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Abstract
This paper presents how a convolutional neural network can be constructed in order to recognise ges-
tures using photodiodes and ambient light. A number of candidates are presented and evaluated, with
the most performant being adopted for in-depth analysis. This network is then compressed in order
to be ran on an Arduino Nano 33 BLE microcontroller to present its feasibility in embedded operation.
The final utilised network was observed to have accuracies between 75.4% and 86.8% depending on
the testing conditions. Further, all candidates were found to be sufficiently compact and low-latency for
real-time operation.
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1
Introduction

1.1. Motivation
Gesture recognition is a long-standing problem within the field of human computer interaction and con-
cerns how particular movements can be recognised and interpreted by computers [1]. Advancements
within the field hold the promise of allowing for an increase in the fluidity with which people interact
with electronic devices, as well as enabling the development of new forms of interaction not possible
through more traditional interfaces, such as the classical mouse and keyboard. Existing applications of
gesture recognition include enriching entertainment - as exemplified by gaming peripherals such as the
Microsoft Kinect [2] and the Wii Remote which accompanied the highly successful Nintendo Wii [3], [4]
- in addition to more industrious solutions such as directing the take-off and landing of aerial vehicles
[5], fully controlling simple robotic vehicles [1], and interpreting sign languages [6], [7].

Utilising ambient light for real-time gesture recognition offers many potential benefits, notably in
terms of affordability and compactness. A significant portion of existing gesture recognition solutions
require specialised hardware which relies on precisely modulating the medium being used to facilitate
the recognition process [8]–[13]. Such assemblies can be expensive and obtrusive, prohibiting the
range of applications of their underlying techniques. Efforts in this field have attempted to utilise pre-
existing infrastructure such as ambient Wi-Fi signals and non-intrusive sound waves in order to provide
cost-effective solutions for gesture recognition that do not require extensive specialised hardware [14],
[15]. Ambient light is another medium that can be taken advantage of in such a manner, owing to the
ubiquity of both artificial and natural lighting in the modern world, making it an accessible and readily
available resource.

Employing ambient lighting in this manner has also been explored previously using both algorithmic
and machine learning-based approaches that rely on data captured by photodiodes. Photodiodes are
devices that sense light and output an electrical signal that corresponds to the intensity of the detected
light [16]. However, these attempts operate on a relatively rich set of resources, often utilising several
dozen photodiodes, leaving room for potential improvement by reducing the number of photodiodes
used while attempting to maintain gesture recognition accuracy [17]–[19].

This paper aims to address the challenge of recognising gestures given the data supplied by three
photodiodes. More specifically, it aims to employ Convolutional Neural Networks (CNNs) in order
to classify sets of signals as different gestures [20]. In addition, the resulting machine learning model
is adapted to run on a resource-constrained embedded platform in order to facilitate real-time gesture
recognition. This approach represents an attempt to adapt techniques common in 2-D image process-
ing in a novel manner, allowing for accurate recognition and flexible applications owing to the afford-
ability and portability of commonly available Single Board Computers (SBCs) and microcontrollers
[21]–[23].

1.2. Challenges
Two principal challenges define the bounds of the problem that this paper aims to tackle:

• Construction of a machine learning pipeline to facilitate gesture recognition
A machine learning architecture will have to be devised in order to recognise gestures. The most
important considerations are how the input data from the photodiodes can be re-structured to
allow for a CNN to operate on it and the concrete structure of the neural network itself. The latter
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1.3. Contributions 2

is particularly interesting owing to the great deal of variation that exists in approaches to CNN
architecture construction [24], [25].

• Compression of the resulting model to run in real-time on an embedded platform
Machine learning models can be extremely substantial in size; a (somewhat extreme) example is
GoogLeNet, which consists of almost 6.8 million trainable parameters [26]. Though the range of
possible neural network architectures is not particularly complex owing to the relative simplicity
of the input data, the final size of the model remains an important consideration, as it dictates
whether or not the model can be feasibly ran on resource-constrained platforms.

1.3. Contributions
Building on the challenges defined in section 1.2, the endeavours of this paper can be summarized
through three key contributions:

• Restructuring of photodiode readings in the style of image data
In order to allow for a CNN to operate on the readings, the raw stream of data needs to be
reshaped to resemble a 2-D image [20]. The most important consideration will be the dimensions
of the image, as this will dictate the pool of potential parameters of the neural network’s layers.

• Construction of application-specific CNN architecture
As this application of CNNs is atypical in light of the fact that CNNs are predominantly utilised
in image processing, a custom architecture will have to be engineered. Different combinations
of layers and parameters need to be considered and evaluated in order to achieve a favourable
classification accuracy while maintaining a reasonable model size.

• General purpose adaptation of machine learning models for resource-constrained com-
puting platforms
In order to facilitate the operation of the proposed neural networks, techniques for compressing
machine learning models need to be utilised.



2
Background

This chapter briefly discusses the core theoretical concepts underlying the approaches to be presented
further in the paper. Namely, these are the basic principles of convolutional neural networks, presented
in section 2.1, and how quantization can be used to reduce the complexity of machine learning models,
presented in section 2.2.1

2.1. Convolutional Neural Networks
2.1.1. Basic Principles
Convolutional neural networks are a form of machine learning, more specifically a subclass of artificial
neural networks. Inputs to CNNs consist of image-like arrays of data, which have a set ‘length’, ‘width’,
and number of ‘channels’.2 As the name implies, CNNs’ operation primarily consists of applying convo-
lutions to the input data presented to each convolutional layer in the network; a convolution is simply a
weighted sum of one or more data points.3 The number of data points being summed and the weights
contributing to this sum are dictated by the ‘kernel’ being used.

Figure 2.1: Applying a 2x2 kernel to a 3x3 array of numeric data [27].

An illustrative example can be seen in Figure 2.1. The kernel scans horizontally from left to right
until it reaches the edge of the ‘image’, resets its horizontal position back to the very left, and then
moves vertically downwards and repeats this horizontal motion until the entire array has been scanned
through. This results in the following computations being carried out (in this order) to produce the given
output:

(0× 0) + (1× 1) + (2× 3) + (3× 4) = 19

(0× 1) + (1× 2) + (2× 4) + (3× 5) = 25

(0× 3) + (1× 4) + (2× 6) + (3× 7) = 37

(0× 4) + (1× 5) + (2× 7) + (3× 8) = 43

Values for kernel weights are learned from the dataset during the model’s training process. Unlike
the given example, the weights of the kernel are not fixed for the entire convolution procedure. Different
weights are used for each application of the kernel, i.e. the weights change each time the kernel takes
a ‘step’ through the data array.

1It is assumed that readers are familiar with the basic workings of neural networks.
2Adopting this image-esque mental framework eases the understanding of many of the operations that CNNs carry out and

this subsection is authored with this viewpoint in mind.
3These data points can be thought of as the pixels that make up the ‘image’.
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2.1.2. Padding and Stride
Padding is the process of adding additional ‘artificial’ data to the borders of a given data array. This is
often done to preserve information close to the edge that would otherwise be lost by the reduction in
resolution that a convolutional layer causes, or to augment low resolution data [27].

Stride refers to the size of the ‘steps’ that a convolutional kernel takes along each axis of a given
data array. The example kernel shown earlier in Figure 2.1 has a horizontal stride of 1 and a vertical
stride of 1 as well.

Figure 2.2: Applying a 2x2 kernel to a 3x3 array of numeric data. The data array is equally padded with zeroes across both
axes, and the kernel has vertical and horizontal strides of 3 and 2 respectively. [27]

Figure 2.2 shows a combined application of padding and stride. The output values correspond to
the following computations (in this order):4

(0× 0) + (1× 0) + (2× 0) + (3× 0) = 0

(0× 0) + (1× 0) + (2× 1) + (3× 2) = 8

(0× 0) + (1× 6) + (2× 0) + (3× 0) = 6

(0× 7) + (1× 8) + (2× 0) + (3× 0) = 8

2.1.3. Multiple Channels
As mentioned in subsection 2.1.1, layers can have multiple input channels and multiple output chan-
nels.5 Each input channel is treated as a separate data array, complete with its own set of kernel
weights that are each learned during training. Each output channel is computed as a weighted sum
of the outputs of the convolutions performed on each input channel; these weights are also learned
during training. Figure 2.3 shows an example of multiple input and output channels.

Figure 2.3: Applying a 1x1 kernel to 3 input channels, producing 2 output channels [27].

2.1.4. Pooling
Pooling layers can be thought of as extremely simplistic versions of convolutional layers. Instead of
computing a weighted sum, they apply much simpler operations such as returning the maximum value
or computing an unweighted average. As such, these layers do not have any trainable parameters.
Besides this, pooling layers behave similarly to convolutional layers in terms of interaction with multiple
input channels, and the application of padding and stride. Figure 2.4 shows an example involving a
maximum pooling layer.

4Note that the middlemost row and rightmost column do not contribute to the computation. The former is skipped due to the
size of the kernel and the value of the vertical stride, while the latter is similarly skipped as the horizontal stride causes the kernel
to ‘overflow’ beyond the right edge of the array, thus proceeding to the next ‘step’ in the convolution.

5In line with the image analogy, one can compare CNN channels to the three RGB channels of an image.
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Figure 2.4: Applying a 2x2 maximum pooling layer to a 3x3 array. The procedure carried out is identical to that in Figure 2.1,
except that the computation at each step is merely the maximum value instead of a weighted sum. [27]

2.2. Parameter Quantization
Quantization in the context of neural networks refers to simplifying the representation used for storing
model parameters. This allows for models to be significantly compressed, greatly reducing their size
and the time it takes to perform an inference; quantized models are up to four times smaller and can
be almost twice as fast to execute compared to their non-quantized counterparts [28].

Generally, model parameters are stored as 32-bit floating point numbers, though this degree of
precision is often not needed during inference, only during training [29]. As a result, these parameters
can instead be stored as 16-bit or 8-bit numbers, most often as integers. Several techniques exist
for performing this mapping and interested readers can find an overview of prevalent quantization
techniques in [30].



3
System Overview

This chapter provides an overview of the goals of the presented research and the problems it aims
to tackle, in addition to detailing aspects of the gesture recognition system not related to the machine
learning stage, but whose mention is integral to understanding the system as a whole. Section 3.1
discusses the aims of the larger research project - of which this paper is a component - while section 3.2
presents the goals of this paper in isolation. Section 3.3 details the hardware setup of the project and
summarises the processing performed on the raw photodiode signals. Section 3.4 concludes with a
brief overview of the dataset being used to train and evaluate the utilised model.

3.1. Project Structure
The end goal of the five papers involved in the overarching research project is to construct a gesture
recognition system using only three photodiodes. Each of these papers represents a stage in a pipeline
which begins with fluctuations in photodiode readings based on hand movements and ends with the
identification of a particular gesture. The research questions tackled by each of the five papers are as
follows:

1. How to design a receiver to detect visible light signals with one Arduino Nano 33 BLE and
two/three OPT101 photodiodes, and how to proceed the signals efficiently?

2. What kind of gesture dataset should be constructed for the training purpose and how to build it?
How to deal with the fact different people have different habits when performing the predefined
gestures (such as left hand vs. right hand)?

3. What’s the impact of the placement of photodiodes on the sensing performance? What’s the
impact of ambient light on the sensing performance?

4. Whichmodel could be used for gesture recognition, based on 2-D pre-processed data (like picture
recognition)? How to compress the used deep learning to make it real-time on Arduino Nano 33
BLE?

5. Whichmodel could be used for gesture recognition, based on 3-D pre-processed data (like video)?
How to compress the used deep learning to make it real-time on Arduino Nano 33 BLE?

Each of these five research questions was addressed separately and in parallel with the other re-
search questions. There exists a great deal of interdependency between them however, and so findings
and results produced in the process of tackling one research question directly impacted the others.

3.2. Research Question Breakdown
This paper addresses research question 4 by utilising CNNs, which are common in the field of image
processing. This research question can be divided into the following sub-questions:

1. How can a time series composed of photodiode readings be represented as a 2D image?
2. What CNN architecture is best suited for gesture recognition based on these readings?
3. Which metrics matter the most for this application, and on the basis of which different models can

be compared and evaluated?
4. What constitutes ‘real-time’ classification and how can it be achieved given a constrained embed-

ded environment?
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3.3. Hardware and Signal Processing
The assembly used for gesture recognition consists of 3 OPT101 photodiodes and an Arduino Nano 33
BLE. It includes a number of capacitors and variable resistors which smooth the photodiode outputs and
ensure that the output signal is varied according to different lighting conditions such that signal patterns
pertaining to different gestures are as distinct as possible. Figure 3.1 showcases this assembly and
further specifics about the assembly can be found in [31].

Figure 3.1: Hardware assembly used for classification. The Arduino Nano 33 BLE microcontroller and triangularly arranged
OPT101 photodiodes are highlighted. [31]

Following the performance of a gesture, the raw photodiode signals are processed. First, the win-
dow of readings corresponding to the actual gesture are isolated. Following this, the signals are filtered
to minimise noise, interpolated to a fixed length for processing by the neural network and normalised
to values between 0 and 1. Figure 3.2 showcases the described effects and further specifics about the
pipeline can be found in [32].

Figure 3.2: Processing pipeline effect on the signals corresponding to a leftwards swipe. [32]

3.4. Dataset
The dataset constructed for this project consists of data recorded from about 50 volunteers and encom-
passes 10 gestures in total. Ambient lighting conditions reflected in the dataset range from dim indoor
lighting to direct sunlight, covering a light intensity range from 0 to 100,000 lux. Further, hand width,
hand length, the volunteer’s handedness (whether they are left-handed or right-handed), and gender
were all recorded and varied in order to make the dataset balanced and representative. Data from
the first 29 participants was recorded at 20Hz and all subsequent samples were recorded at 100Hz.
Further details about the dataset can be found in [33].



4
Design

This chapter provides an overview of the design decisions made for the components of the utilised
neural network. First, how the photodiode readings are restructured for input to the CNN is discussed
in section 4.1. Second, the structure of the chosen network itself is detailed in section 4.2.1 Lastly,
section 4.3 details how the model is compressed for resource-constrained operation.

4.1. Data Restructuring
In order to be operated on by a CNN, photodiode readings are reshaped into an n × 3 ‘image’ that
represents a gesture attempt. Figure 4.1a shows a visualisation of this restructuring for the data cor-
responding to an upwards swipe and figure 4.1b shows a graph of the corresponding signals. The
disruptions in the signals which act as the ‘fingerprint’ of the gesture can be seen as dark patches in
the image and as dips in the signal graph.

(a) Visualisation of photodiode readings as an image. Note that the
given image is 3 × n for visibility, but the CNN operates on n × 3 input

data. (b) Graph of corresponding photodiode readings.

Figure 4.1: Visualisation of photodiode readings corresponding to an upwards swipe.

4.2. Neural Network Design
The final utilised model (referred to as Narrow LilConv Padding Pyramid (NLCPP)) has the following
structure:

1Several models were devised and evaluated, but only the one utilised for the final gesture recognition assembly is detailed
in this chapter. An overview of the architecture of all considered models can be found in appendix A.
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Figure 4.2: Visualisation of the structure of the chosen CNN. The ordering of the layers can be seen in addition to the input
shape, output shape, and subsequent activation function of each layer.

As demonstrated by figure 4.2, NLCPP begins with an input layer that provides an input of dimen-
sions (100× 3× 1). This input is then padded with two zero-valued columns, producing a (100× 5× 1)
output. Following this is a sequence of three convolutional layers which primarily reduce the horizon-
tal resolution of the image while increasing the number of output channels, producing a (97 × 2 × 32)
output. After this comes a (3 × 1) max pooling layer followed by a final convolutional layer, producing
a (28 × 2 × 32) output. Lastly, this final output is flattened to produce a 1792 layer of nodes that are
densely connected to a 10 node layer, where each of these last 10 nodes represents the probability
that the input corresponds to each of the 10 possible gestures; this final layer of nodes utilises the
Softmax activation function. Each of the convolutional layers is accompanied by a Rectified Linear
Unit (ReLu) activation function. Additionally, a dropout layer is placed between the ‘flatten’ layer and
the ‘predictions’ layer in order to randomly set the input to 50% of the nodes of the ‘flatten’ layer to zero;
this layer is only utilised during training and its inclusion helps to minimise overfitting [34].

4.3. Model Compression
Quantization provides the vast majority of the space savings leveraged for embedded operation. This
is done by fully quantizing the model, such that it utilises 8-bit integer values for input, output and
model parameters. Post-training full integer quantization was chosen for maximal latency and size
improvements while retaining accuracy. While quantization-aware training would have potentially pro-
vided better latency and size metrics, it was observed that quantized models behave differently during
training compared to their non-quantized counterparts, potentially complicating model comparison.



5
Implementation

This chapter provides an overview of the concrete implementation and tools used to realise the de-
sign details specified in chapter 4.1 Section 5.1 discusses the implementation of the model itself and
section 5.2 summarises how the model is compressed and made to run on the Arduino Nano 33 BLE
microcontroller.

5.1. Model Construction
The presented models were constructed using the TensorFlow machine learning and AI library. More
specifically, the high-level Keras API [35] was used to define, fit, and evaluate the models. The Adam
optimizer [36] was utilised together with sparse categorical cross-entropy as a loss function. The former
was configured with a learning rate of 0.001 as this was found to be a satisfactory value that allowed for
relatively quick network convergence while minimising the probability of encountering a local minimum;
other parameters were kept at their default value. 500 epochs were used for all training sessions as
this was found to be roughly the point beyond which the tested models would begin to overfit.

5.2. Embedded Conversion and Arduino Deployment
The TensorFlow library features functionality for converting and running machine learning models on
microcontrollers and embedded platforms. First, the trained model is processed by the TensorFlow Lite
converter, which quantizes the model and converts it into a FlatBuffer format [37]. The entire dataset
is provided as the representative dataset to be used during post-training quantization. Following this,
the xxd command-line tool is used to convert this file into a C array so that it may be operated on by
the TensorFlow Lite interpreter which runs the model on the platform of choice; this is to circumvent the
lack of a file system on the vast majority of such platforms. Interested readers can find further details
about TensorFlow Lite for embedded operation in [29].

In order for the TensorFlow Lite interpreter to function, a portion of memory needs to be allocated
for the input and output tensors and computations that are performed during the inference process,
referred to as the ‘tensor arena’. The utilised network was found to require a tensor arena of 14,336
bytes as shown in figure 5.1b. Further, the interpreter must first load the code needed for the operations
that the neural network performs. To achievemaximal space efficiency, only the set of operations strictly
necessary for the CNN’s operation are loaded as demonstrated in figure 5.1a. This results in an overall
memory usage of 69,536 bytes of RAM and 162,224 bytes of flash memory.

1 s t a t i c t f l i t e : : MicroMutableOpResolver <7> reso l ve r ;
2 reso l ve r . AddConv2D ( ) ;
3 reso l ve r . AddFullyConnected ( ) ;
4 reso l ve r . AddMaxPool2D ( ) ;
5 reso l ve r . AddPad ( ) ;
6 reso l ve r . AddRelu ( ) ;
7 reso l ve r . AddReshape ( ) ;
8 reso l ve r . AddSoftmax ( ) ;

(a) Source code of the operations resolver initialised with the operations strictly
needed for the CNN’s operation.

1 constexpr s i ze_ t kTensorArenaSize = 14U * 1024U;
2 u i n t 8_ t tensor_arena [ kTensorArenaSize ] ;

(b) Source code of the static memory allocation pertaining
to the tensor arena.

Figure 5.1: Source code which facilitates the CNN’s operation on the Arduino Nano 33 BLE.

1The full implementation of all components of the overall research project can be found at https://github.com/StijnW66/
CSE3000-Gesture-Recognition
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6
Results and Evaluation

This chapter presents an evaluation of the models considered for this paper. The raw photodiode
readings gathered for the dataset were used to generate these figures; the data sampled at 20Hz
was left unaltered while the data sampled at 100Hz was downsampled to 20Hz in order to conform to
the input dimensions that the CNNs expect. All of the gathered samples were combined into a single
contiguous dataset and randomised k-fold cross-validation was utilised with a constant random seed
of 69 in order to produce constant splits and confront each of the models with identical scenarios for a
fair evaluation.

Table 6.1 showcases the mean value and standard deviation of the accuracies obtained with both
5 and 10 folds; this is given for both the unoptimized and quantized versions of each of the presented
models. Further, the quantized size of each model is given alongside the latency needed for a single
inference to be made on the Arduino Nano 33 BLE; this is computed as the mean of 1000 inferences
made on a single fixed piece of dummy data obtained from the dataset.

Model Name Accuracy (5-fold) Accuracy (10-fold) Quantized Accuracy (5-fold) Quantized Accuracy (10-fold) Size (Bytes) Latency (ms)
LilConv 70.315% (± 5.406%) 78.044% (± 6.561%) 9.225% (± 0.735%) 8.947% (± 0.759%) 17,329 44
LilConv Padding 75.367% (± 5.595%) 79.134% (± 4.934%) 70.292% (± 3.535%) 69.864% (± 2.879%) 25,089 128
LilConv Padding Lite 71.192% (± 4.299%) 73.205% (± 5.265%) 66.996% (± 2.430%) 65.861% (± 2.008%) 15,897 86
LilConv Padding Pyramid 71.192% (± 4.299%) 81.146% (± 4.711%) 72.091% (± 5.637%) 75.302% (± 2.969%) 37,817 81
LilConv Padding Pyramid Lite 72.284% (± 4.651%) 76.374% (± 5.266%) 70.678% (± 4.044%) 72.498% (± 3.877%) 22,681 81
Narrow LilConv Padding Pyramid 79.220% (± 6.516%) 86.798% (± 5.722%) 75.388% (± 6.376%) 80.954% (± 4.753%) 32,849 78

Table 6.1: Table showcasing the values of the metrics considered for evaluation. The row corresponding to the final chosen
model is underlined and the most favourable value obtained for each metric is highlighted in bold font.

A number of trends can be observed in the results. The accuracies obtained for 10-fold validation
are significantly higher than those obtained for 5-fold validation, likely as a result of the models being
exposed to a greater range of lighting conditions and more variation in terms of people’s preferences
for how they articulate their hands in the latter compared to the former. Further, quantization seems to
adversely affect accuracy for all models, causing drops between 2% and 10%, with the exception of
‘LilConv’ which seems to be rendered unusable after quantization. Optimized size and latency figures
for all models seem sufficient to facilitate real-time operation, as the largest model registers at 37,817
bytes and the model with the greatest latency registers at 128ms.

Looking at model design trends, a few design decisions appear to prove themselves particularly
advantageous. Models which feature a number of output channels that increases the further one goes
along in the model seem to exhibit better performance. Additionally, the usage of an initial layer of zero
padding seems to also increase performance, though conservative usage of this padding seems to be
optimal as can be seen by NLCPP’s usage of a smaller padding layer producing results that are more
favourable than the other models. A detailing of the structure of each model can be found in appendix A
in order to lend additional context to the trends noted in this paragraph.

Figure 6.1 shows the confusion matrices obtained while evaluating the NLCPP CNN, showcasing a
number of trends in classification performance.1 Each of the given matrices was computed by averag-
ing the confusion matrices produced by each fold during each evaluation scenario. Related gestures
seem to be confused fairly often; the most common false classification for the ‘Clockwise Rotation’ ges-
ture appears to be ‘Counterclockwise Rotation’. This trend also holds in reverse, as the most common
false classification for the ‘Counterclockwise Rotation’ gesture also appears to be ‘Clockwise Rotation’.

1Confusion matrices corresponding to all presented models can be found in appendix B.

11



12

This confusion of related gestures also occurs with the ‘Double Tap’ and ‘Single Tap’ gestures, as well
as the ‘Zoom In’ and ‘Zoom Out’ gestures, though to a much greater degree with the latter. This is
likely caused by the similarity in the signals corresponding to the two elements of each of these gesture
‘pairs’. Further, the zoom and rotation gestures appear to cause the greatest amount of confusion in
classification, likely owing to the relative complexity of their signals compared to other gestures in the
dataset.

(a) Confusion matrix corresponding to 5-fold cross-validation. (b) Confusion matrix corresponding to 10-fold cross-validation.

(c) Confusion matrix corresponding to 5-fold cross-validation with
quantization.

(d) Confusion matrix corresponding to 10-fold cross-validation with
quantization.

Figure 6.1: Confusion matrices corresponding to various evaluations of the NLCPP CNN.



7
Related Work

This chapter presents related work in the classification portion of ambient light based gesture recogni-
tion systems. Section 7.1 begins by discussing non machine learning based algorithmic approaches
which rely on observable commonalities in signals pertaining to certain gestures. Section 7.2 sum-
marises approaches relying on traditional machine learning models, such as Support Vector Ma-
chines (SVMs), k-Nearest Neighbours (kNN), Decision Trees (DTs), and Random Forests (RFs).
Section 7.3 concludes by briefly discussing deep neural network approaches.

7.1. Algorithmic Approaches
In [38], gesture recognition is facilitated by an algorithmic approach relying on detecting when different
photodiodes are in shadow relative to each other. This relies on a modified version of the Constant
False Alarm Rate (CFAR) algorithm [39] and divides the 12 gestures that make up its dataset to 5
that are performed on the hinges of a pair of glasses and 7 that are performed on a watch-like grid of
photodiodes. Average precision and recall figures of 99.7%/98.3% and 99.2%/97.5% are achieved for
the glasses and watch gestures respectively.

ViHand [17] divides its gestures into two sets: 8 directional sliding gestures and digital gestures,
which correspond to drawing the digits 0 and 2 through 9. The former is classified by observing which
photodiodes first experience a dip in their output. The latter is classified through a combination of Dy-
namic Time Warping (DTW) [40] and the kNN machine learning algorithm, discussed in the following
section. The algorithmic approach achieves 100% classification accuracy for the sliding gestures.

7.2. Machine Learning
The kNN approach employed in ViHand relies on DTW as a similarity measure between different time
series. This is used as the distance function for kNN classification and achieves an average recognition
accuracy of 82.3% for the digital gestures.

In [18], a 6ft x 6ft platform is used for recognizing 5 full body gestures. Principal Component
Analysis (PCA) is used to reduce the feature space of the produced time series and SVMs are utilised
in a 1-vs-all configuration. An average accuracy of 96.36% is achieved.

SolarGest [41] compares the usage of SVMs, kNN, DTs and RFs for the recognition of 6 gestures.
Average accuracies between 93.0% and 96.1% are achieved.

In [42], an approach similar to [18] is applied to smaller scale hand gestures. A 3x3 photodiode
array is utilised to recognise 10 gestures. Linear Discriminant Analysis (LDA) is utilised for dimen-
sionality reduction and kNN is used for classification with euclidean distance as the distance function.
An average accuracy of 99% is achieved.

7.3. Neural Networks
Recurrent Neural Networks (RNNs) are the most commonly adopted owing to their suitability for time
series data. [19] compares the usage of different RNN units for recognising 7 gestures, achieving
accuracies of up to 99%.
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8
Responsible Research

Conducting scientific research of any manner presents an opportunity to discover previously unknown
information within a particular field of human knowledge. As such, research must be carried out in a
transparent manner where every step of all relevant procedures is detailed to the greatest possible
extent. This allows for research to be reproducible and verifiable such that its findings can be corrob-
orated (or potentially falsified), in addition to allowing for the findings of the research to be expanded
upon with new techniques.

In an effort to satisfy these elements of reproducibility, verifiability and transparency, this paper at-
tempts to detail all experimental details relevant to obtaining the presented results. This is reflected
in the provision of the designs of the considered models and the provided description of both the ex-
perimental setup and the procedures that were carried out in order to create this experimental setup.
Interested readers can inspect the design specifics of the model used for the final gesture recognition
assembly in chapter 4, make use of the source code referred to in chapter 5 so that they may re-create
this paper’s findings, and refer to chapter 6 for the details of the experimental setup used to produce
the results presented in this paper.
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9
Conclusion

9.1. Research Findings
This paper demonstrates the feasibility of utilising convolutional neural networks for gesture recognition
by using photodiodes to detect fluctuations in ambient lighting caused by the hand movements per-
taining to certain gestures. The considered models exhibit amicable performance given the resource-
constrained 3 photodiode setup and have been shown to be compact and performant enough to facili-
tate real-time operation on an embedded platform, namely an Arduino Nano 33 BLE microcontroller.

9.2. Future Work
9.2.1. CNN Architecture Experimentation
The models presented in this paper were mostly devised through an iterative process of repeated
tweaking, experimentation, and evaluation. A number of design choices, such as the usage of an
initial padding layer and gradually increasing the number of channels in the network, were found to be
advantageous to classification performance.

Further experimentation will likely yield additional improvements. Potential avenues for exploration
could be the inclusion of additional padding layers in the middle of the network, changing the size of
the kernels used for the convolutional layers, and the adoption of proven structural patterns present in
modern CNNs, particularly those used for low-resolution image processing.

9.2.2. Integration of Processing Pipeline
Due to time constraints and the parallel nature of the overarching research project, the processing
pipeline detailed in section 3.3 could not be utilised for pre-processing the dataset for this paper’s pur-
poses. This is due to unforeseen trends in the collected data causing the pipeline to exhibit unintended
behaviour which negatively affects classification performance. As a fully integrated pipeline holds the
potential for dramatically improving classification performance by isolating only relevant portions of the
photodiode signals and removing noise, this presents a strong opportunity for realising a more perfor-
mant gesture recognition system.
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A
Model Designs

This appendix contains visualisations of all of the models considered for this paper. The structure of
each model’s layers is showcased similarly to section 4.2.

A.1. LilConv

Figure A.1: Visualisation of the structure of the ‘LilConv’ CNN. The ordering of the layers can be seen in addition to the input
shape, output shape, and subsequent activation function of each layer.
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A.2. LilConv Padding

Figure A.2: Visualisation of the structure of the ‘LilConv Padding’ CNN. The ordering of the layers can be seen in addition to
the input shape, output shape, and subsequent activation function of each layer.
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A.3. LilConv Padding Lite

Figure A.3: Visualisation of the structure of the ‘LilConv Padding Lite’ CNN. The ordering of the layers can be seen in addition
to the input shape, output shape, and subsequent activation function of each layer.



A.4. LilConv Padding Pyramid 22

A.4. LilConv Padding Pyramid

Figure A.4: Visualisation of the structure of the ‘LilConv Padding Pyramid’ CNN. The ordering of the layers can be seen in
addition to the input shape, output shape, and subsequent activation function of each layer.
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A.5. LilConv Padding Pyramid Lite

Figure A.5: Visualisation of the structure of the ‘LilConv Padding Pyramid Lite’ CNN. The ordering of the layers can be seen in
addition to the input shape, output shape, and subsequent activation function of each layer.
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A.6. Narrow LilConv Padding Pyramid (NLCPP)

Figure A.6: Visualisation of the structure of the ‘Narrow LilConv Padding Pyramid (NLCPP)’ CNN. The ordering of the layers
can be seen in addition to the input shape, output shape, and subsequent activation function of each layer.



B
Confusion Matrices

This appendix contains the confusion matrices obtained while evaluating the models considered for
this paper. They are presented with the same structure and were computed in the same manner as the
confusion matrices for the NLCPP CNN in chapter 6.

B.1. LilConv

(a) Confusion matrix corresponding to 5-fold cross-validation. (b) Confusion matrix corresponding to 10-fold cross-validation.

(c) Confusion matrix corresponding to 5-fold cross-validation with
quantization.

(d) Confusion matrix corresponding to 10-fold cross-validation
with quantization.

Figure B.1: Confusion matrices corresponding to various evaluations of the ‘LilConv’ CNN.
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B.2. LilConv Padding

(a) Confusion matrix corresponding to 5-fold cross-validation. (b) Confusion matrix corresponding to 10-fold cross-validation.

(c) Confusion matrix corresponding to 5-fold cross-validation with
quantization.

(d) Confusion matrix corresponding to 10-fold cross-validation
with quantization.

Figure B.2: Confusion matrices corresponding to various evaluations of the ‘LilConv Padding’ CNN.
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B.3. LilConv Padding Lite

(a) Confusion matrix corresponding to 5-fold cross-validation. (b) Confusion matrix corresponding to 10-fold cross-validation.

(c) Confusion matrix corresponding to 5-fold cross-validation with
quantization.

(d) Confusion matrix corresponding to 10-fold cross-validation
with quantization.

Figure B.3: Confusion matrices corresponding to various evaluations of the ‘LilConv Padding Lite’ CNN.
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B.4. LilConv Padding Pyramid

(a) Confusion matrix corresponding to 5-fold cross-validation. (b) Confusion matrix corresponding to 10-fold cross-validation.

(c) Confusion matrix corresponding to 5-fold cross-validation with
quantization.

(d) Confusion matrix corresponding to 10-fold cross-validation
with quantization.

Figure B.4: Confusion matrices corresponding to various evaluations of the ‘LilConv Padding Pyramid’ CNN.
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B.5. LilConv Padding Pyramid Lite

(a) Confusion matrix corresponding to 5-fold cross-validation. (b) Confusion matrix corresponding to 10-fold cross-validation.

(c) Confusion matrix corresponding to 5-fold cross-validation with
quantization.

(d) Confusion matrix corresponding to 10-fold cross-validation
with quantization.

Figure B.5: Confusion matrices corresponding to various evaluations of the ‘LilConv Padding Pyramid Lite’ CNN.



B.6. Narrow LilConv Padding Pyramid (NLCPP) 30

B.6. Narrow LilConv Padding Pyramid (NLCPP)

(a) Confusion matrix corresponding to 5-fold cross-validation. (b) Confusion matrix corresponding to 10-fold cross-validation.

(c) Confusion matrix corresponding to 5-fold cross-validation with
quantization.

(d) Confusion matrix corresponding to 10-fold cross-validation
with quantization.

Figure B.6: Confusion matrices corresponding to various evaluations of the ‘Narrow LilConv Padding Pyramid (NLCPP)’ CNN.
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