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A B S T R A C T   

Applying any sustainable intervention in the urban energy system requires fundamental knowledge of the energy 
demand dynamics. Only when we can predict the users’ energy demand at any given time with accuracy, we can 
redesign the urban energy system. Accordingly, the main objective of this paper is to determine the annual 
electricity usage of the building connections in the urban built environment. In this paper firstly through a 
literature review, the important electricity usage explanatory variables of the built environment are recognized. 
For each building, besides the annual electricity usage, three major categories of explanatory variables, including 
physical, socioeconomic, and geospatial characteristics are determined. Based on the available data sources, a 
building electricity usage database is created. The database is categorized based on the two most frequently used 
building sectors including residential and non-residential. Ordinary Least Squares (OLS) technique is applied to 
the constructed database to estimate the predicting model parameters establishing a relationship between the 
annual electricity usage as a dependent variable and physical, socioeconomic, and geospatial variables as in-
dependent variables. In this research, to determine the contribution of geospatial characteristics in the annual 
electricity usage variability, regression analysis is performed in two consecutive steps. In the first step only, the 
geospatial characteristics were implemented in the multiple linear regression analysis. Following that, in the 
second step, the other categories including physical and socioeconomic characteristics are added to the model. 
The result revealed that in both building sectors most of the predictors are statistically significant at the 0.05 
level. While for the residential buildings the geospatial characteristics account for 9.7% of the electricity usage 
variation, these values for the service and industry sub-sectors are 9.9% and 8.7% respectively. In total, all 
variables explain 28.1%, 39.4%, and 42.9% of the electricity usage variability of residential, service, and in-
dustrial buildings respectively.   

1. Introduction 

Urban energy demand models seek to determine the energy 
requirement of the built environment as a function of the input pa-
rameters. Models can be applied for different reasons, however, the most 
common use is determining energy supply requirements for a specific 

area or evaluation of the changes in the energy consumption of the built 
environment due to the upgrade or addition of new technology [1]. The 
main energy forms considered in the literature are electricity and ther-
mal energy and the most frequently considered building types are resi-
dential, service, and industrial buildings, varying from small rooms to 
big estates [2]. The modelling energy demand of the built environment 
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is significantly complex, as the energy types and building types vary 
greatly and it is influenced by various factors such as physical, 
constructional, and behavioural characteristics [3]. Due to the 
complexity of the problem, often a precise prediction is not feasible. In 
recent years, a plethora of demand prediction models have been pro-
posed and applied to a broad range of problems which vary considerably 
in terms of data input requirement, disaggregation levels, the 
socio-technical assumptions, and accordingly the type of results and 
scenarios that they can assess and predict [4]. Broadly speaking, there 
are two fundamental classes of modelling methods used to predict and 
analyse the energy demand of the built environment: the top-down and 
bottom-up approaches [1,4,5]. The terminology is related to the hier-
archal position of the input data compared to the built environment as a 
whole [1]. While top-down models attribute the total energy demand of 
the built environment to the characteristics of the entire building stock, 
bottom-up techniques calculate the energy demand of individual or 
groups of buildings and then extrapolate these results to the whole area 
[1]. These models are constructed based on various simulation approach 
and levels of details and their spatial and temporal application scales are 
significantly different. The level of detail of the model’s inputs depends 
on the model aim, availability of data, approach of analysis, and un-
derlying assumptions [1]. The bottom-up models are built up based on 
the data on an individual level to investigate the contribution of 
end-user on energy usage in the urban and regional levels. These models 
can be used for simulation of energy use for individual occupants, 
building, or groups of buildings and then extrapolate the results to 
represent the city or region, based on the representative weight of the 
modelled samples [1,6]. Bottom-up models work on a micro-level, 
therefore for evaluating the energy use, they need extensive databases 
of empirical data to support the description of each user [7]. The 
physical characteristics of the built environment such as geometry, en-
velope fabric, appliances, indoor temperatures, and occupancy and 
equipment schedules are major common input data for the bottom-up 
models [1]. In this approach a high level of detail is used which pro-
vides modelling of the many technological and technical changes in the 
built environment. The main strength of the bottom-up approach is the 
capability of determining the total energy demand of the whole sector 
without relying on historical data [1] however, as they work at a dis-
aggregated level, they need extensive databases of the empirical data to 
support the description of each component [4]. As these models evolve, 
they may be used to estimate the energy consumption of the buildings 
representative of the built environment and subsequently, results can be 
extrapolated to the entire urban or regional level. 

Recently spatial approaches have been introduced and integrated 
with the bottom-up energy demand models to incorporate new data 
collection and extraction techniques. Using these approaches, the en-
ergy demand of the urban built environment can be determined more 
efficiently and effectively without costly on-site measurements [8]. It 
also provides the possibility to integrate a new category of characteris-
tics in addition to the commonly used physical and socioeconomic 
characteristics to predict the annual electricity usage of the built envi-
ronment. In this approach, the demand models are integrated with GIS 
(Geographic Information System) and RS (Remote Sensing) techniques 
for spatial data extraction and management. These techniques are 
applied to facilitate the acquisition and extraction of building data and 
spatial parameters from the building footprints and fulfil the large data 
requirements of the urban bottom-up energy demand models without 
the need of visual inspection and long survey of the properties [9]. [8] 
introduced a prototype building energy modelling approach to estimate 
the baseline energy consumption of the built environment, demon-
strating how buildings constructional and geometrical data, including 
form, area, perimeter, exposed size, and orientation can be extracted 
effectively from aerial maps. A hybrid GIS-based approach is applied to 
calculate the urban built environment residential heating demand to 
explore the impact of urban form on the demand levels in the city of 
London by Ref. [10]. Results revealed that the outputs of the hybrid 

model are comparable with the top-down energy model. In the last de-
cades, aerial photogrammetric techniques have been widely used to 
produce highly accurate and detailed 2D and 3D (stereo photos) maps 
[11]. The availability of 3D data sources enables researchers to use 3D 
models to analyse the energy demand of the urban built environment. 
Beginning in the early 1990s, the first 3D city models were built and 
deployed for the representation of a city in urban planning and still, the 
deployment of a comprehensive 3D models is the focus of many re-
searchers [12]. Today by employing high-quality remote sensing data, 
technology capability has reached a level where 3D models can be ob-
tained more readily and cheaply. Besides cloud computing in-
frastructures and a vast number of software applications has intensified 
the 3D applications in urban energy demand modelling [3,13]. Conse-
quently, 3D city models can be utilized as a powerful tool for energy 
evaluation at the large urban scale applications [14,15]. developed an 
urban energy tool that enables automatic extraction of the building’s 
heating volume from a Geo-information system and LIDAR data. 

In this paper, the urban spatial techniques are integrated with the 
bottom-up demand models to determine the annual electricity usage of 
the building (electrical) connections in the urban built environment by 
considering the most important electricity usage explanatory variables. 
In addition to the conventional constructional and socioeconomic 
characteristics, the geospatial explanatory variables are also considered 
in the model. LIDAR technology as an airborne mapping technique is 
utilized to extract the building’s characteristics such as height, building 
orientation, and solar radiation. The finding of the study demonstrates 
the significance of geospatial characteristics besides other conventional 
explanatory variables to predict and explain the electricity usage of the 
urban built environment. To address this, the paper is structured as 
follows; after an introduction in Sec. 1, Sec. 2 will briefly describe the 
applied methodology. The model setup, including identifying the elec-
tricity usage explanatory variables, caste study, the building electricity 
usage database, and pre-processing the data is presented in Sec. 3. This 
follows by Sec. 4 explaining the MLR analysis and the construction of the 
electricity predicting formulas. The results are discussed in Sec. 5. 
Lastly, Sec. 6 summarizes and concludes the paper. 

2. Methodology 

The main objective of this paper is to determine the annual elec-
tricity usage of the building connections by considering the most 
important electricity usage explanatory variables. Accordingly, a 
methodology composed of several specific steps is designed and imple-
mented to fulfil this goal. Firstly, through a literature review, the 
important electricity usage explanatory variables are identified. For 
each building, besides the annual electricity usage, three major cate-
gories of explanatory variables, including physical, socioeconomic, and 
geospatial characteristics are determined (Sec. 3.2). Case study expla-
nations is presented in the Sec. 3.3. Based on the identified variables and 
available data sources the building electricity usage database 
comprising of the electricity usage of buildings and related descriptive 
variables is constructed (Sec.3.4). The created database is categorized 
based on the two most frequently used building sectors including resi-
dential and non-residential (NR). Subsequently, the pre-processing step 
involving identifying missing data and outlier detection is performed to 
prepare data for the statistical analysis (Sec. 3.5). Multiple linear 
regression (MLR) is applied to the created database using the Ordinary 
Least Square (OLS) technique to estimate the parameters of the models 
that establish a relationship between the annual electricity usage and the 
electricity usage explanatory variables (Sec. 4). The models are utilized 
to predict the annual electricity usage of three different building con-
nections. In this research, the statistical analysis is carried out by IBM 
SPSS® Statistics, Version 22, and GIS operations are carried out with the 
spatial analysis tools, FME® Version 2014-build 14235, QGIS version 
2.0.1 and ArcGIS version 10.3. FME is utilized for data transformation 
and translation and QGIS and ArcGIS are applied to store, retrieve, 
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manage, display and analyse geographical and spatial data. 

3. Model setup 

3.1. Demand modelling technique 

In this research, a statistical/regression bottom-up model is 
employed which is particularly useful when a large dataset exists and as 
it is based on real data, this gives a good understanding of the energy 
usage behaviour [16]. The energy form considered is electricity and the 
target building sectors are residential and NR. The energy assessment of 
the urban built environment can be performed more efficiently and 
effectively by spatial tools such as GIS and RS. Therefore, in this 
research, the GIS and RS are utilized to facilitate the acquisition and 
extraction of the geospatial characteristics such as building area, den-
sity, and urbanization degree. LIDAR technology is also utilized to 
generate the 3D model of the analysed area and extraction of features 
such as height, solar intensity, and roof type, and area. 

3.2. Electricity usage explanatory variables 

Building electricity usage is influenced by a variety of factors, such as 
physical properties, the behaviour of occupants, and the surrounding 
environment. Due to the complex interrelation of these factors often a 
precise prediction of demand is not feasible [2]. Building type and the 
activities performed in the building are the main factors that influence 
electricity usage. The most widely used building sectors are residential 
and NR buildings which vary from small rooms to large estates [2]. 
Based on this fact that the building type has a significant effect on 
building electricity usage, in this section the determination of the elec-
tricity usage explanatory variables for each sector will be carried out 
separately. In the following subsections, through the literature review, 
the important explanatory variables are identified and subsequently will 
be utilized to create the building electricity usage database. 

3.2.1. Residential sector 
Residential electricity demand modelling is a heavily studied subject 

[5] which resulted in a large body of research. Literature has identified 
important explanatory variables that have been used to model the res-
idential electricity demand [5,16–22]. Based on the studies reviewed, 
Table 1 shows a list of explanatory variables that have been used in the 
electricity demand modelling of residential buildings ranked on the 
number of citations in the reviewed literature. 

Additionally, Table 1 also shows that type of building, income, the 
number of occupants, floor area, building age and location are some of 
the most used variables for modelling the residential electricity demand. 

Using a questionnaire survey, supported by annual gas and electricity 
meter data and floor-area estimates [23], suggests that the floor area of 
dwellings, total occupancy, and homeowner age are the major indicators 
of the residential electricity demand. According to Ref. [24], type of 
dwelling, location, size, household appliances, and attributes of the 
occupants, including the number of occupants and age have differing but 
significant impacts on the electricity demand. Also, a strong correlation 
was found between the average annual electricity demand and floor area 
[24]. It should be noted that the higher frequency of indicators is not 
necessarily related to their performance, but may have other reasons 
such as data availability, the ease with which data can be collected, or 
the analytical approach of the study. For example, data related to the 
building type or age can be extracted from the national census with 
relative ease. Other variables such as floor area may be overlooked due 
to the difficulty of gathering this information [16,22]. In agreement with 
Table 1 [25,26], showed that residential electricity demand is strongly 
influenced by the income and floor area, whereas the age of family 
members and the level of education has limited impact [24]. showed 
that residential electricity demand is correlated with the location of 
individual dwellings. Applying the linear regression model on the Irish 
National Survey of Housing Quality revealed that dwelling features 
include location and value and that household features such as income, 
the period of residency, social status, and tenure type have significant 
correlations with the residential electricity demand [27]. 

3.2.2. Non-residential sector 
NR sector, including service and industrial sub-sectors, consume a 

significant portion of the total urban electricity demand, however, 
compared with the residential sector very few studies have been con-
ducted to investigate their electricity consumption behaviour. It is pri-
marily for the reason that the residential sector broadly is considered as 
the dominant consumer of the electricity within the building stock. 
Secondly, the large-scale assessment of the NR sector is often infeasible 
or difficult due to the extreme diversity of uses, activities, and ownership 
structures within this sector. Hence, comprehensive information and 
detailed data about electricity modelling in this sector are considerably 
limited [28,29]. A recent study of European countries found the lack of 
available data, format inconsistencies of available data, and the overall 
difficulty in collecting necessary data for this sector [29]. 

Efforts have been made on tackling the complex task of character-
izing electricity consumption in the NR building stock. In the UK the 
attempts began in the 1990s to develop a national NR building stock 
database to understand electricity use. This dataset provides building 
floor, age, and activity information that is supplemented by street sur-
veys [30,31]. By breaking down the NR sector into the 588 premises [32, 
33] reported electricity-use patterns for different types of NR buildings. 
While [34] used the non-domestic building stock (NDBS) dataset of the 
UK to estimate the carbon emissions from the main building types [35, 
36], applied the NDBS dataset to develop a technique for dealing with 
the heterogeneity of the non-domestic building stock combined with the 
floor area model for each property type to predict total electricity con-
sumption [9]. quantified the electricity usage of NR buildings by 
assigning published energy benchmark values to relevant property types 
[6]. developed a district clustering method to calculate the electricity 
use of the commercial sector of the Osaka City based on representative 
building types [29]. elaborated on the approach to determine the po-
tential energy conservation in the Hellenic non-residential building 
stock [37]. developed simulation models with EnergyPlus for two office 
buildings in an R&D centre in Shanghai, China to evaluate the electricity 
and heating cost savings of green building design options compared with 
the baseline building [38]. develop a multiple regression model to 
predict the annual energy consumption in the Spanish banking sector 
and determine how energy efficient a bank branch is depending on its 
construction characteristics and climatic area. Specifically, in the in-
dustrial sub-sector, most of the investigations to analyse the electricity 
demand have been carried out since the middle of the seventies at the 

Table 1 
List of explanatory variables which have been used to model the residential 
electricity demand.  

Variable Number of 
Citations 

Variable Number of 
Citations 

Type of building 11 No. of rooms 4 
Income 10 Employment status 4 
Number of occupants 10 Insulation variable 4 
Floor area 10 Tenure type 3 
Homeowner age 9 Degree days 3 
Building age 9 Dwelling value 3 
Weather 

(temperature) 
9 Electricity price 2 

Appliance holdings 9 Social group 2 
Heating type 8 No. of bedrooms 2 
Location 8 Educational level 2 
Household 

composition 
8 Period of 

residency 
1 

Appliance rating 8   
Time use 7    
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aggregate level without considering activity/industry details. Recently 
[39–41] have analysed industrial companies’ electricity demand by 
micro cross-section data and repeated cross-section data to investigate 
how the characteristics of the industrial companies such as size, area, 
type, and electricity intensity influence the electricity demand. An 
econometric analysis of electricity demand based on the panel data of 
2949 Danish industrial companies over 13 years has been presented in 
Ref. [41]. In this study, attention has been devoted to the variation in 
electricity demand, according to the characteristics of the industrial 
companies such as size, type of industrial sub-sector and electricity in-
tensity in production. 

3.3. Case study 

To demonstrates the impact of physical, socioeconomic and geo-
spatial characteristics of the urban built environment on the annual 
electricity usage and in-depth study of patterns and relationships, a case 
study method has been applied. This provides a ground to support an 
empirical inquiry to investigates a phenomenon in depth and within its 
real-life context [42]. For this research, Eindhoven has been chosen as 
the study area. Eindhoven is the fifth-largest city of the Netherlands with 
a population of 234,401 in 2020 [43] and total electricity connections of 
111410. This large number of connections provide data for the 
bottom-up statistical approach as this model require extensive databases 
of empirical data to be able to infer and explain the patterns. The result 
of this large-scale modelling can also be applied in the regional and 
national level in which the collected data can be utilized for electricity 
usage benchmarking and long-term decision making in respect to 
identifying the saving measures to achieve a sustainable cities 
ambitions. 

Eindhoven has become a “Brainport” city, the centre of high-tech 
industries in the Netherlands, since 2008. This has led to attracting 
skilled immigrants and the rapid increase of the population and urban 
density [44]. [45,46] have implied rapid urbanization is associated with 
increased energy demand. To investigate this issue and generalize this 
study to other cities with rapid urbanization, Eindhoven can be a good 
example. In fact, the developed method for this study regardless of the 
local and contextual data can be applied for a variety of cities to analyses 
electricity demand. In additions, many cities have restricted regulations 
to access data such as geospatial or energy demand data; however, in 
this case, these data are open and accessible to researchers, providing 
this study with essential information to conduct the analysis. Consid-
ering the fact that Eindhoven is situated in the northern European 
oceanic climate, this case can also be a representative of the cities in this 
climate with the same population size. 

3.4. Building electricity usage database 

Since the bottom-up statistical demand models work on a micro- 
level, for examining the annual electricity usage on the building level, 
these models need extensive databases of historical data. In these 
models, the basic step to perform the annual electricity usage analysis is 
creating the building electricity usage database by incorporating 
different data sources. To achieve this goal different sources have been 
investigated and several organizations have been asked for the required 
data for analysis. In this research, two main types of data, including 
energy and spatial data are required and for this purpose, numerous 
sources are explored. The most important source of energy data was 
Endinet groep BV. Endinet as a local distribution system operator (DSO) 
operates the power grid in the Eindhoven. The electricity billing data of 
the Eindhoven region are retrieved as it was registered in the company 
SAP2 system. This resulted in the list of 111410 electricity connections. 
For each connection in addition to the electricity usage, the building 
address (including street, house number, house letter, and six-digit 
postal-code), ground area, woz-value3 and physical capacity of the 
connection (amperage/connection phase-type) are specified. The woz- 

value is a valuation of the property and it is estimated every year by 
the municipality. For the demand module, woz-value is used as an 
indication of the property value. The annual electricity usage of the 
building connections is determined by the average consumption of the 
building over the period between 2005 and 2009. The electricity data of 
the connections were available in the time intervals that were not 
necessarily entire years; therefore, a pre-processing analysis to deter-
mine the annual electricity usage per connection is performed. The 
second main data source of this research was the BAG4 dataset. This 
dataset was the main source of the spatial data of this research. Several 
main building characteristics, including building footprint, location 
coordination, function, roof and parcel area, building age, building type, 
and roof type are acquired from this dataset. Row, apartment, and de-
tached buildings were the main considered building types for residential 
buildings and with respect to the roof types, the flat and pitched roofs 
were the dominant types. Records in the Energy (Endinet) and spatial 
(BAG) datasets are connected by the postal code and street number. A 
combination of six-digit postal code and street number generates a 
unique indicator for each building which is utilized to connect different 
datasets. By merging the datasets, the building energy characteristics are 
associated with building spatial characteristics. Connecting the datasets 
result in the final list of connection records, comprising 110232 building 
connections in the study area (1178 records were disregarded as they 
were not referenced in the BAG dataset). As expected, a majority of the 
building connections were residential buildings with 89.12% (98237) of 
the total records. 9.45% (10414) and 1.43% (1581) of the records were 
services and industrial buildings respectively. 

As described, in this study to determine the annual electricity usage 
of the building connections, geospatial characteristics besides the 
physical and socioeconomic are also applied. These characteristics 
cannot be obtained directly from the open datasets and need to be 
determined which includes the following variables:  

• Building height: It is estimated by overlaying the detailed height data 
of the study area on the 2D footprints of the buildings. The height 
data, called AHN25, is captured through the airborne LIDAR tech-
nique for the entire study area. Fig. 1 shows the AHN2 point cloud 
data of the part of the study area. By intersecting the LIDAR point 
cloud of each building with its 2D footprint using their planar co-
ordinates, a statistical average height was estimated for each 
building.  

• Urbanization degree: It is introduced to account for different levels 
of urbanization. For each building, it is estimated using the land use 
map of the region, which is divided into two categories, namely, 
urban and non-urban areas. Urban areas consist of urbanized ele-
ments, such as buildings and roads, and non-urban areas, on the 
contrary, composes of natural elements such as forests, parks, and 
agricultural areas. For each building, the urbanization degree is 
estimated as the proportion of urban/non-urban areas in its prox-
imity. A buffer with a 3 km radius is defined for each building to 
calculate the urban/non-urban land use share for the building in that 
radius. Fig. 2 (left) presents the land use map of part of the study area 
which is classified into the urban (red) and non-urban (green) land 
uses. The resulting urbanization degree for each building is pre-
sented in Fig. 2 (right). The right part of the image consists of 
buildings with more green colours. These are the buildings with a 
low urbanization degree. Moving to the left part of the image the 
buildings colour changes to yellow, orange, and red. This is the result 

1 Systems Applications Products.  
2 Waardering Onroerende Zaken (Real Property Valuation).  
3 Basisregistraties Adressen en Gebouwen  
4 The AHN2 was collected and became available by the Dutch Water Boards 

and Rijkswaterstaa as a part of the Ministry of Infrastructure and the 
Environment. 
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of the urban area increase from right to left, which can be seen in 
Fig. 2 (left).  

• Urban density: It is estimated as the total number of buildings in the 
proximity of each building. To estimate the local urban density, 
nearby each building, a buffer of 100 m is defined. Using the 2D 

footprint of the buildings of the study area, the number of buildings 
overlaying each buffer is calculated and assigned to the building for 
which the buffer is defined. The result of urban density calculations 
for part of the study area is shown in Fig. 3. 

Fig. 1. AHN2 point cloud data of the part of the study area used to calculate the heights of the building.  

Fig. 2. (left) Land use map of part of the study area which is classified into two categories of urban (red) and non-urban (green) land uses (right) The resulting 
urbanization degree for each building. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Urban density analysis of part of the study area; the low-density areas are depicted in red and high-density areas are in green. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

S. Mohammadi et al.                                                                                                                                                                                                                           



Journal of Building Engineering 40 (2021) 102359

6

• Solar intensity: The total amount of solar radiation on a specific 
location has been estimated for the entire year using ArcGIS soft-
ware. This software estimates the solar insolation based on a hemi-
spherical viewshed algorithm developed by Ref. [47] and improved 
by Ref. [48]. The input geospatial data for the calculation of solar 
insolation is the elevation model as well as the latitude of the study 
area. Fig. 4 presents an example of the height model and the calcu-
lated solar insolation of the study area for the whole year. 

3.5. Data pre-processing and outlier detection 

Through a review of electricity usage explanatory variables in the 
residential and NR sectors (Sec. 3.2.1 and Sec. 3.2.2) and based on the 
constructed database (Sec.3.4), for each building connection besides the 
annual electricity usage, three major categories of explanatory variables 
are identified as follows:  

• Physical characteristics (CONSTRUCTION_YEAR, GROUND_AREA, 
ROOF_AREA, PARCEL_AREA, CONNECTION_TYPE, BUILDING_TYPE, 
and ROOF_TYPE)  

• Geospatial characteristics (URBANIZATION_DEGREE, HEIGHT, 
SOLAR_INTENSITY, and DENSITY)  

• Socioeconomic characteristics (WOZ_VALUE; only applicable for the 
residential sector) 

Table 2 illustrates the list of the electricity usage explanatory vari-
ables which is employed in this study to analyse the annual electricity 
usage of the urban built environment. It is observed that several vari-
ables in the database have missing values such as WOZ_VALUE 
(12.45%), CONNECTION_TYPE (~0.00%), BUILDING_TYPE (1.6%), 
ROOF_TYPE (9.57%), PARCEL_AREA (~0.00%), HEIGHT (4.5%) and 
SOLAR_INTENSITY (3.49%). However, as seen, the number of missing 
values compared to the valid values is not significant, therefore these 
values are treated as missing data in the subsequent statistical analysis 
and are replaced by 999 in the case of continuous variables and by NA 
for the categorical variables. Details of the missing data are shown in 
Table 2 for each sector separately. 

After specifying the missing data, the next step of the data pre- 
processing is outlier detection and removal of the outliers. The out-

liers are typical, infrequent observations that appear to be inconsistent 
with the majority of the observations in a database [49]. In the building 
electricity usage database, it is important to identify the outliers and 
adjust them based on the available rules. An outlier identification 
approach base on the outlier labelling rule is applied to detect outliers in 
the database. The boxplot outlier labelling rule was introduced by 
Ref. [50] and later has been developed further by Refs. [51,52]. It de-
termines observations as outliers if they appear outside the following 
boundaries which will be determined by the following equations: 

upper boundary= q3 + (g×(q3 − q1)) (1)  

lower boundary= q1 − (g×(q3 − q1)) (2)  

where q1 and q3 are the lower and upper quartiles of the variable 
respectively. The common choices for g are 1.5 or 2.2 depending on the 
distribution of data and research context. The outlier detection survey 
has been performed on the building electricity usage database and the 
results are presented in Table 3. As shown, although most of the 
continuous variables in the database have outliers, however, compared 
to the total number of records is not significant and in the subsequent 
analysis, they are excluded. As demonstrated, except for the solar light 
intensity all other continuous variables have upper boundary outliers. 

Several variables in the constructed database are categorical vari-
ables. For applying these variables in the subsequent analysis, they have 
to be transformed into the dummy variables. A dummy variable is a 
qualitative variable that can only take 0 or 1 and is used in the regression 
analysis instead of the categorical variable. While the dummy variable 
levels of the BUILDING_TYPE are ROW and APARTMENT (the detached 
house is considered as a base value), the levels of the CON-
STRUCTION_YEAR are a stepwise increase of the oldest level up to the 
most recent level (1992 is considered as a base value). CON-
NECTION_TYPE is categorized into three levels based on the connection 
amperage and phase types (3 × 100 amp connection type is considered 
as a base value). ROOF_TYPE is also categorized into the flat and pitched 
roofs with FLAT as a dummy variable. Table 4 shows the categorical 
variables and corresponding assigned dummy variables. 

Table 5 summarizes the final list of the explanatory variables as it is 
used for the subsequent statistical analysis. As mentioned, the database 
is categorized based on the main building sectors comprising residential 

Fig. 4. (left) An example of the height model of part of the study area and (right) Calculated solar radiation of the area for the entire year.  
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and NR. 

4. Multiple linear regression analysis 

Multiple linear regression (MLR) is applied to the building electricity 
usage database to develop a model that establishes the relationship 
between the annual electricity usage and the electricity usage explana-
tory variables to predict the annual electricity usage of building con-
nections in the urban environment. Traditionally, regression analysis 
has been the most popular modelling technique in predicting electricity 
usage in the built environment [53–57]. Regression analysis is especially 
valuable when a large database exists as it is based on real data and 
provides a good understanding of the electricity usage behaviours [16]. 
The main reasons for the popularity of the regression models may be 
explained by the interpretability of model parameters and results, 
however, the major limitation of these techniques is that one can only 
ascertain the relationship but cannot be sure about the underlying causal 
mechanism [57]. It also can be costly and inconvenient to implement 
and may suffer from multicollinearity (hereafter referred to as collin-
earity) between independent variables [16]. MLR seeks to establish a 
relationship between a dependent variable and two or more indepen-
dent variables or predictors that may be written as [57,58]: 

y= β0 + β1x1 + β2x2 + … + βnxn + ε (3) 

Where y is the dependent variable, βi the regression coefficients (i =

1, 2, …., n), xi the predictive variables (i = 1, 2, …., n) and ε the 
random error term. The regression coefficients are estimated based on a 
record of observations which is normally carried out by curve fitting 

based on the ordinary least square method (OLS) to minimize the dif-
ference between the observed and estimated values [58]. Once the co-
efficients are estimated, a prediction equation can be used to predict the 
value of a dependent variable as a function of the independent pre-
dictors [57]. The independent variables should also have little or no 
correlation with each other to prevent collinearity problems during data 
analysis [58]. The random error term, ε, is used to test the overall sig-
nificance of the regression equation and the significance of the estimated 
coefficients which have to be normally and independently distributed 
with a mean of zero [58]. The coefficient of determination (R2), which 
ranges between 0 and 1, is another important output of the regression 
analysis which indicates the goodness of fit of a regression model and 
can be interpreted as the proportion of the variance in the dependent 
variable that can be explained by the independent variables [58]. In 
MLR analysis the choice of the functional form to describe the dependent 
variable is somewhat arbitrary and there is no real consensus about the 
best form [5]. While [59] assumes a linear relationship [60], considers a 
logarithmic relationship, and a mixture of both is assumed by Ref. [61]. 
In this research, the regression analysis is performed with the IBM SPSS 
Statistics software package, version 22. For this application to predict 
the annual electricity usage of building connections, a stepwise regres-
sion model is applied as it ranks the variables based on their importance 
and to minimize the collinearity between explanatory variables it adds 
the variables to the model in sequentially [20]. For the application of 
stepwise selection model, the inclusion p-value is set to 0.05 and 
exclusion p-value is set to 0.10. In the next section the MLR analysis will 
be applied to the created building electricity usage database and analysis 
is conducted separately for each building sector. Following that the 

Table 2 
List of the explanatory variables and number of valid and missing values.  

Categories Variables Sources Res. NR N. of Valid N. of Missing  

annual electricity usage Endinet × × Res: 98237 
Ser: 10414 
Ind: 1581 

Res: 0 
Ser: 0 
Ind: 0 

Socioeconomic characteristics WOZ_VALUE Endinet × Res: 90362 
Ser: 6264 

Res: 7875 
Ser: 4150 

Physical characteristics CONNECTION_TYPE Endinet × × Res: 98222 
Ser: 10388 
Ind: 1573 

Res:15 
Ser: 26 
Ind:8 

BUILDING_TYPE BAG × × Res: 96467 
Ser: 10414 
Ind:1581 

Res: 1770 
Ser: 0 
Ind: 0 

CONSTRUCTION_YEAR BAG × × Res: 98237 
Ser: 10414 
Ind: 1581 

Res: 0 
Ser: 0 
Ind: 0 

GROUND_AREA BAG × × Res: 98237 
Ser: 10414 
Ind: 1581 

Res: 0 
Ser: 0 
Ind: 0 

ROOF_TYPE BAG × × Res: 89644 
Ser: 8720 
Ind: 1317 

Res: 8593 
Ser: 1694 
Ind: 264 

PARCEL_AREA BAG × × Res: 98166 
Ser: 10414 
Ind: 1581 

Res: 71 
Ser: 0 
Ind: 0 

ROOF_AREA BAG × × Res: 98237 
Ser: 10414 
Ind: 1581 

Res: 0 
Ser: 0 
Ind: 0 

Geospatial characteristics URBANIZATION_DEGREE BAG × × Res: 98237 
Ser: 10414 
Ind: 1581 

Res: 0 
Ser: 0 
Ind: 0 

HEIGHT AHN2 × × Res: 94017 
Ser:9744 
Ind:1507 

Res:4220 
Ser:670 
Ind:74 

SOLAR_INTENSITY AHN2 × × Res: 95209 
Ser:9695 
Ind:1482 

Res:3028 
Ser:719 
Ind:99 

DENSITY BAG × × Res: 98237 
Ser:10414 
Ind:1581 

Res: 0 
Ser: 0 
Ind: 0 

Res: Residential, NR: Non-residential, Ser: Service, Ind: Industry. 
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results in each sector are described in detail. 

4.1. Residential sector 

A stepwise MLR analysis is performed to determine the statistically 
significant predictors (explanatory variables) for the annual electricity 

Table 3 
Results of the performing outlier’s detection analysis (g = 2.2)

Variables Mean Lower 
boundaries 

Upper 
boundaries 

Number of 
modified 
cases 

GROUND_AREA Res1: 
139.6658 
Ser2: 
349.7361 
Ind3: 
942.5648  

Res: 248.8 
Ser: 358 
Ind: 2314.4 

Res: 3047 
(3.1%) 
Ser: 1345 
(12.91%) 
Ind: 155 
(9.8%) 

ROOF_AREA Res: 
325.9423 
Ser: 
2402.6524 
Ind: 
1399.1065  

Res: 
422.884 
Ser: 
5545.222 
Ind: 
4807.242 

Res: 15323 
(15.6%) 
Ser: 850 
(8.16%) 
Ind: 71 
(4.49%) 

PARCEL_AREA Res: 
6749.2425 
Ser: 
3754.5836 
Ind: 
5650.4132  

Res: 
10845.2 
Ser: 8886.8 
Ind: 13564 

Res: 3991 
(4.6%) 
Ser: 753 
(7.23%) 
Ind: 93 
(5.88%) 

annual electricity usage Res: 
4488.38 
Ser: 
24044.32 
Ind: 
52463.53  

Res: 9454.4 
Ser: 27745.2 
Ind: 68565.2 

Res: 2542 
(2.59%) 
Ser: 1432 
(13.75%) 
Ind: 189 
(11.95%) 

WOZ_VALUE Res: 
371605.85 
Ser: 
980323.91  

Res: 808400 
Ser: 
1059300 

Res: 4775 
(4.86%) 
Ser: 695 
(6.67%) 

HEIGHT Ind: 
51.8623  

Ind: 12.76 Ind: 18 
(5%) 

SOLAR_INTENSITY Res: 
330913.06 
Ind: 
348409.26 

Res: 
78762.2 
Ind: 
228533.2  

Res: 1398 
(6.3%) 
Ind: 117 
(13.9%) 

URBANIZATION_DEGREE Ser: 
5633302.86  

Ser: 
12882562.4 

Ser: 41 
(0.7%) 

DENSITY Res: 192.74 
Ser: 193.71  

Res: 503.6 
Ser: 527.2 

Res: 1425 
(1.45%) 
Ser: 204 
(1.95%) 

Res: Residential, Ser: Service, Ind: Industry. 

Table 4 
Categorical variables in the building electricity usage database and assigned 
dummy variables.  

Variables Base values Dummy 
variables 

Explanations 

BUILDING_TYPE Detached 
house 

ROW Row buildings 
APARTMENT Apartments 

CONNECTION_TYPE Over 3×100 
Amp 

CONNECTIONI 1×25 Amp and 
1×35 Amp 

CONNECTIONII 1×35 Amp 
CONNECTIONIII 3×25 Amp 

CONSTRUCTION_YEAR Over 1992 AGEI To 1945 
AGEII 1946–1964 
AGEIII 1965–1974 
AGEIV 1975–1991 

ROOF_TYPE Pitched roof FLAT Buildings with flat 
roofs  

Table 5 
Descriptive statistics of the final list of the electricity usage explanatory 
variables.  

Variables Unit Modalities (code) 
or range 

Mean Std. Dev. 

annual electricity usage kWh Res: 100- 9454 
Ser:12-27735 
Ind: 13-67899 

Res: 
3072.95 
Ser: 
4460.91 
Ind: 
10328.5 

Res:1753.15 
Ser: 
5607.90 
Ind: 
13918.88 

WOZ_VALUE € Res: 65000- 
808000 
Ser:73000- 
1056000 

Res: 
302547 
Ser: 
332070 

Res: 
134464.6 
Ser: 
209047.4 

CONNECTION_TYPE  Res: 1×25 Amp 
(1) 
[75.7%];3×25 
Amp (2) [22.8%]; 
3×35 Amp (3) 
[1.1%]; Over 
3×100 Amp (4) 
[0.3%] 
Ser: 1×25 Amp 
(1) [49%];3×25 
Amp (2) [31.1%]; 
3×35 Amp (3) 
[14.4%]; Over 
3×100 Amp (4) 
[5.5%] 
Ind: 1×25 Amp 
(1) 
[23.1%];3×25 
Amp (2) [35.9%]; 
3×35 Amp (3) 
[29.1%]; Over 
3×100 Amp (4) 
[12%]   

BUILDING_TYPE  Res: Apartment 
(1) [29%]; Row 
(3) [65.8%]; 
Detached (4) 
[5.2%] 
Ser: Apartment 
(1) [92.2%]; Row 
(3) [3.7%]; 
Detached (4) 
[4.1%]   

CONSTRUCTION_YEAR  Res: to 1945 
[16.9%]; 
1946–1964 
[24%]; 
1965–1974 
[18.3%]; 
1975–1991 
[21%]; over 1992 
[19.8%] 
Ser: to 1945 
[18.7%]; 
1946–1964 
[17.7%]; 
1965–1974 
[13.8%]; 
1975–1991 
[22.4%]; over 
1992 [27.4%] 
Ind: to 1945 
[9.5%]; 
1946–1964 
[13.4%]; 
1965–1974 
[12.9%]; 
1975–1991 
[23.8%]; over 
1992 [40.4%]   

GROUND_AREA m2 Res: 
117.07 

(continued on next page) 
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usage of the residential building connections and construct the predic-
tion equation. As mentioned in Section 3.5, three main categories of 
predictors are applied in the regression analysis, including physical, 
geospatial, and socioeconomic characteristics. MLR analysis is applied 
to determine the influence of each predictive category on the annual 
electricity usage prediction. Descriptive statistics of the continuous 
predictors such as mean and standard deviation values are presented in 
Table 5. A full list of categorical variables that are applied in the MLR 
analysis is shown in Several variables in the constructed database are 
categorical variables. For applying these variables in the subsequent 
analysis, they have to be transformed into the dummy variables. A 
dummy variable is a qualitative variable that can only take 0 or 1 and is 
used in the regression analysis instead of the categorical variable. While 
the dummy variable levels of the BUILDING_TYPE are ROW and 
APARTMENT (the detached house is considered as a base value), the 
levels of the CONSTRUCTION_YEAR are a stepwise increase of the oldest 
level up to the most recent level (1992 is considered as a base value). 
CONNECTION_TYPE is categorized into three levels based on the 
connection amperage and phase types (3 × 100 amp connection type is 

considered as a base value). ROOF_TYPE is also categorized into the flat 
and pitched roofs with FLAT as a dummy variable. Table 4 shows the 
categorical variables and corresponding assigned dummy variables. 

Table 4 with both the base variable and corresponding dummy 
variables. Before the MLR analysis is performed, the correlations anal-
ysis and collinearity diagnostics should be investigated. Independent 
variables which have a high correlation with the dependent variable is 
preferred in the MLR analysis. The parametric and nonparametric cor-
relations between the dependent variable and continuous and categor-
ical predictors in the residential sector are presented in Table 12 in the 
Appendix. For the continuous variables, while the correlations between 
the annual electricity usage and GROUND_AREA, WOZ_VALUE, PARCE-
L_AREA, HEIGHT, and URBANIZATION_DEGREE are significant, the 
correlation coefficients between ROOF_AREA, SOLAR_INTENSITY, and 
DENSITY with annual electricity usage is relatively low. For the categor-
ical variables, the non-parametric correlations between the annual 
electricity usage and CONNECTION_TYPE, ROOF_TYPE, and BUILDING_-
TYPE are significant. The residential annual electricity usage variations in 
terms of categorical variables, including BUILDING_TYPE and CON-
NECTION_TYPE are presented in Fig. 5. As shown, detached buildings 
consume more electricity than other building types, with the mean value 
of 4770.47 kWh/yr. more than double of the apartments (2025.35 kWh/ 
yr.) and higher than the average annual electricity usage of the resi-
dential buildings in the Netherlands (~3500 kWh/yr.). The graphs also 
show the standard deviation of annual electricity usage for each level of 
the above-mentioned variables. 

The other important aspect of the correlation analysis is the inves-
tigation of the collinearity between the predictors. To have a more 
acceptable outcome of the regression analysis the correlation effects 
between the predictors should be minimized. The collinearity analysis 
between the predictors in the residential sector is presented in Table 13 
in the Appendix. As the table shows there is a relatively low level of 
correlations between the predictors, therefore it is expected that most of 
them will be employed in the MLR analysis. The only exceptions are the 
HEIGHT and BUILDING_TYPE that show relatively strong correlations 
with other independent variables. The BUILDING_TYPE shows strong 
collinearity with the WOZ_VALUE, GROUND_AREA, and ROOF-AREA 
with the (Pearson) correlation coefficients of 0.32, 0.41, and 0.61 
respectively. This can be attributed to the fact that building types such as 
detached or semi-detached have higher ground areas which conse-
quently lead to the higher woz-value and roof area. HEIGHT also shows 
strong collinearity with the BUILDING_TYPE, ROOF_AREA, and 
GROUND_AREA with the (Pearson) correlation coefficients exceeding 
0.45 in three cases. In order to determine the contribution of geospatial 
characteristics in the annual electricity usage variability, the regression 
analysis is performed in two steps. In the first step only, the geospatial 
characteristics are implemented in the MLR analysis (Model 1). 
Following that, in the second step, all the variable categories are 
implemented in the model (Model 2). Table 6 shows the results of the 
regression analysis in the residential sector for the two models. 

According to Table 6, the geospatial characteristics account for 9.7% 
of the total variability in building electricity usage. In total, all variables 
explain 28.1% of the electricity usage variance. The results also revealed 
that the independent error assumption has been met and the Durbin- 
Watson value was within the specified boundaries. A 95% confidence 
interval for β showed that the model is reliable. The model also seems 
not to have collinearity, because tolerance values and variance inflation 
factors (VIF) are within the limits. The standardized residuals and 
normal probability plots compare the distribution of the standardized 
residuals to the normal distribution. Fig. 6 indicates that the histogram 
of the standardized residuals is normally and independently distributed, 
with a mean of almost zero and a constant variance which accordingly 
we can fairly conclude that the regression model is accurate. 

In Table 7 the unstandardized coefficients including coefficients of β 
and standard error of β and the standardized coefficients of all variables 
are presented. 

Table 5 (continued ) 

Variables Unit Modalities (code) 
or range 

Mean Std. Dev. 

Res: 10-249 
Sir: 11- 358 
Ind:15- 2293 

Ser: 
105.99 
Ind: 
420.70 

Res: 38.32 
Ser: 62.70 
Ind: 457.14 

ROOF_TYPE  Res: Flat (1) 
[18.4%]; Pitched 
(2) [81.6%] 
Sir: Flat (1) 
[6.2%]; Pitched 
(2) [93.8%] 
Ind: Flat (1) 
[38%]; Pitched 
(2) [62%]   

PARCEL_AREA m2 Res: 11-10794 
Sir: 5 - 8875.00 
Ind:23 - 
12311.00 

Res: 
1950.63 
Ser: 
1903.24 
Ind: 
2698.51 

Res: 
2477.10 
Ser: 
2134.67 
Ind: 
2971.89 

ROOF_AREA m2 Res: 10- 423.26 
Sir: 12.04- 
5459.46 
Ind:7.35- 
4644.43 

Res: 
90.21 
Ser: 
1142.66 
Ind: 
1035.27 

Res: 65.98 
Ser: 
1291.17 
Ind: 1071.2 

URBANIZATION_DEGREE  Res: 3192787- 
17152876 
Ser:3191325- 
12781883 
Ind: 3274455- 
16884071 

Res: 
7555977 
Ser: 
5600457 
Ind: 
7568679 

Res: 
2575696 
Ser: 
2038455 
Ind: 
2871998 

HEIGHT m Res: 2.30-18.50 
Ser: 2.2-52.4 
Ind: 2.40-13.40 

Res: 
5.8940 
Ser: 
4.5400 
Ind: 
5.308 

Res: 
2.06866 
Ser: 
3.40607 
Ind: 1.8247 

SOLAR_INTENSITY  Res: 78773- 
458388 
Ser: 145-457002 
Ind: 229080- 
457799 

Res: 
335346 
Ser: 
288700 
Ind: 
365807 

Res: 
78260.05 
Ser: 
105342.2 
Ind: 
40423.32 

DENSITY  Res: 1-503 
Sir: 2-527 
Ind: 4-523 

Res: 
186.77 
Ser: 
193.37 
Ind: 
194.74 

Res: 90.33 
Ser: 94.39 
Ind: 101.13 

Res: Residential, Ser: Service, Ind: Industry. 
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The results indicate that most of the predictors are employed in the 
regression model except for ROW (BUILDING-TYPE), FLAT (ROOF- 
TYPE), and ROOF-AREA. It also revealed that all the applied variables 
are statistically significant at the 0.038 level. The sign of the GROUN-
D_AREA and URBANIZATION_DEGREE is following what was expected. 
The standardized coefficients show that GROUND_AREA has the highest 
effect on the annual residential electricity demand. Using dummy coding 
to analyse the effect of CONSTRUCTION_YEAR on the residential elec-
tricity demand, it can be seen that building which constructed before 
1990 have a lower electricity usage. The standardized coefficients also 
show that DENSITY and WOZ_VALUE have a very low effect on annual 
electricity usage. Using dummy coding to analyse the effect of the 
BUILDING_TYPE on the annual residential electricity usage, and taking a 

detached dwelling as a reference type, it can be seen that less electricity 
is used in apartments. It has been observed that HEIGHT has also a low 
significant effect on residential electricity usage. 

Finally, based on the estimated coefficients (Table 7) the regression 
model predicting the annual electricity usage in the residential sector 
can be summarized as: 

Annual residential electricity usage (kWh/year)= 2500.268   

+13.740 GROUND AREA
(
m2) − 522.495 connectionI − 621.934 apartment

− 0.052 PARCEL AREA
(
m2) − 117.807 ageIV

− 0.001 SOLAR INTENSITY(kWh/m 2̂ ) − 396.599 ageIII − 413.845 ageII   

− 458.878 ageI+0.000442 WOZ VALUE(€) − 0.237 DENSITY

+0.000005 URBANIZATION DEGREE+11.245 HEIGHT (4)  

4.2. Non-residential sector 

The NR sector comprises two main groups of buildings: service and 
industry. The regression analysis of this sector for both building groups 
are explained in detail in this section. A stepwise MLR analysis is per-
formed to determine the statistically significant predictors of the annual 
electricity usage of the NR building connections and construct the pre-
diction equations. As mentioned in Section 3.5, for NR buildings, two 
main categories of predictors are employed for the regression analysis, 
including physical and geospatial characteristics (Several variables in 
the constructed database are categorical variables. For applying these 

Fig. 5. Variations in the annual electricity usage of the residential buildings in terms of the categorical variables, (left) BUILDING-TYPE and (right) CONNEC-
TION-TYPE. 

Table 6 
Results of the regression models in the residential sector.  

Model Variable 
categories 

R R 
Square 

Adjusted R 
Square 

Std. Error of 
the Estimate 

Model 
1 

Geospatial 
characteristics 

0.312 0.097 0.097 1650.927 

Model 
2 

All variable 
categories 

0.530 0.281 0.281 1394.675 

a. Predictors: (Constant), HEIGHT, URBANIZATION_DEGREE, SOLAR_-
RADIATION, DENSITY. 
b. Predictors: (Constant), GROUND_AREA, CONNECTIONI, APARTMENT, 
PARCEL_AREA, AGEIV, SOLAR_RADIATION, AGEIII, AGEII, AGEII, WOZ- 
VALUE, DENSITY, URBANIZATION_DEGREE, HEIGHT. 

Fig. 6. Histogram of the standardized residuals and normal probability plots in the residential sector.  
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variables in the subsequent analysis, they have to be transformed into 
the dummy variables. A dummy variable is a qualitative variable that 
can only take 0 or 1 and is used in the regression analysis instead of the 
categorical variable. While the dummy variable levels of the BUIL-
DING_TYPE are ROW and APARTMENT (the detached house is consid-
ered as a base value), the levels of the CONSTRUCTION_YEAR are a 
stepwise increase of the oldest level up to the most recent level (1992 is 
considered as a base value). CONNECTION_TYPE is categorized into 
three levels based on the connection amperage and phase types (3 × 100 
amp connection type is considered as a base value). ROOF_TYPE is also 
categorized into the flat and pitched roofs with FLAT as a dummy var-
iable. Table 4 shows the categorical variables and corresponding 
assigned dummy variables. 

Tables 4 and 5). MLR analysis is applied to determine the influence of 
predictive categories on the annual electricity usage variations. As the 
residential sector, before the MLR analysis is performed, the correlations 
analysis and collinearity diagnostics should be investigated. The 

parametric and nonparametric correlations between the dependent 
variable and the continuous and categorical predictors for both service 
and industrial buildings are presented in Table 14 in the Appendix. 
Regarding the continuous variables, for both service and industrial 
buildings while the correlations between the annual electricity usage 
and GROUND-AREA and HEIGHT are significant, the correlation co-
efficients between PARCEL-AREA, SOLAR-INTENSITY, and DENSITY 
with annual electricity usage is relatively low. Although the annual 
electricity usage of the service buildings has a relatively high correlation 
with the PARCEL-AREA and ROOF-AREA, however for the industrial 
buildings, it is insignificant. Annual electricity usage of the industrial 
buildings has a high correlation with the URBANIZATION-DEGREE 
which can be attributed to the fact that most of the high electricity- 
consuming industrial buildings are located at the urban peripheries as 
shown in Fig. 7. 

With relation to the categorical variables, for both service and in-
dustrial buildings, the non-parametric correlations between the annual 

Table 7 
Unstandardized and standardized coefficients of the regression model in the residential sector.  

Coefficientsa,b 

Variables Unstandardized Coefficients Standardized Coefficients t Sig. 

β  Std. Error Beta 

(Constant) 2500.268 58.427  42.793 0.000 
GROUND_AREA 13.740 0.232 0.289 59.259 0.000 
CONNECTIONI − 522.495 13.652 − 0.126 − 38.272 0.000 
APARTMENT − 621.934 24.958 − 0.165 − 24.919 0.000 
PARCEL_AREA − 0.052 0.002 − 0.080 − 23.923 0.000 
AGEIV − 117.807 18.302 − 0.029 − 6.437 0.000 
SOLAR_INTENSITY − 0.000582 0.000070 − 0.027 − 8.362 0.000 
AGEIII − 396.599 18.015 − 0.098 − 22.016 0.000 
AGEII − 413.845 18.012 − 0.112 − 22.976 0.000 
AGEI − 458.878 21.062 − 0.100 − 21.787 0.000 
WOZ-VALUE 0.000442 0.000054 0.034 8.226 0.000 
DENSITY − 0.237 0.061 − 0.012 − 3.902 0.000 
URBANIZATION_DEGREE 5.497E-6 0.000002 0.009 2.524 0.012 
HEIGHT 11.245 5.421 0.013 2.074 0.038  

a Dependent Variable: REPRESENTATIVE-USAGE. 
b Excluded Variables: ROW, FLAT, ROOF-AREA. 

Fig. 7. Visual representations of the correlation between annual electricity usage of the industrial buildings and URBANIZATION-DEGREE; the dots are representing 
the industrial buildings in and around the city, the colour spectrum from yellow (low) to red (high) depicts the annual electricity usage of the industrial buildings. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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electricity usage and CONNECTION-TYPE are significant. Moreover, ser-
vice building electricity usage has also relatively high correlations with 
the BUILDING-TYPE and CONSTRUCTION-YEAR. The annual electricity 
usage variations based on the CONNECTION-TYPE for both service and 
industrial buildings are presented in Fig. 8. As the graphs show for both 
sub-sectors the standard deviations of electricity usage per connection 
types are relatively large, particularly in medium and high voltage 
connections. The graphs also show that in this sector the annual elec-
tricity usage per connection types is significantly higher than the resi-
dential sector, particularly for the industrial connections. 

The collinearity analysis between the predictors for both the service 
and industrial sub-sectors is presented in Tables 15 and 16 respectively 
in the Appendix. For both subsectors except for a limited number of 
variables, there is a relatively low level of correlations between the 
predictors which accordingly it is expected that most of the predictors 
will be employed in the MLR analysis. For both subsectors, CONNEC-
TION-TYPE has a high degree of correlations with the GROUND-AREA 
and HEIGHT with (Pearson) correlation coefficients exceeding 30%. This 
can be explained by the fact that NR buildings with the higher ground 
area and height are connected to the high voltage electrical connections. 
In the service sub-sector HEIGHT also shows strong collinearity with the 
BUILDING-TYPE with the (Pearson) correlation coefficient exceeding 
70%. One striking result of collinearity analysis in the industry sub- 
sector is the high correlations of the URBANIZATION-DEGREE with 
the other explanatory variables, such as GROUND-AREA, ROOF-AREA, 
PARCEL-AREA, CONSTRUCTION-YEAR, CONNECTION-TYPE, and 
HEIGHT. This again can be attributed to the fact that most of the in-
dustrial buildings with the higher ground area, height, and voltage 

electricity connections are located on the periphery of urban areas. 
Fig. 9 evidently demonstrates these correlations as most of the industrial 
buildings with the stated characteristics are located on the periphery of 
the Eindhoven municipality. 

In this sector also to determine the contribution of geospatial char-
acteristics in the electricity usage variability, the regression analysis is 
performed in two steps. In the first step only, the geospatial character-
istics are implemented in the MLR analysis, and in the second step, all 
variable categories are employed. According to Table 8 for the service 
sub-sector, the geospatial characteristics account for 9.9% of the total 
variability in the building electricity usage. In total, all variables explain 
39.4% of the total electricity usage variance in this sub-sector. In the 
industry sub-sector (Table 9) geospatial characteristics account for 8.7% 
of the total variability in the building electricity usage. In total in this 

Fig. 8. Variations in the annual electricity usage of the non-residential sector based on the connection type (left) service buildings, (right) industrial buildings.  

Fig. 9. Visual representations of the correlations between URBANIZATION-DEGREE with (left) GROUND-AREA, (right) HEIGHT, the dots are representing the in-
dustrial buildings in and around the city, the colour spectrum from yellow (low) to red (high) depicts ground area (left) and height (right) of the industrial buildings. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 8 
Results of the regression models in the service subsector.  

Model Variable 
categories 

R R 
Square 

Adjusted R 
Square 

Std. Error of 
the Estimate 

Model 
1 

Geospatial 
characteristics 

0.315 0.099 0.099 5318.056 

Model 
2 

All variable 
categories 

0.628 0.394 0.393 3268.018 

a. Predictors: (Constant), HEIGHT, SOLAR-INTENSITY. 
b. Predictors: (Constant), CONNECTIONIII, CONNECTIONI, APARTEMENT, 
GROUND-AREA, AGEI, ROOF-AREA, PARCEL-AREA, ROW, SOLAR-INTENSITY, 
AGEII, AGEIV. 
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sub-sector, all variables explain 42.9% of the total electricity usage 
variance. 

The results revealed that in both sub-sectors the independent error 
assumptions have been satisfied and the Durbin-Watson values are 
within the specified boundaries. A 95% confidence intervals for β show 
that the models are reliable. The models also seem not to have collin-
earity, because tolerance values and VIFs are within the limits. Fig. 10 
demonstrates that the standardized residuals’ histograms in both service 
and industrial sub-sectors are normally and independently distributed, 
with a mean of almost zero and a constant variance. Accordingly, as the 
residential sector, we can conclude that the resulting models are fairly 
accurate. 

The unstandardized coefficients including β and standard error of β 
and the standardized coefficients of regression variables in service and 
industry sub-sectors are presented in Table 10 and Table 11 respectively. 

The results show that in the service sub-sector, most of the predictors 
are deployed in the regression model with the exceptions of AGEIII, 
CONNECTIONII, FLAT, HEIGHT, and URBANIZATION_DEGREE. It also 
revealed that all the deployed variables are statistically significant at the 
0.037 level. For the industrial buildings as Table 11 shows only 
GROUND_AREA, CONNECTIONIII, CONNECTIONI, CONNECTIONII, 
URBANIZATION_DEGREE, and AGEII are deployed in the regression 
model which all are statistically significant at the 0.046 level. For the 
service buildings, the signs of CONNECTION_TYPE and BUILDING_TYPE 
are following what was expected. The standardized coefficients show 
that CONNECTION_TYPE has the highest effect on the annual electricity 
usage in the service buildings. Using dummy coding to analyse the effect 
of the BUILDING_TYPE on the annual electricity usage, it can be seen 
that less electricity is used in the apartments followed by the row 
buildings similar to the pattern observed in the residential sector. The 
CONSTRUCTION_YEAR dummy variables all have a positive sign 
showing that they have positive effects on electricity usage. The co-
efficients also show that the old buildings consume more electricity 
compared with the new ones. With one of the lowest beta values, the 
SOLAR_INTENSITY has a very low effect on the service sub-sector elec-
tricity usage, which was not expected. For the industrial buildings as 
Table 11 shows GROUND_AREA, CONNECTION_TYPE, CON-
STRUCTION_YEAR, and URBANIZATION_DEGREE are the main vari-
ables that influence the industry sub-sector electricity usage. As 
expected, buildings with high voltage connections have higher elec-
tricity usage compared with the medium and low voltage connections. 
As discussed, the URBANIZATION_DEGREE has a positive effect on the 

Table 9 
Results of the regression models in the industry subsector.  

Model Variable 
categories 

R R 
Square 

Adjusted R 
Square 

Std. Error of 
the Estimate 

Model 
1 

Geospatial 
characteristics 

0.294 0.087 0.085 13730.367 

Model 
2 

All variable 
categories 

0.655 0.429 0.426 10268.235 

a. Predictors: (Constant), HEIGHT, URBANIZATION-DEGREE. 
b. Predictors: (Constant), GROUND-AREA, CONNECTIONIII, CONNECTIONI, 
CONNECTIONII, URBANIZATION-DEGREE, AGEII. 

Fig. 10. Histogram of the standardized residuals in the non-residential sector, left: service, right: industry.  

Table 10 
Unstandardized and standardized coefficients of the regression model in the service sub-sector.  

Coefficientsa b 

Variables Unstandardized Coefficients Standardized Coefficients t Sig. 

β  Std. Error Beta 

(Constant) 4594.254 314.230  14.621 0.000 
CONNECTIONIII 9115.594 234.322 0.441 38.902 0.000 
CONNECTIONI − 1901.681 104.696 − 0.216 − 18.164 0.000 
APARTEMENT − 1257.921 234.961 − 0.086 − 5.354 0.000 
GROUND-AREA 7.996 0.977 0.094 8.181 0.000 
AGEI 978.516 144.354 0.088 6.779 0.000 
ROOF-AREA − 0.280 0.046 − 0.093 − 6.057 0.000 
PARCEL-AREA 0.132 0.028 0.075 4.744 0.000 
ROW 1018.793 302.988 0.051 3.362 0.001 
SOLAR-INTENSITY − 0.001 0.000447 − 0.037 − 3.334 0.001 
AGEII 435.609 129.808 0.043 3.356 0.001 
AGEIV 253.573 121.233 0.026 2.092 0.037  

a Dependent Variable: REPRESENTATIVE_USAGE. 
b Excluded Variables: AGE3, CONNECTION2, FLAT, HEIGHT, URBANIZATION-DEGREE. 
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electricity usage of industrial buildings. 
Finally, based on the estimated coefficients, we can predict the 

amount of annual electricity which is consumed in each NR sector. The 
regression model predicting the annual electricity usage in the service 
sub-sector can be summarized as: 

Annual electricity usage in the service subsector (kWh / year)= 4594.254   

+9115.594 CONNECTIONIII − 1901.681 CONECCTIONI

− 1257.921 APARTEMENT + 7.996 GROUND AREA
(
m2)

+ 978.516 AGEI − 0.280 ROOF AREA
(
m2)+ 0.132 PARCE AREA

(
m2)

+ 1018.793 ROW

− 0.001 SOLAR INTENSITY(kWh /m2) + 435.609 AGEII + 253.573 AGEIV
(5) 

Also, the regression model predicting annual electricity usage in 
industrial sub-sector can be summarized as follows: 

Annual electricity usage in the industry subsector (kWh / year) = 30689.562   

+6.631 GROUND AREA
(
m2) − 18551.249 CONNECTIONIII

− 31790.741 CONNECTIONI − 29049.912 CONNECTIONII

+ 0.000390 URBANIZATION DEGREE − 1685.244 AGEII (6)  

5. Discussion 

This study investigated the physical, geospatial and socioeconomic 
explanatory variables contributing to the electricity usage of the urban 
built environment in the municipality of Eindhoven. Due to the signif-
icant impact of building types on electricity usage, for each building 
sector, the analysis has been performed separately. The results in both 
sectors revealed the sizable effects of these characteristics on the annual 
electricity usage of building connections. 

Within the physical characteristics of the residential sector, ground 
area, building type, construction year and connection type contributed the 
most to the annual electricity usage of the building connections, whereas 
within the geospatial characteristics, height, solar intensity, urban density, 
and urbanization degree were the significant variables. In this sector, all 
physical and geospatial characteristics account for 28.1% of the annual 
electricity usage variability which is in agreement with the research of 
[16]. Physical characteristics in overall demonstrate the considerable 
correlations with the annual electricity usage. According to Table 7 
Ground area is the most important variable among the physical charac-
teristics category which also has been reported in the literature by Refs. 

[20,23,60,62,63]. This can be explained by the effect of building size on 
the absolute electricity usage of buildings. This finding is also in 
agreement with research that considers the number of rooms and 
bedroom and their effects on electricity usage. According to Ref. [64] 
the effect of ground area is mainly connected to the building electricity 
usage for lighting, heating, and cooling, in particular in ones which their 
main heating sources are from electric boilers. According to the 
regression results, the effect of building type on residential sector elec-
tricity usage is significant (Table 7 and Fig. 5) which was in line with the 
research of [5,16,20,64–68]. Some previous studies reported that the 
electricity usage of residential dwellings will increase with the level of 
the detachment of the buildings [64]. This indicates that detached 
houses use more electricity compared with the row houses and apart-
ments. These are in agreement with the result of this research since 
considering detached dwelling as a base value, other types of dwelling 
have a decreasing impact on electricity usage. Following the [16,20] 
apartments have the lowest demand as a result of their small size fol-
lowed by row and detached houses. It is observed that the construction 
year has an increasing effect on the annual electricity usage, which is in 
accordance with the previous studies that mentioned the higher elec-
tricity usage is consumed in new houses [23,64,67]. According to 
Ref. [64], this can be explained by the fact that the penetration rate of 
new and high electricity consuming appliances such as heat pumps and 
electric vehicle in the new dwelling is higher. While [20] observed an 
insignificant effect of the construction year on the annual electricity 
usage, other studies report a decrease in dwelling electricity demand for 
newer houses due to the improvement in the construction technology, 
better thermal isolation and use of more efficient appliances for lighting 
and conditioning [5,64,65]. Others argue that the two above mentioned 
forces have cancelled out each other’s impact, resulting in a uniform 
trend between dwelling electricity usage and the age of the buildings 
[20]. Results show that connection type also has a significant increasing 
correlation with the electricity usage of residential sector nonetheless it 
is not as significant as non-residential sectors since in this sector build-
ings are mostly connected to the low voltage connections and the 
connection type variations are not high (Table 5). 

The electricity demand of residential buildings is also significantly 
influenced by socioeconomic factors such as woz-value. As mentioned in 
this research woz-value is applied as an indication of the household in-
come level. It is observed that woz-value has a relatively significant 
positive correlation with the annual electricity usage, following the [64] 
which indicates that electrical energy consumption increases signifi-
cantly with income. According to Refs. [16,20] the effect of income on 
household electricity usage can be explained by the tendency of 
high-income people to live in larger dwellings and having a greater 

Table 11 
Unstandardized and standardized coefficients of the regression model in the industry sub-sector.  

Coefficientsa,b 

Variables Unstandardized Coefficients Standardized Coefficients t Sig. 

β Std. Error Beta 

(Constant) 30689.562 2028.423  15.130 0.000 
GROUND-AREA 6.631 0.807 0.202 8.222 0.000 
CONNECTIONIII − 18551.249 1841.355 − 0.622 − 10.075 0.000 
CONNECTIONI − 31790.741 1934.478 − 1.049 − 16.434 0.000 
CONNECTIONII − 29049.912 1871.797 − 1.052 − 15.520 0.000 
URBANIZATION-DEGREE 0.000390 0.000106 0.081 3.682 0.000 
AGEII − 1685.244 841.959 − 0.044 − 2.002 0.046  

a Dependent Variable: REPRESENTATIVE_USAGE. 
b Excluded Variables: ROOF-AREA, AGEIII, AGEIV, DENSITY, AGEI, SOLAR-INTENSITY. 
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number of electrical appliances. 
Concerning the geospatial characteristics of residential buildings 

while building height and urbanization degree show a significant correla-
tion with the annual electricity usage, the urban density, and solar in-
tensity show lower correlations. In total the effects of geospatial 
characteristics on the annual electricity usage of the dwelling were 
lower than the physical characteristics, however since these character-
istics are not considered in the previous studies, accordingly, examining 
their impacts is important. Since lighting is one of the main contributors 
to the electricity consumption of residential buildings and according to 
Ref. [16] nearly all dwellings will have some degree of lighting, it is 
expected that the solar intensity will have a significant correlation with 
the electricity demand. The results of this research revealed the negative 
(decreasing effect) correlation of solar intensity with the annual elec-
tricity usage of the residential buildings which corroborates the initial 
assumption. As mentioned, this relationship can be attributed to the 
availability of natural light in dwelling with higher solar intensity and 
consequently reduction in their electricity usage. The height of the 
buildings shows a strong increasing correlation with residential elec-
tricity usage. This can be explained by the relationship between height 
and number of building floors which consequently affects building 
electricity usage as has also been observed by Ref. [19]. Urbanization 
degree shows a significant positive correlation with the residential 
electricity usages. This can be attributed to the effect of temperature 
increase in urban areas compared to the urban surroundings due to the 
absorption of solar energy in urban areas which results in a higher 
temperature, also known as Urban Heat Island (UHI) [69–71]. The effect 
of urbanization degree on residential electricity usage in this research is 
following the [70] which claims a significant role of UHI on household 
residential energy use. Finally, residential sector analysis revealed that 
higher density leads to lower electricity usage that means building in the 
high-density area use less electricity. This corresponds with the result of 
[17] which reported that urban density is one of the main factors 
influencing the energy use of cities. 

The findings also show that both the physical and geospatial char-
acteristics have significant effects on annual electricity usage. While in 
the service sub-sector all variables account for 39.4% of the annual 
electricity usage, in industrial buildings 42.6% of the building electricity 
variations can be attributed to the applied explanatory variables. In the 
service sub-sector, physical characteristics such as connection type, 
ground area, building type, construction year, and roof and parcel area 
contributed the most to the annual electricity usage, whereas within the 
geospatial characteristics (although all variables have significant cor-
relations with the electricity usage) only the solar intensity is considered 
in the regression model (Table 10). The connection type is the most sig-
nificant variable which largely describes the electricity usage variability 
in the service sub-sector. It can be possibly explained by the agreement 
between the physical capacity of the electrical connections and the 
amount of electricity which is used in the buildings. Service buildings 
mostly are connected to the low and medium voltage electrical con-
nections which consequently lead to higher usage variability compared 
to the residential buildings. The building ground area is the second most 
important variable among the physical characteristics of service build-
ings. As the residential sector, this also can be explained by the effect of 
building size and scale on the absolute value of electricity usage. Building 
type also has a significant influence on the electricity usage of service 
buildings. Again, the electricity will increase with the level of the 
detachment of buildings which indicates that the stand-alone buildings 
consume more electricity compared with the row or flats. Contrary to 
the residential buildings, construction year have decreasing effects on the 

annual electricity usage of service buildings. This can be explained by 
the improvement in construction technology, better thermal isolation, 
and the use of more efficient appliances for lighting and conditioning. 
For the geospatial characteristics, as mentioned only solar intensity is 
included in the regression analysis of service buildings. Although 
building height had a strong correlation with the electricity usage, how-
ever, due to its strong multicollinearity with physical characteristics 
such as building and connection type, it was discarded from the regression 
analysis. It was expected that the solar intensity will have a decreasing 
correlation with the electricity demand. The results revealed the nega-
tive correlation of solar intensity with the electricity usage of service 
buildings which verifies the initial assumption. As mentioned, this 
relationship can be attributed to the availability of natural lighting in 
building with higher solar intensity and subsequently a reduction in 
electricity usage. 

In the industrial sub-sector connection type and ground area appear to 
be the most important predictors of electricity usage followed by ur-
banization degree and construction year. Correlation analysis shows that in 
this sub-sector connection type has the highest correlation with the 
electricity usage variations as shown in Fig. 10. This can be attributed to 
the high variability of connection types in this sub-sector compared to 
the residential and service buildings. As Table 5 shows there is a high 
variation of connection types in this sector and buildings are also mostly 
connected to high voltage connections due to their higher electrical 
demand. As other building types, Ground area also explains high elec-
tricity variations in this sub-sector. As mentioned in Sec. 4.2 annual 
electricity usage of the industrial buildings have a high correlation with 
the urbanization degree which shows most of the high consuming in-
dustrial buildings are located in the non-urban areas (Fig. 7). 

6. Conclusions 

The main objective of this research paper was to examine the impacts 
of physical, geospatial and socioeconomic characteristics of the urban 
built environment on the annual electricity usage of building connec-
tions in both residential and non-residential sectors by integrating the 
urban spatial techniques with the statistical/regression bottom-up de-
mand models. The findings in both sectors revealed the significant ef-
fects of these characteristics on the buildings annual electricity usage. 
The identified explanatory variables for both sectors can be summarized 
as follows:  

• Residential sector:  
1. Physical and socioeconomic categories including ground area, 

building type, construction year, connection type and woz-value  
2. Geospatial category including building height, solar intensity, 

urban density, and urbanization degree  
• Non-residential sector  

o Service buildings:  
1. Physical category including connection type, ground area, 

building type, construction year, and roof and parcel area 
2. Geospatial category including height, urban density, and ur-

banization degree  
o Industrial buildings:  

1. Physical category including connection type, ground area, and 
construction year  

2. Geospatial category including urbanization degree 

Although the contribution of physical characteristics on the annual 
electricity usage is dominant, however, the geospatial variables such as 
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solar intensity, urbanization degree, and urban density are also signifi-
cant determinants (9.7% of the variation in electricity usage in the 
residential sector and 9.9% and 8.5% in the service and industrial 
buildings, respectively). This indicates the necessity to consider these 
characteristics besides the physical characteristics as well. This can also 
have significant policy implications to devise any energy-saving in-
terventions and measures in the built environment towards a sustainable 
built environment and cities. Moreover, this has been intensified in 
recent years due to the transition toward the electrification of heating 
and cooling systems and the introduction of the EVs. Therefore, geo-
spatial characteristics will play an important role in developing any 
future energy transition plans and it is recommended to consider these 
variables in the future studies more thoroughly. 

In this study, the MLR method applied to predict the annual elec-
tricity demand on the urban scale. It is recommended that besides the 
linear method, nonlinear methods such as an artificial neural network 
(ANN) or real-time PCR as an alternative way will be deployed to further 
examine the impact of these variables on the electricity usage of the built 
environment and compare their forecasting performance. Furthermore, 
it is also possible to use the linear and nonlinear hybrid models and 
univariate time series to forecast electricity consumption. Another 
aspect that needs to be considered in future studies is the electricity 
usage load profile of building connections and explore the effects of 
these explanatory variables on the peak and off-peak hours. This has 
become more significant as the large-scale implementation of renewable 
energy technologies in the urban energy system leads to the growth in 

the intermittent generation of electricity which to balance these vola-
tilities, identifying the peak times become very critical. Recent techno-
logical developments in the integration of digital processing and 
communication technologies such as smart meters with the electricity 
grid in both low and medium voltage levels have provided the possibility 
to collect large amounts of the time-series data. This data allows 
considering the varieties of physical and behavioural determinant fac-
tors to perform a detailed analysis of electricity load profiles of different 
building connections. 
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Table 12 
Parametric and non-parametric correlations between annual electricity usage and continuous and categorical variables in the residential sector  

Variables Correlation coefficients REPRESENTATIVE_USAGE 

WOZ_VALUE Pearson Correlation 0.289** 
Sig. (2-tailed) 0.000 
N 84648 

PARCEL_AREA Pearson Correlation -.251** 
Sig. (2-tailed) 0.000 
N 91810 

ROOF_AREA Pearson Correlation − 0.042** 
Sig. (2-tailed) 0.000 
N 81116 

GROUND_AREA Pearson Correlation 0.47** 
Sig. (2-tailed) 0.000 
N 93725 

HEIGHT Pearson Correlation 0.282** 
Sig. (2-tailed) 0.000 
N 91638 

SOLAR-INTENSITY Pearson Correlation − 0.077** 
Sig. (2-tailed) 0.000 
N 91485 

URBANIZATION-DEGREE Pearson Correlation 0.108** 
Sig. (2-tailed) 0.000 
N 95695 

DENSITY Pearson Correlation − 0.013** 
Sig. (2-tailed) 0.000 
N 94355 

ROOF_TYPE Spearman Coefficient 0.117** 
Sig. (2-tailed) 0.000 
N 87490 

CONNECTION_TYPE Spearman Coefficient 0.259** 
Sig. (2-tailed) 0.000 
N 95695 

BUILDING_CATEGORY Spearman Coefficient 0.443** 
Sig. (2-tailed) 0.000 
N 89623 

CONSTRUCTION_YEAR Spearman Coefficient 0.037** 
Sig. (2-tailed) 0.000 
N 95695 

**Correlation is significant at the 0.01 level (2-tailed).  
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Table 13 
Collinearity analysis between the predictors in the residential sector   

WZa PAb RAc ARd HEe SRf UDg DEh RTi CTj BTk 

WZa Pearson Cor.             
Sig. (2-tailed)             
N            

PAb Pearson Cor. -.225**            
Sig. (2-tailed) .000            
N 83450           

RAc Pearson Cor. .118** .013**           
Sig. (2-tailed) .000 .000           
N 73983 79992          

ARd Pearson Cor. .516** -.297** -.044**          
Sig. (2-tailed) .000 .000 .000          
N 84629 91368 80539         

HEe Pearson Cor. .183** -.193** -.621** .468**         
Sig. (2-tailed) .000 .000 .000 .000         
N 82865 90473 81004 91155        

SRf Pearson Cor. -.070** .036** -.022** -.095** -.037**        
Sig. (2-tailed) .000 .000 .000 .000 .000        
N 82473 90214 81369 91007 91885       

UDg Pearson Cor. -.029** -.045** -.070** .162** .087** -.066**       
Sig. (2-tailed) .000 .000 .000 .000 .000 .000       
N 85587 94175 82914 95190 94004 93811      

DEh Pearson Cor. .004 .023** -.087** .000 .079** -.020** .008*      
Sig. (2-tailed) .233 .000 .000 .947 .000 .000 .013      
N 84673 92869 81784 93815 92832 92577 96812     

RTi Pearson Cor. .113** -.127** -.072** .178** .116** -.165** .051** .019**     
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000     
N 79307 86356 78180 87057 89629 87696 89644 88524    

CTj Pearson Cor. .243** -.163** .196** .306** .013** -.054** .051** -.004 .080**    
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .237 .000    
N 85587 94173 82914 95190 93989 93796 98222 96797 89637   

BTk Pearson Cor. .322** -.235** -.415** .611** .733** -.081** .215** .058** .050** .179**   
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000   
N 80803 87525 76777 89163 88386 87210 91263 90110 84670 91261  

CYl Pearson Cor. -.062** -.031** .197** .104** -.178** -.007* .158** -.003 .040** .079** -.095**  
Sig. (2-tailed) .000 .000 .000 .000 .000 .028 .000 .341 .000 .000 .000  
N 85587 94175 82914 95190 94004 93811 98237 96812 89644 98222 91263 

aWOZ_VALUE. 
bPARCEL_AREA. 
cROOF_AREA. 
dGROUND_AREA. 
eHEIGHT. 
fSOLAR_INTENSITY. 
gURBANIZATION_DEGREE. 
hDENSITY. 
iROOF_TYPE. 
jCONNECTION_TYEP. 
kBUILDING_TYPE. 
lCONSTRUCTION_YEAR. 
**Correlation is significant at the 0.01 level (2-tailed).  
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Table 14 
Parametric and non-parametric correlations between annual electricity usage and continuous and categorical explanatory variables in the non-residential sectors  

Variables Correlation coefficients REPRESENTATIVE_USAGE 

Service Industry 

PARCEL_AREA Pearson Correlation − 0.150** − 0.013 
Sig. (2-tailed) 0.000 0.642 
N 8471 1337 

ROOF_AREA Pearson Correlation − 0.191** 0.069* 
Sig. (2-tailed) 0.000 0.011 
N 8338 1354 

GROUND_AREA Pearson Correlation 0.328** 0.454** 
Sig. (2-tailed) 0.000 0.000 
N 8343 1329 

HEIGHT Pearson Correlation 0.319** 0.293** 
Sig. (2-tailed) 0.000 0.000 
N 8367 1318 

SOLAR_INTENSITY Pearson Correlation − 0.021** 0.061* 
Sig. (2-tailed) 0.000 0.036 
N 8329 1190 

URBANIZATION_DEGREE Pearson Correlation − 0.011** 0.169** 
Sig. (2-tailed) 0.000 0.000 
N 8960 1392 

DENSITY Pearson Correlation 0.012** − 0.010 
Sig. (2-tailed) 0.000 0.708 
N 8795 1384 

ROOF_TYPE Spearman Coefficient − 0.103** 0.007 
Sig. (2-tailed) 0.000 0.820 
N 7423 1143 

CONNECTION_TYPE Spearman Coefficient 0.487** 0.613** 
Sig. (2-tailed) 0.000 0.000 
N 8982 1392 

BUILDING_CATEGORY Spearman Coefficient 0.226**  
Sig. (2-tailed) 0.000  
N 7268  

CONSTRUCTION_YEAR Spearman Coefficient − 0.148** 0.064* 
Sig. (2-tailed) 0.000 0.016 
N 8982 1392 

**Correlation is significant at the 0.01 level (2-tailed). 
*Correlation is significant at the 0.05 level (2-tailed).  
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Table 15 
Collinearity analysis between the predictors in the service sub-sector   

PAb RAc ARd HEe SRf UDg DEh RTi CTj BTk 

PAb Pearson Cor.            
Sig. (2-tailed)            
N           

RAc Pearson Cor. .691**           
Sig. (2-tailed) .000           
N 9299          

ARd Pearson Cor. -.142** -.155**          
Sig. (2-tailed) .000 .000          
N 8486 8309         

HEe Pearson Cor. -.072** -.138** .334**         
Sig. (2-tailed) .000 .000 .000         
N 9032 8898 8473        

SRf Pearson Cor. -.109** -.096** .005 .004        
Sig. (2-tailed) .000 .000 .660 .693        
N 8978 8847 8442 9546       

UDg Pearson Cor. .242** .162** -.055** -.047** .045**       
Sig. (2-tailed) .000 .000 .000 .000 .000       
N 9632 9525 9052 9706 9656      

DEh Pearson Cor. -.066** -.126** -.021 -.012 -.123** -.113**      
Sig. (2-tailed) .000 .000 .053 .239 .000 .000      
N 9459 9360 8891 9541 9492 10169     

RTi Pearson Cor. .031** .113** -.084** -.058** -.139** -.126** .034**     
Sig. (2-tailed) .006 .000 .000 .000 .000 .000 .001     
N 8042 8110 7564 8720 8526 8683 8538    

CTj Pearson Cor. -.131** -.114** .370** .360** -.031** -.033** .085** -.115**    
Sig. (2-tailed) .000 .000 .000 .000 .002 .001 .000 .000    
N 9640 9542 9067 9718 9669 10347 10185 8694   

BTk Pearson Cor. -.186** -.225** .211** .744** .007 .024* -.001 -.081** .138**   
Sig. (2-tailed) .000 .000 .000 .000 .558 .035 .940 .000 .000   
N 7246 7032 7570 7314 7276 7847 7694 6478 7845  

CYl Pearson Cor. .360** .345** -.064** -.129** -.149** .054** .062** -.044** -.063** -.284**  
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000  
N 9661 9564 9069 9744 9695 10373 10210 8720 10388 7852 

bPARCEL_AREA. 
cROOF_AREA. 
dGROUND_AREA. 
eHEIGHT. 
fSOLAR_NTENSITY. 
gURBANIZATION_DEGREE. 
hDENSITY. 
iROOF_TYPE. 
jCONNECTION_TYPE. 
kBUILDING_TYPE. 
lCONSTRUCTION_YEAR. 
**Correlation is significant at the 0.01 level (2-tailed). 
*Correlation is significant at the 0.05 level (2-tailed).  
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Table 16 
Collinearity analysis between the predictors in the industry subsector   

PAb RAc ARd HEe SRf UDg DEh RTi CTj 

PAb Pearson Cor.           
Sig. (2-tailed)           
N          

RAc Pearson Cor. .648**          
Sig. (2-tailed) .000          
N 1445         

ARd Pearson Cor. .004 .106**         
Sig. (2-tailed) .879 .000         
N 1378 1404        

HEe Pearson Cor. .102** .169** .393**        
Sig. (2-tailed) .000 .000 .000        
N 1411 1446 1352       

SRf Pearson Cor. -.113** .131** .091** .274**       
Sig. (2-tailed) .000 .000 .001 .000       
N 1281 1312 1223 1354      

UDg Pearson Cor. .281** .274** .126** .361** .048      
Sig. (2-tailed) .000 .000 .000 .000 .077      
N 1488 1510 1426 1500 1365     

DEh Pearson Cor. .073** -.045 -.035 -.099** -.211** -.042     
Sig. (2-tailed) .005 .085 .192 .000 .000 .094     
N 1477 1499 1419 1490 1354 1570    

RTi Pearson Cor. .108** .177** -.054 − 0.062* -.085** -.052 .093**    
Sig. (2-tailed) .000 .000 .066 .024 .004 .059 .001    
N 1230 1264 1181 1310 1177 1317 1307   

CTj Pearson Cor. -.079 .032 .543** .496** .161** .201** -.054* -.044   
Sig. (2-tailed) .003** .209 .000 .000 .000 .000 .031 .113   
N 1480 1507 1424 1494 1359 1573 1562 1312  

CYl Pearson Cor. .356** .343** .125** .181** .025 .348** -.065* -.223** .122**  
Sig. (2-tailed) .000 .000 .000 .000 .364 .000 .011 .000 .000  
N 1488 1510 1426 1500 1365 1581 1570 1317 1573 

bPARCEL_AREA. 
cROOF_AREA. 
dGROUND_AREA. 
eHEIGHT. 
fSOLAR_INTENSITY. 
gURBANIZATION_DEGREE. 
hDENSITY. 
iROOF_TYPE. 
jCONNECTION_TYPE. 
lCONSTRUCTION_YEAR. 
**Correlation is significant at the 0.01 level (2-tailed). 
*Correlation is significant at the 0.05 level (2-tailed).  
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