From Atomgrad to Atompark Upcycling a nuclear energy landscape

"Gintare Norkunaite

STRUCTURE

- Context
- Problem
- Approach and Vision
- Strategy and Framework
- Projects

From an Atomgrad to an Atompark

ATOMGRAD - a small industrial city (from 30,000 to 80,000 inhabitants) designed to serve the needs of a large nuclear power plant

(Historian V. wendland)

City	establishment	Nuclear facilities	Country
Agidel	1980	Nuclear power plant	Russian Federation
		Bashkiria	
Aktau	1961	Aktau nuclear power	Kazakhstan
		plant	
Balakovo	1762	Balakovo Nuclear	Russian Federation
		Power Plant	
Bilibino	1955	Bilibino nuclear power	Russian Federation
		plant .	
Desnogorsk	1974	Smolensk nuclear	Russian Federation
		power plant	
Enerhodar	1970	Zaporizhia Nuclear	
Enemiedai	1070	Power Plant	
Vuzhnoukrainek	1076	South Elkraine Muclear	
TUZIIIIOUKIAIIISK	1970	Bower Dient	
Kamakia Dahar	1001		
Kamskije Polyany	1981	Nuclear power plant	
		Tatarstan (Kama)	
Kurchatov	1968	Kursk Nuclear Power	Russian Federation
		Plant	
Kuznetsovsk	1973	Rivne Nuclear Power	Russian Federation
		Plant	
Mezamor	1969	Metsamor Nuclear	Armenia
		Power Plant	
Netishyn	1984	Khmelnitsky nuclear	- Ukraine
		power plant	
Novovoronezh	1975	Nuclear power plant	Russian Federation
	-	Novovoronezh	
		Novovoronezh Nuclear	
		Power Plant II	
Obninsk	1956	Obninsk Nuclear	Russian Federation
Common		Power Plant IPPF	
Ozersk	1945	Mayak nuclear nower	Russian Federation
Ozersk	1940	nlant South Urala	
Delvernue Zeri	1069		Duccion Foderation
Polyannye Zon	1900		
	1. 1070 1000	piant	
Pripyat, Slavutich	in 1970, 1986	Chernobyl Nuclear	
-		Power Plant	
Saretschny	1957	Beloyarsk nuclear	Russian Federation
		power station	

Scholkine	1978	Crimean Atomic	
		Energy Station	
Seversk	1949	Sibirskaya nuclear	Russian Federation
		power plant	
Sosnovy Bor	1958	Leningrad Nuclear	Russian Federation
		Power Plant	
		Leningrad Nuclear	
		Power Plant II	
Teplodar	1981	Nuclear thermal power	- Ukraine
		station Odessa	
Chistye Bory	1979	Nuclear power plant	Russian Federation
		Kostroma	
Udomlya	1961	Kalinin Nuclear Power	Russian Federation
		Plant	
Visaginas	1975	Ignalina nuclear	💳 Lithuania
		power plant, Visaginas	
		Nuclear Power Plant	
Volgodonsk	1950	Rostov Nuclear	Russian Federation
		Power Plant, nuclear	
		equipment	
Sillamäe	1502	chemical factory that	Estonia
		produced fuel rods and	
		nuclear materials	
Paldiski	1783	a Soviet Navy nuclear	Estonia
		submarine training	
		centre	
Kurchatov		Nuclear testing site	Kazakhstan
Oak Ridge,	1942	Manhattan Project.	USA
Tennessee			
Los Alamos, New		Manhattan Project.	USA
Mexico			
Gold Coast	1943	Manhattan Project.	USA
Historic District			
(Richland,			
Washington)			
Mercury, Nevada	1950	Nevada Test Site	USA

Atomgrads in the World

Nuclear power plants in the World

THE PROJECT LOCATION

Project location

= 3000 MW (6000 MW projected)

80 % of Lithuania electricity needs

DECOMMISSIONING

The initial decommissioning plan of Ignlina nuclear power plant

Gigantic infrastructure

Mural painting in Visaginas

41% of jobs are provided by Ignalina nuclear power plant

40% of the population have already left the city

Shrinkage and vacancy in the city

nuclear energy landscape

APPROACH

structures and knowledge

creative population

The buffer landscape

80 % of the population has higher education43 nationalities

Industrial heritage

Population

Interpretation drawing

ATOMPARK

ATOMPARK

Nature

Energy structures and knowledge

creative population

Con P

I. Regional city

urbanized parts

2. Nature is part of the city, The city is part of nature

Atompark

Linn /

2. Nature is part of the city, The city is part of nature

3. A biophilic region

Atompark

. Tel

2. Nature is part of the city, The city is part of nature

3. A biophilic region

4. A cradle for endangered species

2. Nature is part of the city, The city is part of nature

3. A biophilic region

4. A cradle for endangered species

5. Energy transition

2. Nature is part of the city, The city is part of nature

3. A biophilic region

4. A cradle for endangered species

5. Energy transition

6. The ecosystem of hightech industries

2. Nature is part of the city, The city is part of nature

3. A biophilic region

4. A cradle for endangered species

5. Energy transition

6. The ecosystem of hightech industries

7. The preservation of industrial heritage

Atom GRAD - Atom PARK

nuclear

. A regional city

2. Nature is part of the city, The city is part of nature

3. A biophilic region

4. A cradle for endangered species

5. Energy transition

6. The ecosystem of hightech industries

7. The preservation of industrial heritage

8. Handled radiation

STRATEGY

POTENTIALS

Structure of the project

POTENTIALS

upcycled

STRATEGY LAYERS spatial structures

Structure of the project

POTENTIALS

upcycled

STRATEGY LAYERS spatial structures

integrated by

PROJECTS

Structure of the project

SENSING RADIATION

reactors

radioactive waste storage

radioactive objects

sensing strategy scheme

'NEW NATURE'

- healing

Phytotechnologies cleaning/stabilizing idustrial pollution

NATURE structures

water	
reserves	
habitats	
corridors	

- Sections connections
- >>>> phytotechnologies/new plants

ACTIONS

'NEW NATURE'

healingupcycling

New nature.

NATURE structures

	water
	reserves
	habitats
	corridors
in	connections

>>>> phytotechnologies/new plants

ACTIONS

'NEW NATURE'

- healing
- upcycling
- maintaining

NATURE structures

- water reserves habitats
- corridors
- in connections
- >>>>> phytotechnologies/new plants

Electricity transmission corridors

Transformation of electricity transmission corridors

MOBILITY

daily routes of people

A link between INPP and Visaginas

A link between INPP and Visaginas

MOBILITY

- slow network
- hiking network

PATHS

- main city connections
- – region connections
- strolling/bicycle path
- ••• water route
- elevated path

ACTIONS

reused transformed/strengthened new

Transformed tourbine hall T2

birdhides 📕

MOBILITY

- regional network

PATHS

- main city connections
- – region connections
- strolling/bicycle path
- ••• water route
- elevated path

ACTIONS

reused transformed/strengthened new

ENERGY TRANSITION

regional energy subgrid
distribted energy generation

- sinks and sources

new reactors/biorefineries/hydrogen combined cycle power plant reused energy lines

SA 0 E, \bigcirc 4 • \bigcirc -..... \bigcirc \bigcirc \bigcirc 0 0 $\langle \rangle$ Ø) 0,0 \$. 0 γ 3 \bigcirc Ŝ 0 0 U P 0 0 5 1 0 B Á . 20 y -. • 2 0 S

ACTIONS

reused transformed/strengthened new

international grid

3 000 MW power for 2 400 000 people

Fission

Centralised energy source

Ignalina Nuclear Power plant

regional grid 75 MW for 60 000 people Fusion

Distributed energy source

- nuclear fusion,

- biorefinery,hydrogen combined cycle power plant

Ignalina nuclear power plant

Ş

GET A new nuclear fusion reactor

HIGH-TECH INDUSTRIES

Activators: -research institute -pavilions

ENERGY research

new research center transformations buildings

new temporary structures (activators)

new permanent structures (development areas)

ACTIONS

reused transformed/strengthened new

A pedestrian alley in the town

INDUSTRIAL HERITAGE

INDUSTRIAL HERITAGE

- infrastructure
- composition (axes, sequence of spaces, formants) symbols

ACTIONS

reused transformed/strengthened new

INPP monument

THE FRAMEWORK

FRAMEWORK

ACTIONS

reused transformed/strengthened new

PHASE I

PHASE I

PHASE II

MILESTONES

Research institute

INPP gains non-nuclear object status (radioactive fuel is taken from reactors and stored, radioactive machinery is removed)

 (Π)

 (\mathbf{I})

 (\mathbf{II})

Commercialisation of fusion reactors

PHASE II

ACTORS

ACTORS

Government/ministry/institution

public institution

private institution

residents

Vilnius University

THE PROJECTS

PROJECTS

SITES AND LINKS (focus areas)

- W Waterfront
- [M]] INPP monument of the First Nuclear Age (power plant site)
- [M2] INPP monument "The Walk of Giants")
- F "Porous forest "
- C Complex transmission corridors
- <u>P1</u> Path from INPP to the city
- P2 Visaginas main path
- P3 Visaginas secondary path
- P4 Visaginas pedestrian path
- Md Micro-district
- **G** Collective gardens
- <u>I</u> New development paths

NODES

INPP AREA

INPP existing situation

INPP framework

the "porous forest"

the "pier", the "quay"

leisure and biodiversity park

INPP spatial composition

the "Walk of Giants"

quay

fish market

"fishing village"

the waterfront

INPP spatial composition

INPP monument T3

landscape (T2)

Alopecurus pratensis Meadow Foxtail Grass

Phragmites australis Phragmites

Typha latifolia Cattail

Constructed surface flow wetland (T1)

a reused cable viaduct for path (T2)

a reused cable viaduct for path (T2)

demolition of the fence and reuse it for paving (T2)

a reused railway for paths (T2)

an elevated path

buildings

Elevated path (T2)

transformations of reactors and turbine halls

Transformed reactors and turbine hall

Transformed reactors and turbine hall

Transformed reactors and turbine hall (T3)

new nuclear fusion reactor

New nuclear fusion reactor (T3)

THE LINK AND NODE BETWEEN INPP AND THE TOWN

Framework of a link between INPP and the town

passages

pipeline as barrier and as a guide

trees shapes ulate wildlife the corridors, diminish the impact of infrastructure

underpass

pedestrian path

wildlife corridor

A link between INPP and the town

allotmets/ parkland

square

square

shelter for market

link between INPP and Visaginas

THE PATH IN THE TOWN

Sedulyno alley. Existing situation

THE PROCESS

money flow knowledge flow activator

new knowledge workers

Employment

The international nature framework Natura2000

Thank you for your attention

L. TOP

