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Abstract—Decarbonisation of the electricity sector has led to
the adoption and deployment of a large number of consumer-sited
flexible assets. Simultaneously, consumers are becoming increas-
ingly aware of their consumption patterns and are eager to reduce
their energy expenses making demand response a significant
source of flexibility in energy markets. In this paper, we discuss
the policy measures that influence a consumer’s ability to respond
to price signals and offer flexibility in the day-ahead market.
We propose two methods to quantitatively analyse these policy
instruments through their inclusion in market clearing models for
the Dutch day-ahead power market. A single-level optimisation
model with social welfare maximisation objective can be used
to perform a simplified assessment of changes in demand bids
due to policy-based financial influences. This model is suitable
for studying simple policies such as time-independent taxes but
unsuitable for complex policies such as network tariffs and
subsidies. A bi-level optimisation model with consumer surplus
maximisation on the upper level and social welfare maximisation
on the lower level allows more sophisticated modelling of policies
but is limited by its scalability and computational complexity.
The two methods can be compared on the basis of their ability
to incorporate different policy instruments and market design
choices, model consumer bidding behaviour, their computational
complexity and challenges to implementation.

Index Terms—Electricity market model, demand response,
flexible demand, bi-level optimisation

I. INTRODUCTION

The call for climate change mitigation has put renew-
able energy at the forefront as the panacea for tackling
growing energy demand while reducing emissions. However,
widespread adoption of renewable energy resources such as
solar PV and wind has also brought with it several challenges,
both anticipated and unanticipated. Increasing penetration of
variable renewable energy, electrification of end-uses, and
proliferation of decentralised assets have collectively created
an energy market with increasing variability while reducing the
predictability of both supply and demand. The system, thus,
requires resources that are capable of adapting their behaviour
to techno-economic signals provided by the system, commonly
termed as flexible resources or just flexibility.

A relatively untapped source of this flexibility is demand
response in the form of load shifting and load shedding [1],

[2]. To effectively utilise this resource, we must i) assess
its potential, ii) identify the barriers to its utilisation, and
iii) adapt policies, regulations and market design to eliminate
these barriers. The objective of our research is to contribute
to the understanding of policy and regulatory barriers to the
participation of demand-side flexibility in electricity markets
and designing a conducive regulatory environment. To achieve
this, we propose the development of a market clearing model
that incorporates the financial and market design aspects of
different policies and regulations. This model is developed
from the perspective of the market operator and policymakers
and seeks to maximise social welfare across the market
participants.

There are several approaches to include policy-related finan-
cial instruments in market models. It is necessary to understand
the differences between these approaches for two important
reasons:

i. Understanding these approaches will lead to more robust
studies in energy policy and economics and will provide
deeper insights into the use of policy instruments to
encourage demand response

ii. Several consumers ranging from large industries to ag-
gregators are becoming increasingly interested in the
dynamics of electricity markets. They foresee higher
electricity consumption on account of the phase-out of
fossil-fuel-based energy sources. Consequently, they are
concerned about the impact of not only electricity prices
but also regulated, non-market charges such as taxes and
tariffs. The approach we choose must be compatible with
modelling consumers’ interests.

To this end, this paper explores two methodologies for
incorporating policy, regulatory and market design aspects in
market models. These are single-level and bi-level optimisa-
tion methods. The overarching goal of both these methods
will be to represent market clearing with different parameters
and decision variables. We will analyse the relative merits
and drawbacks of these methods and their suitability for
studying different policies and market design parameters. The
focus of this study will be on the Dutch electricity sector,
more specifically, the day-ahead auction-based market. In the
following section, we provide a brief overview of the Dutch979-8-3503-9042-1/24/$31.00 ©2024 IEEE
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electricity sector policies and governance as well as a review
of market modelling methods used in other studies.

II. LITERATURE REVIEW

1) Dutch electricity sector regulations: The Dutch electric-
ity sector is governed and regulated by two primary agen-
cies: the Ministry of Economic Affairs and Climate Policy
(Ministerie van Economische Zaken en Klimaat) and The
Netherlands Authority for Consumers & Markets (Autoriteit
Consument & Markt). Apart from the Ministry and the Au-
thority for Consumers & Markets (ACM), the Dutch energy
market must also comply with legislation and directives issued
by the European Union.

Key policy and regulatory factors that can influence a
consumer’s bidding behaviour include:

• Electricity tax: electricity tax is determined and imposed
by the Dutch tax authority, Belastingdienst. In 2024, the
taxes are categorized by annual consumption levels and
consumer types [3].

• Network tariffs: network tariffs are regulated by ACM
and imposed by respective network operators. They are
categorized by consumer size and connected capacity [4].

• Net-metering scheme: net-metering scheme is offered
to small consumers that choose to install rooftop solar
systems. Here, the consumer is reimbursed for any ex-
cess solar power it injects into the grid. The period of
settlement and rate of reimbursement is determined by
the electricity provider [5].

• Subsidies such as SDE++ (Stimulering Duurzame En-
ergieproductie en Klimaattransitie) are offered to enti-
ties that either produce renewable electricity or reduce
carbon emissions such as heat conversion technologies.
Consumers that can benefit from SDE++ include user of
heat pumps, electric boilers, electrolysers, etc. [6]

A detailed review of these policies is outside the scope of this
paper. However, it can be observed that each policy is uniquely
structured in its application and requirements. Thus, creating
a model that can accurately incorporate these intricacies is a
complex task.

2) Modeling methods: The impact of energy policies and
regulations is often studied using energy system models and
integrated assessment models. Results and analyses produced
by these models are used to guide policy-making across the
world, including The Netherlands. As an example, the Climate
and Energy Outlook report (Klimaat- en Energieverkenning)
published annually by The Netherlands Environmental As-
sessment Agency (PBL) uses results from the COMPETES
model built by PBL and TNO [7]. A plethora of both open
source and commercial energy system models exist today
covering a wide range of objectives, formulations, spatial
and temporal resolutions, and methodologies [8]. A signifi-
cant number of these models perform unit commitment and
economic dispatch with a cost minimisation objective. While
these models are rich in terms of sectors, technologies and
techno-economic details, they lack an adequate representation
of flexible demand. In some cases, a simplified implementation

of flexibility is performed by designating a portion of the
total demand as flexible under a set of conditions [1]. Other
studies perform a more technically detailed assessment of
availability and impact of demand response in complex enregy
system models that accounts for load recovery and saturation
[9]. However, in these implementations, the flexibility is not
allocated an explicit economic value. From the perspective of
demand response, this approach fails to capture a consumer’s
willingness to accept load shifting or its willingness to pay for
power at any given time. Thus, consumers are only passive
participants in the market. However, in an actual market,
consumers will not only express their willingness to pay for
electricity in the bids they submit to the market but also expect
remuneration for modifying their behaviour and providing
grid services. Their willingness to modify their behaviour and
expected financial benefit will be based on the opportunity
cost of forgone economic or non-economic activity and the
consumer’s perception of market signals. Determining this
combination of volume and price of flexibility provision is
at the centre of flexibility studies.

Inclusion of consumers’ price elasticity and willingness to
pay (WTP) necessitates the creation of market clearing models
that aim to maximise social welfare (consumer surplus + pro-
ducer surplus) [10], [11]. There is a large body of operations
research on the development of auction-based market clearing
models for European markets. There are also a large number
of studies on the incorporation of flexible resources in such
models. Several of these studies analyse the interaction of
different stakeholders with the market [10], [12]–[14].

It is noted that a large number of studies on interaction
of stakeholders with the market utilise equilibrium based
methods such as Stackelberg game, bi-level and multi-level
optimisation. Jiang et al. created a two-stage market clearing
model coupled with a virtual power plant’s (VPP) internal
scheduling model and solved using ADMM to study the
participation of VPPs in electricity and flexibility markets [10].
Wang et al. used a bi-level optimisation approach to simulate
the decision-making of an electric vehicle aggregator and its
interactions with the electricity market [12]. Hong et al. used
a bi-level model to study the behaviour of a strategic retailer
with flexible power demand with respect to its interaction with
the day-ahead wholesale market, local power exchange and its
consumers [15]. However, there is a relative lack of studies
on the incorporation of policy and regulatory instruments in
such models. Thus, from the perspective of market operators
as well as energy market regulators, the need arises for
the development of a publicly available methodology and
model with which to study the impact of market design and
policies on consumer bidding behaviour and, consequently,
social welfare. We propose methods to fill this gap in this
paper. In the following section, we expand on two methods
for designing such models and provide their formulations,
applications, merits and drawbacks.
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III. METHODOLOGY

As mentioned previously, the primary objective of this paper
is to propose methods for incorporating and studying policy,
regulatory, and market design instruments in market clearing
models. We have chosen the Dutch wholesale day-ahead
market as our focus is on the Dutch policy and regulatory
environment. The Dutch (and by extension, European) day-
ahead electricity market provides a range of options to meet
the varying requirements of both consumers and suppliers in
the form of several types of bids including hourly, stand-alone
bids and interdependent, block bids. In addition, price elastic
demand and supply can submit up to 256 bids in each time
period [16]. We capture this market design in our model by
inputting hourly supply and demand bids and clearing the
market over a 24-hour optimisation horizon. Each consumer
is allowed to submit multiple bid pairs in each time step.

To model flexibility, it is essential to first define and
categorise it, particularly the difference between flexibility
and elasticity. Conventionally, demand flexibility is interpreted
as the ability to shift load temporally, which may or may
not be in response to a price signal. Such load shifting and
shedding have been studied extensively in both technological
and economic contexts. Conversely, price elasticity of demand
is the sensitivity of demand to changes in prices. While
flexibility does not possess a fixed mathematical or economic
definition, elasticity is a well-defined economic concept and
is expressed mathematically as (∆Q/Q)

/
(∆P/P ). In order

to effectively value demand response, we must study both
flexibility as well as elasticity of demand. This can be achieved
by either defining demand as a function of price and providing
exogenous values of elasticity and prices or by specifying sets
of price-quantity pairs. In our study, we have chosen to utilise
price-quantity pairs to reflect the WTP of demand in order to
represent the EPEX day-ahead market clearing mechanism. By
allowing multiple bids per consumer per timestep, it is possible
to capture both price elasticity and temporal flexibility. In the
following sections, we provide the rationale, formulation and
use cases for single and bi-level market models utilising elastic
demand representation.

A. Single-level optimisation

This method uses a simple day-ahead market clearing model
with the assumption that all consumers submit bids at their
true willingness to pay in the absence of any external policy
influence. The fundamental premise behind this model is that
the market operator is privy to only the bidding data (price-
volume pairs) submitted by the participants. The individual
participant’s internal optimisation and strategic decisions are
not known to the operator. Thus, the operator’s objective is to
clear the market with the aim of maximising social welfare.
The objective function for the market operator is:

max
T∑

t=1

∑
i∈D

∑
k∈Ki

(
qDi,k,tWTPD

i,k,t

)
−

∑
j∈G

(
cGj,t q

G
j,t

) (1)

Demand bids

Consumer 

Market operator

Generator

Supply bids

Taxes, subsidies, etc.

Market clearing
price

Market clearing
volume

Revised bids

Fig. 1. Single-level model structure

subject to constraints:∑
i∈D

∑
k∈Ki

qDi,k,t =
∑
j∈G

qGj,t ∀t ∈ T (2)

qGmin
j ≤ qGj,t ≤ qGmax

j ∀t ∈ T (3)

pmin
t ≤ WTPD

i,k,t ≤ pmax
t ∀t ∈ T (4)

0 ≤ qDi,k,t ≤ QD
i,k,t ∀t ∈ T (5)

QDmin
i,T ≤

T∑
t=1

qDi,k,t ≤ QDmax
i,T ∀i ∈ D (6)

where qGj,t is the power generated by generator j in timestep t,
qDi,k,t is the demand met of bid pair k of demand i in timestep
t, QDmin

i,T and QDmax
i,T are the minimum and maximum demand

met over the time horizon T, WTPD
i,k,t is the willingness to

pay of demand i in timestep t for quantity qDi,k,t, and pmin
t and

pmax
t are the minimum and maximum bid prices for timestep

t. The decision variables in this problem are demand met and
generation (qDi,k,t, q

G
j,t).

Absent any distortionary external factors, a consumer will
bid at its willingness to pay (WTP) for a certain quantity of
electricity. Thus, in the above function, WTPD

i,k,t is used in
place of pDi,k,t.

1) Incorporating policy instruments: From the perspective
of the market operator, when a consumer is exposed to
policy-related financial distortions, the change in their bidding
behaviour will reflect a rational adjustment of their bids. In
the single-level optimisation approach, bid prices are modified
by reducing them by the value of the financial distortions
while keeping the bid quantity unchanged. It implies that
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the willingness to pay of the consumer for a certain quantity
remains the same but the bid price will be different.

Below, we provide a general formulation for incorporating
fixed or time-varying distortions such as electricity taxes and
network tariffs in the model. Their inclusion will modify the
objective function to:

max

T∑
t=1

∑
i∈D

∑
k∈Ki

qDi,k,t
(
WTPD

i,k,t −N var
i,t

)
−

∑
j∈G

cGj,t q
G
j,t


(7)

where N var
i,t is the variable component of the distortion.

B. Bi-level optimisation

This method utilises a bi-level, single-leader – single-
follower, model that allows strategic decision-making by a
consumer to account for external policy influence . The upper
level is built from the perspective of the consumer that seeks
to maximise their welfare while anticipating market prices. In
the lower level is the market operator that clears the market
based on social welfare maximisation objective. The lower
level takes demand bids as inputs form the upper level and its
output, market clearing price, is used as an input in the upper
level. In addition, non-strategic demand and supply bids are
provided as inputs to the market clearing model.

Strategic consumer 

Bids acceptedInitial bids (true WTP)

SDE++Electricity tax Network
tariffsNet-metering

Cleared price

New bids

Market clearing
price

Non-strategic demand
bids

Market operator

Market clearing
volume

Suppply bids Strategic demand
bids

Fig. 2. Bilevel model structure

The model is formulated as below:
Upper-level problem: Market clearing using social welfare

maximisation objective

max

T∑
t=1

[
(WTPi,t − λt)Q

D
i,t

]
(8)

subject to:

0 ≤ QD
i,t ≤ QDmax

i,t ∀t ∈ T (9)

QDmin
i,T ≤

T∑
t=1

QD
i,t ≤ QDmax

i,t ∀t ∈ T (10)

where QD
i,t is the volume bid by the strategic consumer in time

t and is the variable in the upper level problem. The WTP (bid
price) and λt are parameters.

Lower level problem: Social welfare maximisation

max

T∑
t=1

[
WTPi,t Q

D
i,t +

∑
−i∈D

∑
k∈Ki

(
qD−i,k,t p

D
−i,k,t

)
−
∑
j∈G

(
cGj,t q

G
j,t

) (11)

here, i refers to the strategic consumer while -i denotes the set
of non-strategic consumers.
Subject to constraints:

QD
i,t +

∑
i∈D

∑
k∈Ki

qDi,k,t =
∑
j∈G

qGj,t ∀t ∈ T (12)

qGmin
j ≤ qGj,t ≤ qGmax

j ∀t ∈ T (13)

0 ≤ qD−i,k,t ≤ qDmax
−i,k,t ∀t ∈ T (14)

In the lower level problem, qGj,t and qD−i,k,t are the variables.
λt is the market clearing price, which is the dual variable of
the power balance constraint, equation (12).

1) Incorporating policy instruments: When a consumer
is exposed to external policy influences, it will react by
modifying its bid quantity against a modified bid price. Thus,
the upper level problem can be altered as follows:

max

T∑
t=1

[
(WTPi,t − N var

i,t − λt)Q
D
i,t

]
(15)

Bi-level problems are known to be challenging to solve given
their non-convexity and potential non-linearity [17]. In the cur-
rent case, given the convexity of lower level (market clearing)
problem, it can be replaced by its KKT conditions, which
are then added as constraints to the upper level problem. The
bilinear term can be linearised using strong duality theorem
on the lower level objective function. Finally, complementarity
constraints can be linearised using the Big M method [18].
However, it must be noted that even with these approximations
and conversions, finding a global optimal solution to a bilevel
problem may be challenging.

IV. COMPARISON - APPLICATIONS AND LIMITATIONS

In this section we will discuss the relative merits and
drawbacks of the two methods described previously and their
utility in studying energy policies and regulations.

i. Rational vs. strategic behaviour: a very important dis-
tinction to make when choosing a method is whether the
consumer is expected to alter its bids rationally to account
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for policy impact or behave strategically and attempt
to alter market outcome. When considering rational be-
haviour, a consumer is not expected to anticipate market
outcome. Thus, in such a case, a single-level market
clearing optimisation method may be used. On the other
hand, a strategic consumer will anticipate the market
outcome when determining its bid. A bilevel optimisation
model may be more suitable for a such a study.

ii. Representation of demand elasticity: the single-level opti-
misation method allows explicit incorporation of demand
elasticity in the model in the form of multiple bid pairs
per time step. Bilevel model, on the other hand, can
only generate one, optimal, bid pair per timestep for the
strategic consumer. Thus, if the objective of a study is to
assess the variation in demand elasticity under different
circumstances, a single-level model is more suitable,
particularly in cases where elasticity varies across time
periods.

iii. Representation of demand flexibility: both methods can
provide insights into the shifting of demand across time
periods as well as curtailment under different policy
scenarios.

iv. Inclusion of other decision variables and parameters:
these considerations are relevant for consumers that have
access to substitutes to grid electricity, such as gas,
self generation from rooftop solar, etc.. In such cases,
a consumer will optimise its power procurement from
the electricity market not only against the anticipated
market prices, but also against the cost of substitutes.
Such parameters (e.g. gas prices) and variables (e.g.
self consumption of solar power) cannot be included in
a simple, centralised market clearing model. A bilevel
model is better able to capture the effect of substitutes
on a consumer’s behaviour by adding it as an additional
follower (lower level) problem.

v. Scalability: a centralised market clearing model as con-
ceptualised by the single-level optimisation method is
mathematically less challenging to scale up to include
a large number of market participants. On the other
hand, bilevel models with multiple leaders (in this case,
strategic consumers) and single or multiple followers are
demonstrably more challenging to solve [19] and have
higher computational expense. Additionally, selectively
studying the behaviour of one strategic consumer under
different policy scenarios in a single-leader model will
yield misleading results.

V. CONCLUSION

In this paper, we have proposed two methods for studying
the influence of policy instruments on demand elasticity and
flexibility. Both approaches have their merits and drawbacks.
The single-level optimisation approach is relatively straight-
forward to implement and has low computational expenses.
It can also be used to study the collective impact varying
policies on a diverse set of consumers that are both elastic
and flexible. However, it is limited in evaluating the impact

of policies on that have access to alternatives to grid power.
Conversely, a bilevel model is more suitable for capturing
the decision making of strategic consumers that seek to
anticipate and alter market outcomes. They are also able to
incorporate multiple energy carrier options for consumers with
alternate sources. However, such models are limited in their
ability to study elasticity of demand and their scalability. A
quantitative assessment of the two methods is the subject of
ongoing research, the results of which will be shared in future
publications.
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