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Summary 

In recent years, space missions with the destination of small solar system bodies have 

become more and more important. For missions to such kind of bodies, one of the 

biggest challenges comes from the perturbation on the spacecraft’s motion by the 

highly irregular gravitational field. Therefore the dynamical environment in the 

vicinity of these bodies needs to be characterized. Many studies about orbital 

dynamics around single asteroids and binary asteroid systems have been performed.  

With this background, my PhD research focuses on orbital dynamics in the vicinity 

of contact binary asteroids, which is estimated to constitute 10-20% of all small solar 

system bodies (including comets). This kind of bodies is also characterized by their 

highly bifurcated shape. In August 2014, ESA’s Rosetta arrived at its target comet 

67P/Churyumov-Gerasimenko after a ten years journey in space. The comet, 

impressing many by virtue of its shape with two lobes in contact, belongs to contact 

binary bodies. In addition, in October 2015, the images sent back by NASA’s New 

Horizons revealed that Pluto’s tiny moon Kerberos also consists of two lobes. These 

discoveries provide good support for the selection of this topic. In addition, this 

characterization also can give us hints on the formation and evolution of such small 

solar system bodies. Specifically, the objective of this research is to perform a 

systematic study on the orbital motion around contact binary asteroid systems.  

For the purpose of this study, first, the gravitational field needs to be modeled. 

There are three main methods: (1) the spherical harmonics expansion; (2) the 

polyhedron model that approximates the body with large numbers of polyhedra, given 

the detailed shape model of the body is available; (3) geometric shape models whose 

closed-form potentials can be usually obtained. To fulfill the purpose for a systematic 

study about the dynamical environment around contact binary bodies, the 

configuration of a combination of a sphere and an ellipsoid is applied. The 

gravitational field can be obtained in the closed-form potential from the two 

components and the equations of motion can be built in the rotating frame. 

Actually, this model is analogous to that of the Restricted Three Body Problem 

(RTBP), with the same common definition of the mass ratio, which is the ratio of mass 

of the smaller component to the total mass of the two main bodies. However, an 

important difference is that the ratio of gravitational acceleration to centrifugal 

acceleration equals one for the two main bodies of the RTBP, but it can be any number 

for our model. With the rigid-body assumption, for two contacted spheres, there is 

compression between the two lobes if the ratio is larger than one, and stretching occurs 

for ratios smaller than one. The value of one indicates that there is no internal force 

between the two. For contacted ellipsoid and sphere, this ratio deviates slightly from 

the critical value one, due to the non-spherical potential of the ellipsoid component. 

Therefore, our model can be viewed as a generalization of the RTBP. By varying the 
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values of these two ratios in our model, contact binary asteroids with this kind of shape 

and with a wide range of physical parameters can be covered. Due to this similarity, 

the methods that apply to the RTBP for characterizing orbital motion are obtained and 

examined for the first time in application to contact binary asteroid system 1996 HW1, 

which is known to be the most bifurcated asteroid.  

Accordingly, equilibrium points (EPs) and their stability are first obtained and 

examined for HW1. By varying the values of the two ratios in the model, their 

influence on the location and stability of the EPs is examined. Second, Lyapunov, 

Halo and vertical (the motion is mostly along the -direction) families of periodic 

orbits (POs) are obtained for HW1. The fast rotation of the asteroid has a stabilizing 

effect on equatorial orbital motion. Orbits that are in resonance with the rotation of the 

asteroid are also obtained, and they can provide good coverage of the polar region of 

the body for spacecraft observations.  

In the RTBP, there is a well-known Richardson third-order analytical solution of 

Halo orbits obtained with the Lindstedt-Poincaré (LP) method. In this research, the 

same method is applied to obtain the third-order analytical solution of orbital motion 

in the vicinity of the non-collinear EPs with non-spherical gravitational field. This 

solution is tested against numerical simulations and it proves to have a very good 

accuracy for moderate-amplitude orbital motion. With the increase of orbital 

amplitude and rotation rate of the asteroid, the solution becomes less accurate, due to 

the application of linear expansion of the LP method.  

By expanding the closed-form gravitational potential into spherical harmonics to 

degree and order 4, frozen orbits can be obtained by applying the Lagrange Planetary 

Equations (LPE). They have large eccentricities and are available within limited 

inclination ranges, which are quite different from those of the planets. This is due to 

the large C20 and C40 terms resulting from the highly irregular gravitational field. In 

addition, families of 3-dimensional POs around the entire asteroid in the original full 

gravitational field are obtained, although most of them prove to be unstable. The fast 

rotation of the asteroid is also found to have a stabilizing effect on the 3-dimensional 

orbital motion. 

At the end of this research, the underling dynamics of this 1:1 ground-track 

resonance (i.e. the 1:1 commensurability between the mean motion rate of the 

spacecraft and the rotation rate of the asteroid) is studied with a two degree of freedom 

(2-DOF) Hamiltonian, which consists of a main part of a 1-DOF Hamiltonian and a 

perturbation part of a 2-DOF Hamiltonian. For a generalization of this study, the 

spherical harmonics up to degree and order 4 are taken into account. The 

characteristics of three asteroids (Vesta, 1996 HW1 and Betulia) are used. The high-

order harmonics are found to introduce new EPs and asymmetry to the dynamics. The 

perturbation Hamiltonian, which is treated as a second resonance, gives rise to chaos 

in the phase space. The extent of chaos is estimated by the distance between the two 
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resonances and their respective strengths, also for orbits at different combinations of 

eccentricity and inclination. The near polar orbits are found to be robust against the 

perturbation Hamiltonian. With maximum Lyapunov Characteristic Exponents, it is 

found that the more irregular the gravitational field, the stronger the resulting chaos.  

Finally, the methods developed in this thesis can also be applied to the study of 

orbital dynamics in binary asteroid systems, planet-moon systems and binary star 

systems. 



 

 
 

 



 

 
 

Samenvatting 

In de afgelopen jaren zijn ruimtemissies naar kleine hemellichamen in ons zonnestelsel 

in populariteit toegenomen. Voor missies naar dergelijke lichamen vormt het zeer 

grillige gravitatieveld één van de grootste uitdagingen. Daarom is het belangrijk de 

dynamische omgeving van deze lichamen te beschrijven. In het verleden zijn al vele 

studies uitgevoerd naar baandynamica rond enkele planetoïden en planetoïdeparen.  

Met deze studies als basis, richt mijn promotieonderzoek zich op baandynamica in 

de nabijheid van dubbel-planetoïden (dat wil zeggen: twee planetoïden die elkaar 

raken), die naar schatting 10-20% uitmaken van de totale populatie van kleine 

lichamen in ons zonnestelsel (inclusief kometen). Dit soort lichamen wordt 

gekenmerkt door hun sterk tweeledige vorm. Na een ruimtereis van tien jaar, in 

augustus 2014, arriveerde ESA's Rosetta bij zijn doel, de komeet 67P/Churyumov-

Gerasimenko. De komeet wekte grote belangstelling door zijn tweeledige vorm, 

karakteristiek voor dubbel-planetoïden. Bovendien onthulden foto's van NASA's New 

Horizons in oktober 2015 dat Kerberos, de zeer kleine maan van Pluto, een 

soortgelijke tweeledige vorm heeft. Daarnaast kan deze karakterisatie ons inzicht 

verschaffen in het vormingsproces en de levensloop van dergelijke kleine 

hemellichamen. De hierboven beschreven ontdekkingen leveren een goede basis voor 

dit promotieonderzoek, dat zich het best laat omschrijven als een systematische studie 

van de baanbewegingen rond dubbel-planetoïden. 

De eerste, voorbereidende stap in dit onderzoek omvat het modeleren van het 

gravitatieveld. Hiervoor worden de volgende modellen aangewend: (1) de sferisch 

harmonische benadering; (2) een benadering van het lichaam door grote aantallen 

polyeders, gegeven een gedetailleerd ruimtelijk model; (3) geometrische ruimtelijke 

modellen. Voor de systematische studie van de dynamische omgeving van dubbel-

lichamen wordt gebruik gemaakt van een model bestaande uit een bol en een 

ellipsoïde die aan elkaar verbonden zijn. Het complete gravitatieveld kan worden 

verkregen uit de gesloten vorm van de potentiaal van de twee delen, en de 

bewegingsvergelijkingen kunnen in het roterende assenstelsel worden beschreven. 

Dit model is in de kern analoog aan het Beperkte Drielichamenprobleem (Restricted 

Three Body Problem, RTBP), waarbij dezelfde definitie van de massaverhouding 

wordt gebruikt, namelijk de ratio van de massa van het kleine hoofdlichaam en de som 

van de massa's van de twee hoofdlichamen. Een belangrijk verschil is echter dat, waar 

de gravitatieversnelling en de middelpuntvliedende versnelling voor de twee 

hoofdlichamen altijd gelijk zijn in een RTBP, de ratio tussen deze twee versnellingen 

een willekeurige waarde kan aannemen in ons model. In het geval van een ratio groter 

dan één worden de twee delen samengedrukt, terwijl een waarde kleiner dan één een 

staat van uitrekking impliceert. Een ratio gelijk aan één duidt op een situatie zonder 

interne krachten tussen de twee delen. In dit opzicht kan ons model worden gezien als 
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een generalisatie van het RTBP. Door de waarden van de twee hierboven besproken 

ratio's te variëren, kunnen dubbel-planetoïden met een dergelijke vorm en een groot 

bereik aan fysieke eigenschappen gemodelleerd worden. Door de overeenkomsten 

tussen ons model en het RTBP kunnen methoden voor baanbewegingsbeschrijvingen 

uit het RTBP ook op ons model worden toegepast. In dit onderzoek geldt dubbel-

planetoïde 1996 HW1 als archetype, aangezien deze bekend staat als de duidelijkst 

tweeledige planetoïde. 

Overeenkomstig de methode worden allereerst de evenwichtspunten (equilibrium 

points, EP) van HW1 verkregen en onderzocht. Door de twee verhoudingen in het 

model te variëren wordt hun invloed op de locatie en de stabiliteit van de EPs in kaart 

gebracht. Ten tweede worden Lyapunov, Halo en verticale (de beweging is 

grotendeels in z-richting) families van periodieke banen (Periodic Orbits, PO) om 

HW1 beschreven. De snelle draaiing van de planetoïde heeft een stabiliserend effect 

op de equatoriale baanbeweging. Bovendien worden banen die resoneren met de 

draaiing van de planetoïde afgeleid, die een goede dekking van de polen van het 

lichaam kunnen verschaffen. 

In het RTBP wordt een bekende Richardson derde orde analytische oplossing 

beschreven voor Halo banen die verkregen zijn volgens de Lindstedt-Poincaré 

methode. In dit onderzoek wordt dezelfde methode toegepast om een derde orde 

analytische oplossing the vinden voor de baanbeweging in de buurt van niet-

collineaire EPs met een niet-bolvormig gravitatieveld. Uit een vergelijking met 

numerieke simulaties blijkt dat deze oplossing een grote nauwkeurigheid heeft voor 

baanbewegingen van gemiddelde amplitude. De nauwkeurigheid neemt af met 

toenemende amplitude, alsmede met toenemende draaisnelheid van de planetoïde, 

door het gebruik van een lineaire benadering in de LP-methode. 

Door de gesloten vorm van de gravitatiepotentiaal te benaderen met sferische 

harmonischen tot en met graad en orde 4 kunnen zgn. frozen orbits worden verkregen 

door de Lagrange Planetaire Vergelijkingen toe te passen. Deze banen hebben een 

grote excentriciteit en zijn slechts beschikbaar voor een beperkt inclinatiebereik, dat 

sterk verschilt van dat rond planeten. Dit komt door de grote C20 en C40 termen, 

veroorzaakt door het zeer grillige gravitatieveld. Daarnaast worden families van 

driedimensionale POs geformuleerd rond de hele planetoïde in het originele, gehele 

gravitatieveld, al blijken de meeste daarvan instabiel. De snelle draaiing van de 

planetoïde blijkt ook een stabiliserend effect te hebben op de driedimensionale 

baanbeweging. 

Aan het eind van dit onderzoek wordt de achterliggende dynamica van deze 1:1 

resonantie nader onderzocht met een Hamiltoniaan met twee vrijheidsgraden (two 

degrees of freedom, 2-DOF), bestaande uit een 1-DOF Hamiltoniaan als basis en het 

verstoringsdeel van een 2-DOF Hamiltoniaan. Ter generalisatie van deze studie 

worden de sferische harmonischen tot de vierde graad en orde in ogenschouw 
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genomen. De kenmerken van drie planetoïden (Vesta, 1996 HW1 en Betulia) worden 

gebruikt. De hoge orde harmonischen worden gebruikt om nieuwe EPs en asymmetrie 

te introduceren in de dynamische vergelijkingen. De verstorings-Hamiltoniaan, die 

wordt verwerkt als een secundaire resonantie, veroorzaakt chaos in de faseruimte. De 

mate van chaos wordt benaderd door de afstand tussen de twee resonanties en hun 

respectievelijke sterkte, ook voor banen met verschillende combinaties van 

excentriciteit en inclinatie. De bijna-polaire banen blijken robuust te zijn tegen de 

verstorings-Hamiltoniaan. Met maximale Lyapunov Karakteristieke Exponenten wordt 

aangetoond dat hoe grilliger het gravitatieveld is, hoe groter de resulterende chaos is.  

Ten slotte kunnen de methoden die in deze proefschrift worden ontwikkeld ook 

worden toegepast op de bestudering van baandynamica in dubbel-planetoïdesystemen, 

planeet-maan systemen en dubbel-stersystemen. 



 

 
 

 



 

 

Chapter 1 Introduction 

Missions to asteroids and comets have received much attention in recent years. For the 

design of such missions an important issue is to identify the dynamical environment 

for a spacecraft orbiting around the asteroid, which usually possesses an irregular 

gravitational field. This brings a great challenge for mission design. From a more 

general perspective, uncovering the motion of arbitrary particles in such a dynamical 

environment also gives us a clue on the evolution history of the body itself. In this 

thesis, the orbital dynamics of a spacecraft (or a particle) in the vicinity of contact 

binary asteroids, characterized by highly bifurcated gravitational fields, is studied. The 

challenge comes from the resulting highly perturbed environment.  

In this introduction chapter, a classification of asteroids is presented first to give 

some basic insight into the spatial distribution, composition and shape of asteroids. 

Then the status of asteroid exploration is reviewed, which reflects the significant 

science return of asteroid missions. The dynamical environment around asteroids 

related to mass, density, rotation rate and gravitational field is summarized. The 

current research status and methods related to the study of orbital dynamics about 

asteroids are reported. Finally, the research questions of our study are formulated and 

the structure of the thesis is presented.  

1.1 Classification 
Asteroids are small rocky bodies, the majority of which probably consists of 

collisional fragments of the original planetesimals (Bottke, 2002) with the exception of 

a number of spherical and big ones, e.g. Vesta whose self-gravity is strong enough to 

retain an almost spherical shape. Typically, most of them do not have any signature of 

volatile activities. However, occasional activities have been observed on a number of 

them recently, which makes the distinction between asteroids and comets 

(characterized by volatiles and lower density) less obvious. Asteroids can be classified 

according to their spatial distribution, chemical composition and shape. 

Spatial Distribution 

According to their location in the Solar System, asteroids in general can be classified 

as Near-Earth asteroids (NEAs), Main Belt asteroids (MBAs), Trojans, Centaurs and 

Trans-Neptunian objects (Bottke, 2002), as shown in Fig.1. NEAs with a perihelion 

radius of less than 1.3 AU have significant interaction with the inner planets and are 

often mentioned as Near Earth Objects (NEOs). A special kind of NEAs is known as 

the Potentially Hazardous Asteroids (PHAs), which have a possibility of impacting 

Earth. MBAs range from large-sized bodies (e.g. Ceres and Vesta) to dust located 

between the orbits of Jupiter and Mars, in which region the larger bodies are 
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continually eroded and broken up into smaller bodies. Trojans are asteroids that are 

captured at Sun-major planets’ L4 and L5 Lagrange points and are in 1:1 resonant 

motion with the major planet. Centaurs are in orbit between Jupiter and Neptune. 

Trans-Neptunian objects (TNOs) are bodies that travel beyond the orbit of Neptune, 

which include the Kuiper Belt Objects (KBOs) as well as some quite large bodies, e.g. 

Pluto (demoted to be a dwarf planet in 2006) and Charon,  one of its moons. 

    

Figure 1 Left: Distribution of semi-major axes and eccentricities for asteroids in the inner 

Solar System. Source: http://www.reocities.com/syzygywjp/HarmonicSpec.html. Right: A 

snapshot of asteroids and comets in the inner Solar System. The white dots are planets with 

the outermost one being Jupiter; the red and green dots represent NEAs and MBAs, 

respectively; the yellow dots illustrate the Trojans; the purple ones represent comets. Source: 

www.uwgb.edu/dutchs/planets/asteroid.htm. 

Composition 

The chemical composition of asteroids is quite diverse, ranging from rock and metal to 

hydrated minerals and organics. According to spectrophotometric observations, 

asteroids can be divided into different types by their compositions of different minerals, 

e.g. A-type with olivine and metal, B-, C-, F-, G-type with silicate chondrules, D-, P-, 

T-type with silicates and carbon etc.. (Nelson et al., 1993). 

Among them, C-, S- and M-types are the three main categories (Bottke, 2002). C-

type asteroids are carbon-rich and have spectra similar to that of carbonaceous 

chondrite meteorites. They are extremely dark, with a low geometric albedo. They are 

abundant in the outer region of the MBAs, and Ceres is a typical example. S-type 

asteroids have a metallic composition, and are primarily made of silicates, and are 

relatively bright. They are the most common class in the inner MBAs and also 

constitute a large fraction of NEAs. It is believed that they are associated with the 

ordinary chondrites, which are the most abundant meteorites that can be found on 

Earth’s surface. C- and S-type asteroids are estimated to account for about 75% and 17% 

of all known asteroids, respectively. The third-largest population is the M-type 

asteroids, which are bright and metal-rich. They contain large amounts of iron and 
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Itokawa’s surface thoroughly and provided the observations to develop a precise 

model of its shape (Fujiwara et al., 2006). Samples of regolith were collected with this 

spacecraft’s touchdown on the asteroid and were returned to Earth in June 2010. Dawn 

observed Vesta’s surface geology on small scale and revealed through the image-

derived shape model and the mass determined by radio-metric tracking that the 

asteroid is indeed a differentiated body (Russell et al., 2012). Bright spots (most of 

them within impact craters) on Ceres and also haze above some of these spots were 

observed by Dawn. These spots were found to be probably made of salt, ice and frozen 

water (Nathues et al., 2015). 

Although Rosetta is an ESA mission targeted at a comet, it is to be mentioned here. 

After having travelled for ten years, Rosetta had a rendezvous with its target comet 

67P in June 2014 and released the lander Philae for the first landing on a comet even 

in October. The comet is revealed to have the highly irregular shape of a contact 

binary body (Sierks et al., 2015), which is analogous to the shape model that this thesis 

focuses on. The two lobes were identified as two distinct bodies (Massironi et al., 

2015).  The orbiter is still in operation and uncovered more and more scientific aspects 

of the body, especially during the comet’s approach to its perihelion in August 2015. 

The lander provided images of the comet with unprecedented details. 

      

Figure 4 Left: artist's impression of Rosetta and Philae at the comet. Credit: ESA/ATG 

medialab; Comet image: ESA/Rosetta/NavCam; Right: jet event at 67P’s perihelion. Image: 

ESA/Rosetta/MPS. 

The OSIRIS-REx asteroid sample return mission was approved as the next New 

Frontiers mission of NASA. The target is Bennu, which is one of the PHAs and which 

is estimated to have a relatively high probability (approximately 0.0041%) of 

impacting Earth around 2175 (NASA, 2016). This mission is scheduled to be launched 

in September 2016 and will arrive at its target in 2018 (Lauretta et al., 2015). After 

characterization of the body’s physical and chemical properties, samples will be 

returned to Earth in 2023. It will provide crucial information to develop an impact 

mitigation mission in the future. Recently, a new mission named AIDA (Asteroid 

Impact and Deflection Assessment) was proposed with binary asteroid 65803 Didymos 

as its destination (Abell et al., 2012). AIDA is collaboration among ESA, DLR, NASA 
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and others. At the binary’s close encounter with Earth in October 2022, an asteroid 

impactor developed by NASA will be sent to the secondary body with the purpose to 

change its orbital period around the primary. This will provide the opportunity for the 

observing spacecraft sent by ESA to gather data on the deflection and on the potential 

alteration of other physical properties of the system.   

Instead of capturing a complete asteroid and putting it into orbit around the Moon, 

in April 2013 NASA decided to design a mission to drag a boulder from a large 

asteroid and send the rock in orbit around the Moon around 2025, which is called the 

Asteroid Redirect Mission (NASA, 2015b). The Orion spacecraft with solar electric 

propulsion will descend on a large asteroid which still needs to be selected and capture 

a boulder with a robotic arm. Then it will transfer to a stable retrograde orbit around 

the Moon. Two astronauts in the crew vehicle will go aboard the Orion spacecraft and 

conduct spacewalks to investigate the captured boulder before returning samples to 

Earth. This mission also aims at testing key techniques for future manned Mars 

missions.  

In ‘China’s Deep-space Exploration to 2030’ program (Yongliao et al., 2014), a 

sample-return mission to main belt asteroid Ceres is proposed, with the science 

objectives of characterizing its topography, structure and composition, detecting the 

asteroids weathering layers and the interaction between the solar wind and the asteroid, 

and finally uncovering the origin and evolution of the body as well as the potential 

origin of life.  

1.3 Dynamical Environment  
The dynamical environment of an asteroid is important not only for understanding the 

characteristics and evolution of the body, but also for characterizing the orbital motion 

of a spacecraft around it. Closely related physical properties are mass, density, shape 

and rotation rate, since they determine the gravitational field in which the spacecraft 

moves and typically also the rotation frame in which the dynamics is studied.  

Mass and Density 

An asteroid’s mass can primarily be determined from its perturbation on neighboring 

(encountering or orbiting) spacecraft (NEAR), and from the interaction between 

asteroids (Ceres and Vesta) (Britt et al., 2002). These methods mainly take advantage 

of the irregularities in the trajectory or orbit of the perturbed objects, i.e. a spacecraft 

or another asteroid.  In addition, the mass can also be determined from the orbital 

motion of the natural satellites by Kepler’s third law, e.g. the system Ida-Dacty1. 

Among them, the most accurate method relies on tracking the motion of a spacecraft 

orbiting around the asteroid.  

The volume of asteroids is often estimated from infrared astronomical observations. 

The bulk density can then be calculated by dividing mass over volume and generally 



Introduction 

7 
 

ranges between 2-3 g/cm
3
, with small fractions of lower or higher values. Only a 

limited number of asteroids’ bulk density estimates are available. Occasionally, the 

internal structure of asteroids can be directly characterized by in-situ investigations by 

space missions (Takeuchi, 2009).  

Rotation 

The rotation of an asteroid in general also has a great influence on the orbiting 

spacecraft. The rotation rate is observed to have a relationship with the size of the 

body (Pravec et al., 2002), as shown in Fig.5. As can be seen, most asteroids are 

uniformly rotating with rates ranging from extremely fast (rotation period of 1.3 min) 

to extremely slow (rotation period of 2400 hours). 

 

Figure 5 Spin rate of asteroids as function of diameter (Pravec et al., 2002).  

Large asteroids (diameter D>40 km) have a maximum spin rate of about 2.4 hours. 

This is probably due to the fact that most of these asteroids are rubble piles that fall 

apart if the bodies spin too fast. Very small-sized asteroids (D<0.15 km) can rotate 

extremely fast (the period of the fastest known rotator 2000 DO8 is 1.3 min only) and 

are concluded to be primarily made of monolithic rocks. Normal small-sized bodies 

(0.15 km<D<10 km) are shown to be strengthless bodies with a rubble pile or a 

shattered interior structure. In addition, binary asteroid systems with fast rotating 

primaries were found as a significant subset among NEAs.  

A small fraction of asteroids exhibits a non-principal-axis rotation, where the 

rotation axis shows an additional precession and nutation, which was termed 

‘tumbling’. Such a body demonstrates quasi-periodic motion with more than one non-

constant fundamental frequency. Toutatis is one example that was observed by Ostro 

et al. (1999) with such kind of rotation. Based on the flyby data of Chang’e-2, its two 

major periods were confirmed to be 5.38 days for the principal rotation and 7.40 days 

for the precession with an amplitude of up to 60° (Zhao et al., 2015), in agreement 

with the results from Ostro. This kind of body is not considered in this thesis. 

Gravitational Field  
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The irregular shape of an asteroid induces a complex gravitational field, which is 

responsible for a strongly perturbed dynamical environment compared with that of the 

planets. Because of such irregularities, it can be very challenging to design and 

maintain suitable spacecraft orbits around such bodies. Even more, the spacecraft 

might escape from or impact on the asteroid due to the large perturbations. The 

gravitational field can typically be represented by three different methods. 

(a) Spherical harmonics expansion 

The gravitational potential can be expressed as an infinite spherical harmonics series 

expansion. The Laplace equation of the gravity potential was solved in terms of 

spherical coordinates, and it can be written as (Kaula, 1966, Wakker, 2010) 
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where � is the reference radius (often chosen as the maximum radius of the body), 

 are the longitude and latitude, respectively, and  is the distance from the 

particle (or spacecraft) to the center of the body. ��  and ��  are the spherical 

harmonic coefficients, and �� are the associated Legendre functions. This potential  

can be truncated at arbitrary degree  and order  to achieve the desired accuracy. 

According to the definition, the first-degree and order harmonics are all zero if the 

centre of mass of the body is chosen as the origin of the body-fixed frame, which can 

be the case provided that mass distribution and the exact shape of the body are known. 

Therefore, the gravitational potential in addition to that of the point mass starts from 

the second-degree harmonics. Since this method actually expands the potential into a 

spherical harmonics series, it diverges within the circumscribing sphere and therefore 

the potential  is only valid outside this sphere. Accelerations can be obtained by 

differentiating the potential w.r.t. the directions of interest (e.g. radial). 

(b) Polyhedron model 

Any celestial body with arbitrary shape can be approximated by a polyhedron model. 

Werner (1994) developed the closed-form solution of the potential for an arbitrary 

polyhedron split into triangular faces and edges (Fig.6). With this technique, the 

general formula for the potential can be written as  

2
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where  is the gravitational constant and  is the density of the body (assumed to be 

constant). The two sums are the contributions from points located on all edges and all 

faces, respectively, for covering the entire volume of the body. � and � denote the 

vector from any point on the edge and on the face to the exterior particle, respectively, 

cf. Fig. 6. � and � are on edge dyad and face dyad. � represents the potential of the 
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(Press, 2007). In analogy to the polyhedron method, this potential is also valid close to 

and on the surface of the body. The calculation of the acceleration needs Carlson’s 

Elliptic Integral of the third kind. The potential of a straight segment, two orthogonal 

segments and two connected spheres can be found in Riaguas et al. (1999) , Bartczak 

and Breiter (2003) , Prieto-Llanos and Gomez-Tierno (1994), respectively. 

 

Figure 7 An ellipsoid with three semi-axes �, �, �. 

Other Perturbations  

In addition to the irregular gravitational attraction by the asteroid, the orbiting particle 

or spacecraft also suffers from perturbations from solar and planetary gravitations and 

solar radiation pressure (SRP). The planetary perturbation is negligible unless there is 

a close encounter of the asteroid with the planet. The SRP is dominant over solar 

gravitation especially for spacecraft with a large area-to-mass ratio, since it is 

generated primarily due to the reflection of solar photons on the surface of an area 

(Scheeres, 2012). If the spacecraft is far from the asteroid, SRP is recognized as the 

main perturbation over the irregular gravitation from the body. For sufficiently large 

asteroids (e.g. Eros), the perturbation from SRP is very limited. When the asteroids 

have the size on the order of a few kilometers or less, SRP needs to be taken into 

account for determining the stability of orbiting spacecraft. Some detailed studies of 

SRP on spacecraft motion around asteroids will be covered in the next section.  

1.4 Current Research Status 
There has been extensive research about orbital motion around irregular asteroids 

(Scheeres, 2012). For the aspect of dynamics, various main topics can be identified. 

The location and linear stability of the EPs of the system are one highlight. A single 

asteroid usually has four EPs, while Betulia is an exception (so far) that hosts six EPs 

due to its diamond shape  (Magri et al., 2007). It is known that the collinear EPs are 

always unstable, whereas the non-collinear EPs transit from stable to unstable when 

the rotation rate of the asteroid increases. A second main topic is to characterize the 

orbital motion around the whole asteroid, and to design orbits and examine their 

stabilities, to identify stable regions. Frozen orbits and POs are usually investigated. 

Therefore, the phase space of the asteroid can be characterized. In addition, another 

interesting aspect is to study the ejection and capture dynamics at the periapsis passage 

of a given orbit, to identify the mechanisms of ejection and capture of the particles on 
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the surface of an asteroid, and even the capture of other small objects. In general, these 

studies can be classified by the way in which the gravitational field has been modeled. 

Geometrical Shapes 

With the uniformly rotating triaxial ellipsoid model, Scheeres (1994) made a 

systematic investigation about the surrounding dynamics. An asteroid is classified as 

Type I in the case of stable non-collinear EPs (e.g. Vesta) and Type II in the case of 

unstable ones (e.g. Eros). Objects in the vicinity of the stable EPs oscillate around 

them indefinitely, while near the unstable EPs particles travel close to or even crash 

with the asteroid or escape from the body by following the related unstable manifolds. 

Two main families of planar POs were identified. The prograde (or direct) family is 

stable at large distances from the body and becomes unstable when it comes close, 

while the retrograde family is always stable and is a good candidate for actual space 

missions.   

To approximate elongated irregular bodies (Eros, Ida), the shape model of a straight 

segment with constant density was applied (Riaguas et al., 1999). Equations of motion 

(EOM) were derived for the situation that the segment was fixed in inertial space, and 

families of POs were found by applying the Poincaré map; their bifurcations were 

identified using numerical continuation methods. One step further, the model of two 

perpendicular segments of different length and mass to describe cigar-shaped or 

ellipsoid-shaped bodies was proposed (Bartczak and Breiter, 2003). With application 

to the elongated sphere and the three-axis ellipsoid cases, this model was found to be 

computationally efficient and especially suitable for motions that approach the surface 

of the body. Prieto-Llanos and Gomez-Tierno (1994) introduced the rotating mass 

dipole model (dumbbell) to represent natural elongated bodies in rotation, which can 

be viewed as a generalization of the Circular Restricted Three Body Problem (CRTBP). 

The location of the EPs was obtained and their stability was investigated. A modal 

control technique was developed to stabilize a mission at the collinear EPs for the 

purpose of close survey of the body. As an extension, the same dynamical system with 

the difference that the centrifugal force is larger than the gravitational force was 

studied (Hirabayashi et al., 2010), which is the case for fast-rotating asteroids. By 

introducing the ratio of gravitational to centrifugal force, the conditions for stable 

collinear EPs were defined. The method was applied to fast-rotating asteroid 2000 

EB14.  

Spherical Harmonics Model  

With the assumption of constant-density, values of the harmonics coefficients were 

generated from the gravitational field of a triaxial ellipsoid and a bifurcated shape of 

two ellipsoidal components (German and Friedlander, 1991). Numerical simulations 

were then performed to study the stability of orbits around them.  
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The effects of low degree and order spherical harmonics (mainly C20 and C22) on the 

stability of general orbits and on the solution of frozen orbits have respectively been 

examined and obtained both numerically and analytically. Given a rotational second 

degree and order gravitational field, the stable and unstable regions were characterized 

for initially circular, equatorial orbits by detecting the changes of the semi-major axis 

(indicating orbital energy) through numerical integration for the case of Castalia (Hu 

and Scheeres, 2004). In addition, the resonance between the orbital period and the 

rotation of the asteroid was found to play a crucial role on the stability of orbits and 

was recommended for further study.  

For Eros, the C20 term was also found to introduce large secular variations of the 

argument of periapsis, the longitude of the ascending node and the mean anomaly for 

orbits within several radii of the body (Scheeres et al., 2000), which needs to be taken 

into account for real mission operations. With the averaging method and Lagrange 

Planetary Equations (LPE), the effect of C22 was identified as making changes in 

orbital energy, angular momentum and its projection on the rotation axis. The 

interaction between the rate of change of the true anomaly of the orbit and the asteroid 

rotation rate was expressed explicitly with a further application of designing safe close 

flybys over the asteroid. The C30 and C40 terms were shown to make the eccentricity 

oscillate with a long period and boost its maximal value (Scheeres et al., 2003), 

respectively. 

For Castalia, a 16
th

 degree and order spherical harmonics model was used to obtain 

the EPs and the associated stable and unstable manifolds (Scheeres et al., 1996). 

Prograde, retrograde and vertical orbits were obtained. As mentioned before, the C22 

term has the effect of changing orbital energy, the increase and decrease of which was 

revealed to be closely related to the quadrant of the orbit’s periapsis passage. The 

possibility of an elliptical prograde orbit to be transformed into a hyperbolic trajectory 

and vice versa was identified, as well as the capture and escape radius.  

For the non-principal-axis rotator Toutatis, the Hamiltonian is non-integrable and no 

Jacobi integral exists (Scheeres et al., 1998), as the EOM is time-periodic due to the 

nutation of the asteroid. Using the LPE, families of quasi-frozen orbits with minimal 

variations of orbital elements were found very close to the asteroid, among which 

retrograde ones proved especially robust. Stable and unstable POs with periods 

commensurate to the rotation period of the body were obtained in the body-fixed 

frame.  

For fast-rotating irregular gravitational fields, an explicit analytical formulation for 

high-altitude motion under the influence of an arbitrary degree and order gravitational 

field was developed by applying Lie transformations (Ceccaroni and Biggs, 2013). 

The non-integrable Hamiltonian was reduced to an integrable one. For application, the 

initial conditions of frozen orbits were obtained given a 15
th

 degree and order spherical 

harmonics model of Eros.  
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Polyhedron Approximation 

For the study of motions around Eros (Scheeres et al., 2000), Castalia (Scheeres et al., 

1996) and Toutatis (Scheeres et al., 1998), spherical harmonics expansions up to 

degree and order 16, 16 and 20 respectively were applied outside the circumscribing 

sphere; once within this sphere a polyhedron model was used. For all of them, the EPs 

and prograde and retrograde POs were characterized by applying the Poincaré maps 

and numerical correction and continuation methods.  

In addition, a model for the dynamics of a particle on the surface of an asteroid was 

built. Depending on the location on the asteroids’ surface, limitations on the velocities 

of the ejecta either escaping from or re-impacting on Castalia and Toutatis were 

determined. For ejecta coming from the uniform rotator Castalia, they are probably 

transported into a stable retrograde orbit rather than into a prograde one. Castalia was 

found to accumulate ejecta on its leading sides. Particles on the surface of non-

uniformly rotating Toutatis suffer time-varying forces. Ejecta that persist in the phase 

space of a frozen orbit for long time durations and then impacted were found. Toutatis 

was revealed to accumulate ejecta over its surface uniformly. 

Based on the polyhedron model, Yu and Baoyin (2012a) developed a hierarchical 

grid search method for systematically looking for general three-dimensional POs 

around asteroids. Their topological classification and stability were also examined. 29 

Families of POs were generated as the result of the study case 216 Kleopatra, a small 

fraction of which were stable.  

With a polyhedron-represented gravitational field, the EPs were classified into eight 

cases according to their associated eigenvalues (Jiang et al., 2014). Then a first-order 

analytical solution of the motion in the vicinity of the EPs was constructed. Asteroids 

Kleopatra, Geographos and Castalia were found to have four unstable EPs, while 

Golevka has two stable and two unstable ones. By applying the polyhedron method, 

the potential of a cube was modeled (Liu et al., 2011b). The POs in the symmetry 

planes parallel to the face of the cube and in the diagonal plane were obtained with the 

Poincaré maps. The POs in other planes were found with the homotopy method. All 

these families of POs were revealed to be stable. 

Binary Asteroid System 

For binary asteroid systems, the relative motion of the asteroid pair has to be modeled 

first before the motion of a massless particle in the vicinity of the system can be 

investigated. 

With the Full Two Body Problem (F2BP) model, the stability of a binary asteroid 

system consisting of arbitrary mass distributions has been investigated (Scheeres, 

2002). By studying the energy and momentum transfer between the rotational and 

translational momenta, sufficient conditions for stability against escape and impact 

were developed. As an example, the binary asteroid system 1996 FG3 was evaluated. 
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By assuming that one body of the binary pair is a sphere, the F2BP was reduced to a 

sphere-restricted F2BP (Scheeres, 2006). The conditions for the relative equilibrium of 

the system were derived, together with their spectral and energetic stability.  

Hirabayashi and Scheeres (2013) derived recursive formulas for computing the 

mutual potential, force and torque of the asteroid pair represented by polyhedrons, 

with applications to compute the dynamics of a binary system with two equal-sized 

parallelepipeds orbiting each other. Given an ellipsoidal satellite (i.e. secondary) 

orbiting an oblate primary in an equatorial orbit, McMahon and Scheeres (2013) 

studied its planar motion and identified the stable EPs around which the secondary can 

librate. The sufficient condition for bounded motion was determined. With a 

Lagrangian approach, the binary system was modelled as the F2BP (Woo et al., 2013). 

The resultant planar motion of the two bodies was obtained numerically. For the 

particular case that the bodies have inertial symmetry, the dynamics was reduced and a 

first-order solution was obtained. Truncated-cone-shaped and peanut-shaped bodies 

were investigated as examples. 

Bellerose and Scheeres (2008) introduced the spacecraft motion into this problem 

and came up with the Restricted Full Three Body Problem (RFTBP). They made 

further simplifications by representing the two bodies as an ellipsoid and a sphere, and 

investigated the equilibrium conditions for the two bodies. Given the stable 

configuration that the longest principal axis of the ellipsoid points to the sphere, the 

EOM of the spacecraft was built and EPs of the dynamics and their stability were 

investigated. POs around one of the bodies and the entire system were obtained. In 

addition, the transit paths between the two bodies, the impact dynamics and also the 

control of a probe hopper were evaluated. The binary system 1999 KW4 was used as 

an example for mission design.  

Chappaz and Howell (2015) extended this work by finding the POs in the ellipsoid-

ellipsoid system and also by investigating the non-synchronous ellipsoid-sphere and 

ellipsoid-ellipsoid systems. For the synchronous case, families of Halo orbits and 

resonant orbits were generated; and their stability was investigated. The ellipsoidal 

shape of the secondary body was found to have a significant impact on the dynamics 

of its nearby EPs and to destabilize some of the stable POs around the EPs. The 

increasing non-sphericity of the primary and secondary bodies was seen to introduce a 

rich dynamical behavior of the system from the Poincaré maps. For the non-

synchronous case, since the secondary body is in a distinct periodic motion itself, only 

discrete sets of POs were found which have commensurate periods with respect to the 

period of the secondary body. 

In addition to the orbital dynamics from the irregular gravitational field, there are 

also studies about the effects of SRP on orbits, as well as resonant dynamics.  

Solar Radiation Pressure 
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Taking into account SRP, Dankowicz (1994) showed the existence of a family of 

circular orbits for which the centers of their orbital plane have a displacement with 

respect to the center of the primary body (point mass) and in the direction of the solar 

radiation. The necessary condition to stay bounded around the central body was 

obtained. Scheeres and Marzari (2002) extended this work by introducing the 

ellipticity of the central body’s orbit around the Sun and tidal effects. They also 

investigated the stability of sun-synchronous orbits in the terminator plane without 

offset. The sufficient condition for stable motion was derived. 

As one application of these analyses, the minimum radius for being trapped in orbit 

around Itokawa was estimated to be around 1.73 km (Scheeres et al., 2004). Only 

taking into account SRP, frozen orbits were obtained with the LPE and their stability 

was checked. With the inclusion of the C20 term, the stable frozen orbits were 

destabilized if they are close to the body. For the perturbation from C22, the 

destabilization is weaker for an orbit around a fast rotating body than that around a 

slowly rotating one at a given distance.   

Combining the previous work, Byram and Scheeres (2009) identified stable sun-

synchronous orbits hovering about a comet with the Hill Three-Body Problem model 

(HTBP), which is known as a solar terminator orbit (STO). Control strategies were 

also investigated to bound the spacecraft’s motion in the allowable region. By 

including the irregular gravity of the small body, Broschart and Villac (2009) built an 

augmented HTBP model and developed a procedure for identifying the resultant non-

chaotic long-term stable terminator orbits. Asteroid 6489 Golevka with a 12
th

 degree 

and order spherical harmonics gravity model was used as a study case. Hussmann et al. 

(2012) performed numerical simulations of spacecraft motion around binary asteroid 

system 1996 FG3, taking into account solar radiation pressure and the 4
th

 degree and 

order gravitational fields of both primary and secondary asteroids. Generally, the 

orbital motion was found to be unstable. However, stable STOs were obtained, 

especially for circular and low-eccentricity orbits. They were not affected by the 

perturbations from the irregular shape and rotation rate of the primary asteroid as well 

as perturbations from the secondary asteroid. These STOs were suitable for studying 

the gravitational field of the primary. 

Resonant Dynamics 

For orbiting an asteroid, ground-track resonances happen between the rotation period 

of the asteroid and the orbital period of the spacecraft or particle, given the proper 

initial conditions. They were shown to have a strong influence on the stability of orbits 

(Hu and Scheeres, 2004). Hu found the orbits at the 1/2, 1/1, 3/2 resonances etc. to be 

stable only when the C20 and C22 terms are small (weak perturbations) for the 

uniformly rotating 2
nd

 degree and order gravitational fields. With the same 

gravitational field, Olsen (2006) studied the widths of the mean motion resonances 

(defined as the width of the separatrix). Their widths were revealed to be independent 
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of the rotation rate and mass of the central body, but closely related to the eccentricity 

and inclination of the orbit. For the slow rotation case, orbital stability was explained 

by the overlap criteria and the distance between the resonances. The dynamics within 

the resonance was recommended for further study.  

For a gravitational field up to degree and order 4, Delsate (2011) investigated the 

low-order main resonances of Dawn around Vesta. With numerical integrations, the 

1:1 resonance was found to be largest and the 2:3 resonance had the strongest effect on 

increasing eccentricity. Analytical approximations of these resonances were studied 

with the 1 degree of freedom (1-DOF, i.e. with one pair of free variables) pendulum 

model. The resonant angle was found to be the key element during the operational 

phase. 

By applying the ellipsoid shape model, stable resonances were numerically detected 

using the MEGNO (Mean Exponential Growth factor of Nearby Objects) indicator for 

fast and slowly uniformly rotating cases (Compère et al., 2012). Compère also 

developed an analytical model with a truncated ellipsoidal potential at degree and 

order 2. This model explained the MEGNO maps of the 1:1 and 2:1 resonances for 

polar and circular orbits, and indicated the effects of the body’s shape and orbital 

eccentricity and inclination on the location of the resonances.  

Tzirti and Varvoglis (2014) extended the analytical model by including the C30 term 

into the 1:1 ground-track resonance which introduced a second angle and resulted in a 

2-DOF (with two pairs of free variables) dynamics. For non-circular and non-polar 

orbits, the characteristics of the resonance were investigated. Due to the term C30, 

chaotic layers were created around the separatrix, although the resonance width was 

not significantly influenced.   

1.5 Related Methods 
Some general tools for studying celestial mechanics (or orbital dynamics) that are also 

closely related to our current studies are briefly introduced here. Detailed descriptions 

can be found in related literature (Ferraz-Mello, 2007, Morbidelli, 2002, Wiggins, 

2003).   

Hamiltonian Dynamics 

An N-degree of freedom dynamical system can be defined by N generalized 

coordinates �	  and their associated momenta �	 . Its 

Hamiltonian  is the Legendre transformation of its Lagrangian which is the 

summation of the kinetic energy  and potential energy  of the system. It can be 

written as (Ferraz-Mello, 2007) 

1

( , ) ( , )
N

i i i i i

i

p q T q q V q t
=

−⋅= +∑ ɺ ɺH . 

The Hamilton equations of the system are defined as 
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which are also called the canonical equations of the system. When  is time-

independent, it is the energy constant of the system. For celestial mechanics and 

astrodynamics, it is convenient to write the system in Hamiltonian form when orbital 

elements and a rotating frame are used (Morbidelli, 2002). Usually the Hamiltonian of 

such systems can be written as 

0 ( , , , , , , )rotation perturbation L G H l g h t= + +H H H H , 

in which ������������ is the perturbation from any gravitational potential that disturbs 

the system from the Keplerian motion �, and  are the Delaunay variables as 

function of orbital elements with their corresponding canonical momenta . For 

some problems,  is time-independent and integrable, which means that the 

Hamiltonian value is a constant. Either perturbation techniques can be applied to study 

the dynamics through canonical transformations that make the Hamiltonian to have a 

simpler form, or numerical integrations can be done to get the evolution of � and � 

which is called Hamiltonian flow. Due to a perturbation,  might become time-

dependent and non-integrable. For the study of this kind of system, an additional 

coordinate  and its corresponding momentum are usually introduced to make a new 

time-independent Hamiltonian that can be solved by Fourier expansion and 

perturbation techniques. In conclusion, the theory of the Hamiltonian is well settled for 

systems with small perturbations. 

Poincaré Map and Reduction Method 

Poincaré developed the idea of reducing continuous time systems (flows) to the 

associated discrete time system (map) (Wiggins, 2013). This method is quite suitable 

for studying ordinary differential equations (ODEs). At least one of the variables of the 

dynamical system can be eliminated by constructing a Poincaré map. In doing so, a 

lower-dimensional system is obtained, from which the local and global dynamics of 

the original system can be examined.  

In addition, the periodic solutions of a dynamical system and their stability can be 

identified by searching for stationary points on the map and checking their stability, 

which can be characterized in terms of the eigenvalues of the linearization of the map 

about these points. This map is especially suitable for the study of a 2-DOF system, as 

the reduction map is two-dimensional and allows visible inspection. The construction 

of the map needs a proper surface of cross-section, which can be chosen depending on 

the geometrical structure of the system. Then initial points are sampled for integration, 

during which the epochs and the coordinates of the points that satisfy the conditions of 

the section are recorded. Since the Hamiltonian of the time-invariant 2-DOF 

dynamical system is a constant, it can be used as a restriction of the section, as all 

points on the map must have the same value of it.  
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In our study, the map is mainly used for finding POs and checking their stability, 

which is called the reduction method. Having chosen a map perpendicular to the 

Hamiltonian flow and an initial point close to the real solution on that map, the 

differential equations of the system are integrated until the first return on the map. The 

initial condition is then differentially corrected with the derivative of the final state 

with respect to the initial one and the linearized dynamics for several iterations, until it 

has converged to the real solution at the desired accuracy. Once the solution is found, 

its transition matrix (also called monodromy matrix), which is obtained by integrating 

the variational equations for a full period, is used to determine the stability of the orbit. 

The PO is stable if all eigenvalues of the monodromy matrix have a magnitude of one; 

otherwise it is unstable. This is one of the most popular numerical correction methods. 

1.6 Research Motivation 
Since extensive studies of the dynamics in the single and binary asteroid systems have 

already been done, this thesis focuses on a new topic: the systematic study of orbital 

dynamics around a contact binary asteroid. As mentioned in previous sections, contact 

binary bodies (including comets) constitute 10-20% of all small Solar System bodies 

and represent the most bifurcated shape. Since contact binary bodies are created by the 

impact and merger of two small objects, follow-up future missions devoted to such 

kind of body, no matter whether they are asteroids or planetary moons (e.g. Kerberos), 

will be appealing (although there are already large science returns from the Rosetta 

mission to 67P, a contact binary comet). The science objectives could aim at 

characterizing the physical and chemical properties of the neck region, where the two 

lobes are connected. The diversity of the density and composition of the two lobes is 

also of high interest. These investigations will give us hints on the evolution history of 

such kind of bodies and further on the evolution of our Solar System. Therefore, it is 

interesting and worthwhile to investigate orbital dynamics in such highly perturbed 

environments, for both mission and science aspects. 

The general research question can be formulated as follows: 

What are the main characteristics of orbital motion around contact binary asteroids?  

Before going into detail, the dynamical environment needs to be defined. The 

gravitational field needs to be defined first for solving the dynamics. Compared to the 

two-connected sphere model, the configuration of an ellipsoid and a sphere is applied 

since it breaks one element of symmetry. Therefore, this model goes one step further 

to study bifurcated bodies. For this specific configuration, possible formation 

mechanisms and the relationship between the relative configuration and the rotational 

angular momentum have been studied in detail (Scheeres, 2007). However, the orbital 

dynamics around such kind of configuration has not been explored in detail, which is 

addressed in this thesis. In addition, neither high-order solutions around the EPs nor 
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the resonant dynamics in a highly irregular gravitational field have been studied for 

highly bifurcated asteroids.  

Despite it being simplified from the real situation, this model captures the main 

mass distribution of this kind of body, and also the main dynamics around it. Since the 

gravitational potential of the sphere and the ellipsoid can both be expressed in closed-

form formulas, the combined gravitational field can be obtained by superimposing one 

upon the other. This method is mainly applied for the numerical exploration of the 

system. In addition, we are also interested in the properties of spherical harmonics 

induced for this highly bifurcated body. Given a gravitational field represented by 

spherical harmonics, both a numerical and an analytical study can be performed for 

identifying the dynamics. The contact binary 1996 HW1 serves as the study case 

throughout this thesis, since it is the most bifurcated asteroid ever found as mentioned 

in the previous section.  

Since we focus more on the characteristics of an irregular gravitational field and its 

effect on orbital dynamics in its vicinity, solar perturbations are ignored in this 

research. They only play a significant role when the motion is in moderate distance or 

far away from the asteroid, as has been mentioned in a previous section. Based on the 

above, secondary research questions are formulated. 

(a) What is the phase space of the whole system when the gravitational field is 

given by the closed-form formulas? How can an analytical solution of the 

motion in the vicinity of the EPs be constructed? 

For characterizing the phase space, the number and locations of the EPs and their 

stability need to be identified, together with the properties of orbital motion in their 

vicinity. The prograde and retrograde POs around the entire body and also their 

stability need to be investigated, to identify the stable regions for potential mission 

orbits. To construct the analytical solution of the motion around the EPs, the 

Lindstedt-Poincaré (LP) method will be applied. Its accuracy has to be examined 

against the magnitude of the motion and the rotation of the system, to give a clue of 

when this solution can be applied.  

(b) Given the gravitational field represented by truncated spherical harmonics, 

how can the dynamics be addressed? What are the characteristics of the 

resonant dynamics resulting from the harmonics of a highly bifurcated 

configuration? 

First, the gravitational field needs to be expanded into spherical harmonics coefficients. 

With the averaging method, frozen orbits and POs can be obtained. Their stability and 

other characteristics can be identified. With the relatively large spherical harmonics 

coefficients, the model of resonant dynamics needs to be built and investigated. For 

the 1-DOF model, the locations and widths of the resonance need to be solved for non-

circular and non-polar orbits. For the 2-DOF system, the chaos appears as the 
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inclusion of a second resonance. Its region needs to be estimated for different 

eccentricities and inclinations. 

1.7 Thesis Outline  
All research questions are addressed in Chapters 2-5. Chapters 2 and 3 focus on 

research question (a), while Chapters 4 and 5 address research question (b). 

Chapter 2 primarily focuses on characterizing the phase space of the entire contact 

binary system. Based on the physical parameters of the system 1996 HW1, the EPs, 

their linear stability and the associated manifolds are identified. The planar, Halo-like 

and vertical orbits are determined. In addition, the equatorial prograde, retrograde POs 

and three-dimensional resonant orbits together with their linear stability around the 

entire system are investigated over large regions for different rotation rates.  

Next, Chapter 3 zooms in on the phase space of the system to non-collinear EPs and 

is devoted to the analytical solutions of the motion around them. For the motion 

around the stable EPs, a third-order analytical solution is constructed by the LP 

method. Its accuracy decreases when the orbit goes further away from the EPs and 

when the asteroid rotates faster. For the motion around the unstable EPs, a linear 

feedback control law based on low thrust is introduced to stabilize the motion and 

track the reference trajectory.  

In Chapter 4, the frozen orbits and the three-dimensional (3D) POs around the 

whole body are investigated. The gravitational field is expanded into a spherical 

harmonics model up to degree and order 8. The Hamiltonian taking into account 

harmonics coefficients up to degree and order 4 is developed. Frozen orbits are 

identified with the double-averaged Hamiltonian. By applying Poincaré maps and a 

numerical correction method, 3D POs are obtained around the whole body at different 

rotation rates in the single-averaged model and further in the full non-averaged model.  

For a generalization of the study of the current gravitational field, Chapter 5 mainly 

investigates the 1:1 resonant dynamics of the 4
th

 degree and order spherical harmonics 

gravitational field. The dynamical model is built as a 2-DOF Hamiltonian. The 1-DOF 

resonant dynamics is first solved by finding the EPs of the resonance and checking 

their stability under different combinations of eccentricity and inclination for asteroids 

Vesta, 1996 HW1 and Betulia. The 2-DOF dynamics is then investigated in the 

libration region and around the separatrix of the stable EPs. The relationship between 

the extent of the chaotic region and the distance of the primary and second resonances 

are studied qualitatively with Poincaré maps and the overlap criteria, also with 

different eccentricities and inclinations for all three asteroids. The boundaries of the 

chaotic layers are estimated from the modulated-pendulum approximation.  

Chapter 6 concludes this thesis and gives recommendations for future work. 
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Abstract 

The general orbital motion around a contact binary asteroid system is investigated in 

this study. System 1996 HW1 is explored in detail, as it is the mostly bifurcated 

asteroid known to date. The location of its equilibrium points (EPs) is obtained and 

their linear stability is studied. Families of Lyapunov, Halo and vertical periodic orbits 

(POs) in the vicinity of these EPs as well as their stability are found and examined, 

respectively. The influence of the relative size of each lobe and the shape of the 

ellipsoidal lobe and the rotation rate of the asteroid on the location and stability of the 

EPs are studied. Additionally, two families of equatorial orbits are obtained at a wide 

range of distances: from far away to nearby. Their stability is examined against the 

distance to the asteroid and the rotation rate of the asteroid, to uncover the influence of 

highly non-spherical gravitational field and the rotation of the asteroid on the orbital 

motion. Finally, resonant orbits in  commensurability with the rotation of the 

asteroid are found and their stability is discussed. The fast rotation of the asteroid has a 

stabilizing effect on the equatorial orbital motion.  

2.1 Introduction  
Up to now, several space missions destined for small solar system bodies, e.g. 

asteroids and comets, have been launched. Close proximity operations are challenging 
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mission, was found to be a contact body of two lobes with different origin (probably 

indicating different densities) recently (Sierks et al., 2015). NASA’s New Horizon 

mission discovered that one of Pluto’s tiny moons Kerberos is also a double-lobed 

body. From radar and optical observations, many near-Earth asteroids (NEAs), main-

belt and Trojan asteroids, and even comets are found to be contact binaries; they are 

estimated to constitute 10-20% of all small solar system bodies (Harmon et al., 2010). 

This study focuses on investigating the general properties of orbital motion in the 

strongly perturbed environment induced by these highly bifurcated bodies.  

Traditionally, the shape of an asteroid was approximated by a triaxial or oblate 

ellipsoid. With this model and the closed-form ellipsoidal potential, Chauvineau et al. 

(1993) investigated planar orbits by numerical integration and identified chaotic and 

regular orbits by varying the mass distribution and rotation rate of the body. Scheeres 
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(1994) performed systematic studies about the equilibrium points (EPs) and periodic 

orbits (POs) in its vicinity, from which an asteroid was classified as type І if the non-

collinear EPs are stable and type ІІ if they are unstable. Werner (1994) developed the 

polyhedron method to approximate the shape and gravitational field of asteroids by 

means of thousands of polyhedra. This is the most accurate approach, especially for 

studying motion extremely close to and on the surface of an asteroid. It has been 

widely applied for identifying the dynamical environment, e.g. EPs, POs and particle 

motions, around asteroids with detailed shape models (Scheeres et al., 1996, 1998, 

2000). A closely related model is the so-called ‘mascons’ model that represents the 

asteroid with a collection of point masses, which was first used to estimate the lunar 

gravitational potential (Muller and Sjogren, 1968). However, it is less accurate on the 

surface of the body, compared to the polyhedron model (Werner and Scheeres, 1997). 

The spherical harmonics model was also widely applied for general analytical and 

averaging studies of orbital motion around asteroids. From this model, the C20, C30 and 

C40 terms were found to introduce secular rates of the argument of periapsis, the 

ascending node, mean anomaly and eccentricity for orbits close to the asteroid. The 

C22 term was identified to change orbital energy and angular momentum (Scheeres, 

2012). Even with higher degree and order spherical harmonics, frozen orbits were 

obtained (Ceccaroni and Biggs, 2013). In addition, the geometrical shapes of a cube, a 

straight segment, and two orthogonal segments were also applied (Liu et al., 2011b, 

Bartczak and Breiter, 2003, Riaguas et al., 1999). Families of POs were generated in 

their vicinity and the stability of the orbits was investigated. The three-dimensional 

region for stable orbital motion around an asteroid represented by an ellipsoid was 

identified in Lara and Scheeres (2002).  

For our exploration of the dynamical environment around contact binary bodies, a 

shape model consisting of two lobes (an ellipsoidal component and a spherical 

component) that are in physical contact, is applied. Based on it, the effects of system 

configuration (varying the relative size of each lobe and the shape of the ellipsoidal 

lobe) and the rotation rate of the asteroid on the orbital motion can be studied in a 

systematic way. For this kind of shape, Scheeres (2007) discussed formation 

mechanisms and studied the relationship between the relative configuration and the 

rotational angular momentum. The motion of an orbiting spacecraft or a particle in its 

vicinity will be investigated in detail in this study. Here, the ellipsoid and the sphere 

are combined in one body, which breaks the symmetry along one axis of the system. 

This is different from the previous models that approximate the bifurcated body by 

two connected spheres (German and Friedlander, 1991) and two mass dipoles (Prieto-

Llanos and Gomez-Tierno, 1994), which have complete symmetry in three axes. 
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2.2 Dynamical Model 

 

Figure 2  The ellipsoid-sphere configuration in the rotating frame ��� with rotation rate �. 

The geometry of the ellipsoid-sphere configuration is illustrated in Fig.2. The 

parameters that characterize this configuration are: the three semi-axes of the ellipsoid 

, the radius of the sphere  and the uniform rotation rate , which is aligned 

with the axis of the maximum moment of inertia. The system is assumed to be 

homogeneous, with a constant density . The vector between the centers of mass of the 

two components is defined to be  (from ellipsoid to sphere), where , and 

the mass ratio  is equal to  � � �
� �  ( � and � being the 

mass of the sphere and the ellipsoid, respectively). In the body-fixed frame ( -

frame in Fig.2), the gravitational potential is invariant, and the equations of motion for 

an object located at  in the vicinity of the asteroid can be written as  

                                                       2 ( ) se
U

r r r
r

ω ω ω
∂

+ × + × × =
∂

� � �ɺɺ ɺ
� ,                                              (1) 

where the potential of the asteroid �� is expressed as 
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in which �  and �  are the potential of the spherical lobe and ellipsoidal lobe, 

respectively, and �  is the ellipsoid potential of unit mass and is expressed as 

(MacMillan, 1958) 
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where , and  is defined as the maximum real root of 

. Taking the length and time units as the distance  and ��, respectively, 

after normalization, Eq.(1) becomes 
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where � and � are the vectors from the particle  to ellipsoid center  

and the sphere center , respectively, and � �
� �  is a 

dimensionless scaling parameter that represents the ratio of the gravitational 

acceleration to centrifugal acceleration. The derivatives of the ellipsoid potential with 

respect to  are 
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in which the parameters  are all normalized, and these integrals are 

Carlson Elliptic Integrals of the second kind that can be obtained by Carlson’s 

algorithms evaluated in Press (2007). The second derivatives of � with respective to 

 can be found in Scheeres (2012). Therefore, for orbital motion in the vicinity of 

the asteroid, the potential � can be rewritten as 

                                                    0

3 1
( )

2 2
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is the Carlson Elliptic Integral of the first kind that also can be obtained by Carlson’s 

algorithms evaluated in Press (2007). The integral for this Hamiltonian system is 

                                    ( ) ( )2 2 2 2 21 1
V

2 2
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in which 
�

�
 is the specific kinetic energy, 

�

�

� �
��  is 

the effective potential, and  is the Jacobi integral or Jacobi constant. 
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The free parameters of system (4) are  and . The former one reflects the relative 

mass distribution within the system and the relative size (or mass) of the two 

components. The latter one indicates the rotation situation of the asteroid. For two 

connected spheres,   represents the case that the two lobes are just touching one 

another without any internal forces, while the components are in compression for 

 and stretch for . However, for our model,  deviates slightly from 1 for 

the touching case due to the non-spherical property of the ellipsoid component. It is 

pointed out here that the Restricted Three Body Problem (RTBP) can be viewed as a 

particular situation in which both of the two lobes are spheres with . The 

influence of  and  on the dynamical environment in the vicinity of the asteroid will 

be investigated in the following sections.  

2.3 Contact Binary System 1996 HW1  
Firstly, numerical studies are performed for 1996 HW1, whose detailed shape model 

was obtained by Magri et al. (2011) (Fig.1). It is found to be the most bifurcated 

bodies among the currently known elongated asteroids, with a pronounced ‘neck’ 

separating two lobes in a roughly 1:2 mass ratio. Since the two components can be 

represented by an ellipsoid and a sphere, Table 1 gives their physical dimensions, the 

bulk density and the rotational period of the entire system. It rotates in align with the 

axis of the maximum moment of inertia. Given these rotational period and the bulk 

density, the system is not in a minimum energy state as described in Scheeres (2007) 

as  is 2.1682, implying the existence of internal tension between the two components. 

For the minimum energy state of 1996 HW1, its rotation rate should be 7.4 h, rather 

than its current value of 8.76243 h. Due to this slow rotation, there exists internal 

compression between the two components (Magri et al., 2011). 

Table 1  The main parameters of 1996 HW1 (Magri et al., 2011) 

Overall dimensions (km) X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15 

Sidereal rotational period (h) 8.76243±0.00004 

Average sphere radius (km) 1.32 

Triaxial ellipsoid principal axes size (km) 2.46×1.64×1.49 

Bulk density (g∙cm
-3

) 2.0 

 

2.3.1  Zero-velocity Curves and EPs 

Similar to the RTBP, for our model  also defines the zero-velocity surfaces 

with , which divides the space into an accessible region ( ) and a forbidden 

region ( ). Unlike the RTBP where the zero-velocity curves are largely 

determined by the mass ratio , the curves of our model are determined by  together 

with . Given a value of the Jacobi constant , the motion is bounded to the accessible 
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region. In the  plane, the zero-velocity curves for different  levels of system 1996 

HW1 are shown in Fig.3.  

 
Figure 3  The zero-velocity curves and positions of four EPs of system 1996 HW1 in the !"-

plane (the color corresponds to the Jacobi constant # of the system). 

EPs are fixed points in the rotating (body-fixed) frame, where velocity and 

accelerations are zero. They can be interpreted as synchronous orbits around the 

asteroid in the inertial frame. In Fig.3, four EPs can be identified, among which E1, E2 

are the collinear ones and E3, E4 are the non-collinear ones. According to Scheeres 

(1994), E1 and E2 are referred to as saddle EPs, while E3 and E4 are the so-called 

center EPs. As this configuration is symmetric in the -plane, the EPs are all situated 

in the -plane. Their exact positions can be computed by setting the right-hand sides 

of Eq.(4) to zero and are denoted as � � �
$ . According to differential theory 

(Meiss, 2007), the linear stability of the EPs can be determined from the linearized 

dynamics of Eq.(4). Given a small perturbation from an EP $, in 

which $ $
� � �

$ , the linearized equation of motions for a 

perturbation (variational equations) in the neighborhood of an EP is written as  

                                                                              ⋅X = A Xɺ                                                            (8) 

where 

3 3 3 3

0 2 0

2 0 0

0 0 0

xx xy xz

xy yy yz

xz yz zz

V V V

V V V

V V V

× × 
 
 

−
 


=




A

0 I

 

is the Jacobi matrix calculated at the corresponding EP and  is the effective potential 

defined in Eq. (7). The characteristic equation of  can be written as  
6 4 2 0a b cλ λ λ+ + + =  
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in which  is the eigenvalue and coefficients  are determined by the second 

derivatives of  that are closely related to the rotation rate of the body. If all the 

eigenvalues have non-positive real parts, the EP is Lyapunov stable (or linearly stable), 

otherwise it is unstable. The positions of the four EPs of 1996 HW1 and their 

corresponding eigenvalues are given in Tables 2 and 3. 

Table 2  Location and linear stability of the EPs in the rotating frame 

EP ! " stability 

E1 1.50397208867676 0 U 

E2 -1.43907984894912 0 U 

E3 0.142251271693655 1.20262697830487 U 

E4 0.142251271693655 -1.20262697830487 U 

 

Table 3   The eigenvalues of the EPs 

EPs %�,� %�,& %',( 

E1 ±1.15329441819126 ±1.327198177844053i ±1.252450802130986i 

E2 ±0.90255553930741 ±1.21107228063561i ±1.16099544900511i 

E3/E4 -0.480938988379065 ± 

0.852439624239106i 

0.480938988379066 ± 

0.852439624239106i 

± 1.004638240930704i 

 

Since both E1 and E2 have positive real eigenvalues, they are hyperbolically 

unstable. E3 and E4 have eigenvalues with positive real parts, and they are complex 

unstable. The positions and stability of the EPs obtained here are highly consistent 

with those obtained by Magri et al. (2011), in which study the polyhedron model of the 

body was used. This proves the validity of our model that approximates the body with 

the combination of an ellipsoid and a sphere. In addition, system 1996 HW1 can be 

classified as a type ІІ asteroid, according to Scheeres (1994). 

The eigenvalues and eigenvectors determine the orbital motion in the vicinity of the 

EPs. For E1 and E2, the pair of real eigenvalues and their corresponding eigenvectors 

define the 1-dimensional stable and unstable manifolds. For E3 and E4, the two pairs 

of complex eigenvalues and eigenvectors define the spiral stable and unstable 

manifolds. The pure imaginary eigenvalues and the corresponding eigenvectors of all 

four EPs generate two 2-dimensional center manifolds, on which POs can be found. 

These POs are obtained in Section 4 of this study. In addition, since all the EPs are 

located in the -plane, the motion in -direction decouples from the motion in -

plane, which is analogous to the RTBP. With the purely imaginary eigenvalues, small 

oscillations in the -direction are expected. 

2.3.2 Location and Stability of EPs at Different Values of  and  

Having obtained the EPs of system 1996 HW1 and their stability, a systematic study 

on the effects of  and  on the location and stability of the EPs is carried out for the 

same shape model of two connected lobes. As  is closely related to the configuration 

of the system, Table 4 gives its value for different dimensions of the ellipsoid and the 
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sphere, respectively, assuming a homogenous density. The parameters in Table 4 

include the sphere-sphere and ellipsoid-sphere configurations. The former 

configuration includes the case of two equal-sized spheres but also two configurations 

with a big and a small sphere. For the latter configuration, the ellipsoid ranges from 

mild to strong elongation. Therefore, these configurations cover almost all possible 

configurations of a contact binary asteroid system. 

Table 4  The mass ratio ) of contact binary asteroid systems with different configurations 

Sphere Radius/km 
Ellipsoid Semi-axis/km 

A:1×1×1 B:1×0.75×0.5 C:1×0.5×0.25 

1 0.5 0.7273 0.8889 

0.5 0.1111 0.25 0.5 

0.25 0.0154 0.04 0.1111 

 

In addition to , the parameter  ranges from the critical value to the value of 10 for 

each configuration. Here the critical value is the value for which at least one of the EPs 

is located on the surface of the asteroid (Vasilkova, 2005). The positions of the EPs are 

given in Fig.4. For all the configurations, the EPs move further away from the asteroid 

as  increases, i.e. the rotation slows down and the centripetal contribution becomes 

smaller. Since the sets of three lines for E1 and E2 tend to overlap, the location of 

them are slightly influenced by , compared to . However, the dependence of the 

location of E3 on  is strong. On the other hand, for E3 and a given value of , with an 

increment of , the  coordinate increases while the  coordinate does not change 

much. In addition,  does not have much influence on the stability of E1 and E2, as 

both of them are always hyperbolically unstable. This is different for E3, which 

transits from linearly stable to unstable with the decrease of  (fast rotation), as 

indicated in the bottom plots of Fig.4. The red dots represent that E3 is linearly stable, 

while the blue ones indicate complex instablility. The transitions always occur 

approximately at  or , which is worth further study on this specific value. 

Fast rotation (small ) of the asteroid makes the E3 points unstable, which is 

consistent with the conclusion in Scheeres (2012). 
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Figure 4  The coordinates of E1 (upper), E2 (middle) and E3 (bottom) for the A, B and C 

configurations in Table 4, where the circles, dots and plus markers represent sphere 

components with radius of 0.25, 0.5 and 1 km, respectively. The blue and red dots indicate the 

unstable and stable EPs, respectively. 

2.4 POs in the vicinity of the EPs 
For the linearized system Eq. (8), provided that the initial conditions are restricted so 

that only the non-divergent mode is allowed, the 3-dimensional solution around the 

collinear EPs can be written as 
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1 2
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cos sin  

sin cos
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(cos )
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a

t B t c

ξ λ λ

η α λ α λ

ζ λ λ

= +   


= − +   
 = +   

,                                         (10) 

in which  and *  are the frequency of the motion in the -plane and -plane, 

respectively. After Moulton et al. (1920), the POs are classified into three categories 

(1)  0ξ η= = andς is in the form of (c). 

(2) 0ς = and ξ ,η  are in the form of (a), (b) respectively. 

(3) , ,ξ η ζ  are of the form of (a), (b), (c) respectively, λ and v
λ are commensurable. 

Each of these options will be discussed later. In addition, from the linearized system 

of the RTBP, Szebehely (1967) studied the possibility of short-period and long-period 

periodic motions around the EPs and their stability. Similarly, Lara and Elipe (2002) 

investigated the linearized motion in the vicinity of the geostationary points and 

obtained families of planar periodic orbits. For our study, when E3 is stable for some 

rotation rates of the asteroid as studied in Section 3.2, there exist both short- and long-

period motions in the vicinity of it.  

According to the Floquet Theorem (Meiss, 2007), the linear stability of POs can be 

determined from their State Transition Matrix (STM) , which reflects the change 

of state variables at epoch  due to a small deviation of the state at initial time. It is 

defined as a nonsingular matrix which satisfies the matrix differential equation 

( ) ( )t t= ⋅Φ A Φɺ  

where  is the matrix defined in the linearized system Eq. (8) and (×(. For a 

PO with period � , the STM after completion of one full period is named the 

monodromy matrix , i.e. � . The eigenvalues of  are called Floquet 

multipliers and  was proven to be symplectic for the autonomous Hamiltonian 

system. Therefore,  has eigenvalues in the form of � � � � . Following 

Broucke (1969) and Gómez et al. (2005), the stability index here is defined as 

� � � . The PO is stable if � , while unstable if � . 

Bifurcations might occur and new families of POs are expected to be generated at 

� . In the following study, only the pairs of non-unit eigenvalues are considered. 

2.4.1 Lyapunov Orbits 

The second category of Moulton’s classification is considered first, which corresponds 

to planar motion. Therefore, the general solution of the linearized system can be 

written as  

                                                                
( )

( )

sin

cos

A t

A t

ξ λ φ

η α λ φ

= +


= +
,                                                      (11) 

where  is the mode of the first pair of pure imaginary eigenvalues of E1 and E2 

(listed in Table 3), 		 , and  is the amplitude. As our model is 
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symmetric with respect to the -axis in the -plane, the initial condition of the PO is 

chosen as the point that intersects the -axis perpendicularly: 

0 1 0 0 0,  0, 0, , 2 /
E

x x A y x y A Tαλ π λ= + = = = −  =ɺ ɺ  

Based on the differential correction (DC) process that has been widely applied for 

finding POs around asteroids (Scheeres et al., 2000) and planetary moons (Russell and 

Lara, 2007), these approximate initial conditions are adjusted and the exact solutions 

of the full non-linearized model are obtained. With the numerical continuation method 

(Osinga and Krauskopf, 2007, Russell and Lara, 2007) a family of POs with variations 

of orbital period is obtained. Longer orbital periods come with  larger amplitudes as 

well.  

With the increase of orbital amplitude , the Lyapunov orbits expand from the 

vicinity of the EP to the surface of the asteroid. Orbits around E1 and E2 that do not 

intersect with the asteroid are illustrated in Fig.5, as well as the stability index and 

periods. It can be seen that all orbits are highly unstable with large  values. There are 

two blue dash-dotted lines in each stability plot. The upper one is � that indicates the 

in-plane stability, while the lower one is � that represents the vertical (or -direction) 

stabilty, and �  is the pair of unit eigenvalues and is not shown in the plot. The 

closer the orbit to E1 and E2, the larger the instability is. For orbits around E1 and E2, 

their � pass the critical line  at  and  (marked as pentagrams 

in the plot), respectively, which means that bifuracations occur and new families of 

POs are generated at these locations. This phenomenon also exists in the RTBP, for 

which the new familiy orbits are actually the Halo orbits. Wheather it is the case for 

the current model will be discussed in Section 4.2. Furthermore, for all these orbits, 

their periods become longer with an incresase of the orbital amplitudes. 

 
Figure 5 Left: Lyapunov orbits around E1 and E2; Right: their stability index ,� and ,� (blue 

dash-dotted lines) and corresponding periods (orange lines). 
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2.4.2 Halo Orbits 

The general 3-dimensional orbits around EPs are known as Lissajous orbits in the 

RTBP. They are quasi-periodic. Halo orbits are a special classification where the 

frequency of the orbit in the -plane is equal to that in the -direction, i.e. *. 

Therefore, Eq.(10) can be written as (Richardson, 1980) 

                                                              

( )

( )

( )

cos

sin

sin

2, 1,3

x

x

z

A t

A t

A t

n n

ξ λ φ

η α λ φ

ς λ ψ

ψ φ π

 = +

= +

= +





=



= +

,                                                 (12) 

in which 	 and � are the amplitudes in the -direction and -direction, respectively. 

Richardson (1980) derived the third-order analytical solution of the above system and 

gave solutions explicitly. This approximation has been primarily used in the RTBP. 

However, in our current numerical study, we use the initial conditions that are directly 

obtained from Eq.(12) and are written as 

0 1 0 0 0 0 0,  0, , 0, , 0 , 2 /
E x z

x x A y z A x y A z Tαλ   π λ= + = = ± = = − = =ɺ ɺ ɺ . 

The conditions �  and �  generate two families of Halo orbits, respectively, 

which are known as the northern Halo orbits and southern Halo orbits in the RTBP 

(Howell, 1984). By applying the same DC method, orbits around both E1 and E2 are 

obtained and the ones that do not intersect with the asteroid are depicted in Fig.6. For a 

good visualization, their projections on the -, - and -planes are given in Fig.7. 

It can be seen that the -amplitude � controls the size and the shape of the orbits. The 

purple and green orbits are the so-called northern and southern Halo orbits, 

respectively. When � increases, the orbits become more inclined and move further 

away from E1 and E2 but close to the surface of the asteroid. From the stability index, 

it can be found that the closer the orbit to E1 and E2 the larger its instability. These 

orbits all have stability in the -direction, as shown by the fact that � has values no 

larger than 2. However, there is a tendency that the orbit will become -direction 

unstable if its � becomes larger. The orbital period reduces with the increase of �. 

As shown in Fig.7, the projections of Halo orbits on the -plane have a similar 

shape with that of the Lyapunov orbits. For extremely small �, the orbits approach to 

the -plane infinitely which is witnessed by the projection in the -plane. They 

originate from the planar motion as their vertical stability starts from value 2, which is 

the bifurcation point. The  coordinates of the near planar Halo orbits (marked in 

pentagrams in Fig.7) are approximately the same with those of the bifurcation points 

for the Lyapunov orbits in Fig.5. Therefore, similar to the RTBP, Halo orbits are 

actually bifurcations of the Lyapunov family orbits for our model.  
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                              ( ) ( )0 02 cos( ) sin( )
EP Re Im

t t t tε β ϕ β ϕ= + − + − − +  S S u u ,                  (13) 

in which �0 is the state vector of the EP and  and  are the arbitrary amplitude and 

initial phase angle, respectively. At �, the initial state � is obtained as 

                                             [ ]0 2 cos( ) sin( )EP Re Imε ϕ ϕ= + −S S u u ,                                       (14) 

For E1 and E2, this family of orbits is symmetric w.r.t. the - and -planes. 

Therefore, � serves as the input of the DC method to obtain the vertical POs around 

E1 and E2 at small amplitudes, and similarly the continuation process is applied to 

generate POs with large amplitudes. However, for the vertical family around E3, due 

to the asymmetry of the system w.r.t. the -plane, the Levenberg-Marquardt method 

(Lourakis, 2005), whose application has no requirement on the symmetric property of 

the system, is applied to find orbits and the continuation process is then applied for 

large-amplitude orbits. Since E4 is symmetric with E3 with respect to the -plane and 

they share the same eigenvalues (Table 3), the vertical families around E4 are also 

symmetric with the families of POs around E3 and are not shown here.  

All the vertical families are illustrated in Fig.8. For E1, E2 and E3, the vertical 

orbits bend more towards the -plane and come close to the surface of the asteroid, as 

the -amplitude increases. Similarly, the closer the orbit to the EPs, the stronger in-

plane instability it has. However, orbits change from stable to unstable in -direction 

when their -amplitude exceeds 1.04 and 1.08 for E1 and E2, respectively, as indicated 

by the pentagrams of �. The orbits around E3 first reach the largest -amplitude 1.31, 

and then bend back down to the asteroid. They always have vertical stability. However, 

the in-plane motion around E3 change from unstable to stable in the process of the 

orbits coming back to the body at a -amplitude of 0.77. Similarly, new families of 

orbits are expected to be generated at the pentagram points. 
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2.5 Orbital Motion around the System 

2.5.1 Equatorial Orbits 

This section focuses on orbits around the entire asteroid system. Given that the rotation 

rate of the asteroid has value ‘1’ in the normalized system, the initial conditions for an 

equatorial circular orbit in the rotating frame are expressed as  

, 0, 0,rot rot rot rotx r y x y GM r r r rδ= = = = ± − = ± −ɺ ɺ , 

where the ‘ ’ and ‘ ’ signs represent prograde and retrograde orbits in the inertial 

frame, respectively. The prograde motion in the inertial frame is also prograde in the 

rotating frame if ���  given � , and becomes retrograde if 

���  given � . The retrograde motion in the inertial frame is 

always retrograde in the rotating frame as ��� . Therefore, the 

prograde and retrograde orbits in the inertial frame are denoted as families A and B, 

respectively. Examples of orbits of families A and B and their stability index are given 

in Figs.9 and 10.  

 

Figure 9 Left: three orbits of family A; Right: the stability indices ,� and ,�. The pentagrams 

represent the orbits in the left plot.  
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Figure 10 Left: two orbits of family B; Right: the stability indices ,� (solid line) and ,� (dash-

dotted line). The pentagrams represent orbits in the left plot. 

Fig.9 illustrates three orbits around the contact binary system of family A, which is 

found to be all retrograde in the rotating frame. As the orbit comes close to the asteroid, 

it evolves from circular and stable (red solid) to distorted and unstable (red dash doted). 

This is also reflected in the stability index plot: the closer the orbit to the asteroid the 

more unstable it is. In addition, a new family of orbits (blue) is generated at  as 

the stability index reaches the value 2, when the bifurcation is expected. The blue orbit 

in the left plot of Fig.9 belongs to this family, which is characterized by two extra 

loops in the middle region. Similarly, this family of orbits also becomes highly 

unstable when approaching the asteroid. However, they all have vertical stability as 

illustrated by �. Therefore, the irregular shape of the asteroid is revealed to have a 

destabilizing effect on the retrograde A orbits. 

Two orbits of family B are shown in the left plot of Fig.10; one is the closest orbit 

of this family around the asteroid with  and the other one has a radius of 2.6. 

This family of orbits keeps the circular geometry even when it is in close vicinity of 

the asteroid. As indicated in the right plot, all these orbits are stable, as their stability 

indices are not larger than 2. Compared to family A, family B is more robust against 

the perturbing gravitational field and is preferable for a mission close to the asteroid. 

This is due to the fact that the relative rotation between family B orbits and the 

asteroid is generally faster than that of family A, and the perturbation is averaged (or 

smoothed) to some extent. This analysis is consistent with that of Scheeres et al. 

(2000). The influence of the parameter  on the stability and energy of these 

retrograde A and B orbits is studied quantitatively in the following section.  
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2.5.2 Effect of Parameter  on Retrograde A and B Orbits 

The above simulations are based on the physical parameters of the system 1996 HW1 

with . Now the value of  will be varied from 0.2 to 9, representing a wide 

range of the rotation rate of the asteroid. The value for µ  is kept at the value of 1996 

HW1, i.e. 0.2767. Parameter  is the situation for fast rotating asteroids, e.g. 

2000EB14 (Whiteley et al., 2002). The case  is the more general situation as most 

contact binary asteroids rotate slowly, where a squeezing force exists between the two 

components.  

 

Figure 11 The position-velocity curves and position-stability index curves of family A orbits 

at different values of 1. The horizontal dotted line in the right plot corresponds to stability 

index , = 2; the dashed lines are for 1 < 1 while the solid lines hold for 1 ≥ 1. 

Fig.11 gives the position-velocity curves and the position-stability index curves of 

family A orbits at different values of , respectively. It is mentioned that all the orbits 

obtained here do not include the bifurcation families of orbits (which have been shown 

as the blue orbit in Fig.9), as the main purpose of this section is studying the effect of 

rotation rate of the asteroid on the orbital motion. It can be seen that all these orbits are 

retrograde ( 
 ) in the rotating frame. As the asteroid rotates faster (smaller ) the 

orbits can be continued to the close vicinity of the asteroid, especially for the case 

. For the slowly rotating asteroids (large ), family A orbits at close distance are 

not found. For the same , the faster the rotation of the asteroid, the more initial 

velocity it requires for the orbital motion in the rotating frame. 

The stability index is only plotted for � , since all orbits have vertical stability. 

Different with velocity, the stability index does not show a simple change tendency. 

For all , as the orbits come close to the asteroid, after passing a bottom value the 

stability index touches the line  (indicating bifurcations) and then experiences a 

low value again. After that it goes up sharply, indicating a fast growth of instability. 

Furthermore, the faster the rotation of the asteroid, the less the instability of the orbits 

have and a closer distance to the asteroid stable orbits can be obtained. This is in 

V
y

s
ta

b
ili

ty
 i
n
d
e
x



Numerical analysis of orbital motion around contact binary asteroid system 

40 
 

contrast with the case of the non-collinear EPs (belong to the 1:1 resonance), which 

transform from stable to unstable when the rotation rate of the asteroid increases 

beyond a certain value.  

 
Figure 12 The position-velocity curves and position-stability index curves of retrograde B 

orbits for different values of 1. The dashed lines are for 1 < 1 while the solid lines hold for 

1 ≥ 1. 

For family B orbits, the position-velocity curves and the position-stability index 

curves at different values of , respectively, are given in Fig.12. In general, for all , 

stable orbits can be obtained in close vicinity of the asteroid, again proving the 

robustness property of family B orbits against gravitational perturbations. In contrast 

with family A, for the same , the faster the rotation of the asteroid (small ), the less 

initial velocity it requires for orbital motion in the rotating frame. All these orbits are 

linearly stable, as their stability index is within the range from 0 to 2. Similar to that of 

family A, the stability index arrives at the bifurcation point (namely ) after 

experiencing a bottom value close to 0 for the slow rotation cases. For the fast rotation 

situations, the stability index has a delay to reach the value of 2. In addition, from our 

simulations, it is also found that these orbits are stable at a further distance (e.g. 

) from the asteroid. 

In summary, both families of orbits obtained are retrograde in the rotating frame, in 

which family A has slow retrograde motion and family B has faster one. At the same 

distance to the asteroid, the orbits are more stable around a fast rotating asteroid than 

around a slow one. This emphasizes the stabilization effect of the fast rotation of the 

gravitational field on the equatorial motion, due to the averaging effect of the 

perturbation. In addition, as the orbit comes close to the asteroid, the dynamics will be 

subjected to bifurcation earlier for the slowly rotating asteroids. However, when the 

orbit is extremely close to the asteroid, the fast rotation can no longer diminish the 

effect of irregular gravity on family A orbits anymore. In general, family B is more 

stable than family A, and is more suitable for mission orbits.  
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A. For , the orbits with  and  originate from the corresponding 

bifurcations generated from the retrograde family A and family B, respectively. This 

indicates that the highly non-spherical gravitational field and the rotation rate of the 

central body probably have an influence on the location of the bifurcations. 

2.6 Conclusions 
The general dynamical environment around contact binary asteroid systems is 

explored. Based on the physical parameters of 1996 HW1, four EPs were obtained and 

their stability was investigated. Families of the Lyapunov, Halo and vertical POs were 

found in the vicinity of these EPs. It was found that the closer the PO to the EPs, the 

more unstable it is. The locations of collinear E1 and E2 are sensitive to the change of 

rotation rate, but not to the system configuration; and they are always unstable. For the 

non-collinear E3 and E4, system configuration does have a significant influence on 

their locations. They transit from linear stability to complex instability with increasing 

rotation rate of the asteroid. 

The equatorial orbits of families A and B around system 1996 HW1 were addressed. 

When family A orbits change size from further away from the asteroid to its close 

vicinity, they transit from stable to highly unstable. This is due to the perturbation 

from the highly irregular gravitational field. Family B orbits were found to remain 

stable even when they are extremely close to the asteroid and are robust against the 

gravitational perturbation. Therefore, family B is more preferable for mission orbits. In 

contrast to the stability of the non-collinear EPs, the fast rotation of the asteroid was 

proven to have a stabilizing effect on both family A and B orbits, namely the 

equatorial orbital motion, due to the averaging effect of the irregular gravitation. 

However, this stabilization cannot diminish the effect of irregular gravity on orbits in 

the extreme proximity to the asteroid for family A POs. Finally, resonant orbits were 

obtained at two rotation rates of the asteroid, i.e. fast case and slow case. They are all 

unstable but have a good coverage of the polar region of the body.  

Overall,  and  were revealed to have significant influence on the orbital dynamics 

in the vicinity of the asteroids, and this study contributes to the exploration of the 

dynamical environment around highly bifurcated bodies.  
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Abstract 

The orbital motion around the non-collinear equilibrium points (EPs) of a contact 

binary asteroid is investigated in this paper. A contact binary asteroid is an asteroid 

consisting of two lobes that are in physical contact. Here, it is represented by the 

combination of an ellipsoid and a sphere. The gravity field of the ellipsoid is 

approximated by a spherical harmonic expansion with terms C20, C22 and C40, and the 

sphere by a straightforward point mass model. The non-collinear EPs are linearly 

stable for asteroids with slow rotation rates, and become unstable as the rotation rate 

goes up. To study the motion around the stable EPs, a third-order analytical solution is 

constructed, by the Lindstedt-Poincaré (LP) method. A good agreement is found 

between this analytical solution and numerical integrations for the motion in the 

vicinity of the stable EPs. Its accuracy decreases when the orbit goes further away 

from the EPs and the asteroid rotates faster. For the unstable EPs, the motions around 

them are unstable as well. Therefore, the linear feedback control law based on low 

thrust is introduced to stabilize the motion and track the reference trajectory. In 

addition, more control force is required as any of the injection error, the amplitude of 

the analytical reference orbit or the rotation rate of the asteroid increases. For small 

orbits around the EPs, the third-order analytical solution can serve as a good reference 

trajectory. However, for large amplitude orbits, accurate numerical orbits are to be 

used as reference. This avoids an extra control force to track the less accurate third-

order analytical solution. 

3.1 Introduction 
This paper focuses on one specific type of asteroid, i.e. the contact binary asteroid, 

which consists of two lobes that are in physical contact and which represents the most 

bifurcated body. Together with comets, the contact binary body is estimated to 

constitute 10-20% of all small solar system bodies (Harmon et al., 2011). Rosetta’s 

target comet (67P/Churyumov-Gerasimenko) was found to be probably a contact 

binary very recently (August 2014). A detailed investigation of the dynamical 

environment around them can shed light on the dynamical evolution of our solar 

system.  

The highly irregular gravity field induced by such an asteroid can be modelled with 

different methods (Scheeres, 2012). Outside of the circumscribing sphere, a spherical 
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harmonic expansion truncated at arbitrary degree and order can be used. When closer 

to the body, the polyhedron method of approximation of the shape of a body with 

triangular faces is more valid (Werner and Scheeres, 1997). Another option is to 

approximate the gravity field by that of geometrical shapes (e.g. an ellipsoid
1
), in 

which case closed-form potentials can usually be obtained. Many studies have been 

carried out on the dynamical environment around highly bifurcated bodies, e.g. 

Castalia, Eros and Itokawa (Scheeres et al., 1996, Scheeres et al., 2004, Scheeres et al., 

2000), mainly focusing on equilibrium points and periodic orbits. The polyhedron 

method is usually applied for the precise modelling of the gravity field, since it is 

robust and accurate.   

Analytical work is typically to give a more general insight into dynamics, but this is 

difficult to perform with such a precise model. Therefore, for a general study of this 

kind of contact binary body, a simplified model of a combination of a sphere and an 

ellipsoid is applied here, as shown in Fig.1. For this specific configuration, possible 

formation mechanisms and the relationship between the relative configuration and the 

rotational angular momentum have been studied in detail in (Scheeres, 2007). This 

simplified model captures the main characteristics of the mass distribution of a contact 

binary body. Additionally, it breaks one-axial symmetry, which is one step further 

compared with other totally symmetrical shapes, e.g. two connected spheres (Prieto-

Llanos and Gomez-Tierno, 1994), two orthogonal segments (Bartczak and Breiter, 

2003), which were applied for analytical work. In (Tzirti and Varvoglis, 2014), the 

ellipsoid and the sphere components are separated and serve as the basic model of a 

binary asteroid pair.  

Generally, the single-asteroid system has four EPs for the asteroid system, except 

for Betulia (Magri et al., 2007) which is known to have six ones due to its irregular 

gravity field. The linear stability of the EPs of an ellipsoid-shaped asteroid has been 

identified by (Scheeres, 1994), in which the asteroid is classified as Type Ι  in the case 

of stable non-collinear EPs and Type Π  in the case of unstable ones. It is known that 

the collinear EPs are always unstable, whereas the non-collinear EPs transit from 

stable to unstable when the rotation rate of the asteroid increases. This is similar to the 

restricted three body problem (RTBP), for which the linear stability of the non-

collinear EPs (known as the &  and '  points) bifurcates at the mass ratio <

 (Routh’s critical value). Purely numerical methods have been applied for 

studying the motion around the EPs for a binary asteroid system (Gabern et al., 2006). 

In (Jiang et al., 2014), the first-order solution was described in the form of a series 

expansion form for motion around the EPs of asteroids with a gravity field from the 

                                                           
1
 According to Scheeres (2012), the ‘closed-form’ refers to an exact solution to Laplace’s 

equation. The gravitational potentials of a bar, a straight segment and a polyhedron with 
constant density can also be expressed in closed form. 
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polyhedron method. However, little work has been done about high-order expansion of 

the motion around the non-collinear EPs of a contact binary body. This is the focus of 

the current study, in which the motion is expanded to the third order with the 

simplified gravity field and the influence of the rotation of the asteroid on the accuracy 

of the expansion is investigated.   

For the stable EPs, a straightforward analytical technique for investigating this 

motion is the Lindstedt-Poincaré (LP) method. Its basic idea is that the non-linearity of 

the system alters the frequencies of the linearized system (Mickens, 1981). Extensive 

use of this technique has been made to obtain periodic solutions of various non-linear 

systems. One typical application of the LP method in celestial mechanics is the 

construction of third-order halo orbits around the collinear EPs in the RTBP 

(Richardson, 1980). Afterwards, extended work has been carried out by (Gómez, 2001, 

Jorba and Masdemont, 1999, Lei and Xu, 2013), in which analytical solutions in the 

vicinity of the collinear and non-collinear EPs have been constructed to arbitrary order. 

Additionally, taking into account the effects of the lunar orbital eccentricity and the 

solar gravity field in the Earth-Moon system, halo orbits and Lissajous orbits around 

the trans-lunar libration points have been obtained to the third order (Farquhar and 

Kamel, 1973). In Gómez and Marcote (2006), periodic orbits of the Hill model have 

been constructed, also by applying the LP method. With the real Earth-Moon model, 

the EPs of the original RTBP have been replaced by special quasi-periodic orbits, 

which are called dynamical substitutes (Hou and Liu, 2010). With the LP method, 

higher order analytical solutions of the periodic motion in the vicinity of these 

dynamical substitutes can be constructed (Hou and Liu, 2011). Therefore, the LP 

method is also applied in this paper but with a highly irregular gravity field. 

As for the unstable EPs, the orbital motion around them is also unstable. Therefore, 

a low-thrust control strategy with the optimal linear feedback control law is employed 

for tracking the nominal orbital motion. The basic idea of this control method is to 

eliminate the unstable component of the motion and follow the desired trajectory. This 

method is widely applied for stabilizing unstable non-linear dynamical systems, and is 

well suited for orbit maintenance around the collinear EPs in the RTBP (Farquhar, 

1970, Gurfil and Meltzer, 2006).  

This paper is organized as follows. Firstly, a simplified model of a rotating contact 

binary asteroid is introduced. Secondly, based on the parameters of the system 1996 

HW1 which is one of the most bifurcated body known to date (Magri et al., 2011), the 

location of the non-collinear EPs and their linear stability are investigated at different 

rotation rates of the asteroid. Thirdly, for the stable EPs, periodic and quasi-periodic 

orbits are analytically constructed to the third order by means of the LP method. The 

accuracy of these analytical orbits and the influence of the orbit amplitude and the 

rotation rate of the asteroid are investigated by numerical integration. Finally, for the 

unstable EPs, linear feedback control is applied to track the third-order analytical orbit. 
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Again, the influence of the rotation of the asteroid and the orbit amplitude on the 

propellant consumption is also studied. In addition, for large orbit amplitudes, an 

accurate orbit numerically derived from the third-order analytical solution is also 

tracked, to quantify the extra control force consumed by following the less accurate 

analytical solution. 

This study provides a method of studying the dynamics around contact binary 

bodies, i.e. taking the two components individually from the gravity field point of view. 

The analytical solutions obtained here can serve as the initial point for solving 

dynamics in the precise gravity field, once the two components of the body are 

determined from observations. 

 

     

Figure 1  The ellipsoid-sphere configuration of a contact binary asteroid system. 

3.2 Dynamical Model 
The geometry of the ellipsoid-sphere configuration is illustrated in Fig.1. The system 

is assumed to be homogeneous (i.e. the same density for both components) and to 

rotate uniformly with rotation velocity . The mass ratio  is equal to 

� � �
� �  ( �  and �  are the mass of the sphere and the 

ellipsoid, respectively;  are the three semi-axes of the ellipsoid and  is the 

radius of the sphere). The total mass is denoted as � �. The vector between 

the centers of mass of the two components is defined to be  (from ellipsoid to sphere), 

where . In the body-fixed frame ( -frame), the gravitational potential is 

invariant. The equation of motion in the vicinity of the asteroid is expressed in this 

frame as  

                                                    2 ( ) se
U

r r r
r

ω ω ω
∂

+ × + × × =
∂

� � �� � �ɺɺ ɺ
� ,                                           (1) 

where   is the state vector and  
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in which �  is the ellipsoid potential of unit mass in spherical harmonics, �

 and �  are the vectors from the sphere center at 

 and ellipsoid center at  to the particle at , respectively, 

and � � � � .  �� �� &�  are the spherical harmonics coefficients of the 

ellipsoid component. The system can be normalized by taking the length unit as 

 and the time unit as �� ��. The normalized state vector is written as 

� . In addition, the normalized spherical harmonic coefficients C20, C22 and 

C40 can be derived from the shape of the ellipsoid. They are expressed as 
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Since the ellipsoid component is totally symmetric, there are no odd terms. In 

addition, the higher-order spherical harmonics are ignored as their coefficients are 

usually very small, e.g. C42 and C44 are usually one or two orders of magnitude smaller 

than C40
2

. Their contribution to the results is limited, whereas they introduce 

significant complexity for solving the dynamics. After normalization, the equations of 

motion for this dynamical system can be expressed as  

                                                       

2

2

x y
x

y x
y

z
z

∂Ω
= +

∂

∂Ω
= − +

∂

∂Ω
=








 ∂




ɺɺ ɺ

ɺɺɺ

ɺɺ

,                                                (4) 

in which Ω is the effective potential, written as  
2 2

2
se

x y
Uδ

+
Ω = + ⋅ , 

                                                           
2 It should be noticed that the spherical harmonics expansion here is only for the ellipsoid 
component, not for the entire body. 
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where � � is the ratio of the gravitational force to the centripetal force and 

��  is the normalized potential. It should be mentioned here that the RTBP can be 

determined by a single parameter, the mass ratio , but the contact binary model has a 

second one which is related to the uncoupled rotation of the body, the parameter . 

The value of  to some extent reflects the internal forces between the two components, 

as  indicates the case that the two are just touching one another, without any 

internal forces; compression for ; and stretch for . In (Scheeres, 1994), 

there is a similar parameter  of the ellipsoid model, with the difference that the length 

 is defined as the semi-axis of the ellipsoid there.  

3.3 Non-collinear EPs and their Stability 
The EPs are defined as the point where all the accelerations are zero. They can be 

obtained by finding the roots of Eq.(4) numerically, and are denoted as � � � . 

The orbital motion relative to an arbitrary EP can be expressed as 
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 ,                                                           (5) 

where $ $
� � �

$  is the position offset w.r.t. the EP. For 

dynamics around such an asteroid, the location and stability of the EPs are heavily 

dependent on the gravity field and the rotation rate of the body. Based on the 

assumption that the asteroid rotates uniformly along the -direction, the second partial 

derivatives 	� �	 
� �
 evaluated at the EPs are all zero. Therefore, the motion 

in the -plane is uncoupled from that along the -direction for the linearized system 

which can be expressed as follows 
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The partial derivatives �= evaluated at the non-collinear EP are given in Appendix 

A. Now, given the parameters of 1996 HW1 (Appendix B), the EPs are illustrated in 

Fig.2.  
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Figure 2  The position of the EPs of system 1996 HW1; E3 and E4 are the non-collinear EPs
3
. 

 

Once the EPs are obtained, their linear stability can be determined from the 

eigenvalues of the Jacobian matrix (Chicone, 1999). Since the motion in the -plane 

is independent of that along the -direction, they can be studied separately. The 

characteristic equation in the -plane can be written as 

( )4 2 2

11 22 11 22 124 Ω Ω Ω Ω Ω 0λ λ+ − − ⋅ + − = . 

The -plane motion around the EP is stable only when the above equation has two 

pairs of purely imaginary characteristic roots, denoted by � �. The following 

conditions need to be satisfied: 
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For the motion in the -direction, the characteristic equation is given as 
2

33Ω 0λ − = . 

This motion is stable if �� , and the characteristic root is represented as �. 

The three frequencies can be obtained as 

0 0 0 33

1 3 1 3
, ,

2 2

C C C C
v uω

− +
=  =  = −Ω . 

It is known that in the RTBP, the triangular EPs are linearly stable if the mass ratio 

 of the system is smaller than < . However, in our problem there is an 

additional parameter  (see Section 2) that will have an additional effect on the 
                                                           
3 This figure is identical to Fig. 3 on page 25, with the difference that E1 and E2 have 

reversed their numbering. In this paper, the focus is on the non-equilibrium EPs E3 and E4. 

E1 and E2 presented here are only for notification.  
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stability of the non-collinear EPs. For each specific system, there is a critical value < 

(the bifurcation point for linear stability) which can be determined from numerical 

simulation. At this point, the system has one pair of pure imaginary eigenvalues of 

multiplicity two, which means that  

( ) ( )2 2

11 22 11 22 12
4 Ω Ω 4 Ω Ω Ω 0− − − − = . 

According to (Magri et al., 2011), the system 1996 HW1 has  and 

. As a result, its non-collinear EPs are unstable. Compared with Figure 11 

from (Magri et al., 2011), in which a full gravity field is applied, the locations of the 

EPs we obtained are quite close to theirs and the linear stability of the EPs are the 

same. This means that the main dynamics of the full gravity field is captured with this 

simplified model. 

Given this value of , the effect of  on the location and stability of the EPs can be 

identified. Fig.3a shows the location of the non-collinear EPs, where the red line 

represents the unstable EP and the blue line holds for the stable EP. The bifurcation 

point of this system is found to be < . The bifurcation diagram in Fig.3b 

describes the eigenvalues in the -plane.  

  

Figure 3 The bifurcation diagram where the arrow represents the evolution of the system 

when 1 increases from 0.3 to 32. 

 

The red lines represent the two pairs of conjugate complex eigenvalues. The red 

dotted line in the right half complex plane corresponds to the pair with a positive real 

component, while the red solid line in the left half plane holds for the pair with 

negative real parts. As  increases, the two pairs of complex eigenvalues evolve into 

pure imaginary eigenvalues as demonstrated by the blue line. Based on the 

characteristics of the stable and unstable non-collinear EPs, the motion in their vicinity 

can be studied in detail, which is addressed in the following sections.  

3.4 Motion Around the Stable Non-collinear EPs 
This section focuses on how the LP method is applied in our model, to obtain periodic 

and quasi-periodic orbits around the stable non-collinear EPs. 
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3.4.1 The Third-order Analytical Orbits 

Following the LP method, the general procedure to construct the analytical solutions 

from low orders to high orders (to be defined later) is given. It is actually a recursion 

process which determines the coefficients of each order from the ones of lower orders. 

The solution of the linear system serves as the starting point. For the stable EPs, Eq.(6) 

have three pairs of pure imaginary roots. Since the out-of-plane motion is uncoupled 

from the in-plane motion, the general solution of the linearized system Eq.(6) can be 

expressed as 

                              

1 2

1 1 1 1 2 2 2 2

3

cos( ) cos( )

cos( ) sin( ) cos( ) sin( )

cos( )

a b a b

ξ α θ β θ

η α θ α θ β θ β θ

ς γ θ

= +

= + + +

=







 ,                  (8) 

where � � � � � � � � � , and � � �  are the three 

frequencies mentioned in Section 3, � � � are the initial phase angles, and  

are the amplitudes of the corresponding components. The coefficients in the solution 

have the following form 

     

2 2

12 1 0 0 11 12 2 0 0 11
1 1 2 22 2 2 2

0 0 12 0 0 12

2 ( ) 2 ( )
, , ,

2 4 2 4

b b v v
a b a b

v v

ω ω

ω ω

Ω ⋅ + Ω Ω ⋅ + Ω
= = − = = −

⋅ + Ω + Ω
    . 

When the nonlinear terms are taken into account, the motion can be expanded into 

trigonometric series of the amplitudes . This is analogous to that of the collinear 

EPs (Jorba and Masdemont, 1999), with the difference that there are three frequencies 

here. The general form of the high-order solution of Eq.(5) can be written as  

              

1 2 3 1 2 3

, , 1

1 2 3 1 2 3

, , 1

1 2 3 1 2 3

, , 1
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∞

=

∞
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∞

=
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= + + + + +

= + + + +



+


∑

∑

∑










 ,         (9) 

in which � � � � � �  and �=>
?��

�=>
?��

�=>
?��

�=>
?��  

�=>
?��

�=>
?�� are the coefficients to be determined at the order of . Here, the order of 

the analytical solution is defined as the sum of the three power magnitudes,  

. The numbers  are non-negative integers, and   are the coefficients of 

the frequencies and also integers. Due to the influence of the nonlinear terms, the 

frequencies are no longer constant and can be expanded in power series of amplitudes  

          0 0 0

, , 1 , , 1 , , 1

, ,i j k i j k i j k

ijk ijk ijk

i j k i j k i j k

v v v u u uω ω ω α β γ α β γ α β γ
∞ ∞ ∞

= = =

= + = + = +∑ ∑ ∑           (10) 

and �=> �=> �=> are also coefficients to be determined. Due to the characteristics of 

the LP method and the symmetries of our model, the following conditions are met: 
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(1) 
 is even, 0

0is odd,

lmn lmn

ijk ijk

lmn lmn lmn lmn

ijk ijk ijk ijk

k

k

ς ς

ξ ξ η η

=


 

=

= = = =
. 

(2)  and  have the same parity with , 

respectively. Considering the symmetries of the solution, in general  is 

assumed, and  is assumed if ,  is assumed if . 

(3) �=> �=> �=> are non-zero only if  are all even numbers. 

Suppose we already have the solution up to the order . We substitute it into 

Eq.(5), group all unknown terms of the order  at the left-hand side of the equation 

and all the known terms of the order  at the right-hand side, then we can solve the 

unknown terms from the known terms. Generally, the known terms of the order  are 

only determined by the solution up to the order , so the recursive process is valid. 

The first-order solution to start the recurrence process is 
100 010 100 100 010 010 001

100 010 100 1 100 1 010 2 010 2 0011, 1, , , , , 1a b a bξ ξ η η η η ς= = = = = = = . 

Substitution of the solution up to the order  into the right-hand part of Eq.(5) 

is straightforward. It does not produce any unknown terms of the order . For the left-

hand part of Eq.(5), the process is complicated. Take the  component as an example; 

how this process is proceeded is given in Appendix C. Similar results can be derived 

for . Thus, equating the coefficients of the order  terms at both sides of the 

equation will give us the equations for the unknown coefficients, written in matrix 

form as 
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∆          

 .                           (11) 

The components of matrix &×& are expressed as 
2

11 11 12 13 12 14
, 0, , 2A A A A= −Λ − Ω = = −Ω = − Λ , 21 12 22 11 23 14 24 13

, , ,A A A A A A A A= = = − = , 

2

31 21 32 33 22 34
, 2 , , 0A A A A= −Ω = Λ = −Λ − Ω = , 41 32 42 31 43 34 44 33

, , ,A A A A A A A A= − = = = . 

where � � �. The � represents the expressions of frequencies at the 

order  and solutions at order 1, and can be obtained from Tables 1 and 2 as 
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. 

In addition, for the  component, the equation is  
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where �
��, @ � �=>�� ?� �� ��, @A . 

In Eqs. (11) and (12), �=>
?��

�=>
?��

�=>
?��

�=>
?��  and �=>

?��
�=>
?�� are the known 

components of the equations of motion at the corresponding order. Some special cases 

should be remarked here: 

(1) when , the determinant of matrix  is non-zero, and Eq.(11) can be solved 

directly. 

(2) when  or , matrix  is not full rank, then it is 

assumed that  �=>
?��

�=>
?�� , and �=>

?��
�=>
?��

���=> �=��> can be found. 

(3) when , matrix  is also not full rank, then it is assumed that  

�=>
?��

�=>
?��  and �=>

?��
�=>
?�� can be solved. 

(4) when , �=>
?��

�=>
?��  is assumed and �=>�� is obtained. 

Therefore, the N
th

-order solution can be obtained by solving the above equations. 

Neglecting the possible resonances (which brings about small denominator problem), 

this process can be theoretically carried on to arbitrary order. The third-order solution 

is given in this paper. The coefficients of the solution are given in Appendix C, based 

on the parameters of system 1996 HW1 but with , in which case the non-

collinear EPs are stable (Fig.3). With this solution in series expansion form, periodic 

and quasi-periodic orbits around the EPs are constructed. 

3.4.2 Numerical Verification 

To test the accuracy of the third-order analytical solution, numerical simulations are 

performed in the full model (Eq.(5)), the results of which are shown in Figs.4-9. They 

cover all possible motions in the vicinity of a stable non-collinear EP. All units in the 

figure are dimensionless and the non-collinear EP is located at the origin of the 

coordinate frame. The amplitudes are chosen such that the size of the orbit remains 

around the value of 0.1, and the integration time is selected to insure that the general 

characteristics of the orbital motion are properly reflected. Figs.4-6 
4
illustrate the 

periodic orbits and the numerical orbits with one amplitude equal to 0.1, which also 

means that only one frequency plays a role for each plot. Figures 7-8 show quasi-

periodic orbits with combinations of two frequencies. Fig.7 is the plot of general 

planar motion with , while Fig.8 is comparable to a Lissajous orbit in the RTBP. 

Fig.9 illustrates the general three-dimensional quasi-periodic orbit. The error (in the 

right-hand part of these figures) is defined here as the distance between the analytical 

and the numerical orbit at each epoch. They are at the magnitude of 10
-5

 in 

dimensionless units, which indicates that the third-order analytical solution is in very 

good agreement with its full numerical counterpart. Additionally, the errors of all these 

                                                           
4 The orbits in Figs 4-5 are all in clockwise direction. 
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orbits are oscillating around some mean value, which proves that the motion in the 

vicinity of the stable EPs is indeed stable.  

 

Figure 4 The planar orbit with � 2 0.1, � = 0, � = 0 (left) and the orbit error (right) for a 

time duration of 30C. 

 

Figure 5 The planar orbit with � = 0, � = 0.1, � = 0 (left) and the orbit error (right) for a 

time duration of  30C. 

 

Figure 6 The vertical orbit with � = 0, � = 0, � = 0.1 (left) and the orbit error (right) for a 

time duration of 30C. 
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Figure 7  The planar orbit with � 2 � 2 0.06, � = 0 (left) and the orbit error (right) for a 

time duration of 80C. 

 

Figure 8  The three-dimensional orbit with � = � = 0.1, � = 0 (left) and the orbit error (right) 

for a time duration of 80C. 

 

Figure 9  The three-dimensional orbit with � = � = 0.06, � = 0.1 (left) and the orbit error 

(right) for a time duration of 80C. 

-0.1 -0.05 0 0.05 0.1
-0.05

0

0.05
α=0.06,β=0.06,γ=0

ξ

η

 

 

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-5

t

d
R

-0.1
-0.05

0
0.05

0.1

-0.04

-0.02

0

0.02

0.04

-0.1

-0.05

0

0.05

0.1

ξ

α=0.1,β=0,γ=0.1

η

ζ

0 50 100 150 200 250
0

1

2

3

4

5

6

7
x 10

-5

t

d
R

-0.1
-0.05

0
0.05

0.1

-0.05

0

0.05

-0.1

-0.05

0

0.05

0.1

ξ

α=0.06,β=0.06,γ=0.1

η

ζ

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9
x 10

-5

t

d
R



Orbital motion in the vicinity of the non-collinear equilibrium points 

58 
 

It is also interesting to investigate how the orbit amplitude and  influence the error. 

By numerical simulation, a plot illustrating these relationships is given in Fig.10. It is 

seen that the maximum error grows when the orbit amplitude increases. This results 

from the fact that the third-order analytical solution is based on a Taylor-series 

expansion of the motion in the vicinity of an EP, which is obviously more valid for 

small deviations. For a given orbit amplitude, the error decreases as  becomes larger, 

which implies that the third-order analytical solution is more valid for a system with 

larger stability (slow rotation). In addition, benefiting from all these analyses, the 

design of orbits can be very straightforward. 

 

Figure 10 The influence of orbit amplitude and parameter 1 on the error of the third-order 

analytical solution. 

3.5 Motion around the Unstable Non-collinear EPs 
For the unstable non-collinear EPs, the situation is quite different. Given a small 

deviation, the motion around the unstable EP is integrated for a time interval of , as 

shown in Fig.11. It diverges significantly, especially in the -plane, due to the 

property of instability of the non-collinear EPs. 

 

Figure 11  Orbital motion in the vicinity of the unstable non-collinear EP. 
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Therefore, for a spacecraft exploration in this system, low-thrust control is to be 

introduced to stabilize the motion. A linear feedback control law is employed for 

stabilizing the unstable non-linear system, which is outlined in the next section.  

3.5.1 Linear Feedback Control 

Firstly, the linearized system with linear feedback control is written as (Slotine and Li, 

1991) 

                                                                   = ⋅ ⋅ɺX Ε X + F u ,                                                       (14) 

where  is the deviation vector from the reference 

trajectory ���  and F G H
$  is the control vector, (×( is the Jacobi matrix 

calculated along ���, and (×� is the control coefficients matrix. The control law is 

usually defined as , in which �×( is the gain matrix. Therefore, Eq. (14) 

can be rewritten as . By choosing an approximate gain matrix , the 

new linearized system can be forced to be stable. To meet the tracking accuracy and 

also the requirement of the allowed control force, a linear quadratic regulator (LQR) is 

applied to find the optimal control solution and the quadratic cost function is defined 

as (Gopal, 1993) 

                                                            
0

( )
T T

J dt
∞

= +∫ X QX u Ru  ,                                                  (15) 

where  is a real positive semi-definite matrix and  is a real symmetric positive 

definite matrix. Both are weighting matrices. They can be defined by the ‘Bryson’s 

Rule’ (Bryson, 1975) 

2 2 2

1 2 6

2 2 2

1 2 3

1 1 1
, ,

1 1 1
, ,

max max max

max max max

diag
X X X

diag
u u u

=
∆ ∆ ∆

=
∆ ∆ ∆

 
 
 

 
 
 

…Q

R

, 

where ���	 =��	  are the maximum allowable amplitudes of the i
th

 and j
th

 

component of  and , respectively. Once  and  are selected, the control gain 

matrix  is obtained as 
-1 T

K = R F P , 

where matrix (×( is the solution of the following Riccati matrix equation (Gopal, 

1993) 
-1

0
T =E P + PE - PFR FP + Q . 

Therefore, the optimal control force is written as 
-1 T= −u R F PX . 

3.5.2 Controlled Motion Tracking the Third-order Analytical Orbit 

Here, the third-order analytical solution will serve as the reference trajectory. As 

shown in Section 3, the unstable EP has only one pure imaginary eigenvalue in the -
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direction. Therefore, the reference trajectory can be given by the third-order analytical 

solution with  and  with a chosen value. Three cases will be studied for the 

control problem: (1) the spacecraft is exactly put on the reference orbit, in which 

situation there is no injection error; (2) an initial error, e.g. 
�& �& �& �& , is added to the initial state of the spacecraft; (3) the 

spacecraft is put on the stable manifold of the EP. For the last case, the local stable 

manifold of the EP is given as  
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where � � � & are the amplitudes and  are the absolute values of the real and 

imaginary components of the complex eigenvalues, �  is the third-order analytical 

solution in the -direction. Based on the parameters of system 1996 HW1 with its 

value for , the reference orbit and controlled motion as well as the control 

accelerations are given in Figs.12-14. 

 

Figure 12 The reference and controlled orbits, and the control accelerations for case 1. 
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Figure 13 The reference and controlled orbits, and the control accelerations for case 2. 

 

Figure 14 The reference and controlled orbits, and the control accelerations for case 3. 
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Figure 15  The influence of orbit amplitude and parameter 1 on propellant consumption. 

As shown in Fig.15, more propellant is needed when the orbit amplitude increases 

and when the rotation of the asteroid goes faster (smaller ). Two reasons are 

responsible for this. One is obviously that more control force is required due to the 

larger instability of the orbit induced by the faster rotation of the asteroid. The other is 

due to the fact that the larger the amplitude of the orbit the larger the error of the 

analytical solution, which adds an extra artificial control effort to follow this solution. 

This is further studied in the following section. 

3.5.3 Controlled Motion Tracking the Numerical Orbit 

Firstly, exact periodic orbits (POs) are obtained by numerically modifying the third-

order analytical solution. The differential correction (Russell and Lara, 2007, Lara and 

Russell, 2007) and the Levenberg-Marquardt method (Moré, 1978) are methods 

commonly used for numerical corrections. For this simulation, the latter one is applied. 

The difference between the third-order analytical orbits and the accurate POs is 

illustrated in Fig.16a. It is less than 10
-5

 when the amplitude of the orbit is smaller than 

0.1, and goes up to 10
-2

 when the orbital amplitude enlarges to 0.5. When the asteroid 

rotates fast, the error becomes larger for orbits at the same amplitude. This is 

consistent with what was obtained for the situation of stable motion (Fig.10). In 

addition, the instability of the numerical POs is clarified by the stability index, which 

is defined as the sum of the norm of each pair of eigenvalues of the monodromy matrix 

of the PO (Chicone, 1999). If larger than 6, the orbit is unstable. The POs are highly 

unstable for the rapid rotation case, as illustrated in Fig.16b. 
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Figure 16  The errors of the analytical orbits (left) and the stability index of the accurate 

numerical orbits (right) for different orbit amplitudes. 

To have a detailed idea of how the error of the analytical PO affects the control 

effort, a comparison is made between the control force required to track the third-order 

analytical solution and to track the numerical PO. For the case of system 1996 HW1 

and orbit amplitudes ranging from 0.1 to 0.5, Fig.17a illustrates that almost more than 

half of the propellant is introduced by the error of the analytical reference orbit for a 

time interval around  (about two periods for each orbit). However, the percentage of 

the control force from tracking the analytical orbit will reduce gradually for longer 

time intervals, as more control effort is allocated for stabilizing the orbit, as shown in 

Fig.17b. Actually, this simulation emphasizes that an accurate numerical reference 

orbit should be used for large amplitude motions to reduce the control force. 

  

Figure 17 The comparison of deltaV between tracking the third-order analytical solution and 

the numerical orbit for a time duration around 4C  (left); the percentage of propellant 

consumption for compensating the error of the analytical orbit (right) for different time 

intervals. 
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initial guess for the numerical search for the accurate numerical orbit when the orbital 

amplitude is large.  

3.6 Conclusions 
The orbital motion around the non-collinear EPs of a contact binary asteroid has been 

studied in this paper. With the asteroid represented by a combination of an ellipsoid 

and a sphere and sizes and mass taken from the system 1996 HW1, the locations and 

the linear stability of the EPs of the system are obtained first for different values of .  

For motions around the stable EPs, third-order analytical solutions have been 

constructed, by means of the LP method. Compared with numerical integration, they 

are found to be a good approximation for the motions in the vicinity of the stable EPs. 

However, the accuracy of this third-order analytical solution decreases when the 

orbital amplitude grows larger and the asteroid rotates faster, in which cases higher 

order solutions are probably more valid.  

The motion around the unstable EPs is shown to be highly unstable. Therefore, for 

spacecraft exploration, a low-thrust control strategy based on the linear feedback 

control law has been employed to follow the third-order reference trajectory. Very 

little control effort is needed for all three simulated cases. For the spacecraft located on 

the local stable manifold of the EP, the propellant consumption is found to be 

approximately the same as the case without initial error. The injection error definitely 

brings about extra control effort. In addition, more propellant is required when the 

orbit amplitude increases and when the rotation of the asteroid goes faster, which is 

partially due to the increasing error of the analytical reference orbit. Thus, for large 

amplitude motion, the accurate orbit obtained from numerically modifying the 

analytical solution is used as the reference orbit. Consequently, the propellant 

consumption reduces compared to that tracking the less accurate third-order analytical 

solution. In conclusion, to save control effort, an accurate numerical orbit is 

recommended for a mission with large amplitude motion in a highly perturbed 

environment. 

This study can also be extended to binary asteroids, planets and even star systems in 

which the primary body has an irregular gravity field. 

 

 

Acknowledgment  

The authors thank the anonymous reviewers for their comments on improving this 

paper. The authors also owe their thanks to Dr. E. Mooij from Delft University of 

Technology for his helpful discussions on the control part of this research and Dr. 

P.N.A.M. Visser from Delft University of Technology for his comments on this study. 

This research is funded by the Chinese Scholarship Council.  

  



 

Appendix A    

The second derivatives of the potential at the EPs located at 

Ω = + − + − + − − + +

Ω = + − − + +

Ω = + − + − + − − + −

 

Ω = − − + − − −

in which 

and

 

Appendix

The main physical parameters of 1996 HW1 

 

Appendix C

The first and second derivatives of the 

Appendix A    

The second derivatives of the potential at the EPs located at 

11 20Ω = + − + − + − − + +

12Ω = + − − + +

22 20Ω = + − + − + − − + −

33
Ω = − − + − − −

in which 

and σ µ σ µ

Appendix

The main physical parameters of 1996 HW1 

Triaxial ellipsoid principal axes size (km)

Appendix C

The first and second derivatives of the 

Appendix A    

The second derivatives of the potential at the EPs located at 

11 201 3 3 1 6

60 105 15 105

Ω = + − + − + − − + +

− + − + −

δ µΩ = + − − + +

22 201 3 3 1 6

60 105 15 105

Ω = + − + − + − − + −

+ + − + −

δ µΩ = − − + − − −

in which 

1 0 2 0σ µ σ µ= + − = +

Appendix

The main physical parameters of 1996 HW1 

Triaxial ellipsoid principal axes size (km)

Appendix C

The first and second derivatives of the 

Appendix A    

The second derivatives of the potential at the EPs located at 

11 201 3 3 1 6

60 105 15 105
C R R

R R R R R

δ µΩ = + − + − + − − + +

− + − + −

3 1 105δ µ
 

Ω = + − − + + 
 

22 201 3 3 1 6

60 105 15 105
C y C R y C R C y

R R R R R

δ µΩ = + − + − + − − + −

+ + − + −

δ µΩ = − − + − − −
 
 
 

in which 

1 0 2 0sign( 1), sign( )σ µ σ µ= + − = +

Appendix

The main physical parameters of 1996 HW1 

Triaxial ellipsoid principal axes size (km)

Appendix C

The first and second derivatives of the 

Orbital 

Appendix A    

The second derivatives of the potential at the EPs located at 

11 20

22 2 2

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105
b b b b b

C R R

R R R R R

δ µ


Ω = + − + − + − − + +


− + − + −

3 1 105
R R R R R

µσ σ σ
δ µ
 

Ω = + − − + + 
 

22 20

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105
b b b b b

C y C R y C R C y

R R R R R

δ µ


Ω = + − + − + − − + −


+ + − + −

a b b b b
R R R R R

µ µ
δ µΩ = − − + − − −
 
 
 

3 0 0 0 0
R x y R x R x

1 0 2 0sign( 1), sign( )σ µ σ µ= + − = +

Appendix B

The main physical parameters of 1996 HW1 

Overall dimensions (km)

Average sphere radius (km)

Triaxial ellipsoid principal axes size (km)

Appendix C

The first and second derivatives of the 

Orbital 

Appendix A    

The second derivatives of the potential at the EPs located at 

11 20

2 2

22 2 2

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

R R C

R R R R R R R

C R R

R R R R R

µ
δ µ


Ω = + − + − + − − + +


− + − + −

1 1 0 20 2 2 0 40 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

a b b b b

R y C R y C R y

R R R R R

µσ σ σ
δ µ
 

Ω = + − − + + 
 

22 20

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

µ
δ µ


Ω = + − + − + − − + −


+ + − + −

3/2 3/2 5/2 7/2 7/2

a b b b bR R R R R

µ µ
δ µΩ = − − + − − −
 
 
 

3 0 0 0 0
( ) , ( 1) , ( )R x y R x R x= + − = + − = +

1 0 2 0sign( 1), sign( )x xσ µ σ µ= + − = +

B 

The main physical parameters of 1996 HW1 

Overall dimensions (km)

Sidereal period (h)

Average sphere radius (km)

Triaxial ellipsoid principal axes size (km)

Bulk density (g

Appendix C 

The first and second derivatives of the 

Orbital 

Appendix A     

The second derivatives of the potential at the EPs located at 

2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2

22 2 2

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

R R C

R R R R R R R

C R R

R R R R R

µ
δ µ


Ω = + − + − + − − + +


− + − + −

1 1 0 20 2 2 0 40 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

a b b b b

R y C R y C R y

R R R R R

µσ σ σ
δ µ
 

Ω = + − − + + 
 

2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

µ
δ µ


Ω = + − + − + − − + −


+ + − + −

3/2 3/2 5/2 7/2 7/2

1

a b b b b
R R R R R

µ µ
δ µΩ = − − + − − −
 
 
 

3 0 0 0 0
( ) , ( 1) , ( )R x y R x R x= + − = + − = +

1 0 2 0sign( 1), sign( )x xσ µ σ µ= + − = +

The main physical parameters of 1996 HW1 

Overall dimensions (km)

Sidereal period (h)

Average sphere radius (km)

Triaxial ellipsoid principal axes size (km)

Bulk density (g

The first and second derivatives of the 

Orbital motion in the vicinity of the non

The second derivatives of the potential at the EPs located at 

2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2

22 2 2

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

R R C

R R R R R R R

C R RC R R

R R R R R

δ µΩ = + − + − + − − + +

− + − + −

(1 1 0 20 2 2 0 40 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

a b b b b

R y C R y C R y

R R R R R

µσ σ σ
δ µ
 

Ω = + − − + + 
 

2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

δ µΩ = + − + − + − − + −

+ + − + −

3/2 3/2 5/2 7/2 7/2

1

a b b b b
R R R R R

µ µ
δ µ

−
Ω = − − + − − −

 
 
 

3 0 0 0 0
( ) , ( 1) , ( )R x y R x R xµ µ µ= + − = + − = +

1 0 2 0sign( 1), sign( )x xσ µ σ µ= + − = +

The main physical parameters of 1996 HW1 

Overall dimensions (km)

Sidereal period (h)

Average sphere radius (km)

Triaxial ellipsoid principal axes size (km)

Bulk density (g

The first and second derivatives of the 

motion in the vicinity of the non

The second derivatives of the potential at the EPs located at 

2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2
22 2 322 2 2

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

R R C

R R R R R R R

C R RC R R

R R R R R

µ µ
δ µΩ = + − + − + − − + +

− + − + −

(1 1 0 20 2 2 0 40 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

a b b b b

R y C R y C R y

R R R R R

µσ σ σ
δ µ
 

Ω = + − − + + 
 

2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

µ µ
δ µΩ = + − + − + − − + −

+ + − + −

3/2 3/2 5/2 7/2 7/2

a b b b b
R R R R R

µ µ
δ µ

−
Ω = − − + − − −

 
 
 

2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )R x y R x R xµ µ µ= + − = + − = +

1 0 2 0sign( 1), sign( )x xσ µ σ µ= + − = +

The main physical parameters of 1996 HW1 

Overall dimensions (km)

Sidereal period (h)

Average sphere radius (km)

Triaxial ellipsoid principal axes size (km)

Bulk density (g

The first and second derivatives of the 

motion in the vicinity of the non

The second derivatives of the potential at the EPs located at 

2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

22 2
22 2 322 2 2

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

R R C

R R R R R R R

C R RC R R

R R R R R

µ µ
δ µΩ = + − + − + − − + +

− + − + −

1 1 0 20 2 2 0 40 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

a b b b b

R y C R y C R y

R R R R R

µσ σ σ
δ µ
 

Ω = + − − + + 
 

2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

µ µ
δ µΩ = + − + − + − − + −

+ + − + −

(
3/2 3/2 5/2 7/2 7/2

1 15

a b b b b
R R R R R

δ µΩ = − − + − − −
 
 
 

2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )R x y R x R xµ µ µ= + − = + − = +

1 0 2 0sign( 1), sign( )x xσ µ σ µ= + − = +

The main physical parameters of 1996 HW1 

Overall dimensions (km)

Sidereal period (h)

Average sphere radius (km)

Triaxial ellipsoid principal axes size (km)

Bulk density (g

The first and second derivatives of the 

motion in the vicinity of the non

The second derivatives of the potential at the EPs located at 

(2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

22 2
22 2 322 2 2

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

R R C

R R R R R R R

C R RC R R

R R R R R

µ µ
δ µΩ = + − + − + − − + +

− + − + −

)1 1 0 20 2 2 0 40 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

a b b b b

R y C R y C R y

R R R R R

µσ σ σ
δ µ
  

Ω = + − − + +  
  

(2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

µ µ
δ µΩ = + − + − + − − + −

+ + − + −

3/2 3/2 5/2 7/2 7/2
1 15

a b b b b
R R R R R

δ µΩ = − − + − − −
 
 
 

2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )R x y R x R xµ µ µ= + − = + − = +

1 0 2 0sign( 1), sign( )x xσ µ σ µ= + − = +

The main physical parameters of 1996 HW1 

Overall dimensions (km)

Sidereal period (h)

Average sphere radius (km)

Triaxial ellipsoid principal axes size (km)

Bulk density (g∙

The first and second derivatives of the 

motion in the vicinity of the non

The second derivatives of the potential at the EPs located at 

(2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2
22 2 322 2 2

7/2 9/2 7/2 9/2 7/2

1
1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

R R C

R R R R R R R

C R RC R R

R R R R R

µ µ
δ µ

−
Ω = + − + − + − − + +

− + − + −

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2

3
3 1 105

a b b b b

R y C R y C R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  

(2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1
1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

µ µ
δ µ

−
Ω = + − + − + − − + −

+ + − + −

)
3/2 3/2 5/2 7/2 7/2

1 15

a b b b b
R R R R R

δ µΩ = − − + − − −
  
  

  

2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )

a b
R x y R x R xµ µ µ= + − = + − = +

1 0 2 0sign( 1), sign( )x xσ µ σ µ= + − = +

The main physical parameters of 1996 HW1 

Overall dimensions (km)

Sidereal period (h)

Average sphere radius (km)

Triaxial ellipsoid principal axes size (km)

∙cm

The first and second derivatives of the 

motion in the vicinity of the non

The second derivatives of the potential at the EPs located at 

)2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2

22 2 2

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

R R C

R R R R R R R

C R CC R R

R R R R R

µµ µ
δ µ

−
Ω = + − + − + − − + +

− + − + −

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  

)2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1
1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

µµ µ
δ µ

−
Ω = + − + − + − − + −

+ + − + −

3/2 3/2 5/2 7/2 7/2

9 75
1 15

2 8
a b b b b

C C

R R R R R
Ω = − − + − − −

  
  

  

2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )

a b
R x y R x R xµ µ µ= + − = + − = +

1 0 2 0sign( 1), sign( )x xσ µ σ µ= + − = +

The main physical parameters of 1996 HW1 

Overall dimensions (km)

Sidereal period (h) 

Average sphere radius (km)

Triaxial ellipsoid principal axes size (km)

cm
-3

)

The first and second derivatives of the 

motion in the vicinity of the non

The second derivatives of the potential at the EPs located at 

)2 2
21 2 22

11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2

22 3 4022 2 2

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

RR R C

R R R R R R R

C R CC R R

R R R R R

µµ µ
δ µΩ = + − + − + − − + +

− + − + −

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  

)2 2
00 0

22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

yy y

R R R R R R R

C y C R y C R C y

R R R R R

µµ µ
δ µΩ = + − + − + − − + −

+ + − + −

20 40

3/2 3/2 5/2 7/2 7/2

9 75
1 15

2 8
a b b b b

C C

R R R R R
Ω = − − + − − −

  
  

  

2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )

a b
R x y R x R xµ µ µ= + − = + − = +

1 0 2 0sign( 1), sign( )x xσ µ σ µ= + − = +

The main physical parameters of 1996 HW1 

Overall dimensions (km) 

 

Average sphere radius (km)

Triaxial ellipsoid principal axes size (km)

) 

The first and second derivatives of the 

motion in the vicinity of the non

The second derivatives of the potential at the EPs located at 

22 2
21 2 22

11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2

22 3 4022 2 2

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

RR R C

R R R R R R R

C R CC R R

R R R R R

µ µ
δ µΩ = + − + − + − − + +

− + − + −

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2

15
3 1 105

a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  
22 2

00 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

yy y

R R R R R R R

C y C R y C R C y

R R R R R

µ µ
δ µΩ = + − + − + − − + −

+ + − + −

20 40

3/2 3/2 5/2 7/2 7/2

9 75
1 15

2 8
a b b b b

C C

R R R R R
Ω = − − + − − −

  
  

  

2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )

a b
R x y R x R xµ µ µ= + − = + − = +

sign( 1), sign( )σ µ σ µ= + − = + .

The main physical parameters of 1996 HW1 

 

Average sphere radius (km) 

Triaxial ellipsoid principal axes size (km)

The first and second derivatives of the 

motion in the vicinity of the non

The second derivatives of the potential at the EPs located at 

2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2

22 3 4022 2 2

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

R R C

R R R R R R R

C R CC R R

R R R R R

µ µ
δ µ

−
Ω = + − + − + − − + +

− + − + −

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2

15
3 1 105

a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  
2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

µ µ
δ µ

−
Ω = + − + − + − − + −

+ + − + −

20 40

3/2 3/2 5/2 7/2 7/2

9 75
1 15

2 8
a b b b b

C C

R R R R R
Ω = − − + − − −

  
  

  

2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )

a b
R x y R x R xµ µ µ= + − = + − = +

sign( 1), sign( ) . 

The main physical parameters of 1996 HW1 

Triaxial ellipsoid principal axes size (km)

The first and second derivatives of the  

motion in the vicinity of the non

65

The second derivatives of the potential at the EPs located at 

2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2

22 3 4022 2 2

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

60 105 15 105
8

a a b b b b b

b b b b b

R R C

R R R R R R R

C R CC R R

R R R R R

µ µ
δ µ

−
Ω = + − + − + − − + +

− + − + −

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2

15
3 1 105

2 8a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  
2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

60 105 15 105
8

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

µ µ
δ µ

−
Ω = + − + − + − − + −

+ + − + −

2220 40

3/2 3/2 5/2 7/2 7/2

9 75
1 15

2 8a b b b b

C RC C

R R R R R
Ω = − − + − − −

  
  

  

(A.1)
2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )

a b
R x y R x R xµ µ µ= + − = + − = +

The main physical parameters of 1996 HW1 

Triaxial ellipsoid principal axes size (km) 

 component

motion in the vicinity of the non

65 

The second derivatives of the potential at the EPs located at 

(
2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2

22 3 4022 2 2

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

60 105 15 105
8

a a b b b b b

b b b b b

R R C

R R R R R R R

C R R

R R R R R

µ µ
δ µΩ = + − + − + − − + +

 
− + − + − 

 

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

2 8
a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  

(
2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

60 105 15 105
8

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

µ µ
δ µΩ = + − + − + − − + −

 
+ + − + − 

 

2220 40

3/2 3/2 5/2 7/2 7/2

39 75

2 8
a b b b b

C RC C

R R R R R
Ω = − − + − − −

  
  

  

(A.1)
2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )

a b
R x y R x R xµ µ µ= + − = + − = +

The main physical parameters of 1996 HW1 (Magri et al., 2011)

 

component

motion in the vicinity of the non

 

The second derivatives of the potential at the EPs located at 

(
2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2

22 2 2

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

R R C

R R R R R R R

C R R

R R R R R

δ µΩ = + − + − + − − + +

 
− + − + − 

 

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

2 8
a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  

(
2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

δ µΩ = + − + − + − − + −

 
+ + − + − 

 

20 40

3/2 3/2 5/2 7/2 7/2

39 75

2 8
a b b b b

C RC C

R R R R R
Ω = − − + − − −

  
  

  

(A.1) 
2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )R x y R x R xµ µ µ= + − = + − = +

(Magri et al., 2011)

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

component

motion in the vicinity of the non-collinear equilibrium points

The second derivatives of the potential at the EPs located at 

)
2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2

22 2 2

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

R R C

R R R R R R R

C R R

R R R R R

δ µΩ = + − + − + − − + +

 
− + − + − 

 

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

2 8
a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  
2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

60 105 15 105

a a b b b b b

b b b b b

y y

R R R R R R R

C y C R y C R C y

R R R R R

δ µΩ = + − + − + − − + −

 
+ + − + − 

 

20 40

3/2 3/2 5/2 7/2 7/2

9 75

2 8
a b b b b

C C

R R R R R
Ω = − − + − − −

  
  

  

2 2 2 2

3 0 0 0 0
( ) , ( 1) , ( )R x y R x R xµ µ µ= + − = + − = +

(Magri et al., 2011)

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

component

collinear equilibrium points

The second derivatives of the potential at the EPs located at 

)
2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2

22 2 2

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

a a b b b b b

b b b b b

R R C
C

R R R R R R R

C R R

R R R R R

δ µ


Ω = + − + − + − − + +


 
− + − + − 

 

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

2 8
a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  

)
2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

2 2 2

22 0 22 3 0 22 3 40 0

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

a a b b b b b

b b b b b

y y
C

R R R R R R R

C y C R y C R C y

R R R R R

δ µ


Ω = + − + − + − − + −


 
+ + − + − 

 

20 40

3/2 3/2 5/2 7/2 7/2

9 75

a b b b b

C C

R R R R R

  
  

  

2 2 2 2
( ) , ( 1) , ( )µ µ µ= + − = + − = +

(Magri et al., 2011)

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

component: 

collinear equilibrium points

The second derivatives of the potential at the EPs located at 

2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

15

a a b b b b b

b b b b b

R R C
C

R R R R R R R

R R R R R


Ω = + − + − + − − + +



 
− + − + − 

 

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

2 8
a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  
2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

15

a a b b b b b

b b b b b

y y
C

R R R R R R R

R R R R R


Ω = + − + − + − − + −



 
+ + − + − 

 

  
  

  
 

2 2 2 2
( ) , ( 1) , ( ) ,  

(Magri et al., 2011)

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

 

collinear equilibrium points

The second derivatives of the potential at the EPs located at 

2 2

1 2 22
11 205/2 3/2 5/2 3/2 7/2 5/2 5/2

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

15

a a b b b b b

b b b b b

R R C

R R R R R R R

R R R R R

  
Ω = + − + − + − − + +  

 

 
 
 

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/2
3 1 105

2 8
a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  
2 2

0 0
22 205/2 3/2 5/2 3/2 7/2 5/2 5/2

7/2 9/2 7/2 9/2 7/2

1 3
1 3 3 1 6

15

a a b b b b b

b b b b b

y y

R R R R R R R

R R R R R

  
Ω = + − + − + − − + −  

 

 
 
 

  
  

  
 

,   

(Magri et al., 2011)

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

8.76243±0.00004

2.28×1.64×1.49

collinear equilibrium points

The second derivatives of the potential at the EPs located at 

2 2

1 2 22

5/2 3/2 5/2 3/2 7/2 5/2 5/2

7/2 9/2 7/2 9/2 7/2

151 3
1 3 3 1 6

2 2

15

a a b b b b b

R R C

R R R R R R R

 
Ω = + − + − + − − + + 

 

 
 
 

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/22 8
a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  
2 2

0 0

5/2 3/2 5/2 3/2 7/2 5/2 5/2

7/2 9/2 7/2 9/2 7/2

151 3
1 3 3 1 6

2 2

15

a a b b b b b

y y

R R R R R R R

 
Ω = + − + − + − − + − 

 

 
 

 

 
 
 

(Magri et al., 2011)

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

8.76243±0.00004

2.28×1.64×1.49

collinear equilibrium points

�

2 2

1 2 22

5/2 3/2 5/2 3/2 7/2 5/2 5/2

151 3
1 3 3 1 6

2 2
a a b b b b b

R R C

R R R R R R R

 
Ω = + − + − + − − + + 

 

  
 
  

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/22 8
a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σσ σ  
Ω = + − − + +  

  
2 2

0 0

5/2 3/2 5/2 3/2 7/2 5/2 5/2

151 3
1 3 3 1 6

2 2a a b b b b b

y y

R R R R R R R

 
Ω = + − + − + − − + − 

 

  
 

  

(Magri et al., 2011)

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

8.76243±0.00004

2.28×1.64×1.49

collinear equilibrium points

�

2 2

1 2 22

5/2 3/2 5/2 3/2 7/2 5/2 5/2

1 3
1 3 3 1 6

2 2
a a b b b b b

R R C

R R R R R R R

 
Ω = + − + − + − − + + 

 

  
 
  

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/22 8
a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σ  
Ω = + − − + +  

  
2 2

0 0

5/2 3/2 5/2 3/2 7/2 5/2 5/2

1 3
1 3 3 1 6

2 2a a b b b b b

y y

R R R R R R R

 
Ω = + − + − + − − + − 

 

  
 

  

(Magri et al., 2011). 

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

8.76243±0.00004

1.5

2.28×1.64×1.49

2.0

collinear equilibrium points

�

1 2 22

5/2 3/2 5/2 3/2 7/2 5/2 5/2

1 3
1 3 3 1 6

2 2
a a b b b b b

R R C

R R R R R R R

 
Ω = + − + − + − − + + 

 

1 1 0 20 2 2 0 40 2 2 02 2 0 22 3 2 2 0

5/2 5/2 7/2 9/2 9/22 8
a b b b b

R y C R y C R yR y C R R y

R R R R R

µσ σ σ  
Ω = + − − + +  

  

5/2 3/2 5/2 3/2 7/2 5/2 5/2

1 3
1 3 3 1 6

2 2a a b b b b bR R R R R R R

 
Ω = + − + − + − − + − 

 

 

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

8.76243±0.00004

1.5 

2.28×1.64×1.49

2.0 

collinear equilibrium points

 

1 2 22

5/2 3/2 5/2 3/2 7/2 5/2 5/2

1 3
1 3 3 1 6

2 2
a a b b b b b

R R C

R R R R R R R

 
Ω = + − + − + − − + + 

 

1 1 0 20 2 2 0 40 2 2 0

5/2 5/2 7/2 9/2 9/2

105

2 8a b b b b

R y C R y C R y

R R R R R

µσ σ σ  
Ω = + − − + +  

  

5/2 3/2 5/2 3/2 7/2 5/2 5/2

1 3
1 3 3 1 6

2 2a a b b b b bR R R R R R R

 
Ω = + − + − + − − + − 

 

 

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

8.76243±0.00004

2.28×1.64×1.49

collinear equilibrium points

1 2 22

5/2 3/2 5/2 3/2 7/2 5/2 5/2
1 3 3 1 6

a a b b b b b

R R C

R R R R R R R

 
Ω = + − + − + − − + + 

 

1 1 0 20 2 2 0 40 2 2 0

5/2 5/2 7/2 9/2 9/2

105

2 8
a b b b b

R y C R y C R y

R R R R R

µσ σ σ  
  

  

5/2 3/2 5/2 3/2 7/2 5/2 5/2
1 3 3 1 6

a a b b b b bR R R R R R R

 
Ω = + − + − + − − + − 

 

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

8.76243±0.00004 

2.28×1.64×1.49 

collinear equilibrium points 

1 2 22

5/2 3/2 5/2 3/2 7/2 5/2 5/2
1 3 3 1 6

a a b b b b b

R R C

R R R R R R R

 
Ω = + − + − + − − + + 

 

1 1 0 20 2 2 0 40 2 2 0

5/2 5/2 7/2 9/2 9/2

a b b b b

R y C R y C R y

R R R R R

µσ σ σ  
  

  

5/2 3/2 5/2 3/2 7/2 5/2 5/2
1 3 3 1 6

a a b b b b bR R R R R R R

 
Ω = + − + − + − − + − 

 

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

 

1 2 22

5/2 3/2 5/2 3/2 7/2 5/2 5/2
1 3 3 1 6

a a b b b b b

R R C

R R R R R R R

 
 
 

1 1 0 20 2 2 0 40 2 2 0

5/2 5/2 7/2 9/2 9/2

a b b b b

R y C R y C R y

R R R R R

µσ σ σ  
  

  

22

5/2 3/2 5/2 3/2 7/2 5/2 5/2
1 3 3 1 6

a a b b b b b

C

R R R R R R R

 
 
 

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

1 2 22

5/2 3/2 5/2 3/2 7/2 5/2 5/2

a a b b b b b

R R C

R R R R R R R

1 1 0 20 2 2 0 40 2 2 0

5/2 5/2 7/2 9/2 9/2

R y C R y C R y  
  

  

22

5/2 3/2 5/2 3/2 7/2 5/2 5/2

a a b b b b b

C

R R R R R R R

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15

 

1 1 0 20 2 2 0 40 2 2 0R y C R y C R y  
  

  

 

X: 3.78±0.05; Y: 1.64±0.1; Z: 1.49±0.15 

  
  

  

 

  
  

  



Orbital motion in the vicinity of the non-collinear equilibrium points 

66 
 

   
1 2 3

2 2 2 2 2 2
2 2 2

2 2 2

1 2 3 1 2 1 3 2 3

( .1 )

2 2 2 ( .1 )

v u C a

v u v u vu C b

ξ ξ ξ
ξ ω

θ θ θ

ξ ξ ξ ξ ξ ξ
ξ ω ω ω

θ θ θ θ θ θ θ θ θ

∂ ∂ ∂
= + +     ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ = + + + + +    

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
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At the left-hand side of the equation, the derivative terms at order N come from two 

parts. One is from the frequency part at order �, and the other is from the partial 

derivatives part at order J . From Eq. (C.1a), the combinations of  �  and J  are 

shown in Table C.1. Similarly, the combinations of �  and J  from Eq. (C.1b) are 

shown in Tables C.2a and C.2b. 

Table C.1 The terms at order 7 from the first derivatives. 

7� 7J 
� ∙

KL

KM�

 N ∙
KL

KM�

 O ∙
KL

KM�

 

0 N −��QL�=> −N�RL�=> −O�SL�=> 

N-1 1 −2T�����=>1?�1��1�� 	0 0 

 

Table C.2a The terms at order 7 from the second derivatives. 

7� 7J 
�� ∙

K�L

KM�
� N� ∙

K�L

KM�
� O� ∙

K�L

KM�
� 

0 N −��
�Q�L�=> −N�

�R�L�=> −O�
�S�L�=> 

N-1 1 −2������=>1?�1��1�� −2N�N�=��>1?�1��1�� 0 

  

Table C.2b The terms at order 7 from the second cross derivatives. 

7� 7J 
�N ∙

K�L

KM�KM�

 �O ∙
K�L

KM�KM�

 NO ∙
K�L

KM�KM�

 

0 N −��N�QRL�=> −��O�QSL�=> −N�O�RSL�=> 

N-1 1 0 0 0 

 

In the above tables, �=  is the Kronecker function defined as �=  if  and 

�=  if .  

 

Table C.3  

The coefficients of the third-order solution based on the system 1996 HW1 with 1 = 30. 

, ,i j k  , ,l m n lmn

ijkξ  
lmn

ijkξ  
lmn

ijkη  
lmn

ijkη  

First order 
0 0 1 0 0 1 0 0 0 0 

0 1 0 0 1 0 1 0 -0.035053982599398 -0.462561390510061 

1 0 0 1 0 0 1 0 -0.039537507604550 -0.336524799123989 

Second order 
2 0 0 0 0 0 -0.023806114920661 0 -0.053741389350147 0 

 2 0 0 -0.016192214114086 0.035431401331960 -0.04459758386557 0.003759838927571 

0 2 0  0 0 0 -0.021006982631613 0 -0.038383674187688 0 

 0 2 0 -0.003915952890528 0.016657054924871 -0.043517860201724 -0.002029452661860 

0 0 2 0 0 0 -0.000877747450392 0 -0.081689054179531 0 

 0 0 2 -0.003434126850330 -0.078070935564490 -0.079513547812876 0.003416490374532 

1 1 0 1 1 0 -0.011709442031593 0.039582384163479 -0.093135622475414 -0.002076374704935 

 1 -1 0 -0.071866545748974 0.061834804112778 -0.102857914964174 -0.015387784859370 
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Third order  
0 1 2 0 1 0 0 -0.254455536743036 -0.118039682453026 0 

 0 1 2 0.007553124943105 -0.000174979775855 -0.000184016696880 -0.008296739941255 

 0 1 -2 0.030236354551945 -0.000380069835466 -0.000684739985558 0.025453086732806 

1 0 2 1 0 0 0 0.258292868721213 0.085816387449906 0 

 1 0 2 0.009817337527766 -0.000282319704210 -0.000302255508270 -0.010613532662720 

 1 0 -2 0.018669336525655 0.000382335070366 -0.000672394037954 0.018179956333375 

1 2 0 1 0 0 0 -0.023168973443996 0.005885433654049 0 

 1 2 0 -0.009636398933641 -0.001840065809099 0.001846933760841 -0.013413088064179 

 1 -2 0 0.008171128122171 0.002687712210761 0.006910586800193 0.004789674411975 

2 1 0 0 1 0 0 -0.435139147907026 -0.185246194642733 0 

 2 1 0 -0.010238386420191 -0.002425723361892 0.002825269628812 -0.015119405158079 

 2 -1 0 0.047799298598753 -0.005380853876668 0.006962113291533 -0.020744877091795 

0 3 0 0 0 0 0 -0.250160272880210 -0.110317571405433 0 

 0 3 0 -0.003096643426563 -0.000554947829432 0.000540105182793 -0.004300085512299 

3 0 0   0 0 0 0 0.049726518676773 0.023948768284819 0 

 3 0 0 -0.003617421378978 -0.001217724734530 0.001544580406246 -0.006174181192942 

      

 

, , , , ,i j k l m n

 

lmn

ijkς  
lmn

ijkς  
, , , , ,i j k l m n

 

lmn

ijkς  
lmn

ijkς  

    First order  0 2 1 0 2 -1 -

0.007691552844634 

0.000570762759971 

0 0 1 0 0 1 0 1 2 0 1 0 0 1 0     0 

    Second order  2 0 1 2 0 1 -

0.014594281836922 

-0.001378172317923 

0 1 1 0 1 1 -0.001745243543444 0.092712440784877 2 0 1 2 0 -1 -

0.002785187193666 

0.003328262370502 

0 1 1 0 1-1 0.004267433115526 -0.22669852669720 0 0 3 0 0 1 0 0 

1 0 1 1 0 1 -0.001466326438136 0.116825844612141 0 0 3 0 0 3 -

0.000124241324214 

0 

1 0 1 1 0-1 -0.001745243543444 0.092712440784877 1 1 1 1 1 1 -

0.023981112829593 

-0.001146204733178 

                                Third order 1 1 1 1 -1 1 -

0.035826340467038 

-0.012350389128375 

0 2 1 0 0 1 0 0 1 1 1 1 1 -1 -

0.011862800003690 

0.001773914178153 

0 2 1 0 2 1 -0.010751558776951 -0.00048027511378 1 1 1 1-1 -1 -

0.001845253539161 

0.009327034565701 

 

, ,i j k  
ijkω  ijkv  ijku  

2 0 0 -0.020030813330247 0.024142612320952 0.001863199630957 

0 2 0 -0.033184598445032 0.007740025281966 0.001878519971433 

0 0 2 -0.026919160761714 0.019745386404717 -0.000506169348563 
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Abstract 

The existence and characteristics of periodic orbits (POs) in the vicinity of a contact 

binary asteroid are investigated with an averaged spherical harmonics model. A 

contact binary asteroid consists of two components connected to each other, resulting 

in a highly bifurcated shape. Here, it is represented by a combination of an ellipsoid 

and a sphere. The gravitational field of this configuration is for the first time expanded 

into a spherical harmonics model up to degree and order 8. Compared with the exact 

potential, the truncation at degree and order 4 is found to introduce an error of less 

than 10% at the circumscribing sphere and less than 1% at a distance of the double of 

the reference radius. The Hamiltonian taking into account harmonics up to degree and 

order 4 is developed. After double averaging of this Hamiltonian, the model is reduced 

to include zonal harmonics only and frozen orbits are obtained. The tesseral terms are 

found to introduce significant variations on the frozen orbits and distort the frozen 

situation. Applying the method of Poincaré sections, phase space structures of the 

single-averaged model are generated for different energy levels and rotation rates of 

the asteroid, from which the dynamics driven by the 4×4 harmonics model is identified 

and POs are found. It is found that the disturbing effect of the highly irregular 

gravitational field on orbital motion is weakened around the polar region, and also for 

an asteroid with a fast rotation rate. Starting with initial conditions from this averaged 

model, families of exact POs in the original non-averaged system are obtained 

employing a numerical search method and a continuation technique. Some of these 

POs are stable and are candidates for future missions.  

4.1 Introduction 
Orbital dynamics around asteroids has become more and more interesting for mission 

purposes. It also sheds light on our understanding of the evolution of the solar system. 

This paper focuses on one specific type of asteroid, i.e. the contact binary asteroid, 

which consists of two lobes that are in physical contact and which represents the 

mostly bifurcated body. Together with comets, the contact binary body is estimated to 

constitute 10-20% of all small solar system bodies (Harmon et al., 2011). Rosetta’s 

target comet 67P/Churyumov-Gerasimenko was found to be probably a contact binary 

very recently (August 2014). (Richardson, 1980) 



Modelling and analysis of periodic orbits 

70 
 

The irregular gravitational field induced by an asteroid can be modelled with 

several different methods (Scheeres, 2012). For the study outside of the circumscribing 

sphere, the method of a spherical harmonic expansion truncated at arbitrary degree and 

order can be used. When the distance becomes smaller, the polyhedron method of 

approximation of the shape of a body with triangular faces is more valid (Werner and 

Scheeres, 1997). Another option is to approximate the gravitational field by 

elementary geometrical shapes (e.g. ellipsoid), in which case closed-form potentials 

can be obtained.  

Following the typical mass distribution of a contact binary, the model of a 

combination of an ellipsoid and a sphere is used in this study, as shown in Fig.1. This 

model breaks one axial symmetry, which is different from the geometrical shapes (a 

straight segment, two orthogonal segments, an ellipsoid, a cube, a thin bar) studied in 

(Elipe and Lara, 2003, Bartczak et al., 2006, Bartczak and Breiter, 2003, Liu et al., 

2011b, Halamek and Broucke, 1988). For this specific configuration, possible 

formation mechanisms and the relationship between the relative configuration and the 

rotational angular momentum have been studied in detail in (Scheeres, 2007). In 

addition, this simplified model already captures the main characteristics of the full 

gravitational field. 

To gain some insight into the gravitational field of this configuration and the orbital 

dynamics around such a system, the spherical harmonics expansion is applied. As 

already mentioned, it is a good representation of a non-spherical gravitational field 

outside the circumscribing sphere. It has been applied extensively for studying orbital 

dynamics around planets and moons, for which the zonal and C22 terms are usually 

dominant and several magnitudes larger than the other tesseral terms. However, for 

orbital motion close to a contact binary asteroid, it is typically not sufficient to only 

include the zonal and C22 terms. Due to the highly non-spherical shape of the body, the 

other tesseral harmonics are much larger and more comparable with the zonal terms 

than in the case of planets and moons. For instance, the C30, C31 and C33 terms can 

easily be only one order of magnitude smaller than the C22 and C40 terms or even of the 

same magnitude, e.g. in the case of Eros and Itokawa (Scheeres et al., 2000, Yu and 

Baoyin, 2012b, Barnouin-Jha et al., 2006). Therefore, they should not be ignored 

during the analysis. 

For studying the corresponding orbital dynamics with a spherical harmonics model, 

numerical (Hu and Scheeres, 2004, Russell and Lara, 2007, Russell and Lara, 2009, 

Lara and Russell, 2007), analytical (Liu et al., 2011a, Ceccaroni and Biggs, 2013, 

Coffey et al., 1994, San-Juan et al., 2004) and semi-analytical (Scheeres et al., 2000, 

Métris and Exertier, 1995) methods have been developed. Among them, the traditional 

averaging method has extensive applications, since it simplifies the system by 

averaging out the short-term effects while capturing the secular and long-term 

evolutions. Together with the Lagrange Planetary Equations (LPE), the effect of the 
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harmonics C20, C22, C30 and C40 on orbital elements has been studied by (Scheeres et 

al., 2000), and they are found to enlarge the orbital eccentricity. By applying the Lie 

transformations, high-altitude frozen orbits have been obtained analytically by 

(Ceccaroni and Biggs, 2013) for the fast-rotating asteroid Eros, with the harmonics 

truncated at degree 15.  

Actually, the averaging process reduces the three degrees of freedom (3-DoF) to 2-

DoF and even 1-DoF. The reduced system then can either be numerically integrated or 

be solved in closed form. The method of Poincaré sections is a good tool for solving 

the reduced 2-DoF by numerical integration, as it transforms the 2-DoF system to a 

two-dimensional map. Common applications can be found in (Lara, 1996, Broucke, 

1994) for finding POs. Generally, frozen orbits can be obtained from the 1-DoF 

system (Coffey et al., 1994, Liu et al., 2011a). POs however can be generated from the 

1-DoF system (Palacián, 2007), 2-DoF (Tzirti et al., 2010) and also 3-DoF systems 

(Lara, 1999, Lara and Russell, 2007). The eccentricity and pericenter of the frozen 

orbits always remain constant on average, while those of the POs have small 

deviations from the ‘mean’ value but will return to the same value after one period. 

POs, i.e. repeat ground track orbits in the rotating frame, were also found to be a 

subset of frozen orbits in inertial space (Lara, 1999). In addition, the POs can also be 

explored for determining the stability bounds (Lara and Scheeres, 2002). Since the 

propellant consumption for following these kinds of orbits is usually small, both of 

them are interesting for mission purposes. 

Little research however has been done on finding POs with a 4×4 spherical 

harmonics model for the highly irregular gravitational field of a contact binary asteroid 

with this configuration and also with different rotation rates. This will be the focus of 

this study. In addition, instead of following a global search method, the POs of the 

original system will be obtained from the Poincaré sections with a numerical search 

and correction method.  

This paper is arranged as follows. In Section 2, the gravitational field potential of 

the ellipsoid-sphere configuration is expanded into a spherical harmonics model. In 

fact, this kind of expansion has been performed for some specifically shaped bodies, 

e.g. an ellipsoid or two spheres connected with each other (Balmino, 1994), both of 

which are three-axis symmetric. Therefore, the current work is the first attempt for 

expanding the gravitational field into spherical harmonics for a geometrical body of 

which one axis-symmetry has been broken. The general method for obtaining the 

spherical harmonics for a given body is introduced. In Section 3, the contact binary 

system 1996 HW1 (Magri et al., 2011) (one of the most bifurcated bodies ever found) 

serves as the study case for testing the accuracy of the truncation at degree and order 4, 

and further at degree and order 8. The expansion is also checked against the cases 

when varying the sizes of this configuration. In Section 4, the Hamiltonian including 

the 4×4 harmonics and the rotation of the asteroid is obtained for the analysis of the 
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dynamics. It is reduced to a 1-DoF system by double-averaging, and frozen orbits are 

identified. The effects of the tesseral harmonics on these frozen orbits are examined. In 

Section 5, by applying Poincaré sections, the phase space structure of the 2-DoF 

system is obtained at various energy levels and at different rotation rates of the 

asteroid. In Section 6, with a numerical correction method and the initial conditions 

from the Poincaré maps, a number of POs can be obtained in the single-averaged 

model and successively in the full non-averaged model.  

4.2 Shape Model and Geometrical Potential  
In this study, the contact binary asteroid is modeled as a combination of an ellipsoid 

and a sphere, as shown in Fig.1. 

 
Figure 1  The ellipsoid-sphere configuration and the body-fixed frame !"/. 

The parameters that describe the configuration in Fig.1 are the three semi-axes of 

the ellipsoid  and the radius of the sphere . The system is assumed to be 

homogeneous, with a constant density . It is also assumed that the system rotates 

uniformly about the -axis with a velocity . The vector from the center of mass of the 

ellipsoid to that of the sphere is denoted as , where . The mass ratio � is 

defined as � � �
�  ( � and � are the mass of the sphere 

and the ellipsoid, respectively). Here the body-fixed frame is defined as the -axis 

along the line connecting the mass centers of the two components with positive 

direction from ellipsoid to sphere, the -axis along the rotation axis of the body with 

positive direction pointing along the angular velocity, and the -axis obtained 

according to the right-hand rule. With this definition, the asteroid still has  and -

plane symmetry, while the -plane symmetry is broken. This makes the problem 

more complicated, compared to the individual sphere and ellipsoid geometries which 

have three planes of symmetry. The gravitational potential of this two-component 

asteroid can be written as  

               0
0

0

( ) (1 ) ( )
(1 )

se sphere ellipsoid s e e
U U U G m m U r d

r d

µ
µ µ

µ

 
 = + = + + − +
 − −
 

��
��  ,              (1) 
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where   is the position of a given point , and ��U��� and �??�����J are 

the potentials of the sphere and ellipsoid parts, respectively. The former one can be 

viewed as a point mass potential, while the later one is expressed as (MacMillan, 1958) 

( )

( ) ( )

22 2

2 2 2

2 2 2

3
( ) ( , )

4 ∆( )

, 1

∆ ( )( )( ), , 0

e

yx z

dv
U v

v

rr r
v

v v v

v v v v

σ

φ

φ
α β γ

α β γ φ σ

∞

=

= − − −
+ + +

= + + +  =

∫r r

r

r

, 

where  is an internal variable for the calculation of �  and 	 
 �  is the 

independent variable of function � . The potential expressed here will serve as the 

baseline to verify the accuracy of the spherical harmonics expansion studied in the 

following section.  

4.3 Spherical Harmonics Expansion 

4.3.1 Method 

The gravitational potential in spherical harmonics is usually expressed as follows 

(Kaula, 1966) 

                  ( )
2 0

1 (sin ) cos sin( )

nn

e
nm nm nm

n m

RGM
V P C m S m

r r
θ λ λ

∞

≥ =

   
= + +     

   
∑∑ ,                    (2) 

where  is the gravitational constant of the asteroid;  and  are spherical 

coordinates (the radial distance  from the center of mass to a given point , latitude 

and longitude, respectively) in the body-fixed frame; �  is a characteristic physical 

dimension and is usually defined as half of the largest dimension of the whole body, 

equal to  as defined in Section 2; �� is the associated Legendre polynomial. �� 

and ��  are the coefficients of the spherical harmonics expansion which are 

determined by the mass distribution within the body. They can be expressed in terms 

of inertia integrals which are dependent on the geometric representation of the body. 

Assuming a homogeneous density of the body, the inertia integral �,=,> is defined as 

(MacMillan, 1958) 

                                                      , ,

i j k

i j kI x y z dxdydzρ= ∫∫∫ .                                          (3) 

The triple integration is performed over the entire volume of the body. For bodies 

symmetric through the  and -planes, the inertia integrals are zero if there is an 

odd number among  and . Therefore, the un-normalized ��  and ��  in inertia 

integrals are expressed as follows (MacMillan, 1958) 
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For simplification, dimensionless units are used in the following study, where the 

length unit is , the gravitational parameter  and the resultant time unit 

�
� . From now on, the variables are in dimensionless units however with 

the same notation. The mathematical expressions for the configuration of this contact 

binary, which also define the limits of the inertia integral, can be written as 
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 .                    (5) 

With this method, the outcome of the associated spherical harmonics model has 

been tested against the analytical values available from literature, and in this way 

verified. For the study case of system 1996 HW1 (Appendix A), the coefficients up to 

degree and order 8 are obtained and given in Appendix B. It is found that higher-order 

zonal terms and some tesseral terms, e.g. C31, C40, C60, have the same magnitude as C22. 

4.3.2 Verification  

For an ellipsoid, it is found that the external gravitational harmonics converge 

uniformly down to the surface when  (Balmino, 1994). For a general body the 

divergence is severe once the point of interest comes into the circumscribing sphere of 

the body (MacMillan, 1958). Therefore, the analysis of the dynamics based on the 

above spherical expansion will be restricted to the area outside the circumscribing 

sphere, which has a dimensionless radius of 1.0725 for system 1996 HW1. The 

accuracy of this expansion (up to degree and order 4 and 8) is verified by comparing it 

with the analytical potential formulation Eq.(1). The relative errors of the potential 

value and the radial acceleration on the circumscribing sphere and also on the sphere 

with a dimensionless radius equal to 2 are illustrated in Fig.2. The relative error here is 

defined as the absolute difference between the potential values or the acceleration from 

the spherical harmonics expansion and the analytical formulation, divided by the value 

of the latter one.  
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Figure 2a The relative error of potential (top) and radial acceleration (bottom) of the 4×4 

spherical harmonics expansion for a radius equal to the one of the circumscribing sphere (left) 

and 2 (right). 
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Figure 2b The relative error of potential (top) and radial acceleration (bottom) of the 8×8 

spherical harmonics expansion for a radius equal to the one of the circumscribing sphere (left) 

and 2 (right). Note the different colour scales. 

For the truncation up to degree and order 4, Fig.2a (top) shows that the maximum 

error of the potential is about 8×10
-2

 on the circumscribing sphere and 2×10
-3

 at a 

radius of 2. In addition, for the 8×8 expansion (Fig.2b, top), the potential error reduces 

to around 2×10
-2

 and 4×10
-5

, respectively. As for the radial acceleration, the relative 

errors are all about one order of magnitude larger than those of the potential due to 

differentiation. This confirms the expectation that the higher the order of the truncation, 

the more accurate the expansion. For this irregularly shaped body, the largest errors 

appear at the outer edge of the smaller component along the most bifurcated direction 

( ° or ° and °) i.e. the positive -axis; we call this point with the largest 

error ‘critical point’ from now on. For the radius larger than 2, the error reduces 

rapidly. In addition, it is concluded that the relative error of the expanded 4×4 potential 

and the radial acceleration is much smaller than 0.3% and 1.5%, respectively, when 
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the distance to the center of mass of the system is larger than 2. Of course, the 8×8 

model performs better.  

In addition, the influence of the configuration on the accuracy of the expansion is 

also checked. To that end, the radius of the sphere  is varied from zero to the value of 

the smallest semi-axis of the ellipsoid component (0.745 km, cf. Appendix A). The 

maximum relative errors of the expansions for the 4×4 potential at five chosen radius 

are illustrated in Fig.3. When  is zero, the model reduces to that of the ellipsoid 

potential. Its largest relative error is at the magnitudes of 10
-2

 (circumscribing sphere) 

and 10
-4

 ( ), respectively. For all study cases, the smallest relative error is at 

, while the largest one comes out for   km. This implies that when   

evolves from 0 to 0.745 km, at some radius near 0.46 km the most irregular (bifurcated) 

shape is generated, in which case the 4×4 spherical harmonics approximation does not 

work so well at the singular point, and a higher-order truncation, e.g. 8×8, is required. 

 

Figure 3  The maximum relative error of the 4×4 spherical harmonics expansion of the 

potential field at the circumscribing sphere and W 2 2 for the radius of the sphere at 0, 0.26, 

0.46, 0.66, 0.745 km.  

In summary, the spherical harmonics expansion up to degree and order 4 is a good 

approximation of the gravitational field of the contact binary asteroid especially for a 

dimensionless radius larger than 2. Therefore, in the following sections, the spherical 

harmonics truncated at this order are taken into account in the analysis of the dynamics 

of orbits. The initial conditions are chosen at a distance of no less than 2.  

4.4 Hamiltonian of the Truncated System 
Taking into account the spherical harmonics up to degree and order 4, and the rotation 

of the asteroid at rate �, the Hamiltonian of the truncated system can be written as 
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                                                                       0 a nmn C= + +H H H H  ,                                                    (6) 

where �  is the unperturbed Keplerian part,  �X
 comes from the rotation of the 

asteroid, and YZ[
 represents the spherical harmonics perturbation. All terms of 

Eq.(6) in spherical coordinates are listed in Appendix C. For simplifying this 

dynamical system and also capturing its mean characteristics, an averaging method is 

applied. To this aim,  is translated into a function of orbital elements . 

Here  are the semi-major axis, eccentricity, inclination and true anomaly, 

respectively. In addition  is the argument of pericenter. The longitude of the 

ascending node  in the frame co-rotating with the asteroid at rate � is expressed as 

� . The relations between orbital elements and spherical coordinates 

 are given in Appendix D. 

For studying the dynamics of a Hamiltonian system, it is convenient to use a 

canonical set of variables. One common set is the Delaunay variables, which are 

defined as follows (Chicone, 1999) 

( ) ( )2 2, , Ω , , 1 , 1al M g h n t L a G a e H a e cosiω µ µ µ= = = − = = − = − , 

where  is the modulus of the angular momentum and  its projection on the -axis. 

The equations of motion for a Hamiltonian system are expressed as 

                                                          

,

,

,

dl dL

dt L dt l

dg dG

dt G dt g

dh dH

dt H dt h

 ∂ ∂
= = − ∂ ∂


∂ ∂

= = −
∂ ∂

 ∂ ∂
= = −

∂ ∂

H H

H H

H H

 .                                                        (7) 

Since Eq.(7) forms a system with six independent variables , the 

Hamiltonian is a 3-DoF system. In the following study, the orbital elements are used in 

the averaging analysis, while the Delaunay variables will be employed in the 

numerical integration part.  

4.4.1 Single-averaged Model 

By applying the change of variables 

( )

2

1/2
2 21

r
dM df

a e
=

−
, 

 can be averaged over the mean anomaly  (or ), and the averaged Hamiltonian 

YZ[
 up to degree and order 3 can be given as function of orbital elements (Tzirti et 

al., 2010) 
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Extending the averaging of YZ[
to degree 4, the resultant Hamiltonian is obtained 

using MAPLE
16

 and given as  
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Since  is averaged out,  is reduced to a 2-DoF system with variables  and  

                                                          0 nm aC n= + +H H H H .                                                        (8) 

However, the system can be reduced further by a second averaging which is carried 

out in the next section.  

4.4.2 Double-averaged Model  

It can be seen that in the single-averaged system the tesseral harmonics still include 

� , which is time related. Therefore, the Hamiltonian can be averaged a 

second time over , denoted as . It can be shown that the corresponding tesseral 

terms are all eliminated, thus YZ[
 only consists of contributions from zonal terms, 

which is actually the zonal approximation of the problem. The Hamiltonian is now 

reduced to 1-DoF and can be written as 

                                                 
20 400 aC C n= + + +ɶH H H H H .                                        (9) 

The four terms have already been given in Section 4.1. 

(1) Frozen orbits 
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Substituting Eq.(9) into the Lagrange Planetary Equations (LPE) (Kaula, 1966), the 

derivatives of the orbital elements  and  can be obtained. With the perturbation from  

Y\]
 and  Y^]

, the derivatives of  and  from  are given as  

( )
( ) ( )

( )
( )( )

( )

4
4 2

403
7 2

2
2 2 2 2 2 42

20 40

4
7 2 4 2 2 2 2 4 4 2 2

40

3
[ 70 60 2 ]

64 1

32 5 1 1 10 cos(2 )[(2 16 14 )3

128 1 (63 56 5) ] 5 [ 12 144 196 (189 126 9)

e

ee

e

Rde
C s s sin g e

dt a e n

C a c e C R g c cRdg

dt a e n c c e C R c c c c e

µ

µ
 
 
 
 
 

−
= −

−

− − + − +−
=

− + − + − − + + − +

 

(10) 

where  is the mean rotation rate of the orbit with semi-major axis . Frozen orbits can 

be found by solving . Only for �
° or  or  ,  equals zero. 

However, no solution for 0 is found at �. For the main problem based on C20 only 

and also the C20+C30 dynamics studied in (Tzirti et al., 2010), frozen orbits exist at 
°, which is known as the critical inclination. However, the situation is 

different in the C20+C40 dynamics, which is explained in the following part.  

For  and , solutions for  can be obtained in the  plane as shown 

in Fig.4, in which the frozen eccentricities are all quite large in all cases, except for 

those close to the bifurcations. Therefore, only parts of them (in the inclination range 

around °) are practical as they should not impact on the asteroid. In addition, 

the frozen eccentricity increases as  becomes larger. Compared with the case of 

, for the case of   the frozen orbit is slightly more eccentric for a given 

value of , and the feasible range of  for a practical orbit becomes more narrow. For 

both situations, no solution exists around °or at low inclinations due to this 

specific C20 + C40 dynamics. 

 
Figure 4 Eccentricity-inclination diagrams for the double-averaged system with C20 + C40 

dynamics at  _ 2 0 (left) and C/2 (right). The stars represent the conditions where there is no 

intersection with the asteroid (1996 HW1). The two black pentagrams represent the two 

bifurcations for a=2.5. 

 

inclination(deg)

30 40 50 60 70 80 90

e
c
c
e
n
tr

ic
it
y

0

0.2

0.4

0.6

0.8

1
g=0

a=2.5

a=6

a=4

inclination(deg)

30 40 50 60 70 80 90

e
c
c
e

n
tr

ic
it
y

0

0.2

0.4

0.6

0.8

1
g= /2

a=2.5

a=4

a=6



Modelling and analysis of periodic orbits 

81 
 

Coffey (Coffey et al., 1994) also studied the frozen dynamics including the C20+C40 

terms, but with the Lie perturbation method. Using the same values for C20 and C40, 

Coffey’s results are found to have two similar branches at both  and . There 

is approximately 1-5% difference between the results from his method and ours in this 

double-averaged model, due to the different averaging methods applied. The large 

difference appears at a large frozen eccentricity. According to his study, for the 

C20+C40 dynamics, two families (for   and ) of solutions bifurcate 

around the critical inclination. As we can see from Fig.4, there are also two 

bifurcations (the two black pentagrams) from our results, one at  °  for 

 and the other at ° for , at . They are also very close 

to the critical inclination of the main problem. Further, the bifurcation moves closer to 

the critical value ( ° ) with the increase of , since the perturbation from 

spherical harmonics is weakened when orbits are further away from the body. This is 

consistent with Coffey’s theory and proves that the traditional averaging technique 

also describes the underlying dynamics quite well.  

In general, frozen orbit of planetary problem have a small eccentricity and exists for 

a large inclination range. However, for asteroids the frozen eccentricity is large and is 

only present in a limited inclination range. This is probably due to the large C20 and 

C40 terms, which is always the case for highly irregular asteroids, e.g. 433 Eros and the 

contact binary in this study.  

Similarly, the behaviour of the frozen orbits in this system but with different sizes 

as in Section 3.2 is also investigated and shown in Fig.5. Again the radius of the 

sphere  is changed from zero to 0.745 km. Several aspects can be noticed. Firstly, the 

deviations of the frozen eccentricities among different sizes are smaller for  than 

those for  (note the difference in scale of the y-axis). This means that  has a 

smaller influence on orbits for larger values of , which is obvious since the irregular 

shape of the asteroid has less influence when one is further away. Secondly, at a 

specific value of , the frozen eccentricity decreases as  reduces when  km, 

and the opposite occurs when  km. It is concluded that there is a transition 

radius somewhere in between these values, at the right side of which the frozen 

eccentricity is analogously proportional to the radius  and the opposite happens on 

the left side; again, due to the manifestation of the irregularity of the contact binary 

system. In summary, the frozen orbits are highly elliptic and the feasible ones exist at 

inclinations °.  
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Figure 5 Eccentricity-inclination diagrams for the double-averaged system with C20 and C40 at 

_ 2 0 (left) and C/2 (right), when the radius of the sphere varies from 0 to 0.745 km. The 

straight dashed lines indicate the value of impact eccentricity. 

(2) Effects of Tesseral Harmonics 

To check the validity of the frozen orbits found in the previous section, a numerical 

integration is carried out under the influence of different subsets of the 4×4 spherical 

harmonics in the non-averaged model. One example is given in Fig.6, where the 

evolutions of the orbital elements  are illustrated. The initial frozen condition is 
° ° ° ° . With the short-period 

perturbation of the dominant C20, C40, C22 terms added to the above mean values, the 

osculating elements are obtained for integration in the non-averaged dynamics
5
.  A 

number of cases from Fig.4 have been simulated, and they have similar evolutions. It 

is also found that the more circular (close to the critical inclination) and the larger  of 

the orbit, the better behaviour of its evolution in the non-averaged C20+C40 dynamics. 

                                                           
5 The initial conditions are doubly-averaged orbital elements. The long-period perturbation 
arises from the secular change of _, which is zero for frozen orbits. Therefore, only the 
short-period perturbation is added to the initial conditions to get the osculating elements. 
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Figure 6 The effects of different subsets of the 4×4 spherical harmonics model on frozen 

orbits in the non-averaged 4×4 model (time is dimensionless). 

For the C20, C40 terms only (Fig. 6A), the short- and long-period oscillations appear 

as expected. The orbital elements evolve close to the mean value. When the C22 term is 

added, the inclination  has a large variation and perigee  circulates over the full 

range from  to ° (Fig.6B). After inclusion of the 3
rd

 and 4
th

 order tesseral 

harmonics (Figs.6C and 6D), the general characteristic are kept except that the 

oscillations are obvious for the long-period evolution of . Since the tesseral terms 

distort the frozen situation, their effect should be considered in the double-averaged 

model. However, they are all eliminated with the double averaging method applied in 

this study. The Lie-Deprit perturbation method studied in (Lara, 2008) is promising for 

solving this problem, where the effect of C22 is preserved after double averaging. In 

the following part, the dynamics of the single-averaged model is studied, where the 

tesseral terms are kept. 

4.5 Poincaré Sections of the Single-averaged Model 
The single-averaged model given by Eq.(8) is studied in this section. Since the time 

term is implicit, the averaged Hamiltonian  can be viewed as the integral of motion 

and is conserved. Since  has already been eliminated during the averaging,  and 

 remain constant as . To explore the global dynamics, the Poincaré map 
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method is employed. In the current study, the Poincaré section on which the flow is cut 

is defined as the  plane with  and  (which is always the case as time 

increases). Given an energy level of the system, i.e. ������?, and an initial condition 

� � � � , the value of � can be determined numerically. With this initial point, 

Eq.(7) is integrated over long time intervals, and the events when the solution crosses 

the  plane are recorded throughout the integration. To get a section fully filled 

with points, we chose a 30 30 grid of initial values � �  for each given ������? 

and �; therefore the section corresponds to a range of � and �. Based on the physical 

parameters of system 1996 HW1, Figs.7 and 8 present some sections obtained for 

 and 4, respectively, both at � . The plots reflect the evolution of phase 

space of the single-averaged system at different orbital inclinations or energy values. 

 

 
Figure 7 Poincaré sections for a 2 2.5 under different energy levels; areas below the dashed 

line are the impact regions. 

Since the orbital elements of a PO should return to the same values after one period 

of the orbit (which may cover multiple revolutions), it is actually a fixed point on the 

map, which can be identified from the center of an island. It is seen from Fig.7 that the 

phase space is very different for different energy levels. For ° ° , many 
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islands come forth both in the impact and non-impact regions, implying the existence 

of POs. One is weakly visible located at the top corner of the map with  and 

 or , while the largest one is at the center of the map with . When the 

inclination increases (Fig.7B), the upper part of the map becomes regular without any 

island apparent, and the region around the largest island is chaotic. For the region 

around the polar case (Fig.7C), many islands emerge again but at the very bottom of 

the map. After that (Fig.7D), islands surrounded by large chaotic regions appear. Since 

the impact eccentricity ���  for  is 0.56, which corresponds to , 

small-eccentricity POs can be found at low inclinations (Fig.7A), while high 

inclinations only give rise to large-eccentricity ones (but still valid from an impact 

perspective, Fig.7D). However, the polar PO is not feasible as its eccentricity already 

exceeds ���, which is a restriction for practical usage as it might intersect with the 

asteroid at periapsis (Figs.7B,7C). 

Now let us go to higher orbits at , with the corresponding ���  and 

. As shown in Fig.8, in general the sections for  are more smooth, 

compared with those of . As expected, the 4×4 spherical harmonics’ influence 

on orbits is weakened when the orbital altitude increases. Similarly, for 
° (Figs.8A and 8B), the islands move towards the bottom of the map with the 

increase of orbital inclination, implying the raise of eccentricity of the POs. No island 

appears near the polar region (Fig.8C). When it passes the polar region (Fig.8D), 

islands appear again and a new phase structure is generated. Compared with the maps 

for , the ones at higher altitude are already smooth due to the smaller influence 

of the irregular gravitational field on orbits. However, the same conclusion holds that 

the phase space is more smooth around the polar region than that close to the 

equatorial plane, implying the larger influence of the irregular gravitational field on 

the motion in the latter one. As a consequence, the feasible POs tend to appear at low 

and high inclinations rather than at the polar region. 
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Figure 8 Poincaré sections for a 2 4 under different energy levels; plots below the dashed 

line are the impact regions. 

In addition, a similar analysis has also been performed for different system 

parameters of this configuration, as done in the study of frozen orbits (Section 3.2). It 

is found that the quantative characteristics of the maps are similar to those above, for 

approximately the same  and inclination range if we vary the size of the sphere for 

this system configuration. Therefore, in the following sections, only the size of system 

1996 HW1 is considered for simulations. What’s more, some comparisons can be 

made with the frozen results obtained from Section 4. For the same  and  the POs 

have a close but slightly smaller eccentricity than that of the frozen orbits, and also 

POs appear in the inclination range where no frozen solution was to be found. This is 

due to the effects of inclusion of the tesseral harmonics as well as the rotation of the 

asteroid and also the resultant more abundant dynamics. 
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4.6 Periodic Orbits 
The exact POs can be obtained by numerically modifying the raw initial condition read 

from the maps. In this section, the POs found in the single-averaged model and then in 

the non-averaged model are given respectively. 

4.6.1 POs in the Single-averaged Model 

Starting from the initial conditions given from the center of the islands in Figs.7 and 8, 

POs are found with the differential correction method (DC) (Russell and Lara, 2007, 

Lara and Russell, 2007). The evolution of their eccentricity vectors (defined as 

) is given in Fig.9 for four different cases, all covering 5 periods 

of the orbit. It can be observed that all eccentricity vectors repeat their path completely. 

The paths in Figs.9A, 9B and 9D are all simple circles, as  has a sin/cos wave 

oscillation and  varies between  and  throughout one period. However, the curve 

in Fig.9C is more complicated due to the non-trivial variation of  and also the 

oscillation of  is limited to the range from  to . 

 
Figure 9 Examples of the eccentricity vector evolution for 5 periods of the POs. 

4.6.2 POs in the Non-averaged Model 

One step further, the POs obtained in the single-averaged model can serve as initial 

conditions for identifying POs in the full non-averaged model given by Eq.(1). Here, 

the Levenberg-Marquardt method (Lourakis, 2005) is applied, which can be used for 

searching the zero root of a given system. Several families of POs are obtained, which 
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are illustrated in Fig.10
6
. In Fig.10, the blue orbit in each subfigure is modified from 

the corresponding initial conditions given by Fig.9. For example, the blue orbit in 

family A is originally from Fig.9A. With numerical continuation of energy, many 

orbits are found for each family. The two orbits at the ends of the continuation are 

given in red and green, respectively. 

With the Floquet’s Theory, their linear stabilities can be evaluated; a PO is stable if 

all the eigenvalues of its monodromy matrix have unity magnitude (Chicone, 1999). 

Since the monodromy matrix of a PO always has the eigenvalues in the form of 

� � � � , the stability index is commonly defined as � �

� . The PO is linearly stable if � , while linearly unstable if � . 

Bifurcation might occur when � . The linear stability diagrams for these four 

families of POs are given in Fig. 11. 

For family A,  the blue orbit and the ‘circular’ green one are both linearly stable, 

while the eccentric red one is unstable. The eccentric orbits of family B are all unstable. 

One direction of the continuation leads to an orbit that comes close to the equatorial 

plane (the green one), while the other (the red one) gradually approaches the polar 

region. All the orbits of family C are unstable and also highly inclined when they 

become smaller and closer to the asteroid. For family D in Fig.10D, the continuation 

ends at the equatorial plane with a stable yellow orbit. The orbits out of the plane are 

all unstable.  

In all four families, the green orbits have the longest period while the red ones have 

the shortest period. The period is simply lengthened with the increase of energy. These 

families also share the same characteristic that the orbits become highly inclined in the 

close vicinity of the asteroid, resulting from the highly irregular gravitational field. In 

addition, all families of orbits have multiple revolutions within one period, and the 

initial conditions of all blue orbits are given in Appendix E. It can be noticed that the 

radius at some epoch along the orbits is smaller than 2, however this does not play a 

role since the simulation is already done in the full model (cf. Eq.(1)). 

 

                                                           
6 Orbits of families A, B and E are all in counter-clockwise direction, while orbits of families C 
and D are in clockwise direction. 
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 Figure 10  Families of POs of the non-averaged system, represented as family A, B, C, D. 
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Figure 11 The linear stability diagram of POs of families A, B, C, D. The two blue dashed 

lines are the stability index and the red line is the period. 

4.6.3 POs of Faster Rotating Asteroid 

In fact, the rotation rate of the asteroid is suspected to have a more important effect on 

orbital dynamics than that of the size of this system configuration. Therefore, in this 

section, the work in Sections 5, 6.1 and 6.2 is repeated but with a rotation rate speeded 

from up �  to � . Firstly, the case at  is studied. The dynamical 

phenomena on these sections are found not to be as rich as those at � . For low 

inclinations (Fig.12A), some ‘thin’ islands are apparent at the very bottom of the map, 

which are close to the impact eccentricity. The phase space is very regular and islands 

are absent for higher inclination cases, as shown in Figs.12B and 12C. Not depicted 

here, it is found that nearly no island exists at almost all the sections for larger values 

of . This means that the faster rotation of the asteroid helps to reduce the effects of 

the highly irregular gravitational field on orbits and to smooth out the chaotic or 

irregular regions on the maps. Therefore, the case for a smaller value of  ( ) is 

simulated and the results are shown in Figs.12D-F. Many islands and chaotic regions 

now appear again at the low inclination range, as shown in Fig.12D. Similarly, the 

islands gradually move towards the bottom with the increase of inclination and even 

disappear in the polar situation.  
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Figure 12 Poincaré sections for a 2 2.5 and 2 at S� = 0.1 at different energy levels; areas 

below the dashed line are the impact regions. 

In addition, it is found that the fast rotation of the asteroid smooths out the phase 

space. For instance, at  but with � , there is already no island on the 

Poincaré maps at different inclinations. The same phenomenon holds for larger  and 

�  . This means that the rotation rate has a significant influence on the dynamics, 

rather than the limited effect from the size of the system. 
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The method for searching POs in the single-averaged model is the same for the case 

with � . The evolution of the eccentricity vector over 5 periods of one sample 

PO, originally from Fig.12E, is given in Fig.13. It can be noticed that it has a similar 

pattern as those of Figs.9A, 9B and 9D. Similarly, with the initial conditions from 

Fig.13, the PO in the non-averaged model is obtained with the Levenberg-Marquardt 

method. With the continuation of energy, one family of orbits is obtained and 

illustrated in Fig.14. Their general configuration already differ from those in Fig.10, 

confirming that fast rotation of the asteroid does affect its surrounding orbit. All three 

orbits are unstable. The stability diagram of this family is given in Fig. 15. The green 

one is highly unstable, while the red one is slightly unstable, since one stability line is 

actually slightly above the line  , not exactly on it. For the continuation to the 

green orbits, the period decreases with the increase of energy probably due to the 

crossing of the bifurcation line ( ). It should be mentioned here that it is more 

difficult in this situation to find the POs in the non-averaged model. This is probably 

due to the smaller accuracy of the spherical harmonics truncation at degree and order 4 

when the orbit is really close to the asteroid and also the fact that more information is 

lost during the low-order averaging process when the rotation rate of the asteroid is 

increasing.  

 
Figure 13 The eccentricity vector evolution for 5 periods of the PO in the single-averaged 

model.  
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Figure 14 POs of the original non-averaged system at S� 2 0.1. 

 

 
Figure 15 The linear stability diagram of POs of family E. The two blue dashed lines are the 

stbility index and the red line is the period. 
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4.7 Conclusions 
The POs around a contact binary asteroid have been obtained with the spherical 

harmonics expansion, the averaged Hamiltonian and the numerical modification 

method. The highly irregular gravitational field is represented by the combination of 

an ellipsoid and a sphere, and then is expanded into a spherical harmonics model, 

which is shown to be a good approximation. For system 1996 HW1, the 8
th

 and 4
th

 

degree and order expansions have relative errors of the potential of less than 2% and  

8% at the circumscribing sphere, respectively. The relative errors of the 4×4 truncation 

are always smaller than 1% when the orbit radius is larger than 2, under different sizes 

of the system configuration. The radial acceleration has an error one magnitude larger 

than that of the potential. It is also found that some high-order terms also have a large 

magnitude, e.g. C31, C40, C60, in comparison with that of planetary bodies and their 

moons.  

Frozen orbits are obtained from the double-averaged Hamiltonian including the 4
th

 

degree and order spherical harmonics. They are examined in the non-averaged model, 

and the tesseral terms are found to introduce large variations and distort the frozen 

situation. With Poincaré sections, the phase space structure of the single-averaged 

model is generated at different energy levels and rotation rates of the asteroid. The 

dynamics of the 4×4 harmonics is identified and POs are obtained. The disturbing 

effect of the highly irregular gravitational field on orbit motion is found to be reduced 

around the polar region as well as in the case of fast rotation of the asteroid. Further 

with the Levenberg-Marquardt method, some POs of the full non-averaged model are 

identified, of which the stable ones are interesting for future missions. In addition, this 

study provides a method for studying orbital dynamics around a highly bifurcated 

body represented by spherical harmonics.  
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where  is the mass constant of the entire body. 

 

 

Appendix D 

The relations between orbital elements and spherical coordinates are given as  
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Appendix E 

Initial conditions of the blue periodic orbits in Figs.10 and 14. 

Family

(Rev.) 

! " / !b  "b  /b c 

A (17) -2.55457397 5.64799031E-3 -3.53658923E-4 

 

-1.28549893E-3 

 

-0.47909409 0.37960782 388.99897129 

B (14) -3.62261850 1.60726159E-3 -1.00020805E-7 -3.11315611E-4 -0.32969659 0.20743635 

 

345.00007481 

C (14) 0.24122555 -1.33173497 

 

-1.54128269 

 

-0.41349405 

 

-0.63862589 

 

0.04199977 

 

369.00019323 
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Abstract  

Using a gravitational field truncated at the 4
th

 degree and order, the 1:1 ground-track 

resonance is studied. To address the main properties of this 1:1 resonance, a 1-degree 

of freedom (1-DOF) system is firstly studied. It is completely integrable. Equilibrium 

points (EPs), stability and resonance width are obtained. Different from previous 

studies, the inclusion of non-spherical terms higher than degree and order 2 introduces 

new phenomena. For a further study about the 1:1 resonance, a 2-DOF system is 

introduced, which includes the 1-DOF system and a second resonance acted as a 

perturbation part. With the aid of Poincaré section, the generation of chaos in the phase 

space is studied in detail by addressing the overlap process of these two resonances 

with arbitrary combinations of eccentricity ( ) and inclination ( ). Retrograde orbits, 

near circular orbits and near polar orbits are found to have better stability against the 

perturbation of the second resonance. The situations of complete chaos are estimated 

in the  plane. By applying the maximum Lyapunov Characteristic Exponent 

(LCE), chaos is characterized quantitatively and same conclusions can be achieved. 

This study is applied to three asteroids 1996 HW1, Vesta and Betulia, but the 

conclusions are not restricted to them.   

5.1 Introduction 
The commensurability (usually a ratio of simple integers) between the rotation of the 

primary body and the orbital motion of the surrounding spacecraft or particle is called 

ground-track resonance. A large amount of research has been carried out about 

geosynchronous orbits. For example, a 2-DOF Hamiltonian system was modeled 

(Delhaise and Henrard, 1993) near the critical inclination perturbed by the 

inhomogeneous geopotential. Global dynamics were studied in terms of Poincaré maps 

in the plane of inclination and argument of pericenter. Chaotic motions were expected 

close to the separatrix of the resonance of the mean motion. 

However, for ground-track resonances in the highly irregular gravitational field 

(mainly small solar system bodies), the studies are limited. Scheeres (1994) studied the 

stability of the 1:1 mean motion resonance with a rotating asteroid using a triaxial 

ellipsoid model, and applied it to Vesta, Eros and Ida. Later on, he studied the effect of 

the resonance between the rotation rate of asteroid Castalia and the true anomaly rate 
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of an orbiting particle at periapsis with a 2
nd

 degree and order gravitational field 

(Scheeres et al., 1996). This kind of resonance was proven to be responsible for 

significant changes of orbital energy and eccentricity, and provides a mechanism for 

an ejected particle to transfer into a hyperbolic orbit or vice versa. By considering the 

2
nd

 degree and order gravitational field, Hu and Scheeres (2004) showed that orbital 

resonance plays a significant role in determining the stability of orbits. Further, by 

modelling the resonant dynamics in a uniformly rotating 2
nd

 degree and order 

gravitational field as a 1-DOF pendulum Hamiltonian (Olsen, 2006), widths of the 

resonance were obtained in analytical expressions and also tested against numerical 

simulations for five resonances. They were found to be independent of the rotation rate 

and mass of the central body but strongly dependent on  and . The retrograde orbits 

have a smaller resonance region than the prograde ones. In a slowly rotating 

gravitational field, the orbital stability was explained by the distance between the 

resonances but not by the strength of a specific one using the overlap criteria.  

The resonant structure is explained with the truncated model for the equatorial and 

circular cases, respectively. Delsate (2011) built the 1-DOF Hamiltonian of the 

ground-track resonances of Dawn orbiting Vesta. The locations of the EPs and the 

resonance width were obtained for several main resonances (1:1, 1:2, 2:3 and 3:2). The 

results were checked against numerical tests. The 1:1 and 2:3 resonances were found 

to be the largest and strongest ones, respectively. The probability of capture in the 1:1 

resonance and escape from it was found to rely on the resonant angle. Tzirti and 

Varvoglis (2014) extended Delsate's work by introducing C30 into the 1:1 resonance, 

which resulted in 2-DOF dynamics. The C30 term was found to create tiny chaotic 

layers around the separatrix but without significant influence on the resonance width. 

With the ellipsoid shape model (Compère et al., 2012), MEGNO (Mean Exponential 

Growth factor of Nearby Orbits) was applied as an indicator to detect stable resonant 

periodic orbits and also 1:1 and 2:1 resonance structures under different combinations 

of the three semi-axes of the ellipsoid. A 1-DOF resonant model parametrized by  

and  was obtained with a truncated ellipsoidal potential up to degree and order 2. 

For the previous studies, the limitations are either the gravitational field which is 

truncated at degree and order 2 or the orbit which is restricted to a circular or polar 

case. In this study, the harmonic coefficients up to degree and order 4 are taken into 

account for studying the 1:1 resonance at different combinations of  and , which 

results in a 2-DOF model. Therefore, this paper is arranged as follows. Firstly, a 1-

DOF Hamiltonian is built to investigate the main properties of the 1:1 resonance. The 

location of EPs and their stability are solved numerically for different combinations of 

 and  for Vesta, 1996 HW1 and Betulia. The resonance widths of the stable EPs are 

found numerically. Secondly, a 2-DOF Hamiltonian is introduced with the inclusion of 

a second resonance, which is treated as a perturbation on the 1-DOF Hamiltonian. 

Chaos is generated due to the overlap of the two resonances. By applying Poincaré 
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sections, for all three asteroids, the extent of the chaotic regions in the phase space is 

examined against the distance between the primary and second resonances and their 

respective strengths. The roles that  and  play on the evolution of chaos in the phase 

space are studied systemically. Finally, the maximal LCE (mLCE) of the orbits in the 

chaotic seas are calculated for a quantitative study. 

5.2 Dynamical Modelling  

5.2.1 Hamiltonian of the system 

The gravity potential expressed in orbital elements  is given by Kaula 

(1966) as 

                        
1

2 0 0

( ) ( ) ( , ,Ω, )
nn n

e
nmp npq nmpqn

n m p q

R
V F i G e S M

r a

µµ
ω θ

∞ ∞

+
≥ = = =−∞

= +∑∑∑∑ ,                             (1) 

in which  and �  are the gravitational constant and reference radius of the body, 

respectively.  is the distance from the point of interest to the center of mass of the 

body.  and  are functions of inclination and eccentricity, respectively. The 

complete list of them up to degree and order 4 can be found in Kaula (1966). In 

addition,  are all integers,  is the sidereal angle and 
 even  even

 odd  odd
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with Kaula’s phase angle  ���d written as 

( ) ( ) ( )Θ 2 2 Ωnmpq n p n p q M mω θ= − + − + + − . 

Given the Delaunay variables  

, ,l M g hω= = = Ω , 

2, (1 ), cosL a G L e H G iµ= = − = , 

the Hamiltonian of the system can be written as 

                                                         ΛT V θ= − + ɺH ,                                                          (2) 

in which � � is the kinetic energy and  is the rotation rate of the asteroid 

and  is the momentum conjugated to . Resonances occur when the time derivative 

of ���d . The 1:1 resonance is studied in detail in the following sections.  

5.2.2 1:1 Resonance 

According to Kaula (1966), to study the 1:1 resonance, the resonant angle is 

introduced and defined as , with the mean longitude . This 

resonance occurs at , which means that the revolution rate (mean motion) of the 

orbit is commensurate with the rotation rate of the asteroid. In addition, it should be 

noticed that the solution of this 1:1 resonance includes the equilibrium points (EPs) 
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that are commonly studied in a rotating (or body-fixed) frame, and  is the phase angle 

of the EPs in a rotating frame.  

The spherical harmonics that contribute to this resonance are listed in Appendix A. 

To introduce the resonant angle  in the Hamiltonian and also keep the new variables 

canonical, a symplectic transformation is applied 

Λ Λd L d d L dσ θ λ θ′ ′ ′+ = +  

and a new set of canonical variables is obtained as 

, , ,Λ ΛL L Lσ θ θ′ ′ ′= = = + . 

After averaging over the fast variable e, the Hamiltonian for the 1:1 resonance 

truncated at the second order of  can be written as 
3

0 1 2 ( )eο= + + +H H H H , 

where >  is the Hamiltonian at the 
th

 order of  and � is expressed as 
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(3) 

in which  and  is used hereafter instead of e for convenience. 

In terms of angular variables, it can be seen that � is only dependent on the angle . 

Since e is implicit in �, its conjugate e is a constant and can be dropped. Similarly, 

 and , which are related to  and , are constant as  are absent in �. Therefore 

at a given combination of  and , � is actually a 1-DOF system. However, � and 

� are functions of both  and  and include angles , 

and therefore are 2-DOF systems. Their expressions are given in Appendix A and they 

are both zero at  or .  

According to our simulations, it is found that �
�/�

� , where  is 

the ordering parameter and ranges from �� to ��. Since the origin of our selected 

body-fixed frame is located at the center mass of the asteroid and the axes are aligned 

with the principal moments of inertia of the asteroid, the C21 , S21 and S22 terms are all 
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zero, leading to the fact that the magnitude of � is smaller than �. Therefore, � 

with resonant angle  can be viewed as the primary resonance. �  and �  are the 

second resonances, which are expected to give rise to chaos. 

5.3 Primary Resonance 

5.3.1 EPs and Resonance Width 

Firstly, � is studied in detail. Its equilibria can be found by numerically solving 

                                                      0 00, 0L
L

σ
σ

∂ ∂
= = = − =

∂∂
ɺɺ

H H
 .                                             (4) 

The linearized system is written as 
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The EPs are obtained by solving  

0

0

d

dL

σ



=

=

ɺɺ

ɺɺ
. 

The linear stability of an EP can be determined from the Jacobian matrix evaluated 

at the EP. The resonant frequency can be approximated at a stable EP � �  

as
f\ℋ]

fh\

f\ℋ]

fi\
ij,hj

 . Taking the Hamiltonian value corresponding to an unstable EP 

� � , denoted as �, its level curve on the phase map is actually the separatrix that 

divides the motion into libration and circulation regions (Morbidelli, 2002). Along this 

curve,  passes through its maximum ��	  and also minimum ���  at � . The 

resonance width is then calculated as ��	 ��� and is therefore only valid for 

the stable EPs. 

5.3.2 Numerical results 

In this section, the EPs, their stability and the resonance width of asteroids Vesta, 1996 

HW1 and Betulia are studied. They are selected because the first two asteroids are 

representatives of regular and highly bifurcated bodies, respectively, while Betulia has 

a triangular shape leading to large 3
rd

 degree and order harmonics. The 4
th

 degree and 

order spherical harmonics of the three asteroids are given in Appendix B. It is noted 

here that all the angles except for inclination in this study are in radians. First, the 

dynamics due to the 2
nd

 degree and order harmonics (C20 and C22) is studied, hereafter 

denoted as �/��J.  

(a) Vesta 



1:1 Ground-track resonance in a uniformly rotating 4th degree and order gravitational field 

104 
 

As already mentioned in Section 2.2, the 1:1 resonance actually corresponds to the 

position of the EPs in the rotating frame. Fig.1 gives the mean semi-major axis of the 

1:1 resonance in the  plane. The EPs with  are unstable, while the ones with 

 are stable. The locations of the EPs are symmetric with respect to °, 

due to the symmetry property of the 2
nd

 degree and order gravitational field. It is 

closest to Vesta when the orbit is polar and then gradually moves further away when 

the orbit approaches the equatorial plane (either prograde or retrograde). The 

resonance width decreases with the increase of , and finally becomes zero when  

arrives at . This can be explained by the coefficient of the resonant angle  in Eq.(3), 

denoted as �� 

( )
4 2 2 4

2

22 6

3 5 13
1 1

4 2 16

R e e
f c

L

µ  
= − ⋅ − + ⋅ + 

 
. 

When  approaches °, the term  becomes zero and �� also comes to zero. 

For a given value of , the larger  the smaller �� is and the resonance width also 

decreases (Fig.1). However, this phenomenon is weakened for larger  as its weight 

factor � becomes smaller. This can clearly be observed from the contour map. 

In addition, our results for orbits at  or ° are identical to those 

obtained in Delsate’s study (Delsate, 2011). 

 
Figure 1 The contour plots of mean semi-major axis (in km) of the unstable (k 2 0) and 

stable (k = C/2) 1:1 resonance (the EPs) in the l − m plane and the corresponding resonance 

width of stable EPs. 

To investigate the effects of higher-order terms, the Hamiltonian � that includes 

the 4
th

 degree and order harmonics is studied. Firstly, the phase portrait for some 

example orbits with different  and  is given in Fig.2. The four EPs are marked out as 

E1, E2, E3 and E4. The top three plots are actually the phase portrait of �/��J for 

comparison, and the remaining ones are those of �. It can be seen that due to the 

inclusion of 3
rd

 and 4
th

 harmonics, the symmetry with respect to  is broken and 

the EPs have a shift from  and  but are still located in the near vicinity 

of them. For the subplots in the middle, with the enlargement of , the two stable EPs 

gradually merge into one and the unstable EP around  disappears, as a result of 

the increasing strength of harmonic coefficients other than C22. The coefficient of the 
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C31 term in Eq.(3) (denoted as ��) is a first-order expression of  while for that of 

C22 it is of the second order �:  

( ) ( )
5 3 4

2 2

31 8

239 3 15
1 2 1 1 3

64 4 16

R e
f e c c s

L
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= − ⋅ + + ⋅ − + + +   

  
. 

When  is large enough, the influence of C31 on the structure of the phase space 

exceeds that of C22. Therefore the phase space is dominated by the phase angle  of 

C31, and the existence of only one stable EP can be easily understood. In addition, all 

four EPs disappear when  approaches , which is due to the fact that all the 

coefficients of  in Eq.(3) become zero when ° because of the 

terms  and �  and the phase portrait is filled with straight lines. The transit 

inclination (from four EPs to two EPs) is approximately 2.5 at  and slightly 

decreases to 2.2 at . This is explained by the fact that the C31 dynamics is 

strengthened when  becomes larger, which is witnessed by the fact that the large  

promotes the merger of the two stable EPs shown in the bottom plots of Fig.2. In 

addition, the larger , the smaller the value of the resonance width is, which can be 

explained by �� . The resonance width for large  values is larger than that of the 

�/��J dynamics, which can be explained by the dynamics taken over by C31 from C22 

in these regions. The exact  values of the EPs and the resonance width are given as a 

contour map in the  plane in Appendix C.  

 

Figure 2 The phase portrait of the Hamiltonian of Vesta. Top row: ℋ�/��J  for l 2 0 , 

m = 0, 129.5°, 171.9°; middle row: ℋ�  for	l = 0, m = 0, 129.5°, 143.2°, 171.9°; bottom row: 

ℋ� for m = 0, l = 0.1, 0.3, 0.5. The blue and red lines are the separatrix (or the values of the 

Hamiltonian) of the unstable EPs. 

(b) 1996 HW1  

For 1996 HW1, the phase portrait of �/��J and � is given in Fig.3. There are four 

unstable EPs appearing in the equatorial plane ( ), which is consistent with our 

previous studies (Feng et al., 2015b) and the results in (Magri et al., 2011). They are 
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also marked out as E1, E2, E3 and E4. For small , there is no region for libration and 

therefore all the EPs are unstable. It can be seen that the instability of the four EPs is 

already determined by the dynamics of �/��J . The inclusion of other harmonics 

however causes a strong distortion of the phase space. Two of the unstable EPs 

become stable at °  for �/��J  and at °  for � , indicating the 

stability of the retrograde motion in this highly perturbed environment. In addition, the 

difference of these inclination values implies destabilizing effects of the highly 

irregular gravitational fields. Then the two EPs merge into one at ° also due 

to strong effects of C31 and finally disappear for the same reason: the effects of terms 

 and �. The phase portrait is slightly influenced by  with the exception that the 

elongated orbit (with larger ) has been less influenced by the high degree and order 

harmonics, as shown in the bottom subplots.  

The  of the EPs and the resonance width are only obtained for the situation where 

stable EPs exist and are given in Appendix C. The semi-major axis of the stable EPs 

and the unstable EPs are also given, indicated by �  and � , respectively. After 

arriving at the maximum value at ° , the resonance width decreases and 

becomes zero when  approaches ° . However, it is not affected by , as the 

dynamics is mainly dominated by  rather than . Therefore the most interesting range 

for resonance is within ° °, which will be further studied in the next 

section. 

 

Figure 3 The phase portrait of the Hamiltonian of 1996 HW1. Top row: ℋ�/��J for l 2 0, 

m = 0, 108.9°, 137.5°, 171.9° ; middle row: ℋ�  for 	l = 0 , m = 0, 120.3°, 137.5°, 171.9° ; 

bottom row: ℋ� for m = 0, l = 0.1, 0.2, 0.3, 0.4. The blue and red lines are the separatrix of 

the unstable EPs. 

(c) Betulia 

The phase portrait of Betulia is given in Fig.4. Only four EPs (E1, E2, E3 and E4) 

appear for �/��J, while there are six EPs apparent in the equatorial plane for � due 
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to the triangular shape of this body. Among them, E2, E4 and E6 are stable and E1, E3 

and E5 are unstable. In Magri’s study (Magri et al., 2007), six EPs were also obtained 

near the equatorial plane of Betulia, but using a polyhedron gravitational field. 

However, they found E6 unstable while it is stable (the right stretched island) from our 

phase portrait. The second difference is that their EPs are in general slightly closer to 

the body than ours. These distinctions primarily originate from the different 

gravitational fields applied in the studies. However, the gravitational field truncated at 

degree and order 4 applied in this study already captures the main dynamical 

properties of the complete gravitational field to a large extent at least for 1:1 resonant 

dynamics, which is the focus of our study.  

As shown in the middle row of Fig.4, the phase portrait of � changes significantly 

with the increase of . There are actually three EPs within the left main island, which 

are illustrated as E2, E3 and E4 in the plot. Among them, E2 and E4 are stable, while 

E3 is unstable and the most inner red line is its separatrix. From °, the unstable 

EP will disappear and the two stable ones start to merge, as can be seen clearly at 
° with only two EPs left. Similarly, when  gets close to °, only one EP 

exists due to the dominant effect of C31. In addition, because of the triangular shape of 

Betulia, the C31, S31 and S33 terms are large compared to other asteroids, e.g. Vesta and 

1996 HW1. Although S33 is one order of magnitude smaller than C22, the coefficients 

of their phase angles  and  respectively are comparable with each other for small 

 and . It is the S33 term that introduces two more EPs and also makes the phase space 

asymmetric with respect to . With the increase of both  and especially , the 

influence of C31 becomes much stronger than that of C22 and S33 and finally dominates 

the phase space, which is the same as the cases of Vesta and 1996 HW1. In addition, 

the right island where EP6 is located is always slightly larger than the left one. In the 

next section, the resonance width of Betulia is actually measured as the width of the 

larger one. The exact values of  of the EPs, the corresponding semi-major axes and 

the resonance width are also given in Appendix C. 
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Figure 4 The phase portrait of the Hamiltonian of Betulia including 4
th

 degree and order 

harmonics. Top ℋ�/��J  for l 2 0 , m = 0, 66.2°, 137.5°, 171.9° ; middle ℋ�  for 	l = 0 , 

m = 0, 66.2°, 137.5°, 171.9°; bottom ℋ� for m = 0, l = 0.1, 0.21, 0.35, 0.5. The blue and red 

lines are the separatrix of the unstable EPs. 

In summary, this 1-DOF Hamiltonian � captures the main dynamics of the system 

and is illustrated with the three study cases above. The strength of C31 exceeds C22 and 

dominates the structure of the phase space when  approaches °. The large S33 term 

not only brings about more EPs but also introduces significant asymmetry of the phase 

space with respect to . In addition, due to the  term in the coefficients of all 

phase angles of � , the resonance width of the retrograde orbits are found to be 

smaller than that of the prograde ones, which is consistent with Olsen’s conclusion 

(Olsen, 2006). It was also found that the stability of the EPs is largely determined by 

the 2
nd

 degree and order harmonics, especially for Vesta and 1996 HW1. However, the 

higher degree and order harmonics change the resonance width. The odd harmonics 

introduce new EPs to the system and break the symmetry of the 1:1 resonant dynamics.  

5.4 Second Resonance 
For a qualitative study about the effect of the second degree of freedom on the 1:1 

resonant dynamics, � and � should be considered. However, the inclusion of all 

terms in �  and �  is far from trivial. For this study, the dominant term of �  is 

taken into account. The dominant term, which has the largest amplitude, is given by 

                          ( ) ( )
4 2

2 221 2 22 26 12 2( cos 2 2 sin 2 2 )
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L
g

µ
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In the current study, only � and the dominant term �J are taken into account and 

the resulting 2-DOF Hamiltonian is written as 

2 0 2dof d= +H H H . 

A new resonant angle  is introduced in the dynamics in addition to 

. A formal way to deal with this system is to treat �J as a small 
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perturbation to the integrable system �J�� � (Henrard, 1990). However, in our 

study, the perturbation of �J is not limited to small values, due to the large variations 

of  and .  

According to Chirikov (1979) and Morbidelli (2002), the dynamics of �J�� can be 

studied by observing the overlap process of nearby resonances using Poincare maps. 

To a first approximation, each resonance is considered separately, namely only its own 

resonant angle is taken into account and the other one is neglected. The first resonance 

������ is actually �, and the second resonance ������ is defined as 

      ( )
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    ,                (6) 

which only includes one resonant angle . Their locations need to be solved 

first and then the Poincaré maps of the single-resonance dynamics are computed 

respectively on the same section in the vicinity of their location. If �J  is small 

enough, the separatrix of ������ is further away from that of ������ and the two 

resonances are slightly influenced by each other. Tiny chaotic layers are probably 

generated around the separatrix. Otherwise, if �J is large, the separatrix of the two 

resonances intersect, their dynamical domains overlap, and each resonance is 

significantly affected by the other one. The chaotic layers extend to large-region chaos 

that dominates the phase space. Since ������ is the dominant dynamics of our 1:1 

resonant model, the focus is put on how ������ is influenced by ������, which can 

also be interpreted as how much the 1-DOF dynamics is affected by a perturbation. 

5.4.1 The location and width of pqrstu 

The location and width of ������ have been obtained in Section 3. Since we want to 

apply Poincaré sections to study the dynamics, the section of the map is first defined 

here as  in the  plane. Since ������  has 1-DOF, its Poincaré 

map is the same with its phase portrait in the phase space. The location of ������ on 

this section can be obtained by numerically solving 
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 ,                                         (7) 

in which � � . ���������	  is the Hamiltonian value of the seperatrix of 

������  which is also the energy constant of the section. ∗  and ∗  represent the 

variables that need to be solved. As ������ itself is a 2-DOF system, the pendulum 

model cannot be applied for approximating its resonance width. Therefore, based on 
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the dynamical properties of the Poincaré map, a full numerical estimation is used. By 

integrating from the initial point  � �
∗ ∗  for moderate iterations, a curve is 

obtained which is either the upper or the lower part of the separatrix of  ������ on the 

section. If it is the upper part, ��	  is directly obtained by taking record of the 

maximum point of the curve. ��� is the minimum of the lower border obtained by 

integrating from the point � �
∗  with a displacement from � �

∗ ∗  

by  depending on the dynamics studied and vice versa. The curves acquired are the 

separatrix of ������ . Therefore, the width of ������  is approximated by ��	

���, which is already good enough for the current study. 

Given that the maxima and minima of ������  and ������  are denoted as 

��	� ����  and ��	� ���� , respectively, the relative locations of the two 

resonances can be characterized by ���� ��	� and ���� ����. The former one, 

which is the distance between the lower borders of the two resonances, is positive if 

the two resonances are totally separated and becomes negative as the resonances start 

to overlap with each other. The latter one is actually the measurement of the extent of 

overlap of the two resonances. Its non-positive value indicates that one resonance is 

completely within the other one. For different combinations of  and , the 2-DOF 

Hamiltonian �J�� is studied for 1996 HW1, Vesta and Betulia.  

5.4.2 1996 HW1 

Since 1996 HW1 only has a limited inclination range ( ° °) of libration 

motion of ������ (shown in Fig.3), its second degree of freedom dynamics is studied 

first. In Fig.5, the upper plots give the separatrices of the two resonances on the 

Poincaré maps, which are the boundaries of their phase space. The bottom plots are the 

phase space of �J�� on the same section, both for  changing from ° to ° 

at the example . Fig.5 reflects the relationship of the distance between the two 

resonances ������ and ������ and the extent of chaotic region of �J��.  

(1) The effect of  

For °, even though the resonances do not overlap (but are close), tiny chaotic 

layers appear in the vicinity of the separatrix of �J��. When there is a small overlap 

at °, the chaotic layer is extended but a large libration region still retains. 

With the increase of the overlap from °, a large part of the phase space is 

occupied by chaos. The regular region shrinks to a limited area at the center of the 

phase space and meanwhile five islands appear around it, which is due to the high-

order resonances between ������  and ������ . With the further decrease of  to 
° , ������  is almost completely inside ������  and there are only three small 

KAM tori left, indicating the system is transiting to global chaos. In addition, the 

original stable EP becomes unstable as the center part is already chaotic. Although the 

dynamics is completely chaotic at ° , the chaos is still bounded by the 
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separatrix of ������. However, finally at ° the whole structure of  ������ 

could not be kept and the continuity of phase space is broken. It is noticed that this 

break is consistent with the break of the separatrix of ������ at the same range of , 

implying a significant perturbation of  ������ on the total dynamics. The break of 

������’s separatrix attributes to the fact that the time derivative of  (namely ) 

changes its sign from positive to negative after  crossing some specific value, and 

therefore it produces no crossings on the section which is defined as . This 

phenomenon will be discussed in detail in the next section.  

In summary,  has a great influence on the 2-DOF dynamics at constant . When  

decresases, ������ is strengthened as it includes the term � (as seen in Eq.(6)) and 

its resonance width increases. However, its location does not deviate much. For 

������, not only its width is increasing but also its location is moving downward. 

Ultimately, the two resonances totally overlap and have a strong interaction with each 

other. Nevertheless, the width of �J�� is determined by ������, which is seen from 

both  values, although the inner structure of the phase space has been totally affected.   

 

 

Figure 5 First and third rows: the separatrices of resonances ℋ������ (red) and ℋ������ (blue) 

on the section _ 2 C 2⁄ , _b > 0; second and fourth rows: the phase space of the corresponding 

ℋ�J��; both for l = 0.1, m = 171.9°, 170.7°, 166.2°, 158.7°, 149°, 143.2°. 

 

(2) The effect of  
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To study the effect of  on the dynamics, the contour map of the distance of the two 

resonances and also the width of the second resonance are given on the  plane in 

Fig.6. In the left plot, the yellow region indicates the situation of non-overlap and 

slight overlap. In the middle plot, the green and blue areas demonstrate the situation 

when ������  moves totally inside ������  and the overlap between the two is 

complete. The right plot demonstrates that the width of ������ is also enlarged when 

 becomes large, which can be proven by the term � &  in ������ . 

Therefore, the largest distance of ������ and ������ is witnessed at the down-right 

corner and ������ approaches its highest location at the upper-left corner in the left 

plot. In addition, as  increases and  decreases, ������  becomes stronger (as 

indicated by the resonance width) and has a significant influence on the dynamics of 

������

 
Figure 6 The distance between ℋ������ and ℋ������ measured as x���� − x��	� (left) and 

x���� − x���� (middle), and the width of  ℋ������ (right). 

Therefore, given a specific  and , an estimation from this contour map can be 

made on when small chaotic layers appear and when large chaotic seas are expected. 

As an example, for , tiny chaotic layers are apparent at ° when the 

two resonances start to overlap; the last KAM tori disappear and the phase space is full 

with chaos around °.  

For a more complete understanding, the phase space of �J��  at  with 

different  is given in Fig.7. As compared to Fig.5, the upper plots of Fig.7 show that 

the large  distorts the main island, which originally has circular or ellipsoidal shape. 

The chaos is more abundant and the size of the main island reduces and a new phase 

structure is generated at the bottom of the plot, due to the stronger influence of 

������. In addition, the lower half of the chaos is thicker than the upper part, as it is 

more influenced by the perturbation from ������ which approaches ������ from the 

bottom direction. In addition, the islands appearing at the bottom area of the phase 

space can be explained by the direct interaction of ������ and ������ in that region. 

Furthermore, the lower three plots are full of chaos. 
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Figure 7 The phase space of ℋ�J��  at l 2 0.3  for m = 171.9°, 170.7°, 166.2°, 158.7°,	 

149°,143.2°. 

For ° , ������  is already comparable with ������  on the 

dynamics of �J��. Therefore, the center part of the phase space is not completely 

chaotic; limited regular (white) region appear which is actually part of the center 

island of ������.  

(3) Bounded chaotic regions 

As mentioned in 4.2.1, tiny chaotic layers are generated in the vicinity of the separatrix. 

Their boundaries can be estimated, which is the topic of this section. 

For small perturbations, it is known from (Morbidelli, 2002) that the chaotic region 

covers areas spanned by the instantaneous separatrices for varying secular angles, 

which is  in our study. Its boundaries are estimated from the separatrices 

corresponding to the minimal and maximal resonant width. This is also known as the 

modulated-pendulum approximation. The small perturbation corresponds to the case of 

close approach and almost contact between ������  and ������ , and is therefore 

applicable to a situation with quite large inclination values. For 1996 HW1, Fig.8 

illustrates this region at different eccentricities and inclinations. 
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Figure 8 The chaotic regions bounded by the separatrices (red lines) corresponding to the 

minimal and maximal resonant width for l 2 0.1, m = 171.9°, 171.3° ;  m = 171.9°, l =

0.2, 0.3. 

In each plot, the outer red lines represent the boundary corresponding to the 

Hamiltonian value of ���������	 �J  which is the maximum resonance 

width. The inner red line is the inner boundary with the Hamiltonian value of 

���������	 �J  which is the minimum resonance width. For 
°, in which case the perturbation from ������ is the weakest (shown in 

Fig.5), the theory works perfectly since all chaos is restricted to the region between the 

two red lines. When the inclination decreases to °, the chaos is still well bounded 

but a small portion of it at the bottom area is already outside the red lines. For 

comparison, the cases of °  and °  are studied, in 

which situation the perturbations of ������ are not small anymore. The chaotic region 

does not fit well within the red lines. The bottom part of the chaos is shifted upwards 

and is therefore outside the inner red line, due to the distortion of the phase space.   

In summary, the chaotic layers are well estimated with the approximation theory for 

the small perturbation cases (  close to  and small ). The strong perturbation of 
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������ introduced by large  not only broadens the chaotic region, but also reshapes 

the phase space. 

5.4.3 Vesta 

(1) The effect of  

For Vesta, there is always a stable EP for different  and . For the retrograde case, the 

distance between ������ and ������ and the phase space of �J��  for orbits with 

different  but the same  is given in Fig.9. For ° , the dynamics of  

������ is hardly influenced since the two resonances are far apart and there is no 

interaction between them. With the decreasing of , a significant chaotic region around 

the separatrix appears, even when the two resonances are just in contact (as seen at 
° ). When ������  completely evolves inside ������ , the phase space 

becomes totally chaotic, as indicated at ° . Further at ° , the phase 

space becomes discontinuous and only scattered points are left without any 

recognizable dynamical structure (similar to the case for 1996 HW1 at °). 

The reason will be explained later this section.   

The situation is quite different for the prograde case, as shown in Fig.10. It can be 

seen that ������ is completely inside ������ for all inclinations; also the width of 

������ increases as the orbit gets more inclined. When the strength of ������ is very 

weak at °, a very tiny chaotic layer is present around the separatrix. When 

������  becomes stronger at ° , new islands inside the two main libration 

regions are generated, in addition to the weak chaos. Finally, when ������ is large 

enough at °, the original phase structure is broken and the two main islands 

are filled with chaos but not connected anymore. Combined with the previous analysis, 

the extent of chaos is found to be not only related to the location of the two resonances, 

but their relative strength is also important. The dynamics of �J�� is determined by 

the evolution (location, stability and strength) of both ������ and  ������ as well as 

their interaction.  
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Figure 9 First row: the separatrices of resonances ℋ������(red) and ℋ������ (blue) on the 

section _ 2 C 2⁄ , _b > 0; second row: the phase space of the corresponding ℋ�J��; both for 

l = 0.1, m = 171.9°, 160.4°, 149°; third row: the separatrices and phase space for l = 0.1, m =

129.2° (retrograde). 

 

 

Figure 10 First row: the separatrices of resonances ℋ������ (red) and ℋ������ (blue) on the 

section _ = C 2⁄ , _b > 0; Second row: the phase space of the corresponding ℋ�J��; both for 

l = 0.1, m = 11.5°, 34.4°, 45.8° (prograde). 

(2) The effect of  

Fig.11 shows contour maps that can be used to analyze the impact of . For the 

retrograde case, the effects of  and  on the evolution of the two resonances are 

similar to that of 1996 HW1, as shown in the bottom plots of Fig.11. The slight 

difference is that the maximum resonance width of ������  is at  and 
°  for Vesta rather than at the top-left corner for 1996 HW1, which can be 

explained by the non-linear property of the resonance width as a function of  and . 

For the prograde case, instead of ���� ��	�,  ��	� ��	� is obtained due to 
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the fact that the two resonances already completely overlap. It is always positive for 

��	� ��	� and negative for ���� ����. It must be mentioned that when , 

the width of ������ is zero and the dynamics of ������ is not affected. Therefore, 

we start our calculation from °. The largest distances between the maximum 

and minimum boundaries of the two resonances are both at the left-bottom corner of 

the contour map, and the smallest distances between them at the right-top corner, 

which can be easily explained by the corresponding weakest and strongest perturbing 

effect of ������. In addition, the width of ������ achieves its largest value at the 

largest inclination but smallest eccentricity. It can be noticed that the ranges of  stop 

at °  and °  for the prograde and retrograde orbits, respectively, due to the 

break of the separatrix of ������ at ° °.  

 

 

Figure 11 The distance between ℋ������ and ℋ������ measured as x���� − x��	� (left) and 

x���� − x����  (middle), and the width of  ℋ������  (right) for the prograde (top) and 

retrograde (bottom) cases (m in radian). 

For a complete understanding, the phase space of �J��  at  is given in 

Fig.12. Similarly, compared to the phase space at  (shown in Figs.9 and 10), 

the main island is strongly distorted and the chaotic region is significantly extended, 

due to the strong perturbation of ������. For °, the regular region at 

the center of the phase space again is actually part of the regular region of ������, 

due to the comparable influence of ������ and ������ on the dynamics of �J��. 

Therefore, large  give rise to strong perturbations on the dynamics. 
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Figure 12 The phase space of ℋ�J��  at l 2 0.5 for m = 171.9°, 160.4°, 149°, 129.2°, 11.5°,  

34.4°, 45.8°. 

(3) Near polar region 

For the near polar region, the dynamical structure shrinks and almost disappears on our 

previously defined section, as can already be seen from the plots at °  and 
° in Figs.9 and 10. This is due to the fact that the secular rate of  (Kaula, 

1966) 
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changes sign at the critical inclinations <����<�?
° and °. In particular, it is 

negative for ° °. Since this formula of  is obtained from averaging 

the leading C20 perturbation and our current model includes additional harmonics 

terms, the sign of  in our study does not change sharply at <����<�? but has a transition 

process. However, the exact values of this transition are beyond the scope of this study. 

Some orbits may still have   while others already have , which explains the 

break of the separatrix of ������ on the section . Therefore, we can 

define a new section for the near polar orbits with the only difference that .  

For similar simulations, results are shown in Fig.13. However, no ∗ ∗  of 

������ can be found on this new section; and its Poincaré map rather than separatrix 

is included in plots labelled A. The two resonances have moderate overlap at the upper 

and lower boundaries of ������, which brings about limited chaotic regions closely 

attached to the separatrix. When ������ reaches its strongest effect at °, the 

chaos becomes more obvious and thick. For ° and °, the chaos is visible 

but less abundant. For °, in addition to the chaos, islands are apparent in the 

circulation region of ������, where the two resonances have a strong modulation with 

each other.  
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In conclusion, the libration region of ������ is hardly influenced by ������. From 

this point of view, the 1:1 resonance is more stable for near polar orbits at different 

eccentricities.  

 
Figure 13 First row: the separatrices of resonances ℋ������ (red) and ℋ������ (blue) on the 

section _ 2 C 2⁄ , _b < 0; second row: the phase space of the corresponding ℋ�J��; both for 

l = 0.1, m = 68.8°, 90°, 108.9°, 120.3°. 

5.4.4 Betulia 

For both prograde and retrograde orbits, Betulia has very similar properties as Vesta, 

concerning the distance between the two resonances and the width of ������.  

(1) The effect of  

The retrograde case is illustrated in Fig.14. The most obvious difference w.r.t. Fig.9 is 

that the phase space is not symmetric with respect to ° anymore. When the two 

resonances are further apart at °, ������is hardly influenced. When they are 

almost in contact with each other at °, thick chaotic layers are present together 

with small islands in the phase space. Before complete overlap, there is a small KAM-

tori left at ° and the center region of the phase space is also distorted. After 

that at °, the phase space is totally chaotic and finally broken.  

For the prograde case, the two resonances always totally overlap, as shown in 

Fig.15. When ������ is tiny and weak at °, the main structure of ������ is 

kept, with the difference that small chaotic regions appear near the separatrix and 

again new islands are generated inside the right main island. As ������  becomes 

stronger at °, the overlapping part of ������ is completely chaotic. Similarly, 

for °, the phase space of  ������ is significantly broken and is left with large 

gap regions, even without complete break of the separatrix of ������. This indicates 

the strong perturbation of ������ on the dynamics and the highly non-linear property 

of �J��. 
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Figure 14 First row: the separatrices of resonances ℋ������ (red) and ℋ������ (blue) on the 

section _ 2 C 2⁄ , _b > 0; second row: the phase space of the corresponding ℋ�J��; both for 

l = 0.1, m = 171.9°, 165°, 153.6°; third row: the separatrices and phase space for l = 0.1, m =

132° (retrograde). 

 

Figure 15 First row: the separatrices of resonances ℋ������ (red) and ℋ������ (blue) on the 

section _ = C 2⁄ , _b > 0; second row: the phase space of the corresponding ℋ�J��; both for 

l = 0.1, m = 11.5°, 34.4°, 45.8° (prograde). 

For the near polar region, as illustrated in Fig.16, Betulia has a similar property as 

Vesta, considering that chaotic layers appear in the vicinity of the separatrix and also 

new islands are generated in the circulation region. However, for Betulia the three 

regions are weakly connected at °. Furthermore, they become totally isolated 

at ° , due to the stronger modulation of ������  compared to that of Vesta 

(Fig.13). Since the regular region is open, the originally stable EPs of ������ 

probably change into unstable. At ° and °, the circulation region is full 

of chaos, which implies that the perturbation of ������  and its interaction with 
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������ in this region are stronger, compared to the cases at ° and °. Again, 

the general structure of the libration part of ������ is kept.  

 
Figure 16 First row: the separatrices of resonances ℋ������  and ℋ������  on the section 

_ 2 C 2⁄ , _b < 0; second row: the phase space of the corresponding ℋ�J�� ; both for l =

0.1, m = 68.8°, 90°, 108.9°, 120.3°. 

(2) The effect of  

In addition, it is also found that  shows the same effect on the dynamics of Betulia as 

for Vesta, both for the prograde and retrograde orbits. The mechanism is the same and 

is not explained in detail here.  However, the phase space of �J��  at  is 

included in Fig.17. For the first plot at °, the main island is highly distorted 

although still without chaos. For °, the distortion is more serious and large 

chaos appears. The phase space with a small area of regular region in the center 

already shows the property of ������ at °. For ° ° °, the 

chaotic region is extended and new structures are generated.  

 

Figure 17 The phase space of ℋ�J��  at l = 0.5  for m = 171.9°, 165°, 153.6°, 132°, 11.5°,	 

34.4°, 45.8°. 
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5.5 The Maximal Lyapunov Characteristic Exponent of 

Chaotic Orbits 
In addition to the above study about the extent of chaotic layers, the chaos can also be 

characterized quantitatively by calculating the value of the maximal Lyapunov 

Characteristic Exponent (mLCE), which is indicator of the regular or chaotic 

properties of orbits (Skokos, 2010). Its basic idea is to measure the distance between 

two orbits that start close, until the infinite time . It characterizes the average 

growth rate of a small perturbation of the solution of a dynamical system and is 

defined as 

t
0

1
λ lim ln ( )

t

t
t∞→

= ∑ υ , 

in which  is the deviation vector with respect to the given orbit at time  . It is also 

the solution of the corresponding variational equations of the dynamical system. If  

, the orbit is chaotic; if , the orbit is regular. The numerical algorithm 

applied here is the standard method originally developed by Benettin and Galgani 

(1979). Its detailed implementation can be found in Skokos (2010). It has to be 

mentioned that for regular orbits it might take a long time for  to achieve zero. 

However, within a moderate time interval the tendency to zero is already visible.  

Since it is obvious that large  introduces stronger chaos and the chaos of the three 

different asteroids is expected to be compared, the mLCE of orbits selected from the 

chaotic and regular regions (if there is no chaos) on the maps from Figs.5, 9, 10, 12 

and13 are given in Fig.18. These maps primarily indicate the effect of  on dynamics at 

. The total integration time for them is different, but has been chosen such that 

a stable value of all the mLCE can be achieved. To make the results more visible, the 

mLCE at the end of the integrations are magnified and are shown respectively as insets 

in the plots of Vesta and Betulia.  

For the three asteroids, they share the same property that the more inclined the orbit, 

the larger mLCE value it has, indicating the stronger chaotic property. In addition, the 

mLCE values of the retrograde orbits are generally smaller than those of the prograde 

ones. For °, there is no chaos on both the maps of Vesta and Betulia (shown 

in Figs.5 and 9). This is demonstrated in the value for the mLCE illustrated as dark 

blue at the bottom of inset which will finally tends to zero, the tendency of which can 

already be identified. The difference among the three asteroids can also be noticed. 

The resonant orbits around 1996 HW1 have the largest mLCE (at magnitude of 10
-5

), 

the ones Betulia rank second (at magnitude of 10
-6

), while orbits around Vesta show 

the smallest mLCE (mostly at magnitude of 10
-7

). This can be explained by the 

different values of C20 and C22 induced from the irregular shape of the body. The more 

irregular the gravitational field, namely 1996 HW1 in our study, the relatively larger 

C20 and C22 and the resultant larger perturbation from ������ it generates. Vesta is the  
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Figure 18 The mLCE of regular and chaotic orbits from the Poincaré maps of ℋ�J�� for 1996 

HW1, Vesta and Betulia. 
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most regular body and the influence of its second degree of freedom dynamics is 

limited. Betulia is in between.  

In summary, the mLCE not only can identify the chaotic behavior of orbits, but also 

gives us a hint on their extent of chaotic property.   

5.6 Conclusions 
In this study, a 2-DOF Hamiltonian of the 1:1 resonant dynamics of a gravitational 

field up to degree and order 4 was built. The 1-DOF Hamiltonian � was first studied 

by finding the EPs and examining their stability for non-circular and non-polar orbits 

of Vesta, 1996 HW1 and Betulia. This �  was proven to capture the main 

characteristics of the 1:1 resonant dynamics, which was proven by the three study 

cases. For �,  was found to play a significant role on the number of EPs. When  

approaches , there is only one stable EP left, due to the dominant strength of C31 over 

C22 on the structure of the phase space. The 2
nd

 degree and order harmonics largely 

determine the stability of the EP, while the higher order terms either introduce new 

EPs and change the resonance width or break the symmetry of the dynamics. 

By applying Poincaré maps, the 2-DOF Hamiltonian �J�� was then investigated. 

Two Hamiltonians ������ and ������ were defined in this 2-DOF model and their 

locations and widths were determined numerically for different combinations of  and 

.  

With the overlap criteria, the extent of chaotic regions was qualitatively explained 

by the distance between the two resonances as well as their resonance strength. For 

small  and  close to 0 or ° , the dynamics of ������  around the stable EP is 

hardly influenced for the situation when  ������ and ������ are further apart. When 

 gets a bit further away from the equatorial plane, ������  becomes close to and 

almost interacts with ������. Small-scale chaos (chaotic layers) were generated in the 

vicinity of the separatrix of �J�� , whose boundaries were well estimated by the 

modulated-pendulum approximation. When the two resonances have an obvious 

overlap for  getting close to the polar region, large chaos became apparent and new 

islands came forth in the phase space. However, for the near polar case, the libration 

region of ������ is hardly influenced and is stable against perturbation of ������. 

Though the structure of the phase space is largely determined by , the large  

definitely give rise to strong perturbation of ������, which makes the main island 

distorted and the chaotic region extended. Therefore, the retrograde, near polar and 

near circular orbits show more stability against external perturbations. 

In addition, the mLCEs of the chaotic and regular orbits were calculated, from 

which the above conclusion was proved quantitatively and the chaotic orbits around 

1996 HW1 were revealed to have the strongest chaos, due to its highly irregular 

gravitational field.  
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This results and analyses in this paper serve as an example of studying the 

relationship among resonance overlap, extent of chaos and strength of the perturbing 

terms. The 2-DOF resonant dynamics of other main motion resonances, e.g. 1:2, 2:3, 

3:2, can also be investigated with the approach applied in this paper. This research can 

also serve as the starting point for future study about the spacecraft’s (or particle’s) 

capture of and escape from mean motion resonances.  

 

Appendix A 
Table A1  The primary zonal and tesseral terms contributing to the 1:1 resonance 

S 2 2 3 3 4 4 4 

R 0 2 1 3 0 2 4 

y 1 0 1 0 2 1 0 

z 0 0 0 0 0 0 0 

Θ���d 0 2k k 3k 0 2k 4k 

 

The expressions of � and � are given as 

ℋ� = −
)&|�

x(
}~��������(#�� cos(k + _� + ��� sin(k + _�� + ~�������(#�� cos(k − _�

+ ��� sin(k − _��� −
)'|�

x�
}~��������(#�� cos _ + ��� sin _�

+ ~�������(#�� cos _ − ��� sin _�� 	

−
)(|&

x�
}~&���&���(#&� cos(k + _� + �&� sin(k + _��

+ ~&���&��(#&� cos(k − _� + �&� sin(k − _��

+ ~&���&���(#&� cos(3k + _� + �&� sin(3k + _��

+ ~&���&��(#&� cos(3k − _� + �&� sin(3k − _��� 

(A.1) 

ℋ� = −
)&|�

x(
}~�������(#�� cos(2k − 2_� + ��� sin(2k − 2_���

−
)'|�

x�
}~��������(#�� cos(k + 2_� + ��� sin(k + 2_��

+ ~�������(#�� cos(k − 2_� + ��� sin(k − 2_��

+ ~�������(#�� cos(3k − 2_� + ��� sin(3k − 2_���

−
)(|&

x��
}~&���&���(#&� cos(2_� + �&� sin(2_��

+ ~&���&��(#&� cos(2k − 2_� + �&� sin(2k − 2_��� 

(A.2) 

 

Appendix B 

The tables below contain the values for the un-normalized spherical harmonic 

coefficients to degree and order 4 for Vesta derived from Tricarico and Sykes (2010), 

1996 HW1 (Feng et al., 2015a) and Betulia derived from Magri et al. (2011). Although 

there is an update of the gravitational field of Vesta in Konopliv et al. (2014), the full 
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4×4 spherical harmonics are not directly available from it. In addition, the difference 

between the two is quite small. 

Vesta 

C20 -6.872555×10
-2

 S31 1.825409×10
-4

 S41 -1.347130×10
-4

 

C21 0 C32 -3.162892×10
-4

 C42 -3.152856×10
-5

 

S21 0 S32 5.943231×10
-5

 S42 6.551679×10
-5

 

C22 3.079667×10
-3

 C33 2.565757×10
-5

 C43 -3.113571×10
-5

 

S22 0 S33 7.264998×10
-5

 S43 -2.689264×10
-6

 

C30 6.286305×10
-3

 C40 9.6×10
-3

 C44 3.190457×10
-6

 

C31 -7.982112×10
-4

 C41 6.394125×10
-4

 S44 5.514632×10
-6

 
 

1996 HW1 (all Snm terms are zero) 

C20 -1.21847×10
-1

 C31 -1.3964×10
-2

 C41 0 

C21 0 C32 0 C42 -4.258×10
-3

 

C22 5.8547×10
-2

 C33 2.547×10
-3

 C43 0 

C30 0 C40 3.8779×10
-2

 C44 5.16×10
-4

 
 

 

Betulia 

C20 -1.476131×10
-1

 S31 -2.491845×10
-3

 S41 -5.428366×10
-4

 

C21 0 C32 -5.879324×10
-3

 C42 -1.599034×10
-3

 

S21 0 S32 2.931994×10
-3

 S42 5.556629×10
-5

 

C22 1.711891×10
-2

 C33 3.182376×10
-4

 C43 1.775273×10
-4

 

S22 0 S33 -3.910856×10
-3

 S43 2.49498×10
-4

 

C30 9.543225×10
-3

 C40 4.2618×10
-2

 C44 -3.298214×10
-5

 

C31 -2.738977×10
-3

 C41 -6.251823×10
-4

 S44 3.024807×10
-5

 

 

 

Appendix C 

The location of EPs and resonance width at different combinations of  and  for Vesta, 

1996 HW1 and Betulia 

 

 



1:1 Ground-track resonance in a uniformly rotating 4th degree and order gravitational field 

127 
 

 

 

 
 

 
 

 



1:1 Ground-track resonance in a uniformly rotating 4th degree and order gravitational field 

128 
 

 
 



 

 
 

Chapter 6 Conclusions and Recommendations 

This thesis mainly investigated the dynamical environment in the vicinity of contact 

binary asteroid systems, or more specifically: the orbital motion of an accompanying 

spacecraft or particle. With the asteroid shape modeled by the combination of an 

ellipsoid and a sphere, the phase space around the asteroids was characterized by 

investigating the EPs, POs and their stability numerically. The influences of the system 

configuration and rotation rate on the phase space were also studied. One step further, 

a third-order analytical solution was constructed for the motion around the non-

collinear EPs. Then putting the focus back on the entire asteroid system, the 3-

dimensional POs were found for different rotation rates of the body. Lastly, for a 

generalized study about the effect of the irregular gravitational field on the 1:1 

resonance dynamics, the gravitational field truncated at degree and order 4 was applied 

and the resulting 2-DOF Hamiltonian was studied by interpreting the extent of chaos 

in phase space with the overlap of the two resonances and their relative strength, for 

different combinations of eccentricity and inclination.  

As presented in the previous chapters, the research questions were all addressed and 

conclusions on them are given in this chapter, which is followed by recommendations 

for future work. 

6.1 Conclusions 

(a) The phase space of the entire system has been characterized in Chapter 2 

First, to approximate the gravitational field of contact binary asteroids, a combination 

of an ellipsoid and a sphere was used. System 1996 HW1 was discussed to be the best 

study case. Under the assumption of constant density, its gravitational potential 

directly obtained from the combination of a spherical potential and a closed-form 

ellipsoidal potential. Four unstable EPs were found, the location and stability of which 

are highly consistent with the result from a polyhedron model.  

Analogous to the RTBP, families of Lyapunov, Halo-like and vertical POs around 

the EPs were obtained numerically. It was found that the closer the PO to the EP, the 

more unstable it is, due to the instability of the EP and its surrounding motion. The 

relative size and shape of each lobe (also called system configuration) has a very weak 

influence on the stability of the four EPs, while the fast rotation of the asteroid transits 

the non-collinear EPs from stable to unstable. Two families of equatorial POs were 

found. The retrograde family A orbits, which are prograde in the inertial frame, 

became highly unstable when coming close to the asteroid. Retrograde family B orbits 

however can remain stable even when they almost touch the surface of the asteroid, 

and they are preferable orbits to be used in real missions.  



Conclusions and recommendations 

130 
 

The fast rotation of an asteroid does have a stabilizing effect to diminish the 

perturbation from the irregular gravitational field on equatorial orbits, which is in 

contrast to its influence on the stability of the non-collinear EPs. Polar resonant orbits 

in  commensurability with the rotation of the asteroid were obtained, which provide 

good coverage of the polar region of the body. From these simulations, the general 

properties of orbital motion in the vicinity of a contact binary asteroid system were 

characterized.  

(b) The analytical solution of the motion in the vicinity of the EPs has been 

constructed in Chapter 3 

As a natural next step, a third-order analytical solution of the motion around the non-

collinear EPs was constructed with the LP method. Compared with numerical 

integration, this solution was proven to be a good approximation of such motion. 

However, its accuracy decreases when the amplitude of the motion becomes large and 

when the asteroid rotates rapidly, due to the fact that the LP method is based on a 

linear expansion of the motion. As already mentioned, the non-collinear EPs change to 

unstable when the asteroid rotates faster; and the motion in their vicinity is highly 

unstable. It was also found that the vertical orbital motion becomes more unstable 

when the asteroid rotates faster. With linear feedback control, a low-thrust control 

strategy was employed to stabilize the motion to follow the reference trajectory. 

The larger the amplitude of the motion and the faster the rotation of the asteroid, the 

more propellant is required for stabilizing the motion. Therefore, from a practical 

concern on propellant consumption, it is recommended to have an accurate (i.e. 

numerical) nominal trajectory for a mission with large-amplitude motion around the 

EPs in a highly perturbed environment.  

(c) The dynamics in a truncated gravitational field has been addressed in terms of 

frozen orbits and POs in Chapter 4 

With such a shape model, the spherical harmonics expansion was shown to be a good 

approximation of the gravitational field for identifying frozen orbits and 3-dimensional 

POs. It was found that for a truncation at degree and order 4, the relative errors are 

smaller than 1% when the distance to the asteroid is larger than twice its reference 

radius, for different configurations. Particularly for 1996 HW1, the 8
th

 and 4
th

 degree 

and order expansions have relative errors of less than 2% and 8% at the circumscribing 

sphere, respectively. Terms C31, C40 and C60 were found to have large magnitudes, 

compared to the corresponding terms of planetary bodies and their moons. 

Therefore, the Hamiltonian that takes into account 4
th

 degree and order spherical 

harmonics was built. Frozen orbits were obtained from the double-averaged 

Hamiltonian, in which only zonal harmonics appear to play a role. By examining these 

orbits in the non-averaged model, tesseral harmonics were revealed to introduce large 

variations in the orbit and distort the frozen conditions. With the aid of Poincaré maps, 
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the structure of the phase space of the single-averaged Hamiltonian (including tesseral 

terms) was investigated at different energy levels and rotation rates of the asteroid, 

from which POs were obtained. Among them, the stable POs are most interesting for 

mission purposes. In addition, it was discovered that the perturbing effect of the highly 

irregular gravitational field on orbital motion is relatively weak around the polar 

region and for the situation when the asteroid rotates fast.  

(d) The 1:1 resonance dynamics in a rotating 4
th

 degree and order gravitational 

field has been investigated in Chapter 5 

For a further and generalized study about the dynamics of a 4
th

 degree and order 

gravitational field, the 1:1 ground-track resonance dynamics was investigated with a 2-

DOF Hamiltonian. This resonance dynamics is dominated by a 1-DOF Hamiltonian 

that is included in the original 2-DOF model. The location, stability and width of this 

1:1 resonance were assessed for orbits with arbitrary eccentricity and inclination. The 

2
nd

 degree and order harmonics were found to largely determine the stability, while the 

3
rd

 and 4
th

 order terms were revealed to change the resonance width, introduce new 

locations of the resonance and break the symmetry of this 1:1 resonance dynamics. 

This study was applied to three asteroids: Vesta, 1996 HW1 and Betulia. The findings 

were in good agreement with the known results of the equatorial resonant orbits, 

proving that the 1-DOF Hamiltonian captures the main dynamics of the system.  

For the 2-DOF Hamiltonian, a second resonance was identified in addition to the 

main resonance studied above, and was treated as a perturbation term. By applying 

Poincaré sections, the extent of chaos in the phase space was quantitatively shown to 

be determined by both the overlap of the two resonances and the strength of each 

resonance. Large regions with chaos are generated when the two resonances have a 

significant overlap and the perturbing resonance is stronger. When the two resonances 

are close but not connected yet, small chaotic layers appear around the separatrix of 

the main resonance; their boundaries were estimated with the modulated-pendulum 

approximation. The resonance width of the retrograde orbits was shown to be smaller 

than that of the prograde ones. In addition, the polar region again was found to be less 

influenced by the perturbation from the second resonance. 

As already discussed, the research questions that were presented in the introduction 

chapter have been addressed in Chapters 2, 3, 4 and 5. In summary, several general 

conclusions can be drawn here:  

(1) The shape model of the combination of an ellipsoid and a sphere works well for 

studying the general dynamical environment in the vicinity of contact binary asteroid 

systems;  

(2) Compared to that of the system configuration, the rotation rate of the asteroid does 

have a significant influence on the phase space. The fast rotation does have a 

stabilizing effect on the nearby orbital motion, i.e. the equatorial orbits and the 3-
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dimensional orbits around the entire system, except for the region where resonances 

occur (especially the 1:1 resonance). It is known that the non-collinear EPs, which 

belong to the 1:1 resonance, transit to unstable when the asteroid rotates more rapidly. 

(3) Orbits near the polar region are found to be relatively stable and robust against the 

perturbations from the irregular gravitational field and from the second resonance. 

(4) The extent of the chaotic regions is determined by both the distance between the 

resonances and their respective strengths. 

The models and methods employed in this thesis have a wide application to 

investigate the dynamical environment of other systems, e.g. binary asteroid systems, 

planet-moon systems and even binary star systems. 

6.2 Recommendations 
There are still many open questions that need to be tackled in the field of orbital 

motion within a highly bifurcated gravitational field.  

First, although our shape model of a combined ellipsoid and sphere is a good 

approximation, a high-fidelity gravitational model if available, e.g. the polyhedron 

model, is recommended for a more accurate exploration of the dynamical environment 

of a specific contact binary system, e.g. comet 67P. For real mission operations, it is 

hard to get the detailed gravitational field before the spacecraft’s arrival at the target 

body. Monte Carlo analysis might be required to identify the stable region of orbital 

motion around the contact binary body, to assist with selecting robust mission orbits. 

Furthermore, as the two lobes of a contact binary system in general have a different 

origin and probably possess different densities, it is suggested to take this into account 

and to check its effects on the dynamical environment.  

As an extension of this work about a third-order analytical solution of the motion in 

the vicinity of the non-collinear EPs, a higher-order solution is appreciated for large-

amplitude motion and for the fast rotation of the asteroid. For this kind of study, a 

truncated gravitational field is still recommended to obtain a generalized result that can 

be applied to other highly irregular gravitational environments (not only for contact 

binary systems). Afterwards, a full validation can be performed by numerical 

integration. The analytical solution of motion around the collinear EPs can also be 

constructed with this gravitational model and the methods developed in this study.  

In addition to the orbital dynamics, the long-term motion of ejecta particles is also 

worthwhile to be studied, not only for identifying the accumulation of particles on the 

surface of the asteroid but also for investigating the capture and ejecta dynamics of the 

body. For this purpose, the polyhedron model is suggested, as it is the most accurate 

one for motions on the surface and in close vicinity of the asteroid. For contact binary 

bodies, one of the most appealing areas is the neck region, where the two lobes merge 

into each other. Detailed exploration of the surface motion of a particle in this region 
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as well as its geophysical and chemical environment can help to uncover the formation 

process of contact binary bodies.  

Except for the irregular gravitational field of the asteroid, there is also a 

perturbation from solar radiation pressure (SRP) on the spacecraft. If the spacecraft 

has a large area-to-mass ratio or flies at a moderate distance to the asteroid, SRP is 

expected to give rise to a significant perturbation on the stability of orbits. Together 

with the irregular gravitational field from the body, control strategies need to be 

studied for maintaining the desired orbital motion around the body. Furthermore, SRP 

can also be taken advantage of to design so-called solar-terminator orbits, which might 

be a good candidate of orbits that have a good coverage of the neck region. However, 

for spacecraft orbiting comets, with perturbations from SRP and outgassing (especially 

when the comet is at its perihelion) as well as the weak gravitational field of the comet, 

new characteristics of the dynamical environment are expected to be generated, 

together with new challenges for an orbital mission.  

For the spacecraft passage through resonance, its orbit might become chaotic or it is 

captured into the resonance. Therefore, the probabilities of capture escape need to be 

investigated for the 1:1 resonance, as it is always recognized as the largest one. Delsate 

(2011) already did some preliminary numerical analysis for Dawn around Vesta, and 

found these probabilities to be closely related to the phase of the resonant angle. 

However, a systematic study is required to obtain a general conclusion for orbits with 

arbitrary eccentricity and inclination. Except for the 1:1 resonance, other resonances 

are also interesting to study. For example, for Vesta, the 2:3 resonance was shown to 

be strongest and to post a great influence on orbital eccentricity (Delsate, 2011). The 

main resonances and their strengths should be identified in the presence of a highly 

irregular gravitational field, together with the corresponding capture and escape 

probabilities. In addition, a new structure of phase space is generated in the chaotic 

region, which is the result of high-order resonances. This phenomenon is also 

interesting to address. Last but not least, the effect of the rotation rate of the asteroid 

on the width of main resonances should also be studied, for the completeness of the 

investigation of the effect of the rotation rate on dynamics of nearby orbiting objects.  
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