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Similarity Measures in Fuzzy
Rule Base Simplification

Magne Setnes, Robert Batka, Uzay Kaymak, and Hans R. van Nauta Lemke

Abstract—n fuzzy rule-based models acquired from numerical This article introduces a new approach for simplifying fuzzy
data, redundancy may be present in the form of similar fuzzy ryle-based models by reducing redundant information that is

sets that represent compatible concepts. This results in an un- ¢4 in the form ofsimilar fuzzy sets in the rule base. Similar
necessarily complex and less transparent linguistic description

of the system. By using a measure of similarity, a rule base fUZZy sets are highly overlapping fuzzy sets that describe
simplification method is proposed that reduces the number of almost the same region in the domain of some model variable.
fuzzy sets in the model. Similar fuzzy sets are merged to create In such cases, the model uses more fuzzy sets than necessary
a common fuzzy set to replace them in the rule base. If the sjnce these fuzzy sets represent more or less the same concept.

redundancy in the model is high, merging similar fuzzy sets Lo . o o
might result in equal rules that also can be merged, thereby We propose to use a similarity measure for identifying similar

reducing the number of rules as well. The simplified rule base is fUZZy sets, and to replgge these by a common fuzzy set
computationally more efficient and linguistically more tractable. representative for the original ones. This common fuzzy set

The approach has been successfully applied to fuzzy models ofis created by merging the similar fuzzy sets. If the redundancy
real world systems. in the model is high, merging similar fuzzy sets might result
Index Terms—Fuzzy modeling, fuzzy sets, rule base reduction, in equal rules that can be subsequently deleted from the rule
rule base simplification, similarity measure. base, resulting in reduction of the number of rules.
Description of a system using natural language is an ad-
vantage of fuzzy modeling. A simplified rule base makes it
|. INTRODUCTION easier to assign qualitatively meaningful linguistic terms to
UZZY modeling is one of the techniques currently bein%:e fuzzy sets_,, and it reduces th? number of terms needed. It
used for modeling of nonlinear, uncertain, and complé ecomes easier for experts to valldat.e the model angl the users
systems. An important characteristic of fuzzy models is " understand be_tter and more quickly the operatlon_ of the
partitioning of the space of system variables into fuzzy regioﬁgsmm' A model with feWef fuzz_y sets and fgwer rules |s'also
using fuzzy sets [1]. In each region, the characteristics of tHgtter suited for the design and implementation of a nonlinear

system can be simply described using a rule. A fuzzy moo(g]odel-based) controller, or for simulation purposes, and it

typically consists of a rule base with a rule for each particul&ag Iowe: COI’T;]plg[atrl]OHEﬂ t:]lemands. dqf imizing the si
region. Fuzzy transitions between these rules allow for the“€Ve€ra methods have been proposed for optimizing the size

modeling of complex nonlinear systems with a good gIonF the rule base obtained with automated modeling techniques

accuracy. One of the aspects that distinguish fuzzy modelifiy/ch @s compatible cluster merging [2], fuzzy binary box
from other black-box approaches like neural nets is that fuz$€ [3l: or membership function fusion and annihilation [4]).
models aretransparentto interpretation and analysis (to a Imilarity driven rule base simplification differs from other
certain degree). reduction methods in that its main objective is to reduce
However, the transparency of a fuzzy model is not achiev&de number of fuzzy sets used in the model. It does not
automatically. A system can be described with a few ruidecessarily alter the number of rules. Reduction of the number
using distinct and interpretable fuzzy sets but also with a lar§érules might follow from rule base simplification if the rules
number of highly overlapping fuzzy sets that hardly allow foP€come equal as a result of the merging process. If no rules
any interpretation. When a fuzzy model is developed usiftj€ combined, simplification is still achieved by reducing the
expert knowledge, usually the model designer takes care tRgfmber of fuzzy sets. _ _
the model remains interpretable. On the other hand, somdn the following we briefly discuss fuzzy modeling, re-
degree of redundancy and thus unnecessary complexity carffigtdancy and similarity before proposing an algorithm for

be avoided when automated techniques are applied to acqii#¢ base simplification. This paper is organized as follows.
fuzzy models from data. Section Il reviews fuzzy modeling and shows why similar
fuzzy sets appear in the model. In Section lll, the concept
Manuscript received April 14, 1996; revised March 2, 1997. This work wag]c similarity is dIS.CUSS.ETd a_nd a suitable S|mllgr|ty meqsure for
supported in part by the Research Council of Norway. fuzzy rule base simplification is chosen. Section IV discusses
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conclusions and comments on further research are given in Initial Adapted

Section VI. | Yooy Yy T% e \
. ! SNVANVAYE (\\,‘/ TP 4 .

Il. Fuzzy MODELING

Fuzzy modeling has recently been applied with success to a-<| ‘
variety of problems, especially in control engineering [5]-[8]. = ‘
Fuzzy modeling is suited for modeling based on data as weII‘ =
as for modeling based on knowledge acquisition. In the latter ...~ 1
case, the model is built using human expert knowledge. This‘ ‘
knowledge is captured in IF-THEN rules with fuzzy predicates :
that establish relations between the relevant system variab[g&. 1. Fuzzy partition of two premise variables. Adapting the fuzzy sets
The fuzzy predicates are associated with linguistic labels, affich define an initial fuzzy partition for the premise space can result in
the model is in fact a qualitative description of the systegimilar fuzzy sets.
using rules like

Each rule defines a hyperplane in the premise-consequent
product space, and the model approximates the real system’s
hypersurface with these hyperplanes. The overall output of
the model (the inferred valug) is calculated by taking the
I%Neighted average of the rule consequences

IF temperatureés moderate and  volumeis small
THENpressureis low

where the meanings of the linguistic ternmsoderate,
small, andlow are defined by fuzzy sets in the domai
of the system variables temperature, volume and pressure, N Zf\;l wifiys

respectively. Such models are often calladjuistic models y= SN 8 (3)
However, knowledge acquisition is not a trivial task. Experts iz Wil

are not always available, and when they are, their knowledgéere N is the number of rules3; is the degree of activation
is not always consistent, systematic and complete, but oftehthe ith rule’s premise, and; is the contribution of that
incomplete and episodic [9]. Automated modeling using sysdle. Given the inputs:y, z», ..., z,, the degree of activation
tems measurements gives a more versatile approach in ithealculated as

sense that it is independent of domain experts, and it facilitates n

adaptation and self-tuning based on information becoming 8 = Huij(a:j), 1=1,2,....,N 4)
available during operation. Moreover, data and knowledge can j=1

be easily combined when building fuzzy models. hereyu;(z;) is the membership function of the fuzzy sé;

1()D|ﬁe11gn:]types (?f fuz.z3t/' modlels e>.<t|§t. Tpe Mamdar.u mOd%tr input variablex; in the premise of theth rule, see (1).
[10], which uses linguistic rules with a fuzzy premise parIE%ecause of the linear structure of the rule consequents, well-

and _a_fuzzy consequent part, is often used in knowle.dﬂ own parameter estimation techniques such as least squares
acquisition. Another structure that has been used extensively. '\ o' ised to estimate the consequent parameters [7], [8]
in literature is the Takagi—-Sugeno (TS) [5] model. In the TR

examples in Section V we use this approach as it is well

suited for automatic approaches to fuzzy modeling [5], [7]. Automated Modeling

It is explained in more detail below. Two common approaches for obtaining fuzzy models from
systems measurements are parameter adaptation and fuzzy
A. The TS Fuzzy Model clustering. In the first case, one tunes an initial partition of the

) premise space, while in the second case a partition suitable
The TS fuzzy model uses rules that differ from the Mamdagi, 5 given number of rules is sought automatically. Both

type in that their consequents are mathematical functio&%hmques can be combined too

instead of fuzzy sets. The TS model is based on the idea)) parameter Adaptationin this approach an initial par-
describing the system with a set of local input-output relationg ., of the input space is usually given by a number of
that have the following structure: equidistant symmetrical fuzzy sets defined for all the premise
R; :w;(IF z1 is A;; andzs is Az and- - and variables of the system. This partition can be seen as a
. uniform grid in the premise space. The parameters of the
T 18 Ajn THEN y; = fi(")) (1) membership functions are adapted using learning algorithms
where R; is theith rule in the rule baseg,, ..., z, are the such as backpropagation. During adaptation, _the fuzzy §ets
premise variablesy; is the rule outputd;q, .. ., A;, are fuzzy can'erft closer to each. other and may end up in overlapping
sets defined for the respective premise variablesgarid the POSitions [4]. The resulting rule base then contains redundancy
rule weight. Typically,w; = 1, ¥;, but it can be adjusted " terms of highly similar fuzzy sets, as illustrated in Fig. 1.

during model reduction. Usuallyf;(-) is a linear function of A drawback with this approach is that the number of rules
the premise variables increases exponentially with the number of inputs, and that

an initially transparent model may become unreadable after
fi(z1, 22, ..., 2n) = pio + pir1 + piat2 + - +pintn. (2) adaptation.
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Fig. 2. Schematic diagram of three fuzzy clusters in a two-dimensional
premise space. The fuzzy clusters represent tillesk2, and R3. The fuzzy 1\ |_,L(x)
sets in the premise of each rule are found by projecting the clusters on the
premise variableg:; and z». 1.0
o . . C
2) Fuzzy Clustering:Fuzzy clustering algorithms are un- D

supervised algorithms that partition data points into a given 0.5
number of clusters with fuzzy boundaries. By applying fuzzy
clustering to data sampled from a system, a fuzzy model of
the system can be obtained. Each cluster represents a fuzzy
relation, and corresponds to a rule in the rule base. The fuzzy
sets in the premise part of the rules are usually identified by

i ; . (b)
projecting the clusters onto the corresponding axis of the data o , _ _
space [7], [8]. This projection usually results in similar fuzzyu'g'zf"Set(:)vﬁt'f]t'gcgi‘;‘ﬁzg’esgfézvﬁhegzgﬁgfee of equality and (b) overlapping
sets, as illustrated in Fig. 2. In Mamdani models, the fuzzy
consequents of the rules are determined by projection too. In
TS models, the consequent parameters are derived from f@nding. Linguistic interpretation of such a model is difficult
cluster covariance matrix [11] or estimated using a parame® it is not trivial to assign qualitatively meaningful labels to
estimation technique. Different approaches to clustering chighly similar fuzzy sets.
be found, such as clustering in the output space and inducingSsome of the fuzzy sets extracted from data may be similar
clusters in the input space [12] or clustering in the produt® the universal sel/ (e.g.,As; in Fig. 2). Such fuzzy sets are
space of input and output variables [7], [8]. Two well knowiirelevant. The opposite effect is similarity to a singleton set.
fuzzy clustering algorithms are the fuzzy c-means [13] and tlring adaptation, membership functions may get narrow, re-
Gustafson—-Kessel (GK) algorithm [11]. The latter is especialfulting in fuzzy sets almost like singletons (spikes) [4]. If a rule
suitable for the identification of TS fuzzy models and hasas one or more such fuzzy sets in its premise, it will practi-
been successfully applied to modeling of dynamic systeraslly never fire, and thus the rule does not contribute to the out-
[7], [8]. The GK algorithm is suitable for approximatingput of the model. However, it should be noted that such rules
(n — 1)-dimensional hypersurfaces inradimensional space. may represent exceptions from the overall model behavior.
It can be used to identify a systems model by clustering data
from system (input-output) measurements. However, before
applying clustering, the number of clusters must be specifiedThe concept of similarity is interpreted in different ways
explicitly. Correct specification of the number of clusterdepending on the context. The interpretation of similarity
is important. A large number results in an unnecessarily everyday language is “having characteristics in common”
complicated rule base, while a small number may result ar “not different in shape, but in size or position.” This
a poor model. Methods for finding the optimal number ahterpretation of similarity differs from the one we use. We
clusters (rules) have been suggested, see, e.g., [2], [12], [1défine similarity between fuzzy sets the degree to which the
fuzzy sets are equalhis definition is related to the concepts
represented by the fuzzy sets. Consider the fuzzy4etsd B
in Fig. 3(a). They have exactly the same shape, but represent

Fuzzy models, especially if acquired from data, may contafifearly distinct concepts, e.g., a low and a high value of
redundant information in the form of similarity between fuzzy. respectively. They have zero degree of equality and are
sets. Three unwanted effects that can be recognized are considered dissimilar. On the other hand, the two fuzzy sets

Y

I1l. SIMILARITY

C. Redundancy

1) similarity between fuzzy sets in the model; C and D in Fig. 3(b), even though they differ in shape, can
2) similarity of a fuzzy setA to the universal sel/ : be said to have a high degree of equality. They represent
pu(z) =1, Vo € X; compatible concepts and are considered similar.

3) similarity of a fuzzy setd to a singleton set. S _

As similar fuzzy sets represent compatible concepts in the Similarity as Degree of Equality
rule base, a model with many similar fuzzy sets becomesin our approach, fuzzy sets are considered similar if they
redundant, unnecessarily complex and computationally dee defined by overlapping membership functions that assign
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approximately the same values of membership to the element€riterion 1 assures that dissimilar (nonoverlapping) fuzzy
in their universe of discourse. Their similarity is the degree &ets are excluded from the set of similar fuzzy sets. Various
which they can be considered as equal. The classical definitiegrees of dissimilarity between distinct fuzzy sets are related
of equality is crisp. Letus4 and pup be the membership to the distance between them, and can be quantified by a
functions of fuzzy setsd and B, respectively. Thend and distance measuréAccording to criterion 2, overlapping fuzzy

B areequal if pa(x) = pp(x), Vo € X. If we apply this sets should be assigned a nonzero degree of similarity and
concept of equality to the fuzzy sets in Fig. 3 we gett B should not be regarded as totally nonequal. Criterion 3 assures
and C # D since their membership functions are differenthat equality is a special case of similarity, in the same way that
However, C' and D can be said to have a high degree ofrisp sets can be considered as a special case of fuzzy sets.
equality and hence they are similar. In the same way that fuz2yiterion 4 is required for a fair comparison of similarities
sets allow for gradual transition between full membership amd the rule base as a similarity measure that satisfies this
total nonmembership, a similarity measure captures a gradaaterion is not influenced by the numerical values of the

transition between equality and nonequality domain variables.
Different similarity measures have been proposed for fuzzy
s =S5(A,B) =degree(A=B), s€]0,1] (5) sets, and a study of many such measures can be found in [15],

[16]. In general, they can be divided into two main groups:
where S is a similarity measure. The similarity measure is a 1) geometric similarity measures;
function assigning a similarity valueto the pair of fuzzy sets  2) set-theoretic similarity measures.

(4, B) that indicates the degree to whichand B are equal The theoretical analysis of similarity has been dominated by

or how similar they are. geometric models. These models represent fuzzy sets as points
in a metric space and the similarity between the sets is regarded

B. Similarity Measures for Rule Base Simplification as an inverse of their distance in this metric space. Denoting

A similarity measure for fuzzy sets detects highly similafe distance betweerd and B as D(4, B), the similarity of

fuzzy sets representing more or less compatible conceptsf*nandB can be written as
a fuzzy rule base. Such fuzzy sets should be assigned a high s=S(A,B) = 1 s € (0,1]. (10)
similarity value, whereas more distinct sets should be assigned ’ 1+ D(A,B)’ ’
a lower similarity value. For a correct comparison of similarit
values, the similarity measure should not be influenced by t
scaling of the domain on which the fuzzy sets are define
This avoids the need for normalization of the domains.

In the following, letA and B be (two) fuzzy subsets ok

xamples of geometric similarity measures are the general-

ftions of the Hausdorff distance to fuzzy sets [17], [18].

hother example is similarity transformed from the well-
known Minkowski class of distance functions

1

with membership functiong 4 (z) andup(x), respectively. A m B
similarity measure will be considered as a candidate for anpD,.(A, B) = Z lpa(z)) —pe(z)" | , »>1 (11)
automated rule base simplification scheme if it satisfies the j=1

following four criteria:

1) Nonoverlapping fuzzy sets should be considered tota
nonequal,s = 0

ﬁ\ssuming that the fuzzy setsand B are defined on a discrete
Universe of discourseX = {z; | 3 = 1,2,...,m}. For
continuous universes, the sum is replaced by integration.

It has been argued in [18] that geometric similarity measures
are best suited for measuring similarity (or dissimilarity)
among distinct fuzzy sets, while the set-theoretic measures
2) Overlapping fuzzy sets should have a similarity valugre the most suitable for capturing similarity among overlap-

s >0 ping fuzzy sets. The geometric similarity measures represent

similarity as proximity of fuzzy sets, and not as a measure
S(AB)>0e 3z X, pa(x)up(x)#0. (7) of equality. The interpretation of similarity as “approximate
equality” can better be represented by a set-theoretic similarity
3) Only equal fuzzy sets should have a similarity valugleasures. Such measures are based on set-theoretic operations
s =1 like union and intersection. They also have the advantage
above geometrical measures that they are not influenced by
S(A,B) =1 palz) = pp(z), YeeX. (8) scaling and ord_ering of the domain. _ _

A set-theoretic measure often encountered in the literature

4) Similarity between two fuzzy sets should not be inﬂui_s the so-called consistency-index which is the maximum

enced by scaling or shifting the domain on which theg}"nembershlp degree of the intersection of two fuzzy sets

S(AvB):O<:>NA($)NB(x):07 vz € X. (6)

are defined Sc(A, B) = sup panp = maxlpa (@) App(@)] - (12)
rzcX x
S(A,B') = S(A,B), pa(l+kz) = pa(), whereA is the minimum operator. Some authors use this mea-

pp(l+ kx) =pup(x), klelR, k>0 (9) sure for rule base reduction purposes [3], [4]. However, this
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A It x;is ... and x; is ... then y is ...
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05 3. R A\ B / :\ \
;\ s Fig. 5. Example of a Mamdani-type model. Similar fuzzy sets are merged.
1 T ~ - T~ RulesR; and R> become equal and can be represented by oneRule

SIAA] SAB)  SIAC) SAD) SIAE)  SIAF)  SIAG)
) , S base, the number of fuzzy sets needed to constitute the model
g'&“B)F“ZZé(SjtSG{)B ++++ G and the similarity computed fof(A. A).  yocreases. In this wayle base simplificatiois achieved. This
- ' simplification may result in equal rules. In the rule base, only
S ) ) one of the equal rules is needed, and the others can be deleted.
measure does not fulfill (_:r|ter|on 3 as it focuses qttentlon 9R this way rule base reductioris achieved. Hence, in our
only one value of the variable, rather than performing some g5 5ach, there is a difference between rule base simplification
sort of averaging or integration. We will use the following,nq rje base reduction. The former is the primary objective,
similarity measure, based on the set-theoretic operations 0y he |atter may follow indirectly if the redundancy is high.

intersection and union, to determine the similarity betwegfly 5 jjiystrates the idea of merging similar fuzzy sets, which

fuzzy sets [19] results in both rule base simplification and reduction. This
idea is exploited in this section for developing the rule base
simplification and reduction algorithm that is described in
Section IV-D.

|AN B
S(A,B) = 13
where | - | denotes the cardinality of a set, and theand
U operators represent the intersection and union respectively
[20]. Rewriting this expression in terms of the membershig Removing Fuzzy Sets
functions gives

The rule base may contain irrelevant fuzzy sets. If a fuzzy

S(A,B) = 2 lralz) A pp ()] (14) Set in the premise of a rule has a membership function
’ dimilialz;) v pp(z;)] p(z) ~ 1, Vz € X, itis similar to the universal séf and can

be removed. The similarity of a fuzzy sdt to the universal
set is quantified bys(A4, U'). An example of a fuzzy set quite
imilar to the universal set is illustrated in Fig. 2. Hetg,
&n be removed, and onlys; is necessary in the premise
Wt rule R3 to distinguish the associated region in the premise
duct space.

A rule whose premise only consists of fuzzy sets very
imilar to the universal set can be removed. Its contribution
IS then only biasing the result, and the same output can be
achieved by adjusting the consequents of the other rules. The
opposite may also occur. During adaptation, the support of one

As discussed in Section II-B, automated approaches to fuzay more fuzzy sets may become so narrow that they become
modeling often introduce redundancy in terms of severalmost like spikes (singletons). Singleton fuzzy sets have
similar fuzzy sets that describe almost the same region in tetremely low similarity to the universal set (i.&6(A,U) =
domain of some model variable. The similarity measure (18). In some cases, rules with such fuzzy sets in their premise
can be used to quantify the similarity between fuzzy sets in tban be removed from the rule base, but in general care must
rule base. Two or more such similar fuzzy sets can be merdesl taken as the rules may represent exceptions. Interaction
to create a new fuzzy set representative of the merged sets.fByn the user is typically needed in such cases. Since our aim
substituting this new fuzzy set for the ones merged in the ruketo develop an automated simplification method, we do not

in a discrete univers& = {z; | j = 1,2,...,m}. A and
Vv are the minimum and maximum operators, respectivel
In computer implementation, continuous domains need to
discretized. This similarity measure complies with the fo
criteria above, and reflects the idea of a gradual transition fr
equal to completely nonequal fuzzy sets (with4, B) = 0).
An example of the behavior of this similarity measure fo
fuzzy sets with a varying degree of overlap is shown in Fig.

IV. RULE BASE SIMPLIFICATION
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consider removing singletons from the rule base. See [4] for
an example of a possible approach. 1.0

B. Merging Fuzzy Sets

In general, when two fuzzy setd and B are considered 03

to be very similar, there are three possibilities for simplifying
the rule base
1) replaceA by B; a, b q b, a, b, a, b, x
2) replaceB hy A; ¢ 2 ¢y <,
3) replace botd and B by a new fuzzy seC. Fig. 6. Creating fuzzy sef’ to replaceA and B in the rule base.
Two important aspects of the simplified model are its accu-

racy and coverage of the premise space (uncovered regions . . Lo
should not occur in the premise space as a result of ﬂﬂg not, this can indicate a contradiction in the rule base that

base simplification). Assuming that the model's accuracy ri'g|ght need further attention [21]. In the rest of this article we
measured by some functioh (e.g., sum of squared errors) concentrate on TS models since they are well suited for (semi)
the effect of replacingd and B by C should be as small 2utomated generation of rules from data.

as possible with respect . Finding the fuzzy seC' best In TS models, the consequents of the rules are not fuzzy,

suited to replaced and B becomes a question of evaluatin"d the similarity is considered only in the premise part

J. In general, one can say that if the model is more sensitigf the rules. When theremise partsof & rules get equal,
to changes inA than to changes i3, A should replace we removek — 1 of these rules. However, the consequent

B, or the common fuzzy se€ should resembled more parameters of the rule remaining in the rule base, calted

than B. In particular applications, additional aspects lik&"USt be reestimated. This can be done by weightiagwith

model granularity (number of linguistic terms per variable) (- = k) and averaging the consequents of all theules
interpretability or physical relevance may be important. with equal premise parts. Thus, theules with equal premise

For the discussion about merging fuzzy sets, we defiR@r_ts’Rl’RQ""’Rk’ are represented by a single rute with
a fuzzy set A using a parametric membership function weightw, = k and consequent parameters

pa(x;ar, az,a3,a4), a1 < az < az < ag 1
P.=2) P 20
0, z<ag, Orz > ay ! k;z (20)
pa(rsar, az,a3,a4) =1, ax <z <ag (15) _
a, « € (0,1),otherwise. where F; is a vector of the consequent parameters

Di0, Pils- - -, Pin N the th of the rules with equal premise

One way to merge the fuzzy sets is to take the support @4rts. The model output must now be calculated according to
AU B as the support of the new fuzzy 38t This guarantees

preservation of the coverage of the whole premise space when R Zf\:lff;_,,l) Wiy + weBryr 1)
. . y = g .
C replacesA and B in the premise of the rule base. The Zﬁ\zl,(i’;érl) wi i + w5,

kernel of C'is given by aggregating the parameters describing
the kernels ofA and B. Thus mergingA and B, defined Another approach is to reestimate the consequent parameters
by pa(z; a1, as, a3, a4) andpp(z; by, be, bs, by), respectively, inthe reduced rule base using training data. This requires more
(15) gives a fuzzy sef’ defined byuc(x; c1, co, c3,c4) Wwhere computation, but usually gives a numerically more accurate
result than weighting and averaging. Independently of the

¢y = min(ay, by) (18)  method used, we refer to this aserging rules

Co = Aoao + (1 - )\2)()2 (17)

ez = Azag + (1 — A3)bs (18) D. Rule Base Simplification Algorithm

cs = max(aq, ba). (19) This section describes an algorithm that is developed for rule

base simplification in TS models. The same concept can be

. used also for Mamdani models. Simplification is achieved by

setsd or B ha§ the most influence onrthe Kernel(@.f 'F‘ the removing fuzzy sets similar to the universal set and by merging

rest of the ar.tlcle we usdy = A3 = 0.5. Th's averaging of similar fuzzy sets. Based on the result, rule base reduction

'the kgrnels gives a tradeoff betwgen cqntnbuuons Qf the rul S obtained by merging rules with equal premise parts. The

in wh|ch_the fuzzy sets occur. Fig. 6 illustrates this metho, proach uses the similarity measure (13) for determining

for merging two fuzzy setsi and B to createC. the similarity between the fuzzy sets in the rule base, and
i requires two thresholdsy for removing fuzzy sets similar to

C. Merging Rules the universal set andl for merging fuzzy sets that are similar

In a Mamdani fuzzy model, i% rules become equal as ato one another.

result of rule base simplificatio—1 of them can be removed, The algorithm starts by iteratively merging similar fuzzy

resulting in rule base reduction, as shown in Fig. 5. If onlgets. In each iteration, the similarity between all pairs of fuzzy

the premises of the rules become equal, and the consequeets for each variable is considered, and the pair of fuzzy sets

The parameters,, A3 € [0, 1] determines which of the fuzzy
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it is reasonable to trade some numeric accuracy for extra
transparency and readability. This implies the use of a lower

threshold A than when aiming at applications for prediction
Select the most similar or SImU|at|0r_1' i
Update the rule-base }—’ pair of fuzzy sets The algorithm only merges one pair of fuzzy sét4;,,
Amgq) per iteration. Merging in different premise variables is
independent of each other, making it possible to merge more
fuzzy sets in one variable than in another. It might happen
that the fuzzy sets to be merged were created themselves
by merging in a previous iteration. For the fuzzy sets in the
original rule base to have an equal influence on the final result,
we make use of the fact that if a fuzzy sét is created

Merge the selected |
pair of fuzzy sets

Remove fuzzy sets by merging, it has multiple occurrences in the rule base. For
similar to the universal set instance, ifD is created by mergingA4, B), and laterD is
l merged withC, two occurrences ab and one of” are merged
Merge rules with to create £. Using the parametric description in (15), the
equal premise parts parameters of the membership functipm(x; ey, ez, €3, ¢€4)

become:e; = min(cy,dy), ea = (e2 + 2 + d2)/3, e3 =

(c3 + c3 + ds)/3, and ey = max(ca, d4). This corresponds to
merging the three original membership functiohsB, andC.
having the highest similarityy > A is merged to create a  After rule base simplification, rules with equal premise parts
new fuzzy set. Then the rule base is updated by substitutigge merged. In the following, we reestimate the consequent
this new fuzzy set for the fuzzy sets merged to create it. Th@rameters of the resulting rule base using the same training

algorithm then again evaluates the similarities in the updatgglta from which the original rule base was identified.
rule base. This continues until there are no more fuzzy sets for

which s > A. Thereafter, the fuzzy sets that have similarity
s > ~ to the universal set/ are removed. Finally, the rule i . . )
base is checked for rules with equal premise parts. Such rujed? this section the proposed approach is applied to two
are merged as discussed in Section IV-C. Fig. 7 depicts/4gZy models. The first one is an approximation of a static
flowchart of the algorithm that is summarized as follows: nenlinear function using simulation data. The second one

: PN e is a static model of the time response of a real multiple-
S;v(elr; asgljéétytmfsr?;ﬁ ; éR(ZO}Zl:)l where; is given input-single-output (MISO) nonlinear process. Both models

Repeat: are fu;zy ruIe-basgd models o]‘ the TS_ typ_e' anq have been
Step 1: Select two most similar fuzzy setsiin Calculate |dent|f|ed fr_om training d_ata_usmg the identification method
sk = S(Ag, Aks)y j = Lyeoosmy i = 1,...,N, k = descrlbed in [7], [8] whlc_h is based on _the GK_ clustering
12 J N Sezlje,:ctAjl 7andA ’ 317 _ max" k{;‘k/"}_ algorithm (see also Section 1I-B2). In this algorithm, three
S7t'e'p' ’2: Merge sim(illar fuzzr;qéetgl;n d up dgelf ;11 > parameters .have to be preselected: The numbe_r o.f clusters
merge A4,, and A,,, to create a new fuzzy sg(f. Set K, the'fuzzmess parameten and the stopping cntermn.

Ay = Aqand A ""1: o In the literature,m is usm_Ja_IIy chosen to be_ 2, a_md thl$ value
Ur;ItiI: no more ?lquzzy sets have similarity; > A, i # k. was also used for obtaining the models in this section. The

Step 3: Remove fuzzy sets similar to the universalFmst. stopping criterion for the GK-algorithm was= 0.01,
each fuzzy setd;; calculateS(A,;,U), pu(x;) =1, Vz;.
If S(A;;,U) >~ removeA,; from the premise oRR;.
Step 4: Merge rules with equal premise part. A sinusoidal function is approximated using automated
The thresholdy for removing the fuzzy sets that are similafuzzy modeling. The function is generated according to the
to the universal set should generally be higher than tf@mula
threshold X\ for merging. In our applicationsy = 0.8 gives . _ oy
good results. The choice of a suitable threshbidepends on ¥ = 5in(0.0015z )10 000’
;hri 3223‘1‘:'&2 r-(l-ar;il'lc?nwer the thresholdthe less fuzzy sets %sing K = 11, a fuzzy rule base with rules of the TS type
g model. In general, one can expect {he

Fig. 7. The simplification algorithm.

V. EXAMPLES

A. Sinusoidal Function

£=0,1,2,...,100. (22)

numerical accuracy of the model to decrease\ atecreases. i5"bbtained
However, this need not always be the case. If the model is Ri: IF xis A; THEN y; = pio + pir,
highly redundant or overdetermined, the numerical accuracy =191 (23)

may improve as a result of simplification.

By using different thresholds, different versions of th&he two consequent parameters in each riyg,p;;) are
model can be obtained. For instance, for explaining the wor&stimated using least-mean-squares (LMS). The obtained fuzzy
ing of a system (operator training, expert evaluation), a comodel is shown in Fig. 8, where both the local linear models
prehensible linguistic description is important. In such casetgfined by the rule consequents and the fuzzy sets in the
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Fig. 8. Original model: (a) Function to be approximated (solid line), modd#lig. 9. Reduced model: (a) Function to be approximated (solid line), model
output (dotted line, barely visible as the match is very good), and the loaaitput (dotted line) and the local linear models. (b) Membership functions

linear models. (b) The identified membership functions of the original modeif the reduced model. The letters in parentheses indicate the corresponding
fuzzy sets in the original model.

premise of the rule base are plotted. A contradiction in the rule )

base can be recognized for low valueszofvhere two rules with Ie§s chal models (ru_les) than required for_ a reasonable
with completely different consequentd fand B in Fig. 8(a)] approximation of the functl_on. Table | shows which fuzzy sets
are fired with approximately the same strength in the sarfie merged when using different thresholds together with the
region. The identified membership functions show that tﬁgean-squared-error (MSE) of the' reduced model [the letters
fuzzy sets in the premise of these two contradictory rulgd B - - - K refer to the fuzzy gets In F|g._8(b)]. The threshold
are very similar i and B in Fig. 8(b)]. The combined result ¥ Was set to 0.8. However, it has no mf_luence (un_less_set
is a flat model output in this region that corresponds to tH€"Y Iow) as there are no fuzzy sets in this model with high
behavior of the function to be approximated. We apply thamilarity to the universal set’.

proposed algorithm to this model. It identifies and merges . ,

these two highly similar membership functions. The premid® Enzymatic Soil Removal

parts of the two rules in question become equal, and the twoln this section we consider fuzzy modeling of enzymatic soil
rules corresponding to these two contradictory local modetsmoval. Enzymes are agents that break down soil chemically.
are merged. The result is one rule with a consequent patte rate of the soil removal is affected by such factors
representing a correct local model of the function in thigs alkalinity of the solution and temperature. The fuzzy
region. This is illustrated in Fig. 9(a) where we have applieshodel should predict the percentage soil that is removed by
the simplification algorithm with threshold = 0.25. Both the the enzymes, given the elapsed time for the reaction, the
number of membership functions and the number of rules ammperature of the solution and the alkalinity. It is assumed
reduced from 11 to 7. Lowering the threshold will influenc¢hat the enzyme concentration is large enough, so that it has no
the performance of the model severely as we will end upfluence on the rate of the reaction. More information about
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TABLE | 3
Fuzzy SeTs MERGED FORDIFFERENT VALUES OF >
A AND EVALUATION OF THE REDUCED MODELS £
&
E
Threshold ) | Merged | No. Rules | MSE :
2
Original ‘ n.a. * 11 } 0.1045
0.80 (4,B) 10 0.1045 5
0.60 (4, B)(E, F) 9 0.1093 é
0.30 (4, B)(C,D)(E,F) 8 0.1303 §
0.25 (A,B)(C.D)(E,F,G) 7 0.6264 %
0.20 (A, B,C,D)(E,F,G)(H,I)(J,K) 5 21.975

%
£
c
1 E
E
Q
@

2 L

o 10 20 30 40 50 60 70
time

Membership degree
=)
o [

0 10 20 30 40 50 60 70 Fig. 11. The original model's response to the evaluation data for three
different experimental conditions.

-

Membership degree
(o]
(%3]

TABLE 1
REsuLTS THAT ARE OBTAINED USING DIFFERENTVALUES FORA AND v = 0.8

° Threshold Number of fuzzy sets per variable MSE

@ A Time } pH \ Temp ‘ total rules
g1 Original model \ 11 \ 5 \ 11 { 33 ‘ 11 L 0.0108
%05 0.90 10 2 9 21 11 0.0106
g 0 0.80 8 2 6 16 11 0.0108
= Temperature 0.70 4 2 8 12 10 |0.0119
Fig. 10. The membership functions of the original model. 0.60 2 2 5 ’ o 0.0116
0.40 2 1 3 6 7 0.0120

fuzzy modeling of enzymatic soil removal can be found in
[22].

1) Original Model: The process is identified from mea- 2) Model Validation: The original model is validated using
surements of the time responses under particular temperatreéalidation data set. The original model's response to this
and alkalinity conditions. Based on these measurements, adea is shown in Fig. 11. The original model’s response to the
fuzzy model has been identified by fuzzy clustering in thevaluation data has been found satisfactory, the MSE is 0.0108.
product space of the three input variables tifng alkalinity However, the model contains a lot of overlapping fuzzy sets.
(pH) and temperaturd7’), and one output variable, theFig. 10 shows that there is a high redundancy in terms of
remaining soil(y). The rule base obtained from clusteringimilarity among the fuzzy sets in the model. Assigning mean-

with K = 11 can be written ingful labels to all these fuzzy sets for linguistic description
and expert evaluation is almost impossible.

Ri: IF tis A; and pH is A and T is A 3) Results: The proposed rule base simplification algorithm

THENy;, i=1,2,...,11. (24) is applied several times with different values of the threstold

for merging. The threshold for removing fuzzy sets similar
) ) __to the universal set is held constant at 0.8. Both rule base
The output (consequent) of each rule is a linear combinatigpyyjification and reduction occurs, and different versions of
of the process variables the rule base are obtained, varying in both the number of fuzzy
sets (granularity) and the number of rules. MSE is calculated
Yi = pio +pir -t +pi2 - pH +piz- T (25)  for the different models from their response to the evaluation
data, and the obtained results are reported in Table Il. The
where the parameters;o, pi1,...,pi3 have been estimatedtable shows that the original model can be both simplified and
with LMS. The model obtained from clustering consists afeduced quite substantially without sacrificing the accuracy too
11 rules and has the total of 33 fuzzy sets [22]. The fuzzy setsich. Also we see that lowering the threshold does not always
in the premise of this original model are shown in Fig. 10. decrease the numerical accuracy (as mentioned in Section IV-



SETNESet al: SIMILARITY MEASURES IN FUZZY RULE BASE SIMPLIFICATION

o
o

Membership degree
(=]

20 30 50 60 70
time

40

o

o
t»

Membership degree

(=]

Q
o]
[*]
-

Q
n

Membership degree

60 65 70

noe
(=]

45 50 55

Temperature

Fig. 12. Membership functions obtained with= 0.6 and~ = 0.8.

385

% Remaining soil

% Remaining soii

% Remaining soil

o

40
time

Fig. 13. Response of model obtained with= 0.6 and~ = 0.8.

D). From this, we conclude that the original model is highly \ye gefine similarity as a degree of equality. Similar fuzzy

redundant and overdetermined.
In Fig. 12, the fuzzy sets of the model obtained by usi

the variable time is partitioned into two regions, “short” an
“long;” the variable alkalinity(pH) is partitioned into “low”
and “high”; and for the variable temperature one obtains t

five regions “cold”, “cool”, “moderate”, “warm”, and “hot.”

sets have highly overlapping membership functions, and we

. ) USINGse a set-theoretic similarity measure based on fuzzy intersec-
A = 0.6 are plotted. For this case, obtaining a qualitativ

model by assigning linguistic labels to the fuzzy sets is mug,
easier than for the original model. As shown in the figurE

on and union to quantify the similarity among the fuzzy sets
the rule base. The proposed algorithm simplifies the rule
ase by merging fuzzy sets having a similarity higher than a
iven threshold. Merging creates a common fuzzy set that re-
laces the occurrence of the merged ones in the rule base. This

rF)Sduces the number of fuzzy sets that are used in the model,

and thussimplifiesthe rule base. If the redundancy of the

ThE. rei%or_nrsr(]a of _thi|§ ;no(;:!?fl to thefevaluation data Is th%%del is high, rules with equal premise might result from this
In Fig. 13. There is little difterence from the response of t Smplification. The algorithmeduceghe rule base by merging

original model (compare with Fig. 11). See Table Il for thg

MSE values.
From Table Il we see that for a threshoMd < 0.6 all

uch rules. The similarity measure also identifies fuzzy sets
that can be removed from the premise of the rule base because
of similarity to the universal set or to a singleton set.

the fuzzy sets defined for the premise variable alkalinity are e proposed algorithm is iterative with only one pair

merged. If we decrease the thresheldthe process variable
alkalinity will be removed from the premise of the rule bas
However, it will still remain in the rule consequents, havin

of fuzzy sets being merged per iteration. Merging in differ-

%nt variables takes place independently of one another. The
Qumber of rules is not necessarily reduced unlike in other

a linear influence on the process. Expert knowledge Conﬁrmethods that reduce the number of clusters during model

that alkalinity is the least influential premise parameter for th‘aentification. The proposed algorithm is also computationally
process, and that the temperature is the most important quar]gtg/

i L T ) s demanding than methods of this type.
that influences the enzyme activity in this application. This Is g s

i . L o .~ Similarity driven rule base simplification makes it possible
reflected in the higher granularity in the partitioning of th'?o easily create different versions of the fuzzy rule base with
variable.

varying granularity which can be used for different purposes
like control, simulation or a comprehensible linguistic descrip-
tion of the system.
The proposed method has been successfully applied to real
oblems such as modeling of a fermentor tank pressure
amics [16] and an air-conditioning system [23]. In this
gicle an application to the fuzzy modeling of enzymatic soil
r&moval has been shown.

VI.

Fuzzy models, especially if acquired from data, often con-
tain a large number of fuzzy sets. A closer study of the fuz
sets in the rule base may reveal that many of them are hig
similar, representing more or less the same concept. T
redundancy hampers linguistic interpretation of the mode
and also makes them computationally more demanding. In this
article, a similarity driven method for fuzzy rule base simplifi-
cation has been presented. An algorithm for its implementationThe authors would like to thank the Unilever Research
has been proposed and applied to two examples: a simulatiaboratories, Vlaardingen, The Netherlands, for providing the
of a strongly nonlinear function and a real process. measurements for the experimental part of this research.
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