+ Mys /3 €q. 5-38.
M3y M3 Ma3
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The solutiorx (Equation 5-34) can be considered as an initiakgoe input for an algorithm based
on the maximum likelihood criterion. L&t; andm, be the model and image points, respectively.
Ideally, they should satisfy Equation 5-33. In piastthey do not because of noise in the extracted
image points. Let us assume thatis corrupted by Gaussian noise with mean O andrcavce
matrix/\,, . Then, the maximum likelihood estimationtbfs obtained by minimizing the follow-
ing functional:

Z(mi_mi)/\mi(mi_mi) eq. 5-39.
i
where
hTMm.
m = Ti LY with h, the "row ofH
hzMi|hIwm,

In practice, we simply assunfg,, = o’ for alThis is reasonable if points are extracted inde-
pendently with the same procedure. In this cageatiove problem becomes a nonlinear least-
squares problenmin, $* |m; - r“ni||2 . The nonlinear minimization iscexed with the Levenberg-
Marquard Algorithm as implemented in Minpack [59].

5.3.3.3 Data Normalization

Image coordinates are sometimes given with theroagthe top left of the image, and sometimes
with the origin at the center. The question immejaoccurs whether this makes a difference to
the results of the homography estimation algorithtare generally, to what extent is the result of

the homography computation algorithm dependenherchoice of coordinates in the image. Sup-
pose, for instance, that the image coordinates elerged by some affine or even projective trans-
formation before running the algorithm. This maketdifference.

Condition of the system of equations

The linear method consists in finding the leaserigctor of the matriATA. This may be done by
expressindATA as a produdDUT whereU is orthogonal an® is diagonal. We assume that the
diagonal entries db are in non-increasing order. In this case, thetlemenvector oATA is the
last column olJ. Denote byk the ratiod,/dg (recalling thatATA is a 9 x 9 matrix). The parameter
k is the condition number of the matdxA, well known to be an important factor in the asay
of stability of linear problems. Its relevancelte problem of finding the least eigenvector isfbyie
explained next.

The bottom right-hand 2x2 block of matiixis of the form:

b

assuming thatly = O because a homography has 8 degrees of freadoich ideally will be the
case. Now, suppose that this block is perturbethéyddition of noise to become:

b

In order to restore this matrix to diagonal form meed to multiply left and right byT andV,
whereV is a rotation through an angl® = (1/2)atan(2e/dg) .df is of the saonder of
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magnitude adg then this is a significant rotation. Lo_okigg a_irammll matrix,ATA=UDUT, we see
that the perturbed matrix will be written in therfoUVD'V U where:

0 V

Multiplying by V replaces the last column dfby a combination of the last two columns. Since
the last column df is the least eigenvector of the matrix, this pdwation will drastically alter the
least eigenvector of the matd¥A. Thus, changes #&'A of the order of magnitude of the eigen-
valuedg cause significant changes to the least eigenveStace multiplication by an orthonormal
matrix does not change the Frobenius norm of aixpate see that:

9 1/2
|ATA| = S 2 eq. 5-40.
i=1

If the ratiok = d,/dg is very large, thedg represents a very small part of the Frobenius radrtine
matrix. A perturbation of the order d§ will therefore cause a very small relative chatméhe
matrix ATA, while at the same time causing a very significiiange to the least eigenvector. Since
ATA is written directly in terms of the coordinatestioé pointsu « U , we see thatkfis large,
then very small changes to the data can causedaayeges to the solution. This is obviously very
undesirable. The sensitivity of invariant subspageésscussed in greater detail in [53], where more
specific conditions for the sensitivity of invartasubspaces are given.

We now consider how the condition number of therina"A may be made small. We consider
two sorts of transformation, translation and sealifthese methods will be given only an intuitive
justification, since a complete analysis of thediban number of the matrix is too complex to
undertake here.

Normalizing Transformations

The previous sections concerned the condition numithe matrixA’A indicating that it is desir-
able to apply a transformation to the coordinatfsre carrying out camera calibration algorithm.
It was applied with success before carrying oueigat-point algorithm for finding the fundamen-
tal matrix [55].

This normalization has been implemented as a ptep in the homography estimation with good
results. The condition number of the linear equratts homography computation without normal-
ization is 16°. The same number with normalization is’ 10he improvement is approximately

10°

The effect of normalization is related to the cdiodi number of the set of linear equations. For
exact data and infinite precision arithmetic thgutewill be independent of the normalizing trans-
formation. However, in the presence of noise, tlat®n will diverge from correct result. The
effect of a large condition number is to amplifystbivergence. This is true even for infinite pre-
cision arithmetic - this is not a round-off errdfeet [54].

Isotropic Scaling

As a first step, the coordinates in each imagetrareslated (by a different translation for each
image) so as to bring the centroid of the set lbpaints to the origin. The coordinates are also
scaled. In the discussion of scaling, it was suiggethat the best results will be obtained if the
coordinates are scaled, so that, on average, apisif the formu = (u, v, w) T, with each ofy, v,

andw having the same average magnitude. Rather thamsehdifferent scale factors for each
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point, an isotropic scaling factor is chosen sd thau andv coordinates of a point are scaled
equally. To this end, we choose to scale the coatds so that the average distance of a point
from the origin is equal to/2 . This means that theetage” pointh is equal to (1, 1,71)

In summary, the transformation is as follows:
1. The points are translated so that their cenisoad the origin.
2. The points are then scaled so that the averagende from the origin is equal 2

3. This transformation is applied to each of the images independently.

5.3.3.4 Constraints on the intrinsic parameters
Given an image of the model plane, a homographyeasstimated. Let us denote ity[ h; h,
hs]. From Equation 5-33 on page 106, we have:

[hy hy ho] = AA[r 1, t] eq. 5-41.
whereA is an arbitrary scalar. Using the knowledge thatndr, are orthonormal, we have:

hIATA™h, = 0
. o eq. 5-42.
h]A"A7h, = hJA A 7h,
These are the two basic constraints on the intripaiameters, given one homography. Because a
homography has 8 degrees of freedom and thereextibsic parameters (3 for rotation and 3 for

translation), we can only obtain 2 constraints loa intrinsic parameters [56]. Note thaf AL
actually describes the image of the absolute conic.

5.3.3.5 Solving Camera Calibration
First, let us see how the matdx' A1 it looks in terms of intrinsic parameters:

1 'l WoUo/
a? a2 a?
o ) o " —uﬂ,[z’) y Bi1 B1z Bys
B=A'AY=| ¥ ¥y 1 Wt Yo | =g ) B,, B, €d.5-43.
a’p a’pp P a’p? e 5 BB
YWo—UoB =Y(YVo—UoB) Vo (YVo—Uoﬂ)2 + V_(2) + 13 723 733
| a?B a?f? F# B P
Note thatB is symmetric, and can be defined by a 6D vector:
b = [511 Bio By, Bi3 By B33:| eq. 5-44.

If we note withh; theith column vector of the homographly h; = [hi1, hio, hig] ", then we have:

By B1o Bygl [Ny
TRh. = — T
hiBh; = |:hi1 hi hi3:| B1, By, Bygl [hjp| = Viib eq. 5-45.
B3 Bas Bag| |Nj3
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where the vectov has the expression:
vijT = eq. 5-46.
|:hil [hyp hyq Ohyp + hyp Dhyy hyp Thyp hig Thyy +hyy Thyg hig Thy + by Chys hyg Ehj3:|

Using the above notations, the two fundamentaltcaimés on Equation 5-42 on page 109, from a
given homography, Equation 5-45 can be rewrittetwashomogeneous equationshn

Vi,
b=20 eq. 5-47.
(Vi1 =Vp0) "
If nimages of the model plane are observed, by stgeksuch equations as Equation 5-47, we
have:

Vo1 = Py My Varer,1 = Doy i Hygj=hag i thyy g
Vo, 2 = Pyp i Thyy j+hyy Dy, Vors1,1 = Do thyy—hyp i Dy,
Vo3 = hypiThy, Vors1,1 = hip i thyy i —hoo i [hy, eq. 5-48.
Vo 4 = hygi oy +hyg i Thys, Vog+1,1 = 2hygithy,  —hygThy,
Voo, 5 = hygihyyj+hyy; Ehza,i Voms11 = 2hgy Ehlg,i —hag Ehzzi
Vo, e = higithyg; Vor+1,1 = higithyg—hog i s,
Vb =0 eq. 5-49.

whereV is a 2 x 6 matrix. Ifn =3, we will have in general a unique solutimdefined up to a scale
factor. Ifn = 2, we can impose the skewless constrai® in order to be able to solve the homo-
geneous equation. This can be done by adding [@,@, O, OJb = 0 as an additional equation to
Equation 5-49. Iih = 1, we can only solve two camera intrinsic para@mse(that iso andf), by
assuming thatiy andvg are known (set at the image center) gd). The solution to Equation 5-
49 is well known as the eigenvector\ﬂf\/ associated to the smallest eigenvalue (equivglght
right singular vector o¥ associated with the smallest singular value).

Onceb is estimated, we can compute the intrinsic cammer@ix A. Knowingb we can recompose
the matrixB. The matrixB is estimated only up to a scale fac®s AA™TA with A being an arbi-
trary scale. Solving the system of equations, weuwraquely extract the intrinsic parameters from
matrix B.

Vo = (Byy (By3—By; [Bys)/(Byy [Byy—B2))

A = Bgy—[Bf3+ vy Byy (By3— By [By3)]/Byy
a = ,/A/By

B = J/AByy/ (By; [By—BZ))

= —B,, B/

eq. 5-50.

Uy = YVo/ O —Bpg 0%/ A
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OnceA is known, the extrinsic parameters for each imagebe computed. From Equation 5-41
on page 109, we have [48]:

A= v|athy| = 1/]a™hy

r{ =AA "hy
r, = AA™h, eq. 5-51.
r3 =M Xry
t = AAthy

In general, due to the noise in the data, the coadootation matrix does not normally satisfy the
properties of a rotation matrix. The rotation maTtran be orthogonalized as before. We can find
the closest orthogonal matrix as follok= UDV = R = UIV

This approach also has degenerated configurati@engonfigurations in which additional images
do not provide more constraints on the cameransitriparameters. Because Equation 5-42 on
page 109 was derived from the properties of theiostanatrix, if Ri (rotation matrix for view)i

is not independent d}j, then image 2 does not provide additional constsain particular, if a
plane undergoes a pure translation, tRea R} and image 2 is not helpful for camera calibration.

Definition of the extrinsic parameters

Consider the calibration gri#hi (attached to thé calibration image), and concentrate on the
camera reference frame attached to that grid. Witloss of generality, takie= 1. The following
figure shows the reference frant@, X, Y, Z) attached to that calibration grid:

Figure 5-11.Reference frame attached to calibration grid

Let A be a point space of coordinate vegigr= [X, Y, Z] in the grid reference frame (reference
frame shown on the Figure 5-11). Ipt= [X., Y., Z.] be the coordinate vector &fin the camera
reference frame. Thew, andp, are related to each other through the followiggdrmotion equa-
tion:

Pe = Repthat Ty eq. 5-52.
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In particular, the translation vect®y; is the coordinate vector of the origin of the grattern Q)
in the camera reference frame, and the third colohthe matrixR; is the surface normal vector
of the plane containing the planar grid in the cameference frame.

5.3.3.6 Lens Distortion

Any camera usually exhibits significant lens digstor, especially radial distortion. The distortion
is described by four coefficients: two radial disitan coefficientsky, ko, and two tangential ones
P1, P2. The radial distortion is caused by the fact tigécts at different angular distances from the
lens axis undergo different magnifications. Thegtantial distortion is due to the fact that optical
centers of multiple lenses are not correctly aligwéh the center of the camera. I(et v) be true
pixel image coordinates, that is, coordinates wiéal projection, andd, ¥) be corresponding real
observed (distorted) image coordinates. ldealddish-free) and real (distorted) image physical
coordinates are the same. Taking into account iparsion terms gives the following:

X = x+ Xk %+ K, D4] +[2pxy + pz(r2 + 2x2)]
eq. 5-53.

A,

y

y+y[k O + Ky 0] + [20,xy + po(r° +2y7)]

wherer? =x? +y2. Second therms in the above relations describalmigtortion and the third ones

- tangential. The center of the radial distortienthe same as the principal point. Because
0 =c,+fiuand? = c +fv, where,, c, f, andfy are components of the camera intrinsic
matrix, the resultant system can be rewritten Hgvis:

u+ (u-c)lky %+ K, o+ 2p,y + p2(r2/x+ 2X)]

0
eq. 5-54.

&

\Y

v+ (V= G)[Ky OF + ky O + 2pyx + py(r/y + 2y)]

These two relations are used to restore distonbegés from the cameréll ¥)  are measured and
(u, v) are computed image coordinates).

5.3.3.7 Experimental Results

The camera calibration algorithm has been testestaindata obtained from a USB webcamera,
and also on a Firewire web camera. The closed-fwlution involves finding a singular value
decomposition of a smalh6 matrix, wheren is the number of images. The algorithm continues
the refining with the Levenberg-Marquardt non-linakgorithm.

Performance with respect to the number of planes

The orientation of the first three images is wittotation § = [3°, 0, O, r, = [0, 3¢, 0]" andr;

= [-30°, -3C°, 15°]T, and a translation so that the fiducial is asasigossible in the camera image,
but still entirely visible. From the fourth imagee randomly choose a rotation axis in a uniform
sphere so that it is different from all the othgosavoid degenerate configurations). The resués a
presented in Figure 5-12. On the left we see tHaente fora andS, and on the right fou, and

Vo The error decreases when more images are used. Fto 3, the error decreases significantly
and as can be seen, it is advisable to use atdeastges.
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Figure 5-12.Error versus the number of images for Firewire veebera (ADS Pyra)

Performance with respect to the orientation of tih@del plane

12

This experiment was done again to estimate theenfie of the orientation of the model plane with
respect to the image plane on thes, u, andv, parameters (see Figure 5-12). In this experiment
only three images are used. The first one is mralithe image plane and the other two are rotated
with plus and minus the specified angle aroundation axis. When the angle is smaller th8n 5
about 50% of the time the result is undefined bsedhe planes are almost parallel to each other
(degenerate configuration). The best performanemséo be achieved with an angle arount 45
but in practice, when the angle increases, foréshimg makes corner detection less precise.

Relative error (%0)

Angle with the image plane(degree)

Absolute error (pixels)

20 40 60 80

Angle with the image plane(degree)

Figure 5-13.Error versus the angle of the model plane witheesto the image plane for Firewire webcamera (ADS

Pyro).
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Through experiments, we found that Tsai's methettigd the most accurate results when trained
on data of low measurement error (Figure 5-14). ,Thosvever, is difficult to achieve in practice
without an expensive and time-consuming setup.dntrast, our planar calibration method,
although sensitive to noise in training data, tadehgntage of the calibration pattern’s planar con-
straints and requires only relative measuremertgdsn adjacent calibration points, which can be
accomplished at very high accuracy with trivialogff Thus, in the absence of sophisticated mea-
surement apparatus, our planar calibration resakgy outperform those of Tsai.
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Figure 5-14.Effect of pixel coordinate noise on calibration aacy

Note that the same camera calibration algorithmatsm be used for pose computation. Once we
have the calibrated camera we can run the whotwitign with a new plane. The proposed algo-
rithm will then compute only the extrinsic parametehe intrinsic ones will remain the same.

5.4 Pose Computation Algorithms

5.4.1 Fiducial System

The fiducial system consists of calibrated landraawhich are crucial for vision tracking. Differ-
ent types of landmarks have been suggested inadeyetems, including corner features, square
shape markers, circular markers, and multi-ringoicoharkers [61][63][64]. In our work, we
designed landmarks whose appearance simplifiesta@tection and recognition. After evaluat-
ing many options, we selected the square shapeasmsirkilar to [63] with unique patterns inside.
This design is easily printed on any BW printerg(ife 5-15). Its simple geometry lends itself to
mathematical perspective projection compensateagihg to robust landmark detection and rec-
ognition.

To make thresholding operations robust in diffetighiting conditions, we apply a modified form
of homomorphic filtering, which is designed to elirate the effect of non-uniform lighting in
images. In ordinary homomorphic processing, thaiitigm of the image is taken in order to sep-
arate illumination and reflectance into additivents. Then apply a high-pass filter designed to
attenuate the slow-varying illumination term, amg@entiate to restore a good-looking image.
Realizing that we were not concerned with restoargpod-looking image at the end, we used a
3x3 Sobel edge detector and we skippped the fi@dreentiation that is normally used to restore
the image to human-viewable brightness levels. Buad that now with one threshold value, at
least 90% of the original fiducials are detected.
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Figure 5-15.Example of symbol to be recognized
Landmark detection

The detection procedure is performed in three steps

Coarse detection: using a predicted position (ftbenprevious frame) we find the regions of the
image where the gradients are high over an expettedmage area. In this way, we detect the
four candidates corner points.

Projection compensation: using a perspective-intagindel we compensate for geometric defor-
mations of the extracted regions. To compensatéigbting variations we use the gradient for
intensity normalization.

Fine detection: fit the extracted candidate landkm&r the defined models. The best fit determines
the detected landmark.

Landmark recognition

Since we want camera pose for each video frameafasefficient landmark detection and recog-
nition are crucial. We have developed a contour erasimethod that robustly detects and recog-
nizes the square landmarks in real-time. First,d@®ct corner positions of the square pattern.
Based on this information we remove the effectefkpective projection and extract the contour
of the symbol enclosed by the square pattern. Fnencontour we compute the 7 Hu moments[69]
that will be used for recognition. The task of lavatk designs is to choose ones that have as dif-
ferent Hu moments as possible.

Landmark positions

Landmarks printed on paper are easy to stick ttsywailing or floors in indoor environments. The
best option indoors is to mount those markers ercéiling because of less interference with other
objects. There are few walls outdoors on which tum fiducials, and they are far away. So the
best option is to mount fiducials on the ground.

Careful quantitative experiments comparing thigesyswith the AR Toolkit have not yet been
completed, however a qualitative analysis of sd\s&rquences containing targets under a variety
of scene conditions has been performed. AlthoughtdR Toolkit performs well in the office, it
fails under motion blur and when camera lightingraipts the binarization. The template matching
to identify a specific target does not incorporatg intensity normalization and is therefore very
sensitive to lighting changes. This detector derratesd 95% overall performance through indoor
and outdoor scenes.
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This detection and recognition approach is robndtfast. It achieves 20 frames/sec on a 450 MHz
PC. The system detects and discriminates betwesmmdmf uniquely marked landmarks.

5.4.2 Pose Approximation Method

Using weak-perspective projection, a method foeeining approximate pose, termed pose from
orthography and scaling (POS) in [70], can be @eti\First, a reference poiRg in the world is
chosen from which all other world points can becdbégd as vector® = p,-P, (see Figure 5-16).

Pi

]

Center of

et Object
Projection

Image

Figure 5-16.Scaling of Vectors in Weak-Perspective Projection

Similarly, the projection of this point, namepy, is a reference point for the image points:
p = p—p, - As follows from the weak-perspective assumptibex component op, is a scaled-
down form of thex component ob

X —Xg = S(X —=Xo) = s(PC) eq. 5-55.

1

This is also true for thecomponent. If andJ are defined as scaled-up versions of the uniovect
iandj (1=si and =sj ), then

X=X, = p U Yi—Yo = P LI eq. 5-56.
as two equations for each point for whicdndJ are unknown. These equations, collected over all
the points, can be put into matrix form as:

X = Ml y=MJ eq. 5-57.

wherex and are vectorsxandy components of, respectively, abids a matrix whose rows

are thep, vectors. These two sets of equationseéurther joined to construct a single set of Imea
equations:

[z()ﬂ = M[1 3] =pC = M[| J] eq. 5-58.

wherep, is a matrix whose rows gre . The latter eguas an overconstrained system of linear
eqguations that can be solved fandJ in a least-squares sense as:

|:| ‘]:I = M+ﬁj eq. 5-59.
wherewm* is the pseudo-inverseMf

Now that we havéandJ, we construct the pose estimate as follows. Firahd] are estimated as
| andJ normalized, that is, scaled to unit length. Bystauction, these are the first two rows of the
rotation matrix, and their cross-product is thedmow:
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’i‘T

R = T eq. 5-60.
()T

The average of the magnitudesl @ndJ is an estimate of the weak-perspective scaleH@m
the weak-perspective equations, the world poioamera coordinates is the image point in camera
coordinates scaled lsy

I:)0 = pO/S = |:XO Yo E|/S eq. 5-61.

which is precisely the translation vector beinggdau
The Algorithm

The POSIT algorithm was first presented in the pagddeMenthon and Davis [70]. In this paper,
the authors first describe their POS (Pose fronm@ptaphy and Scaling) algorithm. By approxi-
mating perspective projection with weak-perspecpwejection, POS produces a pose estimate
from a given image. POS can be repeatedly usedbstmicting a new weak perspective image
from each pose estimate and feeding it into the itepation. The calculated images are estimates
of the initial perspective image with successivatyaller amounts of “perspective distortion” so
that the final image contains no such distortiohe authors term this iterative use of POS as
POSIT (POS with ITerations).

POSIT requires three pieces of known information:

* The object model, consisting Nfpoints, each with unique 3D coordinatidsnust be greater
than 3, and the points must be non-degeneratedoplanar) to avoid algorithmic difficulties.
Better results are achieved by using more poirddsgrchoosing points as far from coplanarity
as possible. The object model isdr 3 matrix.

* The object image, which is the set of 2D pointuhéng from a camera projection of the
model, points onto an image plane; it is a functibthe object current pose. The object image
is anN x 2 matrix.

* The camera intrinsic parameters, namely, the fiecegjth of the camera.
Given the object model and the object image, therdhm proceeds as follows:

1. The object image is assumed to be a weak pergpatiage of the object, from which a least-
squares pose approximation is calculated via tiecomodel pseudoinverse.

2. From this approximate pose the object modelagepted onto the image plane to construct a
new weak perspective image.

3. From this image a new approximate pose is fowmgueast-squares, which in turn deter-
mines another weak perspective image, and so on.

For well-behaved inputs, this procedure convergeart unchanging weak perspective image,

whose corresponding pose is the final calculatgelobipose.
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POSIT (imagePoints, objectPoints, focalLength) {
count = converged = 0;
modelVectors = modelPoints — modelPoints(0);
oldWeakimagePoints = imagePoints;
while (converged) {
if (count == 0)
imageVectors = imagePoints — imagePoints(0);
else {
weaklmagePoints = imagePoints .*
((1 + modelVectors*row3/translation(3));
imageDifference = sum(sum(abs( round(weaklmagePpint
round(oldWeakimagePoints))));
oldWeakimagePoints = weaklmagePoints;
imageVectors = weaklmagePoints — weaklmagePoints(0)
}
[I J] = pseudoinverse(modelVectors) * imageVectors;
rowl =1/ norm(l);
row2 = J / norm(J);
row3 = crossproduct(rowl, row2);
rotation = [row1; row2; row3];
scale = (norm(l) + norm(J)) / 2;
translation = [imagePoints(1,1); imagePoints(1f@}alLength] /scale;
converged = (count > 0) && (imageDifference < 1);
count = count + 1;

}

return {rotation, translation};

Figure 5-17.POSIT Algorithm in Pseudo-Code

As the first step assumes, the object image isak\werspective image of the object. It is a valid
assumption only for an object that is far enougimfthe camera so that “perspective distortions”
are insignificant. For such objects the correctep@srecovered immediately and convergence
occurs at the second iteration. For less ideahtdns, the pose is quickly recovered after several
iterations. However, convergence is not guaranteeeh perspective distortions are significant,
for example, when an object is close to the camattapronounced foreshortening. DeMenthon
and Davis state that “convergence seems to be mpeaxhif the image features are at a distance
from the image center shorter than the focal I€ifigih. Fortunately, this occurs for most realistic
camera and object configurations.

Pose Accuracy Evaluation

For the validation of the results we have colleatezhsures in different positions uniformly dis-
tributed on the workspace. The camera used irettpsriment is a color CCD camera with a res-
olution of 640x480 (Firewire webcam - ADS Pyro).eTtamera orientation has been set in each
case so that the whole target was in field of vidwhe camera. For every point we have carried
out 50 measures. The target object (Figure 5-1&)ngposed of several circle markers, which pro-
vide at least six non-coplanar feature points.
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Figure 5-18.Non-coplanar target used in the experiment

In order to verify the pose estimation in regardh® scene range, known positions in the area of
50-400 cm in depth are measured in 20 cm steps-(gaee 5-19). With the vision-based position-
ing system presented in this chapter, we encouhteraaximum error of 2.5 cm in the range of 4
m. The plots depicted in Figure 5-19 show that dbjat the closer field of view can be located
with a high precision rate. In order to estimate plosition of the cameras (user), objects in the
lower ranges have to be identified and should d&eked to get relative translation values.
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Figure 5-19.POSIT Algorithm results

Distance to tracked features

A crucial aspect is the distance to the objectadéiacked. Here, we consider features within 5
meters to be 'nearby’, and features farther awdetdistant. Tracking more distant features is
advantageous in various respects. First, a sntalt en the stored real-world position of that fea-
ture has fewer consequences on the calculatedgss in the projected image of the feature the
error scales with the distance to the object. Seécthre larger the distance, the larger the choice
becomes of known features in the database, artavdbbe more likely that a good feature is avail-
able. Third, distant features will change leshasibserver moves as compared to nearby features.
Fourth, nearby features are nearby only a shoruataf time, as the user is moving around, and
therefore use of nearby features requires moreiémgrefreshing of the features being used than
distant features.

However, we doubt that distant features can be fecentimeter-accurate tracking of the user.
Consider the following simple scenario, where a4dFB8 camera with a large-angle lens of 90
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horizontal field of view is used. The average widfta pixel is now 98/1024 = 0.09, so the fea-
ture direction will be estimated 0.046ff on the average, assuming we carry out pixelieate
tracking. We know the real-world locationand we want to know the distance to the obgect
(Figure 5-20).

fiduciall X fiducial2

35°

Figure 5-20.Two features within the camera's field of view.

If we optimistically assume that we have two fidsiin the corner of the camera'’s field of view,
the angle between the two will be abouf,78nd sad follows from tan38 = x/d. But we do not
know if this is 38 exactly - it probably is 0.0#%ff - so we may be at another distadcwith x/

d' = tan(35.048). Hence we have for our uncertainty on the distatid = tan(3%)/tan(35.045)
=0.99833. So, we have about 2 mm uncertainty gemnadistance to the fiducial. If we want cen-
timeter accuracy we have to haltb m. In less optimal cases, where the angle bettreetwo is
smaller, the maximum distance will be even lesgyfé 5-21).

position error (mm/m)

Figure 5-21.Uncertainty in the distance (mm. of error per mefistance to the fiducial) as a function of thewdag
distance between the fiducials.

With wide-angle lenses one can increase the workolgme at the expense of resolution. For
example, to cover a5 X 5 X 2.4 m working volumsidie a 6 X 6 X 3 m room using four cameras
mounted in the corners of the ceiling would reqaaeneras with 78° horizontal and 76° vertical
FOV. Assuming 1000 X 1000 pixel cameras and O.®lpigsolution for locating beacons, this

would yield a resolution of about 0.7 mm. This istg an adequate positional resolution for many
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applications, but the orientation must be compériuah the positions of three beacons mounted on
a rigid triangle. A triangle of 15-cm per side wobgrovide orientation resolution of about 0.4° .

5.5 Real-Time Image Processing

In order to make fast object tracking systems witinputer vision, the underlaying image process-
ing algorithms must be fast enough to be valuairia feal-time tracker. Fast enough meaning that
the entire image processing sequence must be perfowithin 1-2 video frame time, i.e. 40-80
msec. To realize this there are two possibilittesuse special hardware, such as the NEC Inte-
grated Memory Array Processor (IMAP) system [34fh® Philips Xetdi chip [38], or to use the
multimedia extensions on general purpose proce§3d}s

In this chapter we present a study on the impadtil#X technology and PIIl Streaming SIMD
(Single Instruction stream, Multiple Data stream)eesions in image processing and machine
vision applications. A comparison with traditiorsalalar code and with a parallel SIMD architec-
ture (IMAP-VISION) [75],[82] is discussed, while @imasizing the particular programming strat-
egies for speed optimization. More precisely, weedss low-level and intermediate-level image
processing algorithms that can be used in a pa&MD implementation. High-level image pro-
cessing algorithms are more suitable for implementaon MIMD architectures.

Current general-purpose processors have been erthaiih new features explicitly dedicated to
the efficient handling of multimedia (audio andead data; in order to exploit the high intrinsic
spatial parallelism of low-level image processiag;IMD solution has been adopted. Low-level
image processing operators can be classified ad pperators, neighborhood operators, global
operators and special operators, with respectetovthy the output pixels are determined from the
input pixels. The simplest cases are the pointaipes where a pixel from the output image
depends only on the value of the same pixel froennput image. More generally, neighborhood
operators compute the value of a pixel from thg@ouimage as an operation on the pixels of a
neighborhood around a corresponding pixel frominipait image, possibly using a kernel mask.
The values of the output pixels do not depend @h @her. The most complex case consists of
global operators where the value of a pixel froe dltput image depends on all pixels from the
input image. It can be observed that most of thegenprocessing operators exhibit natural paral-
lelism in the sense that the input image data requb compute a given area of the output is spa-
tially localized. This high degree of natural pidm exhibited by most of the low-level image
processing operators can be easily exploited uSiMD parallel architectures or techniques.
SIMD architecture consists of a linear array of @enprocessors capable of applying in parallel
the same instruction on different elements of tita.d~or MMX implementation we have also con-
sidered the exploitation of the instruction levatadlelism of the code and data reduction in order
to fit into the internal processor cache.

5.5.1 MMX Implementations

A set of MMX routines that allow us to compare MBX SIMD and IMAP-VISION system has
been developed; they include some low-level andesonadle-level image processing routines.
MMX technology for accelerating multimedia applicais has become commonplace in recent
years. Many of the core requirements of multimgiacessing overlap with industrial machine
vision requirements, and so it is natural thatib®mn community benefits from this computational

1. A paraphrase of the Dutch: “lk zie het al”, mar less translatable in “Oh, | see!”
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capacity. Intel's MMX Technology [31] adds severalv data types and 57 new instructions spe-
cifically designed to manipulate and process vidagjio and graphical data more efficiently.
These types of applications often use repetitiopsothat, while occupying 10 percent or less of
the overall application code, can account for u@Qaopercent of the execution time. A process
called Single Instruction Multiple data (SIMD) etedone instruction to perform the same func-
tion on multiple pieces of data. The new data tygdksv handling of 64-bit data. This is accom-
plished by reassigning 64 bits of each of the eRfbit floating-point registers as an MMX
register. The 64-bit registers may be thought adight 8-bit bytes, four 16-bit words, two 32-bit
double words, or one 64-bit quadword.

MMX software writing [32] currently still implieshie use of assembly language. We will focus in
this discussion on a couple of strategies whichiraposed by the architecture and that guarantee
the highest performance.

5.5.1.1 Data Alignment

Data alignment is very important when writing MMX¥de as the execution speed can be boosted
by more than 30%. When data access to a cachatilessdmisses the data cache, the entire line is
brought into the cache from external memory. Thisdlled a line fill. On Pentium and dynamic
execution (P6-family) processors, data arrivesbharat composed of four 8-byte sections to match
the cache line size of 32 bytes. On the P6 whernita wccurs and the write misses the cache, the
entire 32-byte cache line is fetched. On the Penpuocessor, when the same write miss occurs,
the write is simply sent out to memory. Theref@mgaligning data on a 32-byte boundary in mem-
ory, one may take advantage of matching the canbesize and avoiding multiple memory-cache
transfers. The delay for a cache miss on the Rantiith MMX is 8 internal clock cycles and on

a P6 the minimum delay is 10 internal clock cyclHsis is a serious performance penalty if we
think that an aligned memory access might take trdycle to execute. In order to align data on a
32-byte boundary, padding of data may be requiviathy compilers allow the user to specify the
alignment.

Moreover, if the code pushes MMX registers ontteals it is necessary to replace the entry and
exit code of the procedure to ensure that the staagkgned too. As a matter of convention, com-
pilers allocate anything that is not static onsteck and it may be convenient to make use of 64-
bit data quantities that are stored onto the stAnkther reason for aligning the stack may be the
following. If inside the MMX routine an argumentgs®d to a routine is accessed several times, it
would be better on an aligned boundary to avoidheanisses.

5.5.1.2 Instruction Scheduling

To get the highest speed from MMX, one has to timrtierms of instruction scheduling. The most
critical scheduling involves output operand catlisi The Pentium processor is an advanced super-
scalar processor. It is built around two generappse integer pipelines and a pipelined floating-
point unit, allowing the processor to execute tateger instructions simultaneously. The first log-
ical pipe is the U-pipe, and the second is the pepDuring decoding of an instruction, the next
two instructions are checked, and, if is possithley are issued such that the first one executes in
the U-pipe and the second in the V-pipe. If thisas possible, only one instruction will be issued
to the U-pipe and no instruction is issued to thpipe. This means that the execution of two
instruction in one clock cycle might double thefpenance. For this reason, it is advised to keep
both pipes busy. But at the same time we are ldvbiethe hardware, as the Pentium has only one
shift register, one multiplier, and only the U-pigemn execute instructions that access the memory
or integer register and hence [32]:
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* Two MMX instructions that both use the MMX muliigt unit @mull, pmulh pmadd cannot
pair. Multiply operations may be issued in eithex U-pipe or the V-pipe but not in the same
cycle.

» Two MMX instructions that both use the MMX shiftemit (pack unpack andshiftinstruction)
cannot pair.

* MMX instructions that access either memory orgeteregister can be issued in the U-pipe
only.

5.5.1.3 Tuning MMX Code

This section presents loop variables reductionp loorolling and loop interleaving techniques.
One optimization technique is to consider the elation of an inner loog=or loops are complex
structures requiring a counter variable. Counteiabdes place an additional strain on the CPU reg-
ister pool, which in the Intel architecture is undortably small. Using a pointer increment with
an end-of-line limit greatly increases speed sthedncrementing pointer is also the counter loop.
Usually the MMX code consists of short loops itethimany times over an array of data. Often
there is no relationship between two iterationthefsame loop, so the output of the second itera-
tion does not depend on the output of the firswikta calculated the highest number of iterations
that can be executed in paralldl)(the loop can be unrolled By and then instructions can be
moved around to maximize the use of both pipelines:

» MMX instructions that access memory are alwaysatedl in the U-pipe, so it is better to
spread them around and try to exploit the V-pipga LU or shift instructions.

» Two shift or multiply instructions cannot be isdua the same cycle. We can introduce a small
delay between the iterations, so that the groudM instructions that are physically near
belong to different stages of their respectiveatiens.

For operations on binary images like noise filtersyphological operations or measurements can
be performed on a packed image. In this way 64lpwd! fit in a single MMX register and if we
can gain advantage from loop interleaving optiniraand when issuing 2 operations in one cycle,
we can process 128 pixels at once. Since a typiade is 256 x 256, the use of one bit per pixel
shrinks the output data down to 8k bytes, allovangore efficient use of the Pentium's L1 cache
memory. Unfortunately this packing requires a Ibtnstructions and an additional phase of bit
swapping. Also careful instruction scheduling iguieed due to the limitations on the use of shift
instructions: only one shift operation can be isisimeeach clock cycle.

5.5.1.4 The Intel VTune Performance Analyzer

Intel’s VTune is one of the standard performancayaers for the x86 architectures. It uses Pen-
tium on-chip performance-monitoring hardware cotsiteat keep track of many processor-related
events. For each event type, VTune can count thériamber of events during an execution of a
program and locate the spots in the program’s satomde where these events took place (with cor-
responding frequencies). We used VTune to gatlagissts on the following event types: clock-
ticks, total instructions retired, L1 cache linbeahted, L1 misses outstanding (roughly this equals
the number of L1 cache misses times the averagbéeai cycles to service the miss), L2 Cache
Read Misses, L2 Cache Write Misses, L2 Cache lastru Fetch Misses, L2 Cache Request
Misses (equals the sum of the previous three caegjpL2 Cache Reads, L2 Cache Writes, L2
Cache Instruction Fetches, L2 Cache Requests @theakum of the previous three categories).

The VTune Performance Analyzer runs programs akekteapid snapshots of the execution path
based on time slices (the users can determineslag)dbr user events. It does so without requiring
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the program to be recompiled or instrumented. Ulingyrun, the VTune Performance Analyzer
creates a database-like profile of the executabha the snapshots and presents the information in
a variety of ways. These include the views commdoind in execution profilers:

» Code levelThis view presents source code with hit countsdurdtion beside each line of
code. Optionally, users can request that asserabfyulage is interspersed between lines of
high-level code.

» Call graph: This is a diagrammatic representation of whickcfioms called which other func-
tions. It is presented as a calling tree withaistion the left side of the screen with calls flow-
ing to the right.

» A bar graphshowing which program and operating-system modtdesume the most execu-
tion time.

Figure 5-22 presents on the left a part of assemtudye with its execution pipe, pairing and cache
misses, and on the right the bar graph showingwitoatine consumes the most execution time
(for pattern matching algorithm).
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Figure 5-22.Intel VTune Performance Analyzer

VTune performs these measurements by sampling viimherently inaccurate. VTune imple-
ments a self-calibration mechanism which allowsset the desired accuracy of the results. Addi-
tionally, VTune also can perform a dynamic analysisulation) of a portion of the code. The
simulation takes a lot of time and is thereforemtyauseful for short segments of code. We used
dynamic analysis to understand better our progré@f&vior at hot-spots.

5.5.1.5 The Intel Pentium Il Processor

The Intel Pentium Il processor provides sufficipnbcessing power for many real-time computer
vision applications. In particular, the Pentiumititludes integer and floating point Single Instruc
tion Multiple Data (SIMD) instructions, which camegtly increase the speed of computer vision
algorithms. The Streaming SIMD Extensions expaed3iMD capabilities of the Intel® Architec-
ture. Previously, Intel MMX instructions allow SIMiDteger operations. These new instructions
implement floating-point operations on a set ofheéigew SIMD registers. Additionally, the
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Streaming SIMD Extensions provide new integer ungions operating on the MMX registers as
well as cache control instructions to optimize mgnazcess. Applications using 3D graphics, dig-
ital imaging, and motion video are generally welitasd for optimization with these new instruc-
tions. Multiprocessor Pentium Il systems are redy inexpensive, and provide similar memory
bandwidths and computational power as non-Intekatations costing significantly more money.

Block matching is essential in motion estimatioqu&tion 5-62 is used to calculate the Sum of
Absolute Differences (also referred to as the Stilbsolute Distortions), which is the output of
the block-matching function (dx and dy represestdisplacement in in x and y direction respec-
tively).

15 15
SAD = z z | Va(X+ 1,y +]) =V (x+ dx+ iy + dy+ )| eq. 5-62.
i=0i=0
Figure 5-23 illustrates how motion estimation isauoplished,dx anddy are candidate motion
vectors. Motion estimation is accomplished by peniog multiple block matching operations,

each with a differentlx, dy. The motion vector with the minimum SAD value he tbest motion
vector

Motion §_
Vector ®)
% dx,dy i
Current Frame Reference Frame
V, Vi,

Figure 5-23.Block matching

Streaming SIMD Extensions provide a new instructpsadbw that speeds up block matching.
The code to perform this operation is given beldhis code has been observed [80] to provide a
performance increase of up to twice that obtainednusing MMX technology.

The operation of this new instruction, psadbw iggiin Figure 5-24.

L lal alalal sl alal

(B [B[B|B[B[B] B[B]
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Figure 5-24. PSADBW instruction
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5.5.1.6 MMX Image Processing implementation and bemmarks

An interesting problem is how to measure the exenutme of an MMX routine. This could be
done using the information from the real-time stasopnter (RDTSC), which contains the cycle
counter. The detailed description of the RDTSC ¢teumay be found in [33].

The measured timing is approximate and dependsamy iactors such as OS overheads, number
of processes running, cash situation if MMX codatams read/write instructions, etc. Various
conditions, such as cache warming prior to readingriting from/to the same memory blocks, a
particular write strategy implemented in the preoesand L2 cache, most significantly affect the
performance. For these reasons we need to carefullgider the results and run multiple test and
average out the results excluding the values ¢emn the mean, which may occur due to a particular
running condition.

Figure 5-25.0ptical Flow computation using Streaming SIMD iastion.

5.5.2 The NEC IMAP-VISION System

The IMAP-Vision [34] is a SIMD Linear Processor Ayr (LPA) on a PCI board. It is a parallel
architecture for real-time image processing thaluitles a high-level language for data parallel
programming labeled “one dimensional C” (1DC). TM&P-Vision card contains 256 8-bit pro-
cessing elements (PEs), controlled by a 16-bitrobptrocessor (CP) and it has a 10 GIPS peak
performance. The IMAP-Visioohip integrates 32 8-bit processors and 32 8-Kbit SRRkbces-
sors are connected in series to create a one-diomahSIMD processor array. Instructions for the
processors are given from an off-chip, on-boardadaeld control processor, which is an adapted
NEC microprocessor. This control processor (CP)Yaiaors a 16-bit Arithmetic and Logic Unit
(ALU), multiplier and barrel-shifter, 128 kB localemory and 32 16-bit registers. The PEs contain
an 8-bit ALU/shifter. It can work on 1 kB of locan-chip memory, using sixteen 8-bit registers
plus three 1-bit registers. The on-chip memoryciseasible in 1 clock cycle. Although the IMAP
chip has high levels of computational ability byeigrating one-dimensional SIMD processors on
a single chip, its on-chip memory is sometime ifisignt for flexible execution of complex algo-
rithms [79]. For that reason, the IMAP-Vision bodwak a high bandwidth external memory with
an efficient data transfer mechanism. The bus otletrallows the host PC to access data not only
in data memory, but also in on-chip memory anddkiernal memory without collisions, even
when a real-time vision computation is running. Ftes can load data from an external memory
of 64 kB per PE which is accessible in eight clogkles, plus five cycles overhead for the first
line. Data can be copied between in- and exterrehany in parallel with computations. This
mechanism not only allows the host PC to colleetrdsults created by the processor array, but also
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allows the host PC to change the parameters itimmeasily. Both internal and external memory
are seen as one 256-byte wide, 8-bit deep, two+sthiaeral memory where each column is being
treated by a PE. In 1DC, memory access is always g means okgp variables and/or pointers

to them, the placement of which is handled by tvmiler, transparently for the user. An align-
ment at an address which is a multiple of 256 ssjiide for the use of lookup table multiplication.
In IMAP-assembly, variables can be used or the nmgiwen be addressed directly. While PEs can
only access values in “their own” column of intdraad external memory, the CP can access any
part of any memory, in- and external PE memorygmm memory and its own data memory.

PCIVME Bus

Internd Memory Access Bus
Address | Random Access Data

Hog PC/
Workgation

16 MB Externd Memory

M (64KB/PE)
viadiaid
P 256KB on-chip Memory
sas Y (LKB/PE)

PE Data

IMAPInirucion |- 9568.pit PE Array
Chip Select

»|
L4

Immediate Value >

Shift Register.0
Shift Register.1
L Inter-PE ’-y Inter-PE Register

Transfer
Data

Ring Bus

Video
Interrupt

Sync

Figure 5-26.The IMAP-Vision board

Control=Processer

Figure 5-26 shows the IMAP-Vision board. The IMAPsMIn board integrates eight IMAP Vision
chips, eight 16 Mbit synchronous DRAMs (one forle#ddAP-Vision chip), a control processor,
video interface and a PCl interface in a singleé B0l bus board. The board can be used with a PC
or a workstation that has a PCI slot, thus the IMA$ton board constitutes a compact cost-effec-
tive system. Communication on the IMAP-VISION candone in two ways: via the CP, and over
the inter-PE bus. A single PE can be selectedite @wvalue to the CP using a masking mechanism.
By masking out all PEs except for one, this PEwate a value to the data bus where it can be
read by the CP. When multiple PEs try to write d#ta result is unpredictable. Data in a CP reg-
ister or CP memory can be made globally availabItPEs (broadcast) by a special CP instruc-
tion. Each PE has access to its neighbor PEsteegsver the inter-PE bus in one clock-cycle. PEs
further away can be reached through repetitiveispif Because this does not work if one of the
PEs between the source and the destination PEskamaut, a special shift register exists which
is not maskable. This means data is always writiefj even by PEs which are not active. When,
after shifting the value is copied to a work regigir to memory, this is only done by active PEs.

5.5.2.1 The IMAP assembly and 1DC language
The IMAP-assembly language
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The IMAP-assembly language comprises the RISCuaostn sets of the IMAP-VISION chips and
the control processor. It supports variables andrasa Every line of code can contain both a CP
and a PE instruction, which will be executed siawdtously. Also two flags can be specified indi-
cating if interrupts are allowed and if and how Bte mask register should be taken into account
for the execution of the PE instruction. The CRruntions are distinguished from the PE instruc-
tions by a leading “c”. Also CP registers are aali®-c31 and PE registers rO-r18.

Besides the normal ALU instructions, the hardware e corresponding instructions for the PEs
have support for software multiplication using edop table (LUT), later versions of the chip have

a multiplier. Normally it takes several ANDs and ©® find the table indices given by 4 bits of

one byte and 4 bits of the other, but the IMAP-\O8Il PEs can calculate the index and load the
indexed value in one clock cycle. Also there asgrirctions for shifting a byte over 4-bits before

adding it to another byte (with or without carrg)ane cycle.

As always, it is clear that assembly language i®asy to use for everyday programming. It should
be used only to optimize the computationally expenpart of (library) code.

The 1DC language

1DC is, as the name indicates, a C-like langua@é. [IB follows the ANSI-C syntax, and is
designed as an enhanced C language to supporalvitRAs (Linear Processor Array). The
enhancement of 1DC from C is straightforward:

» extended declaration of entities which are assediwith the PE arraysépor distributed vari-
ables),

» extended constructors for selecting active pramegoups,
» and extended operators (likgf) for manipulating data on the PE array.

Entities are declared as eitlsap(or separatg or scalar (scalar is the same as declarations in C

language) as shown in Figure 5-27sépvariable is associated with the processor arrdystored

on the on-chip memory or on external memory, wthikescalar variables are associated with the

control processor and stored either in the CPpthboard memory, or on the external memory.

For example, a 256x240 image, distributed columsewaver the PEs is defined as: separate
unsigned char img[240].

The PEs have a mask register which, when sededttivates the processor. Extended instructions
exist for selecting active processors:

« mif (condition) ...melseconstruction

» mfor (init; stop_cond; instruction) construction
» mwhile(condition) construction

* mdo... mwhile(condition) construction

These instructions act just as their common copatés, except for the fact that in the condition a
separate expression has to occur, so that thetamondhay be true on some processors and false on
others. The instructions will save the current maiskhe processors, and in the case of the active
processors for which the condition is false, zémrhask (make the processor inactive). Thus the
instructions which are controlled by the conditeme only executed by the processors for which
the condition is true. After that the previous mestestored. Saving and restoring the mask makes
it possible to nest the masking instructions.

To make the value of sepvariable on a specific processor globally avadabkan be addressed
using the jpe_num operator. The operators for accessing variataesther processors, < and :>,
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can be used in two ways. As a unary operaep,_var= :< sep_vay will rotate the values of
sep_varne processor to the left. As a binary operségr var=sep_var.<n; will rotate the values
of sep_var mrocessors to the left.

int d;
sep char a,b,c,ary[256];

b=a; a=:>a; (a=:<a)

aoOooooooo agddOoOoOoOooon
b#HHHH

oOoOoooooooa anoooooooo

a = ary[b]; d=ajf2];

|:| H|:| AmooooomEo
u
mif(a) ¢ =b; d=:la; (d=:&&a))

al0010100 aAmooooommo
b mooooom@o

C ooOooooood

Figure 5-27.1DC language extension

The IMAP-VISION board comes with an MS-Windows oiViindow (e.g. Linux) programming
environment based on 1DC, which makes this patatlaid a powerful tool. The X-Window based
debugger provides not only assembly and sourcé desigging facilities, but also functionalities
such as interactive adjustment of variables andteots, which is useful for parameter tuning in
real-time imaging applications. The real-time atipent of variables is possible due to the use of
a bus controller that regulates memory accessastfie host PC to all memories. This controller
allows the host PC to access data not only inmataory but in the on-chip memory and the exter-
nal memory without collision. This mechanism notyoallows the host PC to collect computa-
tional results created by the IMAP Vision, but addlows the host PC to change the parameter in
run-time easily. When developing an applicationgoamn which handles real-world images, trial
and error parameters tuning and algorithm testng fvariety of data are essential. The integrated
debugger provides GUI tools such as select butidds|iders and 2D scroll maps. These tools are
associated with variables by clicking variable nanmethe source window and buttons associated
with these tools. After that, in real-time processievery time the programmer touches or drags
these tools, corresponding values are written thr@@ssociated variables.

The integrated debugger features are designed to:

» set up breakpoints by clicking lines in the soysoggram

» display values by clicking variables in the soupcegram (updated dynamically)
» display disassembled code of any function

» display image in any scale, also in character &rfupdated dynamically)

» change a value at run-time through variable spttimdows

» display execution time profile in each line or ¢tion

Implementations and optimizations in 1DC
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Writing a program in 1DC is not very difficult, bwiriting a good program is. A program that
works is not necessarily efficient. In order toterefficient, i.e. fast programs, certain guidedine
should be followed. The first is to always try t@bit parallel processing to the maximum. If one
has 256 processors, one should use all of themsé@é¢mnd is to avoid using nested loops.

This sometimes necessitates a work around, whictotidrivial. A simple but very expressive
example is the histogram computation, which isadgl image processing operation. First, every
processor makes a local histogram of the imagenmoitihas in its memory. Probably most people
would write something like (PENO in the total numbéprocessors):
for(i=0;i<256;i++)
for(j=0;j<PENO;j++)
histo:[i:] += tmpli]:[j:];

But in that case, we have a nested loop in whidj bprocessor is working at a time. A more effi-
cient use of processors would be to do a prefixtaag one of the most basic forms of parallel
programming. It uses only log(256) = 8 steps:
for(i=0;i<256;i++){
for(j=0;j<8;j++)
tmpl[i] += tmp]i] :< (1<<j);
histo:[i:] = tmp[i]:[i:];}

But we can do better. Every processor could adddts value and then pass it on to its neighbor,
which will add its local value while the first o&lds the next value. Since the :< operator takes
only one clock cycle we do not lose any time atfdien we find the fastest code possible (PENUM
Is the processor number/location in the LPA):
for(i=0;i<256;i++)
histo=:<(histo + tmp[(PENUM+i)& 255] );

Performing execution timing in the debugger givesuits that speak for themselves:
» classical histogram: 60.10ms
» using prefix addition: 2.91 ms
* optimal program: 0.29 ms

SIMD systems are made for local neighborhood ofmrdt.NOs). North and south bound neigh-
bors are retrieved from the PE’s own memory, Eadiaest bound neighbors are reached by shift-
ing left and right.

Recursive neighborhood operations (RNOs) are alge goable on the IMAP-VISION system,
as it is equipped with indirect addressing. Foratjpay each pixel, RNOs refer to the pixel value
of a neighboring pixel, which was already updatey.delaying each PE, one iteration, each
column is shifted and hence the already processetsgome into reach without abandoning the
SIMD principle. Examples of RNOs are morphologiopkrations like thinning or the distance
transform. A parallel method for efficient implentaiion of RNO can be used [35]. A distance
transform implementation in 1DC will take 8ms oniarage of dimension 256 x 240 with a 40
MHz system. Also the distributed bucket proces§i@j (stack-based) method is extensively used.
It consists of two processing phases during whidrnePE simulates a software stack in its local
memory. In the first phase all pixels are visited® in order to find points with specific features
such as contour pixels or peak pixels and push teim the stack. In the second phase they are
popped and processed. In the processing phaset pikpls can be pushed back onto stacks, e.g.,
corresponding to an object contour where they lgefoncontour tracking or to accumulate votes
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as in Hough transforms. All the pixels from thecktare processed until all stacks on all PEs
involved in the operation are empty. A circular lgburansform implemented using this method

performs in 6 to 11ms. This image transform waglusedetect, in real time, the ball in a robot

soccer game [72] and a finger detection systengdsture recognition in human-computer inter-

action [76], Figure 5-28.

Figure 5-28.Examples of the Circular Hough Transform
The IMAP-CE chip

The IMAP-CE [36] is the fourth generation of a ssrdbf SIMD linear processor arrays based on
the IMAP architecture. The aim of IMAP-CE is to pide a compact, cost-effective and yet high-
performance solution for various embedded real-tuiseon applications, especially for vision-
based driving assistance applications in the igait transportation system (ITS) fields. The
IMAP-CE integrates 128 VLIW processing elementdwaibhe RISC control processor, which pro-
vides the single instruction stream for the prooeasray, on a single chip. The peak performance
of IMAP-CE is up to 51.2 GOPS operating at 100 MHz.

Each PE of the processor array consists of a 2K logial memory, 24 8-bit registers, two 1-bit
mask registers, an 8-bit ALU and multiplier. PEs eonnected in series to configure a one-dimen-
sional SIMD processor array, to which instructians provided by the internal Control Processor
(CP), which is itself a 16-bit RISC processing utMAP-CE supports the connection of a maxi-
mum of sixteen chips, which forms a 2048 PE sys#tetih a peak performance of 819.2 GOPS.
The control processors operate either in locksteapdependently, making all kind of other con-
figurations possible.

Refinement of the instruction set of IMAP-CE forcaterating SIMD operations has been done
based on the analysis result of compiler-generaidds of 1DC for some intelligent transportation

system applications. Code patterns which frequeagifyear are identified, and are checked for the
possibility of replacement by instructions. As aulg special instructions for PE indexed address
generation, PE conditional branch, and label prapag, are inserted on top of the existing RISC

instructions. Wired-logic instructions are alsaaaluced for accelerating label propagation opera-
tions, which is a major sub-operation for connecteehponent labeling.

The IMAP-CE (128 PEs, 100MHz) is about 5 timesdaghan the P3 (Pentium Ill 1GHz), and 3
times faster than its predecessor, IMAP-Vision (P&, 40MHz). Due to the enhanced instruc-
tions for label propagation, the corresponding grenbince of IMAP-CE is about 7 times faster
than that of IMAP-Vision.
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5.5.3 Experimental Results and Conclusions

Due to the language design and the RISC-like ingtm-set of IMAP-VISION, the 1DC compiler
has achieved codes competitive with hand-writtesembly code as can be seen in Table 5-1.
Because of this we will use code written in 1DCeHssembly should be used only to optimize the
most time-consuming parts of the code. Also 1D@#$ialmost all the limitations of the hardware.
Unsupported operations are replaced by correspgmdacros by the compiler.

Table 5-1.1DC compiler performance

Algorithm Assembly code steps Compiler code steps Rati
Average filter 5600 6430 1.15
Histogram 4039 4872 1.21
Rotation 90 degree 20696 23326 1.13

Also for complicated algorithms we tried out MMXcteology intrinsics, developed by Intel.
Intrinsics are highly optimized routines writtenassembly, for which the C compiler generates
inline assembler code. The intrinsics allow forteely quick prototyping of code and is much
easier to maintain than assembly code. On the didwed, only the Intel compiler supports this
technique and the performance of this compiler dgdabout 15-25% slower than equivalent
assembly code.

In Table 5-2 we make a comparison of the executiorg between MMX code on a single Pen-
tium 11 300MHz processor and 1DC on the IMAP-VISIGistem. We used in our measurements
a 256 x 256, 8 bits per pixel image.

Table 5-2.MMX versus IMAP-VISION timings

Operation Type MMX PII300MHz IMAP-VISION
Image Binarization 0.3ms 0.036ms
Images add 0.5ms 0.1ms
Image mean 0.9 ms 0.04ms
Image Multiplication 1.1ms 0.09ms
Images Bit And 0.8ms 0.07ms
Convolution 3x3 kernel 5.5ms 0.42ms
Sobel Edge Detection 2.4ms 0.4ms
Image Variance 14.8ms 0.65 ms
Histogram 10,6ms 0.29ms
Dilation (binary) 12,4ms 0.31ms

Low-level image processing performs very well osiregle MMX processor architecture and on
Plll (with Streaming SIMD Extensions). The IMAP-MI3N still performs on average 10 times
faster, mostly because it has 256 PEs. The drawtaitie IMAP-VISION system is the 40MHz
operating frequency. Also, both systems have a mipwback. The IMAP-VISION system has
no floating point (FP) operations, and within MMXde we cannot use floating point operations
either (in fact we can, but it costs 50 procesgoles to switch between FP and MMX mode). With
the new PIIl Streaming SIMD Extensions this is agroblem any more.
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In this study we did not take into account the aitjan and the transfer time. We can expect that
the IMAP will perform far better because the barditvibetween on-chip and external memory or
frame grabber is 1.28 GByte/s, which enables taester of 644 frames in 33.3ms (the NTSC
frame rate).

While the IMAP-Vision system performs better be@o$ the large number of processing ele-
ments, the MMX processor and PIII (with StreaminiylS Extensions) remain a good candidate
for low-level image processing, if we also take fnige into account. However with IMAP-CE
chips on the market, targeted at 10 dollars/uimi$, should not be a problem any more.

A clear negative point is that programming MMX casleumbersome, even using standard librar-
ies, in contrast with the 1DC programming of theAlRMvision system.

5.5.4 Conclusions on Real-Time Image Processing

The pose tracking system for outdoor augmentedktyea partly based on a vision system that
tracks the head position within centimeters, theedh&rientation within degrees, and has an update
rate of within a second. The algorithms that aessary to obtain a robust vision system for track-
ing the automotion of a camera based on its ob8engof the physical world contains feature
detection algorithms, camera calibration routinesd pose determination algorithms. To achieve
our goal we need a system that is based on thdimealvideo-rate) tracking of features, such as
corners, line segments and circles / ellipsesenrtiage. In order to achieve this we have investi-
gated how these real-time constraints can be redoWe have investigated two alternatives, both
based on special hardware. One is based on spadiahedia instructions in general purpose pro-
cessors, and the other on special purpose imagegsing hardware, based on a solid paradigm,
SIMD. We conclude that from these features, poseraenation algorithms can calculate the auto-
motion of the camera on a general purpose weacalbhgputing platform, such as the LART sys-
tem. To test our pose tracking system we have tsedghout the project MMX-like multimedia
extensions as well as the IMAP-Vision system.

Our conclusion is that the IMAP-Vision system penis better than the multimedia extensions,
because of its large number of processing elemigmis;,ogrammability, its memory interface, its
direct interface to the camera, and finally, iMesthe general purpose processor (LART/Pentium)
it is attached to free for other jobs, such as asienation or inertia tracking.

A problem however is the availability of the IMARips and boards, a problem that should be
solved when the IMAP-CE chips come onto the mai&@95?). What is left then is the power con-
sumption of the chip. It is already far less thaam power consumption of the old IMAP chips, and
considerably better than the Pentium’s, but the IMBE’s prime target is to be an embedded
vision processor for industrial inspection, robstand the automotive industry, and not for wear-
able computing. As such, the Philips XETAL chip ts®s a good candidate. Although it has a
less powerful architecture, it was targeted fromtbginning on the low-power market and is thus
suitable for wearable computing. As with the IMAIE,Ghe design of architectures is alive and
ongoing.

The MMX-type Streaming SIMD multimedia extensiomsgeneral purpose processors remain
good candidates for low-level image processing,dwaw provisionally not in low-power embed-
ded systems for wearable computing.
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5.6 Conclusions
Camera Calibration, Data Normalization

In this chapter, we have presented a flexible teglanto easily calibrate a camera. The technique
only requires the camera to observe a planar pafitem a few (at least two but in practice one
should use about 10) different orientations. We roawe either the camera or the planar pattern.
The motion does not need to be known. Radial I&stertion is modeled. The proposed procedure
consists of a closed-form solution, followed byanimear refining based on a maximum likeli-
hood criterion. Both computer simulation and reatichave been used to test the proposed tech-
nique, and very good results have been obtainechp@red with conventional techniques which
use expensive equipment such as two or three attadglanes, the proposed technique offers
considerable flexibility. The proposed preproceg$data normalization) of data points before cal-
ibration makes the algorithm stable to pixel noise.

Through experiments, we found that Tsai's methettigd the most accurate results when trained
on data of low measurement error. This, howevediffecult to achieve in practice without an
expensive and time-consuming setup. In contrasiplanar calibration method, although sensitive
to noise in training data, takes advantage of #ffibration pattern’s planar constraints and recuire
only relative measurements between adjacent cabbraoints, which can be accomplished at
very high accuracy with trivial effort. Thus, ingtlabsence of sophisticated measurement apparatus,
our planar calibration results may easily outpaerféhose of Tsai.

Vision-based trackers require a wide field-of-vigu®V) in order to overcome the geometric dilu-
tion of precision and to achieve sufficient semgiito distinguish small rotations from small tean
lations. The use of either multiple narrow-FOV caaseor a single wide-angle camera allows the
desirable precision to be achieved. One lightweligirtpower camera is a cost effective solution
that offers the additional benefit of leaving dug difficult mutual alignment required by multiple
cameras. The focal length of the lenses used irxperiments is in the range of 2.2mm-3.6mm,
yielding a FOV in the range of 50-80 degrees f&i each CCD (ADS Pyro webcam).

Calibration is essential when a combination of waagle lenses and a small CCD are used in a
camera. The wide-angle lenses require accuratbratin to compensate for a considerable
amount of radial distortion. Additionally, the méure chip with a pixel size of about one micron
Is impossible to mount exactly lined up with theicgl axis of the lens. A shift of 10-30 pixels in
the image plane is typically observed between ghieal axis of the lens and the center of the CCD
chip. To compensate both the shift of CCD centerthe lens radial distortion, a high quality cal-
ibration procedure for intrinsic parameters is szl With the calibration procedure described in
this chapter we were able to obtain good calibratesults.

Landmark recognition

For each detected landmark, we first extract thiéaao and compute Hu moments. M. Hu[69] has
shown that a set of seven features derived fronséleend and third moments of contours is an
invariant to translation, rotation, and scale cleagnfortunately Hu moments are not invariant to
affine transformation (perspective transformatid®), before contour extraction we perform an
inverse perspective projection. Then the extracteefficients are compared with the stored set
saved in the database by using Euclidean distaeesume. The best match determines the recog-
nized marking.

This detection and recognition approach is robndtfast. It achieves 20 frames/sec on a 450 MHz
PC. The system detects and discriminates betwemsmdmf uniquely marked landmarks.
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Distance to tracker, Fiducial System

The theoretical uncertainty per meter distancepeddent on the system setup: camera resolution
and lens horizontal field of view. For a 1024x7@8nera with a large-angle lens of9trizontal

field of view we have about 2 mm uncertainty petendistance to the fiducial. If we want centi-
meter accuracy we have to had#b m. In less optimal cases, where the angle betweetwo is
smaller, the maximum distance will be even less.

Pose Computation

Compared with other optical tracking systems whisk conventional calibration techniques and
tracking mechanisms that need re-initalization,gtaosed system is easy to use and flexible. It
advances 3D computer vision one step from laboyaovironments to real world use. The pro-

posed 6-DOF tracking system is scalable, and tgistration errors of about 1cm for distances

within 2m between camera and landmarks. Maximunatgucate obtained on a system with P3 at
600MHz was 15 Hz.

It is well known that the rotational accelerationhead motion can reach high gradients. Thus,
using only one camera for pose estimation will beegtable if only small changes between two
images occur. Integration with an inertial measwehunit will overcome speed problems.

Using binocular images will improve accuracy andesh because pose estimation can be done in
almost every frame. Stereo pose estimation makegiqro estimation easier and more stable
because it adds one more constraint, that is tbeskgeometric relation between the cameras. In
future work we intend to study system performameprovement when using a stereo configura-
tion, compared to one camera configuration.
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Chapter 6

Conclusion

In this work we have thoroughly discussed the mbbf Mobile User Positioning in the context

of Augmented Reality applications, the problemtafesestimation of noisy dynamic systems using
Kalman Filters, and finally how to apply KalmantEil techniques to solve the Mobile System
Localization problem. In order of appearance, veeassed the following topics.

In Chapter 2we reviewed a variety of existing techniques arsiesns for position determination.
From a practical point of view, we discussed thed#®r a mobile system to localize itself while
navigating through an environment. We identified tafferent localization instantiations, posi-
tion tracking and global localization. In orderdetermine what information a mobile system has
access to regarding its position, we discusse@reifit sources of information and pointed out
advantages and disadvantages. We concluded that theeimperfections in actuators and sensors
due to noise sources, a havigating mobile systemldhocalize itself using information from dif-
ferent sensors.

In Chapter 3, based on the analysis of the technologies predemthe Chapter 2 and the sensors
described in this chapter, we selected a set afossrirom which to acquire and fuse the data in
order to achieve the required robustness and ancuvde selected for the inertial system three
accelerometers (ADXL105) and three gyroscopes (MUENCO05). To correct for gyro drift we
use a TCM2 sensor that contains a two-axis incletemand a three-axes magnetometer (com-
pass). Indoors we use a Firewire webcam to obkeirposition and orientation information. Out-
doors we use, in addition, a GPS receiver in coatlmn with a radio data system (RDS) receiver
to obtain DGPS correction information.

The calibration of accelerometers, angular rates@an and inertial measurement unit increase the
accuracy of their measurement. In order for théesygo operate properly, it is imperative that the
null point and scale factor of each individual cament of the IMU sensor (accelerometers and
gyros) are determined. Temperature compensatiaauemk-up table based on the apparent rela-
tion between drift rate and sensor temperatures tbimpensation provides a notable improve-
ment. From an initial drift of 9 degree/second dni& dropped down to 5-10 degree/minute. For
this reason, the system comes with a digital A/Bretel for a temperature sensor that can be read
during operation. However, we found out that evéh a drift look-up table the resulting bias-drift
estimate is not accurate enough. The thermal biftsrate of the accelerometer placed at room
temperature was found by experiments to be QudG8 The effect of the random bias drift on the
velocity and position error is quite important. Thas deviation is about 2-3mg for the entire accel
erometer measurement range.

Chapter 4 was concerned with development of inertial equmesticequired for the navigation of a
mobile system. To understand the effect of erroppgation, the inertial equations were linearized.
In this chapter we decompose the localization gmmbihto attitude estimation and, subsequently,
position estimation. We focus on obtaining a gottifuale estimate without building a model of
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the vehicle dynamics. The dynamic model was replégegyro modeling. An Indirect (error state)
Kalman filter that optimally incorporates inertravigation and absolute measurements was devel-
oped for this purpose. The linear form of the syst&d measurement equations for the planar case
derived here allowed us to examine the role ofithknan filter as a signal processing unit. The
extension of this formulation to the 3D case shthessame benefits. A tracking example in the 3D
case was also shown in this chapter.

In this chapter we thoroughly discussed the basitse Kalman Filter. We looked at the assump-
tions that the Kalman Filter poses on the systermsalstate it estimates: a linear dynamic system
with linearly related measurements, corrupted byssean distributed, white, zero-mean noise.
There are a number of remarkable advantages oheatiite just in the form of the filter. First off
all, the Kalman gain is computed from scratch gaulk you wish to incorporate a new measure-
ment. This makes it very easy to track systems tintle-varying dynamics or measurement pro-
cesses. The ability to handle time-varying modelalso the key to using the Kalman filter with
nonlinear systems or nonlinear measurement models.

Derivation of EKF using quaternions is a novel aggh. The advantage of quaternion represen-
tation is that since the incremental quaterniomesgonds very closely to a small rotation, the firs
component will be close to unity and thus the @it information of interest is contained in the
three vector components of the quaternion. Thetengsused to update the Euler rotations of the
body with respect to the chosen reference framengpeemented using a 4th order Runge-Kuta
integration algorithm, since a closed form solutilmes not exist. The quaternion implementation
appears to be performing better than the Eulereaingphlementation. Quaternion implementation
converged to 1% from the maximum error range fabten the Euler angle. The steady state bias
error for quaternion EKF is also slightly lower ththe steady state for Euler angle EKF.

Quaternion EKF implementation in real time représamother issue. After the filter implementa-
tion was proven to be stable and running on an R@eplatform, the next step was to reduce filter
computation complexity, but try to maintain filgeerformance. A separate bias filter formulation
was implemented and run on the LART platform almostal time, providing an update rate of
about 80Hz.

Chapter 5 details all the necessary steps for implementingian positioning system. The pose
tracking system for outdoor augmented reality iglypdnased on a vision system that tracks the
head position within centimeters, the head oriématvithin degrees, and has an update rate of
within a second. The algorithms that are necedsasptain a robust vision system for tracking the
automotion of a camera based on its observatiotiseophysical world contain feature detection
algorithms, camera calibration routines and poseragenation algorithms.

In this chapter, we have presented a flexible teghento easily calibrate a camera. Compared with
conventional techniques, which use expensive eqriprsuch as two or three orthogonal planes,
the proposed technique offers considerable flaigbilrhe proposed preprocessing (data normal-
ization) of data points before calibration makesdlgorithm stable to pixel noise.Through exper-

iments, we found that Tsai's method yielded thetrmosurate results when trained on data of low
measurement error. Thus, in the absence of sopditisti measurement apparatus, our planar cali-
bration results may easily outperform those of Tsai

For each detected landmark, we first extract thearo and compute Hu moments. Then the
extracted coefficients are compared with the steeddsaved in the database by using Euclidean
distance measure. The best match determines tbgnieed marking. This detection and recogni-
tion approach is robust and fast. It achieves athés/sec on a 450 MHz PC. The system detects
and discriminates between dozens of uniquely maldedimarks. The proposed 6-DOF tracking
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system is scalable, and has registration erraabaiiit 1cm for distances within 2m between camera
and landmarks. Maximum update rate obtained ors&@sywith P3 at 600MHz was 15 Hz.

In order to achieve the real-time (video-rate) knag of features, we have investigated how these
real-time constraints can be resolved. We havestipeted two alternatives, both based on special
hardware. One is based on special multimedia icistms in general purpose processors, and the
other on special purpose image processing hardlwased on a solid paradigm, SIMD. Our con-
clusion is that the IMAP-Vision system performsteetthan the multimedia extensions. The
MMX-type Streaming SIMD multimedia extensions fangral purpose processors remain good
candidates for low-level image processing, howgvevisionally not in low-power embedded sys-
tems for wearable computing.

6.1 Contributions

The main contributions presented in this thesisaarollows:

* We present an overview of position measurememini@ogy, with both advantages and disad-
vantages.

» \We present sensors that are often used in posengdiaation with their advantages and disad-
vantages. Based on the requirements formulatediifgmented Reality Applications, we
select some and combine them in an Inertial Measemné Unit.

» Since existing technology or sensor alone canslgeghe pose problem, we combine informa-
tion from multiple sensors to obtain a more ac®ueatd stable system. The integration is
achieved using a Kalman filter. We present the fdation for a new Kalman filter implemen-
tation based on quaternions.

* We present the development of an entire positeterthination system using off-the-shelve
existing sensors integrated using separate Kalitiarsf Where the research and implementa-
tion were not complete due to the time constramfnovide simulations to prove the validity
of the concept. Still, a unified solution is pretseh inertial measurement integration for orien-
tation and GPS in combination with a differentiafrection unit for positioning. The accuracy
obtained is 0.5 degrees for orientation, at an tgodde of 100 Hz, and 5 m accuracy for posi-
tioning at 1 Hz.

* We present all the necessary steps for implemgiativision positioning system. The integra-
tion with the other sensors system is left to fettesearch.

6.2 Future Research Directions

This work can be used as a theoretical basis ftindustudies in a number of different directions.
First, in the localization chapters we discussedespositioning methods implementing the local-
ization formula. They give a starting point forthugr readings into the different positioning meth-
ods. Second, also the KF chapters form a basfsifitrer studies. With the basic derivations of the
KF and some of the extensions, it is interestirigaé more detailed into other extensions, relaxing
more assumptions. Third, the experiments we peddrin the chapters on KFs and localization
were performed in a simulator and merely meanfiustiations of concepts relating to the KF. In
order to draw conclusions on the practical utitifythe KF, the theory discussed in these chapters
can be applied in practice.

Throughout the progress of this work, interestotegis for future work came up. One of these is to
look for ways to make the KF applicable in dynasmeironments, since the real world is not static.
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In this work we discussed the use of KFs and pmsng of a mobile system using static landmarks
whose location it knows with some uncertaintys linteresting to look at what would happen if the
landmarks are not static, but move through therenment according to some motion model.

Position tracking using object and scene recognitonains for future research. The idea was that,
given a 3D description of the environment (e.gAddnodel) and an initial position estimate, an
accurate position could be calculated iterativdly.order to locate a 3D object in an image, two
general strategies can be applied. Firstly, theriefit 3D representation of the object can be
matched, which leads to a 3D to 2D matching probleacondly, a 2D representation of the object
can be applied, which leads to a 2D-to-2D mappirablem. Object recognition requires the
extraction of suitable features, which have tovalable both in image and model data. A 3D GID
geo-database must be developed that is capabterofgscomplex geometric and/or topological
models.

It is well known that the rotational acceleratiodnhead motion can reach high gradients. Thus,
using only one camera for pose estimation will beegtable if only small changes between two
images occur. Integration with an inertial measuwetunit will overcome speed problems. Using
binocular images will improve accuracy and speedahse pose estimation can be done in almost
every frame. Stereo pose estimation makes posttimation easier and more stable because it
adds one more constraint, i.e. the known geomedfation between the cameras. In future work
we intend to study system performance improvemé@nwsing a stereo configuration, compared
to one camera configuration.
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A.1 Cholesky Decomposition

Chapter A

Appendix

A.1 Cholesky Decomposition

This decomposition is named after Andre Louis Célojewho discovered the method for factor-
ing a symmetric, positive-definite matrix P as adurct of triangular factors.

A Cholesky factor of a symmetric positive-definitatrix P is a matrix C such that:
cc'=p eq. A-1.

Cholesky factors are not unique. If C is a Choldskyor of P, then for any conformable orthogonal
matrix M, the matrix:

A=CM eq. A-2.
satisfies the equation:

AAT = cM(CM)' =cMM'cT =ccT =P eq. A-3.

One possible disadvantage of the'@@composition is the need to take square roots.igkasily
avoided by using the LDLfactorization, where L is a lower triangular witls on the diagonal,
and D is a diagonal matrix. In terms of the Choyefsictor P, this is done by defining, for i > |,

Lij = Pij/Py; D;; = P? eq. A-4.

which can be calculated as follows:
For j:=1to n do:
j-1
= 2
Dij = A= 2 LDy eq. A-5.
k=1

For i:=j+1 to n do:

j-1
I'i.i = [Ai.j - Z Li,ij,ka,kJ/Dj,j eq. A-6.
k=1

A.2 Direction Cosine Matrix

A.2.1 Propagation of a DCM with time
In order to update a DCM it is necessary to soluga#rix differential equation of the form:
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0-rq
CB = CBQ Q = r O -p eq. A-7.

—-qp O

Over a single computer cycle, the solution of thieential equation may be written as follows:

teas 9%
Cl(tysq) = j Ch(t)dt = C{)‘(tk)exp{j th} eq. A-8.

by b

If the orientation of the turn rate vectos, = [p, g, r] rensdfimed in space over the update inter-
val T, we can write the integral asox] is a notafmmthe following matrix):

tk+1

o, = | pdt
ty
098]
o 0 -0, 0y o, = [ qdt
Ith =[ox] = |0, 0 -0, where N eq. A-9.
ty —0, Oy 0 livs
o, = I rdt
&
Expanding the exponential term in Equation A-8 gi({es<] depends on k):
B, = | +[0x] Lo [0 [ox]*, eq. A-10.

2! 3! 4!

Using the fact thatox] is a skew symmetric matrix asithg Equation A-9 it can be shown [87]:

—~(07+02) 0,0, 0,0,
24+ g2
—(oz+0%) o0o,0,

0x]2 =
[ox] 0,0, y

0,0, 0,0, —(0f+0Q) eq. A-11.

[0X]3 = (02 + 62 + 62)[0x]

[0x]* = (02 + 02 +0%)[0%]?

Then the exponential expansion can be written [87]:

2 4 2 4
B, = | +(1—%+%—...)[ox] +(%—%+%—...)[ox]2+... eq. A-12.
sino (1-coso) 2
= | +T[ X] + > [0X%]
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A.3 Quaternion

Provided thatb is the angle vector as defined abegaation A-12 provides an exact representa-
tion of the attitude matrix which relates to bodfjtade at timed, ,,; ant

Normalization of DCM

If CJ) matrix is updated a great deal this introdueesaling of the rows vectors. The row vectors
will after a while not be orthogonal to each othHrnis can be caused by the floating point arith-
metic. The matrix can be made orthogonal using:

Cp = Ch-0.5(ChHChHMCh eq. A-13.

A.3 Quaternion

A.3.1 Multiplication
The product of two quaternions,

q = dg+0,i +0y] +0g3K e = g teit+e) +ek eg. A-14.

may be derived by applying the usual rules for potsl of complex numbers (if we assume
i?=j% =Kk’ =-1):
gee = (gy+0,i +0, +03k)(ey+ el +e,j +egk) eg. A-15.
= (9g€ — 0181 — 028, — U3€3)
*+(Qp€y * 0189 + 0283~ 036)
+ (0p€,—0183 + 08 + G3€y)]
G R R C PR FEWILS

Alternatively, the quaternion product may be expeelsin matrix form as:

do —dq —9, —d3| [€g
gee= B % 9 %) & eq. A-16.
4> 43 Gp —Uyf |

93 =02 Q1 Yo |

A.3.2 Quaternion from DCM

For small angular displacements, the quaterniomehts may be derived [83] using the following
relationships:

1
do = §J1+ Cq1q +Cop +Ca3

1
—(C3,—C
4q0( 32~ C23)

4

) eq. A-17.
d, = 4_%(013 —Cgq)

1
ds = quo(Cﬂ_ClZ)
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A more comprehensive algorithm for the extractibruwaternion parameters from the direction
cosines, which takes into account the relative ntades of direction cosines elements, is
described in the following pseudocode [83]:

if M11 => 0 and (M22 + M33)=> 0 then

QL = 1+ M11 + M22 + M33
Q2 = M32 - M23
Q3 = M13 - M31
Q4 = M21 - M12
if M11 =>0 and (M22 + M33) 0 then
Q1L = M32 - M23
Q2 = 1+ M11 - M22 - M33
Q3 = M21 + M12
Q4 = M13 + M31
if M11 0 and (M22 - M33) =>0 then
QL = M13 - M31
Q2 = M21 + M12
Q3 = 1-M11 + M22 - M33
Q4 = M32 + M23
if M11 0 and (M22 - M33) O then
QL = M21 - M12
Q2 = M13 + M31
Q3 = M32 + M23
Q4 = 1-M11 - M22 + M33

A.3.3 DCM from Quaternion
The following pseudocode describes the convers8h |

X = Q2*Q2
TY = Q3*Q3
TZ = Q4*Q4
TQ =  TY+TZ

if (TQ+ TX + Q1*Q1) is not 0 then
TK=2/(TQ + TX + Q1*Q1)

else
TK = 0
M11 = 1-TK*TQ
M22 = 1-TK*(TX + T2)
M33 = 1-TK¥TX+TY)
™} = TK*Q2
TY = TK*Q3
TQ = (TK*Q4)*Q1
TK = TX*Q3
M12 = TK-TQ
M21 = TK+TQ
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A.3 Quaternion

TQ = TY*Q1
TK = TX*Q4
M13 = TK+TQ
M31 = TK-TQ
TQ = TX*Q1
TK = TY*Q4
M23 = TK - TQ
M32 = TK + TQ

A.3.4 Euler angles expressed using Quaternions

The Euler angles may be derived directly from gurade elements. For conditions whérés not
equal to 99, the Euler angles can be determined [83] using:

2 +
= ata’_{ (9,05 + qgdy) }

93 —af—093 + 03

6 = asin{-2(q;03—d0,)} eq. A-18.

v = atan{ 2(q,0, + qg0s) }

93 +09?—qg5—a3

A.3.5 Quaternion expressed in terms of Euler angles

do COSECOSECOSE + S|n25|n23|n2
d; S|n2COS§COS§ COS—S|n25|n2

eq. A-19.

2

Q0.0 W, .0 0O U

COS=SIN=C0S*~ + SIN=C0S=SIN+

92 o >IN5 0S5 T S5 E055 5N
@

_ o 0 . P in®e 0 W
O3 cosicosésm2 smzsmzcosE

A.3.6 Propagation of Quaternion with time
In order to update the Quaternion it is necessapplve a matrix differnetial equation of a form:

- eq. A-20.
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The vectorw = [p, g, r] represents the angular speed or theate vector. Over a single com-
puter cycle, the solution of the differential eqoatmay be written as follows:

tk+1 tk+1

Alteey) = [ a(tdt = ex %det i (ty) eq. A-21.

ty ty

If the orientation of the turn rate vectos, = [p, g, r] rensdfimed in space over the update inter-
val T, we can write:

tk+1

o, = | pdt
ty
tes
teis 0 —Ox _Oy —0; G = kjlth
o, 0 o, 0O -
[ Qqdt = [og] = | X z Py Y eq. A-22.
: o,-0, 0 o, t
k tk+1
o, o, 0, O
S o, = | rdt
ty
o = ,J0¢+0Z+0%
Expanding the exponential term in Equation A-21 give
_ [0,50x]2 , [0,50%]3 , [0,50%]*
By = I + [0,50qx] + 5 + 3 + T +... eq. A-23.

Using the fact thafox] is a skew symmetric matrix asghg Equation A-9 it can be shown:

| (02+02+02 ]
(o 7 2) 0 0 0
24+ 62+ g2
0 (0 0y * %) 0 0
[O,SOqX]Z = 4 ) ) )
0 0 (OX i Gy " OZ) 0 eq. A-24.
4
_(02+02+02
0 0 0 (0:+ 0y * %)
- 4 -
02+02+02
[O'5qu]3 — ( X 4y z)[0’50qx]

Then the exponential expansion can be written:
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2 4 2 4
B, = |+(1—(0’§’!0) +(0’§!0) —...)[oqx]+(%—(o’2!0) +(0’g’!°) —) +... eq.A-25.

= cos(g)l + gsin(%)[OX]

Provided thato is the angle vector as defined ablBgaation A-25 provide an exact representa-
tion of the attitude matrix which relates to bodfjtade at timed, ,,; ant

= oo

Y [o(ty) Sin@ eq. A-26.

a0, -0, a, ag,

Thus the equation which propagates the quaternientane is:

a, -a.0, —a0, —a0,

QD
I

y
q(tk )_ asox a. asoz —a,0
+1/

a =
a0, a0, —a0, a s o

A.4 System Concepts

A.4.1 Ordinary differential equations

Many systems that evolve dynamically as a funatibé continuous-time variable can be modeled
effectively by a system aith-order ordinary differential equations. When éipplicable equations
are linear but time variant, eanth-order differential equation is represented as:

Y (1) + d(), YO () +..+ d(t), D= a() TV )+ p(h ) eq. A-27.

Where(fj) denotes theth time derivative of the term.

When the applicable equations are nonlinearntheorder differential equation is represented in
general as:

YOO = (), YO,U™ (), u ) oq. A28,

Taylor series analysis of a nonlinear equation rdanominal trajectory can be used to provide a
linear model described as: linear for local analy3io solventh-order differential equations for
t>=ty requiresn pieces of information (initial conditions) thatsdeibe the state of the system at
time .

Example:The differential equation for single-channel tamgglane INS position error due to gyro
measurement error is [93]:

P () +2 p(t) = ge, (1
R eq. A-29.

whereg is gravitational acceleratioR,is the earth's radius, apglrepresents the gyro measurement
error.

155



Chapter A Appendix

A.4.1.1 Transfer functions
The transfer function of a time-invariant lineasgm (meaning all coefficients in Equation A-27
are constant in time) represented above is repieséry:

(9 = Y(9_ nsT+.4n

UG S+dET+ g eq. A-30,

is obtained by applying the Laplace transform wdltiferential equation arg= jw.
Example:The transfer function corresponding to the diffeia equation presented in the previous
example is:
Glg=— -9
E, (9 S( g +gj
R

eq. A-31.

which is a low-pass filter. If the gyro error repeats high-frequency noise, the position error will
be small, but if the gyro error represents a hies gthen the integral nature of the transfer fiorc
will result in a large and growing position error.

A.4.1.2 The state space

The state-space representation convertglaorder differential equation intecoupled first-order
differential equations. For analysis only, let th@ansfer function of Equation A-30 and
Equation A-31 be decomposed into two separateifiljepperations:

1
s'+dst+..+ u(s

Y(9=(n&'+.+ p) (¥

V(9 =

eq. A-32.

The differential e\?uation corresponding to the pres equation, if we define a state vectsuch
thatx"=(v,yD, ... VD), is:

&) =[ v, v V0] { % (8), 0% (t),u(tri A Xia (t)}

eq. A-33.
The system output is represented as:
YORDINIARICEDIE NG
= =1 eq. A-34.
In matrix notation, the system can be described as:
&(t) = Fx(t) + Gut)
y(t) = Hx(t) } eq. A-35.

with:
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0 1 ..0
0 0 1 ..0
F=
M M
_dn _dn—l _dn—2 _dl
0
0
G=
M
1
H=[m. non)] eq. A-36.

In this representation, F is referred to as théesysnatrix, G is referred to as the input matrnd a
H is referred to as the output matrix. By way oaewple: A state-space system describing the
single-channel error dynamics of a tangent-plart i\

% |0 1 0ox] [0 0,
®/=l0 0 -g| vi+/1 Off °
& 1 0 1|5
o= ol?
R

L ] eq. A-37.
whereg, andgy represent the accelerometer and gyro measuremerg & the navigation frame,
respectively.
For discrete-time systems we apply the Z transfmstead of the Laplace transform in order to
determine the transfer function.
A.4.1.3 Linear stochastic systems and state augmatibn
Navigation system error analysis will often resalequations of the form:

X, (t) = F(t)x,(t) + G,&(t)

eq. A-38.
y(t) = H()x,(t) + p(t)

wheregandy represent instrumentation errors apdepresents the error in the nominal navigation
state. It is possible to model the error teenasmdy as linear dynamic systems:

% (1) = F ()% (1) + G, (t)w, (1)

eq. A-39.
e(t) = H(t)xc(t) +vg(t)

and
)'(u(t) = Fu(t)xu(t)+Guwu(t)

eq. A-40.
W(t) = H(0x,(1) + v, (1)

driven by the noise procesg(t), Ve, W(t), andv,, which can be accurately modeled as white
noise. By the process of state augmentation, Emuati39 and Equation A-40 can be combined
into the state-space error model,
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Xo(1) = F (t)x,(t) + G, (t)w,(t) eq. A-41.
F, G,(t)H(t) O G, O 0 Ve

=10 Fe(t) 0 (X370 Gg(t) 0 ||w,
0 0 Fu(t) 0O O Gu(t) W,

which is driven only by white-noise processes.hiese equations, the augmented state is defined
asX,=[X XXl . The measurements of the augmented system ardetiaate

y(t) = H (t)x,(t) + vy(t) eq. A-42.
= [Hy(t) 0 H(0)]Xa() + v, (1)
which are corrupted only by additive white noise.

A.4.2 Linear Systems in Discrete Time

Equation A-35 on page 156 cannot be used in a compatdrolled environment. It is preferred
to transform the system matrices into a discrete system. When the control signal is discrete,
{u(®) : k=...,-1,0,1, ...}. Given the state at the samptinge t,, the state at some future times
obtained by solving Equation A-35. The state at tinvaith t, <t<t, ., , is thus given by:

t

x() = e " Wx(t) + [ Yascuy)
by

x() = Ot t)x(t) + (L tu(t)

eq. A-43.

asu is constant between the sampling instants. The g&xtor at a timeis thus a linear function
of x(t,) andu(t,). If the inputu and outpuy can be regarded as being sampled at the samats)sta
the system equation of the sampled system at thpls®y instants is then:

X(fe+1) = Pty 1 GIX(G) + T (G4 g, HIu(ty)

eq. A-44.
y(t) = Hx(t) +Du(t)

with:

¢(tk+1s tk) - eF(tk+1_tk)
t

M(tesp t) = J‘eF(t—s)dSG

ty

eq. A-45.

In most cases D = 0. One reason for this is theabmputer-controlled systems, the outypi first
measured and the control sigog) is then generated as a functiony(f).

For periodic sampling with peridd we havey = k*T and the model simplifies to the time-invari-
ant system:
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x(KT+ T) = Ox(KT) + Fu(kT)

eq. A-46.
y(kT) = Hx(kT) +v(kT)
with:
o=
T
eq. A-47.
r=[eac
0
From Equation A-47 it follows that:
Lo(t) = Fo() = o@F
q eq. A-48.
aI'(t) = P(1)G
The matricesp andl” therefore satisfy the equation:
d| o | 0o I [|lo1

where | is a unit matrix of the same dimensiorhastumber of inputs. The matric@$T) andl (T)
for the sampling period can therefore be obtained from the block matrix:

d(t) M(t)| = exp( FG Tj eq. A-50.
0o | 01

A.4.2.1 Computation of discrete time matrices

The calculation required to sample a continuoug system is the evaluation of a matrix exponen-
tial and the integration of a matrix exponentidiisican be done in different ways, for instance, by
using:

Numerical calculation using Matlab or a dedicai#@++ library

Series expansion of a matrix exponential

Matrix transformation to diagonal or Jordan forms

Symbolic computer algebra, using programs sudilade and Mathematica.

If the sampling timén is small, then the matric&y(h) andr (h) are calculated with the following
formulas [86]:

T A
2 2.3 i +1
_ (FS, _ FT° . F°T F'T
qJ-je $_|T+7+T+...+m+... eq. A-51.
0
and
= | +F
v eq. A-52.
r = yG
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Computer evaluation can be done using severalrdiffenumerical algorithms in Matlab.

A.4.2.2 Systems with random inputs

Because of the inevitable presence of modeling arrd measurement noise, it is necessary to con-
sider systems with random (nondeterministic) inplitee model for such a linear discrete-time
system with stochastic inputs can be represented as

X(k+1) = d(k)x(K) + I (K)w(k)

eq. A-53.
y(k) = H(k)x(k) +v(k)

wherew(t) and v() are random variables.

The random variable is called the process noise; the random varialdealled the measurement
noise. The designation as random variables imghi&salthough the value of the random variables
at some time in the future is not completely predite, the statistics of the random variables are
known. The mean and the covariance of random Vasalgt) andv(t) are denoted as:

My, () = EqQw(t)

coM w( 9, w(t)] = Q(t, 1) eq. A-54
() = EQv(t) ' '
coM U 9, v(1)] = R(L 1)

Unless otherwise stated, we will assume that: 0 andu, = O.

In the analysis that follows, it is often accur@ed convenient) to assume that the process and the
measurement noise are independent of the currdrtharprevious states:

cofw ), w(t)] =0 for t>1

eq. A-55.
cof\vD),v(t)] =0 for t>1
and are independent of each other,
coMwD,v(t)] =0 for allt=>t eq. A-56.
A.4.2.3 The discrete input covariance matrix
We have the ideal control signaft)  with noggg,.
u(t) = D(t)+au(t) eq. A-57.

The covariance matrix of this noise@ When the continuous time system is discretizedh
matrix must be recalculated. There are differerthiogs to calculate th@, matrix. In [86] and [89]
we find two equations, Equation A-58 and Equation®A-5

Q. = GQG'T eq. A-58.

Q = %(FGQGTFT+GQGT)T eq. A-59.

The exact formula for computing tii matrix is given below. When the dynamics of thstegn
of interest evolve in continuous time, but analysid implementation are more convenient in dis-
crete time, we require a way of determining a @itetime model in the form of Equation A-53.
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For this,® can be determined as in Equation A-52, but in ofdeQ,,(k) to have an equivalent
effect agQ,,(t), w, must satisfy:

(k+1)T
wi) = [ VTG (gw(g) s eq. A-60.
kT
But as a consequence, we need to use a state-atagioremprocedure sinosy, does not have a

white-noise character. Using the model structurEaifation A-41, withe(t) being a white-noise
process, we have:

Q(k) = coM W K] eq. A-61.

(k+1)T(k+1)T
E( j j ®[(k +1)T, s|G(s)W(s)WT(T)GT(T)P[(k + 1) T, ] Tdt c)

kT kT
(k+1)T

[ ®lk+ DT, §6(9Q,GT(N)P[(k + 1)T, §]Tcs
kT

A common approximate solution to this equation gai&ion A-58, which is accurate only when
the eigenvalues of F are very small relative tosthmpling period T (i.e|JFT|| «1 ).

A.4.3 Nonlinear Systems

In many applications, either the system dynamicaéqgas or the measurement equations are not
linear. It is therefore necessary to consider gieresion of the linear optimal estimation equations
to nonlinear systems. If the system state is nealinbut approximately linear for small perturba-
tions in the state variable, then we can applyitiear estimation theory.

Consider a nonlinear system with dynamics and nreasent equation described by:
x(t) = f(x(t), u(t), t) + w(t)
y(t) = h(x(1), t) +v(t)
Although this model is restrictive in assuming aiddi uncorrelated white-noise processeand

v, the model is typical for the systems found inigation applications. The signaft) is a deter-
ministic signal and andh are known smooth functions.

eq. A-62.

If the functionf is continuously differentiable, then the influeraéehe perturbations on the trajec-
tory can be represented by a Taylor series expamasand the nominal trajectory. A trajectory is
a particular solution of a stochastic system, ihatith particular instantiations of the randonniva
ates involved. A nominal trajectory is a trajectobtained when the random variates takes their
expected values. If the perturbations are suffityesmall relative to the higher order coefficients
of the expansion, then one can obtain a good appation by ignoring terms beyond some order.
Let & denote the perturbations from the nominal:

OX, = X, —xNOM
ko Tk K eq. A-63.
0z, = 7z —h(x, k)

so that the Taylor series expansion is:
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%, = f(x_, k—1) = f(xpioM k 1) + L K=1) 8%, +hot eq. A-64.
ox X = xpop
CIXNOM + of(x, k—1) %,
0X X = XM
If the higher order terms ibx can be neglected, then:
ooy oty
0x; 0X,  0X,
o ohy oy Oy
0% = FidX g+ Wy g P = 5% T [Oxg 0%y T Ox, eq. A-65.
X= X1
0x; 0%,  0X,
- ~ Ix= oM

We can do the same with the measurement. Hithaction is differentiable, then the measurement
can be represented by a Taylor series as the ¥fatéhen obtain:

oh, oh;  oh;
ah oh, oh,  oh,
0z, = HOX _1+V_ H, = I = |0x, 0%, 70X, eq. A-66.
X = XOM
oh, oh,  oh,
) ~Ix= o

The problem with linearization around a nominajetctory, is that the deviation of the actual tra-

jectory from the nominal tends to increase withetirAs this deviation increases, the significance
of the higher order terms in Taylor expansion eftitajectory also increases. A simple remedy for
the deviation problem is to replace the nomingét®ry with the estimated trajectory. If the prob-

lem is sufficiently observable, then the deviafimm the actual trajectory of the estimated oné wil

remain sufficiently small and the linearizationwsption will remain valid.

One of the drawbacks of this approach is thatdtdases the real-time computational burden.
Whereas the linearization of F and H around a nahtiajectory may have been pre-computed off-
line, linearization around the estimated trajectonyst be computed in real time.

A.4.3.1 Linearized nonlinear systems in continuousme

The nonlinear system equations from Equation A-62Haeen linearized, taking the first order
derivatives with respect to the statand control vectou. The linearization is done at the work
pointx(t) andu(t). The result is:
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v _ 0 d _
BX(1) = 2 Bx(1) +5-8u(t) = FEx() + GBu(Y) -
eq. A-67.

5z(1) = %éx(t) = HaX(t)

A.4.3.2 Linearized nonlinear systems in discreterie
We calculate the discrete transition matrix andcthretrol matrix using Equation A-52 on page 159
and we have:

AX(k+1) = ®AX(K) + 'Au(k)

eq. A-68.
Az(K) = HAX(K)

A.5 Camera Calibration

A.5.1 Perspective transformation

The relation between the camera coordinates andléa projection coordinates (in the image
plane) is called perspective transformation. Tkisspective transformation is a kind of nonlinear
mapping. We can choose the coordinate system (€)xgr the three-dimensional space and
(c,u,v) for the retinal space. The relation betwieesige coordinates and 3D space coordinates can
be written as:

_I = 9 = \_I eq. A-69.
zZ X Yy
which can be rewritten in matrix form:
u [-fo0o0d|*
VI =100 32/ eq. A-70.
1
S 00 1

where: u=U/S, v=V/S, if &0.

The geometric model of the pinhole camera conefs& planer called theretinal planein which
the image is formed through an operation catlespective projectigra point C, theptical cen-
ter, located at a distandgthe focal length of the optical system, is usefbtm the image m in the
retinal plane of the 3D point M as the intersectibthe line(C,M) with the planeR.

A.6 Geometric Algorithms

A.6.1 Vertex Reduction

In vertex reduction, successive vertices that ergtered too closely are reduced to a single vertex
For example, if a polyline is being drawn in a catgp display, successive vertices may be drawn
at the same pixel if they are closer than somedfixgplication tolerance. In a large range geo-
graphic map display, two vertices of a boundarylpm may be separated by as much as a mile
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(or more), and still be displayed at the same piaetl the edge segments joining them are also
drawn at this pixel. One would like to discard tedundant vertices so that successive vertices are
separated several pixels, and edge segments gueshpbints.

Vertex reduction is the brute-force algorithm fadypine simplification. For this algorithm, a
polyline vertex is discarded when its distance feoprior initial vertex is less than some minimum
tolerance e > 0. Specifically, after fixing amtial vertex VO, successive vertices Vi are tested
and rejected if they are less than e away fromBi(@, when a vertex is found that is further away
than e, then it is accepted as part of the newlgiegppolyline, and it also becomes the new ititia
vertex for further simplification of the polylineThus, the resulting edge segments between
accepted vertices are larger than the e tolerance.

A.6.2 Douglas-Peucker Approximation

Instead of applying the rather sophisticated Tem@tgorithm to the chain code, we may try
another way to get a smooth contour on a small murbvertices. The idea is to apply some very
simple approximation techniques to the chain codh polylines, such as substituting ending
points for horizontal, vertical, and diagonal segtegand then use the approximation algorithm
on polylines. This preprocessing reduces the amoiugata without any accuracy loss. The Teh-
Chin algorithm also involves this step, but usesaeed points for calculating curvatures of the
remaining points.

The algorithm to consider is a pure geometricabiaflym by Douglas-Peucker [97] for approxi-
mating a polyline with another polyline with recgdraccuracy:

1. Two points on the given polyline are selectedsttne polyline is approximated by the line
connecting these two points. The algorithm itegyivadds new points to this initial approxi-
mation polyline until the required accuracy is aefed. If the polyline is not closed, two end-
ing points are selected. Otherwise, some initigbathm should be applied to find two initial
points. The more extreme the points are, the better

2. The algorithm iterates through all polyline vees between the two initial vertices and finds
the farthest point from the line connecting twdiativertices. If this maximum distance is less
than the required error, then the approximationtdess found and the next segment, if any, is
taken for approximation. Otherwise, the new paradded to the approximation polyline and
the approximated segment is split at this poinerTthe two parts are approximated in the
same way, since the algorithm is recursive. Fdosed polygon there are two polygonal seg-
ments to process.

A.7 GPS NMEA Transmitted Sentences

The subsequent paragraphs define the sentencels wdncbe transmitted on TXD1 by the GPS
25LP sensor boards.

A.7.1 Global Positioning System Fix Data (GGA)
$GPGGA <1>,<2>,<3>,<4>,<5> <6>,<7>,<8>,<9> M,<103M1>,<12>*hh<CR><LF>

<1> UTC time of position fix, hhmmss format

<2> Latitude, ddmm.mmmm format (leading zeros t@ltransmitted)
<3> Latitude hemisphere, N or S

<4> Longitude, dddmm.mmmm format (leading zero$ beltransmitted)
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<5> Longitude hemisphere, E or W

<6> GPS quality indication, 0 = fix not availablez Non-differential GPS fix available, 2 = Dif-
ferential GPS (DGPS) fix available, 6 = Estimated

<7> Number of satellites in use, 00 to 12 (leadiagps will be transmitted)
<8> Horizontal dilution of precision, 0.5 to 99.9

<9> Antenna height above/below mean sea level,399® 99999.9 meters
<10> Geoidal height, -999.9 to 9999.9 meters

<11> Differential GPS (RTCM SC-104) data age, nuntbseconds since last valid RTCM trans-
mission (null if non-DGPS)

<12> Differential Reference Station ID, 0000 to 3q&ading zeros will be transmitted, null if
non-DGPS)

A.7.2 Recommended Minimum Specific GPS/TRANSIT DatdRMC)
$GPRMC,<1>,<2> <3> <4> <5> <6>,<7>,<8> <9> <10> x KN 2>*hh<CR><LF>
<1> UTC time of position fix, hhmmss format

<2> Status, A = Valid position, V = NAV receiver mang

<3> Latitude, ddmm.mmmm format (leading zeros dltransmitted)

<4> Latitude hemisphere, N or S

<5> Longitude, dddmm.mmmm format (leading zeros$ beltransmitted)

<6> Longitude hemisphere, E or W

<7> Speed over ground, 000.0 to 999.9 knots (lepgémos will be transmitted)
<8> Course over ground, 000.0 to 359.9 degrees (keading zeros will be transmitted)
<9> UTC date of position fix, ddmmyy format

<10> Magnetic variation, 000.0 to 180.0 degreeadileg zeros will be transmitted)
<11> Magnetic variation direction, E or W (westevbriation adds to true course)

<12> Mode indicator (only output if NMEA 2.30 aatiy A = Autonomous, D = Differential, E =
Estimated, N = Data not valid

A.7.3 3D velocity Information (PGRMV)
The GARMIN Proprietary sentence $PGRMV reportsakadénensional velocity information.

$PGRMV,<1>,<2> <3>*hh<CR><LF>

<1> True east velocity, -514.4 to 514.4 meters/sdco
<2> True north velocity, -514.4 to 514.4 meterstsec
<3> Up velocity, -999.9 to 9999.9 meters/second

A.7.4 GPS DOP and Active Satellites (GSA)
$GPGSA <1>,<2> <3> <3>,<3> <3>,<3> <3>,<3> <3>,<&Bs> <3> <3> <4> <5> <6>*hh<C
R><LF>

<1> Mode, M = manual, A = automatic
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<2> Fix type, 1 = not available, 2 = 2D, 3 =3D

<3> PRN number, 01 to 32, of satellite used intsmh) up to 12 transmitted (leading zeros will be
transmitted)

<4> Position dilution of precision, 0.5 to 99.9

<5> Horizontal dilution of precision, 0.5 to 99.9

<6> Vertical dilution of precision, 0.5 to 99.9

A.7.5 Differential GPS

Differential positioning with GPS, abbreviated DGRSa technique for improving GPS perfor-
mance where two or more receivers are used. Orévegcusually at rest, is located at the refer-
ence site A with known coordinates and the remeteiver B is usually roving. The reference or
base station calculates pseudorange correctiorS)(&ml range rate corrections (RRC), which are
transmitted to the remote receiver in near reattiihe remote receiver applies the corrections to
the measured pseudoranges and performs pointgrosgiwith the corrected pseudoranges. The
use of the corrected pseudoranges improves paoglitamcuracy[98].

A.7.6 Coordinate transformations
Transformation from RD coordinate systexy) to geographic coordinate systeni):

Xo = 155000.000;

Yo = 463000.000;

$o = 52.156160556;
Ao = 5.387638889;
OX=(X-Xg)*pow(10,-5);
dy=(y-yo)*pow(10,-5);

0 =gy1* By + &g POW(dX,2) + g Pow(dy,2) + &1*POW(dX,2)*dy + gz pow(dy,3);

O +=ay5*Pow(dx,4) + &,*pow(dx,2)*PowW(dy,2) + g4 POW(dy,4) + ar*pow(dx,4)*dy;
O +=ap3" pow(dx,2)*pow(dy,3) + ay*pow(dx,4)*pow(dy,2) + &4 Pow(dx,2)*pow(dy,4);
b= dg + 5¢/3600;

OA =Dbyg* OX +by1* dx* Oy +hzg*pow(dx,3) + by * dx*pow(dy,2) + Iy, *pow(dx,3)*dy;
OA+=D, 3* dx*pow(dy,3)+h55*pow(dx,5) + b3 pow(dx,3)*pow(dy,2) + by 4* Ox*pow(dy,4);
OA+=Db5,*pow(dx,5)*dy +bsz*pow(dx,3)*pow(dy,3) + by s* dx*pow(dy,5);

A =g+ 0A/3600;

In this formuladx, dy, 8¢ andA are the difference in cooatinwith respect to the central point
in Amersfoort. For that we need to apply the folilogvtranslations::

&x = x - 155000.000m
dy =y - 463000.000m
b =¢ - 509'22.178”
S\ =\ - 5°23'15.500”

166



A.7 GPS NMEA Transmitted Sentences

The coefficients for the transformation are:

d1 = 3236.0331637 b = 5261.3028966
&y =  -32.5915821 by = 105.9780241
ap =  -0.2472814 b, = 2.4576469
&, =  -0.8501341 by =  -0.8192156
a3 =  -0.0655238 byy =  -0.0560092
&, =  -0.0171137 bz = 0.0560089
ap = 0.0052771 by =  -0.0025614
a3 =  -0.0003859 by = 0.0012770
ay = 0.0003314 bsg = 0.0002574
dos = 0.0000371 b3 =  -0.0000973
ap, = 0.0000143 bs; = 0.0000293
&, =  -0.0000090 bys = 0.0000291

Transformation from geographic coordinate systei)(to RD coordinate system,y) is given by:

3p=(¢ - ¢g) * 0.36;
SA=(A - Ag) * 0.36;

OX =Cy1*OA + C11* 0h* OA + Cr1*pow(dd,2)*OA + Cyz*POW(dA,3);
OX+=C31*POW(d¢,3)*OA + C;3* dP*POowW(dA,3) + Gz pow(dd,2)*pow(dA,3);
OX+=C41*POW(d¢,4)*dN + Cus*POW(dA,5);

X=Xq + OX;

x=round(100*x)/100;

By =d1g* 39 + dhg"POW(50,2) + chy*POW(BA,2) + T 5+ 50*POW(EA, 2);
dy+=dzg*pow(d9,3) + do*pow(dp,2)*pow(dA,2) + dyg*pow(dd,4);
Oy+=0dy4*POW(A,4) + 5" pow(dd,3)*PowW(dA,2) + di 4+ 0 *POW(dA,4);
y=Yo *+ 9y,

y=round(100*y)/100;

The coefficients for the transformation are:
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Cop = 190066.98903 dg = 309020.31810
c; =  -11830.85831 dpy = 3638.36193
C;y =  -114.19754 d, =  -157.95222
Cos =  -32.38360 dyg = 72.97141
c;; =  -2.34078 dgg = 59.79734
c;3 =  -0.60639 dy, =  -6.43481
Cy = 0.15774 dos = 0.09351
ciu =  -0.04158 dg =  -0.07379
Cos =  -0.00661 dig =  -0.05419
dg =  -0.03444

To the best of our knowledge this conversion praceds accurate to about 50 cm, partly because
of the truncation of series used in the conversforough indication of the numerical accuracy of
software conversion can be obtained by convertauk land forth between the same coordinates.

168



Acknowledgements

It is my pleasure to thank my advisor, Pieter Jonke his entire support and advice that he gave
me while working towards my PhD, and for the corhprgsive reviews of this thesis. | appreciate
the several discussions and the always open doenevier | had a question. | enjoyed working

with him, and | hope he enjoyed working with me.too

It is a pleasure to thank prof. Ted Young, one gfaromotors, for his enthusiasm and promptitude
in reading and structuring the ideas in my thes@lso thank prof. Inald Lagendijk for following
my steps during my PhD studies, and being alwagdyréo provide me with help and advice. |
would further like to thank all my promotors androoittee members for their valuable comments
that helped me improving my work and presentatigles

| would like to thank to all the people with whomvbrked during my PhD studies. In UBICOM
team | found a friendly environment in which | cowasily develop myself. | would also like to
thank to all PH people, staff and aio's for thejport and for the nice time spent among them.

There is a person with whom | worked in the pasip Wwad decisively influenced my development,
and to whom I would like to express all my gratguHie is prof. Aurel Vlaicu, with whom | worked
at Technical University Cluj-Napoca, during andeafiny graduation. He introduced me in the
world of image processing, and made me like it.

Many thanks to my friends Sorin, Maria, Stefan, feed, lldi, Gerold, Bogdan, Dani, Rares, Cris-
tina and Andrei, because they were always besiggsnd made living in Delft to be as enjoyable
as possible.

Well, nothing would have been possible without mgily who provide me with all the support.
First of all | thank you to my lovely wife, Monic&r her understanding and to my daughter Irina
who brought happiness in our life. | thank my p#&end my brothers for their continuous love,
support and understanding.

169



Acknowledgements

170



	Sensor Fusion in Head Pose Tracking for Augmented Reality
	Stelian-Florin Persa

	Sensor Fusion in Head Pose Tracking for Augmented Reality
	PROEFSCHRIFT
	Ter verkrijging van de graad van doctor
	aan de Technische Universiteit Delft,
	op gezag van de Rector Magnificus, Prof.dr.ir. J.T. Fokkema,
	voorzitter van het college voor promoties,
	in het openbaar te verdedigen op dinsdag 6 Juni om 10.00 uur
	door Stelian-Florin PERSA
	Inginer Universitatea Tehnica din Cluj-Napoca
	geboren te Cluj-Napoca (Roemenie)
	Dit proefschrift is goedgekeurd door de promotoren:
	Prof.dr.ir. I.T. Young
	Prof.dr.ir. R.L. Lagendijk
	Toegevoegd promotor:
	Dr.ir. P.P. Jonker
	Samenstelling promotiecommissie:
	Rector Magnificus Technische Universiteit Delft, voorzitter
	Prof.dr.ir. I.T. Young Technische Universiteit Delft, promotor
	Prof.dr.ir. R.L. Lagendijk Technische Universiteit Delft, promotor
	Dr.ir. P.P. Jonker Technische Universiteit Delft, toegevoegd promotor
	Prof.dr.ir. H.J. Sips Technische Universiteit Delft
	Prof.dr.ir. J.J.M. Braat Technische Universiteit Delft
	Prof.dr.ir. F.C.A. Groen Vrije Universiteit Amsterdam
	Prof.dr.ir. A. Vlaicu Technical University Cluj-Napoca, Romania
	The work presented in this thesis was supported by Ubiquitous Communications (UBICOM) programme, funded by Delft University of Technology DIOC research programme.
	ISBN-10: 90-9020777-5
	ISBN-13: 978-90-9020777-3
	Copyright ”2006 by Stelian-Florin Persa
	Printed by Wöhrmann Print Service
	Devoted to my wife Monica, my daughter Irina and
	to my parents


	Table of Contents

	Chapter 1
	In recent years, there has been an explosion of interest in virtual reality systems. Virtual reality (VR) is relevant to many ap...
	A similar area, with perhaps even more commercial applications than virtual reality, is augmented reality (AR). Whereas in VR sy...
	Augmented reality systems differ from virtual reality systems in that the user is not completely immersed in the virtual environ...
	Despite its potential, the development of functional AR systems faces several technical challenges. In most AR applications, it ...
	Inertial measurement components, which sense either translational acceleration or angular rate, are being embedded into common u...
	However, in most cases, these inertial systems are put together in a very ad hoc fashion, where a small number of sensors are pl...
	The pose of the head is defined as the position and orientation of the head in a 3D world. There are two aspects to the problem ...
	This thesis proposes to solve the problem of head tracking for augmented reality systems based on optical see-through head-mount...
	1.1 Previous Work
	Current augmented reality systems differ from each other primarily in three ways: the display technology used to overlay synthes...
	Many research projects in augmented reality have used optical see-through head-mounted displays [5], [7], [9]. These displays wo...
	A second category of display system for augmented reality is a video-based display, which is typically used in medical augmented...
	Four types of sensors have traditionally been used for head tracking in augmented reality applications. Mechanical sensors measu...
	Inertial measurement devices have a very eventful history. The field began with motion-stabilized gunsights for ships and was la...
	There is currently a number of six degree-of-freedom systems commercially available, and several of them are targeted at either ...
	Inertial tracking systems such as Intersense’s are known as strapdown systems, because the sensors are fixed to the local frame ...
	Recent uses of inertial sensors in major products have tended toward the automotive sector. The first major application of MEMS ...

	1.2 Problem Formulation and Requirements Outline
	Augmented Reality (AR) differs from Virtual Reality (VR) in the sense that virtual objects are rendered on a see-through headset...
	Mobile augmented reality [4] is a relatively new and intriguing concept. The ability of augmented reality to present information...
	However, the technical problems with mobile augmented reality are just as great. As with other head-mounted display systems, aug...
	No research has been reported yet on the effects of jitter on virtual environment users, although it seems obvious that jitter w...
	Not all AR systems require every virtual object to be precisely registered on a real object. Some applications consists of displ...

	1.3 System Concept
	The Ubicom System [8] is an infrastructure for mobile multi-media communication. The system consists of a backbone compute serve...
	The mobile unit consists of a receiver unit and a head-set. The head-set contains a light-weight head-mounted display that offer...
	The headtracking system for Augmented Reality that is proposed in this thesis is a system based on a cascade of three sensor systems:
	Position tracking is done in three steps. A first position estimation is done using GPS or similar position detecting techniques...

	1.4 Objectives
	This thesis addresses the issue of providing a low cost, high integrity, aided inertial navigation system for mobile augmented reality applications.
	Inertial Navigation is the implementation of inertial sensors to determine the pose (position and orientation) of a mobile user....
	In summary, the goal of this thesis is to provide an aided inertial navigation system which can be used cost-effectively by the civilian sector for augmented reality applications and autonomous navigation.
	The objectives of this thesis in order to reach this goal are:

	1.5 Contributions
	The scale of the human motion-tracking problem is vastly different from that of global navigation. Tracking is only required ove...
	The main contributions presented in this thesis are as follows:

	1.6 Thesis Outline
	The thesis is organized as follows. In Chapters 2-3 we tackle the problem of pose determination. In Chapter 2 we present the most used pose determination technologies together with requirements for Augmented Reality tracking.
	Chapter 3 surveys the existing sensors for pose determination, presenting their operating principle and their characteristics. I...
	In Chapter 4 we proceed with the design of an inertial navigation system based on sensor data fusion using a novel approach: Kal...
	As the Vision subsystem is far more complex, due to the perception and segmentation issues of complex objects in a 3D world, the...
	In Chapter 6 we summarize the presented work with concluding remarks. Here, we also present ideas and possibilities for future research.


	Chapter 2
	2.1 Introduction
	In this chapter we will review a variety of existing techniques and systems for position determination [78]. Nowadays, due to th...
	A navigation system provides the required information by either sensing the relative movement of the mobile system, or by determ...
	To enjoy the benefits of both, navigation systems generally include both types of sensors and either select which is the most ap...

	2.2 Types of AR Systems
	In order to combine the real world with virtual objects in real-time we must configure camera and display hardware. The three mo...
	2.2.1 Monitor-based Display
	The simplest approach is a monitor-based display, as depicted in Figure 2-1. The video camera continuously captures individual f...

	2.2.2 Video See-through Display
	In order to increase the sense of immersion in virtual reality systems, head-mounted displays (HMD) that fully encompass the use...

	2.2.3 Optical See-through Display
	The other popular HMD configuration for augmented reality is the optical see-through display system, as depicted in Figure 2-3. ...


	2.3 Relative Position Measurements
	Perhaps the most important result from surveying the vast body of literature on mobile user positioning is that, to date, there ...
	Acquiring relative measurements is also referred to as dead reckoning, which has been used for a long time, ever since people st...
	2.3.1 Odometry
	Odometry works by integrating incremental information over time. By using wheel encoders to count the number of revolutions of e...
	However, due to drift and slippage the integration of the wheel revolutions leads to errors in both traveled distance and orient...

	2.3.2 Inertial Navigation
	This method uses gyroscopes and sometimes accelerometers to measure rate of rotation and acceleration. Measurements are integrat...
	In inertial navigation, acceleration sensors[18] are used for making distance measurements. Inertial measurements are frequently...
	A simple 1 dimensional system is shown in the next Figure 2-4. This configuration would be used for measuring the distance trave...
	The double integration leads to an unacceptable rate of positional drift and must be corrected frequently by some external source. The techniques that we can use to correct the error are:
	A more complex inertial measurement is that of a 6 degree-of-freedom system as found in an airplane or spacecraft. These systems...
	Inertial sensors [13] are used in applications where rotational and linear movements are to be measured without reference to ext...
	2.3.2.1 Accelerometers
	An accelerometer is a precision instrument, which couples a mass to an instrument case through an elastic, viscous, or electroma...
	All accelerometers operate on the same principle, namely, measuring the relative displacement of a small mass, called a proof or...
	An accelerometer measures platform acceleration, which can be integrated to produce the velocity, and double integrated to produ...
	Accelerometers are generally based on observing the displacement of a suspended mass caused by inertia. Two common implementatio...
	where F is the applied force, m is the mass of the suspended mass, c is the damping coefficient (a function of the medium), K is the spring stiffness, x is the displacement of the spring relative to resting position.
	Many modern designs use MEMS technology, e.g. those from Analog Devices (2000). Here, a small proof mass is suspended from two s...
	.

	2.3.2.2 Gyroscopes
	Gyroscopes (or gyros) measure rotational values without reference to external coordinates [94]. Most gyros measure the speed of ...
	The mechanical gyroscope, a well-known and reliable rotation sensor, is based on the inertial properties of a rapidly spinning r...
	The optical group comprises the fiber optic and laser types. These use the Sagnac Effect (named after its French discoverer), wh...
	A single gyro measures rotation on a single plane, but a triad of gyros is mounted, preferably orthogonally, in a single enclosu...
	Table 2-1. Comparison of low cost Gyro Technologies

	Strapdown gyros measure rotation on a fixed plane with respect to the vehicle, which is generally not on a plane orthogonal to t...
	Piezoelectric materials exhibit the piezoelectric (PE) effect; a vibrational motion of crystals creates an electric potential wi...
	Two basic types have been constructed, the free-free-bar and the tuning fork. Both use an excitation signal to drive the oscilla...
	Piezoelectric gyros are essentially Coriolis sensors. The Coriolis force is a fictitious force exerted on a body when it moves i...
	where m is the mass of the object, v is the velocity vector of the object and w is the angular rotation rate vector.
	The excited vibration of the bar or fork creates an oscillating velocity vector. If this system is rotated around the sensitive ...



	2.4 Absolute Position Measurements
	Absolute position measurements supply information about the location of the robot, irrespective of previous location estimates; ...
	2.4.1 Active Landmarks
	Active landmarks, also called beacons, are landmarks that actively send out location information. Active landmarks can take on t...
	2.4.1.1 Wireless Location Systems
	Though wireless users are mobile by nature, knowledge of their dynamic location is very useful information. In emergency situati...

	2.4.1.2 Ground-Based RF Systems
	Active beacons have been used for many centuries as a reliable and accurate means for navigation. Stars can be considered as act...
	Modern technology has vastly enhanced the capabilities of active beacon systems with the introduction of laser, ultrasonic, and ...
	Ground-based RF position location systems are typically of two types:

	2.4.1.3 Loran
	An early example of the first category is seen in Loran (short for long range navigation). Developed at MIT during World War II,...
	The original implementation (Loran A) was aimed at assisting convoys of liberty ships crossing the North Atlantic in stormy wint...
	Loran A was phased out in the early '80s in favor of Loran C, which achieves much longer over- the-horizon ranges through use of...

	2.4.1.4 Cell-based tracking
	An example of such a system is the current cellular phone system[27],[30]. How and why should the cellular system know the locat...
	It has to do with efficiency. If cell phone users only placed calls and never received them, there would not be any need to trac...
	The alternative to flood paging is registration-based paging. That's where the phone announces itself to the system with a short...
	Another solution would be for the cell base stations to transmit their own signal, and the phones to be able to work out where they are from the relative skew of the signal from the nearest 3 or 4 base stations (similar to GPS with very low satellites).

	2.4.1.5 The GUIDE system
	The GUIDE [26] system has been developed to provide city visitors with a hand-held context- aware tourist guide, and used in the...
	Although, the range of WaveLAN is approximately 200m in free space, WaveLAN signals have very poor propagation characteristics t...
	When visitors leave the cell coverage and up-to-date positioning information becomes unavailable, the GUIDE system tries to loca...

	2.4.1.6 Ultrasonic Tracking
	The CONSTELLATION tracking system, proposed by Eric Foxlin [15] from InterSense, is similar in its basic principles of operation...
	Figure 2-7 illustrates the system, configured for tracking an HMD (Head Mounted Display) in a wide-range VR or AR application. T...
	Eric Foxlin describes the hardware that uses an InertiaCube [16] to sense angular rate and linear acceleration along each of three orthogonal body axes. We present it below.
	Figure 2-8 illustrates the main hardware components of the tracking system. Just as GPS has a space-based constellation of satel...

	2.4.1.7 Global Positioning Systems (Space-based Radio System)
	The GPS (Global Positioning System) tracking principle uses 24 satellites (Figure 2-9) and 12 ground stations. The ground statio...
	The absolute three-dimensional location of any GPS receiver is determined through simple triangulation techniques based on time ...
	Although conceptually very simple, this design philosophy introduces at least four obvious technical challenges:
	With the exception of multi-path effects, all of the error sources can be essentially eliminated through use of a practice known...
	Table 2-2. Summary of achievable position accuracies for various implementations of GPS



	2.4.2 Passive Landmarks
	If the landmarks do not actively transmit signals, they are called passive landmarks. The mobile system has to actively look for...
	2.4.2.1 Geomagnetic Sensing
	Vehicle heading is the most significant of the navigation parameters in terms of its influence on accumulated dead-reckoning err...
	The average strength of the earth's magnetic field is 0.5 Gauss and can be represented as a dipole that fluctuates both in time ...
	A magnetometer or magnetic compass is the only low cost absolute heading reference presently available for augmented reality app...
	A magnetic compass senses the magnetic field of the Earth on two or three orthogonal sensors, sometimes in conjunction with a bi...
	The magnetic sensors are usually flux-gate sensors. The operation of a fluxgate is based on Faraday’s law, which states that a c...

	2.4.2.2 Inclinometers
	An inclinometer is a sensor used to measure the angle between the gravity vector and the platform to which it is mounted. This c...
	The liquid-bubble inclinometer uses a vial, partially filled with a conductive liquid, to determine the tilt of the platform in ...
	.
	The acceleration-related error suffered by bubble inclinometers is due to the fact that vehicle acceleration will make the liqui...
	where g is the magnitude of gravity and av is the acceleration of the mobile unit (see Figure 2-10).

	2.4.2.3 Vision-Based Positioning
	A core problem in mobile person tracking is the determination of the position and orientation (referred to as the pose) of a mob...
	Visual sensing provides a tremendous amount of information about a mobile person's environment, and it is potentially the most p...
	Most localization techniques provide absolute or relative position and/or the orientation of sensors. Techniques vary substantia...

	2.4.2.4 Camera Model and Localization
	Geometric models of photometric cameras are of critical importance for finding the sensors’ geometric position and orientation. ...
	Although the range information is collapsed in this projection, the angle or orientation of the object point can be obtained if ...
	The representation of the environment can be given in the form of very simple features such as points and lines, more complex pa...
	If a camera is mounted on a mobile person with its optical axis parallel to the floor and vertical edges of an environment provi...


	2.4.3 Model-Based Approaches
	Another group of localization techniques are map-based positioning or model matching techniques. These approaches use geometric ...
	In this method, information acquired from the mobile user computer onboard sensors is compared to a map or world model of the en...
	A priori information about an environment can be given in more comprehensive form than features, such as two-dimensional or thre...


	2.5 Multi-Sensor Fusion and Inertial Navigation
	Algorithms that solve the localization problem combine initial information and relative and absolute position measurements to fo...
	Fusion of information from multiple sensors is important, since combined information from multiple sensors can be more accurate....
	A person walking around with an AR headset is comparable to a vehicle roaming around the earth. In the previous chapter we elabo...
	Inertial navigation is the process of measuring acceleration on board a vehicle and then integrating the acceleration to determi...
	Inertial navigation systems can be classified according to the way they perform the basic operations of inertial navigation. A n...
	In gimbaled navigation systems (see Figure 2-14), the inertial sensors are mounted on an actuated platform whose orientations ar...
	In a strapdown inertial navigation system, there is no gimbal to be maintained in alignment with a reference frame, so the orien...
	Actuated systems have smaller computational burdens and expose the inertial sensors to a more benign inertial environment, but a...

	2.6 Summary of Sensing Technologies
	There are several sensing technologies [12],[14] in use, with the most common being magnetic, acoustic, and optical technologies. Table 2-3 provides an overview of the different technologies and their advantages and disadvantages.
	Table 2-3. Tracking Technologies

	Position and orientation trackers can be described in terms of a small set of key characteristics that serve as performance meas...
	These characteristics provide some guidance for tracker performance. One of the most important is latency. Durlach [24] states that delays greater than 60 msec. between head motion and visual feedback impair adaptation.
	Latencies between systems are difficult to compare because they are not always calculated the same. Bryson [25] identifies sever...
	Sometimes the application also requires the head movement information. One important parameter of a head tracker is its responsi...
	An additional important characteristic that is included is working volume or range, which may be bound by intrinsic limitations such as mechanical linkage or signal strength. This is the volume in which a position tracker accurately reports position.

	2.7 Conclusions
	Each tracking approach has limitations. Noise, calibration error, and the gravity field impart errors on the signals, producing ...
	No single tracking technology has the performance required to meet the stringent needs of outdoor or indoor positioning. However...
	To simplify the problem, we assume real-world objects are distant (e.g., 50+ meters), which allows the use of GPS for position t...
	In summary:


	Chapter 3
	3.1 Introduction
	A major issue in headtracking for augmented reality systems is to create such a high speed, low latency system that the chance o...
	This chapter presents the hardware components we have developed to operate interactive AR applications in an outdoor environment...
	The computer currently being used is a Pentium-III 1.2 GHz processor, 512 MB of memory, and a 20 GB hard drive. Most importantly...
	The head-mounted display is an iGlasses ProTek with a maximum resolution of 800x600. This display can be used for either video or optical-based augmented reality, and has one of the highest quality displays available.
	The body position tracker used is a a Garmin 25 GPS, which is low quality with 5-10 meter accuracy. This device is a low power a...

	3.2 Building an Inertia Measurement Unit
	The instrument cluster that implements an inertia measurement unit (IMU), usually includes a number of gyros and accelerometers ...
	In selecting components, we consider two sets of goals gleaned from the above design. The first are the functional requirements - 6 DOF sensing. The second are the usability goals - small, as well as low cost and low power.
	In the case of the accelerometers, the Analog Devices components are notably superior for our applications. They provide adequat...
	In selecting gyroscopes, the matter is not quite as simple. While the Gyration[2] gyroscope has the best power drain and price, ...
	3.2.1 Position and Orientation Sensing Hardware
	The hardware that we used in our design was:
	The LART platform was developed at the Delft University of Technology [96] (Figure 3-3). This Linux-based system contains an 8-c...
	The Garmin GPS provides outputs at 1 Hz, with an error of 5-10 m and an error of 2-3 m in a DGPS configuration. The TCM2 updates...

	3.2.2 Gyroscopes
	The Murata Gyrostar piezoelectric vibrating gyro uses an equilateral triangular bar composed of elinvar (elastic invariable meta...
	The bars can be very easily tuned to match the driving (resonant) and detecting frequency of both detectors compared to the rect...
	Table 3-1. Selected Murata Gyrostar Specifications

	This gyro was selected in our project for its low cost (approximately $15 in large quantities), small size, light weight, and go...
	The Murata gyro has instability in both the zero-rotation output voltage and the scale, mainly due to temperature variations. Si...
	Difficulties also arise in trying to calibrate both the zero-rotation offset and scale factor simultaneously without a precise r...

	3.2.3 Accelerometers
	The sensors are surface micro-machined as in some standard integrated circuits (IC), and are therefore available in standard IC ...
	The specifications of Analog Devices ADXL105 accelerometer are found in Table 3-2.
	Table 3-2. Selected ADXL105 Specifications

	The typical noise floor is 225 allowing signals below 2mg to be resolved. A 10kHz wide frequency response enables vibration meas...

	3.2.4 Magnetometers
	It should be possible to compensate for the magnetic field of the mobile system since it is constant and keeps its orientation w...
	The horizontal components of the magnetic field are needed to compute the heading relative to the North magnetic pole. If the se...
	If a three-axes magnetometer is operated without the presence of spurious magnetic fields, the measurement locus of the magnetic...
	The TCM2 uses a patented magneto-inductive sensing technique that makes use of a material whose inductance varies with the magne...
	Table 3-3. TCM2-50 Digital Compass Specifications (Precision Navigation 1999)

	It is possible to calibrate the TCM2 sensor to take into account the static magnetic field of the mobile unit. The calibration p...

	3.2.5 Global Positioning
	Each satellite broadcasts a unique coarse acquisition (C/A) pseudo-random noise (PRN) code, modulated onto the L1 carrier. Selec...
	The master control station (MCS) processes range measurements taken at the five monitoring stations and develops predictions for...
	3.2.5.1 GPS positioning
	Four or more satellites are normally required to compute a GPS position due to the use of low cost oscillators in commercial GPS...
	Three observations are normally made from the signal tracking procedures of a GPS receiver. These are the pseudorange, carrier p...
	Table 3-4. Typical Errors for C/A Code Receiver

	GPS errors are a combination of noise, bias, and blunders:
	Noise and bias errors combine, resulting in errors typically ranging around fifteen meters for each satellite used in the positi...

	3.2.5.2 The Garmin GPS25 GPS receiver
	The GPS 25LPs [19] is simultaneously tracking up to twelve satellites providing fast time-to-first- fix, one-second navigation u...
	Some performance figures for the GPS25 receiver are as follows:
	1. It tracks up to 12 satellites (up to 11 with PPS (pulse per second) active)
	2. Update rate: 1 second
	3. Acquisition time: 15 seconds warm (all data known), 45 seconds cold (initial position, time and almanac known, ephemeris unknown), 1.5 minutes AutoLocateTM (almanac known, initial position and time unknown), 5 minutes search the sky (no data known)
	4. Position accuracy:
	5. Velocity accuracy: 0.2 m/s RMS steady state (subject to Selective Availability)
	6. Dynamics: 999 knots velocity, 6g dynamics
	7. One-pulse-per-second accuracy: ±1 microsecond at rising edge of PPS pulse (subject to Selective Availability)

	We used the program VisualGPS to display and analyze the data from the Garmin GPS board. Figure 3-6 presents a short navigation session. The program displays also the number of satellites in view and the signal strength.

	3.2.5.3 GPS protocols
	All standard GPS hardware communications use the NMEA-0183 standard for marine electronic devices. Most GPS hardware also suppor...
	${talker id}{sentence id},{comma separated list of fields...}{optional checksum}\015\012
	The talker id is a two-letter code that indicates the type of device sending the message. This will always be “GP” when reading ...
	These are common sentence types supported by almost all GPS systems. A detailed description of these sentences can be found in Chapter A.7.

	3.2.5.4 Spatial reference systems
	To measure locations accurately, a selected ellipsoid should fit an area of interest. Therefore, a horizontal (or geodetic) datu...
	To produce a map, the curved reference surface of the Earth, approximated by an ellipsoid or a sphere, is transformed to the fla...
	Most countries have defined their own local spatial reference system. We speak of a spatial reference system if, in addition to ...
	The RijksDriehoeksmeting is also a division of the Dutch Cadaster that is responsible for the maintenance of surveying networks ...
	WGS84 is a completely different type. This is a global reference system that hinges on the use of a reference ellipsoid. GPS eph...
	1. The x and y RD coordinates are projected on a Bessel ellipsoid
	2. The latitude and longitude on the Bessel ellipsoid are converted to WGS84

	The Bessel ellipsoid is an invention of the RD, it is a so-called best fitting reference surface for the Netherlands. Latitudes and longitudes on Dutch topographic maps are (unless otherwise indicated) represented on the Bessel ellipsoid.
	The x-coordinate is called Easting (E) and the y-coordinate Northing (N) and both are given in meters. So the position of the centre of the small round island in the Hofvijver in The Hague (at the seat of the government) is noted as 081322E 455215N.
	The Easting starts at about 012000 and rises nowhere higher than 276000. The Northing starts (in Zuid Limburg) with 306000 and e...
	There are many ways to write down these coordinates. Usually (but not always) first the Easting then the Northing values. Someti...


	3.2.6 Differential GPS
	Differential GPS (DGPS) is a technique of reducing the error in GPS-derived positions by using additional data from a reference ...
	DGPS can be used to minimize the errors of single-point GPS by canceling the parts of the error that are common to receivers in ...
	As we can see from both figures below, the DGPS navigation is comparable in accuracy with GPS alone and that is in the range of ...


	3.3 Sensor Errors
	In order to realize the navigation and alignment algorithms, the calibration of the sensor errors has to be done beforehand, stand alone. The sensor error model is:
	With:
	In our subsequent discussions we will not take the gyro flexure errors into consideration. The model parameters and are assumed ...
	3.3.1 Accelerometer calibration procedure
	The accelerometers are calibrated by comparing the analog or digital signals produced by the sensors with a known applied motion...
	A long drift calibration of the acceleration is achieved by fitting a linear function to the data. A quadratic, cubic or an expo...
	All sensors are sampled at 1 kHz. As we can see from Figure 3-9, all accelerometer signals are quite noisy. To reduce the noise ...
	To calibrate the scale factor and bias of the accelerometer, we use the projection of an apparent gravity vector g on the body f...
	The thermal bias drift rate of the accelerometer placed at room temperature was found by experiments to be 0.108mg/s.
	For each accelerometer:
	Using the above measurements, the estimates of the x, y and z scale factors and biases of the accelerometer can be computed as:

	3.3.2 Gyroscope calibration procedure
	Micromachined solid-state gyroscopes use vibrating mechanical elements to sense rotation. They have no rotating parts that requi...
	Resolution, drift rate, zero-rate output, and scale factor are the most important factors that determine the performance of a gy...
	The Murata Gyrostar piezoelectric vibrating gyro was used for our IMU. This gyro was selected for its low cost, small size, and ...
	To develop an error model for the Murata gyroscopes, their outputs were recorded over long periods of time, subjected to zero in...
	Ideally, the output for zero input would be a constant voltage level corresponding to the digital output of 32768 for a 16-bit A...
	For a Murata gyro, the real output data is at a lower level than the ideal at start-up, and the mean gradually increases with ti...
	Long-duration gyro drift calibration is achieved by fitting an exponential function to the data. A nonlinear parametric model of...
	We tried two exponential error model functions, one with an exponential defined by three parameters, and the second containing two exponentials defined by four parameters.
	Figure 3-11 presents the signal for the three gyros over a 10-hours period, together with their fit function, as represented in ...
	For comparison purposes we present (in Figure 3-13) the two fitting functions overlayed over the original data. One can see that...
	The gyro has instability in both the zero-rotation output voltage (bias) and the scale factor, mainly as a result of temperature...
	The sensor is linear for low rotation rates. For high rotation rates the calibration is achieved by fitting a fifth order polyno...
	Note that a fiber optic gyro (FOG) has a range of stability of several degrees per hour. The big disadvantage of these type of s...
	.

	3.3.3 Overall Sensor Alignment
	The alignment of the sensors on the IMU is done by leveling. In a strapdown inertial system this is a mathematical operation. Th...
	Accelerometers: We know the normal vectors of the accelerometers from calibration or from inclinometer measurements. The local g...
	with: nacc - the normal vector of accelerometer j, SF the accelerometer scale factor, and macc the accelerometer measurements.
	Rate Gyros: When the IMU is stationary we know that its attitude remains the same. Therefore, the mean value of the sampled rotation rates should be zero.
	In this way we can compute an estimate for the accelerometer bias and gyro drift, and this estimation can be use to initialize a Kalman filter.


	3.4 Results and Conclusions
	Conclusions on relative sensors
	Relative (local) localization consists of evaluating the position and orientation through integration of encoders, accelerometer...
	The Murata Gyrostar piezoelectric vibrating gyros can measure up to 300 ˚/s. They are inexpensive but have a large bias that var...
	Conclusions on absolute sensors
	Absolute (global) localization permits the mobile system to determine its position directly using navigation beacons, active or ...
	The TCM2-50 liquid inclinometer uses a viscous fluid to measure the inclination with respect to the gravity vector with an accur...
	Differential GPS reduces or eliminates errors caused by the satellite clock, orbital errors, and atmospheric propagation. It doe...
	In this chapter we saw that DGPS navigation is comparable in accuracy with GPS alone, i.e. in the range of 5 meters RMS. The imp...
	Conclusions on the making of the system
	The performance requirements for the sensors are derived from the attitude determination and navigation accuracy requirements. T...
	Based on the analysis of the technologies presented in the previous chapter and the sensors described in this chapter, we select...
	The LART platform, that is used for data acquisition and preprocessing, has an 8-channel fast 16- bit AD-converter to acquire sy...
	Conclusions on calibration
	It is possible to build a look-up table based on the apparent relation between drift rate and sensor temperature. Doing so may p...
	The thermal bias drift rate of the accelerometer placed at room temperature was found by experiments to be 0.108mg/s. The effect...
	Velocity error = 0.589m/s per mg per min
	Position error = 17.66m per mg per min2
	Thus, for a bias of 2mg, the velocity error built up in one minute is 1.178m/s and position error is 35.2m. Thus, if the random bias can be modeled properly, the accuracy in distance measurement can be greatly improved.


	Chapter 4
	4.1 Introduction
	In this chapter we will proceed with the design of a position and orientation tracking system for an Augmented Reality system. W...
	This chapter will provide the necessary background knowledge on inertial sensors and their associated errors. Furthermore, the c...
	When designing the overall fusion algorithm, we must take into consideration the multi-rate sensor collection, and design our al...
	There are a number of remarkable advantages you will notice just in the form of the filter. First off all, the Kalman gain is co...

	4.2 Coordinate Frames
	A coordinate frame is an analytical abstraction defined by three consecutively numbered (or lettered) unit vectors that are mutually perpendicular to one another in the right-hand sense.
	In the literature on inertial navigation, coordinate frames are defined in the following ways:
	4.2.1 Strapdown Attitude Representations
	4.2.1.1 The Euler angle representation
	A transformation from one coordinate frame to another can be carried out as three successive rotations about different axes. Thi...
	The coordinate frames referred to in this thesis are orthogonal, right-handed axis sets in which positive rotations around each ...

	4.2.1.2 Propagation of Euler angles in time
	If angular rate gyros are rigidly mounted on a vehicle, they will directly measure the body-frame inertial angular rate vector (...
	The inverse transformation is:
	Equation 4-2 allows the calculation of the Euler angle derivatives for integration. Note that the solution requires integration ...

	4.2.1.3 The direction cosine matrix representation (DCM)
	The direction cosine matrix denoted by , is a 3 x 3 matrix, where the columns represent unit vectors in body axes, projected alo...
	The three rotations are expressed mathematically as three separate direction cosine matrices C1, C2 and C3, where y represents rotation around the z axis, q represents rotation around the y axis, and f represents rotation around the x axis.
	Thus a transformation from reference to body frame may be expressed as the product of the separate transformations.
	For small angle rotations, where , , and the cosines of those angles approach unity and ignoring second order terms, DCM can be expressed in terms of Euler angles as a skew symmetric matrix.
	This form of matrix is used sometimes to represent the small changes in attitude which occur between successive updates in real-time computation of body attitude, and to represent the error in the estimation of a direction cosine matrix.

	4.2.1.4 Propagation of the direction cosine matrix in time
	The rate of change of with time [83] is given by:
	The values p, q, and r represent the angular rate around each axis of the B-frame with respect to the N-frame. An observation p, q, r is noted in some papers and books as .
	An equation in the form of Equation 4-7 needs to be solved by the computer in a strapdown inertial navigation system to keep track of the body attitude with respect to a chosen reference frame. It can be expressed in close form as:
	with:
	The derivation of Equation 4-8 is presented in section Section A.2 on page 149.

	4.2.1.5 The quaternion representation
	The quaternion attitude representation is a four parameter representation based on the idea that a transformation from one coord...
	The meaning of a, b, and g is as follows: the quaternion q, makes the angle cos-1a, cos-1b and cos- 1g with the inertial axes x,...
	It can be shown (see Section A.3) that the quaternion vector elements can be used to compute the direction cosine matrix .

	4.2.1.6 The quaternion norm
	The norm of the quaternion vector should always be one and it is used to correct for accumulated computational errors.
	If we look at Equation A-18 on page 153 we see that Euler angles are computed using all elements of the quaternion vector. This ...

	4.2.1.7 The propagation of the quaternion in time
	The quaternion, q, propagates in accordance with the following equation:
	Quantities p, q, and r represent the angular rate about each axis of the B-frame with respect to the N-frame. For the situation ...
	with:
	The derivation of Equation 4-14 is presented in section Section A.3 on page 151.



	4.3 Inertial Navigation
	4.3.1 Navigation Frame Mechanization
	In order to navigate over large distances around the Earth, e.g., in a vehicle, navigation information is most commonly required...
	The speed rate of change in inertial axes is:
	where a represents the specific force acceleration to which the navigation system is subjected.
	Substituting Equation 4-17 in Equation 4-16 we have:
	This equation may be expressed in navigation axes as follows:
	where is the direction cosine matrix used to transform the measured specific force vector into navigation frame (n in the previous equation is not an exponential notation but represents the navigation frame).
	It is necessary to consider the physical significance of the various terms in the navigation Equation 4-19. From this equation, ...

	4.3.2 Navigation Equations in Body Frame
	We have as the true vehicle acceleration in the body frame. This acceleration is not the acceleration measured by the IMU (Inert...
	In vector form this will be:
	In the figure below we illustrate the forces acting on the moving body.
	Figure 4-3 explains the forces acting upon the mass of the accelerometer as a function of the linear acceleration, the apparent ...
	Here we ignore the Coriolis acceleration. If the navigation system is meant to work over long distances we need to take into acc...
	The IMU will also measure the gravity acceleration and can not know the difference between this acceleration and true vehicle ac...
	We get the q and f angle from the IMU and can calculate the gravity components in the body frame. The rotation matrix from the local coordinate system n to the body coordinate system b is noted with .
	If the IMU is not placed in the center of gravity we have another term. Suppose that the IMU is placed at coordinate relative to...
	The equation that takes all the influences into account is:
	We can solve the true vehicle acceleration from Equation 4-25. We assume that the IMU is placed at the center of gravity and hence aIMU = 0:
	The flow-chart [71] of the strapdown navigation algorithm implementing the equation presented above is presented in Figure 4-4.
	In order to verify the model, we simulated accelerometer and gyro signals and we computed the navigation solution as in Figure 4...
	A conclusion that can be drawn looking at navigation equations is related to accelerometer error and gyro drift. Drift in the li...


	4.4 Sensor Data Fusion with Kalman Filters
	4.4.1 The Kalman Filter
	Kalman filtering is the main analysis technique for inertial data and is used almost exclusively for inertial tracking, i.e. the...
	Kalman filtering (KF) is a state-based recursive algorithm, which works in two stages. The first is the prediction stage where, ...
	The strength of Kalman filtering lies in its optimality, its minimal memory requirements for the state (only a single time step)...
	4.4.1.1 The discrete Kalman filter
	The Kalman filter addresses the general problem of trying to estimate the state of a discrete- time controlled process that is governed by a linear stochastic difference equation and a measurement, given by:
	The random variables wk and vk represent the process and measurement noise, respectively. They are assumed to be independent of ...
	The n x n matrix in the difference equation in Equation 4-27 relates the state at the previous time step to the state at the cur...
	We define to be an a priori state estimate at step k, given knowledge of the process prior to step k, and to be an a posteriori state estimate at step k, given measurement zk. We can define a priori and a posteriori estimate errors as:
	The a priori and a posteriori estimate error covariance is then:
	In deriving the equations for the Kalman filter, we begin with the goal of finding an equation that computes an a posteriori sta...
	The difference in Equation 4-30 is called the measurement innovation, or the residual. The residual reflects the discrepancy between the predicted measurement and the actual measurement. A residual of zero means that the two are in complete agreement.
	We can write the a posteriori estimate (updated) covariance as:
	The n x m matrix K in Equation 4-30 is chosen to be the gain or blending factor that minimizes the a posteriori error covariance...
	One form of the resulting K that minimizes Equation 4-31 is given by:
	Looking at Equation 4-33 we see that as the measurement error covariance R approaches zero, the gain K weights the residual more heavily. Specifically,
	On the other hand, as the a priori estimate error covariance approaches zero, the gain K weights the residual less heavily. Specifically,
	Another way of thinking about the weighting by K is that as the measurement error covariance R approaches zero, the actual measu...
	Another form for Equation 4-31 to compute the a posteriori covariance matrix is obtained by substituting in the above mentioned equation for K:
	The Equation 4-31 is sometime called the Joseph form and this helps to overcome ill-conditioning. Note that the right-hand side ...
	The Kalman filter estimates a process by using a form of feedback control: the filter estimates the process state at some time a...
	The equations derived in this section are summarized here. The basic steps of the computational procedure for a discrete Kalman filter are as follows:
	The time update equations project the state and the covariance estimates forward from step k-1 to step k.
	The first task in the measurement update stage is to compute the Kalman gain K. The next step is to actually measure the process...

	4.4.1.2 The discrete extended Kalman filter
	A Kalman filter that linearizes around the current mean and covariance is referred to as an extended Kalman filter or EKF. To es...
	with:
	The fundamental matrix, required for the discrete Riccati equations, can be approximated by the Taylor-series expansion for exp(...
	The basic steps of the computational procedure for discrete extended Kalman filter are as follows:
	The old estimates that have to be propagated forward do not have to be propagated with the fundamental matrix, but instead can b...
	The first task on the measurement update stage is to compute the Kalman gain K. The next step is to actually measure the process...
	Because of their didactic value, sub-sections 4.4.1.3. and 4.4.1.4. are quotes from the (Roumeliotis, Sukhatmey, Bekey [99]).

	4.4.1.3 Indirect versus direct Kalman filters
	“A very important aspect of the implementation of a Kalman filter in conjunction with inertial navigation systems (INS) is the u...
	There are some serious drawbacks in the direct filter implementation. Being in the INS loop and using the total state representa...
	In addition, the dynamics involved in the total state description of the filter include a high frequency component and are only ...
	Another disadvantage of the direct filter design is that if the filter fails (e.g. through a temporary computer failure) the ent...
	The Indirect error state Kalman filter estimates the errors in the navigation and attitude information using the difference betw...

	4.4.1.4 Feedforward versus feedback indirect Kalman filters
	“The basic difference between the feedforward and feedback Indirect Kalman filter is mainly in the way it handles the updated er...
	The EKF assumes the measurement residual is small for the first order approximation in the calculation of Kalman gain to be accurate enough. If this assumption fails, the navigation states are erroneous and the solution may become unreliable.


	4.4.2 Feedback Indirect Kalman Filter Equations
	4.4.2.1 Gyro noise model
	In the approach here, we use a simple and realistic model. In this model the angular velocity w is related to the gyro output wm according to the equation:
	where b is the drift bias and nr is the drift noise. Only nr is assumed to be a Gaussian white-noise process, with zero mean and variance:
	The drift bias is not a static quantity. The output of the gyro is known to err by an unknown slowly time-varying bias. The turn...
	One often-quoted measure of sensor accuracy is the random-walk parameter. For example, a fiber- optic gyro might list its random...

	4.4.2.2 Quaternion error equations
	The error state includes the bias error and quaternion error. The bias error is:
	The quaternion error is not the arithmetic difference, but is expressed as the quaternion which must be composed using the estimated quaternion to obtain the true quaternion:
	or, equivalently:
	The advantage of this representation is that since the incremental quaternion corresponds very closely to a small rotation, the ...
	The physical counterparts of the quaternions are the rotation axis n and the rotation angle q that are used in the Euler theorem...
	with the constraint:
	The real and vector part of the quaternion can be expressed using the rotation axis n and the rotation angle q as:
	with:
	The rate of change of a quaternion with time can be expressed as:
	with:
	Starting from the equations:
	and
	where the operatorrepresents the quaternion multiplication (see Chapter A.3.1). From Equation 4-48 we have:
	From Equation 4-57 we can express:
	To deduce the second term from Equation 4-59 and Equation 4-57 we can write:
	From the previous equation we have the result:
	Substituting Equation 4-60 and Equation 4-62 in Equation 4-59 we obtain:
	The true orientation is noted by , the orientation estimate obtained by integrating the gyro signal is noted by , whereas wm is the angular rate measured by the gyro:
	Substituting this in Equation 4-63 and rearranging it we obtain:
	At this point we need to use knowledge about combining two quaternion vectors. With:
	then their product is:
	Now we can simplify the first term in Equation 4-65 and knowing that ,we have:
	Similarly the second part of Equation 4-65 can be written as:
	with:
	For very small rotations we can assume that
	Then, Equation 4-69 can be written as:
	Now substituting Equation 4-72 and Equation 4-68 into Equation 4-65 we have:
	Now if we know that:
	Then from Equation 4-70, Equation 4-73 and Equation 4-74, and separating the vector from the scalar terms, we obtain the equation that is used in the Kalman filter:
	By using the infinitesimal angle assumption in Equation 4-53, that is sin(a) = a, we can write the difference of the quaternion vector part as:
	Now, using Equation 4-75 and Equation 4-76, we are ready to write the equation that it is used to describe the Kalman error state in terms of Euler angles:

	4.4.2.3 The quaternion error in an indirect Kalman filter
	The continuous differential equation expressed in quaternion error is derived from Equation 4-75. The matrix form is useful to determine the F matrix.

	4.4.2.4 The Euler angle error in an indirect Kalman filter
	The continuous differential equation with quaternion errors is derived from Equation 4-77. The matrix form is useful to determine the F matrix.
	The Euler angles are observable if we have inclinometer information. The angle observation equation, and observation matrix are:
	Ideally, Qk is supposed to reflect the magnitude of a white noise sequence. If all error sources in the inertial attitude system...
	However, there are many nonwhite error sources besides bias, such as nonlinearity, hysteresis, misalignment, g-sensitivity, and ...
	The model of gyro dynamics for a long duration is exponential, but t is in the order of 30 - 60 minutes. For the run time of the Kalman filter we can consider that the drift error is linear. We assume the following error sources in the process equation:
	Qk is constructed as follows:
	where sw = 10-8(1+w2), assuming Dt = 0.01 sec.
	Rk is modeled in a similar experimental way. The measurement noise is extremely nonwhite. The major source of measurement noise ...
	1. compute the “stilltime” t since the last non-zero gyro reading OR the last time when , and when the magnetic alarm from the magnetometer (TCM2) is set, set sr to 1.
	2. set sv = 1/(1+400t), and if magnetic alarm is 0 set sr = sv.
	3. if sv < 0.004, set sv = 0.004, and sr < 0.002, set sr = 0.002.
	4. set Rk as in Equation 4-82.

	According to this algorithm, the measurement error covariance for inclinometer roll and pitch ranges from 1, during periods of l...
	Typical input signals from gyros and inclinometer and magnetometer (TCM2 sensor) are:
	To demonstrate the behavior of the Kalman filter, two datasets were collected. In the first dataset, the complementary Kalman fi...
	Due to the time-varying Rk strategy which shuts out the measurements during extensive motion, a certain amount of error accumula...
	:
	Figure 4-9 displays plots of the error variance as a function of time. The variance grows between the time instants (time update...
	Results showed that the orientation Kalman filter converges quickly (Figure 4-10). The stability of the gyros provides very accu...

	4.4.2.5 A linear error model
	A very common linear error model is found in [87].
	We explain it using Figure 4-11, in which we have the accelerations [aN, aE, aD] in a navigation frame. The IMU is misaligned with small angles [f, q, y]. We want to know the resulting acceleration on the frame axes caused by the misalignment.
	From the figure we compute the resulting acceleration aN and we see that the misalignment angles y and q will project the acceleration aD and aE to the x-axis (N). From the figure we set up the equation:
	If y and q are small we can approximate the equation with:
	We get , were An is a skew symmetric matrix.
	This model works fine if the trigonometric functions can be approximated with a first order Taylor expansion. We can use this mo...

	4.4.2.6 A linear model for position estimation
	We consider that the delta speed and the delta position are represented in the navigation coordinate system, and the delta acceleration (the drift) is in the body reference coordinate system.
	Figure 4-12 shows how the accelerometer bias is modeled as a random walk process. The bias is modeled as an integrated white noi...
	The result for the Kalman filter simulation for accelerometer signals with drift are:
	As we can see, the filter is able to correct the accelerometer bias and the estimated trajectory is maintained closer to the act...

	4.4.2.7 A nonlinear model with quaternions
	The nonlinear state transition matrix is:
	The state vector of this nonlinear model has the elements position, velocity in the body frame and attitude expressed by the qua...
	The nonlinear state transition function is linearized to obtain the matrix for the extended Kalman filter. The matrix contains the partial derivatives of f with respect to x.
	The derivative matrix was computed with Maple, which was also used to generate the C code. In a later stage we used a dedicated ...

	4.4.2.8 Observation Models
	The position is observable if we have GPS position information. The position observation equation and observation matrix are:
	Some GPS receivers are able to compute velocity information as well. When we have velocity information then the observation matr...
	where is the rotation matrix from body to navigation frame.
	Because we use quaternions in the state vector and the observations are in an Euler angle representation we need to do a conversion. The h function is presented below (see Equation A-18), and we can see that it is nonlinear.
	It needs to be linearized along the trajectory. It gives the expression for the attitude observation matrix
	where the partial derivatives are:
	The control matrix G has the form:
	which results from the simulation.


	4.4.3 Alternative Implementations and Improvements for Kalman Filters
	4.4.3.1 Checking the covariance symmetry and the positive definiteness
	The error covariance matrix is, by its definition symmetric. However, numerical errors can result in a representation of P that becomes nonsymmetric. This affects the performance and stability of the Kalman filter.
	Square-root filtering is designed to ensure that the covariance matrix of estimation uncertainty remains symmetric and positive ...
	If we do not choose square-root filtering, then we need some assurance that the algorithm is numerically stable. It was shown[90...
	The error covariance matrix is, also by definition positive semidefinite. Computed values of P can lose this positive semidefini...
	Any symmetric matrix, in particular P, can be factored as:
	Special-purpose algorithms have been derived that propagate the factor U and D instead of P itself. The factors contains the sam...

	4.4.3.2 Serial measurement processing
	It is shown in [90], that it is more efficient to process the components of a measurement vector serially, one component at a ti...
	It is possible to make the measurements uncorrelated. If the covariance matrix R of the measurement noise is not a diagonal matrix, then it can be made so by UDUT decomposition and changing the measurement variables,
	where Rcorr is the nondiagonal measurement noise covariance matrix, and the new measurement vector ydecorr has a diagonal measurement noise covariance matrix Rdecorr and measurement sensitivity matrix Hdecorr.
	The components of ydecorr can now be processed one component at a time using the corresponding row of Hdecorr as its measurement...
	The last line from this code is a symmetrizing procedure designed to improve robustness.

	4.4.3.3 A separate bias Kalman filter
	In the application of Kalman recursive filtering techniques, an accurate model of the process dynamics and observation is requir...
	The linear error equation (see Equation 4-79 on page 73) has been written in a form in which the error gyro biases are assumed constant, thus permitting the direct application of the results of Friedland’s separate bias Kalman filter.
	Switching to Friedland’s notation, we define the error state vector and a bias state error vector , where tk is the time at the ...
	The additive white noise wk, with variance Qk, only effects x, since b is assumed constant. The measurement equation is:
	where vk is white noise with variance Rk. In Friedland’s paper, , but in our application the measurement from inclinometers and ...
	Now applying a Kalman filter to this model, the optimal estimate of the state z is:
	The Riccati equations for the recursive computation of the estimation error covariance matrix P(k) needed in the Kalman gain equation can be rolled together into a single predictor, the predictor covariance update equation:
	To proceed further we partition matrix P(k) into 3x3 matrices as:
	In this way the expression for Kalman gain, see Equation 4-104, may be rewritten in partitioned form as:
	We have split the Kalman gain because Kx is used for estimating x and Kb for estimating b. To compute these two Kalman gains, Kx...
	We considered H = I because the inclinometer and compass measurements are pre-processed inside the TCM2 magnetometer board to gi...
	After simplification the fastest possible code for measurement updates is:
	and for time update:
	The timing evaluation of both implementations, using 100000 runs, reveals that the speed approximately doubled, from 890 ms to 5...



	4.5 Results and Simulation
	The Euler angle and quaternion models are used to implement the two extended Kalman filters. For analysis of the output, the error metric used is root-sum-square (RSS) of the difference between true and estimated value of bias.
	Estimates of bias error will be compared by examining how fast the error converges below certain percentages of bias. The simulations run with different bias values showing that both Euler angle and quaternion EKF are asymptotically stable.
	The results of the Kalman filter simulation for gyro bias error:
	The simulation results for Euler angle and quaternion EKF show that the two implementations are comparable, as expected. The qua...
	The same quaternion EKF runs on LART system, operating under Linux. The implementation on the LART embedded system is running at...

	4.6 Conclusions
	Aided strapdown systems are receiving renewed interest in applications requiring high accuracy and high rate outputs, while also...
	A great difficulty in all attitude estimation approaches that use gyros is the low frequency noise component, also referred to a...
	In this chapter we decompose the localization problem into attitude estimation and, subsequently, position estimation. We focus ...
	In order to extract the actual body acceleration during motion, the local projection of the gravitational acceleration vector ha...
	Another advantage is that the filter is very efficient with computer memory requirements. Everything it needs to know about the ...
	The advantage of quaternion representation is that since the incremental quaternion corresponds very closely to a small rotation...
	The quaternion implementation appears to be performing better than the Euler angle implementation. Quaternion implementation con...
	Quaternion EKF implementation in real time represents another issue. After the filter implementation was proven to be stable and...


	Chapter 5
	5.1 Introduction
	The pose tracking system for outdoor augmented reality, encompasses the following subsystems:
	This chapter describes the algorithms that are necessary to obtain a robust vision system for tracking the motion of a camera ba...

	5.2 Feature Extraction
	Our tracking system is based on the real-time (video-rate) tracking of features, such as corners, line segments and circles / ellipses in the image. From these features, pose determination algorithms can calculate the motion of the camera.
	5.2.1 Corner Detection
	Intuitively, a corner is a location in the image where, locally, the intensity varies rapidly in both X and Y directions. The gr...
	For an ideal corner with sides parallel to the x and y axis, some of the gradients are (Ix, 0) (for the part of the corner on th...
	The corners are selected as basic primitives for the calibration and pose recovery processes for two reasons:
	Sobel first derivative operators are used to take the derivatives x and y of an image, after which a small region of interest is defined for corner detection. A 2x2 matrix of the sums of the derivatives x and y is created as follows:
	The eigenvalues of C are found. For the 2x2 matrix of the equation above, the solutions may be written in a closed form:
	If l1, l2 > t, where t is some threshold, then a corner is found at that location. The threshold, t, can be estimated from the histogram of l2, as the latter has often an obvious valley near zero.
	Foerstner’s [42] corner detection is based on the same gradient method. It uses the eigenvalues of the same matrix C. If the two...
	If tr(C) is higher than a threshold, the pixel is considered a corner candidate pixel. Next, the interest points have to be dist...
	This value has to be larger than a threshold for a pixel representing a corner. Sub-pixel precision is achieved through a quadra...

	5.2.2 Target Recognition
	A target can be used to track fiducials in an image. A fiducial is a known pattern with a known position in the world. Fiducials...
	The image is then passed to a threshold function and subsequently processed by an outline detector from the library. It finds th...
	The function loops through all the found squares and matches up all their intersecting corners. The list of intersecting corners...
	If the function returns a positive value, further refinement of the corner locations can be performed using another function of ...
	Corners remain relatively stable across a sequence of images in a video. For this reason, a number of corner finding algorithms ...
	where Q is a (2N + 1)x(2N + 1) neighborhood of pixels around p (we use N=3), and Ex and Ey are respectively the x and y spatial ...
	Note that lT is dependent on the size of the chosen neighborhood of p. Therefore, a histogram analysis of the l2 values of an en...
	It has been demonstrated[57] that the approximate location of a grid point can be estimated by fitting a quadratic surface throu...
	A faster method for finding a subpixel corner is to use l2. Non-maximal suppression is first used to locate the strongest corner...
	where li represents the corner strength of pixel i in Figure 5-5.
	The findTarget() function works on the original, grayscale image, and the initial guesses of the intersection pointers. For each...


	5.3 Camera Calibration
	5.3.1 Changing Coordinate System
	The purpose of this section is to describe how the perspective projection matrix P varies when we change the retinal plane and w...
	5.3.1.1 Changing coordinates in the retinal plane
	Let us consider the effect of changing the origin of the image coordinate system and the units on the u and v axes on the matrix P. These units are determined by the number of sensitive cells for CCD and CMOS cameras.
	The corresponding situation is shown in Figure 5-6. We go from the old coordinate system to the new coordinate system, which is centered at a point cn in the image. For a pixel m we have:
	Writing in the old coordinate system and introducing the scaling from the old coordinate system (i, j) to the new (I, J), we have:
	We can denote cnc by t in the new coordinate system, and this allows us to rewrite Equation 5-7 in projective coordinates as:
	Note that matrix H defines a collineation of the retinal plane considered as a projective plane. This collineation preserves the line at infinity and is therefore an affine transformation. Since we have , we conclude that , and thus:
	An (n+1)x(n+1) matrix A, such that det(A) is different from 0, defines a linear transformation or a collineation from the projective space, , onto itself. The matrix associated with a given collineation is defined up to a nonzero scale factor.
	If we denote the coordinates of t by u0 and v0, then the most general matrix , when the world reference frame is the standard coordinate system of camera (Equation A-70), can be written as (where f is the focal length of the optical system,):
	Let and . The parameters ,, and do not depend on the position and orientation of the camera in space, and they are thus called intrinsic.
	We now define a special coordinate system that allows us to normalize the retinal coordinates. This coordinate system is called ...
	Therefore, according to Equation 5-9, the new retinal coordinates are given by:
	If we consider the plane parallel to the retinal plane and at a unit distance from the optical center (Chapter A.5.1), this plan...

	5.3.1.2 The use of intrinsic parameters
	Knowledge of the intrinsic parameters allows us to perform metric measurements with a camera, to compute the angle between rays ...
	Let the camera (C, R) undergo a rigid motion D, a combination of rotation and translation; C is the optical center and R the retinal plane.
	The equation of W is [47]:
	The image of a point of W satisfies the equation:
	where P is the leftmost 3x3 submatrix of . According to Equation 5-14, MTM=0, the equation of w is:
	Using Equation 5-11, this is found by simple computation to be equivalent to:
	Going to pixel coordinates, this can be rewritten as:
	This equation shows that w contains the intrinsic parameters.

	5.3.1.3 Changing the world reference frame
	Just as it is important to study how matrix changes when we change the image coordinate system, it is likewise important for many applications to see how matrix varies when we change the 3D coordinate system.
	If we go from the old coordinate system centered at the optical center C to the new coordinate system centered at O by a rotation R followed by a translation T, in projective coordinates this will be:
	Matrix represents a collineation that preserves the plane at infinity and the absolute conic. The matrices R and T describe the ...
	Therefore we have:
	This tells us how the perspective projection matrix changes when we change coordinate systems in three-dimensional space. If we now combine Equation 5-10 and Equation 5-21, we obtain the more general equation:


	5.3.2 Direct Parameter Calibration and the Tsai Algorithm
	Consider a 3D point P, defined by its coordinates [Xw, Yw, Zw]T in the world reference frame. Let [Xc, Yc, Zc]T be the coordinat...
	5.3.2.1 Camera Parameters from the Projection Matrix
	The method consists of two sequential stages:
	1. Estimate the projective matrix linking world and image coordinates
	2. Compute the camera parameters as closed-form functions of the entries of the projective matrix

	Estimation of the Projection Matrix
	The relation between a 3D point in space and its projection in the 2D image is given by:
	with:
	The matrix M is defined up to an arbitrary scale factor and has therefore only 11 independent entries, which can be determined t...
	many more correspondences and equations can be obtained and M can be estimated through least squares techniques. For N matches we have the homogeneous linear system: , with:
	and .
	Since A has rank 11, the vector m can be recovered using SVD-related techniques as the column of V corresponding to the zero (in...
	Computing Camera Parameters
	We now want to express the intrinsic and extrinsic camera parameters as a function of the estimated projection matrix. Since M is recovered up to a scale factor in the previous approach, the matrix obtained from above through SVD will be noted .
	where are the coordinates of the image center, represents the focal length in the x and y directions, and r and T represent the elements of the rotation matrix and translation vector respectively.
	In what follows we also need the 3D vectors:
	Since M is defined up to a scale factor we can write . The absolute value of the scale factor, |g|, can be obtained by observing...
	We now divide each entry of the matrix by |g|, and observe that the resulting, normalized projection matrix differs from M by at most a sign change. Then we can recover all intrinsic and extrinsic parameters:
	As usual, the estimated rotation matrix is not orthogonal, and we can find the closest orthogonal matrix (in the sense of the Fr...
	We are left to discuss how to determine the sign s. The sign s can be obtained from , because we know whether the origin of the world reference frame is in front of () or behind () the camera.
	Estimating the Image Center
	Vanishing points: Let Li, i = 1,.., N be parallel lines in 3D space, and li the corresponding image lines. Due to the perspectiv...
	Orthocenter Theorem [48]: Let T be the triangle on the image plane defined by the three vanishing points of the mutually orthogonal sets of parallel lines in space. The image center is the orthocenter of T.
	What is important is that this theorem reduces the problem of locating the image center to one of intersecting image lines, which can be easily created using a suitable calibration pattern.
	The algorithm runs as follows:
	1. Compute the three vanishing points [45] p1, p2 and p3, determined by three bundles of lines obtained using a Hough transform.
	2. Compute the orthocenter O, of the triangle p1p2p3.


	5.3.2.2 The Tsai Camera Calibration Algorithm
	Under the assumption that only a radial distortion occurs in the camera, Tsai [65] proposed a two- stage algorithm to calibrate ...
	1. Compute the 3D pose: R, T (only x and y are calculated) and the scale factors sx and sy;
	2. Compute the effective focal length f, radial distortion coefficient kl, and the z component of T.

	With these two stages, the whole computation becomes linear and therefore, this algorithm is very efficient and has been adopted extensively in the computer vision field.
	Whereas this algorithm requires that the scale factor and the position of the principle point are known in advance, we tried sev...


	5.3.3 Camera Calibration by Viewing a Plane in Unknown Orientations
	Camera calibration is a necessary step in 3D computer vision in order to extract metric information from 2D images. Much work ha...
	Our proposed technique only requires that a camera observes a planar pattern shown in at least two different orientations. This ...
	5.3.3.1 Basic Equations
	We examine the constraints on the camera’s intrinsic parameters provided by observing a single plane. A 2D point is denoted by m...
	where s is an arbitrary scale factor, (R, t), called the extrinsic parameters, are the rotation and translation which relate the world coordinate system to the camera coordinate system, and A, called the camera intrinsic matrix, is given by:
	with (u0, v0) the coordinates of the principal point, and a and b the scale factors in image u and v axes, and g the parameter describing the skew of the two image axes. We use the abbreviation A-T for (A-1)T or (AT)-1.

	5.3.3.2 The homography between the model plane and its image
	Without loss of generality, we assume the model plane is on Z = 0 of the world coordinate system. Let us denote the ith column of the rotation matrix R by ri. From Equation 5-30, we have:
	By abuse of notation, we still use M to denote a point on the model plane, but M = [X, Y]T since Z is always equal to 0. In turn, = [X, Y, 1]T. Therefore, a model point M and its image m is related by a homography H:
	As is clear, the 3x3 matrix H is defined up to a scale factor.
	Let . Then Equation 5-33 can be rewritten as [48]:
	When we are given n points, we have n of these equations, which can be written in a matrix equation as Lx = 0, where L is a 2nx9...
	In L some elements are constant 1, some are in pixels, some are in world coordinates, and some are multiplications of both. This makes L numerically poorly conditioned. A much better result can be obtained by performing data normalization.
	The reasons for data normalization will be described in Section 5.3.3.3 on page 107. Here we give only the steps and formulas required at each step:
	1. The points are translated so that the centroid point is at (0,0)
	2. The coordinate points are scaled so that the mean distance from the points to the center (centroid) is 1. The scale factor is given by:

	In Equation 5-36 we denote with u, v the normalized points coordinates, and u1, v1 unscaled ones. Then ,. We also denote with mij the elements of the homography matrix. Then the coordinates u1,v1 have the expression:
	If now we use the normalized points u, v to compute the homography , then the resulting homography for the points u1,v1 will be:
	The solution x (Equation 5-34) can be considered as an initial guess or input for an algorithm based on the maximum likelihood c...
	where
	In practice, we simply assume for all i. This is reasonable if points are extracted independently with the same procedure. In th...

	5.3.3.3 Data Normalization
	Image coordinates are sometimes given with the origin at the top left of the image, and sometimes with the origin at the center....
	Condition of the system of equations
	The linear method consists in finding the least eigenvector of the matrix ATA. This may be done by expressing ATA as a product U...
	The bottom right-hand 2x2 block of matrix D is of the form:
	assuming that d9 = 0 because a homography has 8 degrees of freedom, which ideally will be the case. Now, suppose that this block is perturbed by the addition of noise to become:
	In order to restore this matrix to diagonal form we need to multiply left and right by VT and V, where V is a rotation through a...
	Multiplying by replaces the last column of U by a combination of the last two columns. Since the last column of U is the least e...
	If the ratio k = d1/d8 is very large, then d8 represents a very small part of the Frobenius norm of the matrix. A perturbation o...
	We now consider how the condition number of the matrix ATA may be made small. We consider two sorts of transformation, translati...
	Normalizing Transformations
	The previous sections concerned the condition number of the matrix ATA indicating that it is desirable to apply a transformation...
	This normalization has been implemented as a prior step in the homography estimation with good results. The condition number of ...
	The effect of normalization is related to the condition number of the set of linear equations. For exact data and infinite preci...
	Isotropic Scaling
	As a first step, the coordinates in each image are translated (by a different translation for each image) so as to bring the cen...
	In summary, the transformation is as follows:
	1. The points are translated so that their centroid is at the origin.
	2. The points are then scaled so that the average distance from the origin is equal to .
	3. This transformation is applied to each of the two images independently.


	5.3.3.4 Constraints on the intrinsic parameters
	Given an image of the model plane, a homography can be estimated. Let us denote it by H =[ h1 h2 h3]. From Equation 5-33 on page 106, we have:
	where l is an arbitrary scalar. Using the knowledge that r1 and r2 are orthonormal, we have:
	These are the two basic constraints on the intrinsic parameters, given one homography. Because a
	homography has 8 degrees of freedom and there are 6 extrinsic parameters (3 for rotation and 3 for
	translation), we can only obtain 2 constraints on the intrinsic parameters [56]. Note that A-TA-1 actually describes the image of the absolute conic.

	5.3.3.5 Solving Camera Calibration
	First, let us see how the matrix A-TA-1 it looks in terms of intrinsic parameters:
	Note that B is symmetric, and can be defined by a 6D vector:
	If we note with hi the ith column vector of the homography H, hi = [hi1, hi2, hi3]T, then we have:
	where the vector v has the expression:
	Using the above notations, the two fundamental constraints on Equation 5-42 on page 109, from a given homography, Equation 5-45 can be rewritten as two homogeneous equations in b:
	If n images of the model plane are observed, by stacking n such equations as Equation 5-47, we have:
	where V is a 2n x 6 matrix. If n =3, we will have in general a unique solution b defined up to a scale factor. If n = 2, we can ...
	Once b is estimated, we can compute the intrinsic camera matrix A. Knowing b we can recompose the matrix B. The matrix B is esti...
	Once A is known, the extrinsic parameters for each image can be computed. From Equation 5-41 on page 109, we have [48]:
	In general, due to the noise in the data, the computed rotation matrix does not normally satisfy the properties of a rotation matrix. The rotation matrix can be orthogonalized as before. We can find the closest orthogonal matrix as follows: .
	This approach also has degenerated configurations, i.e. configurations in which additional images do not provide more constraint...
	Definition of the extrinsic parameters
	Consider the calibration grid #i (attached to the ith calibration image), and concentrate on the camera reference frame attached...
	Let A be a point space of coordinate vector pA = [X, Y, Z] in the grid reference frame (reference frame shown on the Figure 5-11...
	In particular, the translation vector Tc1 is the coordinate vector of the origin of the grid pattern (O) in the camera reference...

	5.3.3.6 Lens Distortion
	Any camera usually exhibits significant lens distortion, especially radial distortion. The distortion is described by four coeff...
	where r2 = x2 + y2. Second therms in the above relations describe radial distortion and the third ones - tangential. The center ...
	These two relations are used to restore distorted images from the camera ( are measured and are computed image coordinates).

	5.3.3.7 Experimental Results
	The camera calibration algorithm has been tested on real data obtained from a USB webcamera, and also on a Firewire web camera. ...
	Performance with respect to the number of planes
	The orientation of the first three images is with a rotation r1 = [30o, 0, 0]T, r2 = [0, 30o, 0]T and r3 = [-30o, -30o, 15o]T, a...
	Performance with respect to the orientation of the model plane
	This experiment was done again to estimate the influence of the orientation of the model plane with respect to the image plane o...
	Through experiments, we found that Tsai's method yielded the most accurate results when trained on data of low measurement error...
	Note that the same camera calibration algorithm can also be used for pose computation. Once we have the calibrated camera we can...



	5.4 Pose Computation Algorithms
	5.4.1 Fiducial System
	The fiducial system consists of calibrated landmarks, which are crucial for vision tracking. Different types of landmarks have b...
	To make thresholding operations robust in different lighting conditions, we apply a modified form of homomorphic filtering, whic...
	Landmark detection
	The detection procedure is performed in three steps:
	Coarse detection: using a predicted position (from the previous frame) we find the regions of the image where the gradients are high over an expected-size image area. In this way, we detect the four candidates corner points.
	Projection compensation: using a perspective-imaging model we compensate for geometric deformations of the extracted regions. To compensate for lighting variations we use the gradient for intensity normalization.
	Fine detection: fit the extracted candidate landmarks to the defined models. The best fit determines the detected landmark.
	Landmark recognition
	Since we want camera pose for each video frame, fast and efficient landmark detection and recognition are crucial. We have devel...
	Landmark positions
	Landmarks printed on paper are easy to stick to walls, ceiling or floors in indoor environments. The best option indoors is to m...
	Careful quantitative experiments comparing this system with the AR Toolkit have not yet been completed, however a qualitative an...
	This detection and recognition approach is robust and fast. It achieves 20 frames/sec on a 450 MHz PC. The system detects and discriminates between dozens of uniquely marked landmarks.

	5.4.2 Pose Approximation Method
	Using weak-perspective projection, a method for determining approximate pose, termed pose from orthography and scaling (POS) in ...
	Similarly, the projection of this point, namely p0, is a reference point for the image points: . As follows from the weak-perspective assumption, the x component of is a scaled- down form of the x component of :
	This is also true for the y component. If I and J are defined as scaled-up versions of the unit vectors and ( and ), then
	as two equations for each point for which I and J are unknown. These equations, collected over all the points, can be put into matrix form as:
	where and are vectors of x and y components of respectively, and M is a matrix whose rows are the vectors. These two sets of equations can be further joined to construct a single set of linear equations:
	where is a matrix whose rows are . The latter equation is an overconstrained system of linear equations that can be solved for I and J in a least-squares sense as:
	where is the pseudo-inverse of M.
	Now that we have I and J, we construct the pose estimate as follows. First, and are estimated as I and J normalized, that is, sc...
	The average of the magnitudes of I and J is an estimate of the weak-perspective scale[70]. From the weak-perspective equations, the world point in camera coordinates is the image point in camera coordinates scaled by s:
	which is precisely the translation vector being sought.
	The Algorithm
	The POSIT algorithm was first presented in the paper by DeMenthon and Davis [70]. In this paper, the authors first describe thei...
	POSIT requires three pieces of known information:
	Given the object model and the object image, the algorithm proceeds as follows:
	1. The object image is assumed to be a weak perspective image of the object, from which a least- squares pose approximation is calculated via the object model pseudoinverse.
	2. From this approximate pose the object model is projected onto the image plane to construct a new weak perspective image.
	3. From this image a new approximate pose is found using least-squares, which in turn determines another weak perspective image, and so on.

	For well-behaved inputs, this procedure converges to an unchanging weak perspective image, whose corresponding pose is the final calculated object pose.
	As the first step assumes, the object image is a weak perspective image of the object. It is a valid assumption only for an obje...
	Pose Accuracy Evaluation
	For the validation of the results we have collected measures in different positions uniformly distributed on the workspace. The ...
	In order to verify the pose estimation in regard to the scene range, known positions in the area of 50-400 cm in depth are measu...
	Distance to tracked features
	A crucial aspect is the distance to the objects being tracked. Here, we consider features within 5 meters to be 'nearby', and fe...
	However, we doubt that distant features can be used for centimeter-accurate tracking of the user. Consider the following simple ...
	If we optimistically assume that we have two fiducials in the corner of the camera's field of view, the angle between the two wi...
	With wide-angle lenses one can increase the working volume at the expense of resolution. For example, to cover a 5 X 5 X 2.4 m w...


	5.5 Real-Time Image Processing
	In order to make fast object tracking systems with computer vision, the underlaying image processing algorithms must be fast eno...
	In this chapter we present a study on the impact of MMX technology and PIII Streaming SIMD (Single Instruction stream, Multiple ...
	Current general-purpose processors have been enhanced with new features explicitly dedicated to the efficient handling of multim...
	5.5.1 MMX Implementations
	A set of MMX routines that allow us to compare the MMX SIMD and IMAP-VISION system has been developed; they include some low-lev...
	MMX software writing [32] currently still implies the use of assembly language. We will focus in this discussion on a couple of strategies which are imposed by the architecture and that guarantee the highest performance.
	5.5.1.1 Data Alignment
	Data alignment is very important when writing MMX code as the execution speed can be boosted by more than 30%. When data access ...
	Moreover, if the code pushes MMX registers onto a stack, it is necessary to replace the entry and exit code of the procedure to ...

	5.5.1.2 Instruction Scheduling
	To get the highest speed from MMX, one has to think in terms of instruction scheduling. The most critical scheduling involves ou...

	5.5.1.3 Tuning MMX Code
	This section presents loop variables reduction, loop unrolling and loop interleaving techniques. One optimization technique is t...
	For operations on binary images like noise filters, morphological operations or measurements can be performed on a packed image....

	5.5.1.4 The Intel VTune Performance Analyzer
	Intel’s VTune is one of the standard performance analyzers for the x86 architectures. It uses Pentium on-chip performance-monito...
	The VTune Performance Analyzer runs programs and takes rapid snapshots of the execution path based on time slices (the users can...
	Figure 5-22 presents on the left a part of assembly code with its execution pipe, pairing and cache misses, and on the right the bar graph showing which routine consumes the most execution time (for pattern matching algorithm).
	VTune performs these measurements by sampling, which is inherently inaccurate. VTune implements a self-calibration mechanism whi...

	5.5.1.5 The Intel Pentium III Processor
	The Intel Pentium III processor provides sufficient processing power for many real-time computer vision applications. In particu...
	Block matching is essential in motion estimation. Equation 5-62 is used to calculate the Sum of Absolute Differences (also refer...
	Figure 5-23 illustrates how motion estimation is accomplished, dx and dy are candidate motion vectors. Motion estimation is acco...
	Streaming SIMD Extensions provide a new instruction, psadbw, that speeds up block matching. The code to perform this operation i...
	The operation of this new instruction, psadbw is given in Figure 5-24.

	5.5.1.6 MMX Image Processing implementation and benchmarks
	An interesting problem is how to measure the execution time of an MMX routine. This could be done using the information from the...
	The measured timing is approximate and depends on many factors such as OS overheads, number of processes running, cash situation...


	5.5.2 The NEC IMAP-VISION System
	The IMAP-Vision [34] is a SIMD Linear Processor Array (LPA) on a PCI board. It is a parallel architecture for real-time image pr...
	Figure 5-26 shows the IMAP-Vision board. The IMAP-Vision board integrates eight IMAP Vision chips, eight 16 Mbit synchronous DRA...
	5.5.2.1 The IMAP assembly and 1DC language
	The IMAP-assembly language
	The IMAP-assembly language comprises the RISC instruction sets of the IMAP-VISION chips and the control processor. It supports v...
	Besides the normal ALU instructions, the hardware and the corresponding instructions for the PEs have support for software multi...
	As always, it is clear that assembly language is not easy to use for everyday programming. It should be used only to optimize the computationally expensive part of (library) code.
	The 1DC language
	1DC is, as the name indicates, a C-like language [37]. It follows the ANSI-C syntax, and is designed as an enhanced C language to support virtual LPAs (Linear Processor Array). The enhancement of 1DC from C is straightforward:
	Entities are declared as either sep (or separate) or scalar (scalar is the same as declarations in C language) as shown in Figur...
	The PEs have a mask register which, when set to 0, deactivates the processor. Extended instructions exist for selecting active processors:
	These instructions act just as their common counterparts, except for the fact that in the condition a separate expression has to...
	To make the value of a sep variable on a specific processor globally available it can be addressed using the :[pe_num:] operator...
	The IMAP-VISION board comes with an MS-Windows or X-Window (e.g. Linux) programming environment based on 1DC, which makes this p...
	The integrated debugger features are designed to:
	Implementations and optimizations in 1DC
	Writing a program in 1DC is not very difficult, but writing a good program is. A program that works is not necessarily efficient...
	This sometimes necessitates a work around, which is not trivial. A simple but very expressive example is the histogram computati...
	But in that case, we have a nested loop in which only 1 processor is working at a time. A more efficient use of processors would be to do a prefix addition, one of the most basic forms of parallel programming. It uses only log(256) = 8 steps:
	But we can do better. Every processor could add its local value and then pass it on to its neighbor, which will add its local va...
	Performing execution timing in the debugger gives results that speak for themselves:
	SIMD systems are made for local neighborhood operation (LNOs). North and south bound neighbors are retrieved from the PE’s own memory, East and West bound neighbors are reached by shifting left and right.
	Recursive neighborhood operations (RNOs) are also quite doable on the IMAP-VISION system, as it is equipped with indirect addres...
	The IMAP-CE chip
	The IMAP�CE [36] is the fourth generation of a series of SIMD linear processor arrays based on the IMAP architecture. The aim of...
	Each PE of the processor array consists of a 2K byte local memory, 24 8�bit registers, two 1�bit mask registers, an 8�bit ALU an...
	Refinement of the instruction set of IMAP-CE for accelerating SIMD operations has been done based on the analysis result of comp...
	The IMAP-CE (128 PEs, 100MHz) is about 5 times faster than the P3 (Pentium III 1GHz), and 3 times faster than its predecessor, I...


	5.5.3 Experimental Results and Conclusions
	Due to the language design and the RISC-like instruction-set of IMAP-VISION, the 1DC compiler has achieved codes competitive wit...
	Table 5-1. 1DC compiler performance

	Also for complicated algorithms we tried out MMX technology intrinsics, developed by Intel. Intrinsics are highly optimized rout...
	In Table 5-2 we make a comparison of the execution times between MMX code on a single Pentium II 300MHz processor and 1DC on the IMAP-VISION system. We used in our measurements a 256 x 256, 8 bits per pixel image.
	Table 5-2. MMX versus IMAP-VISION timings

	Low-level image processing performs very well on a single MMX processor architecture and on PIII (with Streaming SIMD Extensions...
	In this study we did not take into account the acquisition and the transfer time. We can expect that the IMAP will perform far b...
	While the IMAP-Vision system performs better because of the large number of processing elements, the MMX processor and PIII (wit...
	A clear negative point is that programming MMX code is cumbersome, even using standard libraries, in contrast with the 1DC programming of the IMAP vision system.

	5.5.4 Conclusions on Real-Time Image Processing
	The pose tracking system for outdoor augmented reality, is partly based on a vision system that tracks the head position within ...
	Our conclusion is that the IMAP-Vision system performs better than the multimedia extensions, because of its large number of pro...
	A problem however is the availability of the IMAP chips and boards, a problem that should be solved when the IMAP-CE chips come ...
	The MMX-type Streaming SIMD multimedia extensions to general purpose processors remain good candidates for low-level image processing, however provisionally not in low-power embedded systems for wearable computing.


	5.6 Conclusions
	Camera Calibration, Data Normalization
	In this chapter, we have presented a flexible technique to easily calibrate a camera. The technique only requires the camera to ...
	Through experiments, we found that Tsai's method yielded the most accurate results when trained on data of low measurement error...
	Vision-based trackers require a wide field-of-view (FOV) in order to overcome the geometric dilution of precision and to achieve...
	Calibration is essential when a combination of wide-angle lenses and a small CCD are used in a camera. The wide-angle lenses req...
	Landmark recognition
	For each detected landmark, we first extract the contour and compute Hu moments. M. Hu[69] has shown that a set of seven feature...
	This detection and recognition approach is robust and fast. It achieves 20 frames/sec on a 450 MHz PC. The system detects and discriminates between dozens of uniquely marked landmarks.
	Distance to tracker, Fiducial System
	The theoretical uncertainty per meter distance is dependent on the system setup: camera resolution and lens horizontal field of ...
	Pose Computation
	Compared with other optical tracking systems which use conventional calibration techniques and tracking mechanisms that need re-...
	It is well known that the rotational acceleration of head motion can reach high gradients. Thus, using only one camera for pose ...
	Using binocular images will improve accuracy and speed, because pose estimation can be done in almost every frame. Stereo pose e...


	Chapter 6
	In this work we have thoroughly discussed the problem of Mobile User Positioning in the context of Augmented Reality application...
	In Chapter 2 we reviewed a variety of existing techniques and systems for position determination. From a practical point of view...
	In Chapter 3, based on the analysis of the technologies presented in the Chapter 2 and the sensors described in this chapter, we...
	The calibration of accelerometers, angular rate sensors, and inertial measurement unit increase the accuracy of their measuremen...
	Chapter 4 was concerned with development of inertial equations required for the navigation of a mobile system. To understand the...
	In this chapter we thoroughly discussed the basics of the Kalman Filter. We looked at the assumptions that the Kalman Filter pos...
	Derivation of EKF using quaternions is a novel approach. The advantage of quaternion representation is that since the incrementa...
	Quaternion EKF implementation in real time represents another issue. After the filter implementation was proven to be stable and...
	Chapter 5 details all the necessary steps for implementing a vision positioning system. The pose tracking system for outdoor aug...
	In this chapter, we have presented a flexible technique to easily calibrate a camera. Compared with conventional techniques, whi...
	For each detected landmark, we first extract the contour and compute Hu moments. Then the extracted coefficients are compared wi...
	In order to achieve the real-time (video-rate) tracking of features, we have investigated how these real-time constraints can be...
	6.1 Contributions
	The main contributions presented in this thesis are as follows:

	6.2 Future Research Directions
	This work can be used as a theoretical basis for further studies in a number of different directions. First, in the localization...
	Throughout the progress of this work, interesting ideas for future work came up. One of these is to look for ways to make the KF...
	Position tracking using object and scene recognition remains for future research. The idea was that, given a 3D description of t...
	It is well known that the rotational acceleration of head motion can reach high gradients. Thus, using only one camera for pose ...
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	Chapter A
	A.1 Cholesky Decomposition
	This decomposition is named after Andre Louis Cholesky, who discovered the method for factoring a symmetric, positive-definite matrix P as a product of triangular factors.
	A Cholesky factor of a symmetric positive-definite matrix P is a matrix C such that:
	Cholesky factors are not unique. If C is a Cholesky factor of P, then for any conformable orthogonal matrix M, the matrix:
	satisfies the equation:
	One possible disadvantage of the CCT decomposition is the need to take square roots. This is easily avoided by using the LDLT fa...
	which can be calculated as follows:

	A.2 Direction Cosine Matrix
	A.2.1 Propagation of a DCM with time
	In order to update a DCM it is necessary to solve a matrix differential equation of the form:
	Over a single computer cycle, the solution of the differential equation may be written as follows:
	If the orientation of the turn rate vector, remains fixed in space over the update interval T, we can write the integral as ( is a notation for the following matrix):
	Expanding the exponential term in Equation A-8 gives ( depends on k):
	Using the fact that is a skew symmetric matrix and using Equation A-9 it can be shown [87]:
	Then the exponential expansion can be written [87]:
	Provided that is the angle vector as defined above, Equation A-12 provides an exact representation of the attitude matrix which relates to body attitude at times and .
	Normalization of DCM
	If matrix is updated a great deal this introduces rescaling of the rows vectors. The row vectors will after a while not be orthogonal to each other. This can be caused by the floating point arithmetic. The matrix can be made orthogonal using:


	A.3 Quaternion
	A.3.1 Multiplication
	The product of two quaternions,
	may be derived by applying the usual rules for products of complex numbers (if we assume ):
	Alternatively, the quaternion product may be expressed in matrix form as:

	A.3.2 Quaternion from DCM
	For small angular displacements, the quaternion elements may be derived [83] using the following relationships:
	A more comprehensive algorithm for the extraction of quaternion parameters from the direction cosines, which takes into account the relative magnitudes of direction cosines elements, is described in the following pseudocode [83]:

	A.3.3 DCM from Quaternion
	The following pseudocode describes the conversion [83]:

	A.3.4 Euler angles expressed using Quaternions
	The Euler angles may be derived directly from quaternion elements. For conditions where q is not equal to 90°, the Euler angles can be determined [83] using:

	A.3.5 Quaternion expressed in terms of Euler angles
	A.3.6 Propagation of Quaternion with time
	In order to update the Quaternion it is necessary to solve a matrix differnetial equation of a form:
	The vector represents the angular speed or the turn rate vector. Over a single computer cycle, the solution of the differential equation may be written as follows:
	If the orientation of the turn rate vector, remains fixed in space over the update interval T, we can write:
	Expanding the exponential term in Equation A-21 gives:
	Using the fact that is a skew symmetric matrix and using Equation A-9 it can be shown:
	Then the exponential expansion can be written:
	Provided that is the angle vector as defined above, Equation A-25 provide an exact representation of the attitude matrix which relates to body attitude at times and .
	Thus the equation which propagates the quaternion over time is:


	A.4 System Concepts
	A.4.1 Ordinary differential equations
	Many systems that evolve dynamically as a function of a continuous-time variable can be modeled effectively by a system of nth-o...
	where()(j) denotes the j-th time derivative of the term.
	When the applicable equations are nonlinear, the nth-order differential equation is represented in general as:
	Taylor series analysis of a nonlinear equation around a nominal trajectory can be used to provide a linear model described as: l...
	Example: The differential equation for single-channel tangent-plane INS position error due to gyro measurement error is [93]:
	where g is gravitational acceleration, R is the earth's radius, and eg represents the gyro measurement error.
	A.4.1.1 Transfer functions
	The transfer function of a time-invariant linear system (meaning all coefficients in Equation A-27 are constant in time) represented above is represented by:
	is obtained by applying the Laplace transform to the differential equation and s = jw.
	Example: The transfer function corresponding to the differential equation presented in the previous example is:
	which is a low-pass filter. If the gyro error represents high-frequency noise, the position error will be small, but if the gyro...

	A.4.1.2 The state space
	The state-space representation converts an nth-order differential equation into n-coupled first-order differential equations. Fo...
	The differential equation corresponding to the previous equation, if we define a state vector x such that xT=(v,v(1),…,v(n-1) ), is:
	The system output is represented as:
	In matrix notation, the system can be described as:
	with:
	In this representation, F is referred to as the system matrix, G is referred to as the input matrix, and H is referred to as the...
	where ea and eg represent the accelerometer and gyro measurement errors in the navigation frame, respectively.
	For discrete-time systems we apply the Z transform instead of the Laplace transform in order to determine the transfer function.

	A.4.1.3 Linear stochastic systems and state augmentation
	Navigation system error analysis will often result in equations of the form:
	where e and m represent instrumentation errors and xn represents the error in the nominal navigation state. It is possible to model the error terms e and m as linear dynamic systems:
	and
	driven by the noise process we(t), ve, wm(t), and vm, which can be accurately modeled as white noise. By the process of state augmentation, Equation A-39 and Equation A-40 can be combined into the state-space error model,
	which is driven only by white-noise processes. In these equations, the augmented state is defined as xa=[xn,xe,xm]T. The measurements of the augmented system are modeled as:
	which are corrupted only by additive white noise.


	A.4.2 Linear Systems in Discrete Time
	Equation A-35 on page 156 cannot be used in a computer-controlled environment. It is preferred to transform the system matrices ...
	as u is constant between the sampling instants. The state vector at a time t is thus a linear function of x(tk) and u(tk). If th...
	with:
	In most cases D = 0. One reason for this is that in computer-controlled systems, the output y is first measured and the control signal u(tk) is then generated as a function of y(tk).
	For periodic sampling with period h, we have tk = k*T and the model simplifies to the time-invariant system:
	with:
	From Equation A-47 it follows that:
	The matrices F and G therefore satisfy the equation:
	where I is a unit matrix of the same dimension as the number of inputs. The matrices F(T) and G(T) for the sampling period T can therefore be obtained from the block matrix:
	A.4.2.1 Computation of discrete time matrices
	The calculation required to sample a continuous-time system is the evaluation of a matrix exponential and the integration of a matrix exponential. This can be done in different ways, for instance, by using:
	If the sampling time h is small, then the matrices F(h) and G(h) are calculated with the following formulas [86]:
	and
	Computer evaluation can be done using several different numerical algorithms in Matlab.

	A.4.2.2 Systems with random inputs
	Because of the inevitable presence of modeling error and measurement noise, it is necessary to consider systems with random (nondeterministic) inputs. The model for such a linear discrete-time system with stochastic inputs can be represented as:
	where w(t) and v(t) are random variables.
	The random variable w is called the process noise; the random variable v is called the measurement noise. The designation as ran...
	Unless otherwise stated, we will assume that, uw = 0 and uv = 0.
	In the analysis that follows, it is often accurate (and convenient) to assume that the process and the measurement noise are independent of the current and the previous states:
	and are independent of each other,

	A.4.2.3 The discrete input covariance matrix
	We have the ideal control signal with noise eu(t).
	The covariance matrix of this noise is Q. When the continuous time system is discretized the Q matrix must be recalculated. There are different methods to calculate the Qk matrix. In [86] and [89] we find two equations, Equation A-58 and Equation A-59.
	The exact formula for computing the Qk matrix is given below. When the dynamics of the system of interest evolve in continuous t...
	But as a consequence, we need to use a state-augmentation procedure since wk does not have a white-noise character. Using the model structure of Equation A-41, with w(t) being a white-noise process, we have:
	A common approximate solution to this equation is Equation A-58, which is accurate only when the eigenvalues of F are very small relative to the sampling period T (i.e., ).


	A.4.3 Nonlinear Systems
	In many applications, either the system dynamic equations or the measurement equations are not linear. It is therefore necessary...
	Consider a nonlinear system with dynamics and measurement equation described by:
	Although this model is restrictive in assuming additive uncorrelated white-noise processes w and v, the model is typical for the systems found in navigation applications. The signal u(t) is a deterministic signal and f and h are known smooth functions.
	If the function f is continuously differentiable, then the influence of the perturbations on the trajectory can be represented b...
	so that the Taylor series expansion is:
	If the higher order terms in dx can be neglected, then:
	We can do the same with the measurement. If the h function is differentiable, then the measurement can be represented by a Taylor series as the state. We then obtain:
	The problem with linearization around a nominal trajectory, is that the deviation of the actual trajectory from the nominal tend...
	One of the drawbacks of this approach is that it increases the real-time computational burden. Whereas the linearization of F an...
	A.4.3.1 Linearized nonlinear systems in continuous time
	The nonlinear system equations from Equation A-62 have been linearized, taking the first order derivatives with respect to the state x and control vector u. The linearization is done at the work point x(t) and u(t). The result is:

	A.4.3.2 Linearized nonlinear systems in discrete time
	We calculate the discrete transition matrix and the control matrix using Equation A-52 on page 159 and we have:



	A.5 Camera Calibration
	A.5.1 Perspective transformation
	The relation between the camera coordinates and the ideal projection coordinates (in the image plane) is called perspective tran...
	which can be rewritten in matrix form:
	where: u=U/S, v=V/S, if S¹0.
	The geometric model of the pinhole camera consists of: a plane R called the retinal plane in which the image is formed through a...


	A.6 Geometric Algorithms
	A.6.1 Vertex Reduction
	In vertex reduction, successive vertices that are clustered too closely are reduced to a single vertex. For example, if a polyli...
	Vertex reduction is the brute-force algorithm for polyline simplification. For this algorithm, a polyline vertex is discarded wh...

	A.6.2 Douglas-Peucker Approximation
	Instead of applying the rather sophisticated Teh-Chin algorithm to the chain code, we may try another way to get a smooth contou...
	The algorithm to consider is a pure geometrical algorithm by Douglas-Peucker [97] for approximating a polyline with another polyline with required accuracy:
	1. Two points on the given polyline are selected, thus the polyline is approximated by the line connecting these two points. The...
	2. The algorithm iterates through all polyline vertices between the two initial vertices and finds the farthest point from the l...



	A.7 GPS NMEA Transmitted Sentences
	The subsequent paragraphs define the sentences which can be transmitted on TXD1 by the GPS 25LP sensor boards.
	A.7.1 Global Positioning System Fix Data (GGA)
	$GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12>*hh<CR><LF>
	<1> UTC time of position fix, hhmmss format
	<2> Latitude, ddmm.mmmm format (leading zeros will be transmitted)
	<3> Latitude hemisphere, N or S
	<4> Longitude, dddmm.mmmm format (leading zeros will be transmitted)
	<5> Longitude hemisphere, E or W
	<6> GPS quality indication, 0 = fix not available, 1 = Non-differential GPS fix available, 2 = Differential GPS (DGPS) fix available, 6 = Estimated
	<7> Number of satellites in use, 00 to 12 (leading zeros will be transmitted)
	<8> Horizontal dilution of precision, 0.5 to 99.9
	<9> Antenna height above/below mean sea level, -9999.9 to 99999.9 meters
	<10> Geoidal height, -999.9 to 9999.9 meters
	<11> Differential GPS (RTCM SC-104) data age, number of seconds since last valid RTCM transmission (null if non-DGPS)
	<12> Differential Reference Station ID, 0000 to 1023 (leading zeros will be transmitted, null if non-DGPS)

	A.7.2 Recommended Minimum Specific GPS/TRANSIT Data (RMC)
	$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh<CR><LF>
	<1> UTC time of position fix, hhmmss format
	<2> Status, A = Valid position, V = NAV receiver warning
	<3> Latitude, ddmm.mmmm format (leading zeros will be transmitted)
	<4> Latitude hemisphere, N or S
	<5> Longitude, dddmm.mmmm format (leading zeros will be transmitted)
	<6> Longitude hemisphere, E or W
	<7> Speed over ground, 000.0 to 999.9 knots (leading zeros will be transmitted)
	<8> Course over ground, 000.0 to 359.9 degrees, true (leading zeros will be transmitted)
	<9> UTC date of position fix, ddmmyy format
	<10> Magnetic variation, 000.0 to 180.0 degrees (leading zeros will be transmitted)
	<11> Magnetic variation direction, E or W (westerly variation adds to true course)
	<12> Mode indicator (only output if NMEA 2.30 active), A = Autonomous, D = Differential, E = Estimated, N = Data not valid

	A.7.3 3D velocity Information (PGRMV)
	The GARMIN Proprietary sentence $PGRMV reports three-dimensional velocity information.
	$PGRMV,<1>,<2>,<3>*hh<CR><LF>
	<1> True east velocity, -514.4 to 514.4 meters/second
	<2> True north velocity, -514.4 to 514.4 meters/second
	<3> Up velocity, -999.9 to 9999.9 meters/second

	A.7.4 GPS DOP and Active Satellites (GSA)
	$GPGSA,<1>,<2>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<4>,<5>,<6>*hh<C R><LF>
	<1> Mode, M = manual, A = automatic
	<2> Fix type, 1 = not available, 2 = 2D, 3 = 3D
	<3> PRN number, 01 to 32, of satellite used in solution, up to 12 transmitted (leading zeros will be transmitted)
	<4> Position dilution of precision, 0.5 to 99.9
	<5> Horizontal dilution of precision, 0.5 to 99.9
	<6> Vertical dilution of precision, 0.5 to 99.9

	A.7.5 Differential GPS
	Differential positioning with GPS, abbreviated DGPS, is a technique for improving GPS performance where two or more receivers ar...

	A.7.6 Coordinate transformations
	Transformation from RD coordinate system (x,y) to geographic coordinate system(j,l):
	In this formula and are the difference in coordinate with respect to the central point in Amersfoort. For that we need to apply the following translations::
	The coefficients for the transformation are:
	Transformation from geographic coordinate system(j,l) to RD coordinate system (x,y) is given by:
	The coefficients for the transformation are:
	To the best of our knowledge this conversion procedure is accurate to about 50 cm, partly because of the truncation of series us...
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