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Abstract

The ever growing population of human beings on earth introduces
the challenge of providing affordable, sustainable energy for every-
one. Emerging markets, such as China, India or Brazil, quench
their thirst for cheap energy by fossil fuels and nuclear power. At
the same time researchers from all over the globe warn the pub-
lic of the advent of a new, civilisation threatening disaster: climate
change.

Over the last two centuries mankind has gotten used to cheap but
polluting energy provided by burning coal, gas and oil. The chal-
lenge arises in the form of the transition of our current economy
towards a sustainable way of living. Renewable energy sources such
as wind, tidal currents, the sun and geothermal heat have seen en-
ourmous growth rates since the early nineties, as they are seen as
the best approach to overcome this challenge.

Of these renewable energy sources, wind energy is one that has re-
ceived major attention. In the quest for expanding wind energy
capacity, focus has shifted towards the sea in recent years. The
potential energy yield is higher off-shore caused by higher aver-
age wind speeds. Maintenance and availability are key issues off-
shore, due to the more complex logistics. In recent years, the price
of on-shore wind energy has decreased to a level that is competit-
ive with prices for energy from some types of fossil fuel. However,
the prices for off-shore wind energy remain above the ones of fossil
fuels. It is, thus, not surprising that the reduction of off-shore wind
energy costs is one of the main innovation drivers within the wind
industry.

With the advent of off-shore wind energy more and more compan-
ies started investigating a new turbine topology called direct-drive
wind turbines. This turbine type eliminates the gearbox found in
other types of wind turbines, as this might lead to increased avail-
ability and lower maintenance costs.

In the search for the best design of direct-drivewind turbines, every
part of the turbine is investigated, analysed, measured and optim-
ised to improve the functionality of that part. At the heart of the
turbine, where the mechanical is transformed into electrical en-
ergy, is the generator. Also this component needs to be optimised
with respect to weight and efficiency.

This thesis aims to find the structural design that optimally util-
ises the mass of the generator structure to minimise deformation.
This is done for the dynamic loads encountered in the generator.
Special focus is given to the interaction between the structural dy-
namics and the magnetic field. This is important as the interaction
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between these two physical domains can lead to unexpected dy-
namic behaviour of the system.

In Part I of this thesis, the modelling techniques that accurately
include the interaction between the structural part of the turbine
and the magnetic field in the generator are introduced. These tech-
niques can, for the first time, predict themodal parameter changes,
including damping changes, due to the interaction by forming a
monolithic eigenvalue problem of the coupled system. The model
neglects certain nonlinear influences on the dynamics, such as hys-
teresis and saturation. Its ability to predict changes of the modal
parameters is validated by vibration measurements of a magneto-
mechanical coupled system.

Furthermore, this part develops newmethods to handle hugemag-
neto-mechanical coupledmodels that emergewhenmagnetic fields
and structural dynamics of a direct-drive wind turbine are mod-
elled. The bottleneck is the memory requirements of the mono-
lithic formulation that makes it necessary to solve for all degrees of
freedom simultaneously.

Part II applies the techniques developed in Part I to the generator
of the XD-115, a 5 MW direct-drive wind turbine and conducts the
first two-way coupled analysis of such a generator type. The de-
tailed dynamic analysis of the generator gives new insights in the
dynamic behaviour of the generator. Furthermore, the eigenfre-
quencies, modes and possible causes for excitation are identified.

An experimental validation of the XD-115 models was conducted
using in-situ experimental and operation modal analyses. Various
techniques are compared for the challenging task of exciting the
rotor structure.

In the second part of Part II, the loads identified during the dy-
namic analysis are used as load case for a structural optimisation.
Topology and shape optimisation were used to identify the optimal
mass distribution for the rotor structure that minimises the de-
formation in the air gap. This way, the weight of the structure could
be reduced significantly without compromising the static and dy-
namic performance of the generator structure. During the optim-
isation the suitability and potential of topology optimisation for
direct-drive wind turbines was evaluated.

Although the introduced methodology can be applied to any elec-
tric machine, the implications for direct-drive wind turbine gener-
ators are most significant, as for these machines the ratio between
produced torque and weight is especially high. Important influ-
ences on and encountered challenges for improving the design are
collected to improve future turbine designs.
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Samenvatting

Degroeiende bevolking op aardewerpt de kwestie op, hoe demens-
heid toegang krijgt tot goedkope, duurzame energie. Groeimarkten
zoals China, India of Brazilië stillen deze dorstmet goedkopere fos-
sielen brandstoffen of kernenergie. Tegelijkertijd waarschuwenwe-
tenschappers overal ter wereld voor een nieuwe wereldwijde ramp:
de klimaatverandering.

Tijdens de afgelopen twee eeuwen is de mensheid gewend geraakt
aan goedkope maar vervuilende energie. De toekomstige uitda-
ging schuit in de transitie van een economie gebaseerd op fossiele
energie naar een duurzame. Duurzame energie zoals windenergie,
zonne-energie, aardwarmte of getijdenenergie kennen een enorme
groei sinds de jaren negentig, omdat zij als beste alternatief worden
gezien om de fossiele uitdaging aan te gaan.

Van de genoemde duurzame energiebronnen heeftwindkracht ver-
reweg de meeste aandacht ontvangen. De zoektocht naar nieuwe
locaties voor windturbines werd in de afgelopen jaren naar zee uit-
gebreid. De mogelijke energieopbrengsten zijn hoger op zee van-
wege de gemiddeld hogerewindsnelheden. Onderhoud enbeschik-
baarheid van windturbines zijn essentiële aspecten op zee, omdat
de logistiek op deze locaties ingewikkelder is. In de afgelopen jaren
is de prijs van windenergie op land gedaald tot een niveau dat kan
concurreren met olie- of kolengestookte energieproductie. Daar-
entegen zijn de kosten van windenergie op zee nog steeds hoger
dan die van energie uit fossiele energiebronnen. Daarom zijn de
stroomkosten een van de hoofdredenen voor innovatie in offshore
windenergie.

Met de introductie van offshorewindenergie overwegen steedsmeer
bedrijven een nieuwe turbinesoort, namelijk de direct-drive wind-
turbine. Direct-drive windturbines hebben geen versnellingsbak
tussen generator enwieken/wiekennaaf zoal in andere turbinesoor-
ten. Dit zou mogelijk kunnen leiden to hogere beschikbaarheid en
lagere onderhouds- en energiekosten.

Voor de optimalisatie van het design van direct-drive windturbines
is een analyse van elk onderdeel op mogelijke verbeteringen nood-
zakelijk. Een essentieel deel van elke windturbine is de generator,
waar de mechanische energie in elektrische energie wordt omge-
zet. Zoals elk ander onderdeel wordt ook de generator kritisch be-
schouwd. Vooral de optimalisatie ten aanzien van efficiëntie en
gewicht zijn belangrijk.

Dit proefschrift heeft de doelstelling om de generatorstructuur van
windturbines, met optimaal gebruik van massa, te minimaliseren
voor de deformatie ten gevolgen van dynamische belastingen. De
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wisselwerking tussen magnetisch veld en structuurdynamica krijgt
daarbij bijzondere aandacht, vanwege het onverwachte gedrag als
gevolg van deze afhankelijkheden tussen deze twee aspecten.

InDeel I van dit proefschrift wordenmodelleringstechnieken geïn-
troduceerd, die een nauwkeurig berekening van de interactie tus-
sen structuur dynamica en het magnetisch veld mogelijk maken.
Met behulp van een monolitisch eigenwaardeprobleem kan men
voor het eerst de verandering van demodale parameters van het ge-
koppelde systeem ten opzichte van het ongekoppelde systeem be-
rekenen. De modeleringstechnieken laten de niet-lineaire effecten,
zoals magnetische verzadiging en hysterese buiten beschouwing.
De methoden zijn gevalideerd aan de hand van metingen aan een
gekoppeld magneto-mechanisch systeem.

Vervolgens ontwikkelt Deel I nieuwe methoden voor de modelre-
ductie van grote magnetische en magnetisch-mechanisch gekop-
pelde eindige element modellen. Het grote aantal elementen is no-
dig voor een nauwkeurige beschrijving van de interactie tussen de
structuurdynamica enhetmagnetisch veld. Deuitdaging is de grote
behoefte aan geheugencapaciteit voor het monolitisch eigenwaar-
deprobleem.

Deel II past de methoden, die in Deel I ontwikkeld zijn, toe op de
generator van de XD-115, een 5 megawatt windturbine. Een ge-
detailleerde analyse van de generator heeft nieuwe inzichten in de
dynamica van dit onderdeel geleverd. Daarnaast zijn de resonan-
tiefrequenties, modale vormen en mogelijke excitatie bronnen ge-
ïdentificeerd. De experimentele validatie van de modellen is door
middel van trillingsmetingen ter plaatse gedaan. Verschillende tech-
nieken voor de excitatie van de generator zijn getest en geëvalueerd.

Vervolgens worden in Deel II de magnetisch krachten, die tijdens
de metingen en simulaties zijn geïdentificeerd, gebruikt voor een
optimalisatie van de generatorstructuur. Topologie- en vormopti-
malisatie zijn toegepast om de optimale massaverdeling te vinden
voor het minimaliseren van de vervormingen in de luchtspleet. Op
dezemanier is het gewicht van de generator aanzienlijk verminderd
zonder daarbij de functionaliteit te beïnvloeden. Tijdens de opti-
malisatie werd de geschiktheid van topologieoptimalisatie voor de
verbetering van het design van generatoren in windturbines geëva-
lueerd.

Hoewel de methoden op elke elektrische machine kunnen worden
toegepast, hebben zij in het bijzonder een grote implicatie voor
direct-drive generatoren, omdat de verhouding tussen aandrijfmo-
ment enmassa zeer hoog is. Belangrijke invloeden op de dynamica
van generatoren en andere geïdentificeerde uitdagingen zijn verza-
meld voor de verbetering van toekomstige windturbines.
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Zusammenfassung

Die wachsende Erbevölkerung wirft die Frage auf, wie dieMensch-
heitmit günstiger und erneuerbarer Energie versorgt werden kann.
Wachstumsmärkte, wie China, Indien oder Brasilien, decken ihren
Bedarf an Energie mit fossilen Energieträgern oder durch Kern-
energie. Gleichzeitig warnen Wissenschaftler auf der ganzen Welt
vor einemneuen, weltumspannendenDesaster: demKlimawandel.

In den letzten zwei Jahrhunderten hat sich die Menschheit an bil-
lige, aber Umweltbelastende Energiequellen gewöhnt. Die Heraus-
forderung ist der Übergang von dieser auf fossilen Quellen basier-
ten hin zu einer nachhaltigen Wirtschaft. Erneuerbare Energien,
aus Sonne, Wind, Gezeiten oder Geothermie, haben enorme Zu-
wächse erreicht seit Anfang der Neunziger, da sie als bestes Mittel
zur Bewältigung der fossilen Herausforderung gesehen werden.

Von den genannten erneuerbaren Energien hat Windkraft große
Aufmerksamkeit erhalten. Die Suche nach neuen Standorten für
Windräder wurde in den letzten Jahren auf die Meere ausgewei-
tet. Die möglichen Energieerträge sind auf See höher wegen der
höheren Windgeschwindigkeiten. Wartung und Verfügbarkeit der
Windkraftanlagen sind wichtige Aspekte auf See, weil die Logistik
an diesen Standorten komplexer ist. In den vergangenen Jahren ist
der Preis von on-shoreWindenergie stark gesunken auf ein Niveau
das mit fossilen Energieträgern wettbewerbsfähig ist. Im Gegegen-
satz dazu ist der Preis von off-shore Windenergie immer noch hö-
her als konkurrierende öl- oder kohlebasierte Energieproduktion.
Daher sind die Energiekosten einer der Hauptgründe für Innova-
tionen bei off-shore Windenergie.

Mit dem Aufkommen von off-shore Windenergie haben sich im-
mer mehr Turbinenhersteller einer neuen Turbinenart zugewandt.
Direkt getriebeneWindräder verzichten auf das Getriebe zwischen
Generator und Flügelnaben, um die Verfügbarkeit zu erhöhen und
so die Wartungs- und Energiekosten zu senken.

Die Verbesserung des Designs von direkt getriebenen Windrädern
macht eine Überprüfung jedes Bauteils auf mögliche Verbesserun-
gen notwendig. Zentrales Bauteil eines jedenWindrades ist derGe-
nerator, in dem die mechanische in elektrische Energie umgesetzt
wird. Insbesondere die Optimierung des Generators hinsichtlich
der Effizienz und des Gewichtes sind interessant.

Diese Dissertation befasst sich mit der Optimierung der Genera-
torstruktur hinsichtlich der optimalenNutzungderMasse, umVer-
formungen durch dynamische Lasten so weit wie möglich zu ver-
meiden. Die Wechselwirkung zwischen dem magnetischem Feld
imGenerator und der Strukturdynamik findet dabei besondere Be-
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achtung, da diese unerwartetes Verhalten des Systems zur Folge ha-
ben kann.

In Teil I werden die Modellierungstechniken, die die präzise Be-
rechnung der Wechselwirkung zwischen magnetischem Feld und
Strukturdynamik ermöglichen, eingeführt. Diese Techniken kön-
nen erstmalig die Veränderungen der modalen Parameter, inklu-
sive Veränderung der Dämpfung, des gekoppelten Systems gegen-
über ungekoppelten Systemen berechnen. Die Modellierungsme-
thoden vernachlässigen nichtlineare Effekte, wie magnetische Sät-
tigung undHysterese. Die Genauigkeit derMethode wird anschlie-
ßend durch Labormessungen bestätigt.

Des weiteren entwickelt Teil I neue Methoden zur Modellredukti-
on von großen magnetischen und magnetisch-mechanisch gekop-
pelten Finiten Elemente Modellen. Diese Modelle entstehen, wenn
die Interaktion zwischen der Struktrudynamik und dem magneti-
schen Feld berechnet wird. Die Herausforderung bei diesen Mo-
dellen besteht im großen Speicherbedarf bei der monolithischen
Formulierung des Eigenwertproblems.

Teil II wendet die in Teil I eingeführten Methoden auf die XD-115,
eine 5 MW direkt getriebene Windkraftanlage, an und führt erst-
malig eine analyse der gekoppelten Dynamik eines solchen Gene-
rators durch. Eine detaillierte dynamische Analyse des Generators
gab neue Einsichten in die Dynamik des Generators. Des weiteren
werden die Resonanzfrequenzen, Eigenschwingformen und mög-
liche Anregungsquellen identifiziert. Eine experimentelle Validie-
rung derModelle wurde durch Schwingungsmessungen vorOrt er-
reicht. Verschiedene Anregungstechniken für den Generator wur-
den getestet und evaluiert.

Weiterhin werden in Teil II die während derMessungen und Simu-
lation identifizierten magnetischen Kräfte für eine Optimierung
der Generatorstruktur genutzt. Topologie- und Parameteroptimie-
rung wurden verwendet, um die optimale Massenverteilung zur
Minimierung der Luftspaltverformung zu finden. Auf diese Wei-
se konnte das Gewicht des Generators erheblich reduziert werden,
ohne die Funktionalität desGenerators zu beeinflussen.Dabeiwur-
de das Potential von Topologieoptimierung für die Verbesserung
des Designs von Generatoren von Windkraftanlagen evaluiert.

Obwohl die Methoden auf jede elektrische Maschine anwendbar
sind, haben sie die größte Auswirkung auf direkt getriebene Wind-
kraftanlagen, da hier das Verhältnis zwischen Drehmoment und
Masse besonders hoch ist. Wichtige Einflüsse auf die Dynamik von
Generator von Windkraftanlagen und identifizierte Herausforde-
rungen wurde zusammen getragen für die Verbesserung zuünfti-
ger Turbinen.
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Nomenclature

Notation Convention

In this thesis, a lot of algebra is used to explain the mathematical
methods used. In this thesis, scalars are denoted by regular letters.
Small letters stand for a value per cubic meter or square meter, i.e.
a density, whereas capitalised letters denote the total quantity. For
example, f stands for a force density whereas F denotes a force.

Because the theory is first explained in a continuous analytical way
and then in a numerical way, this thesis distinguishes between nu-
merical vectors, which denote a set of nodal values, and analytical
vectors, which denote a direction at a certain point of a vector field.
Bold roman letters, F, denote the numerical vectors, whereas f⃗ de-
notes the vector of a vector field.

Matrices are denoted by a bold capital letterM, whereas tensors are
denoted by a double underlined letter, T. Block diagonal matrices
are indicated by diag(●, ●). For instance

diag(X,Y) = [X 0
0 Y] diag(mm) =

⎡⎢⎢⎢⎢⎢⎣

m1
⋱

mm

⎤⎥⎥⎥⎥⎥⎦

The transposed of a matrix is indicated by the superscript T:

[0 X
Y 0]

T

= [ 0 YT

XT 0 ]

In some equations the Einstein notation or index notation is used.
This notation sums over an index if that index appears twice in a
term. The inner product of the two vectors x⃗ and y⃗ is thus given by

∑
i
xiyi = xiyi

The integral sign is used only once even when the integration do-
main is two dimensional or three dimensional. The domain is in-
dicated below the integration sign and its dimension becomes clear
from the context.

tr(●) denotes the trace of a tensor or matrix, defined as

tr([x11 x12
x21 x22

]) = x11 + x22

The imaginary number is denoted by i.
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A variation of a quantity is denote by δ. When a certain other
quantity, x, is constant under the variation δ, this is indicated by

δ(●)∣δx=0

General meaning of sub- and superscripts, unless otherwise noted in context

(●)(s) Belonging to substructure s ●i Internal

●b Boundary ●u Structural

●A Magnetic ●̃ Reduced

●̂ Amplitude, especially of sinusoidal func-

tions

●̌ Block diagonal form

●s quantity on side s of an interface [●]x skew symmetric matrix for cross product

Often Used Abbreviations

ACB Augmented Craig Bampton Method FEM Finite Element Method

CB Craig Bampton Method LCOE Levelised Cost of Energy

CMS Component Mode Synthesis LDV Laser Doppler Vibrometer

CVA Canonical Variate Analysis MMF Magneto Motive Force

DCB Dual-Crag-Bampton Method MOR Model Order Reduction

DFIG Doubly Fed Induction Generator MTA Mode Truncation Augmentation

DOF Degrees of Freedom OMA Operational Modal Analysis

DS Dynamic Substructuring PM Permanent Magnet

EFDD Enhanced Frequency Domain Decomposi-

tion

POD Proper Orthogonal Decomposition

FDD Frequency Domain Decomposition POM Proper Orthogonal Modes

FRF Frequency Response Function POV Proper Orthogonal Value

EM Electro-Magnetic SSI Stochastic Subspace Identification

EMA Experimental Modal Analysis SVD Singular Value Decomposition

DAQ Data Acquisition System TF Transfer Function

FE Finite Element
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1.1 Bigger, Higher, Further Off-shore – Trends in Wind
Turbines

Since the beginning of the utilisation of wind as a power source
back in the first millennium, the technology employed has under-
gone quite some significant improvements. The rate of change has
increased over the last 40 years since the technology became a focus
of the renewable energies development.

1.1.1 A Short History of Wind Energy

When looking at recent developments in and the ongoing discus-
sion about wind energy, one can easily be mislead to think that
wind energy has been developed only recently. In fact, windmills
and the concept of harvesting the wind for work is much older.
There are speculations about the existence of windmills 3000 years
ago [78]. The first reliable information about windmills dates back
to 644 A.D. [49].

The horizontal axis wind mills, the one which is most commonly
used even today, is probably a European invention [58]. The first
reliable information dates back to 1180 about a windmill in Nor-
mandy. Another source points to Brabant where a post windmill
was supposedly built as early as 1119 [58]. These early European
post windmills were made entirely of wood. The tower windmill,
which made its appearances about two centuries later, consists of a
stone tower, on which the wind wheel rests. According to [58], this
windmill spread across Europe starting in the south of France.

In the 16th century, the ”Dutch windmill” was developed in the
Netherlands. This windmill consisted of a fixed mill house. Only
the wooden top of the house and the wind wheel were rotated into
the wind for operation. This system was improved until the middle
of the 19th century and they can still be seen throughout the Neth-
erlands today.

At the end of the 19th and the beginning of the 20th century the
development of windmills slowed. Steam engines and combustion
engines took over power production and energy production at that
time, eliminating the necessity to harvest thewind for power. How-
ever, the development of the first wind mill producing electricity
falls into this time span, which was done by Poul La Cour in 1891
[58].

The idea of wind mills gained popularity again in the 70s after the
first oil crisis. Consequently, development of new types of wind
turbines picked up again. In Denmark, due to the idea of decent-
ralized power production in rural areas, there was a tradition of
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building small three bladed wind turbines for farms. Small com-
panies that were producing these turbines throughout the whole
20th century (e.g. Vestas) started to increase their business in the
70s [58]. Since then the installed capacity of wind turbines has
increased enormously. Fig. 1.1 shows the development of the in-
stalled wind turbines in Europe since 2000. Together with the in-
stalled capacity in total, the rated power of each turbine increased
over the years as well.

The first off-shore wind farm was inaugurated in 1991 [43]. Until
2001 the major share of installed capacity was contributed by near
shore projects in Denmark and the Netherlands. In 2001 the first
”utility scale” off-shore wind farm went on-line. Since then, the in-
stalled annual capacity has increased tremendously. In 2014 a ca-
pacity of 1483 MW was installed in Europe. For the future, predic-
tions state that the installed capacity will increase further, reaching
a total European capacity of 40 GW and an annual energy produc-
tion of 148.2 TWh by 2020 [43]. The largest part of the off-shore
capacity will be installed in Germany and the UK.

1.1.2cost reduction – the driving force behind innovation in wind
energy

Since the first wind park in 1980 [154], wind energy had a reputa-
tion of being an expensive alternative to energy production based
on fossil fuels and nuclear energy. While this might have been the
case in the beginnings of wind energy, the prices of on-shore wind
energy have dropped to a level which is verymuch competitivewith
energy prices of coal and gas [80]. Off-shore wind energy is still
more expensive than the energy produced by on-shore wind tur-
bines. The outlook into the future, according to [80], sees an in-
crease in prices for coal and gas combined with a decrease of prices
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for wind energy. Nontheless off-shore energy will remain more ex-
pensive than coal power in the near future. The incentive to invest
in off-shore wind energy does thus not originate from a decreased
levelised cost of energy (LCOE) but from the large amount of pos-
sible turbine sites. Additionally, off-shorewind turbines do not face
opposition by local residents, which leads to discussion and rejec-
tion of on-shore turbine projects.

Analysing the LCOE only gives a distorted picture of the real cost
of energy, as it does not include additional costs, so called external
costs. For each energy source there are certain additional costs that
have to be taken into account for the total cost of energy. For fossil
fuel based power sources this includes the environmental cost as
well as transporting the fuel to the power plant. However, the en-
ergy can be produced close to the customer decreasing the cost for
electrical transmission lines. For wind energy, the source of the en-
ergy, i.e. wind, is free, but the energy is not readily available at all
times and needs under certain circumstances be transported from
the location where it is produced to the customer (This triggered
a nation wide discussion in Germany, where an extension of the
power grid is strongly opposed by some parts of the population and
politicians, mainly in Bavaria [7]). [121] is a report for the European
commission quantifying the external costs of various sources of en-
ergy. It lists the external cost for coal and oil at 4 and 5 Euro cent per
kWh, while the external cost for wind energy are listed at around
0.1 - 0.2 Euro cent per kWh.

The external costs of nuclear power are difficult to calculate. Es-
timates for decommissioning range widely and costs for long-term
waste storage are unknown [25]. Furthermore, no insurance for
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nuclear power plants is available, as the possible liabilities in case
of a worst scenario are too high to be insured. Therefore, the gov-
ernment insures these kinds of accidents indirectly by helping vic-
tims of nuclear disasters, as happened in Fukushima, Japan. It can
be argued that these are hidden costs that do not appear on the bill
for nuclear energy and, hence, distort the picture that LCOE give
about the prices of nuclear energy.

Although the cost of wind energy has already decreased by a factor
of 5 since the 1980s [83], there is still a strong incentive for wind
turbine manufacturers to decrease the cost of energy. Utility com-
panies strive to maximise their profit. A reduction of production
cost is only beneficial for that goal. Becausewind turbines andwind
turbine technology has received little attention at the beginning of
the 20th century, its technology is less developed than the one of
fossil fuel based power production. The potential for cost reduc-
tion in wind turbines is thus considered to be larger compared to
conservative power production methods.

In off-shore wind energy, there are two trends visible to reach this
goal.

1. The wind parks tend to locations further away from shore in
deeper waters (see Fig. 1.2 for the trend towards larger dis-
tances to shore). At those locations the average wind speeds
are higher than at locations closer to shore [35]. Higher aver-
age wind speed amounts to more kinetic energy in the wind.
More energy can, therefore, be harvested from the same ro-
tor diameter, leading to generators with a higher nominal
power.

2. Larger wind turbines entail decreasing maintenance costs,
because less individual turbines need to be maintained in a
wind farm of the same capacity. This trend can be seen in
Fig. 1.2 by an increasing size of marker towards the right of
the plot and also in Fig. 1.3, which shows the average indi-
vidual turbine capacity over the years.

Another idea that is currently debated in the industry is a transition
towards direct-drive wind turbines. This topology has the advant-
age that there is no gear box present in the turbine. [45] shows that
although the occurrence of gear box failures of wind turbines is not
the most common failure, it leads to the longest down time of all
failure types recorded. For off-shore turbines maintenance is espe-
cially expensive. Waiting times are longer, logistics more complex
and the weather plays a major role when planning repairs. Direct-
drive turbines are intended for off-shore use, as they promise to
decrease downtime and maintenance cost by eliminating gear box
failures.
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Fig. 1.2 shows that there are hardly any direct-drive wind turbine
off-shore wind farms at the moment. However, some manufactur-
ers have developed direct-drive wind turbines mainly for their off-
shore business (Siemens, Alstom, XEMC-Darwind). Other man-
ufacturers believe that geared topologies have an advantage even
for off-shore applications (Vestas, RePower, Gamesa). Enercon is
a special case, as they have been exclusively producing on-shore
direct-drive turbines since the early 90s. [76] gives an overview of
current direct-drive designs in use by themajor wind turbineman-
ufacturers.

1.2 Generators in Wind Turbines

The topology used for the drive train in a wind turbine determines
the type of the generator. It is, therefore, impossible to describe
developments and trends in wind turbine generator design without
looking at the wind turbine as a whole.

[9, 116, 117] give an overview over all generator topologies currently
in use as well as their advantages and drawbacks. Themost import-
ant topologies at the moment are

• A fixed speed squirrel cage induction motor with a gear box.
No frequency converter is needed

• A variable speed doubly fed induction machine with a gear
box and a partly rated converter

• A variable speed direct-drive synchronous generatorwithout
gear box and a full converter

• A variable speed turbine with gear box, a generator and a full
converter
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The first topology in this list is an outdated topology that is no
longer used for new commercial scale multi-megawatt wind tur-
bines.

As mentioned above, the direct-drive generator is currently de-
bated among the off-shore turbine manufacturers. In this topo-
logy, the generator rotor rotates at the same speed as the blades.
The speed is determined by the tip speed ratio which is maintained
at a certain level to extract themost energy from the wind [58]. The
resulting low generator rotation speed requires a large torque in or-
der to achieve the nominal power of the turbine. The generators for
direct-drive wind turbines are, therefore, very special machines as
these need to produce a very large torque at low rotation speeds.
The torque per unit surface in the air gap depends on the magnetic
flux density in the air gap. In order to produce this large torque a
large air gap surface is needed. This can be achieved by increasing
the axial length and the diameter of the machine.

Considering the trend towards larger turbines further off-shore, the
direct-drive topology might not be feasible any longer for larger
turbines. Assuming a linear relation between the mass of the drive
train and the torque, the mass would increase more than linearly
with an increase in nominal power. This can be shown with a short
calculation.

The nominal power of a turbine is determined by the surface that
the blades cover

Pnom ∝ l2blade (1.1)
The rotation speed of the rotor is determined by the tip speed ratio
which is as close to an ideal figure as possible. The rotation speed
decreases thus with an increasing blade length

ω ∝ 1
lblade

(1.2)

The torque of the turbine is given by

Tnom =
Pnom
ω

(1.3)

Now it is possible to deduce that the torque will increase with the
exponent of 3

2 when the nominal power increases.

Tnom ∝ P
3
2
nom (1.4)

The increased torque will lead to heavier constructions, as more
material is needed to transmit this torque. In order to ensure the
feasibility of direct-drive wind turbines for larger machines in the
future, the mass of the generator needs to be reduced dramatically.
[137] deduces the scaling laws in more detail of direct-drive gener-
ators for static forces and yields even larger exponents than above.
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1.2.1 Double vs. Single Bearing Topologies

There are various bearing topologies that are discussed for direct-
drive generators. Because of the size of the generator, distances
between parts where forces are applied and support structures, i.e.
bearings, can be larger than in generators with a higher rotation
speed. Various designs have been proposed for bearing placements.
[145] gives an overview of the various bearing placements and to-
pologies, including designs with one, two, or even three bearings.

Stator Stiffener
Rotor Stiffener

Bearing

Hub

Blade
Nacelle

Coil

Magnet

a) Schematic of a direct-drive single bearing wind turbine

Stator Stiffener
Rotor Stiffener

Bearings

Hub

Blade
Nacelle

Coil

Magnet

b) Schematic of a direct-drive kingpin design wind turbine

Figure 1.4
Various bearing topologies for

wind turbines

The two most used designs, the single bearing design and the king
pin design, will be discussed in more detail here.

The single bearing topology incorporates a single bearing that con-
sequently supports the rotor in all three direction. Fig. 1.4a shows
a direct-drive generator that is supported by a single-bearing. This
bearing usually features a large diameter as this increases the lever-
age of the bearing elements while supporting the rotor against wind
induced torque and consequently reduces loads on the bearing ele-
ments.

The advantages of a single bearing design are its compactness in
axial direction and an easy access to the hub and thus to the blades,
which need to be accessed regularly formaintenance purposes. The
drawbacks are a highly complex bearing, due to its diameter. Slip-
ping of bearing elements is difficult to avoid, because the diameter
difference between the inner and outer edge of the axial raceway is
large. This will likely increase the wear of the bearing elements.

The kingpin design features one bearing at the very front of the
hub that is supported by a long cone extending all the way on the
inside of the hub to its front. The other bearing is located within
the generator. In Fig. 1.4b such a design is shown. The location
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of the bearings maximise the distance between the two bearings,
giving them more leverage while supporting the rotor against wind
induced torques. The smaller diameter of the bearings make each
of them simpler. The drawback is the more difficult access to the
blades that has to be done on the outside of the turbine.

1.2.2Weight Reduction of Direct-Drive Wind Turbine Generators

In the past several approaches were suggested to reduce the weight
of direct-drive generators. The first step was to use a permanent
magnet generator instead of electrical excited generators which has
been done by Enercon since the early nineties [116].

Besides this method, which is widely used in the industry by now,
there exist a couple of methods that can be split up in four categor-
ies according to [136]:

Load or load path reduction: This approach aims to reduce the
amount of mass by decreasing the load on the structure by
changing the design of the support structure. This involves
either using iron less generators [143] or keeping the distance
between the air gap and the bearing of the rotor as small as
possible. [41, 136]

Size reduction: This method proposes to increase the current or
the flux in the air gap to produce the same amount of torque
at a smaller diameter and/or axial length of the generator.
Various ways to accomplish this increase in flux density have
been proposed. Themethods include using superconducting
generators [1, 81, 101], better cooling by either forced air or
water cooling or transverse flux machines [37, 168]

Use of lighter materials: This approach uses light weight mater-
ials (mainly aluminium, carbon fibre) to reduce the weight
of the support structure. However, the price of these mater-
ials are significantly higher than the more commonly used
structural steel. The life cycle cost need therefore be care-
fully analysed. [100]

Flexibility: Thismethodwas proposed in [136] and [138]. The idea
is to use designed flexibility to reduce weight of the support
structure of the generator. The method can be applied to the
rotor as well as the stator side. [136] investigated the feasib-
ility of this method taking static forces in the generator into
account

Besides the approaches above, there were several investigations on
optimising the support structure of direct-drivewind turbines. [145]
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gives an overview of all possible topologies for the support struc-
ture of direct-drive turbines, including topologies with one two
and three bearings. [104, 175, 176] covers structural optimisation
for direct-drive wind turbine generators and [118] developed a slip-
synchronous permanent magnet generator.

1.2.3 Functions of the Generator Rotor Support Structure

The structure in the rotor of a direct-drive wind turbine generator
has to fulfil the following functions. The performance of a certain
design can thus be measured by how well these functions are ful-
filled.

1. Hold the electro-magnetic active material in place relative
to other electro magnetic active parts on the rotor. This en-
sures that all electro-magnetic active parts move synchron-
ously. The placement of the electro-magnetic active parts on
the rotor is crucial, because a displacement relative to each
other will influence the performance of the generator.

2. Transmit the torque generated by the blades from the hub
to the electro-magnetic active parts on the rotor, where the
electro-magnetic torque is applied to the structure.

3. Hold the electro-magnetic active parts in place relative to the
electro-magnetic parts on the stator, i.e. maintain the air gap
length between stator and rotor. To do this any attractive
forces between stator and rotor need to be transferred to the
supporting element that connects the rotor and the stator, i.e.
the bearing.

Another factor that influences the performance of the structure is
its weight and its cost. The three functionsmentioned above should
be fulfilled with as little weight as necessary.

1.3 Magneto-Mechanical Coupling and Vibrations in
Electric Machines

The coupling between magnetic fields and the mechanical world
has been at the interest of research endeavours for as long as Max-
well’s Equations have been around. In fact, one of the original equa-
tions that Maxwell wrote down in 1865 was the Lorentz force equa-
tion [66, p. 22].

Since electric machines depend heavily on this interaction, it was
always at the heart of electric power generation as well as electric
motors. In that sense, the development and research on electric
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machines was always also partial the research on magneto-mech-
anical coupling.

According to [148, p. 145], the derivation of the magnetic and elec-
tro static forces from an energy principle has first been proposed
by the Dutch mathematician Korteweg in 1880 [79]. It was further
developed byHelmholtz in [61]. Heaviside, who also broughtMax-
well’s equations into the form we still use today, picked up the idea
and formed stress tensors from the idea in his work ’On the Forces,
Stresses, and Fluxes of Energy in the Electromagnetic Field’ [60].

In the beginning, the coupling could only be accounted for on a
global variable scale. The research on magneto-mechanical coup-
ling changed radically when the finite element method was intro-
duced both for electro magnetic fields and elastic deformations.
Now, it was possible to calculate local displacements and magnetic
fluxes and the magneto-mechanical coupling could be analysed on
a local level rather than a global level.

1.3.1Computation of Magnetic Forces in Finite Elements

The first paper to exploit the finite element method to calculate
magnetic forces were J. Coulomb and G. Meunier in their papers
from 1983 and 1984 [27, 28]. They discuss the calculation of the
magnetic force acting on a body. For that, the principle of vir-
tual work is used. They already discuss the problems arising using
Maxwell’s Stress Tensor and proposes most of the techniques in-
troduced in Sec. 2.5.8. Further, the moving mesh associated with a
distorted body is mentioned. This method has been vastly imple-
mented and is seen as the standard for calculatingmagnetic force in
either edge elements [17, 125] and other finite elements [107]. Vari-
ous papers address the problem of comparing various formulas of
calculating forces [77, 105, 123]

[62] picks up the topic and includes the underlying material and its
deformation into his considerations. This is done for various mag-
netic materials including permanent magnets. It addresses a prob-
lem at the heart of the principle of virtual work which assumes a
virtual displacement. However, this displacement will have an in-
fluence on the magnetic field. This opens up the discussion about
energy and co-energy and how the magnetisation of permanent
magnets behaves under deformation.

[135] gives a detailed outline over surface forces between arbitrary
linear materials and permanent magnets.



I

Introduction

12 1 Introduction

1.3.2 Modelling the Magneto-Mechanical Coupling

Besides [62], no-one of the abovementioned publications took into
account the effects of the displacement on the magnetic field for-
mulation. [31, 32] formulates a linear coupling in both directions
for the static case. Although, it takes magnetostriction into ac-
count, the dynamic coupling terms are neglected. However, the
modal analysis done on the stator of an electric machine includes
modal participation factors, to describe which modes are excited
by a certain distribution of magnetic forces. It is, however, not a
coupled eigenvalue analysis.

[124] derives a fully coupled monolithic formulation for the inter-
action between mechanical deformation and magnetic fields. It is
applied to a simple system consisting of a yoke, a coil and a moving
armature. Belahcen extends this approach and uses it to analyse
electric machines [11–13, 48]. This formulation is used to calcu-
late extensive time dependent problems of vibrational behaviour
of electric machines.

[36] and [120] derive the system equations for magneto-mechan-
ical coupled systems, starting from the Lagrange equations. The
variational formulation for electro-mechanical coupled dynamics
is also covered in [2, 131] and [146]. The derivation for magnetic
fields is almost analog.

1.3.3 Vibrations of Electric Machines

The investigation of vibrational behaviour of electric machines is
almost as old as the machines themselfs. In the past, there were
mainly two reasons to look into vibrational behaviour of electric
machines. The first interest is the torsional vibrational behaviour
for electric machines. This is mainly caused by torque ripple and
consequently the aim of the research was the reduction of torque
ripple [97, 112, 134]. The methods to reduce vibrations mainly fo-
cus on changing the current input of the machine to counteract the
torque ripple created by either the supply harmonics or the torque
ripple created by torque cogging and space harmonics. Other tech-
niques to reduce torque cogging incorporate skewed rotors [70] or
changing the magnet layout of the rotor using unsymmetrical ro-
tors. [15] describes various design techniques for reducing cogging
torque in permanent magnet drives.

The other area of interest is noise generation of electric machines.
This is mainly caused by the oscillations of the stator [51, 86, 153].
The topic has also relevance for wind turbines as noise annoyance
is a problem for on-shore wind turbines [111]. The generator is one
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of the main sources of noise in such a turbine.

The dynamic modelling of the structural parts of the turbine are
complex because the stator lamination stack shows nonlinear be-
haviour. How to approximate this nonlinear behaviour has been
the topic of many research projects [55, 95, 114, 140, 141, 161, 162,
166, 169]. All approaches model the stator lamination as an ortho-
tropic material. The macro-mechanical parameters for this mater-
ial are either determined by vibrationmeasurements [95, 169] or by
modelling a part of the stator lamination in great detail to extract
the parameters from that model [114]. However, all above men-
tioned papers discuss stator laminations which are not separated.
As far as the author is aware there is no research on the dynamics
of interlinked and segmented stator laminations.

Approximating the nonlinear behaviour by a linear model using
orthotropic material models, makes it possible to include the dy-
namic behaviour of lamination in a modal analysis to estimate res-
onance frequencies. Nonlinear dynamics decreases the accuracy of
vibration behaviour that is approximated using these modes.

Reducing the vibrations of permanent magnet (PM) direct-drive
generators has been the focus of previous research. Valavi et al.
[155–157] identifies which design parameters in such a generator
are of importance for the harmonic excitation forces. They neglect
the two-way coupling that is analysed in this thesis.

1.3.4Model Reduction for Electric Machines

Model order reduction methods for large linear time invariant dy-
namic systems can be split in three categories [3]: Singular value
decomposition (SVD) based, Krylov-based and the Singular Value
Decomposition Krylov based method. These methods project the
system onto a subspace which is of much smaller dimension. The
three methods mentioned above have various approaches to find
the smaller subspace, which should contain the dominant dynam-
ics of the system in order to yield an accurate approximation.

Themethods introduced in [3] approach the system that is reduced
in state space configuration. Reduction for finite element models
work differently, as here no input and output is given. Instead all
DoFs of the model can be input and output.

The methods used in structural dynamics [8, 130, 132] are singu-
lar value decomposition based methods. Because the matrices en-
countered in a structural FE model are square, the SVD becomes
an eigenvalue problem. For structural systems, the eigenvalues and
modes identified this way correspond to the physical properties of
resonance frequencies and mode shapes.
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Although SVD-based methods have been around for a while and
are commonly applied in structural dynamics, no survey on the
practicality of these methods for magnetic fields in electric ma-
chines has been conducted. In the case of electric machines, the
singular value decomposition does not yield physical quantities as
it does in structural dynamics. The application to electricmachines
facilitates the identification of a dominant subspace the system is
projected on.

Another advantage of this approach is its easy integration into ex-
isting structural model order reduction techniques when reducing
magneto-mechanical coupled systems.

1.3.5 Topology Optimisation of Electric Machines

Using topology optimisation to reduce the deformation caused by
magnetic forces, has been around for a couple of years. [72] uses to-
pology optimisation to reduce the vibrations caused by a harmonic
magnetic force. [63] uses the same method to optimise a static
magneto-mechanical coupled system. [88] uses topology optim-
isation to not only minimise the compliance of the structure, but
simultaneously maximise the magnetic force.

The systems used in these studies are all not generators or motors
but simple actuators. Nonetheless the developed methods can be
used in electric machines too. [69] uses topology optimisation in
combination with a genetic algorithm, to maximise the torque of
themachine. Manufacturability was specifically taken into account
in a second optimisation step.

All of thesemethods however do not look at the dynamic behaviour
of the systems at hand or do not look at rotating electric machines.

1.4 Problem Definition

The project aims at developing the needed knowhow and meth-
odology to properly model the magneto-mechanical coupling, de-
termining the dynamic behaviour and the electro-magnetic per-
formance of the generator/drive-train of a direct-drive wind tur-
bine. Modelling the electro-dynamics between the rotor and the
stator will enable designers and engineers to converge to the best
design for future generators by properly balancing cost, perform-
ance and lifetime.

In particular, the project was planned to reach the following ob-
jectives:
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• Modelling:

– Determine the appropriate modelling approach for the
magneto-mechanical dynamics in generators in order
to design for the lowest weight of the structure, which
facilitates a lower cost of energy.

– Build a model that can describe the electromagnetic
and structural phenomenon determining the dynam-
ical behaviour and the electromagnetic performance of
the generator, taking into account the strong two-way
magneto-mechanical coupling. Such a model must be
validated in such a way that it accurately describes the
phenomenon most relevant for performance, fatigue
and wear.

– Identify modelling techniques and calculation meth-
ods, thatmake themodelling of coupled dynamics pos-
sible in the future for larger generator size and more
complex geometries.

• Design:

– Clarify the role of the magneto-mechanical behaviour
of the generator/drive-train in determining the design
trade-offs of the overall turbine design.

– Identify methods to optimise the design of direct-drive
wind turbine generators.

– Develop innovative ideas for the design of future drive-
train/generator systems.

1.5Thesis Outline

According to the problem definition in Sec. 1.4 the thesis is struc-
tured in three parts. The first part will cover the modelling tech-
niques appropriate to simulate the magneto-mechanical coupling
in wind turbine generators. The second part will cover the applic-
ation of the previously introduced modelling techniques to large
direct-drive wind turbine generators and the optimisation of them.
The last part draws the conclusions and gives an extensive overview
over possible research topics in the future.

Fig. 1.5 shows an overview how the various topics of the thesis are
related to each other.
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1.5.1 Part I – Modelling Magneto-Mechanical Coupled Dynamics

Part I covers the modelling of magneto-mechanical coupling in
wind turbine generators, the validation of the models and model
reduction techniques. It consists of the chapters 2, 3 and 4.

The second chapter of the thesis starts with the basics of magnetic
fields modelling and continuum mechanics. As most of the mod-
elling theory has been done in the past, this introduction is rather
short. On the contrary, the chapter is rather specific on how the two
physics are coupled. Furthermore, the coupled eigenvalue problem
is introduced in detail.

Model Measurements

Lab Measurements

XD-115

Magneto-

Mechanical

Coupling
Reduction

Methods

Application

to XD115

Optimization
Shape Op-

timization

Topology

Optimization

Design
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System

Validating

Validating

Apply to Geometry

Identify meas-

urement posi-

tion

Identifies pos-

sible solutions

Identifies

influences

Chapter 5

Chapter 3

Chapter 4

Chapter 2

Chapter 7

Chapter 6

Figure 1.5
Various topics of the thesis and

how they are interlinked

The third chapter covers validation measurements for the magnetic
coupling introduced in Chapter 2. These measurements are ne-
cessary to insure that the techniques introduced previously reflect
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reality and indeed can be used for the optimisation of wind tur-
bine generators. For the validation a test set up consisting of two
permanent magnets and a flexible beam was used.

The fourth chapter covers reduction methods for quasi-static mag-
netic field problems. These problems are discovered when mag-
netic forces have to be calculated in the time domain. Themethods
introduced are based on a modal analysis of quasi-static magnetic
fields which will be introduced shortly. In the linear case various
reduction methods known from structural dynamics can be used.
It will be shown that these reduction methods are also applicable
to magnetic field problems. Further, the chapter introduces some
ideas how to reduce magneto-mechanical coupled systems.

1.5.2Part II – Application to Large Off-Shore Wind Turbine
Generators

In the second part of the thesis the focus shifts from methods to-
wards application. It consists of the chapters 5 and 6.

In the fifth chapter the methods developed in Chapter 2 are applied
to the XD-115, yielding an accurate analysis of the excitation forces
and system dynamics of the generator. The models are validated
with in-situ vibration measurements of the turbine.

In Chapter six the models developed in chapter five are used to ex-
plore design improvements for the current design. For this shape
optimisation as well as topology optimisation is used. Further, a
short look at topologies including two bearings and their optimal
design was taken.

1.5.3Part III – Conclusion and Outlook

The last part contains the conclusion and the outlook into the fu-
ture.

In the seventh chapter the various effects and influences identified
during the research leading up to this thesis are summarised. Their
influence is mentioned and possible solutions and changes to the
current design are discussed.

The eighth chapter draws the conclusions for the thesis and iden-
tifies opportunities and challenges future research can concentrate
on.
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1.6 Scientific Contributions

This thesis makes scientific contributions to the field of magneto-
mechanical coupling, design of wind turbine generators andmodel
reduction for quasi-static magnetic fields:

• A consistent set of equations for modelling magneto-mech-
anical coupled vibrations in electric machines is formed. For
that all relevant modelling techniques and equations needed
to be collected from various sources in literature. It is differ-
entiated carefully between effects that are important for elec-
tric machines and effects that play a minor role. (Chapter 2).

• The damping terms for a monolithic formulation resulting
from themagneto-mechanical coupling are added to the for-
mulation for monolithic magneto-mechanical coupling for-
mulation found in literature. (Chapter 2).

• This formulation is cast in a monolithically coupled eigen-
value formulation which makes it possible to see the effects
of the magnetic field on the modal parameters. (Chapter 2).

• The modelling technique introduced is experimentally veri-
fied (Chapter 3).

• It is investigated to what extent the concept ofmodes ofmag-
netic fields can be used for model order reduction of time
depend analysis and eigenvalue problems (Chapter 4).

• The importance of the two-way magneto-mechanical coup-
ling is investigated for direct-drive wind turbine generators
(Chapter 5).

• A dynamic analysis of the XD-115 wind turbine generator
is conducted, establishing structural excitation sources and
how they interact with the resonance frequencies (Chapter
5).

• Optimised generator rotor designs for theXD-115 are presen-
ted,minimising the amount of structuralmaterial usedwhile
retaining the same compliance (Chapter 6).

• Topologies incorporating the king pin design are analysed
by employing the same method. This way optimal bearing
placement and density distributions for this type of topology
can be identified (Chapter 6).

• An overview is given of the parameters which influence the
dynamic behaviour of the structural part of the generator
and its excitation. Recommendations are given how to avoid
unwanted vibrations (Chapter 7).
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This Chapter is based on the papers:

Kirschneck, M., Rixen, D.J., Polinder, H.,van Ostayen, R.A.J.
Electro-Magneto-Mechanical Coupled Vibration Analysis
of a Direct-Drive Off-Shore Wind Turbine Generator.
Journal of Computational and Nonlinear Dynamics. 2014

Abstract:

The dynamic behaviour of wind turbine generators
is influenced by the coupling between the
structural dynamics and the magnetic field in the
generator. Multi-physical modelling necessitates
specialised approaches to accurately capture the
dynamics and, especially, the influence of the
magnetic field. This chapter introduces an
approach for a multi-physical modal analysis that
makes it possible to predict the dynamics of
strongly coupled magneto-mechanical systems.
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2.1 Introduction

This chapter will introduce the necessary theoretical background
formodellingmagneto-mechanical coupled systems including per-
manent magnets (PMs) and coils in 3D. Although in theory the
method can be used for all applications where structural deform-
ation and quasi-static magnetic fields interact, the introduced for-
mulation will concentrate on describing vibrations in electric ma-
chines. With that in mind, certain simplifications, such as neglect-
ing hysteresis of the magnetic field and magnetostriction or using
orthotropic materials to simulate the lamination, will be applied to
the formulation. It might be possible, therefore, that for other ap-
plications some of the introduced simplifications cannot be applied
and in fact will yield wrong results for those systems.

As this is a multi disciplinary thesis, the basics of both physics will
be explained in detail. Therefore, depending if the reader has a
mechanical or a electrical engineering background, some of the
parts of this chapter might seem trivial and can be skipped. This
chapter will start with a general introduction to magneto-mech-
anical couplings and will include more details with every section.
Several aspects are, thus, revisited in successive sections, increasing
the detail and complexity of the model.

The chapter starts with a general description of magnetic fields in
Sec. 2.2. That subsection will cover the basics of modelling mag-
netic fields. It can be skipped by the reader, when he/she is familiar
with Maxwell’s equations and modelling of magnetic fields. Next,
the modelling of magnetic fields and mechanical systems in intro-
duced in Sec. 2.3. The section follows the structure in [173], which
introduces lumped coupled models. It is intended to give a bet-
ter insight into the concepts of magneto-mechanical coupling such
as the relation between co-energy and energy, but the content will
hardly be used in the rest of of the thesis. Readers that are already
familiar with these concepts can skip Sec. 2.3. In Sec. 2.4, the con-
tinuous version of the coupled magneto-mechanical formulas will
be introduced. This section is fundamental to understand Sec. 2.5,
where the equations from Sec. 2.4 will be discretised. However, for
the rest of the thesis, mainly the discretised formulas from Sec. 2.5
will be used. Sec. 2.6 will finally introduce the monolithic eigen-
value problem used for analysing themagneto-mechanical coupled
dynamics in electric machines.

2.1.1 Strong Coupling vs. Weak Coupling

In literature, there is some ambiguity about the terms strong coup-
ling and weak coupling. For clarity, the terminology used in this
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thesis will be explained briefly. It should be noted that the defini-
tion differs to some definitions found in literature, e.g. [53].

One-way coupling: A one-way coupled system takes the coupling
in only one direction into account. This can either be the
dependency of the magnetic field on the deformation of the
structure or the magnetic force affecting the structural de-
formation. Usually, the effect of the magnetic field on the
mechanical system, i.e. the magnetic forces, are accounted
for. From a dynamic point of view, the magnetic forces in a
one-way coupled system can be treated as excitation forces
for the mechanical system, as they do not depend on the
mechanical system itself.

Two-way coupling: For two-way coupled systems, the magnetic
field affects the structural dynamics as well as the displace-
ment affects the magnetic field.

Strong coupling: A strong coupling is a coupling that has a large
influence on the system. The system should be analysed tak-
ing both physics into account.

Weak coupling: Contrary to a strongly coupled system, a weakly
coupled system is a system where the effects of one phys-
ical domain hardly affects the other physically domain. An
analysis of two physical domains separately yields a good ap-
proximation of the system.

The modelling techniques covered in this chapter are suited to de-
scribe any of the system types above. Depending on the type of
coupling, certain parts of the introduced equations and terms can
be omitted.

2.2Basic Magnetic Field Modelling

This section will introduce the basics of modelling magnetic fields
and the electric circuits generating them. It will cover energy in
magnetic systems and lumpedmodelling to give a general overview
of the interactions between magnetic fields and mechanical forces
and displacements.

2.2.1Maxwell’s Equations

By adding the displacement term in his publication ’A Dynamical
Theory of the Electromagnetic Field’ [99] to the set of equations de-
scribing the dynamics of electro-magnetic fields, James ClerkMax-
well completed our understanding of electro-magnetic dynamics.
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Before that, various laws describing certain aspects of the electro-
magnetic field were previously discovered by Ampere, Gauß and
Faraday.

Ampere formulated the law that bears his name in 1826. It describes
the relation between magnetic fields and currents. It reads as

∮
∂S

H⃗ ⋅ d⃗l =∬
S
j⃗ ⋅ dS⃗ (2.1)

where H⃗ denotes the magnetic field, j⃗ the electric current density
and dl an infinitesimal small part of the closed path ∂S, which en-
closes the surface S. Ampere’s law makes it possible to calculate the
field strength of magnetic fields depending on the path of a field
line and the material. It is, therefore, directly used in analytical
models of magnetic circuits and electric machines to estimate the
magnetic field at a certain point.

Faraday’s law describes the interaction of a closed loop of a con-
ductor and a changing magnetic field.

’The induced electromotive force in any closed circuit
is equal to the negative of the time rate of change of the
magnetic flux through the circuit.’

from [59]

When Faraday published his experimental work in 1831 the law was
only formulated in words [30]. Maxwell later casted the ideas of
Faraday in mathematics which yielded the formulation (2.3a).

The third important law that made its way into Maxwell’s formu-
lation is Gauß’s law. It was formulated in 1835 by Carl Friedrich
Gauß. The law describes the relation between a distribution of elec-
tric charges and the resulting electric field for media with constant
permittivity ε0.

∇ ⋅ E⃗i =
q
ε0

(2.2)

where E⃗i is the electric field that is created by a charge density, q the
electric charge density and ε0 the vacuum permittivity.

The last of the four equations that constitute Maxwell’s equation is
Gauß’s law formagnetics, which is named so because of its resemb-
lance to the electric Gauß law in (2.2).

At the time when Maxwell published his ’A Dynamical Theory of
the Electromagnetic Field’ [99], the three laws above where already
known. Maxwell assembled these equations to a complete set of
equations describing electro-magnetic dynamics. Someof the equa-
tions needed to be extended or adapted. Faraday’s law needed to be
formulated in mathematical terms all together. This way, Maxwell
compiled his theory to comprise of 20 equations. The final set of
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equations, the one that is still used today, was not formulated be-
fore 1884 whenOliverHeaviside used vector notation to rewrite the
equation from 1864. (2.3) shows Maxwell’s four equation as formu-
lated by Heaviside.

∇× E⃗ = −∂B⃗
∂t

(2.3a)

∇× H⃗ = j⃗ + ∂D⃗
∂t

(2.3b)

∇ ⋅ D⃗ = q (2.3c)
∇ ⋅ B⃗ = 0 (2.3d)

where B⃗ denotes the magnetic flux density, E⃗ the electric field and
D⃗ the electric displacement. Assembling these equations using the
constitutive modelling introduced in Sec. 2.2.2 will result in a 2nd

order partial differential equation in space and time. The reson-
ance frequencies of this equation for systems of the size of electric
machines are so high that they play no role for magnetic fields in
electric machines. Therefore, the so called displacement term ∂D⃗

∂t
can be dropped from (2.3b) leaving a first order system of partial
differential equations. This set of equations is called the quasi-static
Maxwell’s equations.

2.2.2Constitutive Modelling

To be able to solve Maxwell’s equations (2.3), it is necessary to do
some constitutive modelling of the materials. For the conductiv-
ity of materials, a linear material law is assumed with a constant
conductivity.

j⃗ = γ (E⃗s + E⃗i
´¹¹¹¹¹¸¹¹¹¹¹¶

E⃗

+v⃗ × B⃗)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E⃗′

+⃗jsource (2.4a)

D⃗ = εE⃗ (2.4b)

where γ denotes the conductivity of thematerial and v⃗ the velocity
of the conducting structure. (2.4b) is given here for completeness,
as it is needed to solve all parts of Maxwell’s equations. It is not
used for the rest of the thesis.

E⃗ can be split up in two parts, a solenoidal part, E⃗s, which is induced
by changing magnetic fields and a rotation free part, E⃗i, which is
created by potential gradients. j⃗source denotes an additional source
term for magnetic fields, which accounts for all sources of mag-
netic fields that are not created by electric potential gradients or
the Lorentz’ force.
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Formoving structures the Lorentz force, E⃗′ in (2.4), instead of Fara-
day’s law (2.3a) needs to be used to compute the electromotive force
(EMF). For fixed structures, the second term of E⃗′ is zero.

For the relation between the magnetic field and the magnetic flux
density, the constitutive modelling is more complex, as several dif-
ferent materials are included in the models presented here. Most
materials, such as air or copper or plastic, are linear magnetic ma-
terials. That means, a linear relation between the magnetic flux
density and the magnetic field is sufficient to describe the material
behaviour

B⃗ = μH⃗ (2.5)

where μ denotes the permeability of the material. Permanent mag-
nets are special, as they have a remanent flux density B⃗r that is still
present when there is no external magnetic field is applied to the
magnet. Their relation can be expressed by

B⃗ = B⃗r + μH⃗ (2.6)

Because of this remanent flux, the permanent magnet can act as a
source of magnetic fields.

The last types of material are ferromagnetic materials where the
relation between the fluxdensity and themagnetic field is expressed
as nonlinear function that includes hysteresis and saturation.

B⃗ = B⃗(H⃗) (2.7)

Usually, the nonlinear material law is expressed in terms of the
norm of the magnetic field and the magnetic flux density. The dir-
ection of both fields is the same. Therefore, only the magnitudes of
the fields need to be related to each other.

Nonlinear material behaviour can usually be encountered in ferro-
magnetic materials such as iron or cobalt. These materials exhibit
saturation, which leads to a flattening H-B curve at strong mag-
netic fields. Saturation is an important effect in electric machines,
because most machines are designed to operate in or close to sat-
uration. It affects the coupling between the magnetic domain and
the mechanical domain. An accurate magneto-mechanical model
will, thus, need to account for this effect.

Another important effect for ferromagnetic materials is hysteresis.
This effect is not easily incorporated into a linear magneto-mech-
anical model. In this thesis, we develop our understanding-model-
ling of the electromagnetic-structural coupling without consider-
ing hysteresis.
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2.2.3Energy in Magnetic Fields

Energy of magnetic fields, and how to calculate it, is fundamental
for the discretisation of themagnetic field and the couplingwith the
mechanical system. While the calculation in nonlinear and linear
magnetisablematerials is rather straight forward, the calculation of
energy in permanent magnets is still a topic that is being debated
[23, 50, 92, 147].

The energy in permanent magnets has a fundamentally different
character as in magnetisable media, such as air or iron. In general,
the specific magnetic energy for a domain can be calculated by

wmag =
B

∫
B0

H⃗(̊B⃗) d̊B⃗ (2.8)

B0 denotes the value of the magnetic flux density for which the en-
ergy wmag is equal to zero. For magnetisable media, this point is
easily identified at B⃗ = 0, H⃗ = 0. This yields the following expres-
sion for the specific energy for linear magnetic materials

wmag =
B

∫
0

˚⃗B
μ

d̊B⃗ = B⃗TB⃗
2μ

(2.9)

In (2.9), ˚⃗B denotes an integration variable. This lower integration
limit holds even for nonlinear materials that are not permanently
magnetised.

For permanent magnets, B⃗ = 0 and H⃗ = 0 do not coincide at the
same point as (2.6) applies. This is shown in Fig. 2.1. Instead, the
BH-curve passes the abscissa at H = Hc and the ordinate at B = Br.
Hc is the value ofH for which B = 0 within the permanent magnet.
It is called the coercivity.

[147] explains thoroughly that for permanent magnets the distinc-
tion between recoverable energy andnon-recoverable energy needs
to be made. Recoverable energy, is the energy stored in a perman-
ent magnet that can be used for generating magnetic fields outside
the permanentmagnet. Non-recoverable energy is energy that can-
not be used for this purpose. It was stored in the magnet when it
wasmagnetised andwill be transformed to heat by hysteresis losses
in the magnet.

According to [147], the recoverable energy for a permanentmagnet
is zero at B⃗ = B⃗r and H⃗ = 0. Setting B0 = Br and inserting (2.6) into
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Figure 2.1
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(2.8) yields

wpm =
B

∫
Br

˚⃗B − B⃗r

μ
d̊B⃗ =

˚⃗BT˚⃗B
2 μ
− B⃗T

r
˚⃗B
μ
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B

Br

= B⃗TB⃗
2μ
+ B⃗T

r B⃗r

2μ
²
wpm,0

− B⃗
T
r B⃗
μ
= H⃗TH⃗

2
μ

(2.10)

for permanent magnets. wpm,0 denotes the maximal recoverable
energy in the magnet, represented by the whole triangle formed by
the axes and the magnetisation line.

2.2.4 1D Magnetic Circuit

This subsection introduces the equations for 1D magnetic circuits.
Although not used extensively afterwards in this thesis, these equa-
tions will illustrate the basic relations between fundamental quant-
ities of magnetic and electric fields. Furthermore, they can explain
certain effects of magneto-mechanical coupling, which will be dis-
cussed in Sec. 3.2.2.

Maxwell’s equations can be simplified to a set of linear equations,
when certain assumptions are made. Using Ampere’s law in in-
tegral form (2.1) and assuming that the magnetic field is constant
within each material, a 1D magnetic circuit equation can be estab-
lished [46].

∑
n
Hnln = I (2.11)

(2.11) can be derived from (2.1) by dividing the path of a magnetic
flux line in n sections. Within each section the magnetic field is
constant over the length ln. ln denotes the length of the flux line
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that is followed in the nth section and Hn the according magnetic
field magnitude. Adding the magnetic flux over all sections of the
flux line yields the total current I that particular flux line encloses.

Applying (2.11) results in a formulation for magnetic flux lines that
is similar to electric circuits. Each of the n elements can be seen
as a component of a magnetic circuit. Such a circuit comprises of
magnetic reluctance, magnetic fluxes and magneto motive forces
(MMF).These elements corresponds to anOhmic resistance, a cur-
rent, and the electro motive force in electric circuits, respectively.
More complex concepts, such as saturation or fringe effects, can-
not be taken into account with this model. However, the mag-
netic circuit makes it possible to estimate the magnetic flux density
of more complicated magnetic devices such as electric motors or
transformers without solving partial differential equations first.

The magnetic circuit is governed by a handful of equations. The
MMF drives the magnetic flux through the magnetic circuit. It can
be seen as a potential difference within the circuit similar to the
voltage in an electric circuit. The MMF which is generated by a
coil can be computed by

Fcoil = Nic (2.12)

where ic denotes the current in the coil andN the number of turns.
This law is derived from Ampere’s law (2.1), which relates the mag-
netic field to the total current it encircles. For permanent magnets,
the MMF can be calculated by

Fpm =
Hpmlpm
μr,pm

(2.13)

where Fpm denotes the MMF created by the permanent magnet,
Hpm the magnetic field within, lpm the length of and μr,pm the relat-
ive permeability of the permanent magnet.

The total magnetic flux of the circuit can be calculated by dividing
the MMF by the magnetic ’resistance’, called reluctance

ΦB =
F
R

(2.14)

whereR denotes the reluctance. It can be calculated by

R = l
μA

(2.15)

where l denotes the length of the material within the magnetic cir-
cuit with the permeability μ and A the cross section of the material
perpendicular to the field line. It is, thus, assumed that the cross
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section of the material is constant within one section. This formula
can be used for anymagnetic material that shows linearmagnetisa-
tion behaviour. For more complicated systems several reluctances
can be placed in series or parallel. The laws for calculating the total
reluctance are identical to the calculations of Ohmic resistances in
series or parallel.

2.3 Lumped Magneto-Mechanical Systems

Electrical

Network
Magnetic Field

Mechanical

System

Circuit

Coupling

Magneto-

Mechanical

Coupling

Figure 2.2
The three different parts of the

coupled system and how they

interact with each other

In Sec. 2.2.1, the focus was laid on basic magnetic modelling. In
this section, the focus shifts towards the interaction between the
magnetic field and the mechanical system.

To get a fundamental understanding of how magneto-mechanical
coupled systems work, we will start examining lumped systems.
Analysing these systems can explainmanyphenomenaofmagneto-
mechanical coupled systems. For that, the interface between the
three subsystems depicted in Fig. 2.2 are considered. The inside of
the three systems will be considered later in Sec. 2.4 and are treated
as black boxes for now.

There are some fundamental differences for magneto-mechanical
interaction between systems in which the magnetic field is created
by a permanent magnet and systems with a magnetic field gener-
ated by a coil. In this section, both types of systems will be ana-
lysed to show the difference and give a deeper understanding of
magneto-mechanical coupling.

2.3.1 Systems Including Coils

Fig. 2.3 shows amagneto-mechanical coupled system, in which the
magnetic field is created by a coil. This system contains an electric
circuit as well as a mechanical system. The two physics are coupled
in one or two directions by means of a magnetic force and/or a
dependency of the magnetic field on the geometry and, thus, on
the displacement of the mechanical system.

As mentioned above, the magnetic field is considered to be a black
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λcoil fmag

Figure 2.3
A mechanical and a electric system

interacting by means of a

magnetic field

box with energy entering and leaving the system. It creates forces
acting on themechanical system and is created by a current flowing
through a coil. This approach yields a black box with two termin-
als. Themechanical terminal consists of themagnetic force and the
displacement, whereas the circuit terminal consists of the two vari-
ables, coil current and flux linkage. The flux linkage of a coil λc is
the totalmagnetic flux that flows through the coil, which is denoted
by Φc. The flux linkage of the coil depends on the displacement u
as well as on the current in the coil ic

λc = λc(u, ic) (2.16)

where λc is the flux linkage of the coil. From this relation, it can
be concluded that the flux linkage of the coil will change, when the
mechanical system deforms.

A similar relation can be established for the magnetic force

fmag = fmag(ic,u) (2.17)

When the current increases the magnetic force increases. It can
also be determined that the displacement has an effect on the force.

Energy and Co-energy Considerations

Applying the principle of energy conservation, it is possible tomake
some fundamental statements about the coupled system in Fig. 2.3.
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Theblack box in that figure contains amagnetic field, which is con-
sidered to be lossless. The only way for exchanging energy with an-
other system is either by means of an electric power applied to the
coil or by a mechanical power. The relation for the energy change
in the dashed box can, therefore, be written as

dWmag

dt
= ic

dλc
dt
− fmag

du
dt

(2.18)

In (2.18),Wmag denotes the total energy stored in themagnetic field.
This energy is not known, but some statements about the energy
change can be made. The first term on the right hand side of (2.18)
is the power input through the electric circuit, which is determined
by the change of the total flux multiplied with the coil current. The
second term denotes the power input through the mechanical sys-
tem. The minus sign in front of the second term results from the
definition that the force acts on the mechanical system and, thus,
introduces energy into the mechanical system, while, reducing the
energy of the magnetic system, when the magnetic force and the
displacement it causes point in the same direction.

Multiplying (2.18) with dt yields the conservation of energy for a
magnetic field:

dWmag = icdλc − fmagdu (2.19)
Because the system at hand is a conservative system, the energy for
a certain set of variables is unique. It does, thus, not depend on the
way how the system got into its current state [46, 173]. The energy
for a certain configuration can thus be computed by

Wmag(λc,u0) =
λc

∫
0

ic(̊λc,u0)d̊λc (2.20)

where λ̊c denotes an integration variable and u0 an arbitrary system
displacement.

(2.16) and (2.17) show that only two of the four variables introduced
so far can be set independently. Therefore, two of the variables de-
scribe the total energy sufficiently and the energy can be expressed
by:

Wmag =Wmag(u, λc) (2.21)
In fact, any two of the four variables u,i,λc and fmag are sufficient to
describe the energy stored in the magnetic field distinctively. This
is because they can be expressed by one another. It is possible to use
a Legrendre transformation to express the energy by any of the four
variables, identical to thermodynamics where this can be done for
the state functions [22]. Using such a transformation, it is possible
to substitute λc for the current ic in (2.21) resulting in the co-energy

W′mag =W′mag(u, ic) (2.22)
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Co-energy

Energy

ic

λc

Figure 2.4
Illustration of energy and

co-energy for a system with a

nonlinear relation between λc and i

and

dW′mag = λcdic + fmagdu (2.23)

for the co-energy change of the system. As stated in [46], the integ-
ration path does not matter, because the co-energy is a state func-
tion, of which the value do not depend on the history of the system.
An integration analog to the energy yields

W′mag(i,u0) =
ic

∫
0

λc(̊i) d̊i (2.24)

where i̊ denotes an integration variable. Fig. 2.4 shows the relation
between energy and co-energy in a magnetic field excited by coils.
Using the co-energy simplifies calculations in systems, in which the
current in coils is known.

Force-Energy Relations

Assuming a conservative system, the energy in the magnetic field
is fully determined by the independent variables u and λc. It is pos-
sible to take the total derivative of (2.21) yielding

dWmag =
∂Wmag

∂λc
dλc +

∂Wmag

∂u
du (2.25)

Subtracting (2.25) from (2.19) yields

0 = (ic −
∂Wmag

∂λc
) dλc − (fmag +

∂Wmag

∂u
) du (2.26)
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Because the variables u and λc are independent, (2.26) must be true
for any combination of du and dλc, resulting in

ic =
∂Wmag(λc,u)

∂λc
∣
u=const.

fmag = −
∂Wmag(λc,u)

∂u
∣
λc=const.

(2.27)

(2.27) shows that the principle of virtual work can be used to calcu-
late the forces acting on themechanical part of the system. Further-
more, it is now possible to calculate the exchanged energy between
the magnetic field and the mechanical system, which depends on u
and λc. (2.25) shows that the energy exchanged with the magnetic
field can be calculated by:

dWex,m = fmagdu∣λc=const. (2.28)

assuming that u is the independent variable. In (2.28), dWex,m de-
notes the total energy exchanged between the mechanical domain
and the magnetic domain. It is positive for energy that leaves the
magnetic systems and enters the mechanical system.

Co-energy-Force Relation

For certain systems, it is beneficial to use the current instead of the
flux linkage as an independent variable. This is especially true for
electric machines, where the current is controlled and, hence, can
be considered constant for the force computation. Using the mag-
netic energy for force calculations in systems, in which the currents
are constant, is quite complicated. To clarify this consider the sys-
tem in Fig. 2.3 again.

(2.16) shows that the flux linkage will change when the displace-
ment changes and the currents in the system are held constant. Be-
cause λc as well as u change, the force calculation in (2.27) is no
longer valid. In this case, energy enters through the coil because
dλcic is not longer constant. This energy change has to be taken
into account when calculating the magnetic force.

The calculation can be simplified by using the current in the coil
as the independent variable. Starting from (2.23) and following the
same reasoning as for the energy yields

λc =
∂W′mag(i,u)

∂i
∣
u=const.

fmag =
∂W′mag(i,u)

∂u
∣
i=const.

(2.29)
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for themagnetic force and the flux linkage. Note that now the force
is calculated for a constant current. Analog to the exchanged en-
ergy between the magnetic field and the mechanical system, it is
possible to define an exchanged co-energy:

dW′ex,m = − fmag du∣i=const. (2.30)

Note that the change of the co-energy is opposed to the change of
the magnetic energy for the same force and movement.

It is possible to calculate the force that is associated with a displace-
ment at constant current using the magnetic energy. In that case,
an additional term needs to be introduced that accounts for the en-
ergy that enters the system during the movement. Using (2.19) we
can express the force as

fmag(u) = −
dWmag(u, λc)

du
+ ic

dλc
du

(2.31)

Compared to (2.27) we get a correction term that takes the change
of the flux density into account. Expressing the energy in terms of
the co-energy yields

fmag(u) =
d
du
(λcic −W′mag(u, i)) − ic

dλc
du

fmag(u) =
dλcic
du
−
dW′mag(u, i)

du
− ic

dλc
du

(2.32)

As ic is constant during the deformation, it can bemoved in front of
the derivation in the first term and the total derivative can be sub-
stituted for a partial derivative in the second term. Multiplication
with du yields the same expression as in (2.30) for the magnetic
force. In some circumstances, using the co-energy is more con-
venient from an algebraic point of view. In that case, the current
needs to be used as independent variable which might cause some
challenges.

The equations for systems including PMs and coils hardly differ
from the equations of systems which include coils only. A per-
manent magnet will introduce an additional energy source for the
system. The equations for the energy and co-energy change (2.19)
and (2.23), respectively, will not change. Therefore, the force com-
putation will also stay the same.

2.3.2Systems with Permanent Magnets

Let us now consider a system where the magnetic field is created
by a permanent magnet. In this case, the electric circuit that was
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present in the system in Fig. 2.3 disappears. The system has, there-
fore, no terminal at the left side of the black box. As there is no
electric circuit, there is also no flux linkage and inductance. The
only two variables present are the magnetic force and the displace-
ment

Figure 2.5
Black box of a coupled system in

which the magnetic field is created

by a permanent magnet

fmag

Energy and Co-energy Considerations

Systems inwhich themagnetic field is created by a permanentmag-
net show a different energy behaviour. Now, the energy depends
only on the displacement u or force fmag, depending which vari-
able is chosen to describe the system. There is a certain amount
of energy stored in the system, which is concentrated in the PM.
When work is done on the system the recoverable energy of the
PM changes.

Using (2.19) without the circuit part of the equation yields

dWmag,pm = −fmag(u) du (2.33)

where dWmag,pm denotes the energy change of the magnetic field
which is only created by a permanent magnet. (2.33) shows that the
energy of the system decreases, when the force and displacement
are aligned.

Co-energy is a concept that was specifically introduced for the sys-
tem including coils and electric circuits. The concept is pointless
to introduce to systems where the magnetic field is excited by per-
manent magnets only, as the two variables λc and ic do not exist in
those systems.

2.4 Continous Modelling of Magneto-Mechanical
Coupling

In the last section, only the energy entering and leaving a mag-
netic field were analysed. This way of viewing a coupled system
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can already tell much about energy fluxes and the state of the sys-
tem. However, it is not possible tomake statements about the inner
state of the system, because only the interface variables are known.
This chapter extends the model introduced in Sec. 2.2.1 and Sec.
2.3 by a formulation that describes the spatial distribution of the
magnetic field, A⃗(t, x⃗), and the displacement u⃗(t, x⃗). For that the
variables ic, λc, u and fmag will be expressed by the new vector fields
introduced above.

Consider the domains depicted in Fig. 2.6, to get an understanding
of the spatial relations in magneto-mechanical coupled systems.
It depicts the domains for the magnetic field and the mechanical
system. The model consists of a mechanical domain that overlaps
partly with the magnetic domain.

In electric machines, the magnetic field of interest is located in the
electro-magnetic active part of the stator and rotor as well as the
air gap between them. The air gap has no structure and does not
need to be included in the structural model. That is why, a part
of the magnetic domain is not part of the mechanical domain in
Fig. 2.6. The support structure of the generator has no influence
on the magnetic behaviour of the machine. It does not need to be
included in the magnetic field calculation. This explains the part
of the mechanical domain that is not included in the magnetic do-
main.

The magnetic domain Ωmag consists of a large part of linear mater-
ials (depicted in white), a part that shows nonlinear material beha-
viour (Ωnl), a part that are permanent magnets (Ωpm) and a part
where external currents can be applied (Ωc). The boundary con-
ditions for the magnetic domain are either a magnetic insulation,
i.e. no magnetic flux crosses that boundary, or a periodic condi-
tion where the vector potential at one boundary is the same as at
another one. The mechanical model is not separated in various

Ωmech

Γσ

Γu

Ωc

Ωpm

Ωnl

Ωmag Ωcpl

Figure 2.6
Magnetic and mechanical domain
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material sub-sections. All parts of the model are assumed to be-
have linearly. The boundary can be separated in two sections. On
the first section the displacement of the material is set to a certain
value. This section is denoted by Γu. On the second boundary sec-
tion a surface force is applied. This section is denoted by Γσ . A free
boundary is realised by a surface force of zero.

The description of the modelling techniques in this thesis will con-
centrate on Ωcpl, the coupled part of the system, which is depicted
by the hatched domain in Fig. 2.6. In that part, themagneto-mech-
anical coupling takes place as it is part of both physical domains.

2.4.1 The Governing Equations of the Elastic Field

The formulas for continuous elastic fields can be found in any book
for continuum mechanics. For a more detailed description of con-
tinuum mechanics refer to [73] or [65].

The material is assumed to be linear elastic. The stress tensor σ can
therefore be calculated from the strain tensor ε by multiplication
with a constant stiffness tensor Ξ

σ = Ξε (2.34)

The stress tensor σ is symmetric, because the shear stresses τxy = τyx
are equal. The PDE describing the structural displacement u⃗ can
therefore be described as

∂σij
∂xj
+ fi ext =

∂

∂xj
(Ξijklεkl(ui)) + fi ext = ρ

∂2ui
∂t2

(2.35)

in Einstein’s index notation (see notation section in preamble for
explanation), where fi ext denotes all the external body forces acting
on the structure. ρ denotes the density of the structure.

This PDE is subject to Dirichlet and Neuman boundary conditions
on the boundaries Γu and Γσ

u⃗ = u⃗e on Γu
σTn⃗ = t⃗e on Γσ

(2.36)

where (●)T denotes the transpose, t⃗e denotes surface forces im-
posed on Γσ . In some cases the external force t⃗e can depend on the
displacement of the boundary. This is the case when an external
spring support is modelled.

2.4.2 The Governing Equations of Continuous Magnetic Fields

The fundamental equations for describing a magnetic field were
already introduced in Sec. 2.2.1. The equations consist of Maxwell’s
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equation (2.3), the material modelling for the conductivity and the
relation between the magnetic field and the magnetic flux density
(2.6), (2.5) and (2.7). The basic equations were adapted to describe
magnetic circuits in Sec. 2.2.4. In this section, the focus is laid on
the continuous magnetic field equations and how they can be used
to describe magnetic fields in two and three dimensions.

The magnetic field can be described by a spatial distribution of the
magnetic flux density B⃗(x⃗). Just like the formulation for elastic
fields, the spatial distribution of the magnetic field is governed by a
set of partial differential equations. These partial differential equa-
tions can be derived from the quasi static maxwell equations (2.3).
Starting from (2.3 b) without the displacement term ∂D⃗

∂t , inserting
(2.4 a) yields

∇× H⃗ = j⃗source + γ(E⃗s + E⃗i + v⃗ × B⃗) (2.37)

Introducing the magnetic vector potential

B⃗ = ∇× A⃗ (2.38)

(2.3 a) can be written as

∇× (E⃗s + E⃗i +
∂A⃗
∂t
) = 0 (2.39)

Introducing the electric potential, E⃗i can be expressed by

∇V = −E⃗i (2.40)

Using the identity ∇×∇(●) = 0, (2.39) becomes

∂A⃗
∂t
= −E⃗s (2.41)

Inserting (2.40) and (2.41) into (2.37) yields

∇× H⃗ = j⃗source + γ(−
∂A⃗
∂t
+∇V + v⃗ ×∇ × A⃗) (2.42)

For electricmachines, it is usually assumed that there are no electric
charges present, besides themoving charges of the coil currents self.
Therefore, the imposed electric potential is zero except in the coil
domains. The electric potential applied to the coils is substituted by
an imposed current density j⃗e. For the rest of the model the electric
field is purely solenoidal. This yields for (2.42)

∇× H⃗ = j⃗source + j⃗e + γ(−
∂A⃗
∂t
+ v⃗ ×∇ × A⃗) (2.43)
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The introduction of the magnetic vector potential made the solu-
tion to (2.42) non-unique. This can be proven by adding an ar-
bitrary gradient of a scalar potential to A⃗. Since a the curl of any
gradient is zero (∇ × ∇(●) = 0), this will not affect the magnetic
flux density B⃗.

Several divergence conditions have been proposed to overcome this
non-uniqueness [16]. For the static and time dependent solutions
of magnetic fields, the non-uniqueness is no problem as the mag-
netic flux density B⃗ is of interest, which is unique. Care needs to
be taken for eigenvalue problems of quasi-static magnetic fields as
will be explained in Chapter 4.

The set of partial differential equations in (2.45) governs the dy-
namic behaviour of magnetic fields. The solution is subject to the
boundary conditions applied to Γmag. For an electric machine usu-
ally no Neumann boundary condition is applied on the boundary
of the magnetic domain Ωmag. A Dirichlet boundary condition
is often used to impose magnetic insulation A⃗ = 0 on the outer
boundary of the magnetic system.

For electric machines, the only source of magnetic fields, besides
electric currents in coils, are permanent magnets. Therefore, the
additional source term j⃗source only contains the excitation of these
magnets

j⃗source = j⃗pm =
1
μ
∇× B⃗r (2.44)

This yields for the magnetic PDE

∇× H⃗ + γ(∂A⃗
∂t
− v⃗ ×∇ × A⃗) = j⃗pm + j⃗e (2.45)

In (2.45), the left hand side consists of internal current terms that
determine the static and dynamic behaviour of the magnetic field,
whereas the right hand side consists of the source terms that cre-
ate the magnetic field. The internal currents that are generated by
a physical effect within the system and, thus, depend on the sys-
tem are on the left hand side. The internal currents and external
currents have to be in equilibrium everywhere in the system.

The terms γ ∂A⃗
∂t and γv⃗×∇× A⃗ describe the eddy currents induced

in conducting materials.

j⃗eddy = −γ
∂A⃗
∂t
+ γv⃗ ×∇ × A⃗ (2.46)

In (2.45), the relation between the magnetic field H⃗ and the mag-
netic flux density B⃗ is not defined. For nonlinear magnetic mater-
ials, the relation between the magnetic field and the internal cur-
rents is governed by a general relation between ∣H⃗∣ and ∣B⃗∣. For a
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linear magnetic material, for which (2.5) holds, (2.45) can be fur-
ther simplified to

γ∂A⃗
∂t
− γ(v⃗ ×∇ × A⃗) + 1

μ
∇×∇× A⃗ = j⃗e + j⃗pm (2.47)

At interfaces between materials with varying permeability, the in-
terface conditions apply (see for instance [73, p. 110]).

n⃗ ⋅ (B⃗1 − B⃗2) = 0
n⃗ × (H⃗1 − H⃗2) = j⃗surface

(2.48)

These can be derived directly from Maxwell’s equations. For non-
magnetised materials, i.e. for non-permanent magnets, the surface
current j⃗surface is zero. The interface conditions state that the com-
ponent normal to the interface of the magnetic flux density is con-
tinuous across the interface. The same is true for the tangential
component of the magnetic field.

Electric Circuit Coupling

(2.45) and (2.47) make it possible to calculate the magnetic field
distribution when the currents generating that field and proper-
ties of the permanent magnets are known. Currents, in general,
cannot be controlled directly. They are created as result of a elec-
tric potential difference. In electric machines, this is done within
a conductor. Usually, that conductor is wound to form a coil to
maximise the magnetic field generated with a certain current. It is,
therefore, convenient to express the external current densities in
the equations (2.45) and (2.47) as function of the lumped variables
ic(t) used in Sec. 2.3.

The circuit equation for a coil is

vext = Rcic(t) +
∂λc
∂t
±
vind

(2.49)

where λc represents the flux linkage of the coil, vind the induced
voltage in the coil, Rc the Ohmic resistance of the coil and vext the
external voltage applied to the coil.

To understand the relation between the external current density, j⃗e,
in (2.47) and the lumped current variable, ic(t), consider Fig. 2.7.
It depicts a coil domain in a 3D model. In Fig. 2.7, the coil domain
is modelled as a hollow cylinder with the cross section Γw. This
hollow cylinder is the coil domain that is denoted as Ωc in Fig. 2.6.
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Figure 2.7
A coil and its simplified

representation as domain

+

vext

−
eJ

Γw
hollow

cylinder
lwire

Γc

The derivation of the coil equations is done in 3D. The derivation
for a 2D domain is analog. It can be looked up in [73].

For non-deforming, non-moving coil, the flux linkage is the same
as the total flux that flows through the coils cross section Γc. There-
fore λc depends on the magnetic field that interacts with the coil
and can be described by Faraday’s equation. The total induced po-
tential difference is equal to the integral of the changing magnetic
field in the direction of the wires over the coil domain.

Faradays law can be used to calculate the induced voltage of a coil.
Assuming that the axial length of the coil is negligible, Faraday’s
law for a coil can be simplified to

∂λc
∂t
= vind(t) ≈ Nc∬

Γc

∂B⃗
∂t
⋅ n⃗Γ dΓc (2.50)

where Γc represents the surface that the coil encloses and n⃗Γ denotes
its normal direction. (2.50) can be rewritten in terms of the vector
potential. Applying Stoke’s theorem yields:

∂λc
∂t
= Nc ∮

∂Γc

∂A⃗
∂t
⋅ e⃗Γ d∂Γc (2.51)

where ∂Γc denotes the contour of the surface Γc and e⃗Γ the tan-
gential direction of the contour line ∂Γ. In the case of Fig. 2.7,
the coil is modelled as a volume and the contour ∂Γc as a hollow
cylinder. The integral in (2.51) becomes then an integral over the
whole volume of the simplified coil, i.e. the hollow cylinder. To
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make sure that only the current density change in the direction of
the conductors is taken into account, a vector e⃗j is introduced that
is tangential to the conductors of the coil. (2.51) becomes then

∂λc
∂t
= vind(

∂A⃗
∂t
) = Nc

Γw ∫Ωc

∂A⃗
∂t
⋅ e⃗j dΩc (2.52)

where Γw denotes the cross section of the hollow cylinder.

Note that (2.52) only holds for non-deforming, non-moving coils.
Formoving or deforming coils Faraday’s law in (2.3a) can no longer
be used. Instead, the Lorentz force, E⃗′, needs to be used for the
calculation of the EMF in the coil. In that case, (2.52) becomes

∂λc
∂t
= vind(

∂A⃗
∂t
) = Nc

Γw ∫Ωc

(−∂A⃗
∂t
+ v⃗ ×∇ × A⃗) ⋅ e⃗j dΩc (2.53)

For the rest of the thesis, coil domains are assumed to be rigid and
stationary, so that (2.52) will be used.

The coil current, ic, in (2.49) can be expressed by the current density
in the coil domain

ic(t) =
1
N ∫

Ωc

j⃗e ⋅ e⃗j dΩc (2.54)

Assuming that the external current is equally distributed over the
coil domain, the external current density can be calculated from
the coil current by

j⃗e = e⃗J ⋅ J = e⃗j
ic(t)N

Γw
(2.55)

(2.55) and (2.52) establish a coupling between the continuos mag-
netic field and the lumped variables vind and ic.

2.4.3Coupling the Physics

With the equations introduced in Sec. 2.4.1 and 2.4.2, the magnetic
and elastic field can be modelled separately. However, the aim is
to model magneto-mechanical coupled systems. This section will
explain how the two governing equations (2.45) or (2.47) and (2.35)
can be coupled.

In (2.35), the internal and external forces have to be equal to the
dynamic forces. As mentioned, fi, the external body forces, are all
forces that are not linked to a displacement or movement of the
structure. When the structure is exposed to amagnetic field, which
is the case for magneto-mechanical coupled systems, this external
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force includes forces resulting from themagnetic field acting on the
structure. (2.35) can be rewritten as

∂σij
∂ξj
+ fi + fi mag(A⃗) = ρ

∂2ui
∂t2

(2.56)

where fi mag represents the components of themagnetic force vector.
In (2.56) the material coordinate, ξi, is used compared to (2.35) to
indicate, that the elastic field is described in an Eulerian coordinate
frame.

Figure 2.8
The deformation of the structure

and the associated reference

frames
x

y

z

ξ⃗

x⃗

u⃗

Ω0

Ω(x⃗)

The governing equation for the magnetic field on the other side,
(2.45) or (2.47), is described in Lagrangian coordinates. Thismeans
that the magnetic field moves with the underlying structure and is,
thus, affected by the displacement field. The magnetic vector po-
tential, A⃗, is thus dependent on the spatial coordinates, x⃗, whereas
the displacement field depends on the material coordinates ξ⃗. The
spatial coordinate, x⃗, can be described by

x⃗ = ξ⃗ + u⃗(t, ξ⃗) (2.57)

Therefore, all boundaries and all domains of the magnetic domains
move and deform with the structure. Thus, all spatial derivatives
and integrals in the formulation of the magnetic field depend on u⃗.

The coupled system can be written as a set of three equations

∂σij
∂ξj
+ fi + fi mag(Ai) = ρ

∂2ui
∂t2

(2.58a)

γ(x⃗)∂A⃗(x⃗)
∂t

− γ(x⃗)(∂u⃗
∂t
×∇x⃗ × A⃗(x⃗)) +∇x⃗ × H⃗(A⃗(x⃗)) = j⃗e(x⃗, ic(t)) + j⃗pm(x⃗) (2.58b)

Rcic(t) +
∂λc(A⃗, u⃗)

∂t
= vext (2.58c)
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where ∇x⃗ denotes the del operator in the spatial coordinate frame
and ∂(●)

∂ξi
a spatial derivative with respect to the material coordin-

ates.

How the magnetic force can be calculated will be covered in Sec.
2.4.5. The dependency of the magnetic field on the displacement
will be covered in Sec. 2.5.10.

2.4.4Energy Considerations

In Sec. 2.2.3, the equations to calculate the specific energy of vari-
ous magnetic materials were introduced. In Sec. 2.3.1, the energy
balances of a control volume were investigated. The system within
the control volume was seen as a black box. Based on the equation
in Sec. 2.2.3, the equations to calculate the energy within the con-
trol value are introduced in this section. Furthermore, for each of
the sub-systems, i.e. the mechanical and the magnetic system, the
power balance from Sec. 2.3.1 will be extended by energy that is
dissipated and thus leaves the system. Additionally, the model will
be extended by losses such as eddy currents and friction losses.

Themagnetic as well as the elastic field can store energy. The elastic
field stores potential energy in the strain of the structure. Therefore,
this energy is also called strain energy. The mechanical system can
also store energy kinetically as movement of masses. The magnetic
field stores energy wherever there is a magnetic field. The internal
energy of the system can, therefore, be calculated by adding up all
the above energies.

Wint = Vint + T =Wmag +Wstrain + T =Wmag +Wmech (2.59)

where Vint denotes the total potential internal energy of the system,
Wstrain describes the strain energy of the deformation of a structure
and T the kinetic energy of the movement of a structure andWmag
the magnetic energy. These are internal energies, Wint, as they are
internally stored in the system. Besides these internal energies,
there are potential energies of external loads, also called external
energies, which describe the amount of energy external forces or
currents introduce into the system.

Besides the two mechanisms to exchange energy, that were already
introduced in Sec. 2.3.1, the magnetic domain can dissipate energy
due to eddy currents. The extended energy balance for the mag-
netic field, which includes this energy, reads as

dWmag = dWcoil − dWex,m − dWeddy (2.60)

dWcoil denotes the energy that enters themagnetic field bymeans of
the current in the coils, dWex,m the energy that is exchanged with
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the mechanical system by applying a magnetic force to a moving
object, as established in Sec. 2.3.1, and dWeddy the energy that is
dissipated by eddy currents.

The currents in the coils and magnetic forces represent methods
how energy can enter and leave themagnetic systemwithout losses.
Therefore, these types of energy are recoverable and the loads they
create are conservative. They can be expressed as a potential of ex-
ternal loads Wmag,ext, which means that their instantaneous values
does not depend on the history of the system and it can be com-
puted from the vector fields u⃗ and A⃗ and the external currents/
forces.

Wmag,ext =Wcoil −Wex,m (2.61)

For dWeddy, this is not the case. Energy always leaves the system
due to eddy currents and is, thus, not recoverable. Furthermore, the
total amount of dissipated energy can only be computed by taking
the history of the system into account and integrating the friction
energy change over time. It is, thus, fundamentally different from
the other two exchange mechanisms.

The energy of themechanical systemcan change due to threemech-
anisms. Friction within the mechanical system can dissipate en-
ergy, energy can be transferred from the magnetic field and the
system can exchange energy by means of external forces applied
to the system. The total energy change of the mechanical system
can be written as

dWmech = dWex,m + dWext,m − dWfric (2.62)

where dWext,m denotes the energy change due to external forces
acting on the system and dWfric the energy change due to friction.
Like the energy change due to eddy currents, dWeddy always de-
creases the energy of the system and cannot be derived from a po-
tential.

Adding the power balances (2.62) and (2.60) for the separate sys-
tems yields the power balance for the coupled system of magnetic
and elastic field

dWtot = dWcoil + dWext,m − dWeddy − dWfric (2.63)

where dWtot denotes the total energy change of the coupled sys-
tem. The energy exchanged between the mechanical and magnetic
domain cancels out as the energy that is exchanged between the
mechanical system and themagnetic systemdoes not leave the total
system. The sum of all external energies, the total external energy,
can be written as

Vext =Wcoil +Wext,m (2.64)
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Energy in continuous Magnetic Fields

The various terms for the internal and external energies need to
be expressed in terms of the field variables A⃗(x⃗) and u⃗(ξ⃗), to be
able to calculate them within the control volume in Fig. 2.3. Us-
ing (2.9), the total energy of a linear magnetic domain Ωmag can be
calculated, yielding.

Wmag = ∫
Ωmag

wmag dΩmag

= ∫
Ωmag

B⃗

∫
0

H⃗(̊B⃗)d̊B⃗ dΩmag

(2.65)

For linear magnetic materials, (2.65) can be further simplified to

Wmag,lin = ∫
Ωmag

B⃗2

2μ
dΩmag (2.66)

The co-energy can be derived from the energy by

W′mag = ∫
Ωmag

B⃗TH⃗dΩmag −Wmag = ∫
Ωmag

H⃗

∫
0

B⃗(˚⃗H)d˚⃗H dΩmag (2.67)

For linear magnetic materials, the term for the energy can be sub-
stituted by (2.66) yielding

W′mag = ∫
Ωmag

B⃗TH⃗ − B⃗2

2μ
dΩmag = ∫

Ωmag

μ H⃗2

2
dΩmag = ∫

Ωmag

H⃗TB⃗
2

dΩmag (2.68)

Energy and co-energy are, thus, identical for linear magnetic ma-
terials.

For nonlinear materials, (2.68) no longer holds. In that case, the
complicated relation between B⃗ and H⃗ makes it impossible to ex-
press the two magnetic fields by one another. Fig. 2.4 shows the
energy and co-energy in a λ i - coordinate system. [148, p. 122 -
124] shows that

λc

∫
0

ic d̊λ = ∫
Ωmag

B⃗

∫
0

H⃗ ⋅ d̊B⃗dΩmag (2.69)

where ˚⃗B and λ̊ denote integration variables, so that

Wmag − icλ =Wmag − ∫
Ωmag

B⃗H⃗ dΩmag (2.70)
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for singly excited systems. Therefore, for nonlinear materials the
same diagram can be drawn with the magnetic field on the x-axis
and the magnetic flux density on the y-axis.

Energy and Co-energy in Permanent Magnets

The formula for the specific magnetic energy in permanent mag-
nets has been introduced in (2.10). For the discretisation, it is more
convenient to separate the intrinsically stored energy of a perman-
ent magnet and the energy associated to magnetisation.

Wpm,source = ∫
Ωpm

B⃗2
r

2μ
− B⃗T

r B⃗
μ

dΩpm

Wmag = ∫
Ωpm

B⃗2

2μ
dΩpm

(2.71)

where Ωpm denotes the sub domain of Ωmag, in which describe per-
manent magnets,Wpm,source denotes the intrinsically stored energy
of themagnet andWmag the energy that is associated with a varying
magnetic flux. The the totalmagnetic energyWpm can be expressed
as the sum of the two.

Figure 2.9
energy and co-energy of a linear

permanent magnet
H

B
Br

−Hc

wpm

H

B
Br

−Hc

w′pm

Using again the convention described in Sec. 2.2.1, the co-energy
for permanent magnets with constant permeability can be com-
puted by

w′pm =
H⃗

∫
0

B⃗(˚⃗H) d˚⃗H =
˚⃗H

∫
0

B⃗r + μ˚⃗H d˚⃗H =
⎡⎢⎢⎢⎢⎣
B⃗T
r
˚⃗H + μ

˚⃗H2

2

⎤⎥⎥⎥⎥⎦

H⃗

0

= B⃗T
r H⃗ + μ

H⃗2

2

(2.72)

This will be negative, as permanent magnets operate in the second
quadrant of the B-H coordinate system, where H⃗ and B⃗r point in
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opposite directions rendering the scalar product B⃗r ⋅ H⃗ negative.
This is denoted in the B-H coordinate system by negative values
forH. Fig. 2.9 shows the energy and co-energy as defined in (2.10)
and (2.72) in themagnetisation curve of a linear permanentmagnet
in a B-H coordinate system.

Energy Exchange by Means of a Coil

Now that the internal energy is defined in terms of B⃗ and H⃗ and,
thus, in terms of A⃗, the same can be done for the energy changes
introduced in (2.60).

The energy change due to an external current density, dWe, can be
expressed by

dWe = ∫
Ωmag

j⃗e ⋅ dA⃗ dΩmag (2.73)

(2.73) can be derived by applying the Ampere’s law (2.3 a) and ap-
plying the vector identity A⃗ ⋅ (B⃗× A⃗) = (∇× A⃗) ⋅ B⃗− A⃗ ⋅ (∇× B⃗) as
shown in [148]. Applying the divergence theorem afterwards yields

∫
Ωmag

j⃗e ⋅ dA⃗ dΩmag = ∫
Ωmag

H⃗ ⋅ dB⃗ dΩmag + ∫
∂Ωmag

(H⃗ × dA⃗)d∂Ωmag (2.74)

where ∂Ωmag denotes the boundary of Ωmag. Assuming that the
magnetic vector potential is zero on the boundary of Ωmag, as usu-
ally done for electric machines, eliminates the second term and
leaves only the magnetic energy in Ωmag.

Assuming that the current density is constant yields

We = ∫
Ωmag

j⃗e ⋅ A⃗ dΩmag (2.75)

The energy exchange of a coil is more complicated than that, be-
cause the current of a coil is linked to the voltage drop over the
coil. Assuming that the external voltage is set, so that the current
in the coil ic(t) is constant, the energy introduced into the system
by a coil is, indeed, equal to (2.75). Inserting (2.55) into (2.75) yields

Wcoil =
ic(t)N

Γw ∫
Ωmag

e⃗j ⋅ A⃗ dΩmag (2.76)

The change of the magnetic co-energy due to currents in a coil can
be calculated by

dW′coil = ∫
Ωmag

A⃗(⃗je) ⋅ d⃗jedΩmag (2.77)
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However, (2.16) shows that the flux linkage and, thus, the magnetic
vector potential cannot be considered constant when the current
changes.

Energy Exchanged with Mechanical Systems

The energy exchanged between the mechanical domain and the
magnetic domain in the continuous case can be derived from the
second term in (2.60)

dWex,m = ∫
Ωcpl

f⃗mag ⋅ du⃗ dΩcpl (2.78)

For the continuous equation, the force density is used instead of
the total force, because the displacement varies over x⃗. Sec. 2.4.5 is
dedicated to calculating the magnetic force in more detail as it is a
crucial part of the coupling.

Dissipated Energy by Eddy Currents

The last term in (2.60) is the energy dissipated by eddy currents.
This effect is caused by Joule heating in the structure. The instant-
aneous power that is lost can be expressed by multiplying the cur-
rent density with the Lorentz force

dweddy

dt
= j⃗eddy ⋅ E⃗′ (2.79)

It is possible to define a dissipation function analog to Rayleigh’s
dissipation function for mechanical systems. [102, p. 403] defines
this dissipation function for Ohmic resistances in electric circuits
as

Dmag =
1
2
RI2 (2.80)

where R denotes the resistance and I the current in a conductor.
The continuous equivalent to (2.80) can be written as

Dmag = ∫
Ωmag

γ
2
j⃗eddy ⋅ j⃗eddy dΩmag (2.81)

Inserting the definition of the eddy currents (2.46) into (2.81) yields

Dmag = ∫
Ωmag

γ
2
[(∂A⃗

∂t
)

2

− 2∂A⃗
∂t
⋅ (v⃗ ×∇ × A⃗) + (v⃗ ×∇ × A⃗)2]dΩmag (2.82)

The eddy current losses depend, thus, on the velocity of the dis-
placement of the structure as well as the magnetic vector poten-
tial and its time derivative. The forces and currents acting on the
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system, caused by the dissipation, can be calculated from (2.82) by
expressing the velocity v⃗ as the time derivative of the displacement
˙⃗u and taking the derivative of the dissipation function density (the
part under the integral in (2.82)) with respect to the vector fields u⃗
and A⃗.

[f⃗eddyj⃗eddy
] = 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ∂

∂ ˙⃗u

− ∂

∂ ˙⃗A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[γ ((∂A⃗
∂t
)

2

− 2∂A⃗
∂t
⋅ ( ˙⃗u ×∇ × A⃗) + ( ˙⃗u ×∇ × A⃗)2)]

= γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−[∇× A⃗]×
∂A⃗
∂t
+ [∇× A⃗]×[ ˙⃗u]×[∇]×A⃗

∂A⃗
∂t
− [ ˙⃗u]×[∇]×A⃗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.83)

where [ ˙⃗u]×[∇]×A⃗ = ˙⃗u×∇×A⃗ and [●]× is the matrix operator form
of the cross product defined as the skew symmetric matrix:

[a⃗]× =
⎡⎢⎢⎢⎢⎢⎣

0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎥⎥⎥⎥⎥⎦
(2.84)

Energy of the Elastic Field

For the mechanical system the potential energy stored in the strain
of the material can be calculated by:

Wstrain = ∫
Ωmech

1
2
εTσdΩmech (2.85)

where σ denotes the stress tensor and ε the strain tensor. The kin-
etic energy can be expressed by

T = ∫
Ωmech

1
2
ρ ˙⃗u2dΩmech (2.86)

The energy changes for the mechanical domain are stated in (2.62).
The external mechanical energy Vext can be expressed in terms of u⃗
by

Wext,m = ∫
Ωmech

u⃗ ⋅ f⃗ext dΩmech + ∫
Γσ

u⃗ ⋅ t⃗e dΓσ (2.87)

where t⃗e denotes the surface forces imposed on the boundary Γe as
defined by (2.36) and f⃗ext the body forces imposed on the mech-
anical domain Ωmech. The exchange energy was already defined in
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(2.78). The energy loss by friction dDmech can be calculated by

dWfric = ∫
Ωmech

f⃗fric( ˙⃗u) ⋅ du⃗ dΩmech = ∫
Ωmech

−c ˙⃗u ⋅ du⃗ dΩmech (2.88)

where f⃗fric denotes the friction forces that are always directed in the
opposite direction of the displacement change du⃗ and dk the fric-
tion coefficient which relates the force to displacement change ˙⃗u.

Now, a dissipation function can be defined as done in [52]

Dmech = ∫
Ωmech

˙⃗u

∫
0

f⃗fric(̊u⃗) ⋅ d̊u⃗ dΩmech (2.89)

where ˚⃗u is an integration variable. From Dmech the friction force
can, thus, be derived by

f⃗fric = −
∂Dmech

∂ ˙⃗u
(2.90)

2.4.5 Magnetic Force Calculation

(2.28) states that the magnetic force acting on a structure can be
calculated from the magnetic energy. For the continuous case the
magnetic domain Ωmag depends on the displacement u⃗(x⃗ξ). Fur-
thermore, for computing the total magnetic force of a structure, in-
tegrating over the total magnetic domain is necessary. Thus (2.28)
becomes

dWmag =
∂Wmag

∂u⃗
du⃗(x⃗) = ∂

∂u⃗ ∫
Ωmag(u⃗(x⃗))

wmag dΩmag du⃗(x⃗)

⇒ f⃗mag = −
∂

∂u⃗ ∫
Ωmag(u⃗(x⃗))

wmag(u⃗(x⃗)) dΩmag

(2.91)

So when applying the principle of virtual work, as in (2.91), the de-
pendency of the domain on the displacement must be taken into
account.

Energy and Co-energy for Moving Domain Boundaries

To evaluate the energy change in (2.91), it is important to evaluate
the energy change on an arbitrary magnetic domain, Ωmag, which
depends on a virtual displacement δu⃗. For the various magnetic
energy definitions given in (2.10), (2.66) and (2.65), the change of
energy under a virtual displacement can be expressed in terms of a
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change of themagnetic flux density ormagnetic field. As explained
in [62], the behaviour of themagnetic flux density and themagnetic
field are very different under deformation.

This is caused by the various independent variables for the mag-
netic flux and the magnetic field (see Sec. 2.3). The magnetic flux
density has as independent variables the total magnetic flux Φc and
the dispalcement u⃗. Consequently, the magnetic flux should be
constant under deformation. As the same needs to be true for the
magnetic energy, which also has the fluxes and the displacement as
independent variables, the magnetic flux density should be used to
compute changes to the magnetic energy under deformation.

On the other side, for the computation of the co-energy change,
which has the displacements and system’s currents as independent
variables, the magnetic field should be used as it has the same in-
dependent variables.

Assuming a linear magnetic domain, for which the energy is de-
scribed by (2.66), the change of that energy with respect to a virtual
deformation can be split up in a change of the volume and a change
of the energy density

δWmag,lin∣δΦB=0
= Vδwmag,lin∣δΦB=0

+ δV wmag,lin (2.92)

where δ(●)∣δx=0 indicates that for the variation δ, x is constant. V
denotes the volume of the domain. (2.28) shows that the magnetic
forces are calculated by evaluating the change of the magnetic en-
ergy within the domain under a deformation, while holding the
flux linkage constant. For an arbitrary domain, a constant flux link-
age is equivalent to a constant total magnetic flux on any of the
boundaries of the domain. As shown in [62], assuming constant
flux in and out of the magnetic domain under deformation yields

δB⃗∣δΦB=0
= ∇δu⃗B⃗ − B⃗ tr(∇δu⃗) (2.93)

(2.93) defines the change of the magnetic flux for an arbitrary dis-
placement δu⃗ when the total flux through all surface of that domain
stays constant over the deformation.

To get a better understanding of the implications of (2.93) let us
analyse the specific energy of a magnetic field under deformation.
With (2.93), it can be shown that the specific energy of a magnetic
domain is always constant under a scaling deformation, i.e. a de-
formation that only scales the domain but does not contain any
further displacements, when the total magnetic flux is held con-
stant.

Using the definition of the specific magnetic energy for linear ma-
terials, (2.66), and (2.93), the change of the specificmagnetic energy



II

M
odelling

Techniques

54 2 Modelling Techniques

can be described by:

δwmag,lin∣δΦB=0
= 1
μ
B⃗T ∇δu⃗ B⃗ − B⃗2

μ
tr(∇δu⃗)

= 1
μ
B⃗T (∇δu⃗)rot B⃗

(2.94)

where (∇δu⃗)rot describes the part of (∇δu⃗) without the diagonal.
(2.94) shows that the specific energy under deformation does not
depend on the volume change but only on the rotation of the de-
formation δu⃗. A scaling of the domain will, thus, lead to no change
of the specific energy. It will, of course, lead to a change of the total
energy as the second term in (2.92) will change.

For the magnetic co-energy, the same relation as in (2.92) can be
derived

δW′mag,lin∣δI=0 = Vδw′mag,lin∣δI=0 + δV w′mag,lin (2.95)

(2.29) states that the magnetic force can be computed by analysing
the change of the magnetic co-energy of a domain under deform-
ation, while the currents in the domain are held constant. [62] de-
rives for this case the following relation

δH⃗∣δI=0 = −∇δu⃗ H⃗ (2.96)

Following the same derivation as for the energy, it can be shown
that the specific co-energy is not constant under a deformation
which only scales the domain.

δw′mag,lin∣δI=0 = −μH⃗
T ∇δu⃗ H⃗

= −μH⃗T (∇δu⃗)rot H⃗ − μH⃗2 tr(∇δu⃗)
(2.97)

The specific co-energy will, thus, diminish when the volume of the
domain is increased.

Maxwell’s stress tensor

Maxwell’s stress tensor is an approach to define the magnetic stress
on a material in the same ways as it is done in continuum mechan-
ics. Like the stress tensor σ in (2.35), it collects all shear and normal
stresses of an infinitesimal small cube. The tensor only depends on
the state of the material and magnetic field at its location. It can
be calculated directly from the magnetic flux density and magnetic
field values.

Maxwell’s stress tensor is derived from the principle of virtual work
in (2.91) (The derivation is a bit lengthy. See Appendix A for it). As
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Description rel. betw. H⃗ and B⃗ spec. mag. energy Maxwell’s stress tensor

linear magnet material B⃗ = μH⃗ wmag =
B⃗TH⃗

2
T = H⃗B⃗T − I

B⃗TH⃗

2
Permanent Magnet

magnetisation behaves like H⃗

under deformation

B⃗ = μ(M⃗+H⃗) wmag =
B⃗TB⃗

2μ
− B⃗TM⃗ T =

B⃗B⃗T

μ
−
B⃗rB⃗Tr
μ
− I

B⃗2 − B⃗2r
2μ

Permanent Magnet

remanence flux density behaves

like B⃗ under deformation

B⃗ = μH⃗ + B⃗r wmag =
(B⃗ − B⃗r)2

2μ

T =
B⃗B⃗T

μ
+
B⃗rB⃗Tr
μ

− 2
B⃗B⃗Tr
μ
− I(
(B⃗ − B⃗r)2

2μ
)

Table 2.1
Different formulation of Maxwell’s

stress tensor for different materials.

I denotes the identity matrix

it is derived from the magnetic energy of a material, the formu-
lation changes with the various sorts of magnetic materials intro-
duced in Sec. 2.2.2. Tab. 2.1 shows the formulations of Maxwell’s
stress tensor for various materials (See the derivation either in Ap-
pendix A or [62]). As explained in the previous section, H⃗ and B⃗
behave differently under deformation. For permanent magnets, it
is not known how the magnetisation/remanence flux density be-
haves in that case. Tab. 2.1 shows the resulting expressions for
Maxwell’s stress tensor for the various assumptions. In Tab. 2.1,
the symbol for the magnetisation M⃗ is used to indicate that the
permanent magnetisation of a permanent magnet behaves as the
magnetic field, which was described in (2.96), and the symbol for
remanence flux density, B⃗r, when (2.93) is used.

Maxwell’s stress tensor can be used like other stress tensors known
from continuum mechanics. Therefore, the magnetic force density
it generates in a structure can be computed by:

f⃗mag = −∇ ⋅ T (2.98)

The operator ⋅ denotes a divergence operation on a second order
tensor. The operation can be written in index notation as

fmag i = −
∂Tij

∂xj
(2.99)

The total force on an object can then be calculated by integrating
over the whole volume of that object

F⃗mag = −∫
Ωcpl

∇ ⋅ T dΩcpl (2.100)

Local Force Concentrations

For the coupling between the elastic and the magnetic field, local
forces are of interest as the deformation depends on them. (2.98)
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implies that themagnetic force depends on the gradient of themag-
netic field and themagnetic flux density. The larger those gradients
the larger are the resulting forces.

For the static case, gradients are highest at locations where the per-
meability changes abruptly. This is usually the case at the surface
of materials with a high relative permeability, such as the surface of
the stator teeth. (2.48) states that an abrupt change in permeability
results in an abrupt change of magnetic flux density. For an object
that has a significantly different permeability than its surrounding,
themain part of the appliedmagnetic forces is located at the surface
of that object.

For the dynamic case, the second term in (2.46) can create eddy
currents within a structure that contribute significantly to the total
force acting on the structure. Eddy current brakes are based on this
principle.

Figure 2.10
The Txx component of Maxwell’s

stress tensor plotted for a

permanent magnet (left) and a

piece of iron (right) next to it.

−2

0

2
⋅105

−1,000

0

1,000

Fig. 2.10 shows the normal x component of Maxwell’s stress tensor
for the static case, in which a permanentmagnet and a piece of iron
attract each other due to the magnetic field.

From Fig. 2.10, two things can be deduced. Firstly, Fig. 2.10 shows
that around corners of permanent magnets, or its enclosing iron
structure, singularities in the magnetic field appear. These singu-
larities contribute strongly to the total force acting on the perman-
ent magnets. They pose a problem for the discrete calculation of
the magnetic force as it can lead to major inaccuracies depending
on which method is used (see Sec. 2.5.8).

Secondly, the lower part of Fig. 2.10 shows for the static case that
the change of the x component of Maxwell’s stress tensor across
the boundary between the iron and the air is significantly larger
than the gradient within the piece of iron. Therefore, the larger
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part of the magnetic force in the static case is generated by the dis-
continuity of the specific magnetic energy at its interface as seen
in Fig. 2.10. This is also the case for nonlinear materials. These
materials are mainly ferromagnetic materials and store less energy
than non-magnetic materials such as copper or air for the same
magnetic field magnitude. For permanent magnets, which have a
permeability slightly higher than the one of air, this approximation
does not hold, as the gradients within the permanent magnet are
significant. This can be seen in the first part of Fig. 2.10.

Approximating Total Forces by Surface Forces

(2.100) states how to calculate the total force acting on a domain
fromMaxwell’s stress tensor within that domain. Using Stoke’s the-
orem, the total force acting on a domain can be calculated by

F⃗mag = −∮
∂Ω

n⃗TTd∂Ω (2.101)

(2.101) has to be used with caution and is used wrongly in some FE
packages. The term under the integral sign in (2.101), n⃗ ⋅T, does not
compute the local forces on the surface of the domain ∂Ω. The ac-
tual local forces on the surface are computed by taking the gradient
of Maxwell’s stress tensor over that surface.

The approximation that the term n⃗TT denotes the local forces on
the boundary only holds when the forces within the domain, i.e.
the term ∇TT in Ω but not on ∂Ω in (2.100), hardly contribute to
the total force. This is true for the computation of static forces on
ferromagnetic materials, where the gradients within the material
are relatively low compared to the surface forces and no eddy cur-
rents exist.

In most finite element packages, the contribution of the gradient of
themagnetic field andmagnetic flux density within ferro-magnetic
materials is neglected. Using Maxwell’s stress tensor simplifies the
force calculation at boundaries. Numerically, it is less complex to
calculate the change of the magnetic field and flux density across
an interface than the gradient within a domain.

Fig. 2.11 shows an interface of two materials over which the force
acting on material I should be calculated. The gradient of the Max-
well’s stress tensor over an interface can be calculated discretely by
taking the difference of each element of the tensor.

f⃗mag = −x⃗(u⃗)T(TII
(A⃗) − T

I
(A⃗)) (2.102)

where n⃗(u⃗) describes the normal vector of the interface. Because
the magnetic force is evaluated in the spatial coordinate frame, the
normal vector depends on the displacement of the structure.
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Figure 2.11
Interface between two materials

with different permeability

Material I

μI, TI

Material II

μI, TII

f⃗mag
n⃗

For the case that one side has a much lower permeability than the
other side, the contribution of the side with the higher permeability
can be neglected. This is usually the case at an interface between a
ferromagnetic and a non-magnetic material

For the case that μI >> μII, (2.102) simplifies to

f⃗mag = −n⃗(x⃗)TTII
(A⃗) (2.103)

Thismethodmakes it possible to estimate local forces on nonlinear
materials without the evaluation of Maxwell’s stress tensor within
them.

2.5 Discrete Modelling of Magneto-Mechanical
Coupling

Solving coupled problems of complex geometry requires sophist-
icated discretisation techniques. In this thesis, the finite element
method (FEM) is used. For an extensive explanation see, for in-
stance, [177]. Additionally, the multi-physical coupling requires
special solution approaches. This section covers these solution ap-
proaches and shows how the continuous expressions from Sec. 2.4
can be discretised using the FEM.

In this section, matrices for the finite element method are evalu-
ated. All these matrices are element matrices. The domains over
which is integrated is the volume or surface of one element. The as-
sembly process that follows the evaluation of the element matrices
is not included in this elaboration, as it is analogue to thematrix as-
sembly for non-coupled systems and can thus be found in literature
[177].
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2.5.1Discretisation Using the Finite Element Method

For the discretisation of the coupled equations, the FEM is used.
This method approximates the values of the vector fields for the
displacement u⃗(ξ⃗) and the magnetic vector potential A⃗(x⃗) by dis-
cretising the domain of the vector fields by a set of nodes. Nodal
values represent the value of the vector fields u⃗(ξ⃗) and A⃗(x⃗) at the
location of the associated node. The values between the nodes are
approximated by so called shape functions.

u⃗(ξ⃗) ≈ Nu(ξ)qu(t)
A⃗(x⃗) ≈ NA(x)qA(t)

(2.104)

In (2.104), Nu and NA denote the shape function of the elastic and
magnetic field, respectively. The generalised coordinates, qu and qA,
denote the nodal values of the elastic and magnetic field, respect-
ively. Note that the spatial and time information is separated now
in two variables. This simplifies finding a solution for the coupled
equations, (2.58). The magnetic field and the elastic field depend
on different systems of representation. While the elastic field is de-
scribed in Lagrangian coordinates, the magnetic field depends on
Eulerian coordinates. This is denoted in (2.104) by the different co-
ordinate vectors ξ and x for Lagrangian and Eulerian coordinates
frames, respectively. Note that the magnetic field depends on the
spatial coordinates and thus implicitly on the displacement of the
system as x⃗ = ξ⃗+ u⃗(ξ⃗, t). This leads to the dependency ofNA on qu,
and subsequently all magnetic matrices depend on it too. This will
play a major role for the coupling terms between the two domains.

Additionally to the above set of coordinates, the currents for the
coils are collected in the current vector qc. In an electric machine,
there are usually three phases and, thus, three different currents.
Therefore, qc consists of three entries.

qc =
⎡⎢⎢⎢⎢⎢⎣

ic,a
ic,b
ic,c

⎤⎥⎥⎥⎥⎥⎦
(2.105)

where ic,a, ic,b and ic,c denote the currents in the coils of phase a,b
and c, respectively. As the currents are lumped variables, they have
no spatial distribution and no shape functions are necessary.

2.5.2Staggered vs. Monolithic Approach

Solving multi-physical coupled problems requires a more sophist-
icated algorithm than non-coupled problems. Combining the two
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physics can create dependencies between the physics that are non-
linear. This way, a coupled system consisting of two linear physical
domains that are each for itself linear can become nonlinear when
the relation between the two physics is nonlinear. Most coupled
problems are, thus, nonlinear and require an iterative solution ap-
proach compared to a system governed by only one physics, which
can be solved in one step when the system is linear.

Start

Solve Magnetic Field

Compute Magnetic

Forces Acting on

Structure

Solve Structure

Check for Convergence

End

Update Spatial

Coordinates

yes

no

Start

Initial Configuration

Linearise System around

Current Configuration

Solve Linearised Current

Configuration

Check for Convergence

End

Update Spatial

Coordinates

yes

no

Figure 2.12
Flow charts of staggered (left) and

monolithic (right) approaches for

solving two way coupled

magneto-mechanical systems

There are two possible approaches to solving coupled problems.
The staggered approach solves both physics separately of each other.
The values that depend on the other domain are fixed while one
domain is solved. The algorithm goes back and forth between the
physics, updates the values that depend on the other physics and
iterates this way to a solution of the coupled problem.

For magneto-mechanical coupled problems, the magnetic system
is solved first. From that solution, the magnetic forces acting on
the structure can be computed. The elastic field can be solved using
the magnetic forces as given boundary conditions. The algorithm
checks if the two solution fit together, i.e. if the error norm for each
domain is smaller than the tolerance. If that is not the case, the spa-
tial coordinates that depend on the displacement of the structure
are updated and the magnetic field is solved again. The algorithm
iteratively converges towards a solution, in which the errors of both
physics are smaller than the tolerance.
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The alternative is themonolithic approach, which solves the various
physical systems simultaneously. For that, the equations need to be
combined in a single system of equations. This complicates the dis-
cretisation process, but it simplifies the iteration process, because
now a genuine Newton-Rhapson algorithm can be used to solve
the coupled problem. Fig. 2.12 shows the flow charts of the two
approaches next to each other.

Both approaches have their advantages and drawbacks. Themono-
lithic approach requires more memory during the solution process
as now one large system of equations needs to be solved rather than
two smaller ones. It does need less iterations than the staggered
approach. Usually, the monolithic approach is chosen for smaller
systems where memory issues are not common. The staggered ap-
proach is used for large systems.

The monolithic approach for solving magneto-mechanical prob-
lems is introduced here, because only this approach facilitates a
coupled eigenvalue problem, which can compute the changes of
the system’s dynamics due to the coupling.

2.5.3A Variational Approach to Magneto-Mechanical Coupled
Systems

Using a variational formulation, as done in [131], for the deriva-
tion of the system equations leads to a consistent way to derive the
monolithic coupled finite element formulation.

Sec. 2.4 derives twomethods to calculatemagnetic forces. The type
of system determines which method is used. Closed systems, i.e.
systems in which the total magnetic energy can only be changed by
magnetic forces, use the magnetic energy to determine magnetic
forces. Open systems, i.e. systems in which the magnetic energy
can change due to mechanisms besides magnetic forces, use the
co-energy. Therefore, distinguishing between the type of system is
fundamental for the derivation of the coupled system of equation.

Hamilton’s Principle for Closed Magneto-Mechanical Systems

According to Hamilton’s principle, the system follows a trajectory
so that the integral

t2

∫
t1

T − Vdt (2.106)

is stationary with respect to any arbitrary virtual variation of the
displacement that is zero at t1 and t2. [52]. T is the kinetic en-
ergy of the mechanical system and V the potential energy of the
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system. For scleronomic kinematic constraints and no dissipative
effects (2.106) can be reformulated to

d
dt
(T (u⃗, ˙⃗u) + V(u⃗, A⃗)) = 0 (2.107)

(2.107) states that the total energy stays constant, for systems with
only scleronomic constraints and no dissipative effects. For elec-
tric machines there are only scleronomic contraints when the ro-
tor stands still. In operation, however, a rheonomic constraint is
applied to the magnetic field of the rotor, which depends on the
rotor’s rotation angle and thus time. However, the magnetic field
has no kinematic energy and, thus, the above transformation can
be done for magneto-mechanical coupled systems describing elec-
tric machines. (2.107) differs from variational principles of systems
that include only the structure by inclusion of the magnetic energy
(see for instance in [177]).

Assuming that the displacements are small, the kinetic energy de-
pends only on the time derivative of the displacement T ( ˙⃗u). The
Lagrange equations in that case reads as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− d
dt
(∂T
∂ ˙⃗u
) + ∂T

∂u⃗
− ∂V

∂u⃗

−∂V
∂A⃗

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (2.108)

where j⃗ = −∂V
∂A⃗ and f⃗ = −∂V

∂u⃗ are the currents and forces, that follow
directly from the principle of virtual work.

V can be separated in an external potential, Vext, and an internal
potential, Vint. The internal potential describes all energy that is
stored within the domain, it is defined by (2.59). When external
forces are conservative, they can be described by a potential energy,
as was done in (2.64). The external potentials are defined in such a
way that they are positive when they have introduced energy into
the system so that

V = Vint − Vext (2.109)
In the same way, the currents and forces can be separated into in-
ternal and external ones. They can be derived by applying the prin-
ciple of virtual work to the potential energy V . That leads to

[f⃗intj⃗int
] − [f⃗extj⃗ext

] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−∂V
∂u⃗

−∂V
∂A⃗

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.110)

where f⃗int denotes the internal forces and j⃗int the internal currents,
whereas f⃗ext and j⃗ext denote the external forces and currents, re-
spectively.
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Inserting the various energy terms from (2.64) and (2.59) and in-
serting (2.86) for the kinetic energy term in (2.108) yields

⎡⎢⎢⎢⎢⎢⎣

f⃗kin(¨⃗u) + f⃗strain(u⃗) − f⃗mag(u⃗, A⃗)

j⃗int(u⃗, A⃗)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

f⃗ext,mech(u⃗)

j⃗pm(u⃗)

⎤⎥⎥⎥⎥⎥⎦
(2.111)

where f⃗kin is the inertia force computed by

f⃗kin = −ρ¨⃗u (2.112)

f⃗strain(u⃗) the elastic forces caused by the deformation of the system,
j⃗int the internal currents of the magnetic field, f⃗mag(u⃗, A⃗) the mag-
netic forces defined in (2.91), f⃗ext,mech(u⃗) the external forces acting
on the system and j⃗pm(u⃗) the currents representing the excitation of
the permanent magnets. The coil energy and coil currents are not
included here, as in closed magnetic systems no coils are present.

In (2.111), it becomes apparent, why the energy of permanent mag-
nets was split in a source part and a linear part in (2.71). The cur-
rents that are computed by derivingWpm,source are denoted by j⃗pm in
(2.111) and are written on the right hand side. The currents repres-
ent a source for themagnetic field and are constant over A⃗. The cur-
rents computed from the other energy in (2.71),Wmag, are denoted
by j⃗int, as these currents are created by the change of the magnetic
field within the magnet and change with A⃗.

(2.111) can be used to simulate the dynamic behaviour of a lossless
mechanical system under influence of a magnetic field that reacts
instantaneously. The eddy currents that introduce a delay into the
behaviour of the magnetic field and the influence of friction losses
will be introduced in Sec. 2.5.3.

Hamilton’s Principle for Open Magneto-Mechanical Systems

For open magnetic systems, i.e. magnetic systems including coils,
the magnetic co-energy instead of the magnetic energy is used to
calculate magnetic forces, as explained in Sec. 2.3. Hamilton’s prin-
ciple includes themagnetic enthalpy instead of themagnetic energy
in such a case.

The idea for the magnetic enthalpy was taken from the analysis of
electro-static mechanical coupled systems. These system’s equa-
tions resemble the equations of magneto-mechanical coupled sys-
tems [113, 131, 151]. They also can be categorised in open and closed
systems and according to the system type different state functions
are used to calculate the force. Electro-static mechanical coupled
systems have been receiving more attention than magneto-mech-
anical systems, because they describe the vibration behaviour of
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piezo electric transducers and microsystems. [151] introduces the
electric enthalpy for open electro-static mechanical systems.

Ψelt = Velt − E⃗TD⃗ (2.113)

where Velt denotes the total potential energy of the electric and
mechanical systems combined and Ψelt the electric enthalpy. For
magneto-mechanical systems, a magnetic enthalpy can be intro-
duced for open systems

Ψmag = V − B⃗TH⃗ (2.114)

where Ψmag denotes the magnetic enthalpy and V the potential en-
ergy of the elastic and the magnetic field combined as defined in
(2.109). Splitting up the potential energy in its mechanical part and
magnetic part and using the definition for the magnetic co-energy,
(2.67), (2.114) can be written as

Ψmag =Wstrain +Wmag − B⃗ ⋅ H⃗
=Wstrain −W′mag + B⃗TH⃗ − B⃗TH⃗
=Wstrain −W′mag

(2.115)

Using the magnetic enthalpy changes the set of variables used to
describe the system. Instead of the magnetic vector potential, the
current densities are used as independent variables. As explained
in Sec. 2.3.1, this makes it possible to calculate the force of the mag-
netic field acting on the structure for a known coil current.

Consequently, the forces and vector potential can be calculated by

[ f⃗intA⃗int
] − [ f⃗extA⃗ext

] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
∂Ψmag

∂u⃗

−
∂Ψmag

∂ j⃗

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.116)

which are the open magnetic system’s equivalents to mechanical
forces and currents in the closed magnetic system. Inserting again
the various definitions of energy in (2.59), (2.86) and (2.64) yields

⎡⎢⎢⎢⎢⎢⎣

f⃗kin(u⃗) + f⃗strain(u⃗) − f⃗mag(u⃗, j⃗)

A⃗int(u⃗, j⃗)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

f⃗ext(u⃗)

A⃗coil(u⃗, j⃗) + A⃗pm(u⃗)

⎤⎥⎥⎥⎥⎥⎦
(2.117)

Since the currents are the independent variable now, the magnetic
field needs to be described in terms of them, rather than in terms
of the magnetic vector potential. It is possible to rewrite the finite
element formulation in terms of the currents, but this will deviate
from the FE formulation of magnetic fields in literature. Using the
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current density as independent variable is convenient for calculat-
ing the magnetic force of an open system but it complicates the
calculation of the magnetic field.

Mixing the formulations of energy and co-energy in one system
facilitates the monolithic description of the open coupled system.
The force terms are evaluated on an element level in the discrete
model. Most of the elements, found in the FE model of an elec-
tric machine will not include a mechanism by which energy can
enter or leave the system, i.e. will not be part of a coil domain. For
these elements, the magnetic energy is used as a basis to compute
the magnetic forces. For elements, which are part of a coil, i.e. are
within Ωc in Fig. 2.6, are considered open systems and the mag-
netic enthalpy is used to compute the force term.

On an element level, the above considerations lead to the formula-
tion in Sec. 2.4.5, where the change of co-energy and consequently
the force for deformation under constant currents is considered
which eventually leads to (2.96).

The Variational Approach including Dissipation Energies

For a system containing dissipation (2.107) can be extended by a
dissipation function D that contains the energy associated with
friction losses in the mechanical system and eddy current losses
in the magnetic field

D = Dmech +Dmag (2.118)

whereDmech andDmag are the dissipation energies defined in (2.89)
and (2.82), respectively. (2.107) becomes

δ (T + V) = −mD (2.119)

as stated in [52, p. 26]. m is a factor that depends on the sort of
dissipation. m = 2, for viscous damping, when the general damping
force is proportional to the first derivative of the DoFs. In this case,
the equation of motion can be derived by the Lagrange equations

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− d
dt
(∂T
∂ ˙⃗u
) + ∂T

∂u⃗
− ∂V
∂u⃗
− ∂D

∂ ˙⃗u

−∂V
∂A⃗
− ∂D
∂ (∂A

∂t )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (2.120)

where only the two terms including the dissipation function, D,
distinguishes (2.120) from (2.108). Inserting the energy terms from
(2.64) and (2.59) and the dissipation function from (2.118) yields for
closed systems:
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⎡⎢⎢⎢⎢⎢⎢⎢⎣

f⃗kin(¨⃗u) + f⃗mag(A⃗, u⃗) + f⃗strain(u⃗) + f⃗fric( ˙⃗u) + f⃗eddy(
∂A⃗
∂t

, A⃗, ˙⃗u)

j⃗int(A⃗, u⃗) + j⃗eddy(
∂A⃗
∂t
)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f⃗ext(u⃗)

j⃗pm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.121)

For open systems, the external current term j⃗e is added to (2.121),
yielding

⎡⎢⎢⎢⎢⎢⎢⎣

f⃗kin(¨⃗u) − f⃗mag(A⃗, u⃗) + f⃗strain(u⃗) + f⃗fric( ˙⃗u) + f⃗eddy(
∂A⃗
∂t

, A⃗, ˙⃗u)

j⃗int(A⃗, u⃗) + j⃗eddy(
∂A⃗
∂t
)

⎤⎥⎥⎥⎥⎥⎥⎦

= [ f⃗ext(u⃗)j⃗pm + j⃗e
] (2.122)

Introducing Circuit Equations

To better analyse the effects of the magneto-mechanical coupling
on the currents in coils, the circuit equation (2.49) can be added
to the set of equations in (2.122). This addition to (2.122) cannot
be achieved in a consistent way, i.e. deriving it from a potential
energy, without going deeper into modelling of electric fields and
charge densities. This is beyond the scope of this thesis.

The addition of (2.49) changes (2.122) in two ways. First, the ex-
ternal current density j⃗e is no longer constant, because it depends
on the current in the coils, which are now included in the system.
j⃗e, therefore, no longer represents an external current density but
an internal one. It is moved to the left side of the equation.

The second change concerns the eddy currents in the coil domains
of the FE model. The circuit equations collect all electric potential
differences and currents in the coils. The potential difference that
a changing magnetic field has and the resulting eddy currents are
part of that. Therefore, the potential difference created by a chan-
ging magnetic field needs to be collected and added to the circuit
equation. This is done by (2.52), which is part of the circuit equa-
tion. To ensure that these potential differences and resulting cur-
rents are not accounted for twice, the eddy current term in (2.122)
needs to be omitted in coil domains.

The coupled equations for a domain where the external current is
determined by an extra circuit equation reads as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f⃗kin(¨⃗u) − f⃗mag(A⃗, u⃗) + f⃗strain(u⃗) + f⃗fric( ˙⃗u)

j⃗int(A⃗, u⃗) − j⃗e(ic)

vind(
∂A⃗
∂t
) + vohmic(ic)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f⃗ext(u⃗)

j⃗pm
vext

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.123)
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2.5.4Discretisation of the Equations

The set of nonlinear equations, (2.123), are the same coupled par-
tial differential equations that were already stated in (2.58). In Sec.
2.4.3 the physics were coupled by the use of physical understand-
ing. In Sec. 2.5.3 on the other hand, the derivation started from the
Hamiltonian of the coupled systemandused a variational principle.
The equations are so complex that they cannot be solved analytic-
ally. Therefore, a discretisation is necessary, in order to solve them
numerically. After discretisation, a nonlinear solver such as the
Newton-Rhapson algorithm can be employed to solve the system
of coupled equations (2.123).

Because all nonlinear solving algorithms use an iterative scheme,
in which linear systems at a certain system state are evaluated, it
is convenient to write the coupled nonlinear system of equations
(2.123) in matrix form, in which the entries of the matrices depend
on the nodal values qA and qu. After applying the discretisation in
(2.104) and (2.105), (2.123) becomes

M
⎡⎢⎢⎢⎢⎢⎣

q̈u
q̈A
q̈c

⎤⎥⎥⎥⎥⎥⎦
+ C(qA,qu)

⎡⎢⎢⎢⎢⎢⎣

q̇u
q̇A
q̇c

⎤⎥⎥⎥⎥⎥⎦
+K(qA,qu)

⎡⎢⎢⎢⎢⎢⎣

qu
qA
qc

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

Fext(qu)
Jpm
vext

⎤⎥⎥⎥⎥⎥⎦
(2.124)

with

K =
⎡⎢⎢⎢⎢⎢⎣

Kuu KuA 0
KAu KAA KAc
0 0 Kcc

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

∂2Vint
∂q2

u

∂2Vint
∂qu∂qA 0

∂2Vint
∂qu∂qA

∂2Vint
∂q2

A
− ∂2Wcoil

∂qA∂qc
0 0 ∂vohmic

∂qc

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

∂
∂qu
∂

∂qA
∂
∂qc

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Fint(q)
Jint(qA) − Je(qc)

vohmic(qc)

⎤⎥⎥⎥⎥⎥⎦

T⎞
⎟⎟
⎠

T

(2.125)

M =
⎡⎢⎢⎢⎢⎢⎣

Muu 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

∂
∂¨⃗qu
( d

dt (
∂T
∂ ˙⃗qu
)) 0 0

0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

(2.126)

and

C =
⎡⎢⎢⎢⎢⎢⎣

Cuu CuA 0
CAu CAA 0
0 CcA 0

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

∂2D
∂q̇2

u

∂2D
∂q̇u∂q̇A 0

∂2D
∂q̇u∂q̇A

∂2D
∂q̇2

A
0

0 ∂vind
∂q̇A 0

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

∂
∂q̇u
∂

∂q̇A
∂
∂q̇c

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Ffric(q̇u) + Feddy(q̇)
Jeddy(q̇)
vind(q̇A)

⎤⎥⎥⎥⎥⎥⎦

T⎞
⎟⎟
⎠

T

(2.127)

whereK denotes the tangent stiffness matrix,M the mass matrix of
the system and C the damping matrix.

The following sections (Sec. 2.5.5 - Sec. 2.5.10) will show derive
the various terms in (2.125), (2.126) and (2.127), using the equations
derived in Sec. 2.4. To do so, the various energies introduced in
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Sec. 2.4.4 need to be express discretely in terms of the nodal val-
ues of the two variable fields and then differentiated with respect
to them. Once that is done, a nonlinear solver can be used to solve
the discretised equations as described in Sec. 2.5.2.

In this section, the introduced matrices are element matrices. De-
pending on which physics are present in a certain element, various
formulation have to be used and certain matrices can be neglected.

2.5.5 Discretisation of the Elastic Field

The internal mechanical energy of the system can be calculated ac-
cording to (2.86) and (2.85). Using the discretisation introduced in
(2.104), it is now possible to express the strain tensor ε in a discret-
ised way.

ε ≈ Buqu (2.128)

where Bu is a matrix containing the spatial derivatives of the shape
functions Nu. For the finite element formulation the strain tensor
is usually written in Voigt notation [163], i.e. as a vector, listing all
elements of the strain tensor in a predefined order. Using the Voigt
notation, (2.34) can be expressed as a multiplication of matrices. In
this notation, the mechanical energy can be written as

Wmech = ∫
Ω

1
2
qTuBT

uΞBuqu +
1
2
q̇TuNT

uρNuq̇udΩ (2.129)

Ξ denotes the material stiffness matrix, introduced in (2.34). In
Voigt notation, it can be represented by a matrix instead of a fourth
order tensor. For an isotropic linear material, Ξ is constant over
time and for a domain of the same material. It can be calculated
from the material properties, Young’s modulus and Poisson ration.
Differentiating twice with respect to the displacement yields the
structural stiffness matrix. It consists of a part that is derived from
the mechanical energy, Kmech

uu , and one that is derived from the
magnetic energy, Kmag

uu . For a linear elastic material, which was as-
sumed in (2.129), the structural part of the tangent stiffness matrix
Kmech
uu is constant.

Kuu =
∂2Wtot

∂q2
u
= ∫

Ω

BT
uΞBudΩ +

∂2Wmag

∂q2
u

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
Kmag
uu

(2.130)

The second term in (2.130) is a coupling term. It will be discretised
in Sec. 2.5.8 together with the other coupling terms.
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Differentiating the kinetic energy twice with respect to the time de-
rivative of the displacement yields the structural mass matrix

Muu = ∫
Ω

NT
uρNu dΩ (2.131)

External force distributions can be derived by discretising the ex-
ternal mechanical energy (2.87) and differentiating it with respect
to the mechanical degrees of freedom qu. That yields:

Fext = ∫
Ω

NT
u fext dΩ + ∫

Γσ

NT
u,σte dΓσ (2.132)

where Fext denotes a vector of nodal values for the external forces,
fext a vector of the external body force density evaluated at the co-
ordinates of the nodes, te a vector of external force density applied
to the boundary Γσ , evaluated at the nodal points andNu,σ 2D shape
functions of the finite element discretisation of Γσ .

The damping matrix can be derived differentiating D, as defined
in (2.118), twice with respect to the nodal values of the velocity.
The structural damping matrix consists, like the structural stiffness
matrix ,of two components. The first component is derived from
themechanical dissipation function, whereas the other component
is derived from the magnetic dissipation function. The structural
damping matrix reads as

Cuu =
∂2D
∂q̇2

u
= ∫

Ω

NT
uDkNudΩ +

∂2Dmecmagh

∂q̇2
u

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Cmag
uu

(2.133)

where Dk denotes a diagonal matrix containing the viscous damp-
ing coefficients dk. The second term in (2.133) is a coupling term
and will be derived in Sec. 2.5.10. Now the PDE (2.35) can be writ-
ten in its discrete uncoupled form as a system of linear equations.

Muuq̈u + Cuuq̇u +Kuuqu = Fext (2.134)

2.5.6Discretisation of the Magnetic Field

In (2.104), the discretisation for the magnetic vector potential was
introduced.

The magnetic field – magnetic flux density relation is used for the
energy equations introduced in Sec. 2.4.4. The magnetic flux dens-
ity can be numerically expressed in terms of the nodal values of the
magnetic vector potential by

B⃗ ≈ BAqA (2.135)
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where BA represents a matrix containing the spatial derivatives of
the shape functions NA. The curl operator that is used to calculate
the magnetic flux density (see (2.38)) is included in the matrix BA.

Linear Materials and Permanent Magnets

Starting from the magnetic energy, the linear approximation of the
PDEs can be derived. Every magnetic material has a different nu-
merical formulation. The magnetic energy in linear magnetic ma-
terials and permanent magnets can be expressed by (2.71), assum-
ing that the magnetisation characteristic of permanent magnets is
also linear, as has been done in (2.6). Discretising this equation,
using the relation in (2.104), and the definition for the magnetic
vector potential, (2.38), yields

wpm ≈
1
2μ

qTABT
ABAqA +wpm,0 −

BT
r BAqA
μ

(2.136)

where wpm,0 is a constant depending on the magnetic properties of
the permanent magnet defined in (2.10). For materials that are no
permanent magnets the last two terms in (2.136) are zero.

The stiffness matrix is derived by taking the second derivative of
(2.136) with respect to the degrees of freedoms of the system, i.e.
qA.

KAA = ∫
Ωmag

1
μ
BT
ABAdΩmag (2.137)

The magnetic stiffness matrix is the same for permanent magnets
and linear magnetisable materials. The two extra terms for per-
manent magnets in (2.136) depend only linearly on the nodal val-
ues of themagnetic field, qA. They can be discretise as source terms
Jpm. This term can be derived by taking the first derivative of the
third term in (2.136)

Jpm = −
∂

∂qA ∫Ωpm

qTABT
ABr

μ
+wpm,0dΩpm = − ∫

Ωpm

BT
ABr

μ
dΩ (2.138)

As a source term, (2.138) should be written on the right hand side
of the PDE.

Discretising the dissipation function defined by (2.82) yields

Dmag = ∫
Ωmag

(1
2
q̇TANT

AγNAq̇A + q̇TuNT
u[BAqA]×γNAq̇A)

+q̇TuNT
u[BAqa]×γ[BAqa]T×Nuq̇u dΩmag

(2.139)

where [BAqA]× is the skew symmetric matrix that defines the vec-
tor product. The operator [●]× is defined by (2.84).
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For now, no movement is assumed and the second and third terms
in (2.139) are neglected as they are zero in that case. The depend-
ency on the first derivative of the the displacement DoFs, q̇u, will
create a coupling term depending on the velocity of the structural
displacement. The second and third terms will be covered later in
Sec. 2.5.10. Without movement the discretised energy of the eddy
currents can be differentiated twice with respect to the nodal values
of the magnetic field to yield

CAA =
∂2Dmag

∂q̇2
A
= ∫
Ωmag

NT
AγNAdΩmag (2.140)

where γ denotes a diagonal matrix which contains the conduct-
ivities in the various directions on its diagonal. For an isotropic
material, this matrix can be substituted by a scalar, because in that
case the conductivities for all directions are the same.

The magnetic mass matrix is also called magnetic damping matrix.
It results from a dissipated energy and, thus, decreases the energy
of the systems just like a dampingmatrix. Accordingly,MAA as well
as CAA are used for the magnetic mass matrix in literature. In this
thesis, the symbol CAA is used.

Themagnetic mass matrix, CAA, is the same for the linear and non-
linear case, because the induced currents stay the same for the lin-
ear and nonlinear case. Laminated structures are usually modelled
as orthotropic materials. The conductivity normal on the lamina-
tion sheets is usually set to a lower values than the real conductivity
of the lamination material, to account for the effects of the lamin-
ation.

Nonlinear Materials

For a nonlinear relation between B⃗ and H⃗, the procedure for solving
the equation differs to the linear case, as now the tangent stiffness
matrix depends on the values of the magnetic vector potential qA.

As shown in (2.125), the tangent stiffness matrix for the magnetic
field can be derived by

Kmech
AA =

∂Jint
∂qA

=
∂2Wmag

∂q2
A

(2.141)

The definition of the BH-curve plays a major role in computing
this term. When the relation between H⃗ and B⃗ is defined as an
analytic function, then (2.141) can be expressed analytically too. If
the relation is only defined as a set of points then the term can only
be evaluated numerically.
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Discrtised Mangetic System Equations

For a closed system, without any external currents, the derivation
of the magnetic field formulation is complete at this point. The
system can be written in its discrete form as

CAAq̇A +KAAqA = Jpm (2.142)

2.5.7 Discretising Open Magnetic Systems

Systems that include coils, considered openmagnetic systems, need
to include the extra terms resulting from the coils in the discrete
formulation. The additional terms result from the additional term
in the external energy for open systems and the corcuit equation
that was added to (2.123).

Discretising Coils

Thediscrete coupling terms for the interaction between the electric
circuit and themagnetic field can be derived from the voltage that a
changingmagnetic field creates in the coil, vind, and the energy that
enters the magnetic field through a coil, Wcoil. Discretising (2.52)
yields

vind =
Nc

Γw ∫Ωc

q̇TANT
AeJ dΩc (2.143)

where vind collects the induced voltages for all coils. For a three
phase coil system in electric machines it consists, thus, of three
components, one for each phase. ej denotes a matrix that defines
the direction of each phase current, i.e. for each component of qc,
in an element.

Je = ejqc = qc (2.144)

The coupling term in the damping matrix can then be computed to
by

CcA =
∂vind
∂q̇A

= ∂

∂q̇A

⎛
⎜
⎝
Nc

Γw ∫Ωc

q̇TANT
AeJdΩc

⎞
⎟
⎠

= Nc

Γw ∫Ωc

NT
AeJ dΩc

(2.145)

The term resulting fromWcoil is derived by taking the derivative of
the discretised version of the term with respect to qA and qc. Wcoil
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in the continuous system is given by (2.76). Discretising it yields

KAc =
∂2Wcoil

∂qA∂qc
= ∂2

∂qA∂qc ∫Ωc

Nc

Γw
qTABT

Aejqc dΩc

= ∫
Ωc

Nc

Γw
BT
Aej dΩc

(2.146)

Finally, the resistance of the coil needs to be modelled. For this, a
’stiffness’matrixKcc is introduced, which contains the resistances of
the various coils. For electricmachines,Kcc consists of three values.

Kcc =
⎡⎢⎢⎢⎢⎢⎣

Ra 0 0
0 Rb 0
0 0 Rc

⎤⎥⎥⎥⎥⎥⎦
(2.147)

where Ra, Rb, and Rc represent the resistances of phase a,b and c,
respectively.

The Discrete Magnetic Field Equation for Open Systems

Bringing the various equations for the open magnetic system to-
gether, yields the coupled discrete equations for openmagnetic sys-
tems.

[ 0 0
CcA 0] [

q̇A
q̇c
] + [KAA KAc

0 Kcc
] [qAqc

] = [Jpmvext
] (2.148)

For coil elements, there is no dissipating term in themagnetic mass
matrix, because the electric potential differences created by a chan-
ging magnetic field are collected in the coil inductance. The dissip-
ation is modelled by the resistance of the coil circuit and is com-
puted by the Kcc term.

2.5.8Discrete Calculation of Magnetic Forces

So far, the elastic and the magnetic field have been discretised sep-
arately. For the coupling of the two physics, it is necessary to dis-
cretise themechanisms that couple the physics. One of thesemech-
anism is the magnetic force acting on the structure, denoted by
Fmag. This force will depend on themagnetic field and the displace-
ment and influences the mechanical displacement.

The continuous formulation of the magnetic force was introduced
in Sec. 2.4.5. In this section, the continuous formulation is discret-
ised and adapted for the finite element method.
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There are threemethods to calculate the force onmechanical struc-
tures. All are based on the principle of virtual work. The methods
differ how the quantities are discretised. All three methods where
discussed in the passed. Since [79], the magnetic energy and its
change under deformation were in the focus of magnetic force cal-
culation. Maxwell’s stress tensor was introduced shortly after. The
implementation for the FEM was done by [28], in which the nodal
method is introduced deriving the magnetic forces on the nodes of
a finite element mesh.

The system in Fig. 2.13 will be used to explain the drawbacks and
advantages of the various methods.

Using the Principle of Virtual Work Globally

The most accurate method for calculating forces on the whole do-
main is to use the principle of virtual work on a global level. That
means that the global energy of the magnetic field is calculated and
its sensitivity with respect to a defined displacement qu def is com-
puted.

Fmag = −
∂Wmag

∂qu def
(2.149)

where Fmag denotes the nodal force values for all nodes that are
included in the defined displacement qu def. Usually, this defined
displacement is a rigid motion of a body within the magnetic field
such as the rigid rotation of a rotor in an electric machine. For a
defined rotation, it is possible to numerically differentiate the en-
ergy by the defined displacement after the simulation is done. With
this method, it is not possible to calculate local forces on individual
nodes.

Using Maxwell’s Stress Tensor

Maxwell stress tensor, which was introduced in Sec. 2.4.5, can also
be discretised and expressed by the variables introduced in (2.104).
For a linear magnetic material, such as air, the first line in Tab. 2.1
is applicable yielding for Maxwell’s stress tensor

T(qu,qA) = ∫
Ω

H⃗B⃗T − I B⃗
TH⃗
2

dΩ

≈ ∫
Ω

qABA
1
μ
BT
AqTA − I(qTABT

A
1
2μ

BAqA)dΩ
(2.150)

The force on a surface can then be approximated by (2.103). The
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discrete form of (2.103) reads as follows:

fmag = nT(qu)T(qu,qA) (2.151)

The coupled part of the tangent stiffness matrixKuA can be derived
by taking the derivative of the magnetic force (2.103) with respect
to the nodal values of the magnetic vector potential. This yields

KuA = nT(qu)
∂T(qu,qA)

∂qA
(2.152)

∂T(qu,qA)
∂qA

is a 3rd order tensor. Multiplying it with a vector yields

a matrix.

As can be seen from (2.152), only elements that share an interface
with the structure create a magnetic force. In Fig. 2.13 only the
elements IV and VI have this common interface. The force created
by the other elements is, thus, neglected.

The magnetic contribution to the structural stiffness matrix can be
derived by

Kmag
uu = nT(qu)

∂T(qu,qA)
∂qu

+ ∂nT(qu)
∂qu

T(qu,qA) (2.153)

Using the Principle of Virtual Work Locally

Themethod usingMaxwell’s stress tensor has the disadvantage that
it does not compute forces within the structural domain. For that,
the gradient of Maxwell’s stress tensor needs to be evaluated nu-
merically. Furthermore, for the force computation around corners,
it neglects elements that do not share a surface with the structure,
as showed in the previous section.

Az = 1

1 m

1 m

2 m

2 m

x

y

z

12

3

I

II

III

IV

V

VI Figure 2.13
Example system including a

singularity at the centre point of

the system

There is another technique of calculating the magnetic forces. In-
stead of multiplying the tensor with the surface of the interface it
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calculates the change of magnetic energy associated with a change
of displacement of each node. This method was first discussed in
[28], where it was called nodal method. Although Maxwell’s stress
tensor is also derived from the principle of virtual work, using it in-
troduces some inaccuracies in the calculation of themagnetic force
that the nodal method does not introduce.

Starting from the magnetic energy, wmag, the magnetic force can
be calculated by deriving the magnetic energy with respect to the
displacement field u⃗. As shown in Appendix A this approach leads
to

δWmag = V
B⃗T(∇δu⃗)B⃗

μ
− tr(∇δu⃗) B⃗

TB⃗
2μ

(2.154)

which is the same as (A.7), for a virtual displacement, δu⃗, in a linear
magnetic material. In (2.154), V denotes the volume of the element
and tr(∇δu⃗) denotes the traces of the tensor ∇δu⃗. Instead of us-
ing this formula to derive Maxwell’s stress tensor, it can be used to
calculate the magnetic force directly. Discretising ∇δu⃗, using the
finite element method (2.104), yields a matrix, B2u, containing de-
rivatives of the shape function Nu, which is define by

∇u⃗ = [∂u∂x
∂u
∂y

∂v
∂x

∂v
∂y]

T
≈ B2uqu (2.155)

for a 2D mesh. Because the tensor ∇u⃗ is not symmetric, all ele-
ments need to be written out.

Using the approximation in (2.155), the magnetic force vector can
be written as

Fmag = −
∂Wmag

∂qu
= − 1

2μ ∫
Ω

BT
2uF(qA)dΩ (2.156)

where F denotes a matrix that contains various products of mag-
netic flux density components.

F = [B2
x − B2

y 2BxBy 2ByBx B2
y − B2

x] (2.157)

See Appendix A for a detailed derivation of this formula.

The submatrix of the tangent stiffness matrix denoting the coup-
ling between the magnetic field and the structural mechanics, KuA,
can be derived by taking the derivative of the magnetic force with
respect to the nodal value of the magnetic vector potential, as seen
in (2.125). The derivation, which leads to

KuA(qA) =
1
2μ ∫

Ω

BT
2uF2(qA)BAdΩ (2.158)

with

F2 = [
Bx By By −Bx
−By Bx Bx By

]
T
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is written out in Appendix A.

The last term of the stiffness matrix is the mechanical stiffness that
is created by the magnetic field. It can be computed by deriving the
magnetic energy with respect to a mechanical displacement. This
is shown in Appendix A

Kmag
uu =

1
2μ ∫

Ω

BT
2uF3(qA)B2udΩ (2.159)

with

F3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2HxBx 0 2HyBx −(BxHx +HyBy)
0 2HxBx (BxHx +HyBy) 2HxBy

2HyBx (BxHx +HyBy) 2ByHy 0
−(BxHx +HyBy) 2ByHx 0 2BxHx

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.160)

The Local Virtual Work Method applied to Permanent Magnets

As shown in [62], the energy and co-energy change of permanent
magnets under deformation depends on the behaviour of the mag-
netisation of the PM. In Sec. 2.4.5 it was shown that the magnetic
flux density and the magnetic field behave differently under de-
formation. This results from the dependence of the magnetic flux
on the flux linkage and, thus, on the total flux of the system, whereas
the magnetic field depends on the currents of the system. It is un-
clear how themagnetisation of a permanentmagnet behaves under
deformation and if the magnetic fluxes or the ’imaginary’ currents
of the permanent magnet are constant. Therefore, both cases are
presented here.

The derivation for the two cases presented in this subsection can be
found in Appendix A.

For the first case the magnetic remanence changes like the mag-
netic flux density under deformation: δB⃗r = δB⃗r∣δΦB=0

= ∇δu⃗B⃗r −
tr(∇δu⃗)B⃗r. For this case the force acting on a permanent magnet
can be written as

Fmag = −
1
2μ ∫

Ω

BT
2uF(qA)dΩ

− 1
2μ ∫

Ω

BT
2uFPM(qA)dΩ

+ 1
μ ∫

Ω

BT
2uFPM2(qA)dΩ

(2.161)

in its discretised from with
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FPM(qA) = [B2
rx − B2

ry 2BrxBry 2BrxBry B2
ry − B2

rx]
T (2.162)

FPM2(qA) = [BrxBx BrxBy + BryBx BxBry + BrxBy BryBy)]
T (2.163)

For the second case, the remanence flux density behaves like the
magnetic field, and the ’imaginary’ currents in the permanentmag-
net are held constant: δB⃗r = δB⃗r∣δI=0 = −∇δu⃗B⃗r. The discretised
form of magnetic force reads as

Fmag = −
1
2μ ∫

Ω

B2uF(qA)dΩ

− 1
2μ ∫

Ω

B2uFPM(qA)dΩ
(2.164)

The coupling matrices for permanent magnet materials can be de-
rived analog to the derivation for the linear magnetic material in
Appendix A, starting from (A.21) and (A.23).

Nonlinear Materials

For nonlinear materials, i.e. where the magnetic flux density and
the magnetic field are not linked by a constant scalar, it can be as-
sumed that (2.96) and (2.93) are still valid because the intensity of
the magnetic field is assumed constant for their derivation. There-
fore, the coupling matrices can be derived in the same way as in
AppendixA.However [62] claims that further research on the ther-
modynamic relations of ferromagneticmaterials is necessary to en-
sure (2.96) and (2.93) are indeed valid for this type of material.

2.5.9 Comparing Different Methods of Calculating Magnetic
Forces

To illustrate the difference between the two methods of calculating
magnetic forces, consider the simple example depicted in Fig. 2.13,
of which the solutions is shown in Fig. 2.14. The magnetic field
in vacuum was simulated around a magnetically non-conducting
piece of structure. The singularity that is generated in such a system
is clearly visible in the right part of Fig. 2.14.

The system’s solution canbe calculated analytically using conformal
mappings. This type of analysis has been done in [146] for an elec-
tric field. Conformal mappings and their applications to magnetic
fields are thoroughly explained in [16]. The computed solution for
this problem can be seen in the right part of Fig. 2.14, which shows
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Analytical Solution
Maxwell’s Stress Tensor 100 elements

local virtual work 100 elements
local virtual work 10 elements

Maxwell’s Stress Tensor 10 elements
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norm of magnetic flux density [T]

Figure 2.14
Magnetic field around corner

including singularity. The dashed

red line indicates the surface for

which the force is computed.

themagnetic field lines and themagnetic flux norm of the solution.
Tab. 2.2 presents the computed forces in y direction for the three
methods described above and for the analytic solution. In the left
part of Fig. 2.14 the force density in y-direction is depicted over the
horizontal boundary of the system at y = 1, indicated by the red
dashed line in the right part of Fig. 2.14.

Method Calculated Force in y direction 100 elements Calculated Force in y direction 10 elements

absolute value of force rel. error absolute value of force rel. error

Analytic Solution −791 153 N 0% −791 153 N 0%

Globally applied virtual work −795 630 N 0.6% −766 050 N 3.2%

Maxwell’s stress tensor −721 158 N 8.8% −586 236 N 25.9%

Locally applied virtual work −793 659 N 0.3% −766 050 N 3.2%

Table 2.2
Comparison of the various

methods to calculate magnetic

forces

The singularity at the corner results in an increased magnetic force
at the corner. This increase is not properly accounted for in the
force calculation method using Maxwell’s stress tensor. This can be
seen by the bad match of the force distribution between the ana-
lytical solution and the method using Maxwell’s stress tensor on
the left part of Fig. 2.14. From Tab. 2.2, it becomes clear that for
coarse meshes the method using the method of virtual work (glob-
ally and locally) yields more accurate results for the total force than
the forces computed byMaxwell’s stress tensor. The error that is as-
sociated with Maxwell’s stress tensor will decrease with increasing
numbers of elements in the model.
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2.5.10 The Moving Mesh

Magneto-mechanical coupled systems of electric machines neces-
sitate the distinction between two mechanisms that require a mov-
ing mesh. The first mechanism is the rotation of the machine’s ro-
tor. This rotation depends on the rotor position and can easily be
computed from the rotation angle. The other mechanism is the de-
formation of the structure.

In the past, various methods for handling deformation and move-
ment of the underlying structure of the magnetic field have been
proposed. The two most common ones are the method employing
Lagrangemultipliers [56, 96] and themethod using amovingmesh
[96, 126, 133]. The first one is mainly used to simulate the rotation
of the machine. The second method mainly for the simulation of
deformation of a structure.

In this thesis, only the moving mesh method will be discussed in
detail, because themethod using Lagrangemultipliers is rather well
known and is used in magnetic finite element models or structural
finite element models that include rotation or movement.

For a structural object in a magnetic field, the PDEs (2.47) or (2.45)
and (2.35) need to be solved forΩcpl in Fig. 2.6. Themagnetic field is
based on Eulerian coordinates, whereas the structural PDE is based
on Lagrangian coordinates. Implementing an Eulerian coordinate
system in the FE formulation means that each node of the mesh
of the magnetic field needs to move with the displacement of that
node qu. It is therefore necessary that a movingmesh is implemen-
ted in the finite element formulation for the magnetic field.

Because the PDEs of the magnetic field are based on the spatial co-
ordinates, the integrals for the magnetic stiffness and mass matrix
(2.140) and (2.137) depend on the displacement of the structure.

The exact position of each node within the domain is arbitrary,
when solving the magnetic PDE (2.142) without mechanical inter-
action. It is, however, required that the distance between the nodes
is small enough so that the mesh can describe the gradients of the
magnetic field. Otherwise, the partial differential equation cannot
be solved accurately. The position of the boundary of a domain at
which the material properties change is important. The boundary
conditions in (2.48) depend on it and it has, therefore, an influence
on the solution of the magnetic PDE (2.142).

When deformation is introduced into the system, the above state-
ment is no longer true. In that case, a distinction between domains
with a structure and fluids or gaseous domains has to be made.

For magnetic materials that have no structure, e.g. air, the position
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Figure 2.15
Moving Mesh around Structure

of the nodes of the mesh of the magnetic field is still not important.
Important is that the position of the boundaries of the air domain
follows the displacement of any adjacent structural domain. The
position of the magnetic nodes on the boundary have to change
according to the displacement of that boundary. The position of
the other nodes can be chosen freely, and thus, can be fixed. The
various categories of nodes and elements are depicted in Fig. 2.15.
Themoving boundary, represented by the thick line, only has an in-
fluence on the grey elements. Because the nodal placement within
the domain is arbitrary, the other nodes, depicted by crosses, can
be fixed.

For domains that have a structure, however, the nodal position is
very much of importance. Firstly, the force computed in (2.98)
needs to be applied to the nodes of the elastic field. It is therefore
convenient to evaluate (2.98) at the position of the nodes of the
elastic field. Secondly, the movement of the structure can induce
eddy currents. These eddy currents, need to be applied to the mag-
netic PDE at the location of their generation. In order for the mag-
netic nodes to follow the deformed structure, the magnetic nodes
have to follow the displacement of the structure and thus depend
on the deformation.

Influence of the Moving Mesh on the Magnetic Field

The moving mesh, introduced in the previous section, is a tool to
simulate the influence of the displacement of the structure onto the
magnetic field. Because themovingmesh follows the displacement
of the structure, the resulting changes on the magnetic field are ac-
tually the influences of the deforming and moving structure.

To discretise the effect, the moving boundary has on the magnetic
field in the air domain, the magnetic stiffness matrices of the ele-
ments directly adjacent to the structure (in Fig. 2.15 the light grey-
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ish elements) need to be expressed in terms of the displacement qu.
Starting from the total energy Wtotal, the internal currents Jint can
be derived by taking the partial derivative of the energywith respect
to the magnetic displacement. The influence of the displacement
on these internal current can be expressed in the coupling matrix
KAu

KAu(qA,qu) = −
∂Jint
∂qu

= ∂2Vint
∂qu∂qA

(2.165)

Vint can be substituted by Wmag, because of all energies in (2.59)
only the magnetic energy, Wmag, depends on both types of nodal
values, the displacement and the magnetic field. All other energies
will yield zero when derived with respect to the nodal values of the
displacement and the magnetic field.

For a potential, the order of taking derivatives does not matter. It
is therefore possible to write

KAu =
∂

∂qu
( ∂

∂qA
Wmag)

= ∂

∂qA
( ∂

∂qu
Wmag) = −

∂

∂qA
Fmag = KT

uA

(2.166)

And indeed, when the correct method is chosen for the calculation
of the coupling matrix KuA, the method using the local principle
work, the top left part of the coupled stiffness matrix K in (2.125)
becomes symmetric.

Eddy currents represent the other effect, how the magnetic field is
influenced by the mechanical deformation. In (2.46), it was stated
that the eddy currents depend on the time derivative of the mag-
netic conductor’s deformation. For the derivation of the magnetic
mass matrix in (2.139), this dependency was neglected. This term
is especially important for the simulation of rotating machinery.
Taking the derivative of the eddy current’s energy with respect to
the nodal values of the change of the magnetic vector potential and
the nodal velocities yields the coupling term

CuA(q) = CAu(q)T =
∂2Dmag

∂q̇u∂q̇A
= ∫
Ωmag

NT
u [BAqA]×
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

Fc(qA)

γNA dΩmag
(2.167)

where [BAqA]× is again the matrix representing the cross product
defined in (2.84) and already used in (2.139). The third and second
term of (2.139) does not contribute to this term as they do not de-
pend on q̇u and q̇A.
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For a 2D model with triangular elements, Fc(qA) can be evaluated
to read as

Fc(qA) = [
ByNA,A ByNA,B ByNA,C
−BxNA,A −BxNA,B −BxNA,C

] (2.168)

Like the coupling matrices KuA and KAu, CuA and CAu depend on
the magnetic vector potential itself.

The last term of the coupled damping matrix can be derived by de-
riving the dissipation function of the eddy currents,Dmag in (2.139),
twice by the displacement velocity.

Cmag
uu (q) =

∂2Dmag

∂q̇2
u
= ∫

Ω

2NT
u[BAqA]×γ[BAqA]T×NudΩ (2.169)

Again, two terms in (2.139) do not contribute due to their missing
dependency on q̇u.

2.5.11The Discretised Coupled System

With the matrices introduced in Sec. 2.5, the nonlinear system of
equation (2.58) can be written as a linear discretised system that
depends on the nodal values of the magnetic field and the displace-
ment field.

⎡⎢⎢⎢⎢⎢⎣

Muu 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M

⎡⎢⎢⎢⎢⎢⎣

q̈u
q̈A
q̈c

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

Cmech
uu + C

mag
uu (q) CuA(q) 0

CAu(q) CAA(qu) 0
0 CcA(q) 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

⎡⎢⎢⎢⎢⎢⎣

q̇u
q̇A
q̇c

⎤⎥⎥⎥⎥⎥⎦
+

+
⎡⎢⎢⎢⎢⎢⎣

Kmech
uu +K

mag
uu (q) KuA(q) 0

KAu(q) KAA(qu) KAc(qu)
0 0 Kcc

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K

⎡⎢⎢⎢⎢⎢⎣

qu
qA
qc

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

Fext
JPM
Vext

⎤⎥⎥⎥⎥⎥⎦

(2.170)

2.6Linearized Coupled Eigenvalue Problem

To analyse the changes that the magneto-mechanical coupling has
on the vibrational behaviour of a structure, it is necessary to con-
duct a modal analysis of the coupled system. To achieve that, a
monolithic coupled eigenvalue problem needs to be formulated.

Such a monolithic formulation has been done in [131] for electro-
static mechanical couplings. It makes it possible to calculate the
eigenvalues and mode shapes of the coupled system.
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Assuming that the displacements u are small, the effects of the dis-
placement on the system matrices can also assumed to be small. In
that case, the values of the matrices can be approximated linearly
around a linearisation point q0. The system described by (2.170)
can then be transformed into a monolithic linear eigenvalue prob-
lem that calculates the vibration behaviour of the system around
the point, q0. Usually the system for zero displacement q0,u = 0
and a static magnetic field q0,A is chosen as linearisation point, q0.
That yields the coupled eigenvalue problem

(K + λiC − λ2M)Φ = 0 (2.171)

where Φ denotes the columns matrix of eigenvectors, λ the eigen-
values of the system and i the imaginary number.

Inserting the various terms for the stiffness, mass and damping
matrices into (2.171) yields

⎛
⎜
⎝
−λ2
⎡⎢⎢⎢⎢⎢⎣

Muu 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
+ iλ

⎡⎢⎢⎢⎢⎢⎣

Cmech
uu + C

mag
uu (q0) CuA(q0) 0

CAu(q0) CAA(q0,u) 0
0 CcA(q0) 0

⎤⎥⎥⎥⎥⎥⎦
+

+
⎡⎢⎢⎢⎢⎢⎣

Kmech
uu +K

mag
uu (q0) KuA(q0) 0

KAu(q0) KAA(qu,0) KAc(qu,0)
0 0 Kcc

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
φ = 0

(2.172)

2.7 Summary

In this chapter, the fundamental mathematical relations and nu-
merical methods were introduced to model magneto-mechanical
coupling in a monolithic way. Nonlinear as well as linear magnetic
materials were taken into account and several ways to calculate the
magnetic forces were presented. Finally, a way to calculate the
effects of a magnetic field on structural dynamics behaviour was
introduced which incorporated the linearisation of the nonlinear
coupled equation.

The introduced methods will be used in Chapter 4, 5 and 6 to sim-
ulate the coupled dynamic behaviour of electric machines and in
particular wind turbine generators.
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George Edward Pelham Box and Norman Richard Draper [18, p. 74]

This Chapter is based on the papers:

Kirschneck, M., Rixen, D.J., Polinder, H.,van Ostayen, R.A.J.
Effects of Magneto-Mechanical Coupling on Structural
Modal Parameters. Topics in Modal Analysis II, 2014,
Volume 8

Abstract:

Structures that are exposed to a magnetic field
experience magnetic forces. As these forces are
geometry dependent, they vary with the
displacement of the structure that can result in an
additional stiffness. Furthermore, eddy currents,
which are induced by the movement of the
structure, can lead to an increased dissipation
resulting in a higher damping value for the
mechanical part of the system. This chapter
presents measurements intended to quantify
these effects and verify the modelling techniques
introduced in Chapter 2. For that purpose a simple
lab test rig is used.
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3.1 Introduction

By the above quote, the problem of everymodel becomes apparent.
Models are based on simplification to cast the real behaviour of a
system into mathematical formulas. This makes it possible to pre-
dict the behaviour of systems. However, the accuracy of the model
and its validity for a certain set of states depends on the simplifica-
tion made during its derivation. Therefore, it needs to be ensured
that the simplifications made are applicable and do not lead to a
model describing a different behaviour than the behaviour of the
system of interest. Therefore, it is necessary to verify a model with
either anothermore detailedmodel or bymeasurements to increase
the confidence in the validity and correctness of the model.

This chapter will describe the procedures and techniques that were
used to validate the simulation methods introduced in Chapter 2.
Although the simulation methods for continuum mechanics and
magnetic fields for themselves are well validated, it is necessary to
ensure the correctness of the coupled system and of the linearisa-
tion for the coupled eigenvalue problem. The experiments to do
this validation are presented in this chapter. It eventually concludes
that the modelling methods introduced in Chapter 2 are sufficient
to predict the magneto-mechanical coupled behaviour.

3.2 The Test Set Up

To verify the calculationmethods introduced inChapter 2, a simple
system has to be found that includes all the effects that the calcula-
tion method can cover. The system has to satisfy some conditions
to make it suitable for the verification process. First, it needs to ex-
hibit a frequency change due to the interaction between the struc-
tural dynamics and the magnetic field. Although many systems
can be identified that show this behaviour, it is difficult to find a
system in which the interaction can be switched off or rendered in-
active while the rest of the system stays unaltered. Secondly, the
system’s uncertainty needs to be as small as possible. All material
properties, geometries and physical constants in the system should
be known as accurately as possible. Any deviation between the sim-
ulation and the measurements can then be reduced to the errors in
the simulation. Very little materials exist for which both magnetic
and mechanical properties are well known. This is because either
they were intended for mechanical applications and, thus, the elec-
tric properties were not of interest, or they were designed for elec-
tric application, which means that the exact mechanical properties
are not important for their intended use.
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3.2.1Characteristics of the Test Set-Up

a) Photo of the measurement set-up. The set-up is depicted

in the configuration without coupling the beam complete

out of the air gap. The coil in the photo was not used for the

experiments.

permanent magnet beam

yoke

1st Bending Mode

x

y

z

b) Schematic of the test set up and first bending mode

Figure 3.1
The test rig used for measurements

Fig. 3.1 shows the test rig used for the purpose of verifying themod-
elling technique. It consists of an unlaminated yoke with a gap and
a flexible beam. The gap of the yoke is wide enough so that the
beam can be inserted into the air gap. The magnetic field is created
by two permanent magnets on either side of the air gap. The yoke
is fixed while the beam is mounted on a table that can be moved.
This allows the beam to be moved into and out of the air gap. This
set up was chosen for several reasons.

• It was readily available.

• The beam can be moved in and out of the air gap, making it
possible to ’activate’ or ’deactivate’ the coupling between the
beam and the magnetic field.

• It is as simple as possible while showing a change of reson-
ance frequency and increased damping due to the coupling.

The test set-up also shows some significant drawbacks. The per-
meability and the conductivity of the yoke and beam are unknown.
The magnetic field in the system is excited by permanent magnets
that cannot be ’switched off ’ or be removed. Further, the system
changes when the beam is removed because the new table position
might lead to a different stiffness of the mounting.

The beam is constructed in such a way that the first bending fre-
quency in y-direction is much lower than the frequency of the first
bending mode in z-direction. This way the two bending modes do
not couple. The bending mode in y-direction, which is shown in
Fig. 3.1b, will decrease the air gap length on one side of the beam
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while it is increased on the other side of the beam. This will change
the magnetic field in the air gap.

3.2.2 Mechanisms Affecting the Modal Parameters

There are four different effects that can influence the modal para-
meters of the coupled system. Three of them influence the reson-
ance frequency due to additional stiffness introduced into the sys-
tem by the magnetic field and one increases the damping due to
additional losses. All but one of the effects can be explained using
the system in Fig. 3.1 as an example. The last effect is present in
electric machines but cannot be explained with the test rig.

For the additional stiffness, the differentiation between positive and
negative stiffness needs to be done. Stiffness is created when a force
acting on a structure is changed by the displacement of that struc-
ture

k = − ∂f
∂u

(3.1)

where f denotes the force, u the displacement from the equilibrium
position at which the force is zero, and k the stiffness value.

A positive stiffness is created when the force change opposes the
displacement, i.e. the force is directed in the opposite direction
than the movement and increases with the movement. This is the
usual stiffness found in a spring or in an oscillating pendulum.

Anegative stiffness is createdwhen the force is alignedwith the dis-
placement and acts in the same direction as the displacement. This
kind of stiffness can be found in unstable systems such as a pen-
dulum that is balancing above its attachment point. Only a slight
deviation will cause the system to leave that point because the force
increases with the displacement pulling the mass further away.

Magnetic Stiffness due to Reluctance Change
The first mechanism involves a change of the magnetic forces due
to a change of reluctance of the system. This mechanism cannot be
found in the beam test set-up. However, it will be of importance in
a magnetic field and is listed here for completeness.

In Sec. 2.2.4 it was shown that the reluctance of a magnetic circuit
depends on the length of the air gaps. In this case, (2.15) can be
used to calculate the reluctance change of the magnetic circuit. An
increase in air gap length will increase the reluctance and thus de-
crease the magnetic flux density and the specific magnetic energy.
The attracting forces will decrease as they depend on the magnetic
flux density. The force depends thus indirectly on the displace-
ment.
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For the attracting forces between two ferromagnetic materials in a
magnetic field this creates a negative stiffness. The attracting forces
increase with a decreasing distance between the two objects. Be-
cause the forces are attracting they point towards the other object.
When the distance decreases they point in the same direction as
the displacement and create a negative stiffness and an instability.

Everyone who has held amagnet in his hand before is familiar with
this instability. It can be witnessed when a permanent magnet is
moved towards a piece of iron. At some point the attracting forces
become so big that the piece of iron moves towards the PM and
sticks to it. The attracting forces become thus bigger when the dis-
tance between permanent magnet and piece of iron decreases.

For the test set-up this mechanism is not valid. The reluctance of
the system does not change when the beam moves in y-direction,
because one air gap always increases by the same amount as the
other air gap decreases. The total reluctance stays the same and the
magnetic flux density is constant.

Magnetic Stiffness due to Axial Displacement
This stiffness is important for a displacement in axial direction of
an electric machine. The same mechanism creates stiffness when
the beam is displaced in z- or in x-direction.

Consider a movement of the head of the beam in x-direction. This
movement will decrease the overlap of the the PM on the beam
with the stator yoke. The magnetic field creates a force that pulls
the beam back into a position in which the beam head is perfectly
aligned with the stator yoke. This force is created, because in this
configuration the air gap length is shortest and thus the energy
stored in the magnetic field is minimal.

The force is directed in the opposite direction of the displacement
that causes it. It is thus a positive stiffness that gives the system
additional stability.

Magnetic Stiffness due to Fringe Effects
The second mechanism which influences the air gap is caused by
fringe effects. The 1D magnetic circuit model cannot explain this
effect as it depends on the spatial distribution of the magnetic flux
density in the air gap. In the first mechanism, we saw an increase
or decrease of total magnetic flux due to a change of reluctance.
For the second mechanism, the total flux does not change. Only
the distribution in the air gap changes. In Sec. 2.4, it was shown
that the normal magnetic force depends on the specific magnetic
energy. An increase in magnetic flux density will thus cause an
increase in magnetic force.
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Figure 3.2
The magnetic field lines and the

specific magnetic energy for the

head of the beam

Fig. 3.2 depicts the magnetic flux lines and the specific magnetic
energy of a cutting plane for varying amounts of bending deform-
ation depicted in Fig. 3.4. The larger the air gap on the bottom side
of the beam, the lower the specific magnetic energy in the air gap
and the further apart are the magnetic flux lines. Consequently,
the attracting force on that side of the beam will decrease as it is
proportional to the specific magnetic energy.

At the upper part of the picture, the specific magnetic energy in-
creases and the attracting force with it. The net force on the beam
will thus point upward, the same direction as the displacement of
the beam. Since the magnitude of this net force depends on the
displacement of the beam, a negative stiffness is created.

Additional Damping due Eddy Currents

Figure 3.3
Development of magnetic field

strength, displacement of the

beam head and attracting force

over time for a period of the first

bending mode. The magnetic

force and the displacement are

normalised with the maximal value

they reach during an oscillation.

The magnetic flux density norm is

normalised with its value for a

displacement of u = 0
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The last mechanism that influences themodal parameters is caused
by eddy currents. An oscillating structure will result in a oscillating
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Figure 3.4
The first bending mode of the test

set up. The red arrows represent

the acting magnetic forces. The

thickness of the arrows the

strength of the force

magnetic force in the air gap, due to the dependency of the mag-
netic force on the displacement. This will create currents in the
yoke and the beam which produce heat due to the ohmic resist-
ance of the structure. From an energy point of view, an additional
method to dissipate energy and create heat is introduced into the
system.

In order to be able to measure an increased damping ratio mech-
anically, the eddy currents causing this dissipation must somehow
affect the mechanical system. Due to the eddy currents, the mag-
netic field does not change instantaneously with the displacement
of the beam, but will show a slight delay. This delay causes a delay of
the magnetic force acting on the beam leading to increased damp-
ing.

Fig. 3.3 shows the various quantities needed to explain this effect
for the first bending mode as depicted in Fig. 3.4. The eddy cur-
rents introduce a small delay in the magnetic response of the sys-
tem, so that the maximal magnetic field strength on the top part
of the beam (on the positive y-direction of the beam) is reached
when the beam head is already moving back towards the centre
position. Fig. 3.3 shows this delay of the amplitude of the magnetic
field in the air gap. Because of this delay, the total magnetic force
in y-direction, i.e. themagnetic force in y-direction created in both
air gaps, is stronger when the beam moves back towards the centre
position than when it was moving away from the centre position.
Integrating (2.89) over a whole period of the oscillation will result
in a value which is not zero, indicating a change of energy in the
system.

In an electric machine, the lamination in the stator back iron min-
imises the amount of eddy currents and thus the additional damp-
ing introduced by this effect. The test trig used here is not lamin-
ated and, consequently, the damping effect is much stronger than
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for electric machines. Therefore, it is expected that this effect is
much smaller in electric machines than in the oscillating beam.

Emerging Effects

The above discussed effects that introduce additional damping and
stiffness into a system affect the modal parameters of that system.
For the first bending mode additional damping due to eddy cur-
rents and additional stiffness due to fringe effect play a role. Be-
cause of these two effects the frequency of the measured mode will
be lower when the dynamics of the beam couple with the magnetic
field. Additionally, the measured mechanical damping ratio will
increase due to the coupling. These are the two effects that the
measurements conducted in the next subsection will verify. These
two effects can be identified by the FE model introduced in Sec. 3.4
and will be verified by the measurements in Sec. 3.3.

3.3 Verification Measurements

In order to quantify the influence of themagneto-mechanical coup-
ling on the modal parameters, it is necessary to measure the dy-
namic response of the systemwith andwithout themagneto-mech-
anical coupling. This is the only way to rule out that the measured
effects do not originate from other sources than the coupling of in-
terest.

Because some parameters of the system are unknown, it is neces-
sary to verify the two physics separately before the coupled system
can be verified.

Considering all limitations of the test set-up, the following meas-
urement approach was chosen:

1. Measure the dynamic behaviour of the beam without coup-
ling.

2. Identify the set of mechanical parameters that simulate the
dynamic behaviour closest to the one measured.

3. Identify the set of electric parameters that simulate the resist-
ance and impedance closest to the impedance and resistance
measurements.

4. Measure the dynamic behaviour with the beam fully inserted
into the air gap.

5. Measure the dynamic behaviour with the beam half inserted
into the air gap.
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6. Compare the measured and the simulated dynamics.

This approach includes some assumptions that might not be sat-
isfied. First of all, it is assumed that the dynamic behaviour of
the beam does not depend on its position on the table. The table
position might have an influence on the stiffness of the mount-
ing of the beam and thus may also influence the first bending fre-
quency. Secondly, it was assumed that the Young’s modulus and
the Poisson’s ratio are know. Although the beamwasmanufactured
from standard structural steel whose properties are know, it is un-
known to what extend these properties are exact or if they might
have changed during the shaping process.

3.3.1Parameter Identification

In the previous section, two parameter identifications were listed
as steps within the verification process. These two parameter iden-
tification steps are presented in more detail here.

Mechanical Properties

The mechanical model’s parameters that could be used for tun-
ing consisted of the Rayleigh damping coefficients, the geometry
of the beam and the Young’s modulus and the Poisson ration. The
Rayleigh damping coefficientswere set in such away that the damp-
ing of the first bending modes coincides with the measured damp-
ing of the first damping modes. Of the remaining parameters the
length of the beam was chosen to tune the frequency of the first
bending mode to match the measured frequency. Small deviations
from the measured length of the beam of about 0.1mm, which is
within the measure tolerance needed to be applied to match the
frequencies. Young’s modulus and Poisson ration were considered
known.

Property Value

Young’s Modulus [Pa] 200e9

Density [ kg
m3 ] 7850

Poisson’s ratio [-] 0.29

Table 3.1
Mechanical properties of the beam

and yoke

Magnetic Properties

To determine themagnetic properties of the steel used for the beam
and the yoke, impedance measurements were conducted. The per-
meability of metals can change duringmetal working process, such
asmilling, turning or drilling. Therefore, it is difficult to predict the
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Table 3.2
Documented specification of

permanent magnets

Property Value

Height 2 mm

Length 20 mm

Width 10 mm

Remanence Flux Density 1.32 − 1.37 T
Coercity 860 − 995 kA

m

relative permeability 1.056 − 1.26
Conductivity 5882 - 9090.9 S

m

permeability beforehand. However, the permeability can be de-
termined by measuring the impedance of a coil wound around the
beam or the yoke. The coils are depicted in Fig. 3.5. The inductance
of the coils depends mainly on the conductivity and permeability
of the material. For structural steel, which is used in this case, the
conductivity is roughly known. Therefore, the permeability can be
approximated by matching the simulated to the measured imped-
ance.

Simulating the yoke and the beam numerically, the permeability
of the material can be estimated. Fig. 3.6 shows the comparison
between themeasured values for the inductance and resistance and
the calculated values for different permeabilities and conductivit-
ies of the iron material. The instrument used could not measure
below a frequency of 20 Hz. It is presumed that due to the skin
effect in the iron, the inductance is much higher for frequencies
below 20Hz and drops sharply for higher frequencies. Being able
to measure this drop at very low frequencies would increase the
impact of different permeability and conductivity values on the in-
ductance leading to a more accurate determination of the material
properties. At the frequencies measured it can be seen in Fig. 3.6
that the variation of the values has little effect on the inductance
making a property identification difficult.

It should also be noted that the device used to measure the resist-
ance and impedance of the coil has a higher accuracy at higher fre-
quencies. At 20 Hz the error is around 1% of the measured value.
Therefore, it is more important to properly fit the measured data to
the simulated one at higher frequencies. Tab. 3.3 lists the material

Figure 3.5
Position of the coils (depicted in

grey) used to determine the

permeability and resistivity of the

beam and yoke
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Figure 3.6
Resistance and impedance

measurements of the solid stator

yoke (top) and the beam (bottom)

parameters that were eventually chosen to simulate the system. The
choice has been based on the plots in Fig. 3.6. No parameter iden-
tification technique was employed, due to the complexity of the FE
system and the associated computational costs. The remaining de-
viation of the used parameter set to the optimised parameter set is
considered to be small.

3.3.2Vibration Measurements

Using a laser doppeler vibrometer (LDV), impact tests were con-
ducted to measure the frequency and damping behaviour of the
first bending mode of the beam. These measurements were done
for three different positions of the beam: completely out of the air
gap (no coupling), completely inserted in the air gap (full coupling)
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Table 3.3
Chosen parameters for the models

Properties of Magnets Value

Remanence Flux Density 1.32 T

relative permeability 1.06

Conductivity 0.6 ⋅ 106 S
m

Properties of stator-yoke

Conductivity 107 S
m

relative Permeability 20

Properties of beam

Conductivity 107 S
m

relative Permeability 20

mass matrix Rayleig damping coefficient 40

stiffness matrix Rayleig damping coefficient 6 ⋅ 10−6

and half way inserted in the air gap (to some extend coupled). The
modal parameters were evaluated by fitting a decaying sinusoidal
function

y(t) = y0 e−2 π ωn (ζ+
√

ζ2−1)

to the data using a least square evaluation.

minimize
y0, ωn, ζ

[∑
t
(x(t) − y(t − t0))2] for t ∈ [t0, t0 + Δt] (3.2)

where ζ,ωn and y0 are the parameters to identify and x(t) themeas-
urement data.

The measured data x(t) and the decaying sinusoidal function y(t)
are aligned by setting x(t0) = max(x(t)) and choosing an arbit-
rary length Δt. The parameters that were eventually chosen for the
model are shown in Tab. 3.3.

3.4 3D Finite Element Model

A 3D FEmodel is used to predict the change of themodal paramet-
ers. Although a three dimensional magnetic field formulation res-
ults in large numbers of DoFs, it is necessary to build such a model
to include the fringe effects, described in Sec. 3.2, in the air gap
appropriately. The model consists of approximately 315 000 DoFs.
This high number of degrees of freedoms is necessary to ensure
that the gradients of the magnetic field as well as the deformation
are described accurately.

Fig. 3.7 shows the mesh of the model and the predicted deforma-
tion of the first bendingmode. It was assumed that saturation plays
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Mesh of the 3D FE model Displacement of the beam and

magnetic flux lines for the first bending

mode. the colours indicate

displacement, the lines the magnetic

flux lines

Figure 3.7
Mesh of the 3D finite element

model of the test rig

no role for this model. A linearmaterial model for the yoke and the
beam was used.

3.5Results

The measurements show clearly a trend towards more damping
and a lower resonance frequency in the system when the magneto-
mechanical coupling is introduced. This trend was also simulated
by the 3D finite element model. Tab. 3.4 lists the simulated and
measured eigenfrequencies and damping ratios of the system. A
relative error of 4.4% for the fully inserted beam and an error of
3.2% for the half inserted beam were recorded. The relative error
of the damping values is higher. A relative error of 14.4% for the
fully inserted beam and 39% for the half inserted beam were re-
corded. Considering that the system introduced is nonlinear, the

3D-Model Measurement

Frequency Damping Frequency Damping

no EM coupling 417 Hz ζ = 1.66% 417 Hz ζ = 1.66%
with EM coupling 372 Hz ζ = 3.32% 370 Hz ζ = 3.6%
half EM coupling 386 Hz ζ = 2.48% 384.6 Hz ζ = 2.25%

Table 3.4
Simulation Results and

Measurements, ζ denotes the

damping coefficient

frequency and damping estimates of the linear 3D model is reason-
able accurate. This shows that a prediction of the coupled modal
parameters is possible using the linearised set of equations and a
linear modal analysis.

3.6Summary

This chapter showed that the modelling methodologies introduced
in Chapter 2 can be used to predict the changes to the dynamic be-
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haviour of a coupled system caused by the coupling. However, it
was discussed that in order to yield accurate predictions, the ma-
terial properties of the structure need to be known exactly. This is
always a problem when materials that are produced with a mech-
anical application in mind also affect the magnetic field and vice-
versa. In those cases, the material’s magnetic properties are not
well defined because for most uses of that particular material it is
not necessary to know them.

This chapter further showed that the coupling can have an influence
on dynamic systems under certain circumstances. This is the case,
when the structural stiffness is low enough so that the magnetic
forces and the magnetic stiffness is significant. The models from
Sec. 2 are accurate enough to predict the dynamic behaviour of
magneto-mechanical coupled systems and, thus, can also be used
to take those dynamics into account when simulating generators of
direct-drive wind turbines. This will be done in Chapter 5.
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Model Reduction Methods for Magnetic Fields Based on
Modal Analysis. IEEE Transactions on Magnetics, vol. 5,
no. 11, November 2014

Abstract:

For the magneto-mechanical coupled analysis of
large direct-drive generators in 3D, an enormous
amount of DoFs are necessary to model the
magnetic field over the whole circumference of
the generator. Model reduction techniques is one
approach to reduce the computation cost of
solving the model. These techniques sacrifice
accuracy of the solution for a reduced number of
DoFs.
This chapter introduces model reduction
techniques based on various methods known
from mechanical engineering. These techniques
are applied to electrical machines reducing the
number of degrees of freedom and hence
computation time for transient and eigenvalue
analyses. It further introduces magnetic super
elements for the stator and the rotor of these
machines and combines them with suitable
coupling methods from literature. The various
approaches are compared with respect to accuracy
and computation time. Eventually, ideas for model
order techniques for magneto-mechanical
coupled systems are presented.
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4.1 Introduction

To identify the dynamics of the coupled system, (2.170) needs to be
solved. The formulation introduced in Chapter 2, in particular the
one of the magnetic field, can lead to very large models with mil-
lions of degrees of freedom. The sheer size of these models makes
themdifficult to handle, evenwhen large computing power is avail-
able.

Model reduction techniques can help to alleviate the problems en-
countered when trying to solve systems of that size. These tech-
niques reduce the number of DoFs of the model at the expense of
decreased accuracy. In general, three types of problems can be dis-
tinguished for which these techniques are useful: static-like prob-
lems, including formulations for stationary problems and problems
in the frequency domain, transient problems and eigenvalue prob-
lems. This chapter will concentrate on the last two types of prob-
lems.

In mechanical engineering, and dynamic analysis of structures in
particular, various methods have been developed for the reduction
of models for structural dynamics in the past. These methods are
based on the concept of a modal decomposition of the dynamic
behaviour of the structure into a number of decoupled ordinary
differential equations. This is achieved by solving an eigenvalue
problem. The results of the eigenvalue problem are physical mean-
ingful quantities, because the eigenvalues of the structure corres-
pond to its resonance frequencies and the eigenvectors correspond
to its mode shapes.

These techniques can be adapted so that they can be applied to FE
models of quasi-static magnetic fields. As will be explained, the
methods work in particular well for the magnetic fields of electric
machines due to the design of electric machines.

This chapter will first introduce the modal analysis for quasi-static
magnetic fields. Afterwards, it introduces several reduction meth-
ods that are based on modes for the simulation of dynamic mag-
netic fields. The reduction methods are based on reduction meth-
ods developed for the dynamic analyses of mechanical systems. In
Sec. 4.5, the model reduction techniques are applied to a test case,
a small 600 W wind turbine generator. The various techniques
are compared with respect to accuracy and calculation time. It is
shown that modal analysis based reduction techniques can also be
adapted for and employed to magnetic fields and yield substantial
computation cost reductions. Finally, ideas are presented to facil-
itate model reduction of magneto-mechanical systems, as those in-
troduced in Chapter 2.
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4.1.1Test Cases

The techniques introduced in this chapter will be tested on a 2D
model of a 600 W wind turbine. The 600 W wind turbine model
is based on the Ampair 600, a small direct-drive wind turbine for
private use. Fig. 4.1 shows the 2D model used. The model consists
of a rotor and stator which will be separated at the air gap of the
machine (the interface is indicated by the blue line on the left of
Fig. 4.1). The system is excited by the currents in the coils in the
stator (indicated by green elements). In the real turbine, the rotor
field is created by PMs. However, for simplicity the excitation of
the PMs is not modelled in the test case. At the outer line of the
stator, the magnetic vector potential is set to zero (on the red line
in Fig. 4.1).

In a 2D model of laminated iron, the conductivity is usually as-
sumed to be zero, to account for lamination. However, a conduct-
ivity of zero in some regions of the FE model might lead to numer-
ical instability for some solver types. Therefore, the conductivity of
the laminated iron domains was set to γ = 1. This value is so low,
that hardly any eddy currents are present, while it is large enough,
that most solvers do not run into any problems during the solution
process.

Three test cases are analysed: a step response, a rotating magnetic
field and an eigenvalue problem.

• For the step response, a time integration is conducted. The
load that is depicted on the right hand side of Fig. 4.1 is ap-
plied at t = 0. This load corresponds to the current dens-
ity distribution of a three phase current at the moment when

The red line shows the boundary

where the boundary condition A = 0

is applied. The blue line shows the

interface between the two sub parts

of the electric machine. Green are the

coil domains

−5 0 5

⋅108Current Density [ A
m2 ]

The source vector used for the step

response

Figure 4.1
The 12 pole direct-drive wind

turbine generator
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phase a is at its peak current value and thus phase b and phase
c at minus half their peak current values. The response for
the machine is simulated for the next 10 s. Due to eddy cur-
rents, the magnetic field will not be created instantaneously,
but will reach its full strength after some seconds.

• For the second test case, the three phase current that create
the load that is shown on the right hand side of Fig. 4.1 is
changed, so that the magnetic field created by the coils ro-
tates just like during operation of the machine. The rotor is
not rotated with the stator field for the test case. This rotating
stator field is simulated for 100 seconds.

• An eigenvalue problem of the rotor and stator is conducted.
For this, no excitation is used.

4.2 Modal Analysis for Quasi-Static Magnetic Fields

A system of partial differential equations that describes the dy-
namic behaviour can be rewritten as a series of uncoupled differ-
ential equations. This can be achieved by a basis transformation.
Instead of describing the amplitude of the magnetic vector poten-
tial at every node, the amplitude of certain pre-defined distribu-
tions is described. The method that is used for finding the spatial
distributions in structural dynamics is called Modal Analysis. The
basis change decouples the spatial and temporal information of the
system. The values of the nodes q can be written as

q = ∑
m
φmηm(t) (4.1)

where ηm(t) denotes the amplitude of the spatial distribution of the
mth basis vector and φm the mth basis vector. Inserting the basis
transformation into the numerical version of the governing partial
differential equation yields

CAAΦη̇(t) +KAAΦη(t) = J(t) (4.2)

where CAA and KAA are the magnetic mass and stiffness matrices,
respectively, as defined in Sec. 2.5. η is a vector containing all amp-
litudes of the basis vectors that are stored in the matrix Φ.

The modes φm and the eigenvalues λm can be computed by solving
the eigenvalue problem

KAAφm = −λmCAAφm (4.3)

where λm, the eigenvalue of the system, is defined by

λm = −
η̇m
ηm

(4.4)
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Solving the eigenvalue problem in (4.3) for λm and φm yields the
modes and eigenvalues of the system.

It is now possible to write the homogeneous solution of (4.2) as

qhom = ∑
m
φmηmetλm (4.5)

Opposite to structural systems, the eigenvalues computed by solv-
ing (4.3) are real. There is, therefore, no oscillation possible in the
solution. This can easily be explained as the governing equations
in(4.2) are first order PDEs in time whereas structural equations
are second order PDEs in time. The homogenous solution in (4.5)
is, thus, a sum of exponentially decaying spatial distributions.

Physically, this corresponds to the following effect: when a load,
i.e. a current, is suddenly switched off, the magnetic field will not
change instantaneously. The decaying of the magnetic field will
induce eddy currents in the structure and the conductor, where
the current was applied. These eddy currents create a magnetic
field that counter acts the diminishing magnetic field that was cre-
ated by the current. Over time, when the magnetic field does not
change that quickly anymore, the eddy currents will subside. Con-
sequently, themagnetic field will disappear when the eddy currents
disappear.

4.2.1Mode Truncation for Magnetic Fields

Modes of first order systems show some significant different dy-
namic behaviour thanmodes of a second order systems. To explain
this, consider a mode of a first and second order system excited by
a harmonic load.

(iωextcm + km)ηmeiωext = φT
mJe

iωext

(−ω2
extmr + kr)ηre

iωext = φT
r Fe

iωext
(4.6)

where cm denotes the magnetic modal mass, mr denotes the struc-
tural modalmass, km themagneticmodal stiffness and kr the struc-
tural modal stiffness. ηm and ηr are constant complex participation
factors and ωext denotes the excitation frequency. The modal stiff-
nesses and modal damping values can be calculate in the same way
as for structural systems

diag(km) = ΦTKAAΦ (4.7a)
diag(cm) = ΦTCAAΦ (4.7b)
diag(mr) = ΦTMuuΦ (4.7c)
diag(kr) = ΦTKuuΦ (4.7d)
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Figure 4.2
Bode Diagram comparing the

dynamic behaviour of magnetic

and structural modes
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Fig. 4.2 shows the Bode plot of the response of a first and second
order system. The first order system lacks the peak representing
a resonance frequency, which the second order system shows. In-
stead, the amplitude of the response starts to decreases at a certain
frequency. However, it does not decrease as quickly as the amp-
litude of a second order system.

When doing amodal analysis, only a certain set ofmodes are calcu-
lated. The rest of the modes are neglected because their influence
is considered insignificant. This approximation can be explained
with the transfer function of the second order system in Fig. 4.2.
Usually, the dynamics up to a certain frequency are of interest in an
application. From Fig. 4.2, it is clear that the response of a mode
is the same as the static response, for frequencies far below the res-
onance frequency. Thus, all modes that have a significantly higher
resonance frequency than the frequency range of interest can be
neglected as their response is instantaneous to the dynamic load.
Resonances that have a much lower frequency than the excitation
frequency can be neglected too, because they do not contribute to
the response of the system. This can be seen in Fig. 4.2 by a re-
sponse amplitude that approaches zero for high frequencies. The
technique to use only the lower modes of a system is called Mode
Truncation.

For 1st order systems, such as magnetic fields, this technique brings
additional challenges. In this case, the amplitude of the modes do
not decrease as quickly as they do for second order systems above
the resonance frequency (see Fig. 4.2). It is, therefore, more diffi-
cult to distinguish which modes are important and which can be
neglected.
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4.2.2Physical Values Expressed by Modes

Eigenvectors have no amplitude. They merely express the relation
between the various amplitude of DoFs. They can be normalised
with respect to the mass or the stiffness matrix. For a stiffness nor-
malisation (4.7a) is equal to one, for a mass normalisation (4.7c) is
equal to one.

A stiffness normalisation means that the amplitude of each mode
is set to a value so that the energy stored at that amplitude is one.
In that case, the dissipated energy, which is expressed by the modal
magnetic mass, differs between the modes. In that case, we can
write

φ2
mkm = 1 (4.8)

For the mass normalisation, the dissipated energy of each mode
is one while the stored energy differs. The eigenvalue of a mode
expresses the relation between the dissipated energy and the stored
energy: The eigenvalue of a mode can be calculated by

λm = −
km
cm

(4.9)

It quantifies thus how quickly all energy of amode is dissipated and
thus indicates the time constant of the particular mode. In other
words, how quickly this mode reacts to change. It is similar to the
real part of the eigenvalue of damped second order systems.

The eddy currents resulting from a change of magnetic vector po-
tential of a mode can be expressed by

Jeddy,m = CAAφmη̇m(t) (4.10)

The dissipated energy per mode can be expressed by

dWeddy,m

dt
= η̇m(t)φ

T
mCAAφmη̇m(t) (4.11)

4.2.3Rigid Magnetic Modes

The eigenvalue problem in (4.3) can have trivial results. The reason
for this is that solutions to the magnetic PDE (2.47) are not unique.
The trivial solutions are characterised by a uniform value for the
magnetic vector potential. They are the magnetic equivalent to ri-
gid body modes in structural dynamics. Opposite to rigid body
modes, there are only three rigid magnetic modes, as the rotation
does not exist for magnetic fields.

For many reduction techniques, these rigid magnetic modes pose
an additional challenge, as they need to be treated separately from
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’normal’ modes. For the stator, these trivial solutions of the eigen-
value problem do not exist, because at the outer side of the stator
a constraint is applied. For the rotor however, there is a a trivial
solution, because the absolute value of the magnetic vector poten-
tial is only determined by the interface values. This leads to ’rigid
body modes’ when using free interface reduction methods such as
the Dual-Craig-Bampton method, Rubin’s or McNeal’s method.

4.2.4 Magnetic Modes of Electric Machines

Figure 4.3
Modes of the electro-magnetic

field in a 12 pole pm synchronous

generator

λ = 0.062196 λ = 5.580866 λ = 5.698712

λ = 17.213697 λ = 17.511865 λ = 29.637164

λ = 29.959262 λ = 53.829755 λ = 54.024808

For electric machines, magnetic modes are of particular interest.
The reason for this can be found in the shape of the machine. Elec-
tric machines are constructed in a way that only two modes play
a major role for the magnetic field in an electric machine. Fig. 4.3
depicts severalmodes of a 2Dmodel of a 12 pole permanentmagnet
machine. Because the machine is a twelve pole machine only the
modes at λ = 53.83 and λ = 54.025 play a role for the machine as
these modes show the same cyclic symmetry as the machine and,
thus, the same as the currents applied in the coils. This emphasis of
only two modes can be used in many aspects for calculating mag-
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netic fields of electric machines.

The similarity of the modes and space harmonic can mislead to the
assumption that they are the same. The decomposition of a mode’s
magnetic field strength in the air gap into a Fourier series yields the
space harmonics of that mode.

4.2.5Coil Participation Factors

The magnetic modes introduced in Sec. 4.2.4 depend only on the
geometry and the material properties of the system. Which mode
is excited depends on the location where the currents in the system
are applied. The currents in the coils can be seen as a forced har-
monic excitation. The response of the system can be computed by
solving

(idiag(cm)ωexteiωextt + diag(km)eiωextt) η̂ = ΦTĴeiωextt (4.12)

where Ĵ denotes the amplitude of the force excitations J. For a
forced excitation, the relative importance of an individual mode
is expressed by its participation factor. The participation factor for
this harmonic excitation can be calculated by

ηm =
φT
mĴ

iωextcm + km
(4.13)

The participation factor might be complex, because the denomin-
ator and/or the excitation can be complex. In that case, the absolute
value of the participation factor indicates the relative magnitude of
the mode while the angle of the participation factor represents the
phase delay relative to the excitation force.

4.3Introduction to Model Order Reduction and
Dynamic Substructuring

Dynamic Substructuring (DS) and Model Order Reduction (MOR)
are two techniques that have been developed in structural dynam-
ics over the last decades. These techniques can be extended tomag-
netic fields and magneto-mechanical systems. Although the term
Dynamic Substructuring is misleading in this context, since mag-
netic fields are no structures, it will be used throughout the thesis
to show the tradition of these methods and where the inspiration
comes from.

The introduction to DS and Component Mode Synthesis that is
given here is based on [165]. For more details on the topic, please
refer to that thesis, as it gives a very good overview of the topic.
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4.3.1 Dynamic Substructuring for Electric Machines

DS is based on the idea to divide a complex structure into subparts
and describe the dynamic behaviour per subpart. This approach
has several advantages over an integral dynamic analysis. The fol-
lowing list was assembled in [165]. It lists the advantages and dis-
advantages of DS

1. It allows evaluating the dynamic behaviour of structures that
are too large or complex to be analysed as a whole.

2. By analysing the subsystem, local dynamic behaviour can be
recognised more easily.

3. When a single component is changed only that component
needs to be reanalysed; the total system can be analysed at
low additional cost.

4. It gives the possibility to combine modelled parts and exper-
imentally identified components. This is especially useful for
components that are very difficult to model correctly.

5. When a structure consists of several identical parts, dynamic
substructuring allows these parts to be taken into account
very efficiently in the total model.

6. It enables sharing and combining substructures from differ-
ent project groups.

7. The level of detail of the component models can be matched
with the intended usage of the model.

Opposite to all these benefits, the only drawback is the increased
complexity of the algorithms that are introduced here.

DS for electricmachines ismainly interesting because the rotor and
the stator can be separated easily into two substructures and ana-
lysed separately. All the above advantages are valid for the DS of
electric machines. Some entries of the list above play a larger role
for modelling magnetic fields than others.

As will become apparent in Chapter 5, themajormotivation to look
into dynamic substructuring for electric machines was, in fact, the
first point on the list, i.e. the reduced computational cost. 3D mag-
netic models can easily grow to a size that even super computers
struggle with. DS promises some relieve in this area.

Since an electric machine is always a system that includes a mech-
anical component and a magnetic component, there are several
ways to substructure the system. The first method is to split the
system by its geometrical characteristics. This will lead to a sub-
structure containing the rotor and one containing the stator. Dur-



4.3 Introduction to Model Order Reduction and Dynamic Substructuring 109

IV

M
od

el
Re
du

ct
io
n

ing rotation the interface between rotor and stator has to be reas-
sembled in every time step, because of the movement of the rotor
mesh. It is, therefore, a natural choice to compute one super ele-
ment for the rotor and one for the stator, so that a reassembly of
the air gap is still possible.

Additionally, a separation by physical domain is possible. In Sec.
2.5.10, it was explained that only the nodes of the ferromagnetic and
conducting structures are part of both physical domains. The rest
of the model belongs only to one domain. This can be used for dy-
namic substructuring by forming an interface between the mech-
anical and magnetic domain that contains all DoFs of the nodes in
the ferro-magnetic structure. Depending on the geometry of the
system, this can lead to large reductions of DoF in combination
with MOR techniques. Magneto-mechanical substructuring will
be covered in Sec. 4.6.

4.3.2Component Mode Synthesis

Component Mode Synthesis (CMS) is a dynamic substructuring
technique, which combines the concept of component wise ana-
lysis with MOR techniques. CMS decomposes the total system
in several components. Each component’s dynamic behaviour is
approximated by a so called super element. The super elements
are computed by applying a MOR technique to the component’s
model. This way, the number of DoFs is reduced while the domin-
ant dynamic characteristics are retained in the super element. After
each component is substituted by its super element, the dynamics
of the total structures can be approximated by assembling all super
elements.

As mentioned in Sec. 4.1, these techniques can be applied for tran-
sient analysis and eigenvalue problems. The decreased computa-
tional cost are realised by different effects for transient and eigen-
value problems

For the transient analysis, where the load arbitrarily changes over
time, the system of partial differential equations needs to be solved
for a set of time steps. The model reduction techniques introduced
here help to reduce the required computation time at each time
step. That is paid for by an additional computation at the begin-
ning of the transient analysis. There are some computational cost
linked to the reduction basis computation that is done before the
transient analysis. This, however, has to be done only once. So the
longer the transient analysis, the lower the computational cost. Fig.
4.4 compares the computational cost of reduced and non-reduced
models for transient problems.
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Figure 4.4
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For eigenvalue problems, computational cost reductions are real-
ised by exploiting the scaling of eigenvalue problems. Eigenvalue
problems scale with approximately n3, where n denotes the num-
ber of DoFs. It is, thus, computationally less expensive to com-
pute k eigenvalue problems of the size n

k than one large problem.
Splitting the system in several substructures and solving the eigen-
value problem of the system of assembled super elements exploits
this. The eigenvalue problems that have to be solved to assemble
each substructure are computationally much cheaper than the ei-
genvalue problem of the total system.

Work on these techniques started in the 60’s and 70’s by Hurty [67,
68]. Subsequently, numerous methods were developed that em-
ployed this idea [8, 57, 93, 130, 132]. These methods are currently
part of several finite element packages for structural analysis.

These ’classic’ methods can be applied to magnetic fields. In com-
bination with DS of the finite element model of electric machines,
large computation cost reductions can be achieved.

4.3.3 General Formulation of Component Model Reduction

Starting point for any CMS method is the system of partial differ-
ential equation in their discrete form

Mq̈ + Cq̇ +Kq = f + gb (4.14)

where f denotes the external load applied to the substructure and
gb the load on the interface applied to the substructure by another
substructure. Tab. 4.1 gives an overview over various variables used
to described reduction methods covered here.
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Description Symbol

internal DoF qi
DoF on the interface with another substructure qb
modal DoF for internal modes η
DoF after model reduction qr
DoF before reduction method is applied qnr
interface force gb

Table 4.1
Various variables for MOR and DS

techniques

The component model reduction methods use a basis transforma-
tion to describe the system of PDEs in a basis of lower order than
the original one.

qnr = Rqr
qnr ∈Rn qr ∈Rm

n > m
(4.15)

For the projection, the reduction matrix R is used, which projects
the system from the non-reduced DoFs, qnr, to the DoFs that are
left after the reductionmethodwas applied, qr. Thismatrix consists
of the basis vectors in column form. Which basis is used depends
on the reductionmethod. A selection of reductionmethods will be
introduced in Sec. 4.4.

The reduced matrices of the system can be calculated by pre- and
postmultiplying the system matrices by the reduction matrix R.

M̃ = RTMR
C̃ = RTCR
K̃ = RTKR

(4.16)

The forces in g and f are projected onto the new basis by

g̃ = RTg
f̃ = RTf

(4.17)

This results in the following reduced system of partial differential
equations

M̃q̈r + C̃q̇r + K̃qr = f̃ + g̃ (4.18)

TheDoFs that are retained during the componentmodel reduction,
qr contain the interface DoFs qb, that are needed to assemble vari-
ous components to the total system. This is covered in Sec. 4.3.4.

4.3.4Assembly Methods for Dynamic Substructuring

For the reduction methods introduced in this thesis, two assembly
methods for the various substructuring methods are used. Which
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method is used depends on the component model reduction tech-
nique. Only a selection of existing assembly methods are intro-
duced here.

The methods and notation introduced here are based on the thesis
by Voormeeren [165] and the paper by Voormeeren et al. [164].

Primal Stiffness Assembly

For an interface of two substructures, the interface DoF exist in
both substructures. They are redundant, because the compatibility
condition dictates that the displacements/vector potential on both
sides of the interface are equal. When forming the assembly, it is
therefore beneficial to eliminate one set of boundary DoFs. For
that, the intermediate DoFs qγ are introduced, which are unique.
To associate these intermediate DoFs to the boundary DoFs on
both sides of the interface the Boolean matrix Lb is introduced. It
is defined by

q(s)b − L
(s)
b qγ = 0 (4.19)

where the superscript in (●)(s) denotes the substructure.

Starting point for the assembly is the unassembled system in the
form of

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M̌ii M̌ib 0 0
M̌bi M̌bb 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q̈i
q̈b
g̈b
q̈γ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Čii Čib 0 0
Čbi Čbb 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q̇i
q̇b
ġb
q̇γ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ǩii Ǩib 0 0
Ǩbi Ǩbb −I 0
0 −I 0 Ľb
0 0 ĽTb 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qi
qb
gb
qγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f̌i
f̌b
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4.20)

The nature of the internal DoFs in (4.20) depend on the model re-
duction method used. These can either be normal DoFs or DoFs
associated with a mode that describes the internal dynamics of the
substructure.

In (4.20) the following block diagonal forms are used

Ǩii = diag(K(1)ii , . . . ,K(n)ii )

Ǩib = diag(K(1)ib , . . . ,K(n)ib )

Ǩbi = diag(K(1)bi , . . . ,K(n)bi )

Ǩbb = diag(K(1)bb , . . . ,K(n)bb )

(4.21)
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and analog for the mass and damping matrices. The Boolean mat-
rix Ľb is defined by

Ľb =
⎡⎢⎢⎢⎢⎢⎣

L(1)b
⋮

L(n)b

⎤⎥⎥⎥⎥⎥⎦
(4.22)

and the force vectors f̌i and f̌b

f̌b =
⎡⎢⎢⎢⎢⎢⎣

f(1)b
⋮

f(n)b

⎤⎥⎥⎥⎥⎥⎦
and f̌i =

⎡⎢⎢⎢⎢⎢⎣

f(1)i
⋮

f(n)i

⎤⎥⎥⎥⎥⎥⎦
(4.23)

This definition yields the following transformation for a substruc-
ture.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qi
qb
gb
qγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0
0 0 Lb
0 I 0
0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

qi
gb
qγ

⎤⎥⎥⎥⎥⎥⎦
(4.24)

Pre- and postmultipliying (4.20) with (4.24) yields the assembled
system

[ M̌ii M̌ibĽb
ĽTbM̌bi ĽTbM̌bbĽb

] [ q̈iq̈γ
] + [ Čii ČibĽb

ĽTb Čbi ĽTb ČbbĽb
] [ q̇iq̇γ

]+

+ [ Ǩii ǨibĽb
ĽTb Ǩbi ĽTb ǨbbĽb

] [qiqγ
] = [ f̌i

ĽTb f̌b
]

(4.25)

Note that this is the way structures are usually assembled in finite
elements.

Dual Assembly

In the Dual assembly, the interface forces are reduced to one set of
forces. This is possible because the interface forces have the same
magnitude and opposite direction per node. Retaining the unique
interface forces makes this assembly method suitable for the Dual-
Craig-Bampton method, which will be introduced in Sec. 4.4. For
that, the same approach is used that was used for the interface dis-
placements in the primal assembly. A Boolean matrix is defined
that associates the uniquemagnitudes of the interface forces gγ with
the interface forces on both sides of the boundary.

gb = −BT
bgγ (4.26)

Opposite to Lb, Bb is a signed Boolean to realise the opposite dir-
ection of the interface forces.
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Pre- and postmultiplying (4.20) with
⎡⎢⎢⎢⎢⎢⎢⎢⎣

qi
qb
gb
qγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0
0 I 0 0
0 0 −BT

b 0
0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qi
gb
gγ
qγ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4.27)

eliminates the interface forces gb and replaces themwith the unique
force field gγ . This yields the assembled system
⎡⎢⎢⎢⎢⎢⎣

M̌ii M̌ib 0
M̌bi M̌bb 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

q̈i
q̈b
gγ

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

Čii Čib 0
Čbi Čbb 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

q̇i
q̇b
gγ

⎤⎥⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎢⎣

Ǩii Ǩib 0
Ǩbi Ǩbb B̌T

b
0 B̌b 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

qi
qb
gγ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

fi
fb
0

⎤⎥⎥⎥⎥⎥⎦

(4.28)

where ˇ(●) denotes again the block diagonal form of the matrices
that was introduced for (4.20).

Node Collocation

In an electric machine, two substructures, which move relative to
each other, are present. The interface nodes of two adjacent sub-
structures will thus not always coincide. Instead, some or all of
the nodes of one substructure are located between the nodes of
the other substructure. In such a case, the assembly process be-
comes more complicated, as in this case, it is necessary to interpol-
ate between two nodal values.

The assembly can be implemented, according to [47], by defining a
unique set of degrees of freedom that define the nodal values on the
interface. Since the location of the nodes on both sides of the inter-
face are not necessarily the same, two matrices relating the values
of the interface to the unique set of values are necessary

q(s)b = D
(s)
b qγ for s = 1, 2 (4.29)

where D(s)b is the substructure collocation matrix. The values of Db
are evaluated by evaluating the shape function on the associated
substructure. Since this depends on the position of the interface
field, the collocation matrixes needs to be reevaluated whenever
one of the meshes is moved or changed.

4.4 Linear Reduction Methods Based on Modal Analysis

In Sec. 4.2, the modal analysis for quasi-static magnetic fields were
introduced. In this section, a series ofmode based reductionmeth-



4.4 Linear Reduction Methods Based on Modal Analysis 115

IV

M
od

el
Re
du

ct
io
n

ods for estimating the dynamic behaviour of these systems will be
introduced. The reduction techniques investigated here include
Guyan’s method, also called Static-Condensation method [57], the
Craig-Bamptonmethod [8], theAugmented-Craig-Bamptonmethod
[128] and the Dual-Craig-Bampton method [130]. All these meth-
ods were developed for the reduction of models describing the dy-
namics of structures.

4.4.1Guyan’s Method

Guyan’s method or static-condensation method [57] projects the
internal DoFs qi on the boundaryDoFs qb using the static response
related to boundary unit inputs. Boundary DoFs are considered to
be all DoFs on the interface to another subsection of themodel and
all DoFs where an external current/force is applied. For electric
machines, that means that all DoFs on the interface between the
rotor and the stator as well as DoFs in the coil domains of the stator
model are considered as boundaryDoFs. The reductionmatrix can
be computed by

qnr = [
qi
qb
] = [Ψs

I ]

±
R

qr = [
K−1ii Kib

I ]qb (4.30)

whereKii andKib are submatrices ofK defined in (4.20). Although
Guyan’s method neglects the internal dynamics of the system dur-
ing the reduction, it can still yield good results because the internal
dynamics within electric machines are of minor importance due to
the lamination of the machine. That is why Guyan’s method yields
relatively accurate results for electric machines.

4.4.2The Craig-Bampton-Method

The Craig-Bampton (CB) method, [8], uses the condensation in-
troduced by Guyan’s method. On top of that, it takes the internal
dynamics of the substructure into account by including fixed in-
terface modes. To calculate the fixed interface modes, the bound-
ary degrees of freedom are fixed in the eigenvalue problem that is
solved to compute the modes. The Craig-Bampton method yields
better results when there are no internal forces applied to the struc-
ture (fi = 0). This can be achieved by including the DoFs where an
external force is applied into the boundary DoFs qb.

Fig. 4.5 shows fixed interface modes for the stator and rotor. The
interface between the two substructures is located on the inside
of the stator and outside of the rotor. Additionally, the DoFs in
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Figure 4.5
Contour plots of the magnetic

vector potential. Depicted are two

fixed interface modes and two free

interface modes

The 12th fixed interface mode of the

stator

The 13th fixed interface mode of the

stator

The 11th fixed interface mode of the

rotor

The 12th fixed interface mode of the

rotor

the coil domains (depicted in green in Fig. 4.1) are retained dur-
ing the reduction process, because external currents are applied to
these DoFs. The stator plots in Fig. 4.5 illustrate the problem that
arise from using the Craig-Bampton Method. The stator modes
are restricted to rather local modes, because the coil domains, of
which the DoFs are fixed during the mode computation, account
for a large portion of the total domain of the stator. The calculated
modes, therefore, will play a minor role in the internal dynamics of
the system.

The reduction matrix for the CB method can be computed by

qnr = [
qi
qb
] = [ΦCB Ψs

0 I ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
RCB

[ ηqb
] (4.31)

where ΦCB denotes the fixed interface modes retained during the
model reduction andΨs the static condensation projection thatwas
introduced in (4.30) for Guyan’s method.
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4.4.3The Augmented-Craig-Bampton Method

The CB method showed some significant disadvantages when ap-
proximating the internal dynamics of the electric machine. The
reason for the bad performance of the method was the require-
ment that there are no external forces applied to the internal DoFs
of the system. TheAugmented-Craig-Bamptonmethod (ACB) [34,
129] offers the possibility to enrich the basis of the generic Craig-
Bamptonmethod to account for forces applied to the internalDoFs.
The force distribution needs to be known a priori. In that case, the
static and/or pseudo-dynamic system response to this force distri-
bution, so calledModal TruncationAugmentation vectors (MTAs),
can be used to enrich the basis. This way, the static response of
the modes that were not included in the reduction basis can be in-
cluded in the model.

For electric machines, this method facilitates the use of modes that
are not constraint in the coil domains. Fig. 4.6 shows the modes
calculated with free DoFs in the coil domains. For electric ma-
chines, the internal forces (in this case currents) have a fixed dis-
tribution, which is defined by the coil pattern of the machine. It
is, thus, possible to represent the static response to the system by
three vectors, one for every phase of the machine.

The additional basis vector can be calculated from the force distri-
butions that are applied to the internal DoFs of the system. The
static response of the system can be calculated by

ΦM = K−1ii F (4.32)

where F denotes amatrix in which the columns represent the force/
current distributions that are known a priori. Just like the retained
modes from the generic Craig-Bamptonmethod, theMTAs should
be mass normalised

ΦT
MMiiΦM = I (4.33)

Finally, it needs to be ensured that the reduction basis consists of
orthogonal vectors. In the generic Craig-Bampton method, this is
ensured as the results of the eigenvalue problem are by definition
orthogonal to each other. The MTAs, however, are not necessarily
orthogonal to all these vectors. By applying an orthonormal pro-
jection, P, this can be achieved

P = I −ΦCBΦT
CBMii (4.34)

The total reduction matrix consists of the ortho-normalised static
response of the neglected modes and the fixed interface modes

[qiqb
] = [ΦCB ΦM Ψs

0 0 I ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
RACB

⎡⎢⎢⎢⎢⎢⎣

ηCB
ηM
qb

⎤⎥⎥⎥⎥⎥⎦
(4.35)
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Figure 4.6
Plots of the magnetic vector

potential. Depicted are two fixed

interface modes for the

Augmented-Craig-Bampton

method of the stator (top) and the

rotor (middle). The bottom two

plots show two MTAs.

The 12th fixed interface mode of

the stator for the ACB method

The 13th fixed interface mode of

the stator for the ACB method

The 11th fixed interface mode of

the rotor for the ACB method

The 12th free interface mode of

the rotor for the ACB method

The 1st MTA of the stator for the

ACB method

The 2nd MTA of the stator for the

ACB method

4.4.4 The Dual-Craig-Bampton Method

The idea behind theDual-Craig-Bampton (DCB)method is retain-
ing the interface force rather than the interface displacements as
the DoFs in the reduced component model. The forces are math-
ematical dual to the displacements, giving the methods its name.
The difference to Rubin’s method, which also retains the interface
forces, is that even in the assembled total structure model, these
forces are retained. Because of the forces retained in the reduced
set of DoFs, a different assembly method needs to be used. This
method is called dual assembly.
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The 12th free interface mode of the

stator

The 13th free interface mode of the

stator

The 11th free interface mode of the

rotor

The 12th free interface mode of the

rotor

Figure 4.7
Free interface modes used in the

Dual-Craig-Bampton method

The reduction matrix reads as follows

[ugb
] = [Φr Φf Ψr

0 0 I ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
RDCB

⎡⎢⎢⎢⎢⎢⎣

ηr
ηf
gb

⎤⎥⎥⎥⎥⎥⎦
(4.36)

whereφr denotes the rigid bodymodes,Φf the free vibrationmodes
and Ψr the residual attachment modes. The version of the Dual-
Craig-Bamptonmethod that employs attachmentmodes instead of
residual attachment modes can also be used. It was not explicitly
derived here (see [164] for more details).

The Dual-Craig-Bampton method introduces the interface forces
as additional DoFs. For structural systems the interface forces in-
troduce infinite eigenfrequencies, whereas for first order systems
they introduce infinite real eigenvalues. While for a time depend-
ent study, these eigenvalues pose a problem as the system becomes
unstable, they do not pose a problem for an eigenvalue analysis, as
usually the algorithms are set up in such a way that the eigenvalues
with the lowest magnitude are found.
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Attachment Modes for Magnetic Fields

For magnetic fields, the computation of attachment modes known
from the Rubin’s method, varies slightly from the usual way how
attachmentmodes are calculated. The reason for this is the different
order of the system and the smaller number of ’rigid body modes’.

Figure 4.8
Some Attachement Modes of the

stator and rotor used for the

Dual-Craig-Bampton Method

The 12th attachment mode of the

stator

The 80th attachment mode of the

stator

The 13th attachment mode of the

rotor

The 80th attachment mode of the

rotor

Attachment modes are the static response of the system to the ap-
plication of a loading at the DoFs. For dynamic substructuring,
only the response of the system to forces on the interface are im-
portant.

qstat = K+ATgb (4.37)

where K+ denotes the generalised inverse of K and A a Boolean
matrix that selects the interface DoFs. The attachment modes can
then be calculated as

Ψa = K+AT (4.38)

While for constrained systems without rigid body modes, K+ =
K−1 and qstat is easily computable, the computation of qstat is more
lengthy when ’rigid body modes’ are present in the system. In that
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case, the stiffness matrix, K, is singular and an inverse is not easily
computable. The system needs to be constrained in such a way that
the stiffness matrix, K, becomes non-singular. For structural dy-
namics, determining the best isostatic constraint is a lengthy pro-
cedure [158]. The procedure for magnetic fields is shorter as there
are no rotational ’rigid body modes’ and, thus, which DoF are con-
straint does not matter. After the constraints are applied the re-
maining stiffness matrix is positive definite and, thus, invertible.

K+ = [0 0
0 K−1] = Gc (4.39)

Applying a nodal force to a system with rigid body modes would
lead to an infinite static solution, as the rigid body modes would
be excited. By self-equilibrating the nodal forces, i.e. making sure
the applied forces a statically in equilibrium, the ’rigid bodymodes’
are not excited and the solution becomes finite. To do that, the
interface forces need to be projected to the null space of the rigid
body modes.

AT
eq = (I − CΦrΦT

r )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P

AT (4.40)

where P denotes the so called inertia-relief projector [29]. (4.40)
shows the difference for attachment modes of magnetic systems to
structural systems, as the damping matrix C instead of the mass
matrix is used.

As a final step, the attachment modes and rigid body modes need
to be made orthogonal with respect to the magnetic mass matrix.
To do so, the same projection matrix as for MTAs is used.

4.5Application to the 600 W Ampair Wind Turbine

The test cases that are used to evaluate the reduction methods were
introduced in Sec. 4.1.

Tab. 4.2 shows the current participation factors of the first 14modes
for the ACB and DCB methods. The Craig-Bampton method was
excluded from Tab. 4.2, because there are no loads applied to in-
ternalDoFs. Consequently, all participation factorswould be zeros.
The internal modes of the CB method are thus not directly excited
by the external load. They still contribute to the description of the
dynamic response of the systems becausewithin the super elements
they can be excited. However, their contribution is very small. It
can be concluded that the criterium to determine importantmodes
in (4.13) is not suitable for the Craig-Bampton method.
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Figure 4.9
Reduction of calculation time and

DoFs for the reduction methods

introduced

According to Tab. 4.2, the 12th and 13th modes where chosen for
the DCB and ACB method, as these modes show the highest par-
ticipation factors. This is the case because the 12th and 13th mode
have the same cyclic symmetry as the electro-magnetic active ma-
terial. Therefore, they represent the magnetic field that is created
by the coils very well. For the rotor, the first 14 modes were chosen,
because no participation factors can be calculated here.

The choice for the CB method cannot be based on participation
factors. Therefore, the 14 modes with the lowest eigenvalues were
used for the stator as well as the rotor.

4.5.1 Time Integration

To compare the results of the time integration, the proper ortho-
gonal decomposition method was used [74]. This method calcu-
lates the proper orthogonal modes (POM) and the proper ortho-
gonal values (POV). The first POM represents the mode that cap-
tures the most energy of the time series it is calculated from. The
corresponding POV represents the energy of that POM. Compar-
ing the first three POM/POV couples of the reduced and reference

Table 4.2
The coil participation factors of the

various stator modes used in

various linear reduction methods:

Augmented Craig-Bampton

method (ACB) and

Dual-Craig-Bampron method

(DCB)

Mode number ACB [⋅108] DCB [⋅108]
1 0.0018 −i 0.0110 0.0013 +i 0.0008

2 0.0150 +i 0.0005 −0.0001 −i 0.0000

3 0.0031 +i 0.0183 0.0001 +i 0.0000

4 0.0010 −i 0.0181 0.0001 +i 0.0002

5 0.0001 −i 0.0060 0.0002 −i 0.0001

6 −0.0246 +i 0.0061 0.0003 −i 0.0003

7 −0.0028 +i 0.0207 0.0003 +i 0.0000

8 0.0512 −i 0.0517 0.0014 +i 0.0005

9 −0.0086 +i 0.0920 −0.0007 −i 0.0006

10 −0.0389 +i 0.7298 −0.0405 −i 0.0516

11 0.6252 +i 0.1240 0.0539 −i 0.0405

12 −1.5762 −i 3.1884 −4.1184 −i 2.3070

13 −3.3662 +i 1.6365 −2.0429 +i 3.6471

14 −0.1100 −i 0.5524 −0.0165 +i 0.0714
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no reduction Guyan CB ACB

number of DoFs 7109 1780 1808 179

Step Response

Calc. timewithout basis assembly [s] 408 153 258 17

Calc. time with basis assembly [s] 408 154 281 28

time red. with basis assembly [%] 0 62 31.2 93.2

− 1 1 1

1 1 1
MAC values of first three Proper

Orthogonal Modes (POM)
1 1 1

− 0 0 0

0.1 0 0.28
relative error of first three Proper

Orthogonal Values (POV) [%]
0.1 0 −3.23

Rotating Magnetic Field

Calc. time without basis assembly [s] 395.8 464 442 57.6

Calc. time with basis assembly [s] 395.8 465 465 67

time red. with basis assembly [%] 0 −17.6 −17.6 83.1

− 1 1 1

1 1 1
MAC values of first three Proper

Orthogonal Modes (POM)
1 1 1

− 0 0 0

0 0 0
relative error of first three Proper

Orthogonal Values (POV) [%]
0 0.12 0.5

Table 4.3
The results of the various linear

reduction methods: Guyan’s

Method, Craig-Bampton method

(CB) and Augmented

Craig-Bampton method (ACB)

solutions gives an impression how accurately the reduced model
reproduces the reference solution. The POMs are compared by a
modal assurance criterion (MAC), whereas the POV are compared
by calculating the relative error between them. A MAC value for
the POM close to 1 indicates that the shape of those modes are very
close together. A low relative error for the POV value indicates that
the amplitude of the associated POM are similar.

Tab. 4.3 and Fig. 4.9 show the reduction of computation time for
Guyan’s Method, the Craig-Bampton Method and the Augmented-
Craig-Bampton method. The Dual-Craig-Bampton method was
not included, because the time integrationwas unstable using stand-
ard solver. A reduction of computation time could only be realised
for the ACB method. Guyan’s method and the CB method actually
increase the computation time.

4.5.2Eigenvalue Analysis

To compare the eigenvalue analysis, the eigenvalues of the reduced
and the full system are compared. Tab. 4.4 lists the first 14 eigen-
values for each reduction method and the full model.
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The CB method and Guyan’s method yield very accurate results for
the eigenvalues. The DCB method is also quite accurate with only
twomodes for stator and rotor each. TheACBmethod shows some
deviation from the exact eigenvalues.

Table 4.4
Value of computed eigenvalues

Full Model CB Guyan ACB DCB

Calculation Time

w/o reduction time
0.18 0.52 0.52 0.027 0.025

Eigenvalues

Mode 1 −0.0630 −0.0630 −0.0630 −0.0631 −0.0630
Mode 2 −5.8292 −5.8964 −5.8292 −6.3481 −5.8969
Mode 3 −5.8964 −5.8292 −5.8964 −6.4279 −5.8297
Mode 4 −19.0030 −18.8359 −18.8359 −25.6092 −19.0168
Mode 5 −18.8359 −19.0030 −19.0030 −25.9182 −18.8484
Mode 6 −32.4917 −32.3049 −32.3049 −55.6167 −32.3513
Mode 7 −32.3049 −32.4917 −32.4917 −56.7684 −32.5400
Mode 8 −43.1158 −43.1158 −43.1158 −57.4105 −43.1887
Mode 9 −43.2891 −43.2891 −43.2891 −58.6921 −43.3640
Mode 10 −51.0733 −51.2148 −51.0733 −59.9809 −51.1492
Mode 11 −51.2148 −51.0733 −51.2148 −60.2857 −51.2927
Mode 12 −56.7912 −56.7912 −56.7912 −74.6095 −56.8538
Mode 13 −56.9744 −56.9744 −56.9744 −111.5550 −57.0390
Mode 14 −61.1375 −61.1375 −61.1375 −109.9829 −61.1853

4.5.3 Discussion

The CB and Guyan’s method retain the coil domain DoFs in the re-
duced system. These DoFs are the only DoFs that have a significant
entry in the damping matrix as only the coil domains have a con-
ductivity larger than one. Hence, the reduced part does not signi-
ficantly contribute to the internal dynamics of the system. There-
fore, these methods yield very accurate results. The numbers in
Tab. 4.3 indicate this. The calculation times of these two reduction
methods are actually higher than for the full system for the rotating
field load case. This increase in computation time is caused by an
extended computation time to find a feasible initial state.

The results of the time dependent analysis of the ACB method are
less accurate for the step response than for the rotational magnetic
field. The step response excites many modes whereas the rotating
field excites mainly the two modes that are retained in the basis
of the ACB. Neglecting a considerable amount of modes, the ACB
method cannot capture the entire dynamics caused by a load step.
The reference response, on the other side, are able to do so, be-
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cause no reduction is applied and thus all dynamic information is
still contained in the system. For the rotating field, the important
internal dynamics are contained in the twomodes that are retained
in the ACB method. Therefore, the ACB method can describe the
solution to the rotating excitation accurately.

TheACBmethod performsworse in approximating the eigenvalues
of the total system, although it retains the same amount of modes
than the DCB method. Most likely, the static condensation used in
the ACB method cannot accurately describe the coupled dynam-
ics of the system, while the attachment modes, used for the DCB
method, can. Further research is necessary, to single out the cause
of this error.

4.6Reduction of Magneto-Mechanical Coupled
Systems

The reduction methods introduced in Sec. 4.4 can also facilitate
computations of large coupled eigenvalue problems. (2.172) needs
to be solved monolithically. This requires an enormous amount of
memory when the system has a lot of DoFs. To reduce the required
memory, the system can be split up in several subsystems. As de-
scribed in Sec. 4.3.2, this reduces the computational cost. It also
reduces the needed amount of memory.

Magneto-mechanical coupled models of electric machines can be
decomposed in two ways. The first way is the one already intro-
duced for the purely magnetic substructuring. The rotor and the
stator represent each a substructure and the super elements are
coupled in the air gap. In this case, remeshing is necessary when
the rotor is rotated relative to the stator.

It is possible to split each of the above substructures by physics,
yielding four substructures. This way a magnetic and a mechanical
substructure are created for rotor and stator. This idea is explored
in this section. Sadly, there was no time to investigate this method
in detail.

4.6.1Coupling of Multi-Physical Substructures

As described before, one of the possibilities to split the total sys-
tem into substructures is by separating it in different physical do-
mains. In that case, an assembly has to be made that has one phys-
ical model on one side of the boundary, while the other substruc-
ture describes another physics.
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To better understand the concept of multi-physical substructuring,
consider the system in Fig. 4.10. The system consists of a deform-
able structure of which one part is part of a magnetic field. The
round nodes in Fig. 4.10 are part of both domains. At these nodes
the coupling between the two physics take place. The nodes that
are indicated by a cross are only part of one physics. All degrees of
freedom that are part of the coupled domain are considered bound-
ary DoFs and are retained during the component model reduction
of the magnetic domain and the mechanical domain. All DoFs at
nodes represented by crosses are considered internal DoFs and will
not be part of the reduced system. The coupling is indicated by the
dashed lines.

Looking at the assembly equations, themulti-physical coupling can
be seen as an assembly with interface physics (see [164] for an ex-
planation of the purely mechanical case). In the multi-physical
case for magneto-mechanical coupled systems, the interface phys-
ics consist of a damping term, represented by the CuA and CAu
terms in (2.170), and a stiffness term represented by the KuA and
KAu. The domain that is coupled, i.e. that combines the magnetic
field and the elastic field in one domain, is considered the boundary
now. Therefore, all boundary DoFs are part of that domain

qb ∈ Ωcpl (4.41)

The matrices CAu,CuA, KAu and KuA only affect the DoFs in this
coupled domain. The rows and columns of the other DoFs are
empty. The subpart of the coupling matrices that are associated
to the boundary DoFs are denoted by

CbAbu CbubA KbAbu KbubA

To indicate which value belongs to which substructure/domain the
same notation as before is used, but instead of numbers indicating
the substructure, u and A are used to indicate the structural and
the magnetic domain, respectively.

Because there are no redundant variables for the multi-physical
coupling, no DoFs or force terms can be eliminated. This distin-

Figure 4.10
Link between nodes of

substructures with different

physics

Ωmech

Ωmag

Ωcpl

Kb1b2, Cb1b2
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guishes the multi-physical coupling from the primal and dual as-
sembly introduced in Sec. 4.3.4. There is no compatibility condi-
tion:

q(u)b ≠ q(A)b (4.42)

Also the interface forces do not have the same magnitude with op-
posite pre-sign:

g(u)b ≠ −g(A)b (4.43)

The interface forces result from the coupling matrices in (2.172).

g(u)b = −KbubAq(A)b −Kbubuq(u)b − CbubAq̇(A)b − Cbubuq̇(u)b

g(A)b = −KbAbuq(u)b − CbAbuq̇(u)b

(4.44)

The matrices in (4.44) are derived from the coupling matrices in
(2.170). As the matrices in (2.170), they depend on the DoFs of
the system and, consequently, create a nonlinearity. Separating the
physics in (4.44), yields the two coupling matrices

ǧb = [
g(u)b
g(A)b
] = − [Kbubu KbubA

KbAbu 0 ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Kcpl

[q
(u)
b

q(A)b
] − [Cbubu CbubA

CbAbu 0 ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ccpl

[q̇
(u)
b

q̇(A)b
] (4.45)

For the case that the physics are the sameonboth sides, thematrices
in (4.45) become symmetric. With (4.45), it is possible to assemble
the global coupled equation:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M(u)ii M(u)ib 0 0
M(u)bi M(u)bb 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̈(u)i
q̈(u)b
q̈(A)i
q̈(A)b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(u)ii C(u)ib 0 0
C(u)bi C(u)bb + Cbubu 0 CbubA

0 0 C(A)ii C(A)ib
0 CbAbu C(u)bi C(u)bb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇(u)i
q̇(u)b
q̇(A)i
q̇(A)b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(u)ii K(u)ib 0 0
K(u)bi K(u)bb +Kbubu 0 KbubA

0 0 K(A)ii K(A)ib
0 KbAbu K(u)bi K(u)bb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(u)i
q(u)b
q(A)i
q(A)b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(u)i
f(u)b
f(A)i
f(A)b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.46)

(4.46) shows that the inner dynamics of the individual single phys-
ical systems stay the same during coupling. The coupling physics,
which is introduced to the system, is only applied to the interface
DoFs.

Because no DoFs or forces are eliminated, any of the reduction
methods introduced in Sec. 4.4 can be used to reduce the DoFs
in the subsystems, assuming all interface DoFs are retained.

In magneto-mechanical coupled systems, the structural dynamics
are dominated by the free interface modes. The magnetic forces
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have a minor influence on the dynamics. Therefore, it seems be-
neficial to use the Dual-Craig-Bampton method for reducing the
structural part. This way free interface modes are used to approx-
imate the solution, which resemble the final solution more than
fixed interface modes.

Themagnetic field in electricmachines, on the other side, is mainly
dominated by its static response. The internal dynamic are not so
important due to lamination. Furthermore, the stiffness change
due to the geometry change, i.e. the part that is represented by
KAuqu in (2.170), has a strong influence on the magnetic field. In
this case, it seems better to use the CB method, as the CB method
super imposes the internal dynamics on the dominant static solu-
tion.

A mixed assembly method as introduced in [164] for the two phys-
ics seems thus best to yield a reduced model that is as accurate as
possible for a certain amount of retained modes.

4.6.2 Multi Physical Guyan

For magneto-mechanical systems, there is a special way to apply
Guyan’smethod. Assuming that one physic is linear, it is possible to
condensate that physic onto the other physic. There are, therefore,
two ways to apply this Guyan’s method.

In Chapter 2 the structural PDE were assumed to be linear. It is
thus possible to condensate the whole structure onto the nodes that
represent the boundary between the structural and the magnetic
domain. This boundary consists of all magnetic DoFs within the
structure of which the dynamics are condensed. Starting from the
coupled numerical equations (2.170) the reduction matrix can be
written as

qnr =
⎡⎢⎢⎢⎢⎢⎣

qu
qAi
qAb

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 K−1uuKuAb
IAiAi 0
0 IAbAb

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R

[qAiqAb
] (4.47)

where qAb denotes themagnetic field DoFs on the interface and qAi
the internal magnetic field DoFs. The reduction matrices can then
be calculated according to (4.16). This way only the magnetic DoFs
are retained in the system.

For linear magnetic systems the condensation of the magnetic do-
main onto the structural domain is possible. In this case, only the
DoFs where a coil current is applied and the DoF within the per-
manentmagnet domains are retained, because at those location ex-
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ternal loads are applied. The reduction matrix can be written as

qnr =
⎡⎢⎢⎢⎢⎢⎣

qui
qub
qA

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

Iuiui 0
0 Iubub
0 K−1AAKAub

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R

[quiqub
] (4.48)

Which physics condensation yields more accurate results depends
highly on the system. As Guyan’s method neglects internal dynam-
ics of the system, it yields good results when the dynamics play a
minor role in the system. That is the case for the magnetic field
of electric machines, as these machines are designed in such a way
that the eddy currents are minimal. However, usually a nonlinear
model is necessary to yield accurate results for the magnetic fields
as saturation and hysteresis needs to be taken into account. In such
a case, Guyan’s method cannot be applied as explained in (4.48)

On the other side, the structural system is mainly linear. How-
ever, the internal dynamics are quite important or even dominant.
Therefore, a reduction method should be used that includes these
internal dynamics.

Estimating the Frequency Change

For the case that the influence of the magnetic field on a structural
mode is of interest, the statement made above about the nonlinear-
ities of themagnetic field no longer holds. In this case themagnetic
field can be linearised around a linearisation point, much like it was
done in Chapter 2.

Using the multi-physical Guyan method, it is possible to roughly
estimate the influence of the magnetic field on a structural mode.
For a certain structural mode it is possible to estimate the coupling
energy (2.78) without computing a coupled modal analysis. As-
suming that a modal analysis for the structural part of the system
has been done and the matrices for the magnetic part of the system
are known, the system can be described by:

[diag(mr) 0
0 0] [

η̈r
q̈A
] + [diag(cr) ΦTCuA

CAuΦ CAA
] [ η̇rq̇A

]

+ [diag(kr) ΦTKuA
KAuΦ KAA

] [ηrqA
] = 0

(4.49)

It is now possible to calculate how the magnetic field behaves when
it is influenced by the displacement of the rth mode. The magnetic
field can be described by the first order system in which the dis-
placement of the rth mode is seen as excitation.

CAAq̇A,r +KAAqA,r = Jext −KAuφr − CAuφ̇r (4.50)
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qA,r denotes the changes of the nodal values of the magnetic field
generated by the movement of the rth mode. Only the steady state
solution is of interest. The steady state solution for the rth mode is
described by

qA,r = [iωrCAA +KAA]−1 [−KAu − iωrCAu]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

KAΦ

φr (4.51)

where ωr denotes the eigenfrequency of the rth mode. Due to the
first order ODE KAΦ has an imaginary term as well as a real term.
Therefore the change of themagnetic field created by themovement
of the mode is not necessarily in phase with the structural mode.

(4.49) can bewritten in terms of themodal coordinates η projecting
the magnetic degrees of freedoms onto the modes.

diag(mr)η̈r + diag(cr)η̇r + (diag(kr) − φ
T
r [KuA + iωrCuA]KAΦφr) ηr = 0 (4.52)

The coupling energy for the rth mode,Wex,m,r, can be calculated by

Wex,m,r = φT
r KuAKAΦφr (4.53)

Wex,m,r has a real and an imaginary part. The real part gives an
indication on how the frequency of the mode changes due to coup-
ling while the imaginary part of Wex,m,r gives an indication about
the increase in damping.

Comparing the exchanged energy (4.53) with the energy associated
with a mode

Wr = φrKuuφr = ω
2
rmr (4.54)

gives an indication towhat extend themode is affected by the coup-
ling. The new eigenfrequency ωr,cpl can be estimated by taking the
square root of the new energy stored in the mode

ωr,cpl =
√

ω2
r − Real{ 1

mr
Wex,m,r} (4.55)

4.7 Discussion

The results in Sec. 4.5 clearly show that using the four introduced
methods for rotating electric machines yield a significant reduc-
tion of DoFs and thus calculation time for magnetic fields of elec-
tric machines. However, there are some issues associated with the
methods proposed here that still need some further research.

Electric machines are designed to operate in saturation. The linear
FE models introduced in this paper cannot take saturation of the
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iron into account. Saturation will lead to a B-H curve that is non-
linear and therefore will lead to a nonlinear finite element formu-
lation, resulting in a stiffness matrix that depends on the magnetic
flux density (see Sec. 2.5.6). Normally, that problem is overcome
by reassembling the stiffness matrix for every time step. However,
this method is not applicable here as the assembly of the reduction
matrices is computationally expensive. Inmechanical engineering,
there are some reductionmethods that are based onmodal analysis
that can deal with this problem, for instance [152]. Furthermore,
hyper reductionmethods such as ECSW [44] can be applied. These
reduction methods have to be adapted for magnetic fields.

The methods introduced here take a whole machine into account.
For time dependent analysis ofmagnetic fields in electricmachines,
only a section of the machine is computed exploiting the machine’s
cyclic symmetry. This can also be done for modal analysis of cyc-
lic structures. In the past, methods based on Floquet theory have
been developed to calculatemodes for cyclic-symmetric structures,
modelling only a section of the cyclic-symmetric structure [82, 127].
This method can be adapted for the introduced methods for mag-
netic fields in electric machines.

4.8Summary

In this chapter, the modal analysis for quasi-static magnetic fields
was introduced. It was shown that magnetic modes can be used
to reduce computationally expensive finite element problems, us-
ingmethods developed for structural dynamics. Themethods need
to be adapted slightly, because the magnetic PDEs represent a first
order system, while the structural PDEs represent a second order
system. It was shown that because of the specific design of electric
machines, this modal approach to model reduction yields accurate
results in particular for electricmachines. By applying themethods
to a 2D model of an electric machine, their potential was demon-
strated. Significant time reduction could be achieved by the tested
methods. However, the reduction methods lack the capability to
include nonlinear effects such as hysteresis and saturation.

Furthermore, ideas were presented for model order reduction of
dynamic magneto-mechanical coupled systems. These methods
can reduce the computational cost and the memory requirements
for the coupled eigenvalue problem introduced in Chapter 2 signi-
ficantly. As the eigenvalue problem is linear, applying linear reduc-
tion techniques for magnetic fields, will not introduce significant
errors due to linearisation.
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Application to Large Off-Shore Wind
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55This Chapter is based on the papers:

Kirschneck, M., Rixen, D.J., Polinder, H.,van Ostayen, R.A.J.;
Electro-Magneto-Mechanical Coupled Vibration Analysis
of a Direct-Drive Off-Shore Wind Turbine Generator.
Journal of Computational and Nonlinear Dynamics, 2014

Kirschneck, M., Rixen, D.J., Polinder, H.,van Ostayen, R.A.J.;
Modal analysis of a large direct-drive off-shore wind
turbine generator rotor; ISMA2014

Kirschneck, M., Rixen, D.J., Polinder, H.,van Ostayen, R.A.J.;
In-Situ Experimental Modal Analysis of a Direct-Drive
Wind Turbine Generator; IMAC 2015

Abstract:

The dynamic behaviour of wind turbine generators
is influenced by the coupling between the
structural dynamics and the magnetic field in the
generator. This coupling necessitates specialised
approaches to accurately capture the dynamics of
the coupled system. These approaches were
introduced in Chapter 2.

This chapter applies the methodology introduced
in Chapter 2 to a multi-megawatt wind turbine.
First, a two-way coupled model is introduced to
determine the internal dynamics of the coupled
system. Afterwards, a 2D magnetic model is used
to predict the excitation frequency created by the
magnetic field. Finally, the introduced models are
validated by in-situ vibration measurements in the
generator. For that impact and operational
measurements were conducted.
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5.1 Introduction

Part I of this thesis covered the fundamental modelling techniques
for magneto-mechanical coupled systems. Those modelling tech-
niques make it possible to predict the dynamic properties of the
generator. Furthermore, it makes it possible to see the influence
of the coupling on the dynamic properties. This chapter will apply
the introduced techniques to the generator of the XD-115, a multi-
megawatt wind turbine, to get a thorough understanding of the dy-
namics of the turbine’s rotor. The presented models will afterwards
be validated using measurements from the turbine.

From a dynamic point of view, the generator of a direct-drive wind
turbine is a unique system. The direct connection of the generator
to the hub of the turbine, i.e. the absence of a gear box, leads to low
rotation speeds in the generator. This drive train topology results
in huge torque values, as the nominal power of the turbine needs
to be transmitted at low rotation speeds. When possible, this rela-
tion between torque and rotation speed is avoided in electric ma-
chines, as it leads to unfavourable effects, such as large displace-
ments, large rotating masses, low resonance frequencies, a large
amount of electro-magnetic active parts and, thus, expensive gen-
erator designs. Additionally, due to the large pole number, usually
encountered in this kind of machines, the excitation frequencies
of the magnetic force are especially high compared to the rotation
speed. They are, thus, the main excitation source for the structure
of the generator.

As a first step of the dynamic analysis, a 3D two-way coupledmodel
of the generator is presented in Sec. 5.3.2. This model identifies the
values of the modal parameters and their changes compared to the
uncoupled system. The results show that the influence of the mag-
neto-mechanical coupling on themodal parameters is ofminor im-
portance for the XD-115. Consequently, a one-way coupled model,
which consists of a 2D magnetic model and a 3D structural modal,
is used for the rest of the chapter. This model is presented in Sec.
5.3.3 and considers the 2D magnetic forces as excitation forces for
the structural model. The excitation generated by the space har-
monics and cogging torque will be identified as the main source of
vibrations within the generator rotor. An in depth analysis of the
mechanisms, creating these harmonic forces is done in Sec. 5.3.4
and the effects they have on the rotor structure is presented. Sec.
5.4, the last part of the chapter, presents an experimental validation
of the models. This is done by in-situ vibration measurements in
the turbine. Finally, the measurement results and the simulations
are compared with each other and the discussed.
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Tilting mode
1st bending

mode

2nd bending

mode

Axial or

Umbrella mode

Torsional mode Table 5.1
Various mode shapes of

importance for the XD-115

generator rotor structure

5.1.1Mode Shape Description

In this chapter, various types of mode shapes will be discussed. The
name of a certain shape can bemisleading. A clear definition of the
mode shapes is, therefore, necessary.

The rotor structure of theXD-115 can be roughly described as a disc.
As such, its lowest modes are generally the same shape as those of
a disc. Tab. 5.1 lists the most important mode shapes of a disc and
the generator of the XD-115 and the names used in this thesis to
describe them.

5.2The XD-115 Wind Turbine

bearing

stator

Figure 5.1
The XD-115 wind turbine. Exterior

photo of the turbine prototype in

North Holland (left) and a

schematic of the generator

structure (right)

The XD-115 is a 5 MW wind turbine built by XEMC-Darwind, de-
signed for off-shore locations. This wind turbine exhibits all char-
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Table 5.2
Specification of the XD-115. Data

taken from [174]

Turbine Type XD115
Rated Power 5MW

Operational Data
Cut-in wind speed [m/s] 4
Cut-out wind speed [m/s] 25
Rated wind speed [m/s] 14
Designed for wind class
(According to IEC 61400-1)

IC

Noise at hub height [dBA] 112

Rotor
Diameter [m] 115
Speed [rpm] Variable (nominal 18 rpm)
Power regulation Full span pitch
Tilt angle 6○

Blade material Glass fiber reinforced epoxy

Generator
Type Synchronous Permanent magnet direct-drive
Cooling Dehumidified forced air
Main bearing Single main bearing multiple row, cylindrical

roller bearing

Converter
Type Voltage source inverter
Voltage [V] 3000
Grid coupling AC-DC-AC

Tower
Material Steel tubular
Hub height [m] 80 to 140 (project dependent)

Masses [ton]
Rotor (hub + blades) 97
Generator 137
Nacelle 47
Total top mass 281

acteristics of a direct-drive wind turbine, such as a large generator
rotor diameter (ca. 5 m), a high generator mass and large torque
values necessary to generate the nominal power of 5 MW. Fig. 5.1
shows the exterior of the turbine and the generator rotor structure.
Tab. 5.2 lists important properties of the turbine.

The rotation speed of the turbine during operation is between 9 and
18rpm.

The XD-115 rotor stiffener construction is a welded steel construc-
tion with stiffener plates. The difference of the outer rotor dia-
meter and the bearing diameter is around 2 m. The large difference
between the outer rotor diameter and bearing diameter makes a
stiff rotor construction necessary. The air gap length is approxim-
ately 0.1 % of the outer rotor diameter.
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5.3The Coupled Dynamics of the XD-115 Generator

The system introduced in Chapter 3 is an academic example of a
coupled system, in which the system’s dynamics differ from the
purely structural dynamics. In a similar fashion, the structure of
the XD-115 generator is influenced by the magnetic field in the air
gap. Naturally, the modes of the XD-115 and the magnetic field are
more complex. Still, it is expected that under certain circumstances
the modes are affected and their modal parameters change.

In this thesis, only the rotor of the generator is analysed. It was as-
sumed that the stator is stiffer than the rotor and thus the rotor dy-
namics aremore likely to be influenced by themagneto-mechanical
coupling. This assumption was made because the stator back iron,
which represents a considerable amount of steel, is again supported
by another steel structure. Another reason that lead to the decision
of neglecting the deformation of the stator was the large amount of
DoFs that is necessary tomodel the stator structure, the rotor struc-
ture and the magnetic field simultaneously. This amount of DoFs
could not be handled by any available hardware. Sadly, there was
no time to apply the reduction techniques developed in Chapter
4. Furthermore, the stator structure is more difficult to model, be-
cause of the lamination of the stator back iron. Coupling that can
occur betweenmodes of the rotor and the stator could note be con-
sidered by omitting the stator deformation.

It is assumed that the response to an external loading can be pre-
dicted in two steps, which are independent of each other. In a first
step, the resonance frequencies, mode shapes and damping values,
i.e. the modal parameters, are estimated. This is done while the
turbine is standing still. It is, thus, assumed that neither, the gyro-
scopic forces originating from the rotation of the the turbine, nor
the armature field will influence the modal parameters. This as-
sumption is valid, because the rotation speed of the turbine is low
and the strength of the armature field is lower than the strength of
the field created by the permanent magnets. In a second step, the
excitation mechanism is analysed and it is identified to what ex-
tend these excitation forces excite the dynamics of the rotor. The
armature field and the interaction of the permanent magnets with
the stator will be identified as the main source of excitation.

5.3.1Structural modeling

The structural model predicts the static and dynamic deformation
of the rotor structure under the magnetic load in the air gap. A 3D
model of the structure is necessary to capture all displacements in
three dimensions. A 2D model, as often used in modelling electric
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Figure 5.2
Domains of the model of the

XD115 (left) and the mesh of the

model (right)

machines, cannot account for axial displacement and axial mag-
netic forces. The geometry of the model was extracted from the
Computer Aided Design (CAD) model of the turbine. No meas-
urements or validation of the CADmodel were conducted to verify
conformity with the actual rotor in the turbine.

Fig. 5.2 depicts the model of the rotor used for the finite element
analysis. To account for the blades additional mass and moment of
inertia were added to the domains that represent the blades (in Fig.
5.2 coloured in red). These domains were modelled as rigid bodies
to suppressmodes that involve a deformation of the blade root. For
that, theDoFs in those domains, were substituted by a rigid domain
with 7 DoFs (3 for the translation, 3 for the rotation direction and
1 for the magnitude of the rotation). A survey of the influence of
gyroscopic forces showed that they are negligible during themodal
analysis. Due to the low rotation speed of up to 18 rpm, the gyro-
scopic forces are so low that they have hardly any influence on the
resonance frequencies and damping values of the system.

The magnet assembly, i.e. the permanent magnets and the struc-
ture to mount them on the rotor, was modelled as a solid block
instead of a complex assembly of bolts, holders and magnets. This
was necessary to reduce the number ofDoFs to a value that could be
handled by the hardware available. To account for the lower stiff-
ness of the actual assembly in the real turbine, the Young’s modulus
of the connecting part between the magnet and the structure was
lowered by 99.75% of the original stiffness. Additional mass was
added to the block representing the magnet assembly, to match the
mass of the magnet assembly in the turbine.

The discretisation is done using tetrahedral volume elements. Geo-
metric nonlinearities were not taken into account. Since the ana-
lysis was done in the rotating reference frame that is fixed to the
rotor, it was assumed that the displacements were small.

The geometry of the rotor structure includes thin stiffener plates.
The discretisation of these plates by volume elements can lead to an
over estimation of the stiffness when not enough elements are used.
The stiffness of the stiffener plates is crucial to compute accurately
the overall stiffness of the generator rotor. To ensure that the stiff-
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ness is not overestimated, a convergence study was conducted. Fig.
5.3 shows the normalised frequency of the first bendingmode of the
rotor over the number of degrees of freedom used in the model. As
normalisation frequency, the measured resonance frequency of the
first bendingmode was used. To avoid largemodels, themesh con-
sisting of approximately 1.1millionDoFswas used in the structural
model, which is sufficient to estimate the stiffness of the stiffener
plates and calculate the frequency accurately up to 2 %.
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Figure 5.3
Frequency of the first bending

mode over the number of degrees

of freedoms of the model. For the

normalisation the first bending

mode of the measured frequencies

was used.

The Bearing Model

The bearing, which is located between the hub and the generator,
supports the entire rotor structure, including hub, blades and gen-
erator rotor. The XD-115 incorporates a single bearing design. It
consists of three raceways, two in axial direction and one in ra-
dial direction. The rolling bearing elements are cylindrical in both
bearings.

Stator Stiffener
Rotor Stiffener

Bearing

Hub

Blade
Nacelle

Coil

Magnet

Figure 5.4
Schematic representation of a

direct-drive generator. This figure

is the same as Fig. 1.4. It is

reprinted here for more

convenience during reading

Fig. 5.4 shows a single bearing design that is often encountered
in direct-drive wind turbines, and which resembles the design of
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the XD-115. The outer part of the bearing is, thus, rotating, the in-
ner part is fixed and rests on a cone shaped support structure. The
bearing is stiffened by a bearing stiffener to prevent ovalisation of
the bearing rings. This bearing stiffener is not included in the FE
model as it has little effect on the modes under consideration.

The stiffness of a bearing element was computed analytically us-
ing the contact theory by Hertz (see for instance [10] for details).
According to this theory, the force of a line contact between two
cylinders with parallel rotation axis can be described by

Felem =
1
2
π
4
lelemE∗δ (5.1)

where Felem is the contact force of one element, lelem the length of the
bearing element, δ the indentation and E∗ denotes the equivalent
Young’s modulus which can be calculated by

1
E∗
= 1 − ν2

E1
+ 1 − ν2

E2
(5.2)

where E1 and E2 denote the Young’s modulus of the two materials
in contact. The half in (5.1) originates from the fact that there are
two contacts with the same properties for each element. Taking the
derivative of (5.1) with respect to the indentation δ yields a constant
contact stiffness of.

kelem =
π
8
lelemE∗ (5.3)

where kelem denotes the stiffness of one bearing element. This for-
mula computes the values of the bearing element’s stiffness. The
values shown in Tab. 5.3 give an approximate value, because they
are rounded to the closes order of magnitude. From these values
the total bearing stiffness can be calculated. Assuming that all ele-
ments are in contact in the axial bearing, the total axial bearing
stiffness can be calculated by multiplying the stiffness per element
with the number of elements.

Table 5.3
Approximate stiffness values of

bearings and bearing elements

(rounded to the closest order of

magnitude)

Description Value

element stiffness axial bearing N
m 1 ⋅ 1010

total bearing stiffness, axial N
m 1 ⋅ 1012

element stiffness radial bearing N
m 1 ⋅ 1010

total bearing stiffness, radial horizontal N
m 1 ⋅ 1010

total bearing stiffness, radial vertical N
m 1 ⋅ 1011

The calculation of the radial stiffness is more complex, because in
this case not all bearing elements are in contact. See Fig. 5.5 for
the geometry and explanation of the various variables necessary
for this derivation. According to [171], the radial displacement at



5.3 The Coupled Dynamics of the XD-115 Generator 143

V

A
pp

lic
at
io
n
to

th
e
XD

-1
15

any position within a bearing can be calculated by

δ(θ) = δm cos θ − 1
2
cp (5.4)

where cp denotes the clearance of the bearing, δm the maximal dis-

δm

θ

1
2 cp

−θl θl

x

y

Figure 5.5
Schematic of a radial bearing with

rolling elements

placement at θ = 0 and θ the angle around the rotation axis. The
total force of the bearing can be calculated by

Fbearing(δm) =
θl
∑

θk=−θl
Felement,k(δ(θk)) cos(θk) (5.5)

where −θl and θl denote the position of the first and last bearing
element in contact, respectively. θk denotes the angles at which
there are bearing elements in contact with both raceways. (5.5) can
be used to calculate the bearing force resulting from a deflection
of the shaft. Preloading plays a major role for the bearing stiffness
in radial direction as the angle θl and consequently the number of
bearing elements in contact depend on the load. (5.5) can be solved
iteratively for δm, when a load Fbearing = P is given.

After the initial displacement δm is calculated, the stiffness of the
total bearing can be calculated by deriving the bearing force with
respect to the displacement at the computed displacement.

kbearing = −
∂Fbearing
∂δm

∣
Fbearing=P

(5.6)

To compute the bearing stiffness, some assumptions need to be
made about the parameter values, as the exact details of the bearing
are unknown. For the radial stiffness that is listed in Tab. 5.3, the
gravitational force was used as preloading in vertical direction and
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the play in the bearing cp was assumed to be 10−3m. In horizontal
direction, no preloading was assumed. Therefore, the total bearing
stiffness in this direction is the same as the element stiffness, as un-
der no load only one element is in contact. A sensitivity analysis
of the bearing stiffness revealed, that the influence of the preload-
ing and the radial clearance on the eigenfrequencies is small. The
computed eigenvalues for the modes change by a couple of tenths
of Hertz.

To include the bearing stiffness in the modal analysis, it needs to
bemodelled as constant stiffness. To complywith this requirement,
the bearing ismodelled as a uniform constant stiffness per area that
is applied to the raceway of the bearing in the FE model. The value
of the stiffness per area is calculated by dividing the total stiffness of
the bearing, calculated according to (5.4) - (5.6), by the area of the
race ways. For simplicity a uniform radial bearing stiffness about
of 1 ⋅ 1011 N

m has been used in the finite element model.

In a finite element model the bearing stiffness has to be applied
to the nodes. For that, the total bearing stiffness needs to be re-
computed to a nodal level. The bearing force of the radial bearing
should only be applied in radial direction. Otherwise a stiffness in
tangential direction is applied, that will affect the torsional mode
of the rotor. The bearing force in radial direction depends on the
displacement in radial direction.

f⃗b,rad = −
ktot
Ab

n⃗b ⋅ u⃗(x⃗) (5.7)

where f⃗b,rad denotes the bearing force density in radial direction,
n⃗b the normal vector on the raceways of the bearing. ktot the total
bearing stiffness and Ab the surface of the raceway.

The discretisation is done by deriving the energy associated with
the bearing force and differentiating twice with respect to the struc-
tural degrees of freedom.

kbearing =
∂2

∂q2
u
∫
Ω

u⃗ ⋅ f⃗b,rad dΩ ≈ ∫
Ω

NT
u,snb

ktot
Ab

nTbNu,s dΩ (5.8)

where kbearing denotes the element matrix containing the nodal val-
ues of the bearing stiffness per area and nb the discrete version of
the normal vector on the race way. Nu,s denotes the surface shape
functions of the part of the mesh describing the raceway surface of
the bearing.

The contactmechanicswithin the bearing result in a nonlinear stiff-
ness of the bearing. Depending on the loading, the number of bear-
ing elements in contact and, thus, the number of elements that can
transmit forces between the two raceways of the bearing changes.
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Quite contrary to that, the modes that are calculated by the modal
analysis are based on linear force displacement relations for the
bearing. Themodes can thus not accurately take the contact mech-
anics of the bearing into account. Accordingly, an error will be
made during the modal analysis for modes that are affected by the
bearing stiffness.

5.3.2Two-Way Coupled Dynamics

The academic example in Chapter 3 showed that magnetic forces
acting on a structure can lead to additional stiffness for the mech-
anical system. It was already mentioned that there are four effects
that can influence the modal parameters (see Sec. 3.2.2). For an
electric machine, these four effects also exist and can influence the
dynamic behaviour of the electric machine.

In a two-way coupled system, the magnetic forces depend on the
movement of the structure. In general, a positive stiffness is created
by the changingmagnetic force, if themagnetic force increaseswith
a movement in the opposite direction of the magnetic force. If the
magnetic force decreases for the same movement, then a negative
stiffness is created.

To capture the influence of the magnetic field on all modes accur-
ately, a 3D structural as well as a 3D magnetic model is needed. A
2D model has the advantage that it consists of much fewer degrees
of freedom, but it has the decisive disadvantage that it cannot sim-
ulate the reaction of the magnetic field to displacements in axial
direction. Since bending modes are expected to be of interest, this
simplification cannot bemade for themodel predicting the coupled
dynamics.

3D Magnetic Modelling

The large size of DoFs that is necessary to capture the 3D magnetic
field accurately could not be reached. The memory requirements
for such a model with 12 ⋅ 106 DoFs was too large for any hard-
ware available. It is therefore assumed, that the magnetic field at
the singularities around the magnet assemblies are not accurately
computed, leading to inaccurate values for the magnetic forces.
The force comparison in Sec. 2.5.9 indicates that Maxwell’s stress
tensor, which is used for the calculations, underestimates the forces.

The geometry of the magnets and the magnet holders is strongly
simplified, in the two-way coupled model. As the geometry devi-
ates from reality, so do the flux lines and thus the magnetic field.
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Table 5.4
Magnetic and structural material

properties used for modelling the

XD-115. For IP reasons, the values

have been slightly changed from

the actual values in the turbine

Property Name Value

Permanent Magnet properties

Young’s Modulus [GPA] 200

Density [ kg
m3 ] 7500

Poisson’s ration [-] 0.29

Conductivity [ Sm ] 0.6 ⋅ 106

Relative Permeability [-] 1.05

Remanence Flux Density [T] 1.25

Coercivity [ Am ] 985000

Lamination properties

Young’s Modulus [GPA] 200

Density [ kg
m3 ] 7870

Poisson’s ration [-] 0.29

Conductivity in radial/circumferential

direction [ Sm ]
8 ⋅ 106

Conductivity in axial direction [ Sm ] 0

H-B Curve ∣H⃗∣ = 150∣B⃗∣ + 10∣B⃗∣12

Copper properties

Conductivity [ Sm ] 6 ⋅ 107

Relative Permeability [-] 1

Air properties

Conductivity [ Sm ] 1

Relative Permeability 1

Structural Steel properties

Young’s Modulus [GPA] 200

Density [ kg
m3 ] 7850

Poisson’s ration [-] 0.3

Conductivity [ Sm ] 8 ⋅ 106

Relative Permeability 100

Magnet holder properties

Young’s Modulus [GPA] 0.5

Density [ kg
m3 ] 7850

Poisson’s ration [-] 0.29

Conductivity in radial/circumferential

direction [ Sm ]
8 ⋅ 106

Conductivity in axial direction [ Sm ] 1

H-B Curve ∣H⃗∣ = 150∣B⃗∣ + 10∣B⃗∣12
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The geometry used for the model reduces the leakage flux com-
pared to the actual design in the turbine. Themagnetic flux density
in the air gap, and thus also the effect of the magnetic field on the
structural dynamics, are overestimated.

The analysis is done without any current in the coils. It is, thus, a
closed system according to the derivation in Sec. 2.5. The force cal-
culation in themodel has been done according to (2.102). Although
this techniques is less accurate than themethod using nodal values,
it has the advantage that it is integrated in the software package
used. The material constants and properties used for the model are
listed in Tab. 5.4.

Internal Dynamics

Tab. 5.5 lists the modes of the rotor structure with and without
magneto-mechanical coupling. Tab. 5.5 clearly indicates that the
change of the resonance frequencies due to coupling is minimal.
Hence, it can be neglected for predicting the dynamic response of
the generator of the XD-115. Also the damping increase caused by
the coupling is negligible, because the structural damping of steel
is an order of magnitude higher. The shape of the modes are not
significantly changed by the magneto-mechancial coupling.

5.3.3One-Way Coupled Model of The XD-115 Generator

The two-way coupled analysis in Sec. 5.3.2 showed that the change
of the modal parameters due to the magneto-mechanical coupling
is negligible for the rotor of the XD-115. It is, therefore, sufficient
to conduct a one-way coupled analysis, in which the effects of the
magnetic field on the modal parameters are neglected. The model
still contains a coupling, as the mechanical system is excited by
magnetic forces. However, the length of the air gap, as well as any
other displacements or displacement velocities, do not influence
the magnetic field. The interaction between the elastic field and
the magnetic field occurs only in the direction from the magnetic
domain to the mechanical domain.

For this analysis, a 2Dmagnetic model is sufficient as it is only used
to compute the excitation forces that are generated by the interac-
tion of the armature field with the rotor field. These forces are as-
sumed to have a radial and a tangential component only and can,
thus, be computed by a 2D model. An axial component, which
would be created by an axial misalignment of the rotor and stator,
is assumed to be zero.
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Results without coupling Results with coupling

Mode description
normalised

Frequency
Mode shape

normalised

Frequency
Mode shape

tilting mode

0.81 0.00045i+0.81

0.82 0.0005i + 0.82

1st bending modes

1.02 0.003i + 1.02

1.02 0.003i + 1.02

axial mode mode 1.45 0.00005i+1.45

2nd bending mode

2.6 0.0013i + 2.6

2.6 0.0013i + 2.6

torsional mode 2.66 0.005i + 2.67

Table 5.5Mode shapes of the two-way coupled problem with and without magneto-mechanical coupling. The colour

represents the magnitude of the dispalcement
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2D Magnetic Model

This model consists of an eighth of the total circumference of the
rotor. An eight is sufficient to depict the wholemagnetic field as the
magnetic-active parts of the generator are cyclic-symmetric. The
stator iron material and the casing of the magnets were modelled
taking saturation into account.

The 2Dmodel consist of approximately 260000DoFs, which is only
a fraction of the 3D magnetic model used to determine the modal
parameters. The material properties are the same as the ones used
for the 3D model, listed in Tab. 5.4. To determine the excitation, a
parameter sweep of a stationary solver over various rotor positions
has been conducted. This approach neglects dynamic effects of the
magnetic field as well as the dynamics of the coil circuits. These are
considered small in the generator due to segmentation and lam-
ination. Global forces have been calculated using the method of
global virtual work as introduced in Sec. 2.5.8. When local forces
were needed Maxwell’s stress tensor was used.

5.3.4Analysing the Excitations

Within an electric machine, there are several possible excitation
mechanisms that are important to analyse, when looking at the
electric machine as a dynamic system. Depending on the type of
machine and its operation conditions, some of the excitationmech-
anisms are less important or can even be ignored completely.

Rotational Excitation: The turbine is excited during operation by
the rotation of the rotor. Eccentricity of the rotor, which
is unavoidable during production, results in a rotating force
acting on the stator. The excitation frequency of this unbal-
ance force is either the rotation frequency itself or a multiple
of the cyclic symmetry of the rotor multiplied with the rota-
tion frequency. The later can occur when the mass distribu-
tion of the rotor is not uniform due to the cyclic symmetry.
In wind turbines, there are also the 3p and 9p frequencies
which results from the aerodynamics of the blades. These
frequencies are always multitudes of 3, because there are 3
blades attached to the hub. However, these frequencies play
a minor role for the dynamics of direct-drive wind turbine
generators.

Electro-Magnetic Excitation: This excitation source is the main
cause for vibrations for the generator rotor. It is created by
the interaction between the electro-magnetic active parts of
the rotor with the electro-magnetic active parts on the stator.
The most pronounced effect is the interaction between the
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magnetic field created by the permanent magnets on the ro-
tor and the slots of the stator, called cogging torque. Further-
more, space harmonics of the armature field are an import-
ant source of excitation.

The rotation frequency and the 3p and 9p frequencies are too low
to excite the structural modes of the generator and the rotor’s mass
distribution is too homogeneous to cause a significant unbalance
force. According to their importance the excitation resulting dir-
ectly from the rotation of the shaftwill be neglected and not further
analysed.

Cogging Torque

To understand the underlying mechanism of cogging torque, the
contribution of one magnets to the total torque of the machine is
analysed. [155–157] conduct an extensive analysis of the influences
of various parameters on torque cogging in slow rotating perman-
ent magnet machines. [156] is dedicated to the combination of pole
and slot numbers.

The torque contribution of one magnet in no-load condition is de-
termined by the interaction of the magnet’s field with the stator
slotting. The energy of the field created by one magnet is minimal,
when the volume of the air gap above that magnet is minimal. This
is the preferred configuration for that magnet and the torque it cre-
ates will pull it into this configuration.

For one magnet, this preferred configuration occurs as often per
revolution as there are stator teeth. In other words, a configura-
tion minimising the volume of the air gap above a magnet, can be
reached for each stator tooth. During rotation, one magnet cre-
ates thus a harmonic torque content at nslots the rotation frequency,
where nslots denotes the number of slots 1.

Theharmonic content of the total torque of the generator can be de-
termined by analysing how often, during one revolution, the same
relative position of stator slots and magnets is reached. To clarify
this, consider the two configurations in Fig. 5.6. The top of Fig.
5.6 shows a configuration in which magnet 0 is aligned with stator
tooth 0. At the bottom of Fig. 5.6, the same slot pole combination
is shown rotated, so that magnet 1 is aligned with stator tooth 5.

Because neither the distances between stator teeth nor the distance
betweenmagnets have changed, the two subfigures of Fig. 5.6 show

1Assuming that the spatial force distribution over the magnet varies harmonic-
ally
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Figure 5.6
Magnets passing the slots of the

stator. The same configuration is

reached when a magnet and stator

tooth are aligned again.

the same configuration rotated by

5360○

nslots
− 360○

npoles
(5.9)

where nslots denotes the number of slots and npoles the number of
poles. In general, the next configuration that is identical with the
original configuration is reached after a rotation that is equal to

360○

nlcm
(5.10)

where nlcm denotes the least common multiple of the number of
slots and the number of poles. This configuration will thus reoccur
nlcm times during one revolution. This reoccurring configuration
between rotor magnets and stator teeth creates a periodicity when
the rotor is rotating that depends linearly on the rotation frequency.
Because the torque depends on the magnetic flux density in the air
gap, the abovemechanism creates a periodic component of the total
torque.

It can be shown that the same configuration reoccurs after a rota-
tion of 360○

nlcm
by considering a cyclic symmetric section of the gen-

erator. That sections contains an integer number of poles and slots
so that:

k 360○

npoles
= m360○

nslots
= 360○

nsym
(5.11)

where nsym denotes the number of cyclic-symmetric parts of the
electro-magnetic active parts of the generator. k denotes the num-
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Figure 5.7
Spatial spectral analysis of the

torque contribution of 1, 2 and 5

neighbouring magnets for the

no-load case (top) and the load

case (bottom)

ber of poles per symmetric section andm the number of slots. From
(5.11) it can be derived that

mnpoles = knslots = nlcm (5.12)

Bringing all fractions in (5.11) on the smallest denominator yields
thus

km 360○

mnpoles
= mk 360○

knslots
(5.13)

360○
nlcm

denotes thus the largest angle which contains 360○
knslots

as well as
360○
mnpoles

in its multiples. Taking the difference between two arbitrary

multiples of 360○
nslots

and 360○
npoles

, yields again a multiple of 360○
nlcm

.

l 360
○

npoles
− n360○

nslots
= s360

○

nlcm
with l,n ∈N and s ∈ Z
and n < m, l < k

(5.14)

The smallest possible rotation angle between two configurations
that are equal is reached for s = 1.

The top of Fig. 5.7 shows the spatial spectral analysis of the torque
of one, two and five neighbouring magnets in no-load condition.
These were computed using Maxwell’s stress tensor on the outer
surface of the magnets. For one and two magnets nslots times the
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rotation speeds, and multiples of it, is the dominant excitation fre-
quency. For five magnets, the torque cogging at nslots times the ro-
tation speed decrease, while it increases for the multiples of this
frequency. This is caused by a small phase shift of the torque har-
monics for neighbouring magnets. This phase shift diminishes the
amplitude of the torque cogging, while it increases the number of
frequencies as can be seen in Fig. 5.7

The excitation frequencies created by torque cogging are exactly in
the frequency range in which some resonance frequencies of the
rotor structure are located. It is, thus, possible that the resonance
frequencies are excited by them.

Influence of Space- and Time Harmonics

0 2 4 6 8 10
0

0.5

1

order of space harmonic

Spectral analysis of magnetic field of stator
Spectral analysis of magnetic field of rotor

Figure 5.8
Spatial spectral analysis of the MMF

for the stator at ia = 1, ib = −0.5
and ic = −0.5 and the rotor

Time harmonics are the result of the switching in the frequency
converter of the generator. Ideally, the current waveform is sinus-
oidal in time. The switching causes the current to deviate from this
ideal sinusoidal waveform. The resulting frequencies depend on
the switching frequency of the frequency converter. For direct-
drive generators the switching frequency is so high compared to the
resonance of the structure that time harmonics play no role. The
resulting frequencies are too high to excite any of the global modes.
For smaller machines these frequencies can be very important (see
[112] for an example).

Space harmonics are the harmonics in the magnetic flux density in
the air gap of an electric machine that result from the spatial distri-
bution of the windings. The windings are never distributed ideally
sinusoidal, because they are located in slots. These slots allow only
discrete distributions of the coils. Fig. 5.8 shows the spectral ana-
lysis of the MMF of the stator and the rotor in the XD-115. Besides
the fundamental, there are several higher and lower harmonics.
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Comparing the torque spectrum for 5 magnets in Fig. 5.7 shows
that under load different orders are dominant. The dominant or-
ders for the load are the ones created by the space harmonics. In
order to create a torque, the same harmonic must be present in the
rotor and the stator. The rotor MMF follows a square wave profile
and, thus, only the odd higher harmonics are present in this spec-
tral analysis. Due to the winding of the stator, the spectral analysis
of the stator MMF shows harmonic content higher and lower than
the fundamental. But only the harmonic at 5, 7, 11,13, ... create a
torque, because only those are also present in the rotor.

When the 5th and 7th space harmonic of the stator field interact with
the rotating field of the rotor, they both create an oscillating torque
at ωext = 6ωrot

npoles
2 . The same happens with the 11th and 13th har-

monic, which create a dynamic excitation force atωext = 12ωrot
npoles
2 .

This torque harmonic can be seen in Fig. 5.7. It is the dominant
torque ripple harmonic in operation of the turbine. See Sec. C for
a derivation of this behaviour using an analytical model of an elec-
tric machine.

The additional peaks in the plots for one and twomagnets in Fig. 5.7
are probably created by the sub harmonics that are present due to
the winding scheme of the XD-115 generator. These subharmonics
create a torque contribution when they interact with the rotor field,
when only one or two magnets are analysed. For five magnets they
cancel out.

Spatial Distribution of the Magnetic Forces

The top part of Fig. 5.9 shows the torque distribution over the sur-
face of the rotor. The bottom part of Fig. 5.9 shows the radial force
acting on the rotor. The torque is strongest at the edges of the mag-
nets enclosure, while the radial forces are strongest under the stator
teeth.

When the turbine rotates, the stator teeth pass the magnets and the
maximum of the normal forces with them. This can be seen in Fig.
5.9 by themoving force intensity on the surface of themagnets. The
magnets experience a changing torque density over time due to the
slotting. For both plots the armature field rotates with the rotor as
it would do in normal operation. In the first couple of seconds, the
speed up of the rotor can be seen

Analysing Fig. 5.9, two assumptions can be made. Firstly, the force
on the outer rotor surface next to themagnets can be neglected. All
magnetic forces concentrate on the magnets’ surfaces. Secondly, it
is convenient to use a uniform force distribution per magnet. The
magnitude of this uniform force distribution depends on the pos-
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Figure 5.9
The computed torque distribution

(top) and specific radial force

(bottom) on the outer surface of

the rotor.

ition of the rotor to the stator. Due to symmetry, every fifth mag-
net shows the same configuration and, thus, the same normal force
and torque. Fig. 5.10 shows the development of the radial force and
torque for two neighbouring magnets. The delay between the nor-
mal forces and torque of the twomagnets is visible by the horizontal
shift of the plots.

5.3.5Approximating Magnetic forces

Making the simplifying assumptions about the magnetic force dis-
tribution above, the magnetic force can be described by a simple
analytical expression. This is necessary, as the structural model has
much less DoFs than the 2D magnetic model on the magnets’ sur-
faces. The details of the force distribution cannot be described ac-
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Figure 5.10
Total normal force and torque per

magnet under load
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curately by the coarsemesh. Furthermore, the shape of themagnets
is much simpler in the structural model. This was done to reduce
the number of DoFs of the structural model and keep them within
a limit that can still be handled.

For the analytic description, it is convenient to separate the force
term in a static part and a dynamic part.

Static Forces

The static part describes the average force in time in radial and tan-
gential direction. It results from the applied torque of the generator
and the attracting forces between stator and rotor. They can be de-
scribed by multiplying three quantities.

fpos(θ) is a scalar quantity that identifies where the magnets are
located over the circumference of the rotor. Its output values are
between 0 and 1. By multiplying this quantity with a force vector,
the force vector will only be applied at the locations where fpos is
not zero.

f⃗rel contains the information about the relation between radial and
tangential component. In electric machines, the attracting forces
between stator and rotor are higher than the tangential forces that
create the torque. This is expressed by this vector, which multiplies
the radial component with the factor 3.58. This factor was extrac-
ted from Fig. 5.9 by dividing the average torque per magnet by the
radius of the rotor and comparing it with the average radial force
per magnet.

f̂mag, the last component, determines the magnitude of the forces.
To ensure that the total torque created by the static forces is equi-
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valent to the nominal torque value Tnom

∬
Ωmag

rr,oute⃗θ ⋅ f⃗mag,stat dΩmag = Tnom (5.15)

needs to be solved for the force vector amplitude f̂mag. In (5.15), rr,out
denotes the outer radius of the rotor, Ωmag denotes the surface of
the cylinder barrel, where the magnetic force is applied, and e⃗θ a
vector pointing in tangential direction.

All these considerations lead to the following expression for the
static magnetic force density.

f⃗mag,stat(x⃗mag) = f̂mag

⎡⎢⎢⎢⎢⎢⎣

3.58
1
0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

f⃗rel

1
2
(1 − sin(npolesθ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fpos

(5.16)

where θ denotes the circumferential coordinate in cylindrical co-
ordinates. The radial component of the static force distribution is
depicted on the right of Fig. 5.11.

−2 −1 0 1 2

⋅104

Dynamic tangential force density

−1 0 1

⋅105

Static radial force density

Figure 5.11
Force distribution of magnetic

forces

Dynamic Forces

The dynamic part of the force describe the deviation of the tangen-
tial and radial forces from the average values in Fig. 5.9. As shown
in that figure, the dynamic content of the total magnetic forces that
the generator creates is much smaller than the static content. The
dynamic force acts at the same locations as the static force, the sur-
face of the magnets. Therefore, the quantity indicating the position
of the magnets fpos can be reused.
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The vector f⃗mag,dyn is described in the frequency domain as com-
plex quantities. The magnitude of the complex vector denotes the
magnitude of the force, where as the phase angle gives the time shift
between certain components of the excitation force vector. The fre-
quency of the excitation forces is not specified but can vary. This is
beneficial as the excitation frequencies in the generator vary a lot.

Fig. 5.9 shows that the amplitude of the dynamic part of the torque
is about a fifth of the static value. The vector f⃗rel,dyn contains the
relation between the tangential static force and the dynamic force
amplitudes.

The last term in (5.17) describes the phase lag of some parts of the
dynamic force. As discussed in secref1way:excitation, there is a
small phase lag of about 360○

2nsym between neighbouring magnets. All
these consideration can be condensed to the following equation for
the dynamic forces

f⃗mag,dyn(x⃗mag) = f̂mag

⎡⎢⎢⎢⎢⎢⎣

0.5
0.2
0

⎤⎥⎥⎥⎥⎥⎦
²⃗
frel,dyn

fpos

⎡⎢⎢⎢⎢⎢⎣

eiθshift
ei(θshift+ π

2 )

0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f⃗shift

with θshift = 2nsymθ

(5.17)

In (5.17), θshift denotes the phase shift of the magnetic force that
depends on the location around the rotor. The π

2 in f⃗shift originates
from the delay between the normal force and the torque that can be
seen in Fig. 5.10, which is about a fourth of the period. x⃗mag is the
subset of x⃗ that includes all points, where the magnetic force f⃗mag
is applied. The radial dynamic force distribution is depicted on the
left of Fig. 5.11.

5.3.6 Simulation Results

After the structural system was determined in Sec. 5.3.1, the re-
sponse of the system to the loads defined in Sec. 5.3.5 can be com-
puted. A run up of the turbine in time domain cannot be simulated
due to the high number of DoFs in the system. Therefore, the re-
sponse is estimated by a frequency sweep and by computing the
modal participation factors to the system.

The response to the static magnetic forces, defined in (5.16), can
be computed. For that the displacement at the blade roots was set
to zero, to simulate the wind induced torque that is applied there.
Thisway the displacements of the generator rotor can be computed.
The maximal displacement in tangential direction is 1.4 ⋅ 10−7m ,
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in radial direction 6.8 ⋅ 10−5m and 2.8 ⋅ 10−6m in axial direction, at
the outer surface of the generator rotor. Themaximal displacement
of any node is 7.9 ⋅ 10−5m.

Frequency Sweep

To identify the magnitude of the amplitude and the system’s be-
haviour, the magnetic forces identified in (5.17) were applied to
the structural model. A frequency sweep was simulated for which
the harmonic magnetic forces were applied to the structure at fre-
quency steps of 0.015 between 0.59 and 2.94. This way any reson-
ance frequencies are identified by increased amplitudes.

For stability reasons, an isotropic loss factor of 1 % was added, so
that resonances do not lead to amplitudes that are too high. This
damping factormoves the resonance frequencies slightly compared
to the ones listed in Fig. 5.5
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Figure 5.12
The amplitudes of four locations

on the outer surface of the rotor

during the frequency sweep

Fig. 5.12 shows the amplitudes of four locations on the outer surface
of the rotor. Looking at the simulated deflection shapes, identifies
the peak at ω/ωref = 0.89 and ω/ωref = 0.74 as a tilting motion.
The shape of the peak at ω/ωref = 1.43 corresponds to the axial
mode at ω/ωref = 1.45. The shape of the peaks at ω/ωref = 2.71,
ω/ωref = 2.01 and at ω/ωref = 2.9 could not be identified and, thus,
could not be matched with any of the modes in Tab. 5.5.

Integrating the amplitudes of all simulated frequencies gives an in-
dication of the magnitude of the total amplitude of the system.

utot =
2.94

∫
0.59

û(ω) dω (5.18)

For the four plots in Fig. 5.12, this yields the total amplitude of
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utot,1 = 0.29mm, utot,2 = 0.3mm, utot,3 = 0.16mmand utot,4 = 0.26
mm

Participation Factors

Analysing the participation factors of the modes is another way to
examine the response of the system to external periodic excitations.
Participation factors for magnetic systems were already introduced
in (4.13). For structural modes, they can be computed by

ηr =
1

ω2
ext − ω2

r + 2ζrωextωr
∫
Ω

φ⃗r ⋅ f⃗mag dΩ (5.19)

where φ⃗r denotes the mass normalised shape of rth mode, Ω its ex-
citation frequency, ωr is the resonance frequency, ηr the participa-
tion factor, ζr the damping coefficient and f⃗mag the dynamic excit-
ation force (5.17). The discrete form of (5.19) reads as

ηr =
φr ⋅ fmag

ω2
ext − ω2

r + 2ζrωextωr
(5.20)

where the magnetic force and the the structural mode are substi-
tuted by their discrete counterpart, φr and fmag, respectively

The participation factors, as described in (5.20), are computed for a
certain excitation frequency. In the XD-115, however, the excitation
frequencies cover such a large frequency range that it is difficult to
determine which excitation frequency to use for the computation
of (5.20). Fortunately, the force distribution stays the same for all
excitation frequencies. Using only the nominator of (5.20), it is
possible to make an analysis to what extend a certain mode can be
excited by the dynamic force distributions defined in (5.17), when
the excitation and resonance frequencies coincide. In this analysis,
the distance between the resonance and excitation frequency is not
accounted for.

Tab. 5.6 lists the participation factors for the mode shapes identi-
fied by the finite elementmethodwith respect to themagnetic force
distribution. The fifth column, headed by (max(φr)(φr ⋅fmag)), lists
the maximal amplitude of each mode under the computed excita-
tion.

The participation factors reflect the frequency sweep computation
in Sec. 5.12. The largest participation sees the axial mode. The
other modes are less pronounced. Especially, the 1st mode is hardly
excited.
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5.4Experimental Validation

In Sec. 5.3, the dynamic behaviour of the XD-115 generator was
predicted. Although the techniques used were already validated in
Chapter 3, it is necessary to verify that the parameters chosen to
simulate the XD-115 generator are correct. This is done by in-situ
vibration measurements of the rotor structure.

In this section only the measurements used to validate the models
in Sec. 5.3 are presented. Further measurements were conducted
that are not used for this purpose. They are presented in Appendix
B.

The main problem during the measurements is a sufficient excit-
ation of the structure. The rotor structure of the XD-115 weights
about 110 tons. That includes the hub, the blades and the generator
rotor. The generator rotor alone, the structure of interest for this re-
search, weighs about 20 tons. It is necessary to excite this structure
to an extend that the accelerometers can pick up the vibration. To
accomplish that, the vibration amplitudes need to reach a certain
level. Ideally, only the structure of interest, i.e. the rotor stiffener,
is excited while the rest of the turbine does not vibrate. . However,
it is not possible to excite the rotor of the turbine without exciting
the rest of the structure too, making the identification of the reson-
ance frequencies and modal damping parameters of only the rotor
structure difficult.

For ’normal’ vibration measurements either a shaker or an impact
hammer is used to excite the structure. Although, these two tools
come in all variations and sizes, they are difficult to employ in the
turbine due to the limited space available within the nacelle and the
accessibility of the rotor structure.

Besides a manual excitation, the structure can be excited by the
forces and movements that arise during the operation of the tur-
bine. This technique is called operational modal analysis (OMA).
The structure of the rotating generator is excited by unbalanced
forces and the higher harmonics created by the magnetic field in
the air gap. By comparing the identified resonance frequencies in

Normalised

freq.
description φr ⋅ fmag max(φr)(φr ⋅ fmag)

1.02 1st bending 0.0644 − i 0.0636 6.3 ⋅ 10−7 − i 6.3 ⋅ 10−7 m
1.02 1st bending 0.0036 + i 0.0132 5.1 ⋅ 10−8 + i 1.9 ⋅ 10−7 m
1.45 axial 0.5987 + i 1.9053 1.7 ⋅ 10−6 + i 5.4 ⋅ 10−6 m
2.6 2nd bending 0.1068 − i 0.1402 3.3 ⋅ 10−6 − i 4.3 ⋅ 10−6 m
2.6 2nd bending −0.1152 + i 0.0734 −6.5 ⋅ 10−6 + i 4.1 ⋅ 10−6 m
2.66 torsional −0.3649 + i 0.2304 −0.0013 + i 0.0008 m

Table 5.6
The participation factors for

various modes identified by the

finite element method.
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Sec. 5.3.2 and the excitation frequencies in Sec. 5.3.4, it becomes
apparent that the resonance frequencies of the structure are in the
same frequency range as the frequencies created by space harmon-
ics and cogging torque in the generator. Other excitation frequen-
cies, coming for instance from the rotation directly or from supply
harmonics, are either too high or too low to be of importance for
the XD-115.

In this section, the measurement set-up is presented first. After-
wards, the results of the various excitation methods are presented.
Finally in Sec. 5.4.5, the measurements results are compared with
each other and to the simulation results.

5.4.1 The Experimental Set-Up

The left side of Fig. 5.13 shows the set-up of the measurement dur-
ing rotation.

on rotor

Personal

Computer
DAQ

DAQ

Hammer

Current Probe

Accelerometer

RPM-Sensor

Accelerometers
wireless

connection

Figure 5.13
Measurement Set Up for the

XD-115. The grey box indicates

equipment that is located on the

rotor

Measuring during Rotation

Measuring on the rotor and stator simultaneously during rotation
requires two data acquisition systems (DAQs) that are synchron-
ised. One is installed in the rotor, depicted on the right side of Fig.
5.13, the other one is connected to the sensors in the rest of the na-
celle. A hammer is used for synchronising the two systems. Its sig-
nal is split and fed to both systems. Before the start of the turbine, it
is disconnected from the rotor DAQ. After the measurements are
completed, a cross correlation analyse between the two hammer
channels at either DAQ will yield the time difference between the
two signals. This method has one significant disadvantage. Any
delay introduced in either of the DAQs during the measurement
cannot be identified. Thus, at the beginning of the measurements
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the stator and rotormeasurements are synchronised, but the longer
a measurement is the more likely the two DAQs desynchronise.

The measurement set-up in Fig. 5.13 shows various sensors on the
stator. After investigating the rotor and stator acceleration data, no
correlation between the stator and rotor side for the structural vi-
brations could be identified. The measurement data of the stator
data was thus neglected for the modal analysis and only the RPM-
sensor is used on the stator side. However, this sensor is crucial
because all order tracking methods require accurate values of the
instantaneous rotation speed at all times of themeasurements. Fur-
thermeasurements using the other sensors were conducted but did
not lead to any research results. These measurements concerned
the monitoring of the bearing using the current of the generator.
The measurements are presented in the Appendix B.

Measuring at Stand Still

For measurements at stand still, the rpm sensor is not necessary.
Therefore, the stator side can be neglected completely and only the
DAQand the sensors on the rotor are used. The sensor placement is
the same as for the measurement during rotation. For the impact
measurements, the excitation points are indicated in blue on the
right hand side in Fig. 5.14.

Sensor Positions

In total, 11 channels were used for acceleration measurements on
the rotor. Fig. 5.14 shows the positions of the accelerometers in the
rotor of theXD-115. Theposition of the sensorswere chosen in such
a way that bendingmodes can be distinguished from tiltingmodes.
There are not enough sensors to distinguish the second from the
first bendingmode and only one channel measures accelerations in
tangential direction. Channels 1 and 3 as well as channels 4 and 6
are purposely located at different distances from the rotation centre
of the rotor. This allows to distinguish bending modes from rigid
motion of the rotor. On position C, this is not necessary as there
is an additional measurement channel in z-direction. In this case,
one of the channels 11 and 10 is, indeed, redundant.

5.4.2Measurement Techniques

To perform the modal analysis, four different methods of excita-
tion were used: hammer impact, operational forces, wind forces
during idling and yawing forces. Various analyse algorithms were
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Figure 5.14
Accelerometer positions in rotor

stiffener. Sensors directions

indicated in red. Impact directions

indicated in blue.

used for the operationalmeasurements which are listed here as sep-
aratemethods. This subsection lists the variousmeasurement tech-
niques and analysis methods employed. Tab. 5.7 lists all the various
excitation methods and its characteristics.

The measurement methods can be classified in methods for which
the excitation force is measured and methods for which only ac-
celerations are measured. In this thesis, the impact measurement
is the only method for which the excitation is measured. All other
methods are output-only measurement techniques.

For output-only measurements techniques, the vibrations of the
turbine, induced by wind or by the operation of the turbine, are
used to conduct a modal analysis. Because the excitation forces are
not measured, some assumptions about the forces occurring in the
system are made. This makes these techniques convenient to use
for large structures, as for these excitation proves difficult. How-
ever, the assumptions made over the excitation forces are often not
accurate and can, thus, lead to questionable results of the modal
parameter identification, if the violation of the assumptions is too
extensive.

Impact Measurements

The excitation during hammer testing is accomplished by applying
an impulse force to the structure with a hammer, measuring the
hammer force simultaneously. Ideally, a Dirac impulse is created
that way, of which the Fourier transform is a constant line, exciting
thus all frequencies. Practically, the quality of the Dirac impulse
depends on the elasticity of the hammer tip, the elasticity of the
structure that is tested and the skill of the test engineer. These in-
fluences limit the excitation to the lower frequencies.
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Excitation technique Advantages Disadvantages

Hammer Testing • No excitation harmonics

• Hardly enough energy input to excite

whole structure

• Pole necessary because impact point

not accessible

Yawing testing

(Free decay)

• Huge amount of energy brought into

the system

• Only lower frequencies excited

• Short system response, making damp-

ing estimate difficult

Operational Modal

Analysis (OMA)
• No excitation necessary

• Assumption not satisfied

• Long measurements necessary

• Excitation harmonics deteriorate sys-

tem identification quality

Vold-kalman filtered

Operational Modal

Analysis

• Assumption not satisfied

• Better identification ofmodes than nor-

mal OMA

• No manual excitation necessary

• Data preparation necessary

• Might filter system response from data

• Long measurements necessary

Order based modal

analysis (OBMA)

• Uses harmonics for system identifica-

tion

• No excitation necessary

• Questionable if assumption are satis-

fied

Table 5.7
Advantages and drawbacks of all

excitation techniques usedFor the impact hammer tests, the rotor does not rotate. This has the
advantage, that any harmonics produced by the rotation will not
be present in the measured data, and therefore will also not disturb
the modal parameter estimation. On the other side, the drawback
of this methods is that any effects the rotation has on the system
dynamics, such as varying bearing stiffness or gyroscopic forces,
are not measured.

Because there is only limited space around the rotor structure, a
hammer excitation was difficult. Using a pole of approximately 2
meters length made it possible to excite the structure in radial dir-
ection. This way, the hammering action could be relocated to an
easily accessible location, because the hammer did not have to hit
the rotor structure directly. The excitation location and direction
was chosen to be next to the measurement point of channel 5 and
8 in radial direction (see Fig. 5.14).

The time it takes the impulse to travel through the pole was estim-
ated to be about 3.7697⋅10−4 seconds. That is about 7.5% of a period
at 200Hz. The phase delay for a resonance frequency is usually 90○.
Due to the delay introduced by the pole a resonance frequency will
be found at a different phase lag. 7 % of 360○ is about 25○. This will
introduce inaccuracies for the modal parameter identification.
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Althoughusing the polemade hammermeasurements possible, the
method shows significant disadvantages. Using the pole led to un-
avoidable double impacts. Furthermore, the impact force is meas-
ured at the upper end of the pole, including the pole into the sys-
tem that is measured. These two effects lead to a deterioration of
the measurement quality, but could not be avoided when using a
hammer as excitation.

Theparameter identificationwas performedusing the SDTools soft-
ware package [6]. The algorithms employed are based on [4, 5].

Operational Modal Analysis during Idling

This technique conducts an operational modal analysis on the tur-
bine while it is idling. The excitation for the structure is provided
by the wind that passes the turbine. The turbulence of the wind
creates a dynamic force that is characterised by a good approxima-
tion to white noise. For the parameter identification the Canonical
Variant Analysis (CVA) method was used. This is an operational
modal analysis method based on a state space representation of the
system (See [109] for further explanation). Additionally, the En-
hanced Frequency Domain Decomposition (EFFD) method was
applied.

The EFDD technique is based on the Frequency Domain Decom-
position (FDD) technique. The FDD technique applies a singu-
lar value decomposition to the power spectral density matrix for
each measured frequency. This decomposes the spectral matrix
into a set of spectral density functions of which each corresponds
to a single degree of freedom (SDOF) system. The singular values
represent the auto power spectral density of that particular SDOF
system at a certain frequency. The number of singular values that
are significantly higher than the rest of the SV corresponds to the
number of SDOF systems that are contributing to the global system
response at that particular frequency.

Themodal parameters are identified by calculating the power spec-
tral density function for the SDOF system around peaks of the first
singular value in the singular value plot. Whether the calculated
power spectral density still belongs to the same SDOF system that
was identified at the peak is determine by comparing the singular
vector at the peak with the singular vector of the current frequency.
As long as they are the same, it is assumed that the same SDOF sys-
tem is still dominant at this frequency. From the auto power spec-
tral density function calculated around a peak, the damping and
natural frequency can be estimated.

The EFDD method determines the modal parameters differently. I
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uses the power spectral density function identified around a peak to
calculate the time response of the SDOF system. The modal para-
meters are identified in the time domain by counting the zero cross-
ings per time unit and the logarithmic decrement of the response.
In the propriety software used in this thesis, the kurtosis is calcu-
lated to distinguish harmonic excitation from natural frequencies.
(For further reading about the EFDD and FDD methods, refer to
[20, 71].)

The SSI-CVA algorithm transforms the system to the state-space
representation. Afterwards, a singular value decomposition is ap-
plied to the weighted output values of the system (See [109] for fur-
ther explanation).

As mentioned, a single singular value that is significantly larger
than the rest indicates that only one SDOF system dominates the
global response. Two singular values that show a significant larger
value than the rest indicate that the oscillation at that particular
frequency can be represented by two single degree of freedom sys-
tems. This means that two modes are contributing to the global
response of the system at that frequency. The case that all singu-
lar values at a certain frequency are significantly larger than zeros,
indicates a forced vibration at that frequency.

According to [122], operational modal analysis makes the follow-
ing assumptions about the system and the excitation forces that is
measured:

• The system is time invariant.

• The structure is excited by uncorrelated white noise.

• The structure is reciprocal, i.e. the transfer function (TF)
measure from point A to point B is the same as from point B
to point A.

The quality of the modal parameter identification depends to what
extent the assumptions above are satisfied. At idling of a turbine
these assumptions are almost all satisfied. Only the excitation force
deviates from the assumptions as wind induced forces are not per-
fect white noise.

Operational Modal Analysis during Rotation

As discussed in Sec. 5.3.4, the interaction between the permanent
magnets and the stator slots create harmonic magnetic forces dur-
ing the rotation of the turbine. These forces are also created when
no torque is generated, because the field originating from the per-
manent magnets cannot be switched off. Although the magnetic
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Figure 5.15
Spectrogram of a vibration

measurement during rotation

without power production.
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forces cannot be measured, it is possible to apply output only ana-
lysis techniques on the vibrations induced by the magnetic forces.

Fig. 5.15 shows the spectrogram of a vibration measurement dur-
ing rotation of the turbine without power production. In the first
150 seconds, the turbine starts up. After that, the turbine operates
for several seconds at almost constant speed, before it shuts down
at the end of the measurement. The lines that vary with the ro-
tation speed are the increased vibration amplitudes caused by the
harmonic excitation forces.

A colouring of the noise content of the excitation forces poses some
challenges for the output only modal analysis. Extensive research
has been done to overcome this issue. [103] gives a good overview
about available techniques and under what circumstances they im-
prove the results of an OMA.

In this thesis, three different approaches are followed to deal with
the harmonic content of the excitation forces. The first technique
ignores the problem all together and employs standard frequency
domain and stochastic subspace techniques to identify the modal
parameters. The second technique attempts to diminish the effects
that the harmonic excitation forces have on the structure by filter-
ing them from the signal. The third approach of techniques uses
these harmonic excitation forces to identify the system.
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Generic Operational Modal Analysis
The generic operational modal analysis conducts an operational
modal analysis without employing any methods to alleviate the ef-
fects that the force harmonics have on the parameter identification.
The same techniques are employed as for the operational modal
analysis during idling.

This techniquemakes the same assumptions as the idlingOMA, but
because of the rotation of the turbine, the first two assumptions are
violated. The gyroscopic forces, which are introduced by the rota-
tion, depend on the rotation speed and the distance to the rotation
axis. During the duration of a measurement, the rotation speed
is never perfectly constant. Therefore, the gyroscopic forces intro-
duce a stiffness that varies with time as the rotation speed varies
with time. Additionally, the bearing stiffness depends on the pos-
ition of the bearing elements and thus on the rotor position. The
second assumption is violated by the magnetic forces in the system
that introduce a harmonic content into the excitation forces in the
generator.

It is assumed, that the first of the violated assumptions has a minor
influence on themeasurements because of the low rotation speed of
the rotor. The assumption that the system is time invariant is thus
reasonably satisfied. The second violation poses a larger challenge
than the first one, as the encountered harmonic excitation is quite
strong and coincide with resonance frequencies that are subject to
the parameter identification.

Vold-Kalman Filtered Operational Modal Analysis
In a second approach, a Vold-Kalman filter was used to filter the
harmonics from the measurement signal [91]. The Vold-Kalman
filter is a particular formulation of the Kalman filter that can be
used to extract a certain frequency, which can change over time,
from a signal. The extraction of the harmonics is possible because
the frequencies of the harmonic forces are known from the analysis
done in Sec. 5.3.4.

Removing the harmonic frequencies from the measurement signal
helps to distinguish the excitation frequencies from the resonance
frequencies. In the case that a resonance frequency is close to an
excitation frequency, the resonance frequency is also filtered from
the signal. This is an issue, when the whole measurement is done
at a fixed rotating frequency, because in that case a resonance fre-
quency that is too close to an excitation frequency is filtered com-
pletely from the measurement. When measuring at changing rota-
tion speeds, the resonance frequency is only filtered from the signal
when the excitation frequency and the resonance frequency coin-
cide. After filtering, the same parameter identification techniques
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thatwere used for the firstmethod are applied to conduct themodal
parameter identification.

Order Based Modal Analysis

The Order-Based Modal Analysis (OBMA) method (details can be
found in [33]) assumes a constant sinusoidal excitation at a chan-
ging frequency that depends on the rotation speed. It deviates from
the assumption of the perfect white noise excitation that the pre-
viously introduced OMA methods use. During a start-up or run-
down of the turbine, the excitation sweeps over a certain frequency
range of which the maximal frequency depends on the maximal
rotation speed and the relation between excitation frequency and
rotation speed.

The assumption of a constant excitation amplitude is not necessar-
ily satisfied in variable speed wind turbines. The excitation forces
are created by the same effect as the total torque in the generator.
They both depend on the magnetic flux density in the air gap. The
torque is set by the controller of the turbine which determines the
rotation speed of the rotor. In normal operation, the rotor speed
is supposed to be constant. To accomplish that, the controller sets
the torque in the generator according to the wind speed to keep the
wind torque and generator torque balanced. During a run up, no
power is produced in the turbine. In that case, the generator torque
does not match the wind torque, as the intention is to speed up the
turbine.

To extract the modal parameters, a particular order is chosen that
excites the resonance frequencies in the frequency range of interest.
This order is extracted from the signal using a Vold-Kalman order
tracking algorithm [91]. The modal parameters can be identified
using the same method as for shaker measurements that apply a si-
nusoidal sweep [4, 5]. The frequency response functions of the ac-
celerometers can be taken as the transfer functions from the shaker
to the sensor, assuming that the force amplitude is equal to one over
all excited frequencies.

For the extraction of the phase information the RPM signal was
used as reference (for other possibilities see [33]). Assuming that
the excitation force is a sinusoidal force with a magnitude of one,
the transfer function is the same as the measured frequency re-
sponse function (FRF). These TFs can be used in any single input
multiple output modal parameter estimation algorithm. Because
the magnitude of the force is not know, the scaling of the modes is
not possible. Assuming that the excitation force amplitude is the
same for every frequency, the parameters of interest, i.e. the mode
shapes, frequencies and damping, can be extracted.
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Yawing Test

This method is based on the force that acts on the rotor structure,
when the yawing motion is stopped suddenly. During yawing, the
nacelle is moved around the centre axis of the tower. Because the
generator’s centre of gravity is not aligned with this axis, it experi-
ences a translational movement. When this movement stops, iner-
tia forces are generated acting on the rotor. The time distribution
of this force resembles an impulse force used for the impact ham-
mer tests. Measuring the response to this force makes it possible to
identify the modal parameters of the system.

The excitation by yawing forces shows some properties that can-
not be found for the other excitation methods. This technique is
especially suited to excite lower structural modes, because the ex-
citation is weak in the higher frequency range. This method can
introduce a lot of energy into the system which is necessary to ex-
cite large, heavy structures. The applied inertia forces excite the
structure everywhere instead of locally as it is done for the impact
measurements.

The forces used to excite the structure in this method cannot be
measured, necessitating an output-only parameter identification
technique. For the identification of themodal parameters, the Least
Square Complex Exponentialmethod (LSCE) (see for instance [94]
for an description) was applied to the part of the measurement that
was recorded directly after the yawing stopped. In this time frame
the vibration show a free decay.

5.4.3Measurement Results

In this subsection, the results of the various measurement tech-
niques will be discussed in detail.

Impact Measurement

In the measurement data of the impact measurement, five peaks
could be identified in the frequency range of interest. The results
can be seen in Fig. 5.16. Most peaks were fitted double, because
theoretically every mode should have a symmetric counter part at
the same frequency. This was not done for the peak at ω/ωref =
1.62, because this peak is in the range where the axial mode was
expected. The figure shows that the modal fit for the collocated
measurement points is rather good over the whole frequency range
of interest. This is not the case for the non-collocated points as
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Figure 5.16
Transfer functions (TF) of the

collocated hammering positions

(top), Transfer function from 4z to

7-y (middle left) and the

coherence for the three different

transfer functions (middle right).

The bottom part of the figure

shows the mode shapes identified

by the impact measurements. The

colour indicates the magnitude of

the displacement

shown in the middle left plot in Fig. 5.16. This is especially true for
the frequency range that shows a low coherence.

Themodes shown in Fig. 5.16 were expanded using linear interpol-
ation. No data was available at the top of the modes, as there were
no sensors located at that position. It was consequently left blank,
though the behaviour of themodes there can be estimated from the
rest of the mode.

The two peaks at ω/ωref = 1 and ω/ωref = 2.76 are especially pro-
nounced in the impact measurements. These two resonance fre-
quencies can be fit in any of the transfer functions. Fig. 5.16 indic-
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Figure 5.17
The auto mac plot of the impact

measurements.

ates that the mode at ω/ωref = 1 is the first bending mode. The
modes at the frequencies ω/ωref = 0.41 and ω/ωref = 0.6 seem
to be rigid tilting modes around the bearing. They are clearly not
as strongly excited as the bending modes. The mode type for the
modes at ω/ωref = 1.62 and ω/ωref = 2.76 is not as easily identifi-
able. The FEmodel indicates that the second bendingmode should
be at ω/ωref = 2.6. So the mode at ω/ωref = 2.76 might in fact be
the second bending mode.

The bottom part of Fig. 5.16 shows two modes for each peak in
the TF. For all frequencies but ω/ωref = 1 and ω/ωref = 1.62, two
symmetric modes could be identified. For the modes ω/ωref = 1,
this is not possible, because both excitation points were located at
fixed points of the associated symmetric mode. This way the same
mode was fitted twice which leads to the same mode shape for the
two identified modes of ω/ωref = 1, as can be seen in Fig. 5.16 .

Fig. 5.17 shows the Auto-MAC plot of the impact measurements.
High off-diagonal values indicate that too few sensors were used
to distinguish a mode from the modes on the diagonal. Fig. 5.17
indicates that the tilting modes at ω/ωref = 0.41, ω/ωref = 0.47,
ω/ωref = 0.58 and ω/ωref = 0.63 are not distinguishable from the
second bending modes at ω/ωref = 2.76 and ω/ωref = 2.77. All of
thesemodes showmainly a displacement in axial direction (see Fig.
5.1). They differ by the number of locations where the maximum
displacement is reached. When too few accelerometers are used
this number cannot be determined accurately and the modes seem
to be the same.
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Operational Modal Analysis during Idling

Fig. 5.18 shows the spectrogram and the singular values (SV) for an
OMA conducted during idling of the turbine.
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Figure 5.18
The spectrogram and the singular

value plot of the no-rotation

operational modal analysis

Comparing the measurements in Fig. 5.18 and Fig. 5.19 reveals that
the noise level in the non-rotating measurement is, as expected,
much lower than the noise level in the rotating turbine. The few
peaks visible in Fig. 5.18 have a much lower maximum value than
the peaks in themeasurement during operation in Fig. 5.19 and Fig.
5.20. The SV plot indicates that there might be modes at ω/ωref =
0.55, ω/ωref = 0.64, ω/ωref = 0.72, at ω/ωref = 1.27, ω/ωref = 1.91
and at ω/ωref = 2.56.

Themode shape of all these frequency cannot be identified as bend-
ing or torsional modes. In fact, all of them do not look ’physical’.
Consequently, it is assumed that the peaks in the SV plot in Fig.
5.18 are not modes of the rotor structure under consideration.

Operational Modal Analysis during Rotation

The plot in Fig. 5.19 shows the spectrogram of the generic oper-
ational modal analysis. The OMA was applied to the part of the
measurement that shows an almost constant speed (starting after
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90 seconds of the measurement). The singular value plot in Fig.
5.19 indicates that there might be modes at ω/ωref = 0.1, ω/ωref =
0.17, ω/ωref = 0.27, ω/ωref = 1 and ω/ωref = 1.34. The other
peaks at ω/ωref = 0.52, ω/ωref = 0.7, ω/ωref = 0.84, ω/ωref = 1.05,
ω/ωref = 1.18, ω/ωref = 1.41 , ω/ωref = 1.69 and ω/ωref = 2.53
are generated by harmonics, as can be deduce from the excitation
analysis in Sec. 5.3.4.

As explained in Sec. 5.4.2, a peak in the SV plot corresponds to a
SDOF system that is dominant at that peak. When for a certain
frequency two SVs are significantly higher than the rest of the SVs,
it indicates that two SDOF systems are contributing to the vibra-
tional behaviour of the system at that frequency. When all SVs
show a peak at a certain frequency, then the same amount of num-
ber of SDOF contribute at that frequency. It is, however, unlikely
that three or more modes have the same frequency, so that the in-
creased SVs in this case do not indicate the contribution of a mode
but instead a harmonic excitation. The peak at ω/ωref = 2.78 is
peculiar, as at that peak, three singular values increase, although
there is no harmonic present at that frequency.

At the bottom of Fig. 5.19, the stability plot of the SSI-CVA method
is shown. This plot is produced by using the settings as shown in
Tab. 5.8 for the CVA-SSI algorithm. These indicators have to be ful-
filled to declare a mode stable, when comparing the mode with the
same mode of the model one model order lower. Most harmonics
(indicated by a blue vertical line) are identified as stablemodes. Be-
sides the wrongly as modes identified harmonic excitations, there
are two stable modes at ω/ωref = 1 and ω/ωref = 2.78.

Parameter Name Parameter Values CVA

Maximum Deviation of parameters

Frequency [Hz] 0.05

Damping [%] 2

Mode Shape MAC 0.01

Expected Range of Damping

Min [%] 0.05

Max [%] 2

Table 5.8
Modal indicators for the SSI-CVA

algorithm

Vold-Kalman Filtered Operational Modal Analysis

The top of Fig. 5.20 shows the spectrogram and the bottom the
singular value decomposition plot of the Vold-Kalman filtered op-
erational modal analysis. The harmonic frequency, clearly visible
in Fig. 5.19, have now disappeared from the spectrogram in Fig.
5.20. Plotting the singular values over the frequencies shows a gap
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Figure 5.19 Spectrogram (top), SVD plot (middle) and stability plot of the SSI-CVA algorithm (bottom) of the operational

measurement. The blue regions in the bottom plot indicate harmonic excitation frequencies, identified in Sec. 5.3.3
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Figure 5.20 Spectrogram (top), SVD plot (middle) and stability plot of the SSI-CVA algorithm (bottom) of the

Vold-Kalman filtered measurement
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at each location where a harmonic excitation was present in the SV
plot in Fig. 5.19.

Applying the Vold-Kalman filter, enables the SSI-CVA algorithm to
identify more stable resonance frequencies. This is shown in Fig.
5.20 at the bottom. Additional frequencies that could be identi-
fied this way include ω/ωref = 1.34, ω/ωref = 1.89, ω/ωref = 2.10,
ω/ωref = 2.26 and ω/ωref = 2.6. The identified modes and damping
values for this method are listed in Tab. 5.9.

ω/ωref = 0.27 ω/ωref = 0.35 ω/ωref = 0.65 ω/ωref = 0.74 ω/ωref = 1

ω/ωref = 1.34 ω/ωref = 1.89 ω/ωref = 2.10 ω/ωref = 2.45 ω/ωref = 2.76

Figure 5.21
A selection of modes identified by

the operational modal analysis

Fig. 5.21 shows themodes thatwere identified by applying theOMA
to the Vold-Kalman filtered measurements. The mode at ω/ωref =

Figure 5.22
The Auto-MAC plot of the

Vold-Kalman filtered measured

modes
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1 can be identified as the first bending mode, where as the mode
at ω/ωref = 1.33 seems to be the axial mode identified by the FE
model. Although, hardly visible in the SV plot in Fig. 5.20, the
two small peaks at ω/ωref = 0.65 match the mode shapes identified
by the impact measurement method at ω/ωref = 0.65. The mode
shapes of bothmeasurements show a tiltingmode at that frequency.
The peaks are so small, that the SSI-CVA method does not identify
them as modes.

Fig. 5.22 shows the Auto-MAC of the modes identified by applying
the OMA to the Vold-Kalman filtered measurements. Significant
off-diagonal entries exist only for the modes at ω/ωref = 0.27 and
ω/ωref = 0.35 and for ω/ωref = 0.65 and ω/ωref = 2.76. The lower
off-diagonal entries indicate that the modes measured by the Vold-
Kalman OMA are better distinguishable than the modes measured
by the impact measurements. The sensor position is still the same
as for the impact measurements, thus the identified mode shapes
must have changed.

Order-Based Modal Analysis

The top of Fig. 5.23 shows the vibration measurement of channel
8, as indicated in Fig. 5.14, during the run up of the XD-115. The
diagonal lines represent an excitation which depends linearly on
the rotation speed. During a start up of the turbine such an ex-
citation harmonic excites various frequencies. When the excita-
tion frequency coincides with a resonance frequency the measured
amplitude of the vibration increases.

The bottom part of Fig. 5.23 shows the extracted 2nth
slots and 5nth

slots
orders. The modal parameters of the peak at ω/ωref = 1 were iden-
tified by a local fit around that peak. This way the damping value
of that resonance frequency could be identified. It is listed in Tab.
5.9.

5.4.4Yawing Test

Fig. 5.24 shows the stability plot of the LSCE method on the left
and the spectrogram of the measurement on the right. In the spec-
trogram, the noise generated by the yawing motion and engines
is clearly visible. After the movement stops at around 21 seconds,
some frequencies seem to be damp out slower than others. Assum-
ing that the lower damping at those frequencies originates from the
fact that there is a resonance at those frequencies, a modal para-
meter identification can be conducted on the time frame directly
after the movement stops.
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Figure 5.23 Spectrogram of the run up, normalised with the rotation speed (top). Orderplot of the harmonic at 2nslots
times the rotation speed and its modal fit (bottom left). The harmonic at 5nslots the rotation speed (bottom right). Both

plots are done for the 8th channel, indicated in Fig. 5.14
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Figure 5.24
Stability plot of the LSCE method

(left) and spectrogram of the

measurement (right)

The LSCE method was applied to a time interval from 22 to 25
seconds of the measurement shown in Fig. 5.24. The stability plot
on the left side of Fig. 5.24 shows that the lower frequencies, which
were mainly excited by this method are relatively unstable. Even
the modal parameters of the mode at ω/ωref = 1, which is easily
identifiable in the other methods, could not be extracted. Only
some modes around ω/ωref = 0.05 are stable. Those are probably
modes of other turbine parts, such as tower or bladesmodes, which
also get excited during the sudden stop of the rotatingmotion of the
nacelle. The frequencies of thosemodes are too low to interact with
the resonances of the generator structure. Consequently, they are
not of interest in the scope of this thesis.

5.4.5Discussion

The difficulties encountered when exciting the structure, resulted
in measurements of which the results are less certain than hoped
for. This section discusses the quality of the measurements.

By comparing the results of the various identification methods, it
becomes apparent that the strong harmonic excitation in the fre-
quency range of interest poses a large problem for the operational
modal analysis methods. Filtering them out before applying the
parameter identification method yields better results. Other meth-
ods, such as a cepstrum analysis (see [103]) or [19], probably im-
prove the parameter identification. Only the excitation methods
that are directly present in the generator seem to excite the modes
of the generator structure. Other excitation techniques such as
yawing excitation failed to excite the modes of interest.

The yawing method was omitted from the following two subsec-
tions as no modes of interest could be identified with this method.
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Normalised Frequencies ω/ωref 0.27 1 1.34 1.88 2.09 2.25 2.44 2.78

Method Damping values [%]

OBMA - 0.0734 - - - - - -

Constant Speed Measurement EFFD 1.173 0.346 1.827 - - - - 0

Constant Speed Measurement SSI-CVA - 1.23 - - - - - 0.073

Vold-Kalman Filtered OMA EFFD 1.35 0.387 1.762 0.49 0.796 0.772 0.3 0.081

Vold-Kalman Filtered OMA SSI-CVA - 1.11 0.941 0.891 1.334 1.274 0.118 0.246

Impact Hammer - 0.35 - - - - - 0.12

Table 5.9
Overview over identified damping

values by the Operational Modal

Analysis (OMA), the impact

measurements and the

Order-Based Modal Analysis

(OBMA) for various resonance

frequencies

Comparison Among Measured Methods

Tab. 5.9 presents the identified damping values of several resonance
frequencies and for various methods employed. For resonance fre-
quencies that were not identified by a certain method a dash was
used.

Only the damping value of the resonance frequency at ω/ωref = 1
is consistent over 3 modal parameter identification methods. All
other damping values do not show any consistency or trend. The
modal damping is difficult to extract for operationalmodal analysis
methods, so that it is not surprising that the identified values are not
consistent [110].

The low damping values for the second bending mode at ω/ωref =
2.78 are curious. A low damping value in operational modal ana-
lysis is usually associated with harmonic excitations that are mis-
taken as resonance frequencies. Taking into account the odd fact
that more than two singular values show a peak around ω/ωref =
2.78, it cannot be ruled out that the peak at ω/ωref = 2.78 is actu-
ally a forced response to a harmonic force. On the other hand, this
mode was identified in the impact measurements too, which rules
out a harmonic excitation from rotation. This could indicate that
the measured excitation is caused by a device in the turbine that
excites the structure even when the turbine stands still. However,
the spectrogram at stand still in Fig. 5.18 does not show a vibration
at ω/ωref = 2.78. Therefore, further research is necessary, to un-
doubtedly identify the effect that causes the peak at ω/ωref = 2.78.

In Tab. 5.9, it is possible to identify the trend, that the damping of
the two modes at ω/ωref = 1 and ω/ωref = 2.78, that were identified
by almost all methods, are lower than the other measured mode.

Comparison with Simulation

Comparing the measured with the simulated modes reveals that
not all modes predicted by the finite element method in Sec. 5.3



5.4 Experimental Validation 183

V

A
pp

lic
at
io
n
to

th
e
XD

-1
15

could be identified by the measurement. In fact, most techniques
could only identify the two modes at ω/ωref = 1 and ω/ωref = 2.78.
The absence of the modes missing in the measurements can be ex-
plained by taking a closer look at the measurement results and ex-
citation techniques.
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Figure 5.25
MAC plot, comparing modes

recorded by the impact

measurement with calculated

modes.

Fig. 5.25 depicts the MAC plot that compares the mode shapes
which were computed by the finite element model to the shapes
measured by the impact hammer test. The onlymode for which the
agreement between themeasured and the simulatedmodes is relat-
ively good are the first bending modes (modes around ω/ωref = 1).
This mode is also the most excited mode during the measurement.

Most likely, the reason for the unsatisfying identification of some
modes by the impact measurements is their weak excitation. In the
case of the impact measurements, this is easily explained. Only the
bending modes show a significant displacement in the excitation
direction. i.e. in radial direction. Because, the excitation force was
applied in radial direction, thesemodeswere excitedwhile the axial
mode and torsional modes are hardly affected.

The high off-diagonal values in Fig. 5.25 an be explained by the low
number of accelerometers used for the measurement. The Auto-
MAC in Fig. 5.17 suggests that the 2nd bending mode and the tilt-
ing modes are not distinguishable. The location of the sensors was
chosen in such a way that it was possible to distinguish the first
bending mode from the second bending modes and from the tilt-
ing modes. It is, however, not possible to distinguish the second
bending mode from tilting modes, leading to a linear dependency
of the measured modes of these two mode types. That can be seen
by the increased values for certain MAC entries.
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Figure 5.26
Mac plot to compare the

operational mode shapes,

measured by the vold-kalman

filtered measurement and the

simulated mode shapes
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In Fig. 5.26, the MAC plot is depicted that compares the mode
shapesmeasured by the operational testing to the shapes computed
by the finite element model. There is only agreement for themodes
at lower frequencies. The OMA identified only one mode for the
frequencies ω/ωref = 1 and ω/ωref = 0.77, although it was expec-
ted that for each of these frequencies two modes can be identified
due to the symmetry of the rotor. For the higher modes, no agree-
ment between measured and computed modes can be identified.
This bad match between measurements and computation is prob-
ably caused by the difficult measurement conditions. As the Auto-
MAC in Fig. 5.22 suggested, the 2nd bending mode and the tilting
modes are hard to distinguish.

The excitation forces used for the operational modal analysis are
mainly in torsional and radial direction. It is expected, that modes
showing a displacement in these two directions are excited during
operation, while the axial mode at ω/ωref = 1.33 is not excited. It
is, thus, astonishing that the first bending mode is more excited
than the axial mode and that no torsional mode is visible in the
measurements.

There are three possible reason, why amode is not excited and thus
cannot be measured during operation. All of them can be derived
from the formula to calculate modal participation factors, which
was introduced in (5.20).

• The damping ζr of the mode is so high that it is not excited.

• The force distribution fmag does not match the mode shape
Φr, so that their scalar product fmag ⋅Φr is low.

• The excitation frequency Ω is too far from the resonance fre-
quency ωr.

Looking at the identified damping values inTab. 5.9, the first reason
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can be ruled out, as the damping values are too small to significantly
influence the participation of amode. The third reason can be ruled
out too, because the measurement was done at a frequency sweep,
during which various frequencies were excited, including the res-
onance frequencies. That leaves the second point as possible reason
why the structure is not excited.

Themode shapes of the 1st bendingmode and axial mode are valid-
ated by the vibration measurements in the turbine. Therefore, the
cause for an excitation of the 1st bending mode that is higher than
expected ismost likely the incorrect approximation of themagnetic
forces. The local magnetic forces cannot be measured directly and
thus no experimental validation was conducted.

In what way the magnetic forces do not resemble the actual force
distribution in the turbine, remains a task for future research. Pos-
sible reasons include imperfections or manufacturing tolerances in
the generator such as ovalisation of rotor and stator, eccentricity of
stator and rotor, and axial misalignment of stator and rotor.

5.5Conclusion

Although difficult measurement conditions were encountered in
the turbine, a successful experimental dynamic analysis of the gen-
erator rotor could be concluded. Some of the measured modes
were matched to the modes computed by the FE model. The mode
shapes of various modes seem to match very well the computed
modes, although the computed frequencies deviate.

The reasons for the less accurate match at higher frequencies and
the deviation of the frequencies has two probable causes. The diffi-
cult measurement conditions and the placement and low number
of sensors deteriorates the quality of the measurements. Further-
more, the simplifications applied to the FE model do not take the
surrounding nacelle and turbine dynamics into account. These dy-
namics could have an impact on the dynamics of the rotor struc-
ture, which leads to the encountered deviation between measured
and simulated dynamics.

The FE model suffered from the maximum limit of DoFs imposed
on the model by the available hardware. This limitation decreases
the accuracy of the computed modes as well as the accuracy of the
magnetic forces. For this problem, themodel reduction techniques
developed in Chapter 4 could help to improve the accuracy.

It was identified that for the XD-115 generator structure, the two
way coupled dynamics are less important. This indicates that the
design of the turbine’s generator is robust and can withstand the
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dynamic forces with ease. It also indicates that the generator struc-
ture is over engineered and significant weight reduction is possible
without compromising the functionality of the generator.

This result does not indicate that the two-way coupling can be neg-
lected for direct-drive wind turbine generators all together. For
designs that are more compliant, i.e. the lowest eigenfrequencies
are lower, the two-way coupling can be of major importance and
influences the dynamics significantly.

Furthermore, the measurements showed that in-situ operational
modal analysis of the generator structure of direct-drive wind tur-
bines is possible, making structural healthmonitoring during oper-
ation possible. Furthermeasurements, conducted on the static part
of the bearing, indicate that structural health monitoring of the ro-
tor resonance frequencies is even possible by measuring stator vi-
brations. These measurements are shows in Appendix B.

Improvements for future Dynamic Analyses of Generators

The analysis of the XD-115 was rather thorough and could explain
the dynamic behaviour that was measured. However, there was
some uncertainty left about the results. Several points could be im-
proved for the identification process of the dynamic behaviour of
wind turbine generators in the future.

More sensors: The measurements were carried out with too few
sensors. Ambiguity remained about the exact shape of some
of the modes.

Include the stator: Some of the vibrations might have originated
in the stator. This could not be determined ultimately, be-
cause the stator was not equipped with sensors. Including
the stator in the measurements could also yield valuable in-
formation explaining noise generation in the turbine as noise
is usually generated on the stator side.

Lab measurements of generator: Several of the vibrations meas-
ured in the generator might be caused by other parts of the
turbine. To distinguish the generator vibrations form the vi-
brations originating in other parts of the turbine, the gener-
ator’s dynamics should be measured before it is installed in
the turbine. This way, the change of the dynamic behaviour
caused by coupling with the nacelle or other structures can
be identified.

Increase frequency range: The frequency range was limited to up
to 200Hz. However, the frequency range should be reach up
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to the resonance frequency of the bending mode or ovalisa-
tion mode that has the same order as the cyclic symmetry as
the electro-magnetic part. Those modes are especially likely
to be excited and should thus be carefully analysed.

Use other OMA and filtering techniques: [103] lists a number of
techniques to improve parameter identification of output-
only measurement techniques in the presence of harmonic
excitations. Some of these techniques are expected to im-
prove the results of the measurements present here.

5.6Summary

In this chapter, a dynamic analysis of the XD-115 was conducted,
including a 3D structural analysis, a 3D magnetic model interact-
ing in two directions with the structural model and a 2D magnetic
model estimating the influence of the armature field on the struc-
ture. The two-way coupled analysis, conducted first, identified that
a two-way coupled analysis is not necessary for the generator of
the XD-115. The one-way coupled analysis, conducted afterwards,
could simulate the dynamics of the generator of the XD-115 reas-
onably well. Measurements showed that in the frequency range
of interest, several eigenmodes could be predicted by the simula-
tions. This was seen as strong indications, that the models indeed
are a representation of the vibrational behaviour of the turbine. In
the higher frequency range, the agreement between simulation and
measurements was weaker, so that some doubts about the model
could not be dispelled.

The source of and the mechanisms causing the excitation frequen-
cies could be identified, so that for other generators, the excitation
frequencies were predicted. Furthermore, a methodology was de-
veloped to identify modes that can possibly be excited by the mag-
netic harmonics.
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Reducing the weight of off-shore wind turbine
nacelles is currently a key driver of innovation
within the wind turbine industry. Weight
reduction will not only lead to smaller mass and
thus smaller towers of the turbine, but also reduce
logistic costs during the turbine’s installation. A
reduced nacelle weight will, subsequently, lead to
reduced cost of wind energy.
For direct-drive turbines, the generator is one of
the heaviest parts of the wind turbine nacelle. Due
to the low rotational speed of the generator, the
loads are especially high in this type of turbine,
which increases the necessary structural mass of
the rotor. Recently, designed flexibility has been
identified as one approach to achieve weight
reduction. However, reducing the weight of the
support structure has proven difficult, due to the
complex pattern of dynamic excitation forces.
Until now, density based topology optimisation
has hardly been employed for the design of wind
turbine parts. This chapter investigates the
possible weight reduction, which results from
applying this method to the support structure of
the generator rotor.
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6.1 Introduction

In Chapter 5, the dynamic behaviour of the XD-115 generator was
analysed. The insights in the load cases for the stationary operation
of the turbine can be used to improve the dynamic behaviour of the
generator.

Vibrations in wind turbine generators are of interest, because of the
following reasons. Firstly, vibrations during operation can cause a
noise annoyance for the surrounding area. Furthermore, vibration
amplitudes that exceed a secure limit, can compromise the func-
tionality of the turbine. The second aspect is the focus of this thesis.
When analysing the vibrations for either of the two reasons above,
insights and recommendations for the other cause are also gained.
It is, therefore, helpful keeping both aspects inmind during the fol-
lowing analysis.

Topology Optimisation, the method mainly used in this chapter, is
still subject to extended research. As such, there are still issues that
need to be addressed before this method can show its full potential.
This chapter focuses on identifying the potential that this method
develops, when using it to improve designs of generator structures.
For that, this thesis adapts the method for wind turbine generators,
including identification of suitable constraints and ways to meas-
ure the performance of a design. The chapter does not focus on
improving the methods itself. It uses a self developed version of
the algorithm that does not include the latest, cutting edge meth-
ods that improve the optimisation result. Accordingly, the results
presented in this chapter suffer from practical difficulties during
the implementation of the optimisation algorithm and can be im-
proved significantly, when the latest research results from the field
of topology optimisation is incorporated. Approaches that poten-
tially improve the results are pointed out.

6.1.1 Effects of Torque Ripple in Electric Machines

Torque Ripple is caused by the interaction of the magnetic field of
the rotor with the armature field and the stator teeth. It causes a
variation of the torque during the rotation of the turbine. This ef-
fect is undesirable as it can excite the structure of the generator and,
consequently, causes noise and high vibration amplitudes. Fur-
thermore, it can complicate the start-up of the generator, as itmight
create a magnetic torque that opposes the torque induced by the
wind, even when there are no currents present in the coils.

To avoid vibrations in wind turbines generators in particular and
electric machines in general, efforts have concentrated on minim-
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ising the cause for the vibrations, i.e. torque ripple, in the past.
The various approaches for minimising these torque fluctuations
were listed in Sec. 1.3.3. Instead of minimising the cause of torque
ripple, analysing the impact it has on the machine can identify new
approaches to minimise its effects. The vibrations caused by torque
ripple can be minimised, by designing the structure in such a way
that it does not excite the structure of the electric machine. This
will reduce noise and vibration amplitudes. It does not improve
the start-up characteristics of the generator.

To find a mechanical design that minimises the effects of torque
ripple, topology optimisation was chosen. This method is most
suited for this task, as it is not limited by what shapes it can de-
scribe.

6.1.2Optimisation for Weight Reduction

The insights in the load cases, gained in Sec. 5.3.4 and Sec. 5.3.5, for
the steady-state operation of the turbine can be used to optimise
the design of the generator structure, so that the deflection result-
ing from those forces is minimal. In the past, many different to-
pologies to optimally support the electro-magnetic active parts of
the generator were suggested [145]. The proposed designs can be
categorised in constructions using arms, spokes, discs and tension
rods. The various designs that were proposed are thus quite diverse.

The challenge of the optimisation is finding the optimal topology
and identifying the optimal design, while ensuring that the result
is still manufacturable. Shape optimisation is based on a paramet-
risation of the geometry. Parametrisation is difficult when there are
many topologies to consider. Topology optimisation is not para-
meter based and can thus represent any design listed in [145]. How-
ever, the designs yielded by topology optimisation are often diffi-
cult to manufacture with conservative production techniques, i.e.
without a 3D printer. A combination of topology optimisation and
shape optimisation was chosen for this optimisation. This way, all
possible geometries listed in [145] are included, yet the resulting
geometries consist of shapes that are manufacturable.

6.1.3Content of the Chapter

This chapterwill introduce a dynamic optimisation problem, which
quantifies and optimises the dynamic performance of the generator
rotor structure of the XD-115. The method can be used in the same
way for any electricmachine but yields the largest improvements in
electricmachines that are very flexible, like direct-drive generators.
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It can be used to address either of the two effects mentioned above:
reduce generator vibrations and reduce the weight of the structure.
The method is used for single bearing direct-drive topologies as
well as multi bearing designs. The results of the optimisation of
single bearing designs are compared to the current design, which
is used as benchmark.

6.2 The Dynamic Optimisation Problem

This section will introduce the various methods used during the
optimisation. Due to the large variety of generator topologies that
need to be considered, topology optimisationwas chosen as optim-
isation method. Topology optimisation is a technique that math-
ematical determines the optimal distribution ofmaterial for a given
cost function within a certain control volume. Compared to shape
optimisation, topology optimisation is not limited by parametrisa-
tion. However, it leads to a large number of design variables that
lead to models that consist of many DoFs and are computational
expensive.

6.2.1 The Dynamic Optimisation Problem

How can the optimal design be measured for a certain set of func-
tions that a structure needs to fulfil? The functions that the gener-
ator rotor structure needs to perform were mentioned in Sec. 1.2.3.
The first objective requires a stiff connection between all electro-
magnetic active materials on the rotor. To ensure this, a hollow
cylinder is needed, on which the magnets are mounted.

The other two objectives can be quantified by taking the displace-
ment caused by the magnetic forces during steady-state operation
of the turbine. In this thesis, the focus rests on the dynamic beha-
viour of the generator. That means that not only the static forces of
the generator, described in (5.16), are taken into consideration but
also the dynamic forces, that were identified in (5.17).

Another indicator for the performance of the rotor structure is its
weight and its cost. The objectives have to be reached with the least
weight possible at the cheapest price. The first of these indicators
is easily measurable as the weight can be computed directly from
the volume. The second indicator is difficult to determine, because
it heavily depends on the geometry of the rotor. Therefore, it is
neglected here during the optimisation. It is however accounted
for by using a shape optimisation after the topology optimisation
that yields shapes that are easier to manufacture.
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Theoptimisation problem can be phrased into the qualitative state-
ment:

Determine the structural generator design that uses
the least amount of material, while not exceeding a cer-
tainmaximal displacement under dynamic forces found
at steady state operation

Shaping this expression into a mathematical formula, as necessary
for optimisation algorithms, will be complex, due to the limitation
of current algorithms.

A solid steel ring is necessary for a feasible electro-magnetic design,
because the magnetic flux lines need to be able to close. This steel
ring gives enough support to the magnets, so that the first function
defined in Sec. 1.2.3 is automatically performed.

6.2.2Quantifying the Performance of the Design

f⃗mag

Γmag

Ωmat Ω

Figure 6.1
Domain of a structural

optimisation. Ωmat denotes the

volume of the material. For the

topology optimisation, Ω denotes

the whole optimisation domain

and Γmag denotes the surface

where magnetic forces are applied

The qualitative statement in the previous section needs to be trans-
formed into a mathematical formulation. For that, the constraints
as well as the optimisation criteria need to be quantified. For the
mass constraint, this is rather easy as the maximal mass of the total
structure may not exceed a certain value

mmax > ∫
Ωmat

ρ(x⃗) dΩmat (6.1)

where ρ denotes the density of the structure, Ωmat the material do-
main andmmax themaximal allowedmass of the structure. See Fig.
6.1 for a schematic of the system that is optimised. The second con-
straint ensures that there is a solid steel ring at the locations where



VI

O
ptim

isation

194 6 Optimisation

the magnetic force is applied

mmax,mag = ∫
Γmag

ρ(x⃗) dΓmag (6.2)

where Γmag denotes the surface where themagnetic force is applied,
andmmax,mag aminimal value for the average density of the surface.
Note that mmax,mag is not a mass. Its unit is kg

m .

For formulating the mathematical optimisation performance cri-
teria, two different kinds of displacement need to be distinguished.
The static displacement created by static forces in the generator. In
addition, there are the dynamic displacements that are the result of
periodic forces in the generator. These two kinds of displacement
have to be computed separately.

Static Performance

For the static case, the displacements can be determined by solving
the equilibrium equation (see Chapter 2 for details)

f⃗mag,static = −∇ ⋅ σ(u⃗) (6.3)

where f⃗mag,static denotes the magnetic forces as defined in (5.16).

The performance of the structure is determined by the displace-
ment in the air gap, i.e. at Γmag. When the absolute value of the dis-
placement in Γmag is minimal, the second and third functions of the
support structure are fulfilled as best as possible. Minimising the
absolute value of every DoF in Γmag will lead to as many objective
functions as there are DoFs in Γmag. Most algorithms are designed
for one scalar objective function, because this makes the optim-
isation computational cheaper. One objective function means that
only one gradient needs to be determined. So instead of minim-
ising every DoF in the domain, the integral over all displacements
is formed.

min∫
Γmag

∣u⃗∣ dΓmag (6.4)

This is minimal, when the square of the displacement is minimal

min∫
Γmag

u⃗2 dΓmag (6.5)

Minimising (6.5) will lead to an optimal design in terms of static
performance. For numerical reasons, (6.5) is not ideal as it in-
creases computation time drastically. Computing the sensitivities
of (6.5) is expensive. Why that is the case will be explained in Sec.
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6.2.4. Instead of the square of the displacement, the strain energy
is minimised.

min gobj = min∫
Γmag

u⃗T f⃗mag dΓmag

= min ∫
Ωmat

ε(u⃗)Tσ(u⃗) dΩmat

(6.6)

Dynamic Performance

The dynamic performance of a structure can be measured by the
overall displacement of the structure under a dynamic loading. In
a steady state operation point of the generator, only periodic ex-
citation forces are generated by the system. The partial differential
equation describing the response of the system is

∇ ⋅ σ(t, x⃗) + f⃗mag(t, x⃗) = ρ
∂2u⃗(t, x⃗)

∂t2
(6.7)

This equation can be optimised in two ways. The used approach
depends on the system properties and has a significant influence
on the formulation of the optimisation problem.

The Harmonic Approach
The first approach is the harmonic approach. In this case, the dis-
placement field u⃗ is calculated for a certain harmonic excitation
frequency ωext. The solution is a forced vibration at the same fre-
quency as the excitation.

∇ ⋅ σ̂(x⃗)eiωextt + ˆ⃗fmag(x⃗)eiωextt = −ρω2
ext
ˆ⃗u(x⃗)eiωextt (6.8)

where ˆ⃗u and ˆ⃗fmag denote the amplitude of the response over Ω and
the spatial distribution of the displacement and magnetic force, re-
spectively and the exponential terms eiωextt the time information.
The same separation has been done for the stress tensor σ.

The solution is only valid for that particular frequency. To get an
impression of how the system performs at various excitation fre-
quencies, (6.8) has to be solved repeatedly for those frequencies.
Once the PDE is solved, the displacement for that frequency can
be used to calculate the performance. As performance indicator,
the dynamic energy is used

Wdyn(ωext) = ∫
Ωmat

εT(u⃗,ωext)σ(u⃗,ωext) dΩmat (6.9)
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When a certain frequency range is of interest, (6.8) needs to be
solved for all frequencies in that frequency range. There are in-
finite frequencies in any frequency range. Thus, a frequency sweep
with a certain step size needs to be done. The size of the step should
not exceed a certain value, as then resonance frequencies that are
located between the evaluated frequencies might not be picked up.
On the other side, it should not fall below a certain length as this
increases the computational costs.

This approach has the disadvantage that the larger the frequency
range of interest, the more often (6.8) needs to be solved. The ad-
vantage is that the the sensitivity analysis for the various perform-
ances is rather simple and can thus be calculated easily as shown in
Sec. 6.2.4.

The Modal Approach
Themodal approach transforms (6.7) into a system of independent
ordinary differential equations, using modal analysis according to
the description in [52]. It is then possible to identify the amplitude
of each of these modes with the help of the participation factor

ηr =
∫

Ωmat

φ⃗r ⋅ f⃗mag dΩmat

ω2
r − ω2

ext
(6.10)

Often, only a certain frequency range is of interest for the optimisa-
tion. In that case, the participation factor of modes within that fre-
quency range are considered for the optimisation function. Con-
sidering only a certain frequency range has one disadvantage. The
frequencies of themodes changewhen the density distribution, and
with it the design, changes. It is, thus, possible that due to a change
of the design parameters a mode is no longer considered, when its
resonance frequency is no longer in the frequency range for which
the amplitudes are evaluated. Furthermore, it is possible that a cer-
tain mode starts being considered when its resonance frequency
is changed in such a way that it enters the frequency range of in-
terest. This problem could be addressed by employing mode track-
ingmethods [40, 75] or using aHanningwindow so thatmodes just
outside the frequency range of interest are still taken into account
but at a lower weighting factor.

This method has the advantage that the resonance frequencies are
identified and, thus, the evaluation of the response is independent
of the difference in frequency between resonance frequency and
evaluation frequency. This way, it can be ensured that all resonance
frequencies in the optimisation function are weighted equally, if
desired. However, the computational cost to analyse each mode is
more expensive than for each frequency in the harmonic method.
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This is balanced by the fact that there are usually less modes than
frequencies in a certain frequency range and thus the number of
evaluations per optimisation step is lower.

Multi-Objective Optimisation

Optimisation functions that consist of a sumof several terms donot
necessarily minimise all these terms. An optimisation algorithm
that minimises such an expression will concentrate on minimising
the largest term. A step that increases one of the smaller terms
while leading to a huge decrease for the largest term, will still yield
an overall decrease of the optimisation function. Only when the
various terms are of the same magnitude, the algorithm will take
the other terms into account.

To overcome this problem, only one of the terms is used in the op-
timisation function, while the other terms are used to define a set
of constraint which ensures that these terms do not exceed a cer-
tain value. By computing the optimal value for several constraint
value sets, the so called Pareto front can be determined. This front
indicates the optimal solution for the optimisation problem, over a
parameter space.

For the static optimisation problem, a Pareto front is computed by
minimising the static performance indicator defined in (6.6) for
several maximal mass values. This is done for the static optimisa-
tion in Sec. 6.3.1 and shown in Fig. 6.6

The performance indicators for the harmonic and modal approach
are both sums of several terms. Because there are so many terms,
computing a Pareto front is expensive. That is why instead the op-
timisation function consisting of the sum of various terms is op-
timised.

For the modal approach, this means, that mainly the largest parti-
cipation factor will be minimised. All other participation factors
might increase during the optimisation process. The same is valid
for the various frequencies in the harmonic approach. In this case,
mainly the largest dynamic energy computed at one of the eval-
uated frequencies is minimised. That could lead to the situation
that a resonance frequency that is located between two evaluated
frequencies is not minimised for two possible reasons. Because
the resonance frequency does not coincide with an evaluation fre-
quency, its contribution to the dynamic energy at the nearest eval-
uated frequency is small. Furthermore, the summand of that fre-
quency might be small and thus neglected by the optimisation al-
gorithm.
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6.2.3 Topology Optimisation

This short introduction to topology optimisation is based on the
introduction in [160].

Topology optimisation is an optimisation technique that has the
aim to find the optimal distribution of material within a certain
design space Ω under a certain loading and set of constraints. To
formulate the topology optimisation problem and indicator func-
tion χ is introduced that can take values of 1, i.e. material and 0,
i.e. no material

χ(x⃗) ∈ {0, 1} (6.11)

The topology optimisation finds the field of χ(x⃗) that minimises a
certain objective function gobj. The optimisation problem can then
be written as:

min
χ,u⃗

gobj(χ, u⃗)

subject to 0 = δ (Wstrain(u⃗, χ) + T (u⃗, χ) −Wext,m(χ))
gconstr ≤ 0
χ(x⃗) ∈ {0, 1}

(6.12)

where gconstr denotes a constraint, gobj the objective function. The
second line represents the variational formof the partial differential
equation as derived in Chapter 2 with Wstrain the potential energy
and Wext,m the external energy as described in (2.59).

To solve (6.12) various approaches have been derived in the past.
The two most common ones are level-set methods [159, 167] or
density based topology optimisation [14]. This thesis will only em-
ploy the latter method.

Density Based Topology Optimisation
Density based topology optimisation is currently the most widely
used method to solve optimisation problems such as (6.12). The
approach of density based topology optimisation is to relax the
problem in (6.12) to a problem that is solvable by gradient based
optimisation algorithms. To do that, the discrete indicator func-
tion is substituted by a continuous density function ρf(x⃗) ∈ [0, 1].
Regions within the design without material are modelled as very
compliant material that hardly has an influence on the deforma-
tion behaviour of the structure. Usually, (6.12) is given in its nested
form, i.e. ρf is the only design variable and u⃗ is an implicit function
of ρf through the second line of (6.12). The second line of (6.12) is
omitted from the optimisation problem.

To compute the displacements, the domain is discretised using the
finite elementmethod, where the elements of the stiffness andmass



6.2 The Dynamic Optimisation Problem 199

VI

O
pt
im

is
at
io
n

matrix depend on the design parameters ρf.

min
ρf

gobj(u⃗(ρf))

subject to gconstr(u⃗(ρf)) ≤ 0

ρf(x⃗) ∈ [0, 1]

(6.13)

Because, the equilibrium equation, which was still part of (6.12),
is now implicitly solved when computing u⃗, all possible solutions
for (6.13) satisfy the equilibrium equation. The stiffness and mass
matrix, needed to compute u⃗, depend on the design parameters ρf

M =M(ρ(ρf)); K = K(E(ρf)) (6.14)

where ρ and E are vectors containing the scaled values of the dens-
ity andYoung’smodulus respectively at the nodes within the design
domain. The total stiffness matrix and mass matrix are assembled
from the element matrices, which depend on the nodal values of
the density and Young’s modulus.

K = ∑
e
Ke(Ee) (6.15)

where Ke denotes the stiffness matrix of the eth element and Ee the
nodal values of the Youngs’s modulus at the nodes associated to the
eth element.

Scaling the Young’s modulus nonlinearly, while scaling the density
linearly makes intermediate densities (10−3 < ρf < 1) less feasible.
This is the case, because the intermediate densities show a relative
low stiffness compared to their density. This way the achieved stiff-
ness is paid for by a lot of weight. The optimal solution will thus
not include material that has intermediate densities but tends to a
black and white, i.e. material/no-material, design. Fig. 6.2 shows
the relation between the normalised density and elasticity and the
design variable ρf. This method is called modified Solid Isotropic
Material with Penalisation (SIMP) method [139, 150]. The Young’s
modulus is defined by

En = Emaxρ3
f (6.16)

In dynamic topology optimisation, localmodeswith low resonance
frequencies can occur due to the penalisation function applied to
the Young’smodulus. This problem is tackled by lowering the dens-
ity for low values of the design parameter.

ρn =
⎧⎪⎪⎨⎪⎪⎩

ρmax ρf for ρf ≥ 0.1
ρmax ρ

5
f for ρf < 0.1

(6.17)

Solving the topology optimisation problem was done by using the
Method of Moving Asymptotes (MMA) [149]. The code was adap-
ted from the code supplied by the author of [149] in Matlab.
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6.2.4 Computing Sensitivities

Topology optimisation requires optimisation algorithms that eval-
uate the gradients analytically. The large number of design vari-
ables make algorithms based on finite differences infeasible. For
topology optimisation, remeshing between iteration steps is not
necessary. This makes gradient based topology optimisation pos-
sible.

The sensitivity of a value is its change with respect to another. For
the optimisation the change of the objective function gobj(u⃗) with
respect to the design variables are the sensitivities that need to be
determined. In the case of density based topology optimisation, the
design variables are the densities at each node of the mesh ρf(x⃗).
The value of interest is, thus, the gradient of the objective functions
with respect to the densities. Various methods exist to calculate
the sensitivities. Which method to use depends on the objective
functions and how it depends on the design parameters. For this
thesis, the objective function is a scalar function depending only
on the design parameters where a load is applied. In such a case,
the adjointmethod for calculating sensitivities is the computational
least expensive method.

The Adjoint Method

The adjoint method adds a design parameter independent part to
the optimisation function. It does depend on the current solution
of the system u⃗(x⃗). This part includes adjoint variables, which need
to be solved only once for each optimisation iteration regardless of
the number of design parameters. This way, the computation of
the sensitivity of the objective function or constraint with respect
to each design parameter can be avoided. Instead, only one set of

Figure 6.2
The normalised density and

elasticity plotted over the design

variable ρf
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equations for every constrain or optimisation function needs to be
solved to compute the sensitivities, reducing computational cost
significantly. The adjoint problem is tailored to a certain load case
and needs to be adapted for each load case.

Stationary Optimisation

For stationary optimisation problems, the calculation of the sensit-
ivities is easier than in the harmonic ormodal case. For the discrete
case, the system equation is

Kqu = f (6.18)

The adjoint methods introduces the performance measure g∗obj

g∗obj = gobj − λ
T(Kqu − f) (6.19)

where λ denotes the adjoint variables.

Instead of computing the sensitivities for gobj, the sensitivities for
g∗obj are computed.

dg∗obj
dρf
= (

∂gobj
∂qu
)
T dqu

dρf
− λT
⎛
⎝

dK
dρf

qu +K
dqu
dρf

⎞
⎠

(6.20)

By a wise choice for λ the first term can be eliminated

λTK = (
∂gobj
∂qu
)
T

(6.21)

leaving for the sensitivity of g∗obj
∂g∗obj
∂ρf

= −λT dK
dρf

qu (6.22)

Because, (6.22) contains the solution to the static problem, qu, the
linear systems (6.18) and (6.21) need to be solved. The derivation of
the adjoint variables for calculating the sensitivities of constraints
is analog.

If the objective function gobj only consists of the strain energyWpot,
the system is self-adjoint. This means that the adjoint variables λ
are the same as the displacement solution qu. This can be shown
by considering that the potential energy for the discrete case can
be calculated by

Wpot =
1
2
qTuKqu (6.23)

in this case (6.21) becomes

λTK = qTuK (6.24)

Self-adjoint systems are cheaper to optimise as (6.21) does not need
to be solved explicitely.
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Modal Optimisation

The adjoint method for modal sensitivities was used by Lee [89,
90].

g∗obj = gobj − ξ
T(K − λkM)φk + ζ (

1
2
− 1

2
φT
kMφk) (6.25)

where ξ and ζ denote the adjoint variables and λk denotes the square
of the eigenfrequency ωk. The derivative of the objective function
with respect to the design parameters becomes then

dg∗obj
dρf
=
∂gobj
∂λk

∂λk
∂ρf
+ ( ∂f

∂φk
)
T
∂φk
∂ρf
+

+ ξT
⎛
⎝
∂K
∂ρf
− ∂λk
∂ρf

M − λk
∂M
∂ρf

⎞
⎠
φk

+ ξT(K − λkM)
∂φk
∂ρf
+

+ ζ
⎛
⎝
−φkM

∂φk
∂ρf
− 1

2
φT
k
∂M
∂ρf

φk
⎞
⎠

(6.26)

Solving the following system of equations to calculate the adjoint
variables ζ and ξ, will eliminates the terms depending in the ori-
ginal optimisation function

[(K − λkM) −Mφk
−(Mφk)T 0 ] [ξζ] =

⎡⎢⎢⎢⎢⎣

−∂gobj
∂φk

−∂gobj
∂λk

⎤⎥⎥⎥⎥⎦
(6.27)

Calculating the adjoint variables this way leads to

dg∗obj
dρf
= ξT
⎛
⎝
∂K
∂ρf
− λk

∂M
∂ρf

⎞
⎠
φk − ζ

1
2
φT
k
∂M
∂ρf

φk (6.28)

for the sensitivities. (6.27) has to be solved for each eigenvalue and
vector individually. So in order to calculate the sensitivities for all
modes within a certain frequency range, first the eigenvalue prob-
lem itself has to be solved and then (6.27) for eachmodewithin that
range.

Finding a solution to (6.27) is the most computationally expensive
part of the modal method for large systems. The zeros on the main
diagonal in (6.27) can pose a problem for some preconditioners for
iterative solvers. This leads to a slow convergence rate of the iter-
ative solver, which are preferred for large systems, due to reduced
memory requirements compared to direct solver methods. Find-
ing a way to solve (6.27) iteratively and efficiently is still a topic of
research.
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Harmonic Optimisation

The sensitivity analysis for the harmonic case is different from the
two cases covered above. To increase the possibility that a reson-
ance frequency is excited by the excitation force that does not per-
fectly coincide with the resonance frequency, damping is added to
the system. This increases the width of the peak of a resonance fre-
quency in the FRF of the system and thus increases the chance of an
increase response to an excitation frequency. However, the damp-
ing complicates the sensitivity analysis as the displacement of the
system becomes complex.

The adjoint sensitivity analysis for time harmonic systems includ-
ing damping is derived in [170]. The objective function gobj is ex-
tended by two adjoint variables ξ and ζ, one for the complex and
the other one for the complex conjugate residual.

g∗obj = gobj + ξ
T(Squ − f) + ζT(Squ − f) (6.29)

where ● denotes the conjugate complex of a value and S denotes the
sum of the system matrices

S = K(ρ) + iωC(ρ) − ω2M(ρ) (6.30)

as shown in [170], one of the sets of adjoint variables can be elim-
inated by

ζ = ξ (6.31)

The remaining adjoint variables can be computed by solving the
system

S(ρ)Tξ = −1
2
(

∂gobj
∂ R(qu)

− i
∂gobj

∂ I(qu)
)
T

(6.32)

After the adjoint variables have been computed, the sensitivities can
be calculated by

∂g∗obj
∂ρf

= 2 R
⎛
⎝
ξT ∂S

∂ρf
qu
⎞
⎠

(6.33)

For the case that
f = quSqu (6.34)

as defined for the harmonic approach, the system is self-adjoint and
the solution of (6.32) is obtained by computing the dynamic dis-
placements.
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6.2.5 Shape Optimisation

The topology optimisation explained in Sec. 6.2.3 can identify the
optimal topology for a certain load case and domain. However,
due to the coarse mesh the computed stiffness is probably over-
estimated. It is, therefore, necessary to validate the results with a
shape optimisation where this overestimation is avoided. For that
the results of the topology optimisation are used to identify a para-
metrisation for the shape optimisation.

Furthermore, the shape optimisation yields results that do not re-
quire a 3D printer to bemanufactured. Because of the parametrisa-
tion, the shape optimisation yields geometries that consist of easy
shapes.

For every iteration step of the shape optimisation, the structure is
remeshed. Thismakes the usage ofmethods determining the gradi-
ent analytically difficult (using a moving mesh, would theoretic-
ally make a gradient based method possible). It is, thus, necessary
to use an optimisation method that is based on finite differences
or does not try to identify the gradient at all. There are several
algorithms that fit this description, including particle swarm op-
timisation [39], algorithms based on evolution or the BOBYQA al-
gorithm [119]. In this thesis, the Nelder-Mead algorithm is used
[106].

6.3 Optimisation of Single Bearing Topologies

The focus of this thesis is on single bearing direct-drive topologies.
TheXD-115, analysed in Chapter 5, also belongs to this type of wind
turbine.

For the optimisation of the single bearing design, the forces de-
scribed in (5.16) and (5.17) were used. In a first step, a topology op-
timisation was used to determine the rough design of the turbine.
In a second step, a design parametrisation was conducted, which
was inspired by the result of the topology optimisation. This para-
metrisation makes a shape optimisation of the system possible.

The current design of the XD-115 was used as benchmark for the
optimised designs. It is depicted in Fig. 6.3. The compliance, the
totalmass and the participation factors for selectedmodes are listed
in Tab. 6.2.

The optimisation relates only to the part of the rotor that is located
between bearing and air gap. For the optimisation, the magnet as-
sembly was left out and thus excluded from the optimisation pro-
cess. Only the steel stiffener structure, including the ring the mag-
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Figure 6.3
The benchmark design, i.e. the

current design of the XD-115

nets are mounted on, was included. For simplicity, the bearing was
modelled as fixed displacements. The hub was omitted, although it
was discovered that the hub structure has an small influence on the
dynamic response of the rotor stiffener structure. All these sim-
plification were also applied to the benchmark design, to ensure
comparability between the benchmark and the optimised designs.

6.3.1Topology Optimisation

Fig. 6.4 shows the mesh and the optimisation domain used for the
topology optimisation. The topology optimisation was coded in
Matlab and run on a computer cluster node with 48 cores. The
static optimisation took about a day while the modal optimisation
took about one to two weeks. The harmonic optimisation was car-
ried out in Comsol and took about six days.

While using the topology optimisation, it crystallised that the res-
olution of thematerial distribution is the bottleneck of themethod.
The volume of the structure of direct-drive wind turbines is large.
Furthermore, structures that consist of thin plates, beams or spokes
are usually the stiffest. Therefore, a high resolution is necessary
to represent the thins structures, while at the same time the large
volume needs to be covered. This gives rise to models with huge
amount of DoFs.

The mesh used for the topology

optimisation

ca. 5m

ca. 3m

The Design Domain used for the

Topology Optimisation

Figure 6.4
Force distribution and schematic

of the topology optimisation
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The topology optimisation was conducted with and without dens-
ity filter. The filter was based on [84] and prevents the optimisa-
tion algorithm from including checkerboard-like structures. These
occur in solutions of topology optimisation, because the stiffness
computed by the FEM for structures including material distribu-
tions in checkerboard patterns is greatly overestimated. They per-
form better when a large stiffness is desired with limited amount of
mass available. A comparison of homogenous designs with designs
including checkerboard-like structures is thus not fair.

The solutions of the unfiltered topology optimisation can still be
used as a starting point for a shape optimisation. The unfiltered to-
pology optimisation can create thinner structures. Consequently,
the resulting designs can look very different from the filtered solu-
tions. The above mentioned problem of comparing various res-
ults is overcome by comparing the solution of the shape optimisa-
tion, which does not include checkerboard-like structures, with the
benchmark solution.

Static Optimisation

In a first step, the system was optimised for a static load case using
the load identified in (5.16) and depicted in Fig. 5.11. This was done
in order to ensure that the solution computed with the used mesh
is able to excel the current benchmark design in terms of statical
performance.

Discretising the general optimisation problem, (6.13), yields the fol-
lowing discrete optimisation problem

min
ρf

qu ⋅ fmag,stat

subject to ∑
n
ρnvn −mmax ≤ 0

− ∑
n∈Γmag

ρnvn + 0.999 ∑
n∈Γmag

vn ≤ 0

ρf ∈ [10
−3, 1]

(6.35)

where qu denotes the values of the structural DoFs as defined in
(2.104), ρn is the density at node n, vn the volume associated with
node n and ρf denotes the vector of all design parameters. The ob-
jective function denotes the strain energy of the system that is min-
imised. The first constraint ensures that the mass mmax is not ex-
ceeded, while the second constraint ensures that the design is feas-
ible from a magnetic point of view by imposing a solid steel ring at
the outer surface of the design domain.

To identify the minimal mass at a given compliance a Pareto front
was computed for filtered and unfiltered topology optimisation.
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Figure 6.5
The result of the static topology

optimisation without density filter

form = 13039kg (top) and the

result of the static filtered topology

optimisation form = 20525kg
(bottom)

This front, shown in Fig. 6.6, identifies minimal values of the static
compliance for various values of the constraint limiting the max-
imum mass. Fig. 6.6 shows the influence of the density filter. The
unfiltered topology optimisation yields lower compliances than the
the benchmark design for the same mass, whereas the filtered to-
pology optimisation, on the other side, yields a compliance that is
slightly higher than the compliance of the benchmark design. For
very lowmass constraints, the filtered topology optimisation yields
very high compliances. This is caused by the density filter, because
the mass cannot be distributed in a way, that a connection between
the outer cylinder and the bearing is established.

The top part of Fig. 6.5 shows the resulting design of the static un-
filtered topology optimisation at the point of the Pareto front that
shows roughly the same compliance as the benchmark design. The
total strain energy, which is an indication for the compliance of the
system, is 157J and the mass is 13039kg. That is 96% of the total
strain energy of the benchmark solution and 81% of the mass of
the benchmark solution.

The bottom part of Fig. 6.5 shows the design that is produced by
the filtered topology optimisation. This design performs slightly
worse than the benchmark design. The mass at 99% slightly below
the benchmark design, whereas the strain energy of 186J is slightly
above the benchmark design of 164J. Tab. 6.2 shows the compar-
ison of the various optimisation results.

Modal Optimisation

The static solution was used as an initial guess for the dynamic op-
timisation. This speeds up the optimisation process, because the
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boundary conditions of the optimisation problem are a priori sat-
isfied.

The load for which the structure is optimised is given by Sec. 5.3.5.
For a rotation speed of 18rpm, which is themaximal rotation speed
of the turbine the maximal excitation frequency is

ωmax

ωref
= nlcm

2πnmax

60ωref
(6.36)

where nmax denotes themaximal number of revolutions perminute
of the turbine, ωmax the maximal frequency in the frequency range
of interested. ωref the normalisation rotation speed introduced in
Chapter 5 and nlcm denotes the least common multiple of the num-
ber of slots and the number of poles defined in (5.12). For the used
parameters the frequency range of interest is between ω/ωref = 0
and ω/ωref = 3. The modal topology optimisation intends to min-
imise the excitation of any modes in this frequency range. For that
10 modes were computed in each iteration step. If the number of
modes in the frequency range of interest exceeds 10modes, the low-
est 10 modes were used for evaluating the optimisation function.

The excitation frequency of fmag,dyn varies with the rotation speed
of the turbine. That is the reason why only the nominator in (5.20)
is used in the objective function. Thenominator represents the cor-
relation of the spatial distributions of excitation forces and modes.
It is independent of the excitation frequency. The optimisation
decreases the participation of the modes by either changing their
shape, so that they are no longer excited, or it changes their reson-
ance frequency so that they are no longer considered for the optim-
isation, because they are outside the frequency range of interest.

In contrast to the strain energy in the objective function in (6.35),
the scalar product φk ⋅ fmag,dyn can be positive as well as negative.
Therefore, the square of that product needs to be minimised.

Figure 6.6
Pareto fronts of the various static

optimisations
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Figure 6.7
The result of the modal topology

optimisation without density filter

Using the discrete version of the dynamic excitation forces, fmag,dyn,
defined in (5.17), themodal optimisation problem can be written as

min
ρf

∑
k
∣φk ⋅ fmag,dyn∣2

subject to ∑
n
ρnvn −mmax ≤ 0

− ∑
n∈Ωf

ρnvn + 0.99 ∑
n∈Ωf

vn ≤ 0

qTu,0Kqu,0 −Wmax ≤ 0
ρf ∈ [10

−3, 1]

(6.37)

where Wmax denotes a maximal strain energy for the static load
case, φk the k th eigenmode that is within the frequency range spe-
cified above. qu,0 denotes the static displacement caused by the
static forces in (5.16).

The dynamic forces, fmag,dyn, are complex quantities. (6.27) shows
that ∂gobj/∂φk, the derivative of the objective function with respect
to the mode shapes, is required to calculate the adjoint variables.
Special attention is necessary, when deriving this quantity, because
fmag,dyn is complex. The required derivatives can be computed by

∂gobj
∂φk

= ∂

∂φk
∣φk ⋅ fmag,dyn∣2 =

∂

∂φk
(φk ⋅ fmag,dyn)(φk ⋅ fmag,dyn)

= fmag,dyn ⋅ (φk ⋅ fmag,dyn) + fmag,dyn ⋅ (φk ⋅ fmag,dyn)
(6.38)

Fig. 6.7 shows the result of the modal topology optimisation while
Tab. 6.2 lists the values for compliance, mass and participation
factors. All participation factors except the one for the axial mode,
are lower than those of the benchmark design.
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Comparing the results of the modal topology optimisations in Fig.
6.7 to the results of the static topology optimisations in Fig. 6.5
reveals that the changes are minimal. Apparently, small changes
to the structure can have already a large effect on the participation
of the modes. It is conspicuous that the modal topology optim-
isation introduces more intermediate density values, i.e. density
values between 0.001 and 1, compared to the static topology op-
timisation.

Harmonic Optimisation

The harmonic optimisation minimises the dynamic energy asso-
ciated with a certain excitation. The dynamic energy can only be
calculated for a certain excitation frequency and force distribution.
The distribution does not change in the case of an electric machine,
but the frequency varies with the rotation speed. To cover a cer-
tain frequency range, the sum of the dynamic energies over several
frequencies within the frequency range has to be minimised. The
same frequency range as for the modal optimisation was used. The
step size was set to approximately 0.15ω/ωref. As an initial guess a
homogeneous distribution of mass was used.
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Figure 6.8
The result of the harmonic

topology optimisation.

The optimisation problem for the harmonic case can be written as

min
ρf

∑
k
qu(ωk) ⋅ fmag,dyn

subject to ∑
n
ρnvn −mmax ≤ 0

− ∑
n∈Ωf

ρnvn + 0.999 ∑
n∈Ωf

vn ≤ 0

qTu,0Kqu,0 −Wmax ≤ 0
ρf ∈ [10

−3, 1]

(6.39)

where qu(ωk) denotes the displacement for an external forced har-
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monic excitation that is computed by solving

(K(ρ) + iωkC − ω2
kM(ρ))qu(ωk)eiωkt = fmag,dyneiωkt (6.40)

Cwas created by using a Rayleigh damping with the mass damping
parameter α = 7 and the stiffness damping parameter β = 2 ⋅ 10−5.

Fig. 6.8 shows the result of the harmonic topology optimisation
while Tab. 6.2 lists the values for compliance, mass and participa-
tion factors. Some of the optimised participation factors are higher
than the participation factors of the benchmark design. Note that
the torsional mode was excluded from the optimisation as its res-
onance frequency is too high.

6.3.2Shape Optimisation

The shape optimisation uses the solution of the unfiltered topology
optimisation and sets up a parametrisation that can represent this
solution. Fig. 6.9 shows the parametrisation for the static shape
optimisation. Tab. 6.1 lists the design parameters used. To avoid
absolute values and use relative design parameters instead the fol-
lowing formulas were used for the parameters in Fig. 6.9 that are
not listed in Tab. 6.1.

z22 = (z2 − (0.55 − d2/2))f22 − (0.55 − d2/2)
nstiffener = round(fstiffener)

φstiffener =
2π

nstiffener
fφ,stiffener

(6.41)

Parameter

Name

Initial

Value
min max Description

z2[m] 0.3 0 0.55 Axial coordinate of outer end of disc 1

f22 0.1 0 1
Dimensionless parameter for the

outer end of disc 2

dcylinder[m] 0.02 0.01 0.1 Thickness of outer cylindar

d1[m] 0.03 0.025 0.3 Thickness of disc 1

d2[m] 0.03 0.025 0.3 Thickness of disc 2

d3[m] 0.03 0.025 0.3 Thickness of disc 3

lb[m] 0.05 0.025 0.15 Thickness of bearing ring

fstiffener 14 4 14
Continuous parameter of number of

stiffeners

fφ,stiffener 0 0.01 1
Parameter for thickness of axial

stiffeners in circumferential direction

φ0,stiffener[rad] 0 0 22.5
Angle between φ = 0 and first

stiffener

dstiffener[m] 0.01 0.01 0.14
Thickness of stiffeners in radial

driection

Table 6.1
Design parameters of the shape

optimisation
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Parametrisation of the cut through the

rotational symmetric part

Parametrisation of the cyclic symmetric part

Figure 6.9
Parametrisation of the geometry

for the shape optimisation

This way the absolute geometry values for the axial length z22 and
the angle φstiffener can be replaced by the values fstiffener and fφ,stiffener,
which relate the values of the former two variables to other design
parameters. nstiffener is a discrete parameter that denotes the num-
ber of axial stiffener bars in the solution. Because the Nelder-Mead
algorithm cannot cope with discrete parameters, nstiffener is com-
puted from the continuous parameter fstiffener by rounding to the
next integer.

The parametrisation used in the shape optimisation is very limited
with respect to the number of designs that can be represented. But
the only purpose of this optimisation is to fine tune the values of
the parameters. The rough values were estimated by looking at the
optimal design in Fig. 6.5.

The second reason for this shape optimisation is to verify the values
for compliance computed by the topology optimisation. Addition-
ally, the shape optimisation checks if the design identified by the
topology optimisation as optimal is still stiffer than the benchmark
design, when assembled from easy geometries.

The shape optimisation was carried out in Comsol using again the
48 core node already used for the topology optimisation. It took
several hours to converge.

The shape optimisation reaches a static compliance of 73.8J at a
total mass of 20790kg, the same mass as the benchmark design.
With these values it shows a lower compliance than the topology
optimised results at 20790kg. Also the shape optimised designs of
lower mass constraints show a better static performance than the
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Figure 6.10
Result of the shape optimisation

Benchmark
Static,

unfiltered
Harmonic Modal, unfiltered Shape Opt.

Static Strain Energy [J] 164 157 159.1 158 164

Relative Strain Energy [%] 100 96 97 96 100

Total Mass [kg] 20790 13039 20785 15877 10492

Relative Mass [%] 100 62.7 99.9 76 50.4

Mode participation and Frequency

part. fact. −0.08 − 0.1i −1.18 + 2.99i 0.11 + 4.14i 0.01 − 0.01i −2.87 − 4.85i1st bending

mode norm. Freq. 1.2 1.07 0.79 1.04 1.21

part. fact. 0.003 − 0.007i −26.57−12.27i −0.096 − 0.07i 0.007 + 0.015i 12.05 − 4.65iaxial

mode Freq. [Hz] 1.29 1.34 1.02 1.27 1.307

part. fact. 0.1 + 0.27i 36.08 + 45.24i 1.1 + 1.42i 0.02 + 0.04itorsional

mode Freq. [Hz] 3.24 2.925 3.46 2.73

part. fact. 53.94 + 12.2i −6.86 + 9i −2.74 + 9i −0.14 + 0.19i 5.70 + 8.84i2nd bending

mode Freq. [Hz] 3.2 2.37 2 2.32 2.07

Table 6.2
Results of the optimisation of the

single bearing design.topology optimised designs.

6.3.3Changing Boundary Conditions

In Sec. 6.3.1 the design of the XD-115 was optimised using topology
optimisation. The results of that optimisation are only optimal for
the configuration within the XD-115. The solution changes signi-
ficantly, when the location of the bearing or the load is changed.

The top of Fig. 6.11 shows the solution for the static case when the
static load in radial direction is increased by a factor of 14. The
bottom of Fig. 6.11 shows the result of the modal analysis when the
bearing is moved to the edge of the design domain.

The two parts of Fig. 6.11 show how volatile the results of the topo-
logy optimisation are. Even the slightest change of the boundary
conditions has an effect on the design. That is why it is impossible
to determine one optimal design, but the design should always be
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determined in close coordination with the rest of the rotor design.

6.3.4 Discussion

The application of topology optimisation to the generator structure
of the XD-115 showed that this method is suitable to improve the
design of the XD-115, in particular, and of direct-drive wind turbine
generator structures in general. The limited time that was available
to implement the algorithms made a more thorough optimisation
analysis impossible. The results of the topology optimisation reflect
this as they are not as good as they could be if a cutting edge topo-
logy algorithm was used. But even this rudimentary code lead to
an improved design. This proves the great potential of this method.

All results of the topology optimisation suffer from a coarse mesh
that lowers the resolution and thus the minimal thickness of thin
walled parts of the structure. An increase of DoFs was not possible
due to thememory requirements of the algorithm and the available
hardware. Using an algorithm that uses the availablememorymore
efficiently will increase the limit of DoFs and improves the quality
of the solution.

The result of the harmonic topology optimisation shows an am-
biguous quality. Some of the participation factors increase due to
the optimisation, where as others decrease. It is assumed that the
problem of multiple summands in the optimisation function, dis-

Figure 6.11
The results of the topology

optimisation with changed

boundary conditions
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cussed in Sec. 6.2.2 leads to this result. The large step size between
the frequencies for which the dynamic compliance is computed is
probably the reason for this. The solution might improve by de-
creasing the step size between the frequencies at which the dynamic
energy is evaluated or by increasing the damping in the structure
and thereby increasing the participation of modes do not exactly
coincide with the discrete frequency steps.

Although, themodal topology optimisation decreases the particip-
ation factors of the design, the density distribution is not as black
and white as desired. The modal topology optimisation, compared
to the static topology optimisation, introduced more intermediate
density values, i.e. density values that are neither 1 nor 0.001 as
desired. One possible explanation is that the modal topology op-
timisation does no longer optimise for the compliance, but instead
for the participation factors. This way, the penalisation, introduced
in (6.17) and (6.16), does not lead to a distinct separation of mater-
ial and no-material. If this is the reason for the intermediate val-
ues, a topology optimisation that minimises the static compliance
while setting constraints on the participation factors might resolve
the problem. Further research is necessary to confirm this assump-
tion.

Themodal topology optimisation is not completely converged. The
numbers inTab. 6.2 indicate this as themass is not close to themax-
imal allowed mass. The maximal density change per optimisation
step needs to be much lower for the modal optimisation than for
the other topology optimisation approaches described here. This,
together with the high computational cost of the sensitivities, is the
reason, why it took to long to let the solution converge completely.
Consequently, a better result than the one presented here is pos-
sible.

The modal topology optimisation shows a lot of checkerboard-like
structure, just like the unfiltered static solution. Using the solu-
tion of the static optimisation problem, the dynamic optimisation
problem always converges to the local minimum that is closest to
the static solution. This way, the solution of the modal optimisa-
tion problem is strongly influenced by the static solution. This is
the reason why the solution of the static and modal topology op-
timisation hardly differ.

Cyclic symmetry plays a major role for dynamic excitation. De-
pending on the usage, it can either create a high response to a dy-
namic load or canminimise it. For electric machines, themagnetic
forces have a certain cyclic symmetry that depends on the cyclic
symmetry of the electro-magnetic active parts of the generator. A
mode that does not have the same cyclic symmetry as themagnetic
forces, does, theoretically, not get excited by these forces, because
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the integral over the circumference of the rotor is zero. This can be
explained by the fact that the integral over two sinus functions that
have not the same periodicity is also zero

2π

∫
0

sin(kφ) sin(nφ)dφ = 0 n ≠ k (6.42)

However, no modes follows a perfect sinus function and so there
will always be a small excitation possible.

Nonetheless it is expected, that the cyclic symmetry of the optim-
ised structure will not be the same as the cyclic symmetry of the ex-
citation forces as this reduces the excitation. It is expected that the
solution either shows no cyclic symmetry at all or the combination
of the cyclic symmetry of the forces and structure is as odd as pos-
sible. However, there are other major influences on the cyclic sym-
metry of the structure. Starting with a cyclic-symmetric design,
as done for the dynamic optimisation, will decrease the number
of possible solutions, because only a local minimum close to this
design will be found. The local minimum will most likely have the
same cyclic symmetry as the initial guess. Furthermore, the mesh,
can have an influence on the cyclic symmetry, when it is too coarse
to support a non-cyclic structure, like a thin disc.

6.4 Double Bearing Configurations

The goal of Sec. 6.3 was to find the optimal topology for the ro-
tor support structure of single bearing generator designs. Now, the
focus shifts towards designs incorporating two bearings.

Double bearing designs have the advantage that the bearing can
have a smaller diameter, because the load of wind induced torques
on the rotor blades can be distributed on two bearings. This has
the advantage that the loads on each individual bearing are lower,
when the distance between the bearings is large enough.

This section aims to give an impression what the possibilities of
topology optimisation are when it is applied to other direct-drive
generator designs. The description of the optimised systems will be
shorter as for single-bearing designs.

6.4.1 Magnetic Load

Fig. 6.12 shows the domain for the double bearing generator. For
this model, the location of the bearings is not a priori determined.
They can be chosen freely by the algorithm. The whole area that
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Figure 6.12
Force distribution and schematic

of the topology optimisation for

the double bearing design

0

0.2

0.4

0.6

0.8

1

D
es
ig
n
D
en

si
ty

ρ f

Figure 6.13
The design identified by the

topology optimisation for the

double bearing configuration

is coloured orange is clamped in radial and axial direction. The
topology optimisation algorithm will chose distinct rings on this
area for the bearing location. The same is done for the connection
to the hub. The whole yellow area is clamped in tangential direc-
tion. This way the connection to the hub can be determined by the
optimisation algorithm.

Because of a lack of time, only the static optimisation has been ap-
plied. The optimisation problem is the same as for the single bear-
ing optimisation and is defined in (6.35). The applied load in the
static and dynamic case stays the same as for the single bearing.
Because it is not necessary to compare this design to an existing
design, a coarser mesh was used, as only the optimal topology is
of interest and to what extend it differs from the optimal topology
found for single bearing designs.

Fig. 6.13 shows the result of the static topology optimisation for the
double bearing design. Although the algorithm could choose the
placement of the bearings freely along the inner cylinder (showed
in orange in Fig. 6.12), there is only one bearing present. This
shows that when only the magnetic forces are taken into account,
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the single bearing design is superior to the double bearing design.
The connection to the hub is done by a hollow cylinder, of which
the diameter is as big as possible.

6.4.2 Including Wind Induced Forces

When looking at the topology of the turbine hub, the electro-mag-
netic force are not the only forces influencing the design. The wind
induced forces play a much larger role when it comes to bearing
placement. The bearing placement fundamentally influences the
optimal design of the part of the rotor holding themagnets in place.
It is, thus, not possible to look at the optimal design without taking
into account all forces acting on the rotor.

For this analysis, additional loads were added to the system. A con-
stant torque opposing themagnetic torque of the generator was ad-
ded at the places where the blade roots are located. Furthermore,
gravitational forces of the blade were added. Gravitational forces of
the structure self depend on the density and, thus, complicate the
optimisation problem significantly. Additionally, a bending mo-
ment around the horizontal axis orthogonal to the rotation axis was
added that simulates the torque that is produced whenever a blade
passes the tower.

Figure 6.14
The result of the topology

optimisation when wind induced

forces are taken into account 0
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The optimised system includes some constraints and parts of the
objective function that are evaluated at rotation and some that are
evaluated at stand still. This is necessary, because some forces,
such as the gravitational force and some of the wind induced forces
change with the rotation of the turbine. A harmonic topology op-
timisation was conducted with an excitation frequency of ωext =
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2πrad/s for the dynamic forces. The frequency was so low, because
its only purpose was to simulate the changing torque and the vary-
ing direction of the gravity force. Internal dynamics were not sup-
posed to play a role for this optimisation. The staticmagnetic forces
are the same as in the optimisations before, defined by (5.16).

Fig. 6.14 shows the results of this optimisation, which indicates that
the two bearing should be as far apart as possible to support the
torque around the horizontal axis. To carry theweight of the blades,
the front bearing is directly underneath the blades. This way, the
gravitational forces of the blades do not contribute to the torque
that is created by the wind around the horizontal axis orthogonal
to the rotation axis. The torque is transmitted from the blades to the
magnetic active parts of the generators by a hollow cylinder with a
diameter that is as big as possible.

6.5Conclusions & Summary

This chapter covered the improvement of the current design of the
XD-115 wind turbine generator rotor and the investigation to what
extend the developed methods can be applied to other topologies
to improve their designs.

6.5.1Conclusions

Despite an rudimentary implementation of the topology optim-
isation algorithm, a substantial weight reduction for the generator
rotor structure of the XD-115 could be achieved. This shows that
topology optimisation can be used to improve the design of the
generator structure of direct-drive wind turbines. However, the
results should be used with caution as the optimisation is solely
based on minimising the strain energy. The design of a wind tur-
bine generator is, however, strongly influenced by manufacturing
considerations. These are not taken into account in this optimisa-
tion. The results shown in this chapter can, thus, identify regions
in space where material will decrease the compliance of the struc-
ture. Whether it is feasible or the resulting design is economically
the best, cannot be answered.

During the application of the topology optimisation to wind tur-
bine generators, the large number of DoFs necessary posed a sub-
stantial challenge. The structure spans a rather large volume, while
individual elements of the design are comparatively fine. This way,
a fine mesh on a large volume is needed, increasing the overall
number ofDoFs. This high number ofDoFsmakes expensive com-
puter hardware necessary. Approaches, such as adaptive remesh-
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ing, promise an improved DoFs to volume ratio, while retaining a
high resolutions [21, 98, 144].

Some design aspects were not accounted for in this chapter. Amore
thorough analysis of the dynamic behaviour can be achieved when
transient responses to wind induced forces and short-circuit fail-
ure modes are included in the optimisation. This way, the integrity
of the generator could be ensured for extreme load cases. Another
aspect, which was disregarded here, is fatigue. In wind turbines,
fatigue is one of the main driver behind design improvements. The
introduced analysis will have a direct influence on the fatigue of
the generator rotor support structure. However, the influence of
diminishing the vibration’s amplitude on the fatigue was not quan-
tified.

The analysis and optimisation introduced here can also be applied
to the generator stator, which usually has the same light weight
requirements as the rotor. The structural modelling of the stator
is, however, more complicated, due to the lamination of the stator
back iron. It is expected that the stator weight reduction can be
substantial and even exceed the one for the rotor.

Ideally, the optimisation processes that were introduced here also
include the electro-magnetic side of the generator. Research on to-
pology optimisation for electric machines was conducted in [26,
108]. Chapter 2 showed that the structural dynamics and the mag-
netic field influence each other. Therefore, the design of the gener-
ator structure and of the magneto-active parts should be conduc-
ted simultaneously. A multi-physical topology optimisation, in-
cluding the electro-magnetic design and the structure of stator and
rotor, is the approach that promises the most light weight, most
efficient and most cost effective results. Ideally, the rotation of the
rotor is taken into account during the design and optimisation pro-
cess.

6.5.2 Summary

This chapter showed how topology optimisation can be used to find
the optimal structural design for a certain load case and bearing
configuration in direct-drive wind turbine generators. These op-
timal designs do not consider manufacturability of the designs. In
a second step, a shape optimisation was performed to verify the
results found by the topology optimisation. This way the manufac-
turability was increased by basing the design on simple geometries.

Employing topology and shape optimisation, the mass of the ro-
tor structure could be decreased by 37 % without any substantial
increase in compliance. Instead of decreasing the weight, the re-
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duce weight that is not needed to reach the same compliance as
the benchmark solution can be used to improve the dynamic beha-
viour of the rotor structure compared to the benchmark solution.
This was done in a second analysis, improving the dynamic per-
formance of the generator structure.

In the final part of the chapter, bearing topology including more
than one bearing were investigated, and the optimal topology for
the structure identified. However, only few cases were computed
due to limited time.
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Abstract:

In Chapter 5 and 6, the dynamic analysis and
optimisation of the generator structure was carried
out. This research lead to some insights in the
dynamics and interdependencies of the various
parts of a generator.
This chapter will summarise the gained insights
from the chapters before and assemble some
guidelines what to look out for and ideas for
improvements for the design of generator
structures.
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7.1 Introduction

In Chapter 5, the dynamic behaviour, including excitation frequen-
cies, of the XD-115 was analysed. The gained insights into the dy-
namics of a large direct-drivewind turbine generator can be used to
identify possible design flaws and short comings of the current gen-
erator design of the XD-115. In Chapter 6, several approaches were
undertaken to improve the dynamic behaviour of the structure in
generators of direct-drive wind turbines. The knowledge gained in
these two chapter makes it possible to derive design guidelines for
future generator designs.

The functions of the generator structure was already listed in Sec.
1.2.3. A ‘good’ or efficient design is achieved by fulfilling these func-
tions. The effects discussed here will influence either one or several
of those functions and diminish the efficiency or jeopardising the
functionality of the generator by either increasing the deformation
or the weight of the generator.

The design choices of direct-drive wind turbine generators are also
determined by manufacturability and assembly concerns. These
have a large impact on the cost of a wind turbine. The focus of
the research in the previous sections was on minimising vibration
amplitudes and weight reduction. Consequently, the manufactur-
ing and assembly cost associated with the design changes proposed
here are unknown.

7.1.1 Dynamic Load Cases

For the dynamic analysis of the turbine, two load cases have to be
considered: harmonic and transient load cases. The transient cases
include extreme wind conditions, such as the 50 year gust, and fail-
ure modes like the a short circuit failure in the generator. Theses
load cases create extreme loads for a short amount of time that lead
to a large displacement of the rotor. In this case, the maximal al-
lowed stresses within the bearing may not be exceeded. Further-
more, the maximal displacement has to stay within the limits that
ensure the integrity of the turbine. For that, the stiffness of the
structure and the bearing needs to be sufficiently large.

For the performance under harmonic loading, fatigue plays a ma-
jor role. Usually, the displacements are small compared to the dis-
placements under transient loading, unless a resonance frequency
is excited. The fatigue on the other side, is one of the main design
considerations. The wear is usually reduced by reducing the load
of the bearing, which can be greatly influenced by the placement
and size of the bearing as well as the structural design.
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7.1.2Content of Chapter

This chapter will summarise the important influences on the dy-
namic behaviour of wind turbine generators and their origins. For
that, various aspects of the generators are examined. Important
points, to which attention needs to be paid during the design pro-
cess, will be indicated. Further, ideas for design improvements are
given.

This chapter will start by discussing the influence of the bearings on
the structural dynamics. Although the focus of this thesis was on
magneto-mechanical coupling, the bearing influence was not com-
pletely neglected as it has an effect on the structural dynamics and
interacts with the magneto-mechanical coupling. Afterwards, the
influence of the magneto-mechanical coupling on the modal para-
meters, as explained in Chapter 3, and the influence of the excita-
tion mechanism in Chapter 5 are discussed. Finally, the influence
of cyclic symmetry, which was identified in Chapter 6 is discussed.

For all these effects, important consideration affecting the design
and possible solution approaches are identified.

7.2The Influence of Bearings

Bearings have a major impact on the structural dynamics of the
generator rotor structure. Therefore, they have to be taken into ac-
count when analysing the structural dynamics of the rotor or when
analysing magneto-mechanical coupled dynamics.

There exist a number of various bearing topologies including one,
two and even three bearings. The review paper by Stander et al.
[145] gives a good overview of the various topologies of bearings
and support structures of direct-drive wind turbine generators.

7.2.1Functions of Bearings

The bearing within the generator of a wind turbine has three func-
tions:

• Allow rotationalmovements of the rotor relative to the stator
of the generator with as little friction as possible.

• Transmit any forces and bending moments induced by the
wind or by gravity in axial and radial direction to the static
part of the nacelle.

• Transmit any radial or axial forces of the magnetic field in
the generator to the static part of the electric machine.
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The requirements of the bearing include that it is as stiff as possible
in radial and axial direction, in order tominimise the displacement
caused by a certain force, and to produce as little friction as pos-
sible during rotation, to maximise the efficiency of the wind tur-
bine. Furthermore, its life time should be as long as possible, i.e.
the wear as small as possible. Some of these requirements contra-
dict each other.

7.2.2 Magnetic Load

As shown in Sec. 6.4, the influence of the magnetic forces on the
bearing design is small as these ideally even each other out over the
circumference of the generator. Only due to imperfections, mag-
netic forces can act on the bearing. An eccentricity, for instance,
usually leads to a radial rotating magnetic force on the bearing.

This is different, for transient loads. Short circuit failures will apply
a radial forces as well as a huge torque to the rotor and stator of the
turbine. While the torque in such a case is of minor importance
for the bearing design, the reduced radial force at the location of
the short circuit will create a net translational force acting on the
bearing. Towhat extend this force is important for the bearing load
and the total displacement of the rotor needs to be clarified in future
research.

7.2.3 Wind Induced Forces

Wind induced forces and moments play a much larger role than
magnetic loads for the bearing placement and design, as these apply
large translational and rotational forces (bending moments) to the
rotor that need to be counteracted by the supporting forces in the
bearing.

As shown in Sec. 6.4, the various bearing topologies cope with
wind induced bending moments around the horizontal axis of the
turbine by increasing the distance between bearings or bearing ele-
ments. For designs including several bearing, the distance between
the bearings is increased, while for single bearing designs, the dia-
meter of the bearing is enlarged. This increases the leverage of the
bearing forces and decreases the bearing loads, when the total wind
induced torque is constant. Consequently, the stress on the bearing
elements and, thus, the wear of the bearing is decreased. Designs
including several bearings have an advantage in this case, as the
maximumdiameter of a rolling element bearing is limited. Designs
including several bearings can, thus, reach a much larger leverage
than a single bearing design.
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Large single bearing designs with cylindrical bearing elements lead
to additional wear in the bearing, because slipping is difficult to
avoid, leading to increased friction and consequently to additional
heat loss and wear on the bearing elements as well as on the race
ways. A long distance between bearings has the disadvantage that
the nacelle gets very long or the design becomes unfeasible.

7.3The Influence of the Static Magnetic Field

The interaction between the magnetic field and the structure of the
generator, which was thoroughly explained in Chapter 2 and 3, can
lead to various effects. Using the test set up in Chapter 3, most of
the resulting effects where explained. Chapter 5 showed that the
structural dynamics are dominant in generators of wind turbines.
However, the influence of themagnetic fields can cause the dynam-
ics of the complete system deviate from the structural dynamics in
several ways.

7.3.1Changing Modal Parameters

For generators ofwind turbines, the resulting effects of the coupling
are the same as for the test set-up inChapter 3. Themodal paramet-
ers of the coupled system differ from the modal parameters of the
uncoupled systems, when the structural dynamics interact with the
magnetic field and vice versa. This can either mean that the reson-
ance frequencies change or that the damping increases compared to
the uncoupled systems. The modal parameters changes when the
energy transferred between structural system and magnetic field is
sufficiently large, as explained in Sec. 4.4.1. This happens when
the stiffness of the structure, and consequently the energy stored in
the vibration of the structure, is so low that the exchanged energy
represents a significant part of the total vibration energy.

The exchanged energy depends on the magnetic forces as well as
the magnetic flux density in the air gap. The latter quantity hardly
deviates from an average value over all generators, because gener-
ators are all designed to operate in saturation. The saturation limits
the magnetic flux density to a certain value.

When designing a new generator, it is thus important to check the
relation between internal forces of the structure, i.e. internal en-
ergy, and magnetic forces, i.e. energy that is exchanged between
the two physical domains.

The changingmodal parameters do not necessarily pose a problem.
The change becomes important, when excitation frequencies are
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present. In that case, it is imperative to know themodal parameters
exactly to avoid excitation.

7.3.2 Rotor-Stator Coupling

Coupling of the beam and yoke or rotor and stator was left out in
Chapter 3 and 5, respectively. The magnetic field between stator
and rotor acts as a weak spring on the structure. Modes of the ro-
tor and stator can be coupled by this spring, when they fulfil two
conditions:

• The stator and rotor mode’s resonance frequencies are close
together.

• The shape of the stator and rotor modes are similar.

An ovalisation or bending mode of the rotor structure can thus
couple with an ovalisation or bending mode of the stator structure,
if the resonance frequencies are close together andbothmodes have
the same shape. When designing the generator, the resonance fre-
quencies of stator and rotor should not coincide.

7.3.3 Nonlinear Dynamics

Themagnetic field can introduce nonlinear dynamics. The coupled
system is nonlinear, as shown in Chapter 2. The linearisation intro-
duced in that chapter is only valid around the linearisation point.
The magnetic forces, however, do not change linearly with a dis-
placement. When the amplitude of a mode is large enough, the
nonlinear effects of the magnetic field can appear and lead to non-
linear dynamic behaviour of the structure. This can lead, for in-
stance, to a dependency of the resonance frequency on the amp-
litude of the excitation.

7.3.4 Other Aspects

There are some other aspects, that are of minor importance but
should be mentioned nonetheless.

A research area, which has not been looked into, are the interac-
tion betweenmodes influenced by rotor dynamics and the two-way
magneto-mechanical coupling. Thiswould answer questions about
the influences of whirl on the magneto-mechanical coupling and
the effect that the increased imbalance force caused by the mag-
netic field has on modes with whirl. The influence of the magnetic
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field on a whirling eigenmode and other phenomena of rotor dy-
namics cannot be simulated by the models introduced in Chapter
2 as it does not include rotation.

Another aspect of the interaction between the magnetic field and
the structure is the effect that the structural modes have on the cur-
rents in the coils. The movement of the modes change the induct-
ance of the coils, inducing higher harmonics in the produced cur-
rents. For direct-drive generators, this aspect is however minor, as
the full frequency converter in the turbine filters these higher har-
monics. The current measurements, shown in Appendix B show
that there are no resonance frequencies present in the generator
current. Therefore, the resonance frequencies have no influence
on the current quality of the turbine. According to [38], the current
of smaller induction machines are influenced by bearing frequen-
cies. It can be assumed that also DFIG generators are influenced by
this. It needs to be investigated if structural frequencies can also be
picked up in this case.

7.4Excitation by Magnetic Forces

The excitation of structural modes by magnetic forces was covered
extensively in Sec. 5.3.3. It was shown that the excitation forces have
a significant impact on the vibrations of the generator structure.
For the XD-115, they are the single source of excitation.

However, the case that the resonance forces and the excitation fre-
quencies produced by the space harmonics coincide cannot be gen-
eralised. It is caused by a combination of pole numbers, slot num-
bers and a certain amount of stiffness of the structure. Changing
any of these parameters may lead to a very different response of the
system to the excitation originating from magnetic forces.

7.4.1Space Harmonics

The interaction of space harmonics caused by the distributions of
the coils with space harmonics of the rotor field create harmonic
forces at frequencies which are a multiple of the rotation speed.
Which harmonics are created depends on the number of slots and
poles. Besides the explanations given in Sec. 5.3, [156] investigates
this extensively. Other influences on the magnetic forces such as
loading and shape of the pole shoes are investigated in [155, 157] for
low speed direct-drive permanent magnet generators. In direct-
drive wind turbine generators, these force harmonics can coincide
with resonance frequencies, because the rotation frequencies are so
low.
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For the case that the force harmonics and resonance frequencies
coincide, like in the XD-115, the frequencies can be separated by
increasing the rotation frequencies. This will lead to higher excita-
tion frequencies. At higher frequencies, local modes dominate the
dynamic behaviour. These modes are usually not excited by global
forces distributions such as themagnetic forces. It is, thus, expected
that the dynamic behaviour of the generator structure improves. In
this case, it needs to be ensured that the resonance frequencies of
the global modes are higher than the highest excitation frequencies
created by imbalances or ovalisation and lower than the lowest fre-
quencies caused by space harmonics. These excitation frequencies
are much lower than the magnetic force frequencies in machines
with high pole numbers. A similar effect can be achieved by redu-
cing the stiffness of the rotor, decreasing the resonance frequencies.

The pole/slot combination is usually chosen in a way that very large
least common multiples and very small greatest common dividers
are achieved. This guarantees that the torque cogging is small be-
cause this way the phase shift between neighbouring magnets is as
low as possible and, consequently, more magnets generate a torque
with a slight phase shift (see Sec. 5.3 for details). The decreased
amplitude of the torque cogging is payed for by an increase in fre-
quencies at which torque cogging happens. In the case for the XD-
115, five neighbouringmagnets create the same torque cogging with
a slight phase shift. This means that there are four additional fre-
quencies at which torque cogging is visible in Fig. 5.6.

From a structural dynamic point of view, there is no reason why
torque ripple should be avoided. The mass and inertia of the rotor
is so large that the torque ripple is negligible. Furthermore, dealing
with only one frequencies makes it easier to separate the excitation
frequency from the resonance frequencies. However, for the start
up of the turbine a low torque cogging can be beneficial.

7.4.2 Time Harmonics

Another effect that can cause higher harmonics in the forces are
time harmonics. Time harmonics are created by the switching of
the frequency converter used in direct-drive wind turbines. The
switching introduces higher harmonic in the current of the turbine
and consequently also in the spatial distribution of the magnetic
field. Therefore, the effect of space harmonics and time harmonics
on the force harmonics is quite similar.

For smaller machines this effect, and its effect on vibrations in elec-
tric machines, has been studied in the past [86, 112]. In direct-drive
wind turbine generators, these effects have not been studied. The
measurements in Chapter 5 and in Appendix B indicate that for
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direct-drive wind turbines, the time harmonics are too high fre-
quent compared to the global resonance frequencies. They do not
excite any of them.

7.4.3Force Distribution

The method of separating the excitation and resonance frequen-
cies from each other to avoid excitation was already mentioned in
above. In Chapter 6, another method, based on the spatial distri-
bution, was introduced. This method uses topology optimisation
to find a design of the rotor support structure that is not excited by
the magnetic forces because of the spatial distribution of the mass
of the structure and the magnetic forces.

The method using the separation of frequencies has the drawback
that either the ideal pole/slot combination cannot be used or the
structure of the rotor and stator need to be modified that they do
not coincide with the excitation frequencies. In the second ap-
proach, the resonance frequencies are pushed either towards very
high or very low frequencies. This makes the structure of rotor and
stator either very stiff or very compliant. Both have disadvantages,
as either the structure becomes very heavy or the displacements
created by static loads become very large.

The new method to optimise the generator design, introduced in
Chapter 6, can decrease the excitation of the structure without any
of the drawbacks mentioned above.

7.5Cyclic Symmetry

When it comes to excitation, cyclic symmetry is important. The
cyclic symmetry of the magnetic forces is determined by the cyc-
lic symmetry of the electro-magnetic active parts of the generator.
Choosing another cyclic symmetry for the structure than for the
electro-magnetic construction, results in mode shapes that have a
different cyclic symmetry than the electro-magnetic forces. This
will most likely lead to mode shapes that are hardly excited by the
magnetic forces.

Another phenomenon which is associated with cyclic symmetry
are travelling waves in the structure. This happens when the ro-
tor experiences a static force at a fixed position on the rotor. The
rotation of the rotor transforms this force into a harmonic load in
the rotating reference frame. For the case that the rotor is perfectly
point symmetric or cyclic symmetric, i.e. there are two modes at
the same resonance frequency that are rotated by 90○, this force can
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create a travelling wave in the rotor, of which the amplitude is fixed
in the stator frame.

7.6 Summary

This chapter collects various effects and design consideration that
have an influence on the dynamics of a direct-drive wind turbine
generator. Design challenges that are linked to the dynamics of the
generator were identified and possible solutions discussed.

The chapter focuses on the influence of the bearing, the magneto-
mechanical coupling and symmetry within the generator. All these
aspects influence the dynamic performance significantly. Bearing
placement and type have a huge effect on the dynamic behaviour of
the turbine rotor, although they are of less importance for the mag-
netic loading within the generator. Depending on the stiffness of
the structure, magneto-mechanical coupling can have a major in-
fluence on the structural dynamics of the generator, as it can affect
themodal parameters as well as excite the structure. It is, therefore,
essential to be aware of the excitation frequencies as well as the ex-
act value of the modal parameters. Cyclic symmetry is a tool that
can be used either to minimise or increase excitation. Proper use
of it is essential for an efficient wind turbine design.

Using the XD-115 as a benchmark for current generator design, it
can be concluded that there is potential for improving the design of
wind turbine generators by taking into account the above aspects
during the design phase of the turbine.
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8.1 Conclusions

In Chapter 1, it was discussed that one of the challenges for the suc-
cess of direct-drive wind turbines in the future is the weight reduc-
tion of the nacelle. Many approaches have been proposed how to
deal with this challenge (see Chapter 1.2.2). This thesis followed the
approach of designed flexibility. It looked at the internal dynam-
ics of the wind turbine generator and identified to what extend a
detailed analysis of it could contribute to the goal of reducing the
weight of the nacelle. Along the way, it developed methods to pre-
dict the coupled dynamics and investigated to what extend exist-
ing methods can be applied to wind turbine generators to achieve
weight reduction.

In particular, the thesis looked at the appropriate modelling tech-
niques to accurately simulate magneto-mechanical coupling. Af-
terwards it built a two-way coupled model of the generator struc-
ture and the magnetic field. The model was used to conduct an op-
timisation, to see to what extend the weight of the structure could
be reduced and to determine the influence of the excitation forces
created by themagnetic field on the general design trade-offs of the
wind turbine.

This section will summarise the conclusions that were drawn in the
various chapters of the thesis.

8.1.1 Modelling Dynamics of Direct-Drive Wind Turbine
Generators

Part I of this thesis covered modelling techniques and reduction
techniques ofmagneto-mechanical coupled systems in electricma-
chines.

Magneto-Mechancical Coupling

In chapter 2, a method was introduced that made it possible to
identify the dynamics of the coupledmechanical andmagnetic sys-
tems. A literature survey showed that, although the methods to
couple the magnetic and mechanical systems statically is well un-
derstood, the dynamic coupling of the two physics still needs to be
investigated. Furthermore, the practical implications of this coup-
ling, a change of modal parameters, need further research. It was
argued for wind turbine generators that this coupling can be espe-
cially important. The conditions that need to be satisfied for this
coupling to play a major role, a low stiffness of the structure and
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large magnetic forces, can be satisfied in compliant direct-drive
generators.

The measurements conducted in Chapter 3 identified that the ac-
curacy of the magneto-mechanical coupled model depends largely
on accurate values of the material parameters. This is a challenge,
as usually either themechanical or themagnetic properties of ama-
terial are known.

The scientific contributions of the Chapters 2 include the collection
of all relevantmodelling techniques and formulas to form a consist-
ent set of equations formodellingmagneto-mechanical coupled vi-
brations in electric machines. Furthermore, it derives the damping
cross coupling terms for the coupled dampingmatrix of the system.
These are required to form amonolithic eigenvalue problem, which
makes it possible to predict the influence of the magnetic field onto
the modal parameters, including the modal damping. The formu-
lation of themonolithic eigenvalue problem is validated in Chapter
3 by lab measurements.

Model Reduction Techniques

In Chapter 4, model order reduction techniques were introduce
that can address the challenge of solving large coupled problems,
as those that arise when analysing wind turbine generators in 3D.

The techniques introduced in Chapter 4 can reduce computation
time significantly and accelerate the analysis process of magneto-
mechanical coupled systems. The reduction techniques can also be
used for reducing the computational cost of purely magnetic sys-
tems. It was shown that they are especially effective for electric
machines. However, for this application they lack the capability
of taking nonlinear effects such as saturation and hysteresis into
account.

The scientific contributions of Chapter 4 includes the introduction
of modal analysis for quasi-static magnetic fields and the physical
interpretation of its modal parameters. Furthermore, the invest-
igation to what extend models of quasi-static magnetic fields can
be reduced using reduction methods based on modal analysis. Fi-
nally, this chapter developed ideas how the reduction methods can
be extended to magneto-mechanical coupled systems.

8.1.2Application to Wind Turbine Generators

Part II of the thesis focused on the application of the methods in-
troduced in Part I and on improving the design of the structure of
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direct-drive wind turbine generators. Somemajor design improve-
ments could be identified.

Dynamics of the XD-115

Applying the methods introduced in Chapter 2 to the XD-115 iden-
tified that the rotor structure is so heavy and stiff that the two-way
coupling plays no role. Consequently, a one-way coupled analysis
was conducted, for which the magnetic forces were seen as excita-
tion forces.

The thorough dynamic analysis of the XD-115 generator showed
that the generator is well designed, dynamically seen. Although
the magnetic forces show a significant fluctuation locally, the res-
onances of the structure are not significantly excited. The dynamic
forces created by space harmonics and torque cogging were iden-
tified as crucial, as they are in the same frequency range as global
resonance frequencies. Measurements confirmed that these reson-
ance frequencies do get excited, but themaximum amplitude is low
and, consequently, the vibration pose no problem for the function-
ality of the turbine’s generator. However, it was impossible to find
the reason why certain modes are excited while other modes are
not. It was assumed that this is caused by imperfections or manu-
facturing tolerance, but further research is necessary.

The model of the generator was validated using vibration measure-
ments. These measurements were conducted in-situ, which posed
some challenges, such as the large mass that needed to be excited.
The use of a mix of experimental and operational modal analyses
techniques eventually yielded results that could validate the gener-
ator model.

The scientific contributions of Chapter 5 include a two-way coupled
modal analysis of an electric machine and, consequently, the iden-
tification to what extend the modal parameters change due to the
magneto-mechanical coupling. Furthermore, this chapter conduc-
ted a thorough one-way coupled dynamic analysis of a generator of
a direct-drive wind turbine, identifying excitation frequencies and
their effect on the structure of the generator. The simulation result
were validated by in-situ vibration measurements. During the vi-
bration measurements, various excitation techniques were invest-
igated for the generator of direct-drive wind turbine generators.

Topology Optimisation of Wind Turbine Generators

The goal of the optimisation in Chapter 6 was the improvement
of the current design of the XD-115 as well as looking at other to-
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pologies and identifying possible design improvements for them.
For this analysis, the magnetic force distribution from Chapter 5
was used as load case for a topology and shape optimisation of the
generator’s rotor structure. It was shown that topology optimisa-
tion in combination with shape optimisation is a suitable method
to identify ideal designs for the generator structures of direct-drive
wind turbine generators.

The topology and shape optimisation showed that the generator of
the XD-115 is rather heavy and could be lighten without any com-
promises for the performance. The topology optimisation indic-
ated that a weight reduction of 37 % is possible. Furthermore, the
dynamic behaviour, i.e. the amplitude of the response of the system
to magnetic loads encountered during the operations of the tur-
bine, could be significantly improvedwithout increasing theweight
of the generator.

The optimisation of the single-bearing design, as well as other gen-
erator topologies, singled out the optimal shape of the rotor and
identified some ideas for design improvements. However, it was
shown that the optimal design is very sensitive to the boundary
conditions, such as bearing placement and exact loading. Further,
it was identified that the magnetic forces only have an influence on
the design of the the rotor between bearing and magnetic-active
material. The design of the hub and in particular bearing place-
ment and dimensions depend entirely on the wind induced forces.

The scientific contributions of this Chapter 6 includes the invest-
igation to what extend topology optimisation can be sued to im-
prove the design of wind turbine generator structures. Topology
optimisation make it possible to realise the idea of minimising not
the torque ripple, but the vibrations that torque ripple causes in
the structure. Finally, it investigates to what extend an dynamic
analysis can lead to an improved dynamic performance of direct-
drive generator structures without compromising on the function-
ality and identifies amethodology how to identify the optimal static
and dynamic design for direct-drive wind turbine generator struc-
tures.

8.2Research Outlook

This thesis covered various topics that are important for the design
improvement of the generator structure. Because of time limita-
tions, it did not go deeper into the respective fields it covers. Fur-
ther research, to improve the various methods introduced in this
thesis, is of course desirable.
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8.2.1 Calculation Methods

The modelling of magneto-mechanical coupling, which was intro-
duced inChapter 2 and themodel reduction techniques introduced
in Chapter 4 cover the basics of dynamic analysis andmodel reduc-
tion of systems including magneto-mechanical coupling. Further
research to improve the accuracy and include more details can be
conducted. In particular the following points present themselves
for further research on magneto-mechanical coupled dynamics:

• Include the rotation of the rotor into the modal analysis by
using so called pseudo modes [85, 87]. This method would
allow the analysis of the generator dynamics under rotation.
Taking the armature field into account would be possible and
potential influences of the structural vibrations onto the gen-
erated currents would be visible.

• Include magnetic saturation into the coupled modal analysis
to account for the nonlinear magnetic material behaviour.
This is rather difficult as modal analysis is based on linear
superposition which is not possible anymore for nonlinear
systems.

• The armature field does have an effect on the modal para-
meters of the system, although it was neglected in this thesis.
Including the strengthening of the field due to the coils in the
stator, is implemented easily. The exact effects the rotating
magnetic field has on the dynamics is more complex and re-
quires extensive research.

• Explore the influence of stator-rotor coupling. In this thesis,
the stator was assumed to be rigid. In a real turbine, how-
ever, the stator is just as flexible as the rotor and contributes
further. On top of that, modes in the stator and rotor could
couple through themagnetic field, and create new resonance
frequencies. This analysis can be conducted with the mod-
elling techniques introduced in Chapter 2. However, the ne-
cessary models would be too large to be solved without re-
duction techniques.

• Investigate nonlinearity of modes caused by the magnetic
forces. Changing magnetic forces act as a nonlinear spring
for the mechanical system, even when the materials in the
magnetic field behave linearly. Consequently, the coupled
modes should be nonlinear too. To what extend this effect is
important and what kind of nonlinearity is created, remains
unknown.

• Incorporate a better bearing model that includes nonlinear
contactmechanics. In this thesis, the bearingmodel is rather
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simple. It is approximated by a constant stiffness. The bear-
ing is however a much more complex system, that includes
nonlinear contact dynamics.

• The lamination in the stator is not an isotropic materials.
Neither is it an orthotropic material. Further research is ne-
cessary to identify modelling methods that are able to accur-
ately simulate this highly complex system. First approaches
to this topic were introduced in Sec. 1.3.3.

8.2.2Model Reduction

• The largest drawback of the methods described in Chapter
4 is their inability to handle saturation and hysteresis losses.
This results from the modal analysis which is at the heart of
all these reduction methods. Further methods to cope with
the nonlinear effects need to be developed. For magneto-
mechanical systems, an approach using modes and modal
derivatives is beneficial as it integrates nicely with the reduc-
tion methods used for the structure.

• Asmentioned in Sec. 4.6.1, it is expected that amixed formu-
lation of model order reduction techniques will yield good
results. The dynamic of the structure is dominant, while the
dynamic of the magnetic field has a rather limited influence.
Therefore, it seems advantageous to use the CB method for
the structural part of the system and the DCB method for
the magnetic part. How well this reduction method simu-
lates the coupled system needs to be researched.

8.2.3Optimisation

The main challenge during the optimisation was the number of
DoFs necessary to simulate the structure. Consequently, the pro-
posed future research is aiming at overcoming this.

• Include cyclic symmetry in modal topology optimisation.
Cyclic symmetry is a key property of electric machines and
can be used to reduce the number of DoFs in the system.
The Floquet theory is a method that allows to do this [85,
87]. This method can also be used in modal topology optim-
isation to reduce the DoFs

• As mentioned in Chapter 7, looking at the mechanical and
the magnetic domain simultaneously in the design phase of
the generator can alleviate many vibration problems. The



VIII

Conclusions
and

O
utlook

242 8 Conclusions and Outlook

ideal solution for this, would be a coupled topology optim-
isation taking both domains into account. There are research
approaches for topology optimisation for the electro-mag-
netic part of electric machines [24, 88].

• Include transient optimisation in the optimisation process.
The optimisationmethodology introduced inChapter 6 only
includes harmonic excitation frequencies. The performance
of the structure under transient loads cannot be simulated
using this method. Transient topology optimisation is ne-
cessary to reproduce the displacements seen during a 50 year
gust or a short circuit in the generator.



Appendix



’Ich dehne diesen Band mehr aus, da die deutschen Hunde den Wert
der Bücher nach dem Kubikinhalt schätzen.’
Marx to Engels, 1862 (Marx-Engels Werke 30, p 248)
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At the heart of the magneto-mechanical coupling lies the principle
of virtual work as it is used to derive the mechanical force from the
change of the magnetic energy. In this section, the equations used
to describe the change of the magnetic energy will be derived. The
derivation is based on the papers [2] and [131] where the same de-
rivations was done for electro static fields. Fundamental for this
derivation is the work in [62] as it derives the change of the mag-
netic flux density and magnetic field under deformation.

We will consider an infinitesimal small domain Ω with the volume
V within a deformable structure. This domain can be either a sur-
face in 2D or a volume in 3D. The derivation can be done in both
spaces. For simplicity we will use a 2D element. Using the prin-
cipal of virtual work the force can be calculated that acts on the
underlying structure

δWmag = δu⃗ ⋅ F⃗mag (A.1)

where δu⃗, denotes the virtual deformation that causes the change
of the energy, is defined by

x⃗ = δu⃗(ξ⃗) + ξ⃗ (A.2)

The Jacobian of the coordinate transform from ξ⃗ to x⃗ reads as

J = ∇ξ,ηx⃗ =
⎛
⎝

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

⎞
⎠
=
⎛
⎝
1 + ∂δux

∂ξ
∂δux
∂η

∂δuy
∂η 1 + ∂δuy

∂η

⎞
⎠
= I +∇ξδu⃗

where∇ξ denotes a spatial derivative with respect to the ξ⃗ coordin-
ate frame. The inverse can be written as

J−1 = ∇x,y ξ⃗ =
⎛
⎝

∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

⎞
⎠
=
⎛
⎝
1 − ∂δuξ

∂x −∂δuξ
∂y

−∂δuη
∂x 1 − ∂δuη

∂y

⎞
⎠

Assuming small deformations, we can assume

∂ξ
∂y
= ∂y
∂ξ

With this assumption

J−1 ≈ (I −∇ξδu⃗)

Derivation of Maxwell’s Stress Tensor

As shown in [62], the magnetic field and magnetic flux density be-
have differently under deformation. For themagnetic field strength
the change of of the vector for a deformation δu⃗ is

δB⃗∣δΦ=0 = ∇δu⃗B⃗ − B⃗ tr(∇δu⃗) (A.3)
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For the magnetic field on the other side the variation comes down
to

δH⃗∣δI=0 = −∇δu⃗ ⋅ H⃗ (A.4)

This difference for the variation of the magnetic field and the mag-
netic flux density will result in the different formulation for Max-
well’s Stress Tensor in the case of magnetised material.

It is now possible to calculate the variation of the energy and co-
energy based on (A.3) and (A.4). Depending on the material in
question the energy and co-energy equations vary. For the mag-
netic energy, the total flux should be held constant as this is an in-
dependent variable. Therefore, (A.3) is used to compute the energy
change as (A.3) was computed with the total flux held constant. For
a linear magnetic material this yields for the energy

δWmag∣δΦ=0 = δ(
B⃗TB⃗
2 μ

V) = δ( B⃗
TB⃗
2μ
)V + δV( B⃗

TB⃗
2μ
)

= B⃗TδB⃗
μ

V + δV( B⃗
TB⃗
2μ
)

(A.5)

δV denotes the change of the domain’s volume. Neglecting second
order terms it can be written as

δV = tr(∇δu⃗)V (A.6)

Inserting (A.6) into (A.5) yields

δWmag = V
B⃗T

μ
[∇δu⃗B⃗ − B⃗ tr(∇δu⃗)] + tr(∇δu⃗) B⃗

TB⃗
2μ

V

= V B⃗T∇δu⃗B⃗
μ

− tr(∇δu⃗) B⃗
TB⃗
2μ

V
(A.7)

Using the vector identity

C(AB)D = CD ∶ AB (A.8)

(A.7) can be written as

δWmag = V∇u⃗ ∶ ( B⃗B⃗T

μ
− I B⃗

TB⃗
2μ
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T

(A.9)

where the part in the parenthesis denotes Maxwell’s stress tensor.

Starting from the co-energy and using the variation for H⃗ in (A.4)
will yield the same result for Maxwell’s stress tensor in linear ma-
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terials.

δW′mag∣δI=0 = δ (
μ
2
H⃗TH⃗V)

= μVH⃗TδH⃗ + μV
2

H⃗TH⃗δ

= −μVH⃗T(∇δu⃗)H⃗ + tr(∇δu⃗)μV
2

H⃗TH⃗

= μV(−H⃗T(∇δu⃗)H⃗ + 1
2
tr(∇δu⃗)H⃗TH⃗

(A.10)

This yields for Maxwell’s stress tensor

δW′mag∣δI=0 = −V∇u⃗ ∶ (μH⃗H⃗T − Iμ H⃗TH⃗
2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T

(A.11)

which yields the same expression for Maxwell’s stress tensor as in
(A.9), when inserting B⃗ = μH⃗.

Discretisation of Magnetic Forces

The discrete form of the magnetic force can be computed in two
ways using Maxwell’s stress tensor. The first way is by multiplying
the tensor with a vector normal to a surface, which yield the force
on that surface. This was introduced in (2.151).

The other way is to employ the principle of virtual work locally.
(A.9) can be written in a way that the displacements gradients are
at the front of the equations. For a 2D system this yields:

δWmag = −⃗fmag ⋅ δu⃗ = ∫
Ω

∇δu⃗ ∶ T dΩ

= 1
μ ∫

Ω

(BxBx

2
−
ByBy

2
)∂u
∂ξ
+ BxBy

∂u
∂η
+ ByBx

∂v
∂ξ
+ (

ByBy

2
− BxBx

2
) ∂v
∂η

dΩ
(A.12)

where Bx and By denote the x and y components of the magnetic
flux density.

This matrix can be written as a vector multiplication:

δWmag = ∫
Ω

1
2μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u
∂ξ
∂u
∂η
∂v
∂ξ
∂v
∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
⎡⎢⎢⎢⎢⎢⎢⎢⎣

B2
x − B2

y
2BxBy
2BxBy
B2
y − B2

x

⎤⎥⎥⎥⎥⎥⎥⎥⎦

dΩ (A.13)

Approximating the displacement gradient by using the finite ele-
ment method yields for the gradient vector.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u
∂ξ
∂v
∂ξ
∂u
∂η
∂v
∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Na
∂ξ 0 ∂Nb

∂ξ 0 ∂Nc
∂ξ 0

0 ∂Na
∂ξ 0 ∂Nb

∂ξ 0 ∂Nc
∂ξ

∂Na
∂η 0 ∂Nb

∂η 0 ∂Nc
∂η 0

0 ∂Na
∂η 0 ∂Nb

∂η 0 ∂Nc
∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B2u

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qu a
qv a
qu b
qv b
qu c
qv c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
²

qu

(A.14)

for triangular 2D elements. In (A.14), Na, Nb and Nc are the com-
ponents of the shape functions defined in (2.104) and qu a, qu b, qu c,
qv a, qv b, qv c the nodal values for the displacement in ξ and η-direc-
tion at the three nodes of the triangular element. (A.14) defines the
matrix B2u which contains the derivatives of the shape functions,
which will be widely used in the following derivations for the vari-
ous coupling matrices.

Then (A.13) can be written as

δWmag ≈
1
2μ ∫

Ω

quBT
2uF(qA)dΩ (A.15)

where F denotes a vector containing various products of the mag-
netic flux density components

F = [B2
x − B2

y 2BxBy 2BxBy −B2
x + B2

y]
T (A.16)

The magnetic force can then be written as

Fmag = −
∂Wmag

∂qu
= − 1

2μ ∫
Ω

BT
2uF(qA)dΩ (A.17)

Maxwell’s Stress Tensor in Permanent Magnets

The derivation for permanent magnets is analog. Because the for-
mulation for the energy stored in permanentmagnets follows (2.10)
the resulting stress tensor will deviate from (A.9). Starting from the
energy for permanent magnets as defined in (2.10)

Wpm = (
B⃗TB⃗
2μ
+ B⃗T

r B⃗r

2μ
− B⃗TB⃗r

μ
)V (A.18)
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Taking the variation for a virtual displacement δu⃗ yields

δWpm =
B⃗TδB⃗
μ

V + δV B⃗TB⃗
2μ

+ B⃗T
r δB⃗r

μ
V + δV B⃗T

r B⃗r

2μ

− δV B⃗TB⃗r

μ
− B⃗T

r δB⃗
μ

V − B⃗TδB⃗r

μ
V

(A.19)

The change of the energy of the permanentmagnets under deform-
ation depends on the behaviour of the magnetic flux density, the
magnetic field and the remanence flux density under deformation.
The behaviour of the first two variables was established in (2.4.5)
and in [62]. The behaviour of the remanence flux density is not fi-
nally settled. It could either behave like themagnetic flux density or
it could behave like the magnetic field. Therefore, the two possible
case are defined as

δB⃗r =
⎧⎪⎪⎨⎪⎪⎩

∇δu⃗B⃗r − B⃗r tr(∇δu⃗) case 1
−∇δu⃗B⃗r case 2

(A.20)

In this section the operator δ will be used for both cases. Which of
the two cases is used will become apparent from the text.

Applying the first case to (A.19) yields

δWpm = V
B⃗T(δ∇u⃗)B⃗

μ
−Vtr(∇δu⃗) B⃗

2

μ
+Vtr(δ∇u⃗) B⃗

2

2μ

+V B⃗T
r (δ∇u⃗)B⃗r

μ
−Vtr(∇δu⃗) B⃗

2
r

2μ
+Vtr(δ∇u⃗) B⃗

2
r
μ

− tr(δ∇u⃗) B⃗
TB⃗r

μ
−V B⃗T

r (δ∇u⃗)B⃗
μ

−V B⃗T(δ∇u⃗)B⃗r

μ
+ 2tr(δ∇u⃗) B⃗

TB⃗r

μ

(A.21)

which yields for Maxwell’s Stress Tensor:

T = B⃗B⃗T

μ
+ B⃗rB⃗T

r
μ
− B⃗B⃗T

r
μ
− B⃗rB⃗T

μ
− I( B⃗

TB⃗
2μ
+ B⃗T

r B⃗r

2μ
− B⃗TB⃗r

μ
)

= B⃗B⃗T

μ
+ B⃗rB⃗T

r
μ
− B⃗B⃗T

r
μ
− B⃗rB⃗T

μ
− I(B⃗ − B⃗)2

2μ

(A.22)

For the second case themagnetic flux density, B⃗, and the remanence
flux density, B⃗r behave differently under deformation.
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δWpm = V
B⃗T(δ∇u⃗)B⃗

μ
−Vtr(∇δu⃗) B⃗

2

μ
+Vtr(δ∇u⃗) B⃗

2

2μ

−V B⃗T
r (δ∇u⃗)B⃗r

μ
+Vtr(δ∇u⃗) B⃗

2
r

2μ

− tr(δ∇u⃗) B⃗
TB⃗r

μ
−V B⃗T

r (δ∇u⃗)B⃗
μ

+V B⃗T(δ∇u⃗)B⃗r

μ
+ tr(δ∇u⃗) B⃗

TB⃗r

μ

= V B⃗T(δ∇u⃗)B⃗
μ

−Vtr(δ∇u⃗) B⃗
2

2μ

−V B⃗T
r (δ∇u⃗)B⃗r

μ
+Vtr(δ∇u⃗) B⃗

2
r

2μ

(A.23)

which results in the following expression forMaxwell’s stress tensor

T = B⃗B⃗T

μ
− B⃗rB⃗T

r
μ
− I( B⃗

TB⃗
2μ
− B⃗T

r B⃗r

2μ
) (A.24)

Discretisation of Magnetic Forces in Permanent
Magnets

Like for linear magnetic materials, the forces for permanent mag-
nets can be discretised in two ways. The first one is the multiplic-
ation of Maxwell’s stress tensor with a normal. This method was
introduced in (2.151).

The other one, which is followed here, uses the local principle of
virtual work. In the above section, the continuous formulation for
Maxwell’s stress tensor was derived. For the case the the remanence
magnetisation behaves like the magnetic flux density (case one in
(A.20)), (A.21) is yielded.

Reorganising (A.21) yields

δWpm = −fmagδu⃗ =
B⃗T(δ∇u⃗)B⃗

μ
V − tr(δ∇u⃗) B⃗

TB⃗
2μ

V

+ B⃗T
r (δ∇u⃗)B⃗r

μ
V − tr(δ∇u⃗) B⃗

T
r B⃗r

2μ
V

− B⃗T(δ∇u⃗)B⃗r

μ
V − B⃗T

r (δ∇u⃗)B⃗
μ

V + tr(δ∇u⃗) B⃗
TB⃗r

μ
V

(A.25)

The first two and terms in (A.25) yield again (A.17). The third and
fourth terms in (A.25) is the same as the first and second term with
B⃗r instead of B⃗. So these two terms can be discretised as
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B⃗T
r (δ∇u⃗)B⃗r

μ
− tr(δ∇u⃗) B⃗

T
r B⃗r

2μ
≈ 1

2μ ∫
Ω

qTuBT
2uFPM(qA)dΩ (A.26)

with

FPM(qA) = [B2
rx − B2

ry 2BrxBry 2BrxBry B2
ry − B2

rx]
T (A.27)

The last two terms can be discretised by

− B⃗T(δ∇u⃗)B⃗r

μ
− B⃗T

r (δ∇u⃗)B⃗
μ

+ tr(δ∇u⃗) B⃗
TB⃗r

μ
≈ − 1

μ ∫
Ω

qTuBT
2uFPM2(qA)dΩ (A.28)

with

FPM2(qA) = [BrxBx − BryBy BrxBy + BryBx BxBry + BrxBy BryBy − BrxBx)]
T (A.29)

Bringing the three terms together yields

δFmag = −
1
2μ ∫

Ω

BT
2uF(qA)dΩ

− 1
2μ ∫

Ω

BT
2uFPM(qA)dΩ

+ 1
μ ∫

Ω

BT
2uFPM2(qA)dΩ

(A.30)

for the magnetic forces on permanent magnets.

For the second case, the remanence flux density behaves like the
magnetic field, and the ’imaginary’ currents in the permanentmag-
net are held constant. Starting from (A.23), the discretisation is
analog to the first case, yielding

δWmag =
1
2μ ∫

Ω

quB2uF(qA)dΩ

+ 1
2μ ∫

Ω

quB2uFPM(qA)dΩ
(A.31)

The coupling matrices for permanent magnet materials can be de-
rived analog to the derivation for the linear magnetic material in,
starting from (A.21) and (A.23).

Derivation of Coupling Matrices

In the last section, Maxwells stress tensor was derived from the
principle of virtualwork. For themonolithic formulation in (2.170),
the stiffness coupling matrices, KuA, KAu and Kmag

uu , need to be de-
rived from the energy. This can be done in two ways. The first way,
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the one most FE packages use, takes the force computed according
to (2.100) and differentiate it once with respect to qA. Here, the ap-
proach of the local virtual work is taken, which was introduced in
Sec. 2.5.8. As stated in (2.125)KuA can be computed by deriving the
magnetic energy once with respect to qA and once with respect to
qu .

KuA =
∂Fmag

∂qA
= 1

2μ ∫
Ω

BT
2u

∂F
∂qA

dΩ (A.32)

defining F2 as

F2 =
∂F
∂B⃗
= [ Bx By By −Bx
−By Bx Bx By

] (A.33)

(A.32) can be written as

KuA = −
1
2μ ∫

Ω

BT
2uF2

∂B⃗
∂qA

dΩ (A.34)

introducing the approximation (2.135) yields

KuA =
1
2μ ∫

Ω

BT
2uF2BA dΩ (A.35)

which is the same equation as (2.158).

Analog, KAu can be derived by first differentiating Wmag with re-
spect to qA yielding the internal current densities, and then taking
the derivative with respect to qu.

The other stiffness coupling matrix, Kmag
uu is derived by taking the

derivative of the magnetic energy with respect to virtual displace-
ments twice. For that, a second virtual displacement

ξ⃗ = δ2u⃗(X⃗) + X⃗ (A.36)

is introduced, so that

x⃗ = δ1u⃗ + ξ⃗ = δ1u⃗(ξ⃗) + δ2u⃗(X⃗) + X⃗ (A.37)

To avoid confusion, the first virtual displacement is denoted by δ1u⃗.
It is then possible to write

δ1u⃗ Kmag
uu δ2u⃗ = δ2(δ1Wmag) (A.38)

The matrix Kmag
uu can thus be derived by deriving how the energy

change of the first displacement changes with the second displace-
ment. For that the change of the first displacement with respect
to the second displacement is needed. Using the Jacobian of the
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second displacement, defined by J2 = I+∇δu⃗, this can be expressed
by

δ2(∇δ1u⃗) = (∇Xδ1u⃗) − (∇ξδ1u⃗)
= J2(∇ξδ1u⃗) − (∇ξδ1u⃗)
= (∇Xδ2u⃗)(∇ξδ1u⃗)
= J2(∇ξδ2u⃗)(∇ξδ1u⃗)

(A.39)

neglecting higher order terms and retaining only squared derivat-
ives yields

δ2(∇δ1u⃗) = (∇ξδ2u⃗)(∇ξδ1u⃗)

=
⎡⎢⎢⎢⎢⎣

∂δ1ux
∂ξ

∂δ2ux
∂ξ +

∂δ1uy
∂ξ

∂δ2ux
∂η

∂δ1ux
∂η

∂δ2ux
∂ξ +

∂δ1uy
∂η

∂δ2ux
∂η

∂δ1ux
∂ξ

∂δ2uy
∂ξ +

∂δ1uy
∂ξ

∂δ2uy
∂η

∂δ1ux
∂η

∂δ2uy
∂ξ +

∂δ1uy
∂η

∂δ2uy
∂η

⎤⎥⎥⎥⎥⎦

(A.40)

For the change of the trace of the first displacement, the derivation
is analog.

δ2tr(∇ξδ1u⃗) = tr(δ(∇ξδ1u⃗))
= tr((∇Xδ2u⃗)(∇ξδ1u⃗))

= ∂δ2ux
∂ξ

∂δ1ux
∂ξ

+ ∂δ2ux
∂η

∂δ1uy
∂ξ

+ ∂δ1ux
∂η

∂δ2uy
∂ξ

+
∂δ2uy
∂η

∂δ1uy
∂η
)

(A.41)

with the second displacement. Furthermore, the change of the do-
main’s volume with respect to the displacement δ2u is

δ2V = Vtr(∇Xδ2u⃗)
= Vtr(J2∇ξδ2u⃗)

(A.42)

Starting at the expression for the perturbed energy for a displace-
ment (A.7) and introducing the other perturbation yields

δ2(δ1Wmag) = δ2(V B⃗T(∇δ1u⃗)B⃗
μ

− tr(∇δ1u⃗) B⃗ ⋅ B⃗
2μ

V) (A.43)

developing (A.43) by terms, keeps the formulas managable. The
first term in (A.43) yields:

1st term (A.43) = δ2V
2μ

B⃗T(∇δ1u⃗)B⃗+V(δ2B⃗)T(∇δ1u⃗)B⃗+VB⃗Tδ2(∇δ1u⃗)B⃗+VB⃗T(∇δ1u⃗)Tδ2B⃗ (A.44)

Inserting (A.40), (A.42) and (A.7) into (A.44) yields:

1st term (A.43) = V
2μ
[tr(∇Xδ2u⃗)B⃗T(∇ξδ1u⃗)B⃗

+ ((∇Xδ2u⃗)B⃗ − B⃗tr(∇Xδ2u⃗))T(∇ξδ1u⃗)B⃗
+ B⃗T(∇δ2

ξ u⃗)(∇ξδ1u⃗)B⃗
+ B⃗T(∇ξδ1u⃗)T((∇Xδ2u⃗)B⃗ − B⃗tr(∇Xδ2u⃗))]

(A.45)



Appendix A - Magnetic Energy in Deformable Structure 255

Inserting ∇Xδ2u⃗ = J2∇ξδ2u⃗ and neglecting second order terms,
(A.45) can be rewritten as a matrix vector multiplication, where
(∇δ2u⃗) and (∇δ1u⃗) are expressed as vectors according to (A.14).

1st term (A.43) = V
2μ
(∇δ1u⃗)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4B2
ξ 2BξBη 4BξBη −2B2

ξ
0 2B2

ξ 2(B2
ξ + B

2
η) 2BξBη

2BξBη 2(B2
ξ + B

2
η) 2B2

η 0
−2B2

η 4BξBη 2BξBη 4B2
η

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(∇δ2u⃗) (A.46)

The second term of (A.43) reads

2nd term (A.43) = δ2(−Vtr(∇δ1u⃗) B⃗ ⋅ B⃗
2μ
)

= − V
2μ

tr(∇δ1u⃗)tr(∇δ2u⃗)B⃗ ⋅ B⃗

− V
μ
tr(∇δ1u⃗)B⃗Tδ2B⃗

− V
2μ

B⃗TB⃗δ2tr(∇δ1u⃗)

(A.47)

Inserting (A.7) and (A.41) into (A.47) yields

2nd term (A.43) = − V
2μ

tr(∇δ1u⃗)tr(∇δ2u⃗)B⃗ ⋅ B⃗

− V
μ
tr(∇δ1u⃗)B⃗T((∇δ2B⃗ − B⃗tr(∇δ2u⃗))

− V
2μ

B⃗TB⃗tr((∇δ2u⃗)(∇δ1u⃗))

= V
2μ

tr(∇δ1u⃗)tr(∇δ2u⃗)B⃗ ⋅ B⃗

− V
μ
tr(∇δ1u⃗)B⃗T(∇δ2u⃗)B⃗

− V
2μ

B⃗TB⃗tr((∇δ2u⃗)(∇δ1u⃗))

(A.48)

This can be rewritten as a multiplication of (∇δ2u⃗) and (∇δ1u⃗) in
vector form with a matrix F3, which contains the components of
the magnetic flux density

2nd term (A.43) = V
2μ
(∇δ1u⃗)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2B2
ξ −2BξBη −2BξBη B2

ξ − B
2
η

0 0 −B2
ξ − B

2
η 0

0 −B2
ξ − B

2
η 0 0

−B2
ξ + B

2
η −2BξBη −2BξBη −2B2

η

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(∇δ2u⃗) (A.49)

Adding (A.49) and (A.46) yields the final result which can be used



256 Appenix

to determine Kmag
uu as shown in (2.159)

∇ξδ1u⃗Kmag
uu ∇ξδ2u⃗ = V

2μ
(∇ξδ1u⃗)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2B2
x 0 2BxBy −B2

x − B2
y

0 2B2
x B2

x + B2
y 2BxBy

2BxBy B2
x + B2

y 2B2
y 0

−B2
x − B2

y 2BxBy 0 2B2
y

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(∇ξδ2u⃗)

≈ 1
2μ ∫

Ω

BT
2uKmag

uu B2u dΩ

(A.50)
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During the operational measurements, other quantities related to
the generator were measured. It was investigated, how the bearing
monitoring could be improved. For that, the current output of the
generator as well as vibration measurements on the static side of
the bearings, were conducted.
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Figure B.1
Spectrogram of the current during

the operation of the turbine

Fig. B.1 shows the spectrogram of one phase of the current, re-
corded during operation. At the beginning and end of the meas-
urement, the turbine started up and shut down. The fundamental
current frequency is clearly visible. At higher frequencies, the time
harmonic of the frequency converter can be seen.

No structural frequencies are visible in the current measurements.
The displacements of the structure are either so small that they play
no role or the controller of the frequency converter reacts too fast.
In either case, this measurement supports the theory that the two
way coupling can be neglected for the XD-115.

Fig. B.2 shows the vibration measurement on the static side of the
bearing. In the lower frequency range, the characteristic bearing
frequencies, such as ball pass frequency, can be measured. It is also
possible tomeasure the firstmode atω/ωref = 1. Therefore, it would
be possible to conduct a structural monitoring of the rotor, with
sensors that are placed on the stator.

In the higher frequency range, the vibrations induced by the fre-
quency harmonic can be measured again. The switching frequen-
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Figure B.2
Spectrogram of the bearing during

the operation of the turbine

cies of the converter have thus an influence on the structure. If
there was a global mode with a resonance frequency in that fre-
quency range, this mode could get excited by the converter fre-
quency.

Further research was done towards bearing monitoring in direct-
drive wind turbine generators using current probes. This research
however has not lead to significant results. The details of the re-
search can be found in [142]
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The analysis presented in this appendix is based on [64, 115]

In an electric machine, various sources for the space harmonics
present in the stator and rotor fields exist. The various sources give
the space harmonics unique properties, that have an influence on
the torque ripple they create. This part of the appendix analyses the
source of the harmonic content of torque ripple that does not ori-
ginate from the interaction between the permanent magnets and
the stator slotting.

Let us consider an electric machines with a homogenous air gap
length g(φ) = g0. The magneto motive fore for the rotor can be
expanded as a Fourier series. Because the MMF of the rotor has
roughly a square shape, only the odd terms of the Fourier series
contribute to the total MMF

FPM = ∑
k=1,3,5...

ck sin(kθ + ωmt) (C.1)

where ck denotes the Fourier coefficient, ωm the rotational velocity
of the rotor and θ circumferential coordinate in a cylindrical co-
ordinate system.

To generate a torque, the two harmonics in stator and rotor need
to have the same order.

2π

∫
0

sin(kθ)sin(hθ) = 0 for h ≠ k (C.2)

This integral describes if the product of stator field and rotor field
interact and produce a torque. Because the rotor only has odd har-
monics, only odd harmonics are of interest for the stator. All other
harmonics will not produce a torque.

For the stator, the MMF is a combination of the current and the
winding distribution

FM = nk(θ)ia(t) + nk(θ)ib(t) + nk(θ)ic(t) (C.3)

where nk, nk and nk denote the winding distributions of the phases
a, b and c, respectively. ia, ib and ic represent the coil currents of
phase a,b and c respectively. The winding distribution can be ex-
panded to a Fourier series again, yielding

nk = ∑
k
nk sin(kθ)

nk = ∑
k
nk sin(k(θ −

2
3
π))

nk = ∑
k
nk sin(k(θ −

4
3
π))

(C.4)
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where nk denotes the Fourier coefficient for the winding distribu-
tion. In this case, all coefficients can appear. In fact, for fractional
windings even coefficients for value of k that are non integer are
possible.

The coil current is influence by the switching frequency of the in-
verter and usually also carries some higher harmonics. In this case
we assume for simplicity that the currents are ideal and can be ex-
pressed by

ia(t) = îk sin(ωet)

ib(t) = îk sin(ωet −
2
3
π)

ic(t) = îk sin(ωet −
4
3
π)

(C.5)

Inserting (C.5) and (C.4) into (C.3) yields

FM = ∑
k
nk sin(kθ)̂ik sin(ωet)

+ nk sin(k(θ −
2
3
π))̂ik sin(ωet −

2
3
π)

+ nk sin(k(θ −
4
3
π))̂ik sin(ωet −

4
3
π)

(C.6)

Using the trigonometric identity sin(θ) sin(φ) = 1
2(cos(θ − φ) −

cos(θ + φ) yields

FM = ∑
k
nk̂ik(

1
2
(cos(kθ − ωet) − cos(kθ + ωet))

+∑
k
nk̂ik

1
2
(cos(kθ − ωet − k

2
3
π + 2

3
π) − cos(kθ + ωet − k

2
3
π − 2

3
π))

+∑
k
nk̂ik

1
2
(cos(kθ − ωet − k

4
3
π + 4

3
π) − cos(kθ + ωet − k

4
3
π − 4

3
π))

= ∑
k
nk̂ik

1
2
(cos(kθ − ωet) − cos(kθ + ωet))

+∑
k
nk̂ik

1
2
(cos(kθ − ωet − (k − 1)2

3
π) − cos(kθ + ωet − (k + 1)2

3
π))

+∑
k
nk̂ik

1
2
(cos(kθ − ωet − (k − 1)2

3
π) − cos(kθ + ωet − (k + 1)4

3
π))

(C.7)

The trigonometric identity

cos(α + β) = cos(α) cos(β) − sin(α) sin(β)

let us take the constant terms out of the trigonometric functions
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FM = ∑
k
nk̂ik

1
2
[cos(kθ − ωet) − cos(kθ + ωet)

+ cos(kθ − ωet) cos(−(k − 1)2
3
π) − sin(kθ − ωet) sin(−(k − 1)2

3
π))

− cos(kθ + ωet) cos(−(k + 1)2
3
π) + sin(kθ + ωet) sin(−(k + 1)2

3
π)

+ cos(kθ − ωet) cos(−(k − 1)4
3
π) − sin(kθ − ωet) sin(−(k − 1)4

3
π)

− cos(kθ + ωet) cos(−(k + 1)4
3
π) + sin(kθ + ωet) sin(−(k + 1)4

3
π)]

(C.8)

At this point the equation is split up in three different parts for vari-
ous k. For k = 1, 7, 13, ... the term (k − 1) 23π a multiple of 2π and
thus sine of these terms are zero and the cosine equal to one. The
terms cos(−(k + 1) 23π) and cos(−(k + 1) 43π) are always −0.5 and
the terms sin(−(k+1) 23π) and sin(−(k+1) 43π) have opposite pre-
signs. That yields for k = 1, 7, 13, ...:

FM,k=1,7,13,... = ∑
k=1,7,13,...

nk̂ik
1
2
[cos(kθ − ωet) − cos(kθ + ωet)

+ cos(kθ − ωet)

− cos(kθ + ωet) cos(−(k + 1)2
3
π) + sin(kθ + ωet) sin(−(k + 1)2

3
π)

+ cos(kθ − ωet)

− cos(kθ + ωet) cos(−(k + 1)4
3
π) + sin(kθ + ωet) sin(−(k + 1)4

3
π)]

= ∑
k=1,7,13,...

nk̂ik
1
2
[3 cos(kθ − ωet)]

(C.9)

For k = 5, 11, 17, ..., the term (k + 1) 23π is a multiple of 2π. The
terms cos(−(k − 1) 23π) and cos(−(k − 1) 43π) are always −0.5 and
the terms sin(−(k−1) 23π) and sin(−(k−1) 43π) have opposite pre-
signs. That yields for k = 5, 11, 17, ...:

FM,k=5,11,17,... = ∑
k=5,11,17,...

nk̂ik
1
2
[cos(kθ − ωet) − cos(kθ + ωet)

+ cos(kθ − ωet) cos(−(k − 1)2
3
π) − sin(kθ − ωet) sin(−(k − 1)2

3
π))

− cos(kθ + ωet)

+ cos(kθ − ωet) cos(−(k − 1)4
3
π) − sin(kθ − ωet) sin(−(k − 1)4

3
π)

− cos(kθ + ωet)

= ∑
k=5,11,17,...

nk̂ik
1
2
[−3 cos(kθ + ωet)]

(C.10)

For k = {3, 9, 15, ...}, the terms cos(−(k+1) 23π), cos(−(k+1)
4
3π),
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cos(−(k − 1) 43π) and cos(−(k − 1) 23π) are all equal to −0.5. The
terms sin(−(k+1) 23π) and sin(−(k−1) 43π) are identical. The same
is true for the terms sin(−(k − 1) 23π) and sin(−(k + 1) 43π). Con-
sidering all this, some simplifications can be applied.

FM,k=3,9,15,... = ∑
k=3,9,15,...

nk̂ik
1
2
[cos(kθ − ωet) − cos(kθ + ωet)

− 0.5 cos(kθ − ωet)
+ 0.5 cos(kθ + ωet)
− 0.5 cos(kθ − ωet)
+ 0.5 cos(kθ + ωet)
= 0

(C.11)

Assembling (C.11), (C.10) and (C.9) yields

FM = ∑
k=1,7,13,...

nk̂ik
1
2
[3 cos(kθ − ωet)]

+ ∑
k=5,11,17,...

nk̂ik
1
2
[3 cos(kθ + ωet)]

(C.12)

for the total magneto motive force. (C.12) shows that the odd har-
monics, which are not dividable by three travel either forward or
backward around the stator. The rotation speed at which they travel
is the electrical rotation speed, which is npoles

2 higher than the mech-
anical rotation speed. Therefore they create a pulsating torque,
which is zero when the two fields are aligned and highest when
they are rotated by 2⋅90○

npoles
. Because of the rotation of the rotor the

pulsating frequency is either at k − 1 times the electrical frequency
or at k + 1, depending on the order.

In this case, the rotation of the fundamental k = 1 is in negative
direction. The rotor will thus rotate in negative direction too. The
7th, 13th, 19th, ... harmonics will thus create a pulsating torque at
6, 10,13 times npoles

2 ωm. The same is true for the 5th, 11th and 17th

harmonic.
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