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Abstract

A lot of research has been done on the behaviour of pneumatic tyres and this has led to various
tyre models and a lot of measurement data. However, in the specific field of bicycle tyres, not so
much measurement data is available. However, in 2013 Andrew Dressel received the Degree of Doctor
of Philosophy in Engineering at the University of Wisconsin-Milwaukee by presenting his research:
Measuring and modeling the mechanical properties of bicycle tires. In this research he did a lot of
measurements with multiple bicycle tyre brands and models under different conditions. The results
from these measurements are interesting to use for modelling purposes.

The goal of this research is to find out if it is possible to estimate the bicycle tyre behaviour in terms of
vertical stiffness, cornering stiffness and camber stiffness based on known parameters like the inflation
pressure, tyre width, rim width, vertical load and the rubber compound using a tyre model.

An important part of this thesis are tyre models. The measurement data will be analysed using various
tyre models. The first used tyre model is the brush model. This model uses a single material parameter
and it turns out that this is too less to be able to extract clear relations between the tyre behaviour and
the known parameters like inflation pressure, tyre width and rim width.

The second tyre model that is used is the enhanced string model. This model is an extension of
the brush model. This model has three material parameters for the vertical direction and also three
material parameters for the lateral direction. Investigating this model shows that there is reasonable
suspicion to assume that one of the model parameters represents the inflation pressure. In order to
find the material parameters for every tyre, inflation pressure and normal load combination a parameter
optimisation is required. The results from this parameter optimisation show that the suspected model
parameter is actually not related to the inflation pressure. When the obtained model parameters
from the optimisation are put back into the tyre model interesting results are acquired, because the
model output agrees fairly well with the measurement data. This is unexpected because the model
parameters were differing a lot depending on how they were obtained, e.g. obtaining the parameters
from cornering stiffness or from camber stiffness.

The answer to the research question is no. In order to extract relations between the model parameters
and the tyres behaviour depending on their measurable properties, a lot more complete measurements
are needed. The whole idea was to be able to estimate tyre behaviour without the need of extensive
testing. This still might be possible, but in order to to that a lot more measurements are needed first.
These measurements should create a baseline of model parameters which can be used to estimate the
model parameters of unmeasured tyres.

iii





Contents

Abstract iii

1 Introduction 1
1.1 Motivation for this research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Behavioural expectancy of a bicycle tyre . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Bicycle tyre measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research objectives and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Tyre Models 3
2.1 Tyre brush model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Pure side slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Camber and turning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Pneumatic trail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Rotta model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Tyre forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Enhanced string model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Normal force distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Stationary lateral force distribution . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Non-smooth delayed contact model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Equations of a shimmying wheel . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Non-smooth delayed model of the tyre-ground contact . . . . . . . . . . . . 18

2.5 Selecting a tyre model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Validity of the tyre brush model for bicycle tyres . . . . . . . . . . . . . . . . 22
2.5.2 Validity of the Rotta model for bicycle tyres . . . . . . . . . . . . . . . . . . . 22
2.5.3 Validity of the enhanced string model for bicycle tyres. . . . . . . . . . . . . 22
2.5.4 Validity of the non-smooth delayed contact model for bicycle tyres . . . . . 22
2.5.5 Tyre model to be used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Investigating the enhanced string model 25
3.1 Normal force distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 A closer look at the equation for the pressure distribution . . . . . . . . . . 29
3.2 Normal load and vertical deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Lateral force distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Methods 43
4.1 Data and derived equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Tyre brush model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Enhanced string model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Parameter optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Optimisation algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Vertical direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Lateral direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Limitations in acquiring results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Tyre brush model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Enhanced string model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



vi Contents

5 Results 51
5.1 Results of the tyre brush model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Material parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Pneumatic trail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.3 Self-aligning torque and spin stiffness . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Results of the enhanced string model. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.1 Vertical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Lateral parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 Influence of alterations in the obtained values . . . . . . . . . . . . . . . . . 70

6 Discussion 75
6.1 Discussion of the tyre brush model results . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Discussion of the enhanced string model results . . . . . . . . . . . . . . . . . . . . 75

7 Conclusions and Future Work 77
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Results for the tyre brush model 79
A.1 Material parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 Pneumatic trail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B Results for the enhanced string model 89
B.1 Vertical direction parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.2 Lateral direction parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.3 Individual tyre measurements compared with model output . . . . . . . . . . . . . 95

Bibliography 111



1
Introduction

A tyre transfers the vehicle’s load from the axle through the wheel to the surface over which it travels
and provides traction. Most tyres, such as car, aircraft and bicycle tyres are pneumatically inflated
rubber structures. It is this composition that makes tyres do what they are meant to do; provide
traction in longitudinal and lateral direction and absorb shocks in vertical direction. However, it is also
this composition that makes the behaviour of tyres highly non-linear. This non-linear behaviour makes
it hard to model a tyre. A lot of research has been done on the behaviour of pneumatic tyres and this
has led to various tyre models. These tyre models can be divided into two groups: phenomenological
models and physical models [1]. The phenomenological models are based on experimental data and
the physical models are theory based. Naturally, combinations of both models also exist.

Nowadays, the phenomenological model developed by Prof. Dr. Ir. Pacejka, the Magic Formula,
for forces generated in tyre contact patches is widely used, since this model can approximate the tyre
forces quite accurately. The disadvantage is that they are not based on physical properties of the
tyre and a lot of measurements are needed to find the values of the large amount of parameters that
describe the tyre behaviour.

A physical model, FTire [2], is a finite element method computer simulation. This model also ap-
proximates the tyre forces accurately. Here the disadvantage is that it cannot run accurate simulations
in real-time. A lot of processing power is needed to calculate the tyre forces.

1.1. Motivation for this research
1.1.1. Behavioural expectancy of a bicycle tyre
Bicycle tyres are expected to behave more simply than car or truck tyres. Car and truck tyres have
steel belts and a thick carcass, which causes more non-linear effects in their behaviour and makes the
modelling more complex. A bicycle tyre is slender when the contact patch width is compared to the
wheel radius and the contact patch length. A bicycle tyre is also circular in cross section, which suggests
a simpler geometry [3]. Most bicycle tyres for urban purposes also have a thin casing with almost no
bending stiffness (non-inflated). This behavioural expectancy suggests easier tyre modelling, where
less model parameters are needed to describe the tyre behaviour.

1.1.2. Bicycle tyre measurements
In 2013 Andrew Dressel received the Degree of Doctor of Philosophy in Engineering at the University of
Wisconsin-Milwaukee by presenting his research: Measuring and modeling the mechanical properties
of bicycle tires [4]. In this research he did a lot of measurements with multiple bicycle tyre brands
and models. The results from these measurements are interesting to use for modelling purposes. In
addition to this research a group of bachelor students examined the vertical stiffness under different
conditions [5] of the same bicycle tyres as used by Dressel. This increases the usefulness for modelling
purposes, because a more complete data set is available.
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2 1. Introduction

1.2. Research objectives and contributions
The combination of the many bicycle tyre measurements done by Dressel and the plausible expectation
that bicycle tyres behave more simply than car or truck tyres, brings us to the objectives of this research.

1.2.1. Research question
Is it possible to estimate bicycle tyre behaviour in terms of vertical stiffness, cornering stiffness and
camber stiffness based on known parameters like the inflation pressure, tyre width, rim width, vertical
load and the rubber compound using a tyre model

In short: Is it possible to estimate bicycle tyre behaviour based on known parameters using a tyre
model

In order to answer this question the following three main things are needed:

• The relation between the known parameter and the behavioural property.

• A tyre model.

• The values of the tyre model parameters as a function of the known tyre parameters.

The first thing has already been found by Dressel and the group of bachelor students. The second
component is being decided on in this research. As has been slightly discussed before, there are several
tyre models which differ in approach and complexity. In this research the focus lies on physical tyre
models with a low amount of parameters describing the tyre behaviour. Various physical tyre models
will be elaborated and a choice will be made. The next step is to find the model parameters as a
function of the known tyre parameters. After this is done, the results will be analysed and the research
question will be answered.

1.3. Structure
Several tyre models will be discussed in Chapter 2. In the end of Chapter 2 a choice is made to be able
to find the tyre model parameters as a function of the known tyre parameters. Chapter 3 is dedicated
to investigating the enhanced string model, which is done for better understanding of that model and
to have a feeling for interpreting the results. In Chapter 4 the methods are explained: How to come
from the derived model equations and measurement data to the results. The results are shown in
Chapter 5. In Chapter 6 the results will be discussed and finally in Chapter 7 conclusions are drawn
and recommendations for future work will be given.



2
Tyre Models

2.1. Tyre brush model
In this section the theory of the tyre brush model will be explained. This theory is described in chapter
3 of Tire and Vehicle Dynamics by Pacejka [1]. It is an extension to the original ’brush’ model of Fromm
and Julien from 1952.

Theory of the tyre brush model

The tyre brush model is a relatively simple theoretical tyre model. In the brush model the tyre is
represented by a row of elastic bristles that touches the road plane. The bristles can be seen as the
tread elements and are able to deflect in a direction parallel to the road surface. The flexibility of
the bristles represents the elasticity of the combination of carcass, belt and actual tread elements of
the real tyre. The first element of a rolling tyre that enters the contact zone is assumed to stand
perpendicular to the road surface. For a freely rolling tyre in upright position (no camber angle), so no
turning (no side-slip angle), accelerating or braking (no tyre slip), all elements are perpendicular to the
road surface and in this case they are not generating a force. Rolling resistance will be ignored for the
sake of simplicity. In the case that the wheel velocity vector 𝑉 has an angle with respect to the wheel
plane, side-slip occurs. Fore-and-aft slip occurs when the rotational wheel velocity multiplied with the
effective rolling radius is not equal to the forward component of the wheel velocity. The combined slip
situation is shown in Figure 2.1. The deflection of the elements induce forces and depending on the
position of the resultant force, a moment occurs as well. In Figure 2.2 pure side-slip situations are
shown. As can be seen there is a maximum amount of possible deflection depending on the position in
the contact region of the element. This is determined by the vertical force distribution. The maximum
force that can be generated by the tyre depends on three parameters: the friction coefficient 𝜇, the
vertical force distribution 𝑞 and the stiffness of the element 𝑐 . The vertical force distribution is
assumed to be parabola shaped. With this the maximum deflection is also parabola shaped. As shown
in Figure 2.2 there are two possible states for the contact region: adhesion and sliding. The point where
the straight line intersects the parabola is the point from where the sliding starts. By increasing the
slip angle, the generated side force increases. The position from the resultant force behind the contact
centre is called the pneumatic trail 𝑡. The aligning torque is generated by the non-symmetric shape
of the deflection distribution and can be calculated by multiplying the lateral force with the pneumatic
trail. The characteristics of the lateral force and aligning torque at increasing side-slip angle are shown
on the right side of Figure 2.2.
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4 2. Tyre Models

Figure 2.1: A visual representation of both slip situations in the brush tyre model 1.

Figure 2.2: Left: Pure side-slip, from small to large slip angle. Right: Resulting side force and aligning torque characteristics 2.

Since Dressel did measurements for pure side-slip and camber, only the lateral part of the tyre brush
model will be further elaborated. First the pure side-slip will be discussed and secondly the camber.
1Image is taken from [1].
2Image is taken from [1].



2.1. Tyre brush model 5

2.1.1. Pure side slip
A more detailed visualisation of the tyre brush model moving at a constant slip angle is depicted in
Figure 2.3. The contact line in the adhesion range is straight and parallel to the velocity vector 𝑉 and
in the sliding range it is curved, since the available frictional force becomes lower than the force which
would be required for the tips of the tread elements to follow the straight line further. The lateral
deformation in the adhesion range equals

𝑣 = (𝑎 − 𝑥) tan 𝛼 (2.1)

where 𝑎 is half the contact length. For 𝛼 →0 or 𝜇 → ∞, the sliding region vanishes and Equation 2.1 is
valid for the entire contact region. The following integrals and expressions for the cornering force 𝐹
and the self-aligning torque 𝑀 hold:

𝐹 = 𝑐 ∫ 𝑣𝑑𝑥 = 2𝑐 𝑎 𝛼 (2.2)

𝑀 = 𝑐 ∫ 𝑣𝑥𝑑𝑥 = −23𝑐 𝑎 𝛼 (2.3)

where 𝑐 is the stiffness of the tread elements per unit length of the assumedly rectangular contact
area.

Figure 2.3: Top and side view of the tyre brush model moving at pure slip angle 3.

From equations 2.2 and 2.3 the cornering stiffness and self-aligning torque stiffness can be deduced
respectively.

𝐶 = (
𝜕𝐹
𝜕𝛼 ) = 2𝑐 𝑎 (2.4)

𝐶 = −(𝜕𝑀𝜕𝛼 ) = 2
3𝑐 𝑎 (2.5)

3Image is taken from [1].



6 2. Tyre Models

The cornering stiffness 𝐶 , self-aligning torque stiffness 𝐶 , and contact patch length 2𝑎 are all
measured by Dressel. With these measured parameters, material parameter 𝑐 can be calculated
with equations 2.4 and 2.5 rewritten as:

𝑐 =
𝐶
2𝑎 (2.6)

and

𝑐 =
3𝐶
2𝑎 (2.7)

2.1.2. Camber and turning
Along with longitudinal slip (slip ratio) and lateral slip (slip angle) there is a third slip quantity which is
called spin. The total spin consists of two components: camber and turn slip. This third slip quantity
is described by Pacejka in [6]. In Figure 2.4 a visualisation of spin is depicted, with 𝛾 indicating the
camber angle, the yaw angle 𝜓, path radius 𝑅 and the wheel rotational velocity Ω.

Figure 2.4: Pure turn slip and camber 4.

The normal component of the rotational velocity 𝜔 over the forward velocity 𝑉 is called the spin
slip 𝜑. For a freely rolling wheel (no braking, driving or side slip), the following equation is valid:

𝜑 = −1𝑉𝜔 = −1𝑉(�̇� − Ω sin 𝛾) = −
1
𝑅 +

1
𝑟 sin 𝛾 (2.8)

The total spin in fact is just the difference of two curvatures: one of the path of the contact centre and
the other of the vertical projection of the peripheral line of the undeformed tilted tyre. In the article by
Pacejka [6] a camber reduction factor 𝜖 has been introduced, because of the relatively small camber
stiffness of car and truck tyres compared to motorcycle tyres. For this research the camber reduction
factor will be neglected. In the measurements done by Dressel, the wheel is travelling in a straight line
with a forced camber angle. This means that the wheel is not rotating around its z-axis, such that �̇� is
equal to zero. The spin slip becomes:

𝜑 = 1
𝑉Ω sin 𝛾 =

1
𝑟 sin 𝛾 (2.9)

4Image is taken from [6].



2.1. Tyre brush model 7

The lateral force and the self-aligning torque respectively are:

𝐹 = 𝐶 𝛼 + 𝐶 𝜑 (2.10)

𝑀 = −𝐶 𝛼 + 𝐶 𝜑 (2.11)

For the measurement of camber stiffness, Dressel kept the slip angle at zero. Such that Equation 2.10
can be reduced to:

𝐹 = 𝐶 𝜑 (2.12)

Since Dressel did the measurements by altering the camber angle (for small camber angles), this
equation should be written as:

𝐹 = 𝐶 1
𝑟 sin 𝛾 = 𝐶

1
𝑟 𝛾 (2.13)

In the article by Pacejka [6] reciprocity is observed in the moment response to side-slip and the force
response to turn slip. For the tyre brush model it turns out that

𝐶 = 𝐶 (2.14)

With this information the material stiffness 𝑐 can be obtained from the turn slip stiffness. Combining
equations 2.5 and 2.12, the following relation for the spin stiffness and material parameter 𝑐 is found:

𝐶 = (
𝜕𝐹
𝜕𝜑 ) = (

𝜕𝐹
𝜕𝛾 ) 𝑟 = 2

3
1
𝑟 𝑐 𝑎 (2.15)

The value measured by Dressel is the spin stiffness (for pure camber) and the material parameter 𝑐
can be obtained in the following way:

𝑐 =
3𝐶 𝑟
2𝑎 (2.16)

2.1.3. Pneumatic trail
As mentioned before, the position from the resultant force behind the contact centre is called the
pneumatic trail 𝑡. The resultant lateral force times the pneumatic trail is the self aligning torque. Since
Dressel measured both the lateral force and the self-aligning torque and calculated the stiffnesses from
both, the pneumatic trail can be calculated by:

𝑡 = −
𝐶
𝐶 (2.17)

In Tire and Vehicle Dynamics [1] Pacejka shows that at vanishing slip angle, the expression for pneu-
matic trail reduces to:

𝑡 = 𝑡 = −(𝑀𝐹 )
→
= 1
3𝑎 (2.18)

This is one-sixth of the contact patch length.
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2.2. Rotta model
This section will elaborate on the Rotta model. The Rotta model is based on assumptions that work
really well with bicycle tyres. The main assumption that is made in the Rotta model is the shape of the
tyre, which is a circle when there is no vertical force applied to the wheel. This is a simpler geometry
for which it is easier come up with equations that use this geometry for tyre force calculations.

Theory of the Rotta model
Rotta’s model dates from 1949 [7] and is written in German. A translation from the Cornell Aeronautical
Laboratory is available [8]. Rotta developed a tyre element model, which is an infinitesimal slice of the
tyre and rim. Papadopoulos and Dressel extended the model for a whole tyre instead of just a single
section. For a narrow tyre and long contact patch, it is assumed that the slowly varying deformation
can be analysed as a series of non-coupled 2D elements [3]. This will be discussed later on, first the
basics of the Rotta model will be explained.

Cross-section geometry
In the Rotta model, the rim is expressed as a rigid line segment and the tyre as an inextensible string
joining the rim edges. The inside contains air pressure 𝑝 relative to the external atmosphere. In
Figure 2.5 a cross-section as defined by Rotta is shown. 𝐵 is the tyre width, 𝐵 is the rim width and 𝐻
is the uncompressed tyre height. The initial angle 𝛾 relative to the horizontal of the rim can be found
from sin(𝛾 ) = 𝐵 /𝐵.

Figure 2.5: Unloaded tyre cross-section as defined by Rotta 5.

Papadopoulos chooses to use the parameters as shown in Figure 2.6. 𝑤 is half the rim width, 𝐿 is
the casing half length and 𝜙 represents the initial angle substended by half the tyre (𝜙 = 𝜋 − 𝛾 ).

Figure 2.6: Unloaded tyre cross-section as defined by Papadopoulos 6.

5Image is taken from [3].



2.2. Rotta model 9

Combining 𝐿 = 𝑟 𝜙 and 𝑤 = 𝑟 sin𝜙 eliminates the initial radius 𝑟 and gives an implicit equation
for 𝜙 (has to be solved numerically):

sin𝜙
𝜙 = 𝑤

𝐿 (2.19)

By applying a vertical force on the rim without any tyre slip, the casing will be pressed flat to the ground
over a contact width 2𝑑, see Figure 2.7. It departs the ground while being tangent to the ground at
the edge of both sides of the contact patch and then follows a circular arc up to the edge of the rim.
It is assumed that the length of the casing does not change, such that the sum of the circular sidewall
arcs and the part flat on the ground is a fixed number (2𝐿).

Figure 2.7: Tyre cross-section of a vertical loaded rim as defined by Papadopoulos 7.

Consider the midpoint of the tyre casing to touch the ground at a coordinate system origin. Then for
any position of the rim, there is a simple geometry problem to be solved for each sidewall: Determine
the distance 𝑑 from the origin to the edge of the contact region, and arc parameters radius 𝑟 and
subtended angle 𝜙, such that: The contacting length 𝑑 plus the arc length 𝑟𝜙 is equal to the fixed
casing half-length 𝐿:

𝑑 + 𝑟𝜙 = 𝐿 (2.20)

The y-coordinate of the final casing point 𝑑 + 𝑟 sin𝜙 matches the y-coordinate of the rim edge:

𝑑 + 𝑟 sin𝜙 = 𝑌 (2.21)

The z-coordinate of the final casing point 𝑟(1 − cos𝜙) matches the z-coordinate of the rim edge:

𝑟(1 − cos𝜙) = 𝑍 (2.22)

These three requirements suffice to determine 𝑑, 𝑟, 𝜙 uniquely from 𝐿, 𝑌 , 𝑍 . Although a closed
form solution has not been found, the following reduction is useful: Eliminate 𝑟 from Equation 2.19
and 2.20, then solve for 𝑑:

𝑑 = 𝑌 𝜙 − 𝐿 sin𝜙
𝜙 − sin𝜙 (2.23)

With this value of 𝑑, Equation 2.19 can be used to write

𝑟 = 𝐿 − 𝑌
𝜙 − sin𝜙 (2.24)

6Image is taken from [3].
7Image is taken from [3].



10 2. Tyre Models

This can be substituted in Equation 2.21 and gives an implicit equation for 𝜙:

𝐿 − 𝑌
𝑍 = 𝜙 − sin𝜙

1 − cos𝜙 (2.25)

This is for any rim edge coordinates relative to the ground point corresponding to the casing midpoint.
It should be possible to determine 𝜙 and subsequently compute the other geometric quantities.

When the rim is moved towards the ground the deformation is symmetric. Both sidewalls will have
the same length, such that they have identical values of 𝑑, 𝑟, and 𝜙. When the compressed rim is
rotated or laterally translated, the right and left solutions are different. From this difference the ground
reaction forces on the rim can be determined.

2.2.1. Tyre forces
For an element of the tyre the forces and moments (per unit length) applied to the displaced and
rotated rim segment need to be found. This is most easily done by determining the forces of the tyre
on the ground, then the reverse of these are the ground reactions acting on the wheel.

The vertical force (per unit circumferential distance) on the tyre is equal to the tyre pressure times
the total width of contact: 𝐹 = 𝑝 (𝑑 + 𝑑 ). The line of action is at the centre of the contact region,
with x-coordinate (𝑑 − 𝑑 )/2.

The horizontal force (per unit circumferential distance) on the tyre can be derived from the difference
in sidewall tension. The sidewall tension is calculated as 𝑇 = 𝑝 𝑟. So the lateral force on the tyre is
𝑝 (𝑟 − 𝑟 ).
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2.3. Enhanced string model
The theory of the enhanced string model will be discussed in this section.

Theory of the enhanced string model
The enhanced string model is an extension of the brush model. As with the brush model, the contact
patch is assumed to be narrow, such that the contact patch can be represented by a line. This as-
sumption turns the two-dimensional problem into a one-dimensional problem. The bristles of the brush
remain and a two-parameter Pasternak foundation is added. The bristles represent the stiffness of the
tread, whereas the restoring force of the foundation represents the stiffness generated by the inflation
pressure, the sidewalls and the pre-stress of the tyre belt. In the paper by Meijaard [9] it is described
that the restoring force is given by a combination of a part that is proportional to the deflection, as
in Winkler elastic foundation, and a part that is proportional to the second derivative, the change in
curvature, which is caused by the shearing of the foundation. This model is used in the vertical and
the lateral direction. For the longitudinal direction, the model is simplified, but that does not matter for
this research, since the available measurements are only done for the vertical and lateral directions.
First the normal force distribution will be elaborated and then the lateral force distribution.

2.3.1. Normal force distribution
The equations for the normal force distribution are elaborated in this section. An undeformed belt
radius 𝑅 of the tyre is assumed. If the camber angle is zero, this is just the outer radius in the plane
of symmetry minus the tread thickness, which is equal to the length 𝑙 of the bristles. However, if
there is a camber angle, the centre of curvature is on the axis of the wheel. The stiffness generated
by the inflation pressure, the sidewalls and the pre-stress of the tyre belt and the stiffness of the
tread elements are directional. Therefor a local right-handed orthonormal coordinate system o𝑥𝑦𝑧 is
introduced in the contact patch. The origin is in the centre of the contact patch, the z-axis is pointing
in the downward direction, the x-axis is pointing in the forward direction, parallel to the wheel plane,
and the y-axis is pointing to the right. The normal stiffness of the bristles is 𝑘 (N m ) per unit of
length, the normal stiffness of the foundation is 𝑘 (N m ) per unit of length and the shear stiffness
of the foundation is 𝑘 (N). The subscript 𝑧 denotes the vertical direction, 𝑡 is the subscript for the
tread, 𝑊 stands for the Winkler part of the foundation and 𝑃 for the Pasternak part. Furthermore,
there is 𝜖 , which is the deflection of the tyre. This is defined as the sinking of the wheel centre in
comparison with the position that the tread just touches the road. The half of the contact length is
denoted by 𝑎. It is assumed that the normal force distribution is symmetric. The displacements 𝑤 of
the tread elements can be approximated by a parabolic distribution, since the stiffness is considered
constant and the displacements small. Positive in upward direction, the displacement is

𝑤 = 𝜖 − 𝑥
2𝑅 (−𝑎 < 𝑥 < 𝑎)

𝑤 > 𝜖 − 𝑥
2𝑅 (𝑥 < −𝑎 or 𝑥 > 𝑎),

(2.26)

where 𝑥 is the distance along the contact line, which is zero in the centre and positive in the forward
direction. The force on the tread elements outside of the contact patch is zero. The part of the potential
energy per unit of length resulting from normal displacements is given by

𝑈 = 1
2𝑘 (𝑤 ) + 12𝑘 𝑤 + 12𝑘 (𝑤 − 𝑤 ) , (2.27)

where 𝑤 is the normal deflection of the tyre belt, which is positive in the upward direction, and the
prime denotes a derivative with respect to 𝑥. Meijaard [9] takes variations in the potential energy with
respect to the belt displacement and obtains the following differential equation

−𝑘 𝑤 + (𝑘 + 𝑘 )𝑤 = 𝑘 𝑤 (−𝑎 < 𝑥 < 𝑎),
−𝑘 𝑤 + 𝑘 𝑤 = 0 (𝑥 < −𝑎 or 𝑥 > 𝑎). (2.28)

The bounded solutions outside the contact region are given by

𝑤 (𝑥) = 𝑤 (𝑎)𝑒 ( ), 𝑤 (𝑥) = −𝜅 𝑤 (𝑎)𝑒 ( ) (𝑥 > 𝑎),
𝑤 (𝑥) = 𝑤 (−𝑎)𝑒 ( ), 𝑤 (𝑥) = −𝜅 𝑤 (−𝑎)𝑒 ( ) (𝑥 < −𝑎).

(2.29)
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In this equation 𝜅 = (𝑘 /𝑘 ) / . The solutions in Equation 2.29 give the following boundary
conditions

𝜅 𝑤 (𝑎) + 𝑤 (𝑎) = 0, 𝜅 𝑤 (−𝑎) − 𝑤 (−𝑎) = 0. (2.30)

The symmetric solution within the contact region can be written as

𝑤 (𝑥) = 𝐶 cosh(𝜅 𝑥) + (1 − 𝜅𝜅 )(𝜖 − 𝑥
2𝑅 − 1

𝜅 𝑅 ), (2.31)

where 𝜅 = [(𝑘 + 𝑘 )/𝑘 ] / and the constant 𝐶 follows from the boundary condition at 𝑥 = 𝑎 in
Equation 2.30. The value of 𝑎 can be found as the positive solution to the equation

𝑤 (𝑎) = 𝑤 (𝑎) = 𝜖 − 𝑎
2𝑅 , or

𝐶 cosh(𝜅 𝑎) − 𝜅𝜅 (𝜖 − 𝑎
2𝑅 ) − (1 − 𝜅𝜅 ) 1

𝜅 𝑅 = 0
(2.32)

This equation can be solved by an iterative procedure. A good starting value for half the contact length
appears to be

𝑎 = (2𝑅 𝜖 ) / (2.33)

The available measurements from Dressel [4] already contain the contact length data. This is a good
way to check if the approximation from Meijaard is in agreement with the measurement data. The
pressure distribution per unit length is given by 𝑝 = 𝑘 (𝑤 − 𝑤 ), where a compressive pressure is
positive:

𝑝 = 𝑘 [ − 𝐶 cosh(𝜅 𝑥) + (1 − 𝜅𝜅 ) 1
𝜅 𝑅 + 𝜅𝜅 (𝜖 − 𝑥

2𝑅 )] (−𝑎 < 𝑥 < 𝑎). (2.34)

The normal compressive force can be found by integrating the normal pressure over the contact line:

𝐹 = ∫ 𝑝 𝑑𝑥 = 2𝑘 𝑎[ − 𝐶 sinh(𝜅 𝑎)
𝜅 𝑎 + (1 − 𝜅𝜅 ) 1

𝜅 𝑅 + 𝜅𝜅 (𝜖 − 𝑎
6𝑅 )]. (2.35)

In order to find the values of the parameters of this model for the tested tyres by Dressel and the guys
from the Bachelor Thesis, Equation 2.35 has to be rewritten. In this case the measurement data is the
vertical stiffness, which is defined as:

𝐶 = ( 𝜕𝐹𝜕𝜖 ) . (2.36)

Taking the partial derivative of Equation 2.35 to the vertical deflection gives the following equation:

( 𝜕𝐹𝜕𝜖 ) = 2𝑘 𝑎( − 𝜕𝐶𝜕𝜖
sinh(𝜅 𝑎)
𝜅 𝑎 + 𝜅𝜅 ). (2.37)

In this equation the derivative of 𝐶 with respect to 𝜖 is equal to:

𝜕𝐶
𝜕𝜖 =

𝜅 ( − 1)

𝜅 cosh(𝜅 𝑎) + 𝜅 𝑠𝑖𝑛ℎ(𝜅 𝑎) . (2.38)

Combining this with Equation 2.37 gives us the following equation:

( 𝜕𝐹𝜕𝜖 ) = 2𝑘 ( − sinh(𝜅 𝑎)
𝜅 cosh(𝜅 𝑎) + 𝜅 sinh(𝜅 𝑎)

𝜅
𝜅 (𝜅𝜅 − 1) + 𝑎𝜅𝜅 ). (2.39)

This can be reduced to:

( 𝜕𝐹𝜕𝜖 ) = 2𝑘 ( − 1

( ) + 𝜅
𝜅
𝜅 (𝜅𝜅 − 1) + 𝑎𝜅𝜅 ). (2.40)

As mentioned before, 𝜅 = (𝑘 /𝑘 ) / and 𝜅 = [(𝑘 + 𝑘 )/𝑘 ] / . Filling these into Equation
2.40 gives a really messy equation so that won’t be done.
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2.3.2. Stationary lateral force distribution
Now an equation is available for finding the vertical stiffness of the tread and the foundation, the same
will be done for the lateral stiffness. The velocity distribution along the contact line is given by

𝑉 (𝑥) = 𝑉 + Ω 𝑥 − Ω 𝑅 . (2.41)

Since it is a stationary motion, Ω = 0. The lateral slip velocity is defined as the lateral velocity of the
centre of the contact line:

̇𝜖 ≡ 𝑉 (0) = 𝑉 − Ω 𝑅 (2.42)

The dimensionless lateral slip is defined in the following way:

𝑠 =
̇𝜖
𝑉 =

𝑉
𝑉 − Ω 𝑅

𝑉 (2.43)

In the brush model from previous chapter the lateral slip was denoted by 𝛼, but for this model 𝑠 is
used. As explained in the previous chapter the third slip quantity, along with the longitudinal slip and
the lateral slip, is the spin. The normal spin is defined as:

𝑠 = −Ω 𝑅
𝑉 (2.44)

Again, another notation for the spin slip is used compared to previous chapter (𝑠 instead of 𝜑).
The lateral displacement of the belt and bristles are 𝑣 and 𝑣 respectively. In the stationary case,

an extra script 𝑠 will be added. The contact region is divided into two parts, just as with the brush
model from previous chapter. These are the adhesion region and the sliding region. The point where
adhesion region transitions into the sliding region is denoted by �̄�. This is only valid when the normal
spin is small or if the normal spin and the lateral slip have opposite signs, as is the case for motorcycles
and bicycles in stationary cornering. The lateral displacement of the bristles in the adhesion region,
for the stationary case, is given by

𝑣 (𝑥) = 𝑣 , (𝑥) = 𝑣 , (𝑎) − (𝑎 − 𝑥)𝑠 + (𝑎 − 𝑥 ) 𝑠2𝑅 (2.45)

Similar to the equations for vertical displacement, the differential equations for the lateral belt displace-
ment become

−𝑘 𝑣 + (𝑘 + 𝑘 )𝑣 = 𝑘 𝑣 (�̄� < 𝑥 < 𝑎),
−𝑘 𝑣 + 𝑘 𝑣 = ±𝜇 𝑝 (0 < 𝑥 < �̄�),
−𝑘 𝑣 + 𝑘 𝑣 = 0 (𝑥 < −𝑎 or 𝑥 > 𝑎)

(2.46)

If 𝑠 > 0 the upper sign has to be chosen and the lower sign in the other case. The displacement of
the bristles is prescribed for the adhesion region and the force is prescribed for the sliding region. The
solutions in the outside regions have the same form as the equations in Equation 2.29, where 𝑤 gets
replaced by 𝑣 and 𝜅 by 𝜅 = (𝑘 /𝑘 ) / . This gives the following boundary conditions:

𝜅 𝑣 (𝑎) + 𝑣 (𝑎) = 0, 𝜅 𝑣 (−𝑎) − 𝑣 (−𝑎) = 0. (2.47)

The stationary solution in the adhesion region becomes

𝑣 , (𝑥) = 𝐶 cosh(𝜅 𝑥) + 𝐶 sinh(𝜅 𝑥)

+ (1 −
𝜅
𝜅 )(𝑣 , (𝑎) − (𝑎 − 𝑥)𝑠 + (𝑎 − 𝑥 ) 𝑠2𝑅 − 𝑠

𝜅 𝑅 ) (�̄� < 𝑥 < 𝑎), (2.48)

in which 𝜅 = [(𝑘 + 𝑘 )/𝑘 ] / and 𝐶 and 𝐶 are constants that will be determined from the
boundary conditions. The value 𝑣 , (𝑎) can be expressed in terms of the constants as

𝑣 , (𝑎) =
𝜅
𝜅 [𝐶 cosh(𝜅 𝑎) + 𝐶 sinh(𝜅 𝑎) − (1 −

𝜅
𝜅 ) 𝑠

𝜅 𝑅 ]. (2.49)
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When this value gets substituted in Equation 2.48, the following equation is obtained:

𝑣 , (𝑥) = 𝐶 [ cosh(𝜅 𝑥) + (
𝜅
𝜅 − 1) cosh(𝜅 𝑎)]

+ 𝐶 [ sinh(𝜅 𝑥) + (
𝜅
𝜅 − 1) sinh(𝜅 𝑎)]

+ (1 −
𝜅
𝜅 )( − (𝑎 − 𝑥)𝑠 + (𝑎 − 𝑥 ) 𝑠2𝑅 − 𝑠

𝜅 𝑅 ) (�̄� < 𝑥 < 𝑎).

(2.50)

The solution for the sliding region is

𝑣 , = 𝐶 cosh(𝜅 𝑥) + 𝐶 sinh(𝜅 𝑥) ± 𝜇 𝑘
𝑘 [𝐶

𝜅
𝜅 − 𝜅 cosh(𝜅 𝑥)

+ (1 − 𝜅𝜅 ) 1
𝜅 𝑅 + 𝜅𝜅 (𝜖 − 𝑥

2𝑅 − 1
𝜅 𝑅 )] (−𝑎 < 𝑥 < �̄�).

(2.51)

It can be assumed that 𝜅 > 𝜅 . The four constants 𝐶 , 𝐶 , 𝐶 and 𝐶 are determined by the
boundary condition from Equation 2.46 and the conditions that the displacement and the slope of the
belt are continuous at 𝑥 = �̄�. After solving the equations for the four constants, the stationary lateral
force distribution can be written as

𝑝 , (𝑥) = ±𝜇 𝑝 (𝑥)

= ±𝜇 𝑘 [ − 𝐶 cosh(𝜅 𝑥) + (1 − 𝜅𝜅 ) 1
𝜅 𝑅

+ 𝜅𝜅 (𝜖 − 𝑥
2𝑅 )] (−𝑎 < 𝑥 < �̄�),

𝑝 , (𝑥) = 𝑘 (𝑣 − 𝑣 )
= 𝑘 𝐶 (cosh(𝜅 𝑥) − cosh(𝜅 𝑎)) + 𝑘 𝐶 (sinh(𝜅 𝑥) − sinh(𝜅 𝑎))

+ 𝑘
𝜅
𝜅 ((𝑎 − 𝑥)𝑠 − (𝑎 − 𝑥 ) 𝑠2𝑅 ) (�̄� < 𝑥 < 𝑎).

(2.52)

The condition for the transition point �̄� is

𝑝 , (�̄� ) = 𝜇 𝑝 (�̄�). (2.53)

The stationary lateral force can now be calculated by the following integral:

𝐹 , = ∫ 𝑝 , (𝑥)𝑑𝑥 = ∫
̄
𝑝 , (𝑥)𝑑𝑥 + ∫

̄
𝑝 , (𝑥)𝑑𝑥. (2.54)

The aligning moment can be found by:

𝑀 , = −∫ 𝑥𝑝 , (𝑥)𝑑𝑥 = −∫
̄
𝑥𝑝 , (𝑥)𝑑𝑥 − ∫

̄
𝑥𝑝 , (𝑥)𝑑𝑥. (2.55)

As might be recalled from the previous section, to find the values of the parameters of this model for
the tested tyres by Dressel, these last two equations have to be rewritten. The cornering stiffness is
defined as:

𝐶 = (
𝜕𝐹 ,
𝜕𝑠 ) (2.56)

Secondly, the self-aligning moment stiffness is:

𝐶 = −(𝜕𝑀 ,
𝜕𝑠 ) (2.57)
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And lastly, the spin stiffness is defined as:

𝐶 = (
𝜕𝐹 ,
𝜕𝑠 ) (2.58)

So in order to find the relation between the cornering stiffness and the model parameters, the partial
derivative of the following formula to the slip angle will be taken:

𝐹 , = ∫
̄
±𝜇 𝑘 [ − 𝐶 cosh(𝜅 𝑥) + (1 − 𝜅𝜅 ) 1

𝜅 𝑅 + 𝜅𝜅 (𝜖 − 𝑥
2𝑅 )]𝑑𝑥

+ ∫
̄
[𝑘 𝐶 (cosh(𝜅 𝑥) − cosh(𝜅 𝑎)) + 𝑘 𝐶 (sinh(𝜅 𝑥) − sinh(𝜅 𝑎))

+ 𝑘
𝜅
𝜅 ((𝑎 − 𝑥)𝑠 − (𝑎 − 𝑥 ) 𝑠2𝑅 )]𝑑𝑥

(2.59)

The first integral doesn’t contain terms with the slip angle 𝑠 , such that the following integral is obtained:

(
𝜕𝐹 ,
𝜕𝑠 ) = ∫

̄
[𝑘

𝜕𝐶
𝜕𝑠 (cosh(𝜅 𝑥) − cosh(𝜅 𝑎))

+ 𝑘
𝜕𝐶
𝜕𝑠 (sinh(𝜅 𝑥) − sinh(𝜅 𝑎)) + 𝑘

𝜅
𝜅 (𝑎 − 𝑥)]𝑑𝑥

(2.60)

Unlike the expression for 𝜕𝐶 /𝜕𝜖 , the expression for 𝜕𝐶 /𝜕𝑠 and 𝜕𝐶 /𝜕𝑠 are very lengthy expres-
sions. Therefor the complete equation for the cornering stiffness is even longer and it won’t be shown
here. The equation is obtained using the symbolic toolbox in Matlab, since it is impossible to obtain
it by hand without making mistakes. This equation can be used to link the measurement data from
Dressel to the model parameters 𝜅 = (𝑘 /𝑘 ) / and 𝜅 = [(𝑘 + 𝑘 )/𝑘 ] / .

A similar expression can be found for the self-aligning moment and the normal spin. The expression
for the self-aligning moment is:

𝑀 , = ∫
̄
±𝜇 𝑘 𝑥[ − 𝐶 cosh(𝜅 𝑥) + (1 − 𝜅𝜅 ) 1

𝜅 𝑅 + 𝜅𝜅 (𝜖 − 𝑥
2𝑅 )]𝑑𝑥

+ ∫
̄
𝑥[𝑘 𝐶 (cosh(𝜅 𝑥) − cosh(𝜅 𝑎)) + 𝑘 𝐶 (sinh(𝜅 𝑥) − sinh(𝜅 𝑎))

+ 𝑘
𝜅
𝜅 ((𝑎 − 𝑥)𝑠 − (𝑎 − 𝑥 ) 𝑠2𝑅 )]𝑑𝑥

(2.61)

Here again the first integral does not contain the slip term. The self-aligning moment stiffness becomes:

(𝜕𝑀 ,
𝜕𝑠 ) = ∫

̄
𝑥[𝑘

𝜕𝐶
𝜕𝑠 (cosh(𝜅 𝑥) − cosh(𝜅 𝑎))

+ 𝑘
𝜕𝐶
𝜕𝑠 (sinh(𝜅 𝑥) − sinh(𝜅 𝑎)) + 𝑘

𝜅
𝜅 (𝑎 − 𝑥)]𝑑𝑥

(2.62)

Also this equation contains the lengthy expressions for 𝜕𝐶 /𝜕𝑠 and 𝜕𝐶 /𝜕𝑠 . The complete expres-
sion for the self-aligning torque stiffness is even longer than the expression for the cornering stiffness,
so it also won’t be shown here. This equation is also found with the Matlab symbolic toolbox.

Lastly the expression for the spin stiffness will be derived. As can be seen in Equation 2.59, the first
integral does not contain a term with the normal spin 𝑠 , such that the following equation is obtained:

(
𝜕𝐹 ,
𝜕𝑠 ) = ∫

̄
[𝑘

𝜕𝐶
𝜕𝑠 (cosh(𝜅 𝑥) − cosh(𝜅 𝑎))

+ 𝑘
𝜕𝐶
𝜕𝑠 (sinh(𝜅 𝑥) − sinh(𝜅 𝑎)) − 𝑘

𝜅
𝜅 ((𝑎 − 𝑥 )

2𝑅 )]𝑑𝑥
(2.63)
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The complete equation will be derived with the symbolic toolbox in Matlab to prevent mistakes and
save time. The complete equation is again too long to show here.
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2.4. Non-smooth delayed contact model

In this section the non-smooth delayed contact model will be discussed. The non-smooth delayed
contact model is based on the stretched-string model. Beregi studied the vibrations of a towed wheel
excited by the lateral deformation of the tyre [10]. The time delay in the tyre-ground contact as well
as the partial side slip are considered making it possible to capture the dynamic deformation of the
contact patch centre-line with relatively low parameters and computation time. This tyre model can
identify the hysteresis effect in the stability of the rectilinear motion by numerical simulations, which is
not possible with the simpler quasi steady-state tyre models.

Theory of the non-smooth delayed contact model

The most commonly used tyre models are assuming quasi steady-state deformation in the contact
patch. This makes it possible to introduce tyre force and aligning moment characteristics, which works
well for larger speeds [1] [11]. However, for low or medium velocities these models tend to be less
accurate, because the memory-effect associated to the time-delay becomes more relevant in the con-
tact patch [12] [13]. A solution to capture this behaviour is to use additional degrees of freedom
besides addressed to certain dynamic features of the tyre together with the tyre force characteristics
[14]. This solution is implemented in several models, but due to the higher number of parameters
these might be found less convenient for a qualitative analysis of tyre dynamics. Another solution is
to use continuum-based tyre models which are capable to describe the travelling waves in the rolling
tyre-ground contact. The problem is that these models lead to partial differential equations, which can
be computationally costly to solve.

Beregi selected the stretched-string tyre model for his study, which can be a good compromise in
this respect since for pure rolling the deformation is described by a single partial differential equation
whereas it takes into account the tyre deformation outside the contact patch too, which, like mentioned
before, has a relevant effect in the low velocity range. A travelling wave solution can be composed
analytically for the nonlinear partial differential equation by introducing time delay distributed along
the contact length. However, the travelling wave solution cannot capture the sliding effect caused by
friction in the contact region. Thus, while it can be effectively used for linear stability analysis, to
investigate the nonlinear dynamics it has to be enhanced by taking the side slip into account too.

Taking the memory effect and the contact friction into account simultaneously in the tyre-road
contact can result in a complex structure of sticking and sliding regions, as for the stretched-string
model in particular, the deformation in the sliding parts is described by differential equations [15].
Beregi mentions that in contact mechanics several studies revealed a similar structure of sticking and
sliding regions in the frictional contact of elastic continua [16]. In his study Beregi introduces a case-
selective algorithm to determine the boundaries and the deformation in the different regions that can
occur while the tyre makes lateral vibrations. Then the non-smooth delayed tyre model is implemented
in the numerical simulation of a towed wheel. By obtaining the stable periodic solutions in the system
he demonstrates the hysteresis effect observed in practice regarding the stability of the rectilinear
motion.

2.4.1. Equations of a shimmying wheel

In their study they implement their tyre model into the in-plane model of a towed wheel attached to a
rigid caster of length 𝑙, which is towed by a constant velocity 𝑉 along the x-direction. The system has
mass 𝑚 and mass moment of inertia 𝐽 with respect to the joint A. The deflection angle 𝜓(𝑡) can be
used as a generalised coordinate to describe the position of the system in the (X,Y) coordinate-plane.
To the king pin J a torsional damper with a damping coefficient of 𝑑 is attached. All this is shown in
Figure 2.8.
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Figure 2.8: The in-plane model of a towed wheel with a rigid caster 8.

The equation of motion of the yaw vibrations of the wheel are as follows:

𝐽 �̈�(𝑡) + 𝑑 �̇�(𝑡) = 𝑀 − 𝐹𝑙 (2.64)

where F and M are lateral contact force and aligning torque respectively. They are generated by the
tyre deformation. The dots refer to time-derivatives.

2.4.2. Non-smooth delayed model of the tyre-ground contact

Figure 2.9: The stretched-string tyre model 9.

The tyre forces are calculated with the stretched-string tyre model, this is similar to the model from
previous chapter. The difference is that instead of having only linearly distributed spring elements, this
model also has linearly distributed damper elements. It is assumed that tyre damping is large enough
not to allow deformation waves travelling around the wheel to have significant interference with the
deformation at the leading edge 𝑥 = 𝑎. The tyre model is shown in Figure 2.9. In the contact patch
a distributed force system of 𝑝(𝑥, 𝑡) is applied to the string resulting in the deformation of the tyre,
whereas outside the contact patch the tyre is assumed to be unloaded in lateral direction. The lateral
deformation of the string can be described by the following partial differential equation:

𝑘𝜎 𝑞”(𝑥, 𝑡) − 𝑑�̇�(𝑥, 𝑡) − 𝑘𝑞(𝑥, 𝑡) = 𝑝(𝑥, 𝑡) (2.65)

8Image is taken from [10].
9Image is taken from [10].
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where q(x,t) is the lateral deformation of the string and 𝜎 is the tyre relaxation length. Primes refer
to derivatives with respect to coordinate 𝑥. The tyre forces are calculated according to the classical
stretched-string model by integral formulae

𝐹 = 𝑘∫ 𝑞(𝑥, 𝑡)𝑑𝑥 + 𝑑∫ 𝑑
𝑑𝑡𝑞(𝑥, 𝑡)𝑑𝑥 (2.66)

and

𝑀 = 𝑘∫ 𝑥𝑞(𝑥, 𝑡)𝑑𝑥 + 𝑑∫ 𝑥 𝑑𝑑𝑡𝑞(𝑥, 𝑡)𝑑𝑥. (2.67)

Contact patch deformation in case of pure rolling
When the tyre is purely rolling and there is no side-slip, the tyre is assumed to stick to the ground
and the tyre centre-line to have zero relative velocity in the contact patch. The is formulated in the
following kinematic constraint:

𝑑
𝑑𝑡𝑅 = 0 (2.68)

where 𝑅 is the position vector of an arbitrary point P of the contact patch centre-line in the ground-
fixed frame of reference. A nonlinear partial differential equation can be derived which describes the
lateral deformation in the contact patch based on this vector

�̇�(𝑥, 𝑡) = 𝑉 sin(𝜓(𝑡)) + (𝑙 − 𝑥)�̇�(𝑡) − 𝑞 (𝑥, 𝑡)(𝑞(𝑥, 𝑡)�̇�(𝑡) − 𝑉 cos(𝜓(𝑡))). (2.69)

For this equation a travelling wave solution can be composed, which yields to a formula with a time
delay of 𝜏(𝑥) distributed along the contact region

𝑞(𝑥(𝜏), 𝑡) = 𝑉𝜏 sin(𝜓(𝑡)) − (𝑎 − 𝑙) sin(𝜓(𝑡) − 𝜓(𝑡 − 𝜏)) + 𝑞(𝑎, 𝑡 − 𝜏) cos(𝜓(𝑡) − 𝜓(𝑡 − 𝜏)) (2.70)

while the longitudinal distribution of the time delay 𝜏(𝑥) can also be expressed. Thus, for the coordinate
𝑥 the following is obtained

𝑥(𝜏) = −𝑉𝜏 cos(𝜓(𝑡))𝑙 + (𝑎 − 𝑙) cos(𝜓(𝑡) − 𝜓(𝑡 − 𝜏)) + 𝑞(𝑎, 𝑡 − 𝜏) sin(𝜓(𝑡) − 𝜓(𝑡 − 𝜏)). (2.71)

It is reasonable to assume that no discontinuity in the deformed shape arises at the leading edge
(𝑥 = 𝑎) where the tyre particles first touch the ground, since the tyre is rolling. This is formulated in
the following boundary condition

𝑞 (𝑎, 𝑡) = −𝑞(𝑎, 𝑡)𝜎 . (2.72)

Applying the boundary condition, the ordinary differential equation for the lateral deformation at the
leading edge is

�̇�(𝑎, 𝑡) = 𝑉 sin(𝜓(𝑡)) − (𝑎 − 𝑙)�̇�(𝑡) + 𝑞(𝑎, 𝑡)𝜎 (𝑞(𝑎, 𝑡)�̇�(𝑡) − 𝑉 cos(𝜓(𝑡))). (2.73)

Partial side-slip in the contact patch

Figure 2.10: The different rolling, sliding and tyre relaxation regions assumed 10.

10Image is taken from [10].
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If the effect of dry friction in the tyre-ground contact is considered, the condition of rolling only limitedly
holds as side-slip will occur in those parts of the contact region where the intensity of the distributed
force system corresponding to rolling is larger than the limits determined by friction. If the normal-force
distribution in the contact region is assumed parabolic, these limits are also defined by parabolas [1]

𝑝 (𝑥) = 3𝐹 𝜇
4𝑎 (𝑎 − 𝑥 ), (2.74)

𝑝 (𝑥) = −3𝐹 𝜇4𝑎 (𝑎 − 𝑥 ), (2.75)

𝑝 (𝑥) = 3𝐹 𝜇
4𝑎 (𝑎 − 𝑥 ), (2.76)

𝑝 (𝑥) = −3𝐹 𝜇4𝑎 (𝑎 − 𝑥 ), (2.77)

where the subscript 𝑟 and 𝑠 indicate rolling and sliding respectively. From above it follows that for the
rolling part of the contact patch 𝑝(𝑥) ∈ [𝑝 (𝑥), 𝑝 (𝑥)] should hold.

The limits for the sliding give the distributed force system for the sliding parts of the contact patch in
question. Therefore, these can be substituted into Equation 2.65 in order to calculate the deformation
in these zones. This partial differential equation is badly-conditioned in terms of the required time-
step for numerical simulation, which slows down the computation. Therefore, in the sliding regions
the steady-state solutions are used: 𝑞(𝑥, 𝑡) = 𝑞 (𝑥, 𝑡), �̇�(𝑥, 𝑡) ≡ 0 from Equation 2.65 which can be
calculated from

𝑞 ”(𝑥, 𝑡) − 𝑞 (𝑥, 𝑡)𝜎 = 𝑀
𝑘𝜎 (𝑥 − 𝑎 ). (2.78)

For this differential equation the analytical solution can be provided as

𝑞 (𝑥, 𝑡) = 𝐶 𝑒 + 𝐶 𝑒 + 𝑀𝑘 (𝑎 − 𝑥 − 2𝜎 ) (2.79)

where the constants 𝐶 and 𝐶 can be calculated from the corresponding boundary conditions, which
will be discussed later on.

Deformation outside the contact patch
The deformation outside the contact patch 𝑞 (𝑥, 𝑡) can be calculated in a similar way as for the sliding
parts. A quasi-stationary deformation is assumed as 𝑞(𝑥, 𝑡) = 𝑞 (𝑥, 𝑡), �̇�(𝑥, 𝑡) ≡ 0. It is assumed that
there is no lateral load in this region, so Equation 2.65 yields to a homogeneous differential equation:

𝑞 (𝑥, 𝑡) − 𝑞 (𝑥, 𝑡)
𝜎 = 0. (2.80)

With the boundary conditions 𝑞 (𝑎, 𝑡) = 𝑞 (𝑎, 𝑡), 𝑙𝑖𝑚 → 𝑞 (𝑥, 𝑡) = 0 and 𝑞 (−𝑎, 𝑡) = 𝑞 (−𝑎, 𝑡),
𝑙𝑖𝑚 → 𝑞 (𝑥, 𝑡) = 0 the deformation outside the contact patch ca be expressed as

𝑞 (𝑥, 𝑡) = 𝑞 (−𝑎, 𝑡)𝑒 for 𝑥 ∈ (∞,−𝑎], (2.81)

and
𝑞 (𝑥, 𝑡) = 𝑞 (𝑎, 𝑡)𝑒 for 𝑥 ∈ [𝑎,∞). (2.82)

Boundary conditions at the sliding regions
Because of simplicity only the cases of sliding regions at the leading edge or the trailing edge are taking
into account. The whole contact patch slides when the siding regions merge. According to Beregi it
can be shown that this is sufficient for the analysis of wheel-shimmy. Figure 2.10 shows the three
different regions in the contact patch: a sliding region at the leading edge (𝑥 ∈ [𝑥 , 𝑎]), a rolling region
in the middle (𝑥 ∈ [𝑥 , 𝑥 ]) and a sliding region at the rear edge (𝑥 ∈ [−𝑎, 𝑥 ]). In the rolling part the
deformation is described by the travelling-wave solution and in the sliding parts Equation 2.78 applies.
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Evidently the transition between the regions should be smooth, so no discontinuities should occur.
Therefor the following boundary conditions should be true:

𝑞 (𝑥 , 𝑡) =𝑞 (𝑥 , 𝑡)
𝑞 (𝑥 , 𝑡) =𝑞 (𝑥 , 𝑡) (2.83)

The first derivatives with respect to coordinate 𝑥 of Equation 2.65 should be continues as well. This is
included in the following boundary conditions:

𝑞 (𝑥 , 𝑡) =𝑞 (𝑥 , 𝑡)
𝑞 (𝑥 , 𝑡) =𝑞 (𝑥 , 𝑡) (2.84)

The same is also true for the transitions at the edges of the contact patch which translate to the
following boundary conditions:

𝑞 (𝑎, 𝑡) = −𝑞 (𝑎, 𝑡)
𝜎

𝑞 (−𝑎, 𝑡) = −𝑞 (−𝑎, 𝑡)𝜎

(2.85)

All these boundary conditions lead to an over-constrained problem for the sliding regions since three
boundary conditions are formulated for both the sliding parts at the leading and trailing edge, whereas
existence and uniqueness of the solution of Equation 2.78 is assured by attaching two boundary con-
ditions. Therefor, the solution will be found by varying the boundaries of the sliding regions 𝑥 and 𝑥 ,
using the boundary conditions from 2.83 and 2.85 in Equation 2.78 and the conditions from 2.84 are
used to find the boundaries between the rolling ans sliding regions.
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2.5. Selecting a tyre model
Now that several tyre models have been elaborated, a choice will be made. The model parameters
from the chosen model will be linked to the measurements done by Dressel and the bachelor group.

2.5.1. Validity of the tyre brush model for bicycle tyres
The tyre brush model has only one material parameter, so more complex tyre structures are harder
to model with purely the tyre brush model without extensions. It is expected that the behaviour of a
”simpler” bicycle tyre can be modelled by the tyre brush model with its single material parameter.

This single parameter model also might have a drawback, since the goal is to estimate tyre behaviour
in terms of vertical stiffness, cornering stiffness and camber stiffness based on known parameters like
inflation pressure, tyre width, rim width and kind of rubber. A single parameter, means that all these
known properties are included in this parameter. The ideal situation would be a model parameter for
every known tyre parameter.

The formulas derived in section 2.1 show that material parameter 𝑐 from the tyre brush model can
be calculated from the measurements done by Dressel. So it is possible to find the relation between
the tyre behavioural properties and model parameters.

2.5.2. Validity of the Rotta model for bicycle tyres
This model is based on the more simple properties of bicycle tyres. So this model should be valid for
bicycle tyres. Also, Papadopoulos shows the comparison between a measured load-compression curve,
an analytically and numerical integrated contact patch and it is encouragingly similar. However, Dressel
did use the Rotta model in his research to compare his measurements with a tyre model, so using the
Rotta model would be repetitive.

The interesting part of this model is that it can show the influence of parameters like rim width, tyre
width and height on the vertical and lateral force. This might be useful, since the goal of the thesis is to
find out if it is possible to estimate the tyre behaviour in terms of vertical stiffness, cornering stiffness
and camber stiffness based on known parameters like the inflation pressure, tyre width, rim width and
the kind of rubber. Maybe the results from Dressel can be combined with the results of another model.

2.5.3. Validity of the enhanced string model for bicycle tyres
The formulas derived in section 2.3 show that the material parameters from the model can be calculated
from the measurements done by Dressel. Even though the equations are quite extensive, it is possible
to find the relation between the tyre behavioural properties and model parameters.

The potential advantage of this model over the tyre brush model is that it has a bit more parameters,
so it might be possible to relate the different model parameters to the tyre parameters.

2.5.4. Validity of the non-smooth delayed contact model for bicycle tyres
This model is fairly similar to the enhanced string model. A difference compared to the enhanced string
model is that the damping is also taken into account. The vertical pressure distribution is simpler again,
just as with the tyre brush model. This might be a disadvantage, because the vertical pressure distri-
bution determines the contact length and the contact length in it’s turn is important for the cornering,
self-aligning torque and camber stiffness.

Relaxation length
The most important difference of this model is that it also takes into account the relaxation length of
the tyre. This is deformation of the string outside of the contact patch, which also generates a force.
The relaxation length is an important parameter for wheel-shimmy effect at medium to low speeds[17].
Dressel did some small experiments to validate the relaxation length, but there are no exact values
reported for each tyre, pressure and load combination. There are several methods or rule of thumb to
calculate/estimate the relaxation length [18] [19]. This might be useful for future calculations.

2.5.5. Tyre model to be used
The tyre models that will be used are the brush tyre model and the enhanced string model. The brush
tyre model will be used because it is fairly simple, so not too much work to find the relation between
the model parameter and the measurements. The results might interesting and not using it might
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be regrettable. After that the enhanced string model will used. This will be done because each of
the different model parameters might have a one on one relation to a known tyre parameters. The
non-smooth delayed contact model won’t be used, only in the case that the enhanced string model is
working well and further refinement is needed.





3
Investigating the enhanced string

model

Before the collected data will be analysed using this model, an investigation of the model’s way of
working will be done. This is necessary to get a better understanding of the model. A feeling has to be
developed for the model parameter range and how they influence the model output, which is useful for
determining if the results are meaningful. This is not needed for the tyre brush model since that model
only contains a single parameter and its influence on the cornering stiffness is obvious. The enhanced
string model has more parameters and also more complex equations. Moreover, some assumptions
have to be made in order to obtain results with this model. The assumptions that are made will be
explained and supported with arguments in this chapter.

3.1. Normal force distribution
The enhanced string model requires a few inputs in order to calculate the pressure distribution, vertical
force and the contact length. These inputs are: vertical deflection 𝜖 , material parameters 𝑘 , 𝑘
and 𝑘 and the undeformed belt radius 𝑅 . The undeformed belt radius is the same for every tested
tyre by Dressel, so this input will be kept constant at 0.34 m in the following investigation of parameter
influence. Another parameter that needs to be mentioned before investigating the enhanced string
model is 𝑘 . This parameter represents the normal stiffness of the bristles. Since the bristles are
attached to the foundation, it is assumed that these bristles represent the rubber tread that is in
touch with the ground. This means that changing the stiffness shouldn’t influence the total vertical
stiffness too much, hence leaves the pressure distribution more or less unaffected. For example, think
about knobby tyres, where only the knobs are in touch with the ground. If these knobs would have
an infinitely high stiffness or no stiffness at all, this wouldn’t change anything to the stiffness of the
foundation. Now, looking at the formulas of the enhanced string model, this cannot be true. So the
influence of 𝑘 will also be investigated, but for the investigation of the influence of other parameters
the 𝑘 will be kept constant at 8 ⋅ 10 N m . This is the same value as used in the paper by Meijaard.

First the influence of the vertical deflection 𝜖 of the tyre on the outputs will be discussed. The
relevant input and output values are shown in Table 3.1, where the changing input is in bold font. In
Figure 3.1 it can be seen that as the tyre will be deflected more, the force and the contact patch length
increase. This is logical, since it just corresponds to a higher normal load. So the influence of the
vertical deflection is exactly as expected.

The following two graphs are more interesting, because it tells more about how the two parameters
affect the pressure distribution. As explained by Meijaard [9], 𝑘 is the shear stiffness of the foundation
and 𝑘 is the normal stiffness of the foundation. The influence of 𝑘 on the pressure distribution
is shown in Figure 3.2. As 𝑘 increases the contact patch decreases and the shape of the pressure
distribution changes. The normal force also increases, which is expected since more force is required
to obtain the same vertical deflection. An interesting observation is done for when 𝑘 exceeds a
certain value, because it seems that the shape of the pressure distribution cannot change anymore.

25
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Figure 3.1: Influence of on the pressure distribution.

This means that the contact patch length increases after this certain value of 𝑘 . It is suspected that
such high values of 𝑘 are not realistic and that it should be more in the region of 100-1000 N. These
forces seem to be more reasonable for pre-tension in the tyres.

Figure 3.2: Influence of on the pressure distribution.

The effect of increasing 𝑘 on the pressure distribution is depicted in Figure 3.3. An increased
normal stiffness requires more normal force to obtain the same deflection. Also the contact patch
length increases.
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Figure 3.3: Influence of on the pressure distribution.

Inputs Outputs
𝜖 (𝑚) 𝑘 (𝑁) 𝑘 (𝑁𝑚 ) 𝑘 (𝑁𝑚 ) 𝐹 (𝑘𝑔) 2𝑎(𝑚)
0.002 1000 1e6 8e6 13.56 0.052
0.003 1000 1e6 8e6 22.76 0.066
0.004 1000 1e6 8e6 33.11 0.078
0.005 1000 1e6 8e6 44.49 0.089
0.003 10 1e6 8e6 16.47 0.086
0.003 100 1e6 8e6 17.28 0.079
0.003 1000 1e6 8e6 22.76 0.066
0.003 10000 1e6 8e6 41.65 0.064
0.003 100000 1e6 8e6 75.01 0.073
0.003 1000 1e4 8e6 1.87 0.024
0.003 1000 1e5 8e6 6.00 0.040
0.003 1000 1e6 8e6 22.76 0.066
0.003 1000 1e7 8e6 84.02 0.086

Table 3.1: Inputs and outputs used for creating the several figures.

From Figures 3.2 and 3.3 and Table 3.1 a reasonable value range for material parameters 𝑘 and
𝑘 can be extracted for matching it to the measurements done by the Bachelor group and Dressel.
However, a big side note has to be placed with that, because it turns out that 𝑘 is influencing the
pressure distribution a lot. This is depicted in Figure 3.4. For 𝑘 = 100 N and 𝑘 = 1000 N, as 𝑘
increases, the normal load differs more for the different values of 𝑘 . The opposite is true for 𝑘 =
10000 N. Where is was expected that the normal stiffness of the bristles didn’t influence the pressure
distribution too much. Also, the shapes of all the pressure distribution with 𝑘 from around 8 ⋅ 10 N
m and higher do not look realistic. In ’The Pneumatic Tire’ [20] on page 262 and 264, measured
pressure distributions are depicted and they do not have an (almost) vertical line at the beginning and
end of the contact patch. So it will be assumed that the 8 ⋅ 10 N m for 𝑘 used by Meijaard is a
reasonable value that also can be used for this research.
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Figure 3.4: Influence of on the pressure distribution. The is increased for every row and the is increased for every
column. Also the normal load is displayed between the lowest line and the highest line.
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3.1.1. A closer look at the equation for the pressure distribution
Some behaviour seen in previous graphs might be hard to explain when you think about the physics. For
example, the 𝑘 that exceeds a certain value such that the contact length will increase. To investigate
these behaviours, a few other figures are created. Recall that the equation for the pressure distribution
is:

𝑝 = 𝑘 [ − 𝐶 cosh(𝜅 𝑥) + (1 − 𝜅𝜅 ) 1
𝜅 𝑅 + 𝜅𝜅 (𝜖 − 𝑥

2𝑅 )] (−𝑎 < 𝑥 < 𝑎). (3.1)

Equation 3.1 for the pressure distribution contains 3 different terms.

term 1 = 𝑘 ( − 𝐶 cosh(𝜅 𝑥))

term 2 = 𝑘 (1 − 𝜅𝜅 ) 1
𝜅 𝑅

term 3 = 𝑘 𝜅
𝜅 (𝜖 − 𝑥

2𝑅 )

(3.2)

In these equations 𝜅 = (𝑘 /𝑘 ) / and 𝜅 = [(𝑘 +𝑘 )/𝑘 ] / . The influence of these 3 terms
for an increasing 𝑘 can be seen in Figures 3.5, 3.6, 3.7 and 3.8. As can be seen the influence of the
third term for a low 𝑘 is relatively big and decreases as this parameter increases in value. Also, the
shape of the first term changes as the 𝑘 increases.

Figure 3.5: = 100 N Figure 3.6: = 1000 N

Figure 3.7: = 10000 N Figure 3.8: = 100000 N

Now for a relatively low 𝑘 the influence of the third term is small and starts to dominate when
𝑘 grows larger, which can be seen in Figures 3.9, 3.10 and 3.11. This is the exact opposite of the
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influence of 𝑘 . In both cases the first term gets affected but not by a large amount. Increasing the
𝑘 has the same influence on the first term as decreasing the 𝑘 , which can be seen from Equation
3.2.

Figure 3.9: = 1e5 N m Figure 3.10: = 1e6 N m

Figure 3.11: = 1e7 N m

Lastly the influence of 𝑘 on the different terms in the pressure distribution is shown in Figures
3.12, 3.13, 3.14, 3.15 and 3.16. The first term is the most important for the overall shape of the
pressure distribution. As discussed before, the (almost) vertical lines at the beginning and end of the
contact patch for higher values of 𝑘 are not realistic. So these vertical lines are determined by the
first term of the pressure distribution equation. The second and third term are relatively unaffected by
altering the 𝑘 .
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Figure 3.12: = 8e5 N m Figure 3.13: = 8e6 N m

Figure 3.14: = 8e7 N m Figure 3.15: = 8e8 N m

Figure 3.16: = 8e9 N m
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3.2. Normal load and vertical deflection
The Bachelor group did measurements to determine the vertical stiffness. They concluded that with
increasing normal load, the vertical stiffness increases and that this increase in vertical stiffness dimin-
ishes [5]. It is interesting to know if the enhanced string model also shows this behaviour. Figures 3.17
and 3.18 contain the normal force as a function the vertical deflection and how 𝑘 and 𝑘 influence
this respectively.

Figure 3.17: Influence of on the normal load as a function of vertical deflection. is kept constant at 1e6 N m .

Figure 3.18: Influence of on the normal load as a function of vertical deflection. is kept constant at 1000 N.

The influence of 𝑘 and 𝑘 on the normal load was already observed in previously shown figures
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and Table 3.1. This confirms it and gives us a good indication of the parameter values for the tested
bicycle tyres. Another observation is that the slope from all the lines is slightly increasing, which
indicates that the vertical stiffness is increasing for increasing normal loads. This effect was also
observed by the Bachelor group. In Figure 3.19 this effect is depicted more clearly. The different lines
are there to show the influence of 𝑘 and 𝑘 on this curve.

Figure 3.19: Vertical stiffness as a function of the normal load and the influence of and on this curve.

Now looking at the graphs that are presented by the Bachelor group, it can be concluded these
look quite similar to the graph in Figure 3.19. As an example the vertical stiffness from the Cheng Shin
Classic Zeppelin is depicted in Figure 3.20.

Figure 3.20: Vertical stiffness as a function of the normal load for the Cheng Shin Classic Zeppelin as presented by the Bachelor
group. The different lines are for the different inflation pressures.

The varying 𝑘 in Figure 3.19 looks fairly similar to the different inflation pressures of Figure 3.20.
This creates the suspicion that 𝑘 is closely related to the inflation pressure. Figure 3.2 amplifies
this suspicion, since the contact patch length decreases when the 𝑘 increases. The contact patch
length from bicycle tyres also decreases when the inflation pressure is increased. Furthermore, from
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the measurements done by the Bachelor group Figures 3.21, 3.22 and 3.23 are created. These three
graphs show great similarity to Figure 3.17.

From all the graphs shown in this section, it can be said that with reasonable suspicion 𝑘 is
more influenced by the inflation pressure and 𝑘 is more affected by the carcass stiffness of the tyre.
This is an interesting result, since the goal of this thesis is to estimate the tyre behaviour in terms of
vertical stiffness, cornering stiffness and camber stiffness based on known parameters like the inflation
pressure, tyre width, rim width and the kind of rubber. This means that with these model parameters,
the inflation pressure can be (almost completely) decoupled from the other properties, which is useful
in estimating tyre behaviour. It will be interesting to see if the model parameter values taken from the
measurements will also have the behaviour as is shown here.

Figure 3.21: Influence of the inflation pressure on the normal load as a function of the vertical deflection for the Cheng Shin
Classic Zeppelin.
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Figure 3.22: Influence of the inflation pressure on the normal load as a function of the vertical deflection for the Bontrager All
Weather.

Figure 3.23: Influence of the inflation pressure on the normal load as a function of the vertical deflection for the Vredestein
Perfect Tour.

3.3. Lateral force distribution
The lateral force distribution is determined by the lateral slip and the normal spin. First the situation for
pure lateral slip will be discussed, then the situation for pure normal spin and the combined situation
will be discussed.

The lateral pressure distribution is dependent on the vertical pressure distribution and a few new
inputs. The inputs new inputs are: material parameters 𝑘 , 𝑘 and 𝑘 and friction coefficients
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𝜇 and 𝜇 . The material parameters are the same as explained in previous section about the vertical
pressure distribution, but now have the subscript 𝑦 representing the stiffness in lateral direction. The
fiction coefficients have subscript 𝑠 and 𝑘 standing for static and dynamic respectively. The static friction
coefficient is used for the first part in the contact patch which is the adhesion part. The dynamic friction
coefficient is for the second part of the contact patch which is sliding. This will become more clear with
some figures later on.

The 𝑘 material parameter will be kept constant at 4⋅10 N m . This is the same value as used in
the paper by Meijaard. This is done with the same reasoning as used in the previous section. The effect
of changing this parameter will be shown, but for the influence of other parameters this parameter will
be kept at the same value as used by Meijaard.

The friction coefficients from Dressel’s research are unknown, however, he used non-skid tape for
the cornering and camber stiffness measurements. According to Dressel this means that the corner-
ing and camber stiffness decrease less quickly. The effect that Dressel describes here will also be
investigated.

Figure 3.24: Influence of the static friction coefficient on the
lateral pressure distribution.

Figure 3.25: Influence of the static friction coefficient on the
lateral force and self-aligning moment.

Figure 3.26: Influence of the dynamic friction coefficient on the
lateral pressure distribution.

Figure 3.27: Influence of the dynamic friction coefficient on the
lateral force and self-aligning moment.

First the influence of the friction coefficients will be investigated. In Figures 3.24 and 3.25 the
influence of the static friction coefficient on the lateral pressure distribution, the lateral force-slip curve
and self-aligning torque-slip curve is shown. In Figures 3.26 and 3.27 the influence of the dynamic
friction coefficient is depicted. In the lateral pressure distribution graphs the difference between the
static and dynamic friction coefficient can be seen. The static friction coefficient is used for the front part
of the contact patch and the dynamic friction coefficient influences the rear part of the contact patch.
From the lateral pressure distribution it can be derived that for a higher static friction coefficient the
contact patch has a longer adhesion zone. The opposite is true for a lower dynamic friction coefficient,
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because the adhesion zone becomes shorter and also the sliding zone induces less force on the surface.

According to Dressel the cornering and camber stiffness decrease more quickly when the friction
between the tyre and surface is less. Both the lateral force-slip curves support this statement. The
effect of the dynamic friction coefficient is bigger, but it is true for both friction coefficients, since the
slope of the lateral force curve starts to decrease at lower slip values for lower friction coefficients.
The important thing to take away from it, is that the cornering and self-aligning torque stiffness are
(almost) unaffected by the friction coefficients. The values of the cornering and camber stiffness are
shown in Table 3.1. In here it can be seen that the cornering stiffness is increasing a bit when one
of the friction coefficients is increased, this is because the peak lateral force is higher such that the
slope remains constant over a larger range of slip. The camber stiffness is unaffected by the friction
coefficients.

Note that these lateral pressure distributions are shown for a slip value of 0.05. This corresponds to
an angle of 2.25 degrees between the velocity vector of the wheel and the wheel plane. For every slip
angle a lateral pressure distribution can be created. To give an indication how the slip influences the
pressure distribution Figure 3.28 is created. As can be seen in the figure, the adhesion region becomes
shorter for higher slip values. It even disappeared for a slip value of 0.25. This means that the tyre is
completely sliding and the biker will fall.

Figure 3.28: Influence of the slip on the lateral pressure distribution.

The pressure distribution graph can also be created for different normal spin values and a combi-
nation of normal spin and lateral slip. The normal spin is influenced by the camber angle of the wheel.
The different pressure distributions are shown in Figure 3.29. This is to give an indication of how the
pressure distribution is influenced by the normal spin and lateral slip.
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Figure 3.29: Influence of the normal spin and lateral slip on the pressure distribution.

The influence of 𝑘 on the lateral pressure distribution is depicted in Figure 3.30. Next to it in
Figure 3.31 the influence on the lateral force and the self-aligning moment is shown. For a higher
𝑘 the adhesion part of the contact patch decreases, the cornering and self-aligning torque stiffness
increase, but the maximum force/torque is reached at a lower slip angle. From Table 3.1 it can also be
seen that the camber stiffness increases for higher values of 𝑘 .

Figure 3.30: Influence of on the lateral pressure distribu-
tion.

Figure 3.31: Influence of on the lateral force and self-
aligning moment.

The influence of 𝑘 on the lateral force, self-aligning torque and the pressure distribution is similar
to the influence of 𝑘 . This can be seen in Figures 3.32 and 3.33. Also the camber stiffness increases
for higher values of 𝑘 .
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Figure 3.32: Influence of on the lateral pressure distribu-
tion.

Figure 3.33: Influence of on the lateral force and self-
aligning moment.

For 𝑘 the same effect is obtained as for the other two lateral material parameters. Increasing
the 𝑘 decreases the adhesion part of the contact patch, increases the cornering, self-aligning torque
and camber stiffness and moves the maximum force/torque peak to a lower slip value.

Figure 3.34: Influence of on the lateral pressure distribu-
tion.

Figure 3.35: Influence of on the lateral force and self-
aligning moment.

Something that can be obtained from all the lateral pressure distribution graphs, is that the sliding
part of the pressure distribution is always the same. It is independent of the changes in any of the
stiffnesses. The only thing that changes is the length, but the curvature remains the same. This can
be explained by looking at the equation for the lateral pressure distribution. As can be seen in Equation
3.3, the sliding part of the contact patch is defined as the vertical pressure distribution multiplied with
the dynamic friction coefficient.

𝑝 , (𝑥) = ±𝜇 𝑝 (𝑥)

= ±𝜇 𝑘 [ − 𝐶 cosh(𝜅 𝑥) + (1 − 𝜅𝜅 ) 1
𝜅 𝑅

+ 𝜅𝜅 (𝜖 − 𝑥
2𝑅 )] (−𝑎 < 𝑥 < �̄�),

𝑝 , (𝑥) = 𝑘 (𝑣 − 𝑣 )
= 𝑘 𝐶 (cosh(𝜅 𝑥) − cosh(𝜅 𝑎)) + 𝑘 𝐶 (sinh(𝜅 𝑥) − sinh(𝜅 𝑎))

+ 𝑘
𝜅
𝜅 ((𝑎 − 𝑥)𝑠 − (𝑎 − 𝑥 ) 𝑠2𝑅 ) (�̄� < 𝑥 < 𝑎).

(3.3)
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As the influence of the vertical material parameters on the pressure distribution already has been
discussed in the previous section, it is assumed that the effects shown in previous section are also valid
for the lateral pressure distribution. To be sure two extra graphs will be created where each vertical
material parameter will have two different values. These graphs are depicted in Figures 3.36 and 3.37.
The influence of 𝑘 was the biggest on the vertical pressure distribution and the same is obtained
here. An effect that wasn’t thought of yet, is that the peak of the lateral force and self-aligning torque
is a lot higher and also at a higher slip value for a higher value of 𝑘 . A higher 𝑘 means a less steep
slope for the lateral force and self-aligning torque, but the peak is moving to a higher slip value.

Figure 3.36: Influence of the vertical material parameters , and on the lateral pressure distribution.
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Figure 3.37: Influence of the vertical material parameters , and on the lateral force and self-aligning torque.

All the relevant outputs are shown in Table 3.2 and the changing inputs are in bold font.

Inputs Outputs
𝜇 𝜇 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝐹 2𝑎 𝐶 𝐶 𝐶

(𝑁) (𝑁𝑚 ) (𝑁𝑚 ) (𝑁) (𝑁𝑚 ) (𝑁𝑚 ) (𝑘𝑔) (𝑚𝑚) (𝑁/°) (𝑁𝑚/°) 𝑁/°
1.2 0.8 110 1.542e6 8e6 3e3 3e5 4e6 31 88.7 138.2 -1.73 6.96
1.6 0.8 110 1.542e6 8e6 3e3 3e5 4e6 31 88.7 141.4 -1.93 6.96
2 0.8 110 1.542e6 8e6 3e3 3e5 4e6 31 88.7 144.2 -2.10 6.96
1.6 0.4 110 1.542e6 8e6 3e3 3e5 4e6 31 88.7 137.5 -1.66 6.96
1.6 0.8 110 1.542e6 8e6 3e3 3e5 4e6 31 88.7 141.4 -1.93 6.96
1.6 1.2 110 1.542e6 8e6 3e3 3e5 4e6 31 88.7 144.8 -2.15 6.96
1.6 0.8 110 1.542e6 8e6 3e3 3e5 3e6 31 88.7 126 -1.78 5.83
1.6 0.8 110 1.542e6 8e6 3e3 3e5 4e6 31 88.7 141.4 -1.93 6.96
1.6 0.8 110 1.542e6 8e6 3e3 3e5 6e6 31 88.7 160.4 -2.04 8.65
1.6 0.8 110 1.542e6 8e6 2e3 3e5 4e6 31 88.7 119.2 -1.80 6.00
1.6 0.8 110 1.542e6 8e6 3e3 3e5 4e6 31 88.7 141.4 -1.93 6.96
1.6 0.8 110 1.542e6 8e6 4e3 3e5 4e6 31 88.7 157.6 -1.98 7.64
1.6 0.8 110 1.542e6 8e6 3e3 3e5 4e6 31 88.7 141.4 -1.93 6.96
1.6 0.8 110 1.542e6 8e6 3e3 3e6 4e6 31 88.7 189.2 -1.91 8.74
1.6 0.8 110 1.542e6 8e6 3e3 3e7 4e6 31 88.7 237.8 -1.77 11.02
1.6 0.8 110 1.542e6 8e6 3e3 3e5 4e6 31 88.7 141.4 -1.93 6.96
1.6 0.8 1000 1.542e6 8e6 3e3 3e5 4e6 36.9 77.7 125.4 -1.62 5.09
1.6 0.8 110 1.542e7 8e6 3e3 3e5 4e6 122.4 96.6 166.1 -3.19 8.44
1.6 0.8 110 1.542e6 1e7 3e3 3e5 4e6 32.1 88.1 141.5 -1.97 6.86

Table 3.2: Inputs and outputs used for creating the several figures. Note that the vertical deflection is 3.5 mm for all the
cases in this table.
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Methods

The equations derived in Chapter 2, will be used to find the model parameters of the tyre brush model
and the enhanced string model. In this chapter it is explained how the data and equations are used to
obtain the results. Obtaining the results for the tyre brush model is straightforward. However, obtaining
the results for the enhanced string model is more complicated. A parameter optimisation is required.
Also, in section 4.3 an explanation will be given on why there are more results for the tyre brush model
than for the enhanced string model.

4.1. Data and derived equations
4.1.1. Tyre brush model
The derived equations for the tyre brush model are straightforward, as mentioned before. This means
the parameter on the left side of the equality sign can be found easily by filling in the formula on
the right side. All the measurement data is collected in a single Microsoft Excel file. A code written in
Matlab makes it possible to obtain all the results in a fraction of a second. The formulas in the following
section are used in the Matlab code.

Material parameter
There are three ways to calculate the material parameter from the tyre brush model. First the material
parameter 𝑐 is calculated from the measured cornering stiffness and contact patch length

𝑐 =
𝐶
2𝑎 (4.1)

Secondly, the measured self-aligning torque stiffness and contact patch length are used to calculate
the material parameter

𝑐 =
3𝐶
2𝑎 (4.2)

It is chosen to not show the results from this method in the surface plots, since the self-aligning torque
is the same as the cornering stiffness multiplied by the pneumatic trail ( 𝑎). The self-aligning torque
stiffness measurements will be used for the pneumatic trail calculations shown in section 4.1.1.

Lastly, 𝑐 is calculated from the measured camber stiffness, effective rolling radius and contact
patch length

𝑐 =
3𝐶 𝑟
2𝑎 (4.3)

Pneumatic trail
There are two methods for calculating the pneumatic trail from the measurements. The first method
is from the cornering stiffness and the self-aligning torque stiffness

𝑡 = −
𝐶
𝐶 (4.4)

43
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In Tire and Vehicle Dynamics [1] Pacejka shows that at vanishing slip angle, the expression for pneu-
matic trail reduces to:

𝑡 = 𝑡 = −(𝑀𝐹 )
→
= 1
3𝑎 (4.5)

So in the second method the pneumatic trail is calculated by using only the contact patch length
measurements. The results from both methods are compared in 5.1.2.

4.1.2. Enhanced string model
The enhanced string model is more complicated than the tyre brush model. A result of this is that it is
not possible to obtain the results in a similar fashion as the tyre brush model. In section 2.3 equations
are derived for calculating the cornering, self-aligning torque and camber stiffness. Now for the tyre
brush model, it was possible to rewrite these equations to use the measured stiffnesses as an input to
find the model parameter. However, it is not possible to rewrite the enhanced string model equations,
because it has multiple model parameters, which means that the equation is unsolvable. This is because
the enhanced string model is an iterative model, which means a formula has to be solved multiple times
before the solution converges to a stable value. This also means that it is not possible to put in the
measured cornering, self-aligning torque or camber stiffness. To be able to find the model parameters
an optimisation is needed. A parameter optimisation compares the model output with the measured
data and adjusts the model parameters accordingly, such that after a certain amount of iterations the
model output converges to the measured data value. The corresponding model parameters will be
saved and these are shown in Chapter 5. More explanation on the parameter optimisation is done in
section 4.2.

Contact patch length
The model elaborated by Meijaard [9] is a model that should be solved by an iterative process. In that
process an initial value for the contact patch length is needed. A good approximation for an initial value
is given by

𝑎 = (2𝑅 𝜖 ) / (4.6)

This value will be calculated using the data from the Bachelor thesis [5] and put into the iterative
process for calculating the vertical pressure distribution and the final contact patch length.

Material parameters
The enhanced string model contains more material parameters than the brush tyre model. The material
parameters from the enhanced string model are: 𝑘 , 𝑘 and 𝑘 . The subscript 𝑖 is the directional
indicator and can stand for 𝑥, 𝑦 or 𝑧. The measurements done by Dressel are all done for the lateral
direction and the bachelor group did measurements for the vertical direction. So it is only possible to
find the parameters for these two directions. The following relation between the vertical stiffness and
the material parameters was found:

( 𝜕𝐹𝜕𝜖 ) = 2𝑘 ( − 1

( ) + 𝜅
𝜅
𝜅 (𝜅𝜅 − 1) + 𝑎𝜅𝜅 ). (4.7)

In this equation 𝜅 = (𝑘 /𝑘 ) / and 𝜅 = [(𝑘 + 𝑘 )/𝑘 ] / . It is visible that it is not possible
to solve Equation 4.7, since there are three unknown parameters and only two known parameters. For
this a parameter optimisation will be made, but this will be discussed in section 4.2. Also as explained
in section 3.1, 𝑘 will be kept constant at 8 ⋅ 10 N m .

The relation for the cornering stiffness that was obtained in Chapter 2 is:

(
𝜕𝐹 ,
𝜕𝑠 ) = ∫

̄
[𝑘

𝜕𝐶
𝜕𝑠 (cosh(𝜅 𝑥) − cosh(𝜅 𝑎))

+ 𝑘
𝜕𝐶
𝜕𝑠 (sinh(𝜅 𝑥) − sinh(𝜅 𝑎)) + 𝑘

𝜅
𝜅 (𝑎 − 𝑥)]𝑑𝑥

(4.8)
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in which 𝜅 = (𝑘 /𝑘 ) / and 𝜅 = [(𝑘 + 𝑘 )/𝑘 ] / . The self-aligning torque stiffness is
defined by the following equation:

(𝜕𝑀 ,
𝜕𝑠 ) = ∫

̄
𝑥[𝑘

𝜕𝐶
𝜕𝑠 (cosh(𝜅 𝑥) − cosh(𝜅 𝑎))

+ 𝑘
𝜕𝐶
𝜕𝑠 (sinh(𝜅 𝑥) − sinh(𝜅 𝑎)) + 𝑘

𝜅
𝜅 (𝑎 − 𝑥)]𝑑𝑥

(4.9)

Both these equations are obtained with the Matlab symbolic toolbox, because the expressions are
really long and it is easy to make mistakes in a manual derivation. Evidently, these two equations for
the cornering and self-aligning torque stiffness also cannot be solved, since there are three unknown
parameters. The values of the parameters will be found using a parameter optimisation. Equally to
the vertical version of this parameter, 𝑘 will be kept constant at 4 ⋅ 10 N m as explained in section
3.3.

The last method to find the material parameters is with the equation for the camber stiffness. The
camber stiffness is given by:

(
𝜕𝐹 ,
𝜕𝑠 ) = ∫

̄
[𝑘

𝜕𝐶
𝜕𝑠 (cosh(𝜅 𝑥) − cosh(𝜅 𝑎))

+ 𝑘
𝜕𝐶
𝜕𝑠 (sinh(𝜅 𝑥) − sinh(𝜅 𝑎)) − 𝑘

𝜅
𝜅 ((𝑎 − 𝑥 )

2𝑅 )]𝑑𝑥
(4.10)

Just as with the earlier equations, this equation is also obtained with the Matlab symbolic toolbox.

4.2. Parameter optimisation
A parameter optimisation has to be done in order to find the material parameters from the enhanced
string model. In Matlab four different optimisation methods are used and compared to each other to
make sure the right parameter values are found and not just a local minimum. Also different initial
values will be used for the same reason. The following Matlab functions are used: fminsearch, fminunc,
fmincon and lsqnonlin. For a parameter optimisation with Matlab a parameter vector 𝑝, output data 𝑦,
input data 𝑢 and a model equation �̂� are needed. First the material parameters for the vertical direction
will be found. It is important that the right values are found for the vertical parameters, because as
shown in Table 3.2 the vertical parameters influence the contact patch and this in its turn has an effect
on the cornering and self-aligning torque stiffness. Once this is done, the parameters for the lateral
direction will be found.

4.2.1. Optimisation algorithms
fminsearch
The fminsearch command in Matlab uses the Nelder-Mead simplex algorithm. This is a direct search
method for multidimensional unconstrained minimisation [21]. The Nelder-Mead method attempts to
minimise a scalar-valued nonlinear function of 𝑛 real variables using only function values, without any
derivative information. The Nelder-Mead method maintains a non-degenerate simplex, a geometric
figure in 𝑛 dimensions of nonzero volume that is the convex hull of 𝑛 + 1 vertices, at each step. Each
iteration of a simplex-based direct search method begins with a simplex specified by its 𝑛 + 1 vertices
and the associated function values. One or more test points are computed, along with their function
values, and the iteration terminates with bounded level sets.

The Nelder-Mead algorithm was proposed as a method to minimising a real-values function 𝑓(x)
for x ∈ ℜ . Four scalar parameters must be specified do define a complete Nelder-Mead method:
coefficients of reflection (𝜌), expansion (𝜒), contraction (𝛾) and shrinkage (𝜎). According to the original
Nelder-Mead paper [22], these parameters should satisfy

𝜌 > 0, 𝜒 > 1, 𝜒 > 𝜌, 0 < 𝛾 < 1 and 0 < 𝜎 < 1. (4.11)
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At the beginning of the 𝑘th iteration, 𝑘 ≥ 0, a non-degenerate simplex Δ is given, along with its 𝑛
+ 1 vertices, each of which is a point in ℜ . It is always assumed that iteration 𝑘 begins by ordering
and labelling these vertices as x( ), . . . ,x( ) , such that

𝑓( ) ≤ 𝑓( ) ≤ . . . ≤ 𝑓( ) , (4.12)

where 𝑓( ) denotes 𝑓(x( )). The 𝑘th iteration generates a set of 𝑛 + 1 vertices that define a different
simplex for the next iteration, so that Δ ≠ Δ . Because the goal is to minimise 𝑓, x( ) is the best
point or vertex, x( ) is the worst point, and x( ) is the next-worst point. Similarly, 𝑓( ) is the worst
function value, and so on.

A single generic iteration is specified. The result of each iteration is either a single new vertex -
the accepted point - which replaces x in the set of vertices for the next iteration, or if a shrink is
performed, a set of 𝑛 new points that, together with x form the simplex at the next iteration. One
iteration of the Nelder-Mead can be read in [21].

fminunc
The fminunc function in Matlab uses the BFGS Quasi-Newton algorithm with a cubic line search proce-
dure. The search for a minimum of maximum of a scalar-valued function is the search for the zeroes
of the gradient of that function. In Newton’s method, a second-order approximation is used to find the
minimum of a function 𝑓(𝑥) [23]. The Taylor series of 𝑓(𝑥) around an iterate is

𝑓(𝑥 + Δ𝑥) ≈ 𝐹(𝑥 ) + ∇𝑓(𝑥 ) Δ𝑥 + 12Δ𝑥 𝐵Δ𝑥, (4.13)

where (∇𝑓) is the gradient, and 𝐵 an approximation to the Hessian matrix. The gradient of this ap-
proximation with respect to Δ𝑥 is

∇𝑓(𝑥 + Δ𝑥) ≈ ∇𝑓(𝑥 ) + 𝐵Δ𝑥, (4.14)

and setting this gradient to zero provides the Newton step:

Δ𝑥 = −𝐵 ∇𝑓(𝑥 ). (4.15)

Hessian approximation 𝐵 is chosen to satisfy

∇𝑓(𝑥 + Δ𝑥) = ∇𝑓(𝑥 ) + 𝐵Δ𝑥, (4.16)

which is the Taylor series of the gradient itself. The unknown 𝑥 is updated by applying the Newton’s
step calculated using the current approximate Hessian matrix 𝐵 :

Δ𝑥 = −𝛼𝐵 ∇𝑓(𝑥 ) (4.17)

𝑥 = 𝑥 + Δ𝑥 (4.18)

The gradient computed at the new point ∇𝑓(𝑥 ) and

𝑦 = ∇𝑓(𝑥 ) − ∇𝑓(𝑥 ) (4.19)

is used to update the approximate Hessian 𝐵 , or directly its inverse 𝐻 = 𝐵 . The update
formula that the BFGS Quasi-Newton algorithm uses for 𝐵 is

𝐵 + 𝑦 𝑦
𝑦 Δ𝑥 − 𝐵 Δ𝑥 (𝐵 Δ𝑥 )Δ𝑥 𝐵 Δ𝑥 . (4.20)

fmincon
The interior-point approach to constrained minimisation is to solve a sequence of approximate minimi-
sation problems. The inequality constrained problems are in the form

min 𝑓(𝑥)

subject to 𝑔(𝑥) ≤ 0,
(4.21)
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where 𝑓: ℜ → ℜ and 𝑔 : ℜ → ℜ are smooth functions. Following the strategy of interior point
methods, the following barrier problem in the variables 𝑥 and 𝑠 is

min
,
𝑓(𝑥) − 𝜇∑ln 𝑠( )

subject to 𝑔(𝑥) + 𝑠 = 0,
(4.22)

where 𝜇 > 0 and where the vector of slack variables 𝑠 = (𝑠( ), ..., 𝑠( )) is implicitly assumed to be
positive. More on this optimisation algorithm can be read in [24].

lsqnonlin
The lsqnonlin command in Matlab solves nonlinear least-squares curve fitting problems of the form

min ||𝑓(𝑥)|| = min (𝑓 (𝑥) + 𝑓 (𝑥) + . . .+ 𝑓 (𝑥) ) (4.23)

with optional lower and upper bounds on the components of 𝑥. Rather than computing the sum of
squares, this function requires the user-defined function to compute the vector-valued function

𝑓(𝑥) =
⎡
⎢
⎢
⎣

𝑓 (𝑥)
𝑓 (𝑥)
⋮

𝑓 (𝑥)

⎤
⎥
⎥
⎦
. (4.24)

4.2.2. Vertical direction
The vertical stiffnesses are measured by the guys from the bachelor thesis [5] and the contact lengths
are measured by Dressel [4]. In order to find the values of the parameters from Equation 4.7, in which
𝜅 = (𝑘 /𝑘 ) / and 𝜅 = [(𝑘 + 𝑘 )/𝑘 ] / , 𝑘 will be kept constant. The influence of this
parameter on the vertical stiffness is shown in section 3.1 and it is elaborated why this parameter will
be kept constant at 8 ⋅ 10 N m . The parameter vector 𝑝 consists of (𝑘 and 𝑘 ), Equation 4.7 will
be the model equation �̂�, output data 𝑦 consists of the vertical stiffnesses measured by the Bachelor
group and the contact patch length measured by Dressel is the input data 𝑢.

Wrong results from the optimisation
The first results from the optimisation are not satisfying, because the results from all the different
optimisation methods are not corresponding to each other. Moreover, changing the initial values for
the parameters have a huge effect on the outcome of the optimisation. However, entering the values
found by the optimisation into Equation 4.7 gives the right vertical stiffnesses, so the optimisation is
doing its work correctly. Now, when these values are entered into the enhanced string model, the
wrong normal load and contact patch length are found. This indicates that the obtained values are
indeed wrong.

Considering the fact that the optimisation is doing what it should do, it can only mean that the
model equation �̂� is wrong. This model equation is derived by hand and checked by using the symbolic
toolbox of Matlab. In both situations this equation is found, so it is expected that the condition of 𝜖 = 0
is not applicable for the stiffnesses measured by the Bachelor group. To support this expectation a
graph is created where the normal load as a function of the vertical deflection is shown. This graph is
shown in Figure 4.1. This graph is created with constant values for the material parameters. As can be
seen, the slope of the line is increasing for higher deflections, which means that the vertical stiffness
is increasing. The slope of the line around 31, 53.5 and 74.5 kg of normal load is definitely different
than the slope around 0.1 kg of normal load. From this it can be concluded that Equation 4.7 cannot
be used as a model equation for the parameter optimisation.
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Figure 4.1: Influence of the vertical deflection on the normal load.

Solution for the parameter optimisation
Since the previously chosen model equation cannot be used for the parameter optimisation, a solution
has to be found. An idea is to use the whole iterative model to find the parameters. As explained before
in section 3.1, the enhanced string model uses the vertical deflection 𝜖 and the material parameters
𝑘 , 𝑘 and 𝑘 as an input to calculate the contact patch length and the normal load. Of course the
same parameter vector 𝑝 with 𝑘 and 𝑘 will be used. 𝑘 will still be kept constant, but the input for
the parameter optimisation will be 𝜖 . From the measured vertical stiffnesses of the Bachelor group,
the vertical deflection 𝜖 for each normal load on the tyre can be calculated. As mentioned before the
model outputs �̂� will be the normal load and the contact patch length. So this vector now consists
of two things. The output data 𝑦 also has to consists of these two things: the normal load and the
contact patch length.

A note has to be made for the model output and data vector. The error is calculated by subtracting
the the model output from the data, 𝑒 = 𝑦 − �̂�. The contact length is in metres (around 0.005 m) and
the normal load in Newton (around 500 N). Because of this big difference in value, the absolute error is
probably a lot bigger for the normal load than the contact patch. Therefor the contact patch error will
be multiplied by 100000, such that both errors are equally important for the optimisation to consider
in finding the optimal parameters.

The results from this optimisation are satisfying. Three of the four methods give the same results
and these are independent of the initial values. The results will be discussed in section 5.2.

4.2.3. Lateral direction
The cornering, self-aligning torque and camber stiffness measured by Dressel will be used to find the
material parameters 𝑘 and 𝑘 . Before that will be done, an assumption will be made. As might
be recalled, the 𝑘 and 𝑘 are the shear stiffness of the foundation, so the shear stiffness of a
string under tension. It is plausible to assume that the shear stiffness in vertical direction is equal to
the shear stiffness in lateral direction. So the 𝑘 values found in the parameter optimisation for the
vertical direction, will be used for the 𝑘 parameter. The only parameter that needs to be found now
is the 𝑘 . The parameter vector 𝑝 now will consist only of 𝑘 . Equations 4.8, 4.9 and 4.10 will be
the model equations �̂� and the output data 𝑦 consists of the cornering, self-aligning torque and camber
stiffness measured by Dressel. The results from this optimisation are shown in section 5.2. One might
wonder, why not use all three model equations in the same optimisation, like was done for the vertical
parameter optimisation instead of running three different optimisations. Well, since there is only one
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parameter to change (𝑘 ), it is not possible to find combinations of parameters such that all three
model equations are met.

4.3. Limitations in acquiring results
Dressel tested a large variety of tyres which are displayed in Table 4.1. The size in this table indicates
the width of the inflated tyres in millimetres. Unfortunately, the data sets for some of the tyres are
incomplete. This is due to various reasons.

The first reason is that Dressel skipped some of the inflation pressures, the reason for this is
unknown. Most likely these pressures were skipped because they were lower than the recommended
pressures.

Secondly, Dressel did his measurements with three different devices. The first measuring device
was a wooden frame which holds the wheel under a certain slip and camber angle and was pulled over
a flat surface. The final iteration is shown in Figure 4.2. The second device was a welded steel frame to
hold the wheel stationary in a desired orientation on top of a small track of flat-top chain. Test device 2
is shown in Figure 4.4. The last test device, is the device on which he did most of the measurements.
This is the tyre testing drum at Delft University of Technology. This device is shown in Figure 4.3. Since
the data is measured by 3 different devices, some data is incomplete. For instance, the contact patch
measurements are only done at Delft, because a comparison is made between a contact patch on the
drum and a flat plate. This means that there is no contact patch data available for the tyres measured
at the University of Wisconsin-Milwaukee.

Another reason for incomplete data is the fact that the vertical stiffness data is acquired by a group
of four students for their Bachelor Thesis and most of the tyres that they tested do not have contact
patch data. Vice versa, most tyres that do have contact patch data are not measured by the Bachelor
group. In the next sections the limitations for each model will be explained.

Table 4.1: The tyres that Andrew Dressel tested.

Brand Model Size Tread Bead
Bontrager All Weather 23 Semi-smooth Foldable
Bontrager All Weather 25 Semi-smooth Foldable
Bontrager All Weather 28 Semi-smooth Foldable
Cheng Shin Classic Zeppelin 50 - Wire
Continental Top Contact Winter 37 - Wire
Maxxis Radial Prototype 22 Smooth Foldable
Michelin Dynamic 23 Semi-smooth Wire
Schwalbe Big Apple 55 - Wire
Schwalbe Kojak 35 - Foldable
Schwalbe Marathon Plus 37 - Wire
Vittoria Randonneur Hyper 37 - Foldable
Vredestein Perfect Tour 37 Semi-smooth Wire
Vredestein Fortezza DuoComp 23 Smooth Foldable
Vredestein Fortezza TriComp 23 Smooth Foldable

4.3.1. Tyre brush model
To be able to calculate the material parameter from the tyre brush model only the contact patch data
and one of the stiffnesses (cornering, self-aligning torque or camber) is needed. So missing the vertical
stiffness measurements is not a problem.

There is no contact patch data provided for the Bontrager All Weather 23, such that material param-
eter 𝑐 cannot be calculated. For the other two Bontrager tyres complete measurements are missing,
this means no data about the cornering stiffness, self-aligning torque stiffness, contact patch size etc.
This means that it is not possible to create a good surface plot with the available data. Furthermore,
there is no contact patch data provided for the Maxxis, Michelin, Vredestein Fortezza DuoComp and
TriComp tyres. The data for the rest of the tyres is complete, so these will be shown in the results
section.
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Figure 4.2: Test device 1 Figure 4.3: Test device 3

Figure 4.4: Test device 2

4.3.2. Enhanced string model
For the enhanced string model the vertical stiffness is important. The vertical deformation of the tyre
is an input of the model, so the vertical stiffness is needed to calculate the vertical deformation under
the different normal loads.

The remaining tyres that can be fully analysed with the enhanced string model are the Cheng Shin
Classic Zeppelin and the Vredestein Perfect Tour. The Bontrager All Weather 25 and 28 can be partially
used.
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Results

5.1. Results of the tyre brush model
In this section the results of the measurement data linked to the tyre brush model will be discussed.
First the results for material parameter 𝑐 are shown. Then the pneumatic trail comes to discussion
and as last a comparison between the self-aligning torque stiffness and the spin stiffness.

5.1.1. Material parameter
The calculated 𝑐 values from the cornering stiffness and camber stiffness for the Cheng Shin Clas-
sic Zeppelin tyres are shown in Figure 5.1 and Table 5.1. The material parameter 𝑐 increases with
increasing inflation pressure. The influence of the normal load on the material parameter is not unam-
biguously for this specific tyre, at least, that is when both the results of cornering and camber stiffness
are considered. When looking at the results of the cornering stiffness, 𝑐 is decreasing as the normal
load increases. For the camber stiffness this relation is opposite. The results for the other tested tyres
are depicted in Appendix A.1. In these graphs and tables the general relation between the material
parameter and the inflation pressure is that the material parameter increases with increasing inflation
pressure. This is true for both, the cornering and camber stiffness data. Not a lot can be concluded
about the relation between the material parameter and the normal load. For some of the tyres the 𝑐
increases as the normal load increases and for others the 𝑐 decreases as the normal load increases.
There is even differences between the cornering and camber stiffness data. An interesting observa-
tion though, is that for every single tyre the shape of the surface plots from the cornering stiffness
𝐶 and camber stiffness 𝐶 are relatively similar. This is noteworthy, since the cornering stiffness
measurement is independent from the camber stiffness measurement.

Table 5.1: Cheng Shin Classic Zeppelin

Normal load [kg] Pressure [bar] 𝑐 × 10 (cornering) 𝑐 × 10 (camber)
33 2.0 1.82 1.70
33 3.0 1.94 1.31
33 4.0 2.88 2.03
55 2.0 1.37 1.64
55 3.0 1.87 1.99
55 4.0 2.57 2.65
74 2.0 0.96 1.27
74 3.0 1.64 2.09
74 4.0 2.28 2.84

51
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Figure 5.1: Material parameter for Cheng Shin Classic Zeppelin.

In Figure 5.2 the material parameter for every measured tyre (with a complete data set) is shown.
The pink vertical lines indicate a change in tyre and one should keep in mind that the slope of the
three lines is not important here. They just give a better indication of where the points are. From this
graph it is visible that for most of the tyres the material parameters calculated in three different ways
are relatively close to each other. With a bit better agreement between the blue and yellow points,
rather than the red points. This might indicate that the cornering stiffness measurement and the spin
stiffness measurement are more reliable. An interesting thing is that the material parameter calculated
from the spin stiffness for both the Bontrager tyres and the Maxxis tyre, is really off from the rest of the
calculated material parameter. Since all three lines are calculated using the same contact patch length,
the difference lies in the cornering, self-aligning torque and spin stiffness. Looking back at Table 4.1,
it can be seen that the tyres that are off with the material parameter have a smaller size, so this might
be a reason for the relatively different material parameter.
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Figure 5.2: Material parameter from all the tested tyres obtained in three different ways.
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5.1.2. Pneumatic trail

In Figure 5.3 the pneumatic trail 𝑡 is depicted as a function of the normal load and the inflation pressure.
Both the pneumatic trail calculated by the self-aligning torque stiffness over the cornering stiffness as
the one calculated by one third of half the contact length are shown. For this specific tyre the values
are close together for a high inflation pressure and low normal load and start to become more apart as
the normal load increases and/or the inflation pressure decreases. It is expected that the pneumatic
trail is small for high inflation pressure and low normal load, since the contact length is also smaller.
The contact patch length increases for increasing normal load and/or decreasing inflation pressure.
The results for the other tested tyres regarding the pneumatic trail are shown in Appendix A.2. All
these graphs show the same relations as the graph from the Cheng Shin Classic Zeppelin, which is
to be expected. However, the relation between pneumatic trail and inflation pressure is slightly hard
to discover in the graphs in general. This can be explained by the fact that the step size of the
inflation pressure does not change the contact length as much as the step size of the normal load
does. Something else that is noticeable, is that in general the pneumatic trail calculated by the self-
aligning torque stiffness over the cornering stiffness is bigger than one third of half the contact patch
length.

Figure 5.3: Trail for Cheng Shin Classic Zeppelin.

In Figure 5.4 the pneumatic trail is depicted for every measured tyre (with a complete data set).
It is remarkable that for most tyres the calculated pneumatic trail is higher than the rule of thumb.
Except for the Bontrager tyres it is the other way around. To give more insight in this graph, the order of
measurements is shown in Table 5.2. Depending on the tyre, inflation pressure values and normal loads
can be different. This table shows that the first measurements are with the lowest normal load and
increasing pressure followed by the same sequence for a higher normal load. From the graph it seems
that the calculated pneumatic trail approaches the rule of thumb value for the highest pressure from
the sequence. This is also visible in all the individual tyre surface plots, because the line corresponding
to the highest inflation pressure is closest to the rule of thumb line.
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Measurement # Load [kg] Inflation pressure [bar]
1 33 4.00
2 33 4.83
3 33 6.21
4 55 4.00
5 55 4.83
6 55 6.21
7 74.5 4.00
8 74.5 4.83
9 74.5 6.21

Table 5.2: Order of the tyre measurements
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Figure 5.4: Pneumatic trail from all the tested tyres obtained in two different ways.



5.1. Results of the tyre brush model 57

5.1.3. Self-aligning torque and spin stiffness
Figure 5.5 shows the self-aligning torque stiffness and spin stiffness. As shown in section 2.1.2 these
two stiffnesses are equal to each other. A closer look at the measurement graphs for the self-aligning
torque from Dressel [4], shows that these measurements are not that smooth as the ones for cornering
stiffness and camber stiffness. Therefore the self-aligning torque stiffness will be calculated from the
cornering stiffness (the red line). The measured self-aligning torque stiffness is shown in blue. These
will be compared with each other and also with the spin stiffness. The spin stiffness is calculated in
two ways: one with the undeformed tyre radius (the yellow line) and the other one with the deformed
tyre radius (the purple line). The deformed tyre radius is calculated using the data from the Bachelor
Thesis [5]. This data is not available for every tyre. It can be seen that there is only a small difference
between the yellow and purple line. In general the data from the spin stiffness is matching relatively
well with the calculated self-aligning torque. Even the measured self-aligning torque is not that far
off from matching with the others. Again exceptions are the Bontrager and Maxxis tyres. For these it
seems that the measured self-aligning torque and the calculated self-aligning torque are matching and
the spin stiffness is way off. From this it can be cautiously said that small tyres have a bigger difference
between self-aligning torque stiffness and spin stiffness.
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Figure 5.5: Self-aligning torque stiffness from all the tested tyres obtained in four different ways.
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5.2. Results of the enhanced string model
5.2.1. Vertical parameters
As explained in Chapter 4 the data for the Bontrager tyres is not 100% complete, so for these tyres two
dimensional graphs are created. These graphs are depicted in Appendix B. The data from the Cheng
Shin Classic Zeppelin and the Vredestein Perfect Tour is complete, so for these two tyres a surface
plot can be created. These give a more complete view on how the 𝑘 and 𝑘 are related to the
inflation pressure and the normal load. These graphs are shown in Figures 5.6, 5.8, 5.10 and 5.12.
Both the Classic Zeppelin and the Perfect Tour have a nice tilted plane for the 𝑘 and there is not
so much difference between values calculated from the drum and plate contact lengths. The relation
between the inflation pressure and the 𝑘 is nicely linear. As the inflation pressure increases, 𝑘 also
increases. It seems that for the Vredestein Perfect Tour the 𝑘 is slightly decreasing for increasing
normal loads and that it stays constant for the Cheng Shin Classic Zeppelin. The relation for 𝑘 is not
unambiguous. The relation between the normal load and the 𝑘 cannot be found when looking at the
values in Table 5.3 & 5.4. It is expected that the 𝑘 increases for increasing inflation pressure. This
effect is mildly visible for the contact patch data from the drum, but not really for the flat plate data.
Also for some data points of 𝑘 there is a big difference between the drum and flat plate. This might
be caused by the contact patch length data. Studying the contact length data, some ”outliers” are
spotted. An outlier in this case means that the contact patch length is expected to be lower or higher
than it actually is. For example, the inflation pressure is increased, so the contact patch length should
decrease, but this is not seen in the values. To be able to say something more about this, the inverse of
the contact patch length will be plotted. These graphs are shown in Figures 5.9 and 5.13. The reason
for choosing the inverse of the contact length patch, is that a smaller contact patch appears bigger in
the graph, just as is expected with the 𝑘 .

For the Cheng Shin Classic Zeppelin, it can be seen that the 𝑘 along the 31 kg line is influenced
by values of the contact patch length data. Even 𝑘 is slightly influenced by this. The outlier at the
highest load and pressure combination in the 𝑘 graph cannot be explained by the inverted contact
patch length graph.

The found 𝑘 values for the Vredestein Perfect Tour are very much relatable to the inverted contact
patch lengths. The lines along the different inflation pressures are very much similar. Even the outlier
at lowest pressure and highest normal load shows the same behaviour with the inverted contact patch
length.

Another observation is that the 𝑘 value is mostly determined by the vertical stiffness. The planes
of the vertical stiffnesses in Figures 5.7 and 5.11 show a similar behaviour to the planes of the calculated
𝑘 values. Figure 5.14 shows the vertical stiffness as a function of 𝑘 and 𝑘 . Here it is indeed
visible that 𝑘 influences the vertical stiffness more than 𝑘 . Note that the range of both values
differ a lot, this definitely has an effect on how much they each influence the vertical stiffness, but
these range of parameters are extracted from the measurements.

Comparing Figure 5.14 to Figures 5.7 and 5.11, it seems that the lines along the axis of the increasing
normal load, are similar to the lines along the axis of increasing 𝑘 . The same goes for the lines along
the axis of increasing pressure, these are similar to the lines along the axis of increasing 𝑘 . This
means that the expectation of constant 𝑘 for constant inflation pressure and increasing normal load
is unfulfilled. Since the 𝑘 influences the vertical stiffness more than the 𝑘 in the same way that
the inflation pressure has more influence on the vertical stiffness than the normal load, it seems that
the 𝑘 is closely related to the inflation pressure and 𝑘 is closely related to the normal load.
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Table 5.3: Cheng Shin Classic Zeppelin

Normal load [kg] Pressure [bar] 𝑘 × 10 (drum) 𝑘 × 10 (plate) 𝑘 (drum) 𝑘 (plate)
33 2.0 7.58 8.04 178 40
33 3.0 13.31 12.36 8 216
33 4.0 16.72 17.51 268 113
55 2.0 8.32 8.69 161 17
55 3.0 12.84 13.38 159 1
55 4.0 17.08 18.03 305 57
74.5 2.0 8.30 8.54 132 22
74.5 3.0 10.27 10.73 409 200
74.5 4.0 13.48 15.05 732 129



5.2. Results of the enhanced string model 61

Figure 5.6: Results from the parameter optimisation for the Cheng Shin Classic Zeppelin 50.

Figure 5.7: Vertical stiffness of the Cheng Shin Classic Zeppelin 50.
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Figure 5.8: Results from the parameter optimisation for the Cheng Shin Classic Zeppelin 50.

Figure 5.9: Inverted contact patch lengths for the Cheng Shin Classic Zeppelin 50.
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Table 5.4: Vredestein Perfect Tour

Normal load [kg] Pressure [bar] 𝑘 × 10 (drum) 𝑘 × 10 (plate) 𝑘 (drum) 𝑘 (plate)
31 3.4 15.09 15.63 120 19
31 4.0 19.08 19.87 150 19
31 4.8 18.15 19.91 464 136
31 6.2 30.77 30.77 0 0
53.5 3.4 13.97 14.31 107 14
53.5 4.0 16.49 17.10 153 0
53.5 4.8 19.41 21.06 408 13
53.5 6.2 25.18 27.42 812 294
74.5 3.4 9.36 12.35 1616 127
74.5 4.0 13.15 14.04 591 237
74.5 4.8 15.36 17.59 922 120
74.5 6.2 21.02 23.81 938 96

Figure 5.10: Results from the parameter optimisation for the Vredestein Perfect Tour 37.
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Figure 5.11: Vertical stiffness of the Vredestein Perfect Tour 37.

Figure 5.12: Results from the parameter optimisation for the Vredestein Perfect Tour 37.
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Figure 5.13: Inverted contact patch lengths for the Vredestein Perfect Tour 37.

Figure 5.14: The vertical stiffness as a function of and
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5.2.2. Lateral parameters
The results of the optimisation for the lateral parameters are shown in this section. Two comparisons are
made with the results. The first one is the parameter difference due to a flat plate or drum contact patch
length. The second comparison is between the cornering, self-aligning torque and camber stiffness.
As mentioned before in the vertical parameter section, the data for the Bontrager tyres is not 100%
complete such that only two dimensional graphs can be created. These graphs are shown in Appendix
B.

Drum-plate comparison
The surface plots from the Cheng Shin Classic Zeppelin and the Vredestein Perfect Tour are shown in
Figures 5.15 and 5.16. The corresponding values are depicted in Table 5.5 & 5.6.

Figure 5.15: Results from the parameter optimisation for the Cheng Shin Classic Zeppelin 50.

From these figures it can be concluded that the 𝑘 decreases when the normal load increases.
The influence of the inflation pressure on this parameter is not unambiguous. For the Cheng Shin
Classic Zeppelin the 𝑘 increases with increasing pressure. For the Vredestein Perfect Tour it seems
more like the 𝑘 stays around the same value or increases a bit for increasing inflation pressure. The
influence of the pressure on 𝑘 for Bontrager All Weather seems to be negligible, 𝑘 remains fairly
constant as can be seen in Figures B.7 and B.8.

Table 5.5: Cheng Shin Classic Zeppelin

Normal load [kg] Pressure [bar] 𝑘 × 10 (drum) 𝑘 × 10 (plate)
33 2.0 7.75 7.98
33 3.0 11.57 11.59
33 4.0 14.48 15.01
55 2.0 5.24 5.76
55 3.0 8.25 11.00
55 4.0 11.83 12.81
74.5 2.0 3.38 3.83
74.5 3.0 5.13 5.73
74.5 4.0 6.66 8.67
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Figure 5.16: Results from the parameter optimisation for the Vredestein Perfect Tour 37.

Table 5.6: Vredestein Perfect Tour

Normal load [kg] Pressure [bar] 𝑘 × 10 (drum) 𝑘 × 10 (plate)
31 3.4 11.71 12.24
31 4.0 13.22 14.15
31 4.8 10.59 12.72
31 6.2 11.00 11.00
53.5 3.4 9.52 9.98
53.5 4.0 11.27 11.00
53.5 4.8 10.05 12.39
53.5 6.2 10.59 13.68
74.5 3.4 2.33 6.54
74.5 4.0 6.26 7.42
74.5 4.8 6.77 9.73
74.5 6.2 6.65 10.72
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Cornering, self-aligning torque and camber stiffness comparison

The comparison between the 𝑘 parameters found from different measurements are shown in Figures
5.17 and 5.18. For the Cheng Shin Classic Zeppelin the three surfaces are relatively similar, especially
for the lower normal load. However, the difference between the surfaces is a lot bigger than for the
drum-plate comparison. The 𝑘 increases as the inflation pressure increases for every stiffness and
the 𝑘 seems to decrease as the normal force increases, except for the camber stiffness. For this
stiffness it is not really possible to say something useful about the relation.

Figure 5.17: Results from the parameter optimisation for the Cheng Shin Classic Zeppelin 50.

Table 5.7: Cheng Shin Classic Zeppelin

Normal load [kg] Pressure [bar] 𝑘 × 10 (corner) 𝑘 × 10 (self-aligning) 𝑘 × 10 (camber)
33 2.0 7.75 17.48 13.07
33 3.0 11.57 11.57 10.94
33 4.0 14.48 21.26 14.58
55 2.0 5.24 12.65 13.66
55 3.0 8.25 18.08 19.28
55 4.0 11.83 23.18 31.04
74.5 2.0 3.38 8.97 9.64
74.5 3.0 5.13 12.55 17.72
74.5 4.0 6.66 15.39 30.83
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Figure 5.18: Results from the parameter optimisation for the Vredestein Perfect Tour 37.

Table 5.8: Vredestein Perfect Tour

Normal load [kg] Pressure [bar] 𝑘 × 10 (corner) 𝑘 × 10 (self-aligning) 𝑘 × 10 (camber)
31 3.4 11.71 45.22 8.27
31 4.0 13.22 0 13.03
31 4.8 10.59 49.21 8.74
31 6.2 11.00 11 5.22
53.5 3.4 9.52 19.40 12.96
53.5 4.0 11.27 32.52 15.58
53.5 4.8 10.05 21.38 18.69
53.5 6.2 10.59 28.22 38.30
74.5 3.4 2.33 27.07 13.42
74.5 4.0 6.26 13.28 15.44
74.5 4.8 6.77 15.67 21.19
74.5 6.2 6.65 13.26 20.30

For the Vredestein Perfect Tour tyre, the camber stiffness surface is relatively similar to the surface
of the cornering stiffness. Also for this tyre, this similarity is more valid for the lower normal load. The
self-aligning torque stiffness has some outlying results. In general the 𝑘 seems to increase with
increasing inflation pressure for the cornering and camber stiffness. The self-aligning torque data is so
scattered, that it is not possible to find the relations.

Something noticeable, is that this single material parameter 𝑘 determines the cornering, self-
aligning torque and camber stiffness. This also means that putting the found values into the enhanced
string model, only one of these stiffnesses will be correct. So for instance, putting the 𝑘 correspond-
ing to the cornering stiffness into the model, only the cornering stiffness will match with the value of
the measured tyre and the self-aligning torque and camber stiffness will not be exactly matching. This
can be seen in most of the Figures in Appendix B.3. Appendix B.3 contains the measured data from
Dressel (black lines) with an overlay that shows the model output (blue line). The extracted stiffness
value from Dressel is shown as a solid grey line, which should also be the constant slope of the model
output (as the parameter optimisation did its work correctly). Interestingly, for the Cheng Shin Classic
Zeppelin some are matching quite closely for all three values, for example Figure 5.19 below. Also the
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overlays of the Vredestein Perfect Tour are not too bad. The overlays for the Bontrager All Weather
are most off from these three tyres, but as can be seen in the tables in the bottom right corner of
the figures, the model stiffness values are still matching the measured stiffness values, which indicates
that the parameter optimisation worked. However, the enhanced string model is not able to describe
the full lateral force graph accurately in the case of the Bontrager All Weather tyre.

The strange thing is that in Table 5.7, the values of 𝑘 corresponding to the different stiffnesses
are quite different from each other, however, in Figure 5.19 the graphs are quite accurately matched,
even for the self-aligning torque and camber stiffness, while the 𝑘 of the cornering stiffness was
used.

Figure 5.19: Measurement results from Andrew Dressel and an overlay of the model output.

The fact that material parameter 𝑘 determines all three values and the quality of the overlays
becomes better as the width of the tyre increases, one might wonder if this a coincidence or not. As
the name already suggests, the enhanced string model models the tyre as a string and does not take
the width of the tyre into account. It is remarkable that as the width increases the values of the camber
and self-aligning torque stiffness are more closely matched.

5.2.3. Influence of alterations in the obtained values
It is interesting to know the influence of the material parameters on the contact patch length, cornering
and camber stiffness. The obtained values from the parameter optimisation will be altered by 20% and
then normalised to see the influence. Furthermore an alteration in normal load is made to compare its
influence to the influence of the material parameters. The results are shown in Figures 5.20, 5.21 and
5.22. For every tyre a single situation (normal load and inflation pressure) is chosen. The 20% alteration
of the normal load has the most influence on contact patch length, cornering and camber stiffness.
This is valid for all the tyres. From the figures it is also visible that the lateral material parameters have
more influence on the cornering and camber stiffness than the vertical material parameters.
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Figure 5.20: Altering the parameters to see the influence for the Cheng Shin Classic Zeppelin at 2 bar under 33 kg.
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Figure 5.21: Altering the parameters to see the influence for the Bontrager All Weather at 6.89 bar under 74.5 kg.
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Figure 5.22: Altering the parameters to see the influence for the Vredestein Perfect Tour at 4.83 bar under 53.5 kg.





6
Discussion

6.1. Discussion of the tyre brush model results
As mentioned in the Chapter 2, a drawback of the single parameter model is that all known tyre
parameters are included in that single model parameter. The results show this very well, since material
parameter 𝑐 is dependent on the normal load, inflation pressure and probably also the tyre width,
rim width and kind of rubber because the 𝑐 surface plot is different for every tyre. This makes it hard
to find the exact relation between the material parameter and the known tyre parameters.

An interesting observations is that the foldable tyres have a slightly higher 𝑐 value calculated from
the camber stiffness compared to the ones with a wire and similar width. Also the general relation
between 𝑐 and the inflation pressure is that it increases with increasing inflation pressure. Not a
lot can be concluded in general about the influence of the normal load on 𝑐 , because for increasing
normal load the 𝑐 for some tyres increases, for others it decreases and for some others it stays the
same or even oscillates.

The calculated pneumatic trail is larger than one-sixth of the contact patch length, Pacejka’s rule of
thumb for pneumatic trail. The calculated pneumatic trail approaches one-sixth of the contact patch
length as the inflation pressure increases and the normal load decreases.

6.2. Discussion of the enhanced string model results
The advantage of the enhanced string model over the tyre brush model from previous chapter is
that this model has multiple material parameters. It was expected that the shear stiffness of the
foundation represented by 𝑘 and 𝑘 for the vertical and lateral direction respectively would be more,
if not completely be influenced by the inflation pressure. This suspicion was created by inspecting the
influence of 𝑘 on the contact patch length (Figure 3.2). Increasing the 𝑘 , shortened the contact
patch length. However, the results show that 𝑘 is pressure dependent and the influence of 𝑘
is questionable. There is no clear relation between 𝑘 , the inflation pressure and the normal load.
Interestingly, as was found during the investigation of the enhanced string model in Chapter 3, the
contact patch does influence the 𝑘 . This is also seen when the inverse contact patch length is
plotted under the results of 𝑘 for both the Cheng Shin Classic Zeppelin and the Vredestein Perfect
Tour. However, apparently the influence that the inflation pressure has on the vertical stiffness, which
in its turn influences 𝑘 , is bigger than the effect of the inflation pressure on the contact patch length
and therefor also affecting 𝑘 less. One thing is clear and that is that 𝑘 is not equal to the inflation
pressure.

The model output agrees fairly well with the measurements as turns out from the many overlay
plots shown in Appendix B.3 and this seems to be more true as the width of the tyre increases. To be
able to say more about this, more complete measurements are needed. Something unexpected is that
the overlays that match quite closely both in graph lines and in stiffness values, have quite different
values of 𝑘 . An explanation for this might be that the influence of changing 𝑘 has a bigger effect
on the cornering stiffness than on the self-aligning torque and the camber stiffness. However, this is
not really seen in Figure 5.20.
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It might be still possible to estimate the model parameters for a given tyre with a certain inflation
pressure, tyre width and rim width. However, in order to do that, more complete measurements are
needed and these measurements should be put through the parameter optimisation in order to find the
corresponding material parameters. Then the relation between the material parameters and inflation
pressure, tyre width and rim width can be investigated further.

Something to take into account when using a tyre model is that small alterations (20% of its normal
value) in the model parameters do not affect the tyre behaviour by a huge amount. It seems that
similar alterations in the normal load have the most affect on tyre behaviour.
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Conclusions and Future Work

7.1. Conclusion
The research question was formulated as: Is it possible to estimate bicycle tyre behaviour in terms of
vertical stiffness, cornering stiffness and camber stiffness based on known parameters like the inflation
pressure, tyre width, rim width, vertical load and the rubber compound using a tyre model

The answer to this question for the tyre brush model is no. For the enhanced string model the answer
is also no for now, but this is a less definite no than for the tyre brush model for the reasons explained
below.

The results from both tyre models show that the material parameters are within a certain value range
for the measured bicycle tyres. Moreover, the enhanced string model showed that it can replicate the
measured tyre behaviour quite accurately. The problem is that for now it requires a lot of work to obtain
the right model parameter values. The tests needed to find these are almost just as extensive as the
tests needed for finding the parameters for Pacejka’s Magic Formula. The motivation for this research
is to be able to make an estimation of any bicycle tyre behaviour based on it’s known parameters.
Unfortunately there were only two sets of complete measurement data (Cheng Shin Classic Zeppelin
and Vredestein Perfect Tour). These only give a rough estimation of the model parameter range and a
small indication of the relation between the model parameters and the vertical, cornering, self-aligning
torque and camber stiffness.

It would be interesting to see results with more sets of complete measurement data and also
measurements carried out in a single research. More sets of complete measurement data means more
data points for a single tyre, but also more different types of tyres. Also a single research means
experiments carried out by the same person in the same environment and in the same period, since
in this research, data from the Bachelor group was combined with Dressels data in order to come to
these results. This could lead to a much better indication of whether it is possible to estimate bicycle
tyre behaviour based on known parameters using a tyre model. The current results are promising, in
my opinion. The extracted relations are not entirely according to what was expected, but that does
not mean that it is not possible to estimate bicycle tyre behaviour based on known parameters using
a tyre model.

7.2. Future work
With the methods described in this research it is possible to find the model parameters from bicycle tyre
measurements. As the answer to the research question now remains negative, it would be interesting to
know how more complete sets of measurement data would affect the answer to the research question.
To make this more specific: As mentioned in the discussion, the model output agrees fairly well with
the measurements and this seems to be more true as the width of the tyre increases. So for a future
research it would be interesting to do the following: pick two or three different brand tyres, preferably
fat tyres but all with an equal width and on the same rim. Do the measurements like Dressel did, but
now with smaller increments for the pressure and normal load. Also more than three data points are
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needed. It is very important to also measure the vertical stiffness of the tyre and the contact patch for
each pressure and normal load combination. All of this should be executed very accurate, because as
has been observed in the results, small deviations lead to incorrect model parameters. It is expected
that a significant amount of these deviations are caused by combining measurements from separate
researches (Dressel and the Bachelor group). Once the measurements have been performed, the
parameter optimisation from this research can be used to find the enhanced string model parameters.
It is expected that for the two or three different tyres similar enhanced string model parameters will
be found. If this indeed seems to be true, it would be interesting to see how the tyre width influences
the model parameters and if the model output can also also agree with the measurement for thinner
tyres.



A
Results for the tyre brush model

A.1. Material parameter

Figure A.1: Material parameter for Continental Top Contact Winter.
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Table A.1: Continental Top Contact Winter

Normal load [kg] Pressure [bar] 𝑐 × 10 (cornering) 𝑐 × 10 (camber)
33 3.4 1.72 1.52
33 4.0 1.57 1.39
33 4.8 1.64 1.51
33 6.2 1.52 1.84
55 3.4 1.32 1.41
55 4.0 1.46 1.69
55 4.8 1.48 2.05
55 6.2 1.72 2.13
74.5 3.4 1.55 2.07
74.5 4.0 1.29 1.46
74.5 4.8 1.75 2.45
74.5 6.2 1.46 2.02
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Figure A.2: Material parameter for Schwalbe Big Apple.

Table A.2: Schwalbe Big Apple

Normal load [kg] Pressure [bar] 𝑐 × 10 (cornering) 𝑐 × 10 (camber)
33 2.0 2.84 1.46
33 3.0 3.16 2.12
33 4.0 3.39 2.28
55 2.0 2.33 2.09
55 3.0 2.94 2.28
55 4.0 3.05 2.46
74.5 2.0 1.44 1.29
74.5 3.0 2.47 2.30
74.5 4.0 2.99 2.87
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Figure A.3: Material parameter for Schwalbe Kojak.

Table A.3: Schwalbe Kojak

Normal load [kg] Pressure [bar] 𝑐 × 10 (cornering) 𝑐 × 10 (camber)
33 3.4 2.85 1.96
33 4.0 2.96 1.95
33 4.8 3.30 2.39
33 6.2 3.90 3.02
55 3.4 2.39 1.93
55 4.0 2.48 2.07
55 4.8 2.81 2.43
55 6.2 3.51 3.26
74.5 3.4 1.77 1.73
74.5 4.0 2.06 2.03
74.5 4.8 2.50 2.47
74.5 6.2 3.23 3.20
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Figure A.4: Material parameter for Schwalbe Marathon Plus.

Table A.4: Schwalbe Marathon Plus

Normal load [kg] Pressure [bar] 𝑐 × 10 (cornering) 𝑐 × 10 (camber)
33 3.4 2.38 1.31
33 4.0 2.43 1.11
33 4.8 2.50 1.71
33 6.2 2.97 1.58
55 3.4 2.81 1.53
55 4.0 2.75 1.58
55 4.8 3.00 1.72
55 6.2 3.09 1.96
74.5 3.4 2.47 2.01
74.5 4.0 2.60 1.64
74.5 4.8 3.08 1.97
74.5 6.2 3.71 4.00
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Figure A.5: Material parameter for Vittoria Randonneur Hyper.

Table A.5: Vittoria Randonneur Hyper

Normal load [kg] Pressure [bar] 𝑐 × 10 (cornering) 𝑐 × 10 (camber)
33 3.4 3.29 2.51
33 4.0 3.03 2.45
33 4.8 3.47 2.79
33 6.2 3.76 3.08
55 3.4 2.85 2.10
55 4.0 3.35 2.59
55 4.8 3.80 3.06
55 6.2 4.04 3.68
74.5 3.4 3.16 2.13
74.5 4.0 3.56 2.66
74.5 4.8 3.99 3.15
74.5 6.2 4.15 3.38
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Figure A.6: Material parameter for Vredestein Perfect Tour.

Table A.6: Vredestein Perfect Tour

Normal load [kg] Pressure [bar] 𝑐 × 10 (cornering) 𝑐 × 10 (camber)
31 3.4 2.96 1.28
31 4.0 3.74 1.70
31 4.8 3.76 1.94
31 6.2 2.78 1.41
53.5 3.4 2.47 1.51
53.5 4.0 3.11 1.75
53.5 4.8 3.24 2.22
53.5 6.2 3.98 3.11
74.5 3.4 4.13 2.58
74.5 4.0 2.89 2.08
74.5 4.8 3.43 2.56
74.5 6.2 3.43 2.58
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A.2. Pneumatic trail

Figure A.7: Trail for Continental Top Contact Winter.

Figure A.8: Trail for Schwalbe Big Apple.
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Figure A.9: Trail for Schwalbe Kojak.

Figure A.10: Trail for Schwalbe Marathon Plus.
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Figure A.11: Trail for Vittoria Randonneur Hyper.

Figure A.12: Trail for Vredestein Perfect Tour.



B
Results for the enhanced string

model

B.1. Vertical direction parameters

Constant normal load

Figure B.1: Results from the parameter optimisation for the Bontrager All Weather 25 at 31 kg.
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Figure B.2: Results from the parameter optimisation for the Bontrager All Weather 25 at 74.5 kg.

Constant pressure

Figure B.3: Results from the parameter optimisation for the Bontrager All Weather 25 at 5.52 bar.
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Figure B.4: Results from the parameter optimisation for the Bontrager All Weather 25 at 6.89 bar.

Figure B.5: Results from the parameter optimisation for the Bontrager All Weather 25 at 8.27 bar.



92 B. Results for the enhanced string model

Figure B.6: Results from the parameter optimisation for the Bontrager All Weather 28 at 8.27 bar.

B.2. Lateral direction parameters

Constant normal load

Figure B.7: Results from the parameter optimisation for the Bontrager All Weather 25 at 31 kg.
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Figure B.8: Results from the parameter optimisation for the Bontrager All Weather 25 at 74.5 kg.

Constant pressure

Figure B.9: Results from the parameter optimisation for the Bontrager All Weather 25 at 5.52 bar.
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Figure B.10: Results from the parameter optimisation for the Bontrager All Weather 25 at 6.89 bar.

Figure B.11: Results from the parameter optimisation for the Bontrager All Weather 25 at 8.27 bar.
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Figure B.12: Results from the parameter optimisation for the Bontrager All Weather 28 at 8.27 bar.

B.3. Individual tyre measurements compared with model output

Figure B.13
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Figure B.14

Figure B.15
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Figure B.16

Figure B.17
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Figure B.18

Figure B.19
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Figure B.20

Figure B.21
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Figure B.22

Figure B.23
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Figure B.24

Figure B.25
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Figure B.26

Figure B.27
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Figure B.28

Figure B.29
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Figure B.30

Figure B.31
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Figure B.32

Figure B.33
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Figure B.34

Figure B.35
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Figure B.36

Figure B.37
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Figure B.38

Figure B.39



B.3. Individual tyre measurements compared with model output 109

Figure B.40

Figure B.41
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Figure B.42
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