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Similarity Measures in Fuzzy
Rule Base Simplification

Magne Setnes, Robert Babuška, Uzay Kaymak, and Hans R. van Nauta Lemke

Abstract—In fuzzy rule-based models acquired from numerical
data, redundancy may be present in the form of similar fuzzy
sets that represent compatible concepts. This results in an un-
necessarily complex and less transparent linguistic description
of the system. By using a measure of similarity, a rule base
simplification method is proposed that reduces the number of
fuzzy sets in the model. Similar fuzzy sets are merged to create
a common fuzzy set to replace them in the rule base. If the
redundancy in the model is high, merging similar fuzzy sets
might result in equal rules that also can be merged, thereby
reducing the number of rules as well. The simplified rule base is
computationally more efficient and linguistically more tractable.
The approach has been successfully applied to fuzzy models of
real world systems.

Index Terms—Fuzzy modeling, fuzzy sets, rule base reduction,
rule base simplification, similarity measure.

I. INTRODUCTION

FUZZY modeling is one of the techniques currently being
used for modeling of nonlinear, uncertain, and complex

systems. An important characteristic of fuzzy models is the
partitioning of the space of system variables into fuzzy regions
using fuzzy sets [1]. In each region, the characteristics of the
system can be simply described using a rule. A fuzzy model
typically consists of a rule base with a rule for each particular
region. Fuzzy transitions between these rules allow for the
modeling of complex nonlinear systems with a good global
accuracy. One of the aspects that distinguish fuzzy modeling
from other black-box approaches like neural nets is that fuzzy
models aretransparent to interpretation and analysis (to a
certain degree).

However, the transparency of a fuzzy model is not achieved
automatically. A system can be described with a few rules
using distinct and interpretable fuzzy sets but also with a large
number of highly overlapping fuzzy sets that hardly allow for
any interpretation. When a fuzzy model is developed using
expert knowledge, usually the model designer takes care that
the model remains interpretable. On the other hand, some
degree of redundancy and thus unnecessary complexity cannot
be avoided when automated techniques are applied to acquire
fuzzy models from data.
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This article introduces a new approach for simplifying fuzzy
rule-based models by reducing redundant information that is
found in the form ofsimilar fuzzy sets in the rule base. Similar
fuzzy sets are highly overlapping fuzzy sets that describe
almost the same region in the domain of some model variable.
In such cases, the model uses more fuzzy sets than necessary
since these fuzzy sets represent more or less the same concept.
We propose to use a similarity measure for identifying similar
fuzzy sets, and to replace these by a common fuzzy set
representative for the original ones. This common fuzzy set
is created by merging the similar fuzzy sets. If the redundancy
in the model is high, merging similar fuzzy sets might result
in equal rules that can be subsequently deleted from the rule
base, resulting in reduction of the number of rules.

Description of a system using natural language is an ad-
vantage of fuzzy modeling. A simplified rule base makes it
easier to assign qualitatively meaningful linguistic terms to
the fuzzy sets, and it reduces the number of terms needed. It
becomes easier for experts to validate the model and the users
can understand better and more quickly the operation of the
system. A model with fewer fuzzy sets and fewer rules is also
better suited for the design and implementation of a nonlinear
(model-based) controller, or for simulation purposes, and it
has lower computational demands.

Several methods have been proposed for optimizing the size
of the rule base obtained with automated modeling techniques
(such as compatible cluster merging [2], fuzzy binary box
tree [3], or membership function fusion and annihilation [4]).
Similarity driven rule base simplification differs from other
reduction methods in that its main objective is to reduce
the number of fuzzy sets used in the model. It does not
necessarily alter the number of rules. Reduction of the number
of rules might follow from rule base simplification if the rules
become equal as a result of the merging process. If no rules
are combined, simplification is still achieved by reducing the
number of fuzzy sets.

In the following we briefly discuss fuzzy modeling, re-
dundancy and similarity before proposing an algorithm for
rule base simplification. This paper is organized as follows.
Section II reviews fuzzy modeling and shows why similar
fuzzy sets appear in the model. In Section III, the concept
of similarity is discussed and a suitable similarity measure for
fuzzy rule base simplification is chosen. Section IV discusses
merging of fuzzy sets and rules, and presents an algorithm for
similarity based simplification. In Section V, an application of
the algorithm to a real-world problem is described. Finally,
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conclusions and comments on further research are given in
Section VI.

II. FUZZY MODELING

Fuzzy modeling has recently been applied with success to a
variety of problems, especially in control engineering [5]–[8].
Fuzzy modeling is suited for modeling based on data as well
as for modeling based on knowledge acquisition. In the latter
case, the model is built using human expert knowledge. This
knowledge is captured in IF-THEN rules with fuzzy predicates
that establish relations between the relevant system variables.
The fuzzy predicates are associated with linguistic labels, and
the model is in fact a qualitative description of the system
using rules like

IF temperatureis moderate and volumeis small

THENpressureis low

where the meanings of the linguistic termsmoderate,
small, and low are defined by fuzzy sets in the domain
of the system variables temperature, volume and pressure,
respectively. Such models are often calledlinguistic models.
However, knowledge acquisition is not a trivial task. Experts
are not always available, and when they are, their knowledge
is not always consistent, systematic and complete, but often
incomplete and episodic [9]. Automated modeling using sys-
tems measurements gives a more versatile approach in the
sense that it is independent of domain experts, and it facilitates
adaptation and self-tuning based on information becoming
available during operation. Moreover, data and knowledge can
be easily combined when building fuzzy models.

Different types of fuzzy models exist. The Mamdani model
[10], which uses linguistic rules with a fuzzy premise part
and a fuzzy consequent part, is often used in knowledge
acquisition. Another structure that has been used extensively
in literature is the Takagi–Sugeno (TS) [5] model. In the
examples in Section V we use this approach as it is well
suited for automatic approaches to fuzzy modeling [5], [7].
It is explained in more detail below.

A. The TS Fuzzy Model

The TS fuzzy model uses rules that differ from the Mamdani
type in that their consequents are mathematical functions
instead of fuzzy sets. The TS model is based on the idea
describing the system with a set of local input-output relations
that have the following structure:

IF is and is and and

is THEN (1)

where is the th rule in the rule base, are the
premise variables, is the rule output, are fuzzy
sets defined for the respective premise variables, andis the
rule weight. Typically, , but it can be adjusted
during model reduction. Usually, is a linear function of
the premise variables

(2)

Fig. 1. Fuzzy partition of two premise variables. Adapting the fuzzy sets
which define an initial fuzzy partition for the premise space can result in
similar fuzzy sets.

Each rule defines a hyperplane in the premise-consequent
product space, and the model approximates the real system’s
hypersurface with these hyperplanes. The overall output of
the model (the inferred value) is calculated by taking the
weighted average of the rule consequences

(3)

where is the number of rules, is the degree of activation
of the th rule’s premise, and is the contribution of that
rule. Given the inputs , the degree of activation
is calculated as

(4)

where is the membership function of the fuzzy set
for input variable in the premise of theth rule, see (1).
Because of the linear structure of the rule consequents, well-
known parameter estimation techniques such as least squares
can be used to estimate the consequent parameters [7], [8].

B. Automated Modeling

Two common approaches for obtaining fuzzy models from
systems measurements are parameter adaptation and fuzzy
clustering. In the first case, one tunes an initial partition of the
premise space, while in the second case a partition suitable
for a given number of rules is sought automatically. Both
techniques can be combined too.

1) Parameter Adaptation:In this approach an initial par-
tition of the input space is usually given by a number of
equidistant symmetrical fuzzy sets defined for all the premise
variables of the system. This partition can be seen as a
uniform grid in the premise space. The parameters of the
membership functions are adapted using learning algorithms
such as backpropagation. During adaptation, the fuzzy sets
can drift closer to each other and may end up in overlapping
positions [4]. The resulting rule base then contains redundancy
in terms of highly similar fuzzy sets, as illustrated in Fig. 1.
A drawback with this approach is that the number of rules
increases exponentially with the number of inputs, and that
an initially transparent model may become unreadable after
adaptation.



378 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 28, NO. 3, JUNE 1998

Fig. 2. Schematic diagram of three fuzzy clusters in a two-dimensional
premise space. The fuzzy clusters represent rulesR1; R2; andR3. The fuzzy
sets in the premise of each rule are found by projecting the clusters on the
premise variablesx1 and x2.

2) Fuzzy Clustering:Fuzzy clustering algorithms are un-
supervised algorithms that partition data points into a given
number of clusters with fuzzy boundaries. By applying fuzzy
clustering to data sampled from a system, a fuzzy model of
the system can be obtained. Each cluster represents a fuzzy
relation, and corresponds to a rule in the rule base. The fuzzy
sets in the premise part of the rules are usually identified by
projecting the clusters onto the corresponding axis of the data
space [7], [8]. This projection usually results in similar fuzzy
sets, as illustrated in Fig. 2. In Mamdani models, the fuzzy
consequents of the rules are determined by projection too. In
TS models, the consequent parameters are derived from the
cluster covariance matrix [11] or estimated using a parameter
estimation technique. Different approaches to clustering can
be found, such as clustering in the output space and inducing
clusters in the input space [12] or clustering in the product
space of input and output variables [7], [8]. Two well known
fuzzy clustering algorithms are the fuzzy c-means [13] and the
Gustafson–Kessel (GK) algorithm [11]. The latter is especially
suitable for the identification of TS fuzzy models and has
been successfully applied to modeling of dynamic systems
[7], [8]. The GK algorithm is suitable for approximating

-dimensional hypersurfaces in a-dimensional space.
It can be used to identify a systems model by clustering data
from system (input-output) measurements. However, before
applying clustering, the number of clusters must be specified
explicitly. Correct specification of the number of clusters
is important. A large number results in an unnecessarily
complicated rule base, while a small number may result in
a poor model. Methods for finding the optimal number of
clusters (rules) have been suggested, see, e.g., [2], [12], [14].

C. Redundancy

Fuzzy models, especially if acquired from data, may contain
redundant information in the form of similarity between fuzzy
sets. Three unwanted effects that can be recognized are

1) similarity between fuzzy sets in the model;
2) similarity of a fuzzy set to the universal set

;
3) similarity of a fuzzy set to a singleton set.

As similar fuzzy sets represent compatible concepts in the
rule base, a model with many similar fuzzy sets becomes
redundant, unnecessarily complex and computationally de-

(a)

(b)

Fig. 3. (a) Distinct fuzzy sets with no degree of equality and (b) overlapping
fuzzy sets with a high degree of equality.

manding. Linguistic interpretation of such a model is difficult
as it is not trivial to assign qualitatively meaningful labels to
highly similar fuzzy sets.

Some of the fuzzy sets extracted from data may be similar
to the universal set (e.g., in Fig. 2). Such fuzzy sets are
irrelevant. The opposite effect is similarity to a singleton set.
During adaptation, membership functions may get narrow, re-
sulting in fuzzy sets almost like singletons (spikes) [4]. If a rule
has one or more such fuzzy sets in its premise, it will practi-
cally never fire, and thus the rule does not contribute to the out-
put of the model. However, it should be noted that such rules
may represent exceptions from the overall model behavior.

III. SIMILARITY

The concept of similarity is interpreted in different ways
depending on the context. The interpretation of similarity
in everyday language is “having characteristics in common”
or “not different in shape, but in size or position.” This
interpretation of similarity differs from the one we use. We
define similarity between fuzzy sets asthe degree to which the
fuzzy sets are equal. This definition is related to the concepts
represented by the fuzzy sets. Consider the fuzzy setsand
in Fig. 3(a). They have exactly the same shape, but represent
clearly distinct concepts, e.g., a low and a high value of

, respectively. They have zero degree of equality and are
considered dissimilar. On the other hand, the two fuzzy sets

and in Fig. 3(b), even though they differ in shape, can
be said to have a high degree of equality. They represent
compatible concepts and are considered similar.

A. Similarity as Degree of Equality

In our approach, fuzzy sets are considered similar if they
are defined by overlapping membership functions that assign
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approximately the same values of membership to the elements
in their universe of discourse. Their similarity is the degree to
which they can be considered as equal. The classical definition
of equality is crisp. Let and be the membership
functions of fuzzy sets and , respectively. Then and

are equal, if . If we apply this
concept of equality to the fuzzy sets in Fig. 3 we get
and since their membership functions are different.
However, and can be said to have a high degree of
equality and hence they are similar. In the same way that fuzzy
sets allow for gradual transition between full membership and
total nonmembership, a similarity measure captures a gradual
transition between equality and nonequality

(5)

where is a similarity measure. The similarity measure is a
function assigning a similarity valueto the pair of fuzzy sets

that indicates the degree to whichand are equal
or how similar they are.

B. Similarity Measures for Rule Base Simplification

A similarity measure for fuzzy sets detects highly similar
fuzzy sets representing more or less compatible concepts in
a fuzzy rule base. Such fuzzy sets should be assigned a high
similarity value, whereas more distinct sets should be assigned
a lower similarity value. For a correct comparison of similarity
values, the similarity measure should not be influenced by the
scaling of the domain on which the fuzzy sets are defined.
This avoids the need for normalization of the domains.

In the following, let and be (two) fuzzy subsets of
with membership functions and , respectively. A
similarity measure will be considered as a candidate for an
automated rule base simplification scheme if it satisfies the
following four criteria:

1) Nonoverlapping fuzzy sets should be considered totally
nonequal,

(6)

2) Overlapping fuzzy sets should have a similarity value

(7)

3) Only equal fuzzy sets should have a similarity value

(8)

4) Similarity between two fuzzy sets should not be influ-
enced by scaling or shifting the domain on which they
are defined

(9)

Criterion 1 assures that dissimilar (nonoverlapping) fuzzy
sets are excluded from the set of similar fuzzy sets. Various
degrees of dissimilarity between distinct fuzzy sets are related
to the distance between them, and can be quantified by a
distance measure. According to criterion 2, overlapping fuzzy
sets should be assigned a nonzero degree of similarity and
should not be regarded as totally nonequal. Criterion 3 assures
that equality is a special case of similarity, in the same way that
crisp sets can be considered as a special case of fuzzy sets.
Criterion 4 is required for a fair comparison of similarities
in the rule base as a similarity measure that satisfies this
criterion is not influenced by the numerical values of the
domain variables.

Different similarity measures have been proposed for fuzzy
sets, and a study of many such measures can be found in [15],
[16]. In general, they can be divided into two main groups:

1) geometric similarity measures;
2) set-theoretic similarity measures.

The theoretical analysis of similarity has been dominated by
geometric models. These models represent fuzzy sets as points
in a metric space and the similarity between the sets is regarded
as an inverse of their distance in this metric space. Denoting
the distance between and as , the similarity of

and can be written as

(10)

Examples of geometric similarity measures are the general-
izations of the Hausdorff distance to fuzzy sets [17], [18].
Another example is similarity transformed from the well-
known Minkowski class of distance functions

(11)

assuming that the fuzzy setsand are defined on a discrete
universe of discourse . For
continuous universes, the sum is replaced by integration.

It has been argued in [18] that geometric similarity measures
are best suited for measuring similarity (or dissimilarity)
among distinct fuzzy sets, while the set-theoretic measures
are the most suitable for capturing similarity among overlap-
ping fuzzy sets. The geometric similarity measures represent
similarity as proximity of fuzzy sets, and not as a measure
of equality. The interpretation of similarity as “approximate
equality” can better be represented by a set-theoretic similarity
measures. Such measures are based on set-theoretic operations
like union and intersection. They also have the advantage
above geometrical measures that they are not influenced by
scaling and ordering of the domain.

A set-theoretic measure often encountered in the literature
is the so-called consistency-index which is the maximum
membership degree of the intersection of two fuzzy sets

(12)

where is the minimum operator. Some authors use this mea-
sure for rule base reduction purposes [3], [4]. However, this



380 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 28, NO. 3, JUNE 1998

Fig. 4. Fuzzy setsA;B; . . . ; G and the similarity computed forS(A;A);
S(A;B); . . . ; S(A;G).

measure does not fulfill criterion 3 as it focuses attention on
only one value of the variable, rather than performing some
sort of averaging or integration. We will use the following
similarity measure, based on the set-theoretic operations of
intersection and union, to determine the similarity between
fuzzy sets [19]

(13)

where denotes the cardinality of a set, and theand
operators represent the intersection and union respectively

[20]. Rewriting this expression in terms of the membership
functions gives

(14)

in a discrete universe . and
are the minimum and maximum operators, respectively.

In computer implementation, continuous domains need to be
discretized. This similarity measure complies with the four
criteria above, and reflects the idea of a gradual transition from
equal to completely nonequal fuzzy sets (with ).
An example of the behavior of this similarity measure for
fuzzy sets with a varying degree of overlap is shown in Fig. 4.

IV. RULE BASE SIMPLIFICATION

As discussed in Section II-B, automated approaches to fuzzy
modeling often introduce redundancy in terms of several
similar fuzzy sets that describe almost the same region in the
domain of some model variable. The similarity measure (13)
can be used to quantify the similarity between fuzzy sets in the
rule base. Two or more such similar fuzzy sets can be merged
to create a new fuzzy set representative of the merged sets. By
substituting this new fuzzy set for the ones merged in the rule

Fig. 5. Example of a Mamdani-type model. Similar fuzzy sets are merged.
RulesR1 andR2 become equal and can be represented by one ruleRr .

base, the number of fuzzy sets needed to constitute the model
decreases. In this wayrule base simplificationis achieved. This
simplification may result in equal rules. In the rule base, only
one of the equal rules is needed, and the others can be deleted.
In this way rule base reductionis achieved. Hence, in our
approach, there is a difference between rule base simplification
and rule base reduction. The former is the primary objective,
and the latter may follow indirectly if the redundancy is high.
Fig. 5 illustrates the idea of merging similar fuzzy sets, which
results in both rule base simplification and reduction. This
idea is exploited in this section for developing the rule base
simplification and reduction algorithm that is described in
Section IV-D.

A. Removing Fuzzy Sets

The rule base may contain irrelevant fuzzy sets. If a fuzzy
set in the premise of a rule has a membership function

, it is similar to the universal set and can
be removed. The similarity of a fuzzy set to the universal
set is quantified by . An example of a fuzzy set quite
similar to the universal set is illustrated in Fig. 2. Here
can be removed, and only is necessary in the premise
of rule to distinguish the associated region in the premise
product space.

A rule whose premise only consists of fuzzy sets very
similar to the universal set can be removed. Its contribution
is then only biasing the result, and the same output can be
achieved by adjusting the consequents of the other rules. The
opposite may also occur. During adaptation, the support of one
or more fuzzy sets may become so narrow that they become
almost like spikes (singletons). Singleton fuzzy sets have
extremely low similarity to the universal set (i.e.,
). In some cases, rules with such fuzzy sets in their premise

can be removed from the rule base, but in general care must
be taken as the rules may represent exceptions. Interaction
from the user is typically needed in such cases. Since our aim
is to develop an automated simplification method, we do not
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consider removing singletons from the rule base. See [4] for
an example of a possible approach.

B. Merging Fuzzy Sets

In general, when two fuzzy sets and are considered
to be very similar, there are three possibilities for simplifying
the rule base

1) replace by ;
2) replace by ;
3) replace both and by a new fuzzy set .

Two important aspects of the simplified model are its accu-
racy and coverage of the premise space (uncovered regions
should not occur in the premise space as a result of rule
base simplification). Assuming that the model’s accuracy is
measured by some function (e.g., sum of squared errors),
the effect of replacing and by should be as small
as possible with respect to. Finding the fuzzy set best
suited to replace and becomes a question of evaluating

. In general, one can say that if the model is more sensitive
to changes in than to changes in should replace

, or the common fuzzy set should resemble more
than . In particular applications, additional aspects like
model granularity (number of linguistic terms per variable),
interpretability or physical relevance may be important.

For the discussion about merging fuzzy sets, we define
a fuzzy set using a parametric membership function

or

otherwise.
(15)

One way to merge the fuzzy sets is to take the support of
as the support of the new fuzzy set. This guarantees

preservation of the coverage of the whole premise space when
replaces and in the premise of the rule base. The

kernel of is given by aggregating the parameters describing
the kernels of and . Thus merging and , defined
by and , respectively,
(15) gives a fuzzy set defined by where

(16)

(17)

(18)

(19)

The parameters determines which of the fuzzy
sets or has the most influence on the kernel of. In the
rest of the article we use . This averaging of
the kernels gives a tradeoff between contributions of the rules
in which the fuzzy sets occur. Fig. 6 illustrates this method
for merging two fuzzy sets and to create .

C. Merging Rules

In a Mamdani fuzzy model, if rules become equal as a
result of rule base simplification, of them can be removed,
resulting in rule base reduction, as shown in Fig. 5. If only
the premises of the rules become equal, and the consequents

Fig. 6. Creating fuzzy setC to replaceA andB in the rule base.

do not, this can indicate a contradiction in the rule base that
might need further attention [21]. In the rest of this article we
concentrate on TS models since they are well suited for (semi)
automated generation of rules from data.

In TS models, the consequents of the rules are not fuzzy,
and the similarity is considered only in the premise part
of the rules. When thepremise partsof rules get equal,
we remove of these rules. However, the consequent
parameters of the rule remaining in the rule base, called,
must be reestimated. This can be done by weightingwith

and averaging the consequents of all therules
with equal premise parts. Thus, therules with equal premise
parts, , are represented by a single rule with
weight and consequent parameters

(20)

where is a vector of the consequent parameters
in the th of the rules with equal premise

parts. The model output must now be calculated according to

(21)

Another approach is to reestimate the consequent parameters
in the reduced rule base using training data. This requires more
computation, but usually gives a numerically more accurate
result than weighting and averaging. Independently of the
method used, we refer to this asmerging rules.

D. Rule Base Simplification Algorithm

This section describes an algorithm that is developed for rule
base simplification in TS models. The same concept can be
used also for Mamdani models. Simplification is achieved by
removing fuzzy sets similar to the universal set and by merging
similar fuzzy sets. Based on the result, rule base reduction
is obtained by merging rules with equal premise parts. The
approach uses the similarity measure (13) for determining
the similarity between the fuzzy sets in the rule base, and
requires two thresholds: for removing fuzzy sets similar to
the universal set and for merging fuzzy sets that are similar
to one another.

The algorithm starts by iteratively merging similar fuzzy
sets. In each iteration, the similarity between all pairs of fuzzy
sets for each variable is considered, and the pair of fuzzy sets
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Fig. 7. The simplification algorithm.

having the highest similarity is merged to create a
new fuzzy set. Then the rule base is updated by substituting
this new fuzzy set for the fuzzy sets merged to create it. The
algorithm then again evaluates the similarities in the updated
rule base. This continues until there are no more fuzzy sets for
which . Thereafter, the fuzzy sets that have similarity

to the universal set are removed. Finally, the rule
base is checked for rules with equal premise parts. Such rules
are merged as discussed in Section IV-C. Fig. 7 depicts a
flowchart of the algorithm that is summarized as follows:

Given a fuzzy rule base , where is given
by (1), select thresholds .
Repeat:
Step 1: Select two most similar fuzzy sets in. Calculate

. Select and .
Step 2: Merge similar fuzzy sets and update. If
merge and to create a new fuzzy set . Set

and .
Until: no more fuzzy sets have similarity .
Step 3: Remove fuzzy sets similar to the universal set.For
each fuzzy set calculate .
If remove from the premise of .
Step 4: Merge rules with equal premise part.

The threshold for removing the fuzzy sets that are similar
to the universal set should generally be higher than the
threshold for merging. In our applications, gives
good results. The choice of a suitable thresholddepends on
the application. The lower the threshold, the less fuzzy sets
are used in the resulting model. In general, one can expect the
numerical accuracy of the model to decrease asdecreases.
However, this need not always be the case. If the model is
highly redundant or overdetermined, the numerical accuracy
may improve as a result of simplification.

By using different thresholds, different versions of the
model can be obtained. For instance, for explaining the work-
ing of a system (operator training, expert evaluation), a com-
prehensible linguistic description is important. In such cases,

it is reasonable to trade some numeric accuracy for extra
transparency and readability. This implies the use of a lower
threshold than when aiming at applications for prediction
or simulation.

The algorithm only merges one pair of fuzzy sets
per iteration. Merging in different premise variables is

independent of each other, making it possible to merge more
fuzzy sets in one variable than in another. It might happen
that the fuzzy sets to be merged were created themselves
by merging in a previous iteration. For the fuzzy sets in the
original rule base to have an equal influence on the final result,
we make use of the fact that if a fuzzy set is created
by merging, it has multiple occurrences in the rule base. For
instance, if is created by merging , and later is
merged with , two occurrences of and one of are merged
to create . Using the parametric description in (15), the
parameters of the membership function
become:

and . This corresponds to
merging the three original membership functions and .

After rule base simplification, rules with equal premise parts
are merged. In the following, we reestimate the consequent
parameters of the resulting rule base using the same training
data from which the original rule base was identified.

V. EXAMPLES

In this section the proposed approach is applied to two
fuzzy models. The first one is an approximation of a static
nonlinear function using simulation data. The second one
is a static model of the time response of a real multiple-
input-single-output (MISO) nonlinear process. Both models
are fuzzy rule-based models of the TS type and have been
identified from training data using the identification method
described in [7], [8] which is based on the GK clustering
algorithm (see also Section II-B2). In this algorithm, three
parameters have to be preselected: The number of clusters

, the fuzziness parameter and the stopping criterion.
In the literature, is usually chosen to be 2, and this value
was also used for obtaining the models in this section. The
stopping criterion for the GK-algorithm was .

A. Sinusoidal Function

A sinusoidal function is approximated using automated
fuzzy modeling. The function is generated according to the
formula

(22)

Using , a fuzzy rule base with rules of the TS type
is obtained

: IF is THEN

(23)

The two consequent parameters in each rule are
estimated using least-mean-squares (LMS). The obtained fuzzy
model is shown in Fig. 8, where both the local linear models
defined by the rule consequents and the fuzzy sets in the
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(a)

(b)

Fig. 8. Original model: (a) Function to be approximated (solid line), model
output (dotted line, barely visible as the match is very good), and the local
linear models. (b) The identified membership functions of the original model.

premise of the rule base are plotted. A contradiction in the rule
base can be recognized for low values ofwhere two rules
with completely different consequents [and in Fig. 8(a)]
are fired with approximately the same strength in the same
region. The identified membership functions show that the
fuzzy sets in the premise of these two contradictory rules
are very similar [ and in Fig. 8(b)]. The combined result
is a flat model output in this region that corresponds to the
behavior of the function to be approximated. We apply the
proposed algorithm to this model. It identifies and merges
these two highly similar membership functions. The premise
parts of the two rules in question become equal, and the two
rules corresponding to these two contradictory local models
are merged. The result is one rule with a consequent part
representing a correct local model of the function in this
region. This is illustrated in Fig. 9(a) where we have applied
the simplification algorithm with threshold . Both the
number of membership functions and the number of rules are
reduced from 11 to 7. Lowering the threshold will influence
the performance of the model severely as we will end up

(a)

(b)

Fig. 9. Reduced model: (a) Function to be approximated (solid line), model
output (dotted line) and the local linear models. (b) Membership functions
of the reduced model. The letters in parentheses indicate the corresponding
fuzzy sets in the original model.

with less local models (rules) than required for a reasonable
approximation of the function. Table I shows which fuzzy sets
are merged when using different thresholds together with the
mean-squared-error (MSE) of the reduced model [the letters

refer to the fuzzy sets in Fig. 8(b)]. The threshold
was set to 0.8. However, it has no influence (unless set

very low) as there are no fuzzy sets in this model with high
similarity to the universal set .

B. Enzymatic Soil Removal

In this section we consider fuzzy modeling of enzymatic soil
removal. Enzymes are agents that break down soil chemically.
The rate of the soil removal is affected by such factors
as alkalinity of the solution and temperature. The fuzzy
model should predict the percentage soil that is removed by
the enzymes, given the elapsed time for the reaction, the
temperature of the solution and the alkalinity. It is assumed
that the enzyme concentration is large enough, so that it has no
influence on the rate of the reaction. More information about
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TABLE I
FUZZY SETS MERGED FORDIFFERENT VALUES OF

� AND EVALUATION OF THE REDUCED MODELS

Fig. 10. The membership functions of the original model.

fuzzy modeling of enzymatic soil removal can be found in
[22].

1) Original Model: The process is identified from mea-
surements of the time responses under particular temperature
and alkalinity conditions. Based on these measurements, a TS
fuzzy model has been identified by fuzzy clustering in the
product space of the three input variables time, alkalinity

and temperature , and one output variable, the
remaining soil . The rule base obtained from clustering
with can be written

: IF is and is and is

THEN (24)

The output (consequent) of each rule is a linear combination
of the process variables

(25)

where the parameters have been estimated
with LMS. The model obtained from clustering consists of
11 rules and has the total of 33 fuzzy sets [22]. The fuzzy sets
in the premise of this original model are shown in Fig. 10.

Fig. 11. The original model’s response to the evaluation data for three
different experimental conditions.

TABLE II
RESULTS THAT ARE OBTAINED USING DIFFERENTVALUES FOR� AND 
 = 0:8

2) Model Validation: The original model is validated using
a validation data set. The original model’s response to this
data is shown in Fig. 11. The original model’s response to the
evaluation data has been found satisfactory, the MSE is 0.0108.
However, the model contains a lot of overlapping fuzzy sets.
Fig. 10 shows that there is a high redundancy in terms of
similarity among the fuzzy sets in the model. Assigning mean-
ingful labels to all these fuzzy sets for linguistic description
and expert evaluation is almost impossible.

3) Results: The proposed rule base simplification algorithm
is applied several times with different values of the threshold
for merging. The threshold for removing fuzzy sets similar
to the universal set is held constant at 0.8. Both rule base
simplification and reduction occurs, and different versions of
the rule base are obtained, varying in both the number of fuzzy
sets (granularity) and the number of rules. MSE is calculated
for the different models from their response to the evaluation
data, and the obtained results are reported in Table II. The
table shows that the original model can be both simplified and
reduced quite substantially without sacrificing the accuracy too
much. Also we see that lowering the threshold does not always
decrease the numerical accuracy (as mentioned in Section IV-
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Fig. 12. Membership functions obtained with� = 0:6 and
 = 0:8.

D). From this, we conclude that the original model is highly
redundant and overdetermined.

In Fig. 12, the fuzzy sets of the model obtained by using
are plotted. For this case, obtaining a qualitative

model by assigning linguistic labels to the fuzzy sets is much
easier than for the original model. As shown in the figure,
the variable time is partitioned into two regions, “short” and
“long;” the variable alkalinity is partitioned into “low”
and “high”; and for the variable temperature one obtains the
five regions “cold”, “cool”, “moderate”, “warm”, and “hot.”
The response of this model to the evaluation data is shown
in Fig. 13. There is little difference from the response of the
original model (compare with Fig. 11). See Table II for the
MSE values.

From Table II we see that for a threshold all
the fuzzy sets defined for the premise variable alkalinity are
merged. If we decrease the threshold, the process variable
alkalinity will be removed from the premise of the rule base.
However, it will still remain in the rule consequents, having
a linear influence on the process. Expert knowledge confirm
that alkalinity is the least influential premise parameter for this
process, and that the temperature is the most important quantity
that influences the enzyme activity in this application. This is
reflected in the higher granularity in the partitioning of this
variable.

VI. CONCLUSION

Fuzzy models, especially if acquired from data, often con-
tain a large number of fuzzy sets. A closer study of the fuzzy
sets in the rule base may reveal that many of them are highly
similar, representing more or less the same concept. This
redundancy hampers linguistic interpretation of the models,
and also makes them computationally more demanding. In this
article, a similarity driven method for fuzzy rule base simplifi-
cation has been presented. An algorithm for its implementation
has been proposed and applied to two examples: a simulation
of a strongly nonlinear function and a real process.

Fig. 13. Response of model obtained with� = 0:6 and
 = 0:8.

We define similarity as a degree of equality. Similar fuzzy
sets have highly overlapping membership functions, and we
use a set-theoretic similarity measure based on fuzzy intersec-
tion and union to quantify the similarity among the fuzzy sets
in the rule base. The proposed algorithm simplifies the rule
base by merging fuzzy sets having a similarity higher than a
given threshold. Merging creates a common fuzzy set that re-
places the occurrence of the merged ones in the rule base. This
reduces the number of fuzzy sets that are used in the model,
and thussimplifies the rule base. If the redundancy of the
model is high, rules with equal premise might result from this
simplification. The algorithmreducesthe rule base by merging
such rules. The similarity measure also identifies fuzzy sets
that can be removed from the premise of the rule base because
of similarity to the universal set or to a singleton set.

The proposed algorithm is iterative with only one pair
of fuzzy sets being merged per iteration. Merging in differ-
ent variables takes place independently of one another. The
number of rules is not necessarily reduced unlike in other
methods that reduce the number of clusters during model
identification. The proposed algorithm is also computationally
less demanding than methods of this type.

Similarity driven rule base simplification makes it possible
to easily create different versions of the fuzzy rule base with
varying granularity which can be used for different purposes
like control, simulation or a comprehensible linguistic descrip-
tion of the system.

The proposed method has been successfully applied to real
problems such as modeling of a fermentor tank pressure
dynamics [16] and an air-conditioning system [23]. In this
article an application to the fuzzy modeling of enzymatic soil
removal has been shown.
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