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Abstract

In this paper the Kipnis-Varadhan central limit theorem for additive functions
acting on a stationary reversible and ergodic Markov chain in a random en-
vironment will be proven in discrete and continuous time. After proving the
theorem for the discrete case it is also put to the test by simulating the process
for an increasing amount of times. In this way we show that the outcomes of
the additive functions do indeed show normality. Next, the Kipnis-Varadhan
central limit theorem will be proven for the continuous case. After this the
random conductance model will be explained. The central limit theorem will
be illustrated a second time by doing simulations of the random conductance
model and showing that again the outcomes show a clear normal distribution,
thus proving the central limit theorem for the random conductance model.
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1 Introduction

It is impossible to imagine modern probability theory without the central limit
theorem. The first version of the theorem was introduced by French mathemati-
cian Abraham De Moivre in the second version of his textbook The Doctrine
of Chances which was published in 1738. In the book De Moivre talks about
the amount of times a coin shows heads in a certain amount of coin tosses. De
Moivre came to the conclusion that with sufficient tosses the Bernoulli distri-
bution could be approximated by the normal distribution. To be precise, the
conclusion was that the probability mass function of n independent Bernoulli
trails that have a succes with probability p converges to the probability density
function of a normal distribution with mean np and variance np(1 − p) as n
increases (Moivre, 1738).

At present time the central limit theorem has many different versions. One
of the versions is the central limit theorem was formulated and proven by C.
Kipnis and S.R.S. Varadhan. In their paper Central Limit Theorem for Additive
Functionals of Reversible Markov Processes and Applications to Simple Exclu-
sions, which was published in 1986, they formulate and prove a version of the
central limit theorem for additive functions in a random environment. In this
paper we will take an in depth look at this paper.

Firstly, in Section 2 we will start by giving some context. In this section the
working of a Markov chain will be explained as well as some key conditions our
Markov chain will have to obey in order for the central limit theorem to work.

Secondly, in Section 3 the classical central limit theorem will be repeated in
order to refresh the readers knowledge, and, more importantly, in order to show
why this theorem will not work for the Markov chain which will be used in this
paper.

Thirdly, in Section 4 we will use the Martingale central limit theorem in or-
der to prove the Kipnis-Varadhan central limit theorem for Markov chains in
discrete time in a random environment. This is followed by computation to de-
rive an equation for the variance of the normal distribution to which the process
converges to by the Kipnis-Varadhan central limit theorem.

Fourthly, in Section 5 simulations will be made in order to illustrate how the
Markov chain in a random environment works. These simulations show that by
increasing the amount of processes a clear convergence to the normal distribu-
tion can be seen. The simulations will be done for a situation in one-dimension
and a situation in two-dimensions.

Fifthly, in Section 6 it will be shown that the Markov chain follows the con-
ditions needed for the Kipnis-Varadhan central limit theorem to apply. After
this a new equation will be derived which is used to compute the variance of

3



the normal distribution to which the process converges.

Lastly, in Section 7 another set of simulations will be made. Here we show that
the outcomes of the simulations also show that the outcomes of the processes
converge to the normal distribution as the amount of processes increases.
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2 Context

2.1 What is a Markov chain

AMarkov chain is a stochastic process which moves from state to state according
to some transition probabilities. The different states in the Markov process can
be represented as X0, X1, . . . , Xn ∈ Ω, where Ω is the state space. The Markov
chain then tells us that if we start at state X0, the probability distribution
defined on the states gives us the probability of moving from X0 to another
state. In this way the Markov chain defines a model for jumping across these
states. What makes Markov chains different from other processes is that in a
Markov chain the only relevant information is the last state that was achieved.
To put this into equations, a chain is a Markov chain if it satisfies the following
property

P (Xj+1 = xj+1|Xj = xj , . . . , X1 = x1, X0 = x0) = P (Xj+1 = xj+1|Xj = xj)

An elementary example of a Markov chain is the simple random walk. The sim-
ple random walk is a process which starts at X0 and has a certain probability
to take a step to the left, and a certain probability to take a step to the right.
Figure (1) is an example of such a simple random walk. Here the probability of
taking a step to the right or left are both 0.5. The probability of landing on a
state are beneath each red dot.

Figure 1: Random walk tree (Stiedemann, 2021).

Thus, the simple random walk moves from state to state, or red dot to red
dot, with a probability distribution defined on each red dot. This is the most
elementary example of a Markov chain.

2.2 Transition measure and transition operator

As said, the Markov chain is a process in which we move from state to state. In
all cases of Markov chains the transition measure is the probability that we move
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from one state to another. To start, let us first consider a countable state space.
In this way we have states Xj ∈ Ω where Ω = {1, 2, . . . }. Then the transition
probability of moving from Xj = x to Xj+1 = y is Px,y = P (Xj+1 = y|Xj = x).
In the case of a finite Markov chain we can write all the transition probabilities
in a matrix P , which is called the transition matrix.

In the following Markov chain it is shown how to move from a Markov chain to
a transition matrix. In figure (2) we have a Markov chain for which the proba-
bilities of moving from state to state can be seen. For example, the probability
of moving from state 1 to state 2 is P (Xj+1 = 2|Xj = 1) = 0.6, moving from
state 2 to state 2 happens with probability P (Xj+1 = 2|Xj = 2) = 0.4. In order
to make the transition matrix all the different probabilities have to be inserted
in said matrix. This results in the following matrix.

P =


P (Xj+1 = 1|Xj = 1) P (Xj+1 = 2|Xj = 1) · · · P (Xj+1 = 4|Xj = 1)
P (Xj+1 = 1|Xj = 2) P (Xj+1 = 2|Xj = 2) · · · · · ·
P (Xj+1 = 1|Xj = 3) · · · · · · · · ·
P (Xj+1 = 1|Xj = 4) · · · · · · · · ·



=


0.4 0.6 0 0
0.6 0.4 0 0
0.25 0.25 0.25 0.25
0 0 0 1



Figure 2: An example of a Markov Chain.

This example only shows a Markov chain with a finite state space. In this
thesis we will have to deal with a Markov chain on a general state space. For
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these general state spaces it is not possible to write the transition matrix. This is
because a matrix can at most take a countable amount of entries. Because of this
we need to define a measure which can define a different transition probability
q(x, dy). We define q(x, dy) in the following way,

q(x, dy) = P (Xj+1 ∈ dy|Xj = x)

Thus, given q(x, dy) it is possible to calculate the probability that the Markov
process jumps from a state Xj = x into a subset dy ∈ Ω where Ω is again the
state space. It can be calculated in the following way.

P (Xj+1 ∈ A|Xj = x) =

∫
A

q(x, dy)

Now that we have defined the transition measure, we can look at the transi-
tion operator. The transition operator can be defined as the expected value of
f(Xj+1) given that we move from Xj = x. To put this into equations we see
that the transition operator working on a function f , which is bounded and
measurable, is the following

qf(x) = E[f(Xj+1)|Xj = x] =

∫
f(y)q(x, dy)

The transition measure has two basic properties. The first one is that if f ≥ 0,
then qf ≥ 0. This can be seen from the definition of the measure. The second
one is that the operator is a contraction. By using q1 = 1 we can show

||qf ||∞ = |
∫
f(y)q(x, dy)| ≤

∫
|f(y)|q(x, dy) ≤ ||f ||∞

∫
q(x, dy) = ||f ||∞ · 1

Which shows ||qf ||∞ ≤ ||f ||∞, confirming that the operator is a contraction.

2.3 Stationary Markov chains

A Markov chain is stationary if the distribution stays the same when moving
along the states of the chain. Or in other words, if we have a distribution µ at
Xj , then the distribution at Xj+1 will also be µ. Stationarity is defined in the
following way

Definition 1. The probability measure µ is stationary if µP = µ for discrete
Markov chains or equivalently

∫
qfdµ =

∫
fdµ for continuous Markov chains

for all bounded and measurable functions f .

In this definition P is the transition matrix, and q is the transition probability
discussed previously.
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2.4 Reversible measure

Reversible Markov chains are processes in which we can go back and forth
between the two states. For a general state space reversibility is defined in the
following way

Definition 2. µ is reversible if and only if q is self-adjoint in L2(µ). Where
q is self-adjoint in L2(µ) if and only if

∫
f(qg)dµ =

∫
(qf)gdµ for all bounded

and measurable functions f and g.

From the definition it is also possible to show that reversibility implies station-
arity. This can be seen by choosing g(x) = 1. From this it follows that indeed∫
qfdµ =

∫
fdµ as shown here

⟨qf, 1⟩ =
∫
(qf) · 1dµ =

∫
f(q · 1)dµ = ⟨f, q · 1⟩ =∗ ⟨f, 1⟩ =

∫
fdµ

Where at * we use the fact that q · 1 = 1.
For a reversible Markov chain with a finite state space we are able to formulate
the following proposition.

Proposition 1. A Markov chain with a finite state space is reversible if and
only if it satisfies the detailed balance condition.

Proof. “⇒” Denote the transition matrix for moving between x and y as Px,y

and Py,x. Then to show reversibility we must show that we have

µ(x)Px,y = µ(y)Py,x

This can be shown by starting to define qf(x) =
∑

y Px,yf(y). Since we know
that the Markov chain is reversible we have that ⟨qf, g⟩L2(µ) = ⟨f, qg⟩L2(µ),
which equals to

∑
x(qf)(x)g(x)µ(x) =

∑
x f(x)(qg)(x)µ(x) for all bounded and

measurable functions f and g.
Now let us define f and g in the following way. f(x) = δx,y and g(x) = δx,z
such that δij is the Kronecker delta which says, δij = 0 if i ̸= j and δij = 1 if
i = j. Using this it can be seen that

qf(x) =
∑
y′

Px,y′f(y′) =
∑
y′

Px,y′δy′,y = Px,y

This gives ∑
x

(qf)(x)g(x)µ(x) =
∑
x

Px,yδx,zµ(x) = Pz,yµ(z)

In a similar way it can be shown that
∑

x f(x)(qg)(x)µ(x) = Py,zµ(y). Thus, it
can be concluded that

∑
x(qf)(x)g(x)µ(x) =

∑
f(x)(qg)(x)µ(x) implies

Pz,yµ(z) = Py,zµ(y)

Thus proving the detailed balance condition.
“⇐ ” Given that the Markov chain satisfies the detailed balance condition we
get that Pz,yµ(z) = Py,zµ(y) for all states y and z. Then by definition the
Markov chain is reversible.
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2.5 Ergodic Markov chains

The formal definition of an ergodic probability measure is the following

Definition 3. A probability measure µ is said to be ergodic if qf = f implies
that f =

∫
fdµ for µ almost surely.

This means that if the probability measure is ergodic all states can be reached.
All situations similar to figure (3) are excluded.
If we again take a look at figure (2) we can see that the Markov chain is not

Figure 3: Situations which are excluded if the measure is ergodic.

ergodic. This is because if a jump is made to state 4, this state will never be left
again. This makes the Markov chain not ergodic. If there would be an arrow
from state 4 to another state the Markov chain would be ergodic.
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3 The central limit theorem

3.1 The classical central limit theorem

If you are reading this you will have heard of the classical central limit theorem.
This theorem states that if we have a sequence of random variables which are
independent and identically distributed, say {Y1, Y2, . . . , Yn, . . . }, with E[Yi] =
µ and Var[Yi] = σ2 < ∞, and define Xn =

∑n
i=1(Yi − µ). We see that as n

goes to ∞, the normalized sum 1√
n
Xn converge to the normal distribution with

mean 0 and variance σ2, or N(0, σ2).
An example of the classical central limit theorem is portrait in the following
figure. In this figure we can see what happens to the distribution of the outcome
of a sum of dice throws and their difference with the expected value of 3.5.

Figure 4: An illustration of the classical central limit theorem for the throw of
a dice.
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3.2 The Kipnis-Varadhan central limit theorem

In the paper the overall goal is to extend the classical central limit theorem to
show that there is a generalization to the classical central limit theorem such
that it also holds for additive functionals of a reversible Markov process. In
other words, we want to show that if we define a function V : Ω → R defined
on a Markov chain {Xi : n ∈ N}, such that the Markov chain is reversible
with µ as a reversible and ergodic probability measure. Then it is true that
1√
n

∑n
i=1 V (Xi) converges to N(0, σ2) for some variance σ2 (Kipnis & Varad-

han, 1986).
One big difference between the classical central limit theorem and the Kipnis-
Varadhan central limit theorem is the fact that the Markov chain is not inde-
pendent. When looking at the classical central limit theorem, with sequence
{X1, X2, . . . } where Xi = µ in distribution we see the following for all functions
f ,

qf(x) = E[f(X1)|X0 = x] =iid E[f(X1)] =

∫
f(x)µ(dx)

In the case of the Kipnis-Varadhan central limit theorem this is not valid. This
is because states Xi and Xi+1 are not independent for all i ∈ N.
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4 The central limit theorem for additive func-
tions

4.1 Martingale central limit theorem

In the paper Kipnis and Varadhan define a sequence {yj} with −∞ < j < ∞
which is a reversible Markov chain on a state space Ω, for which the central limit
theorem can be established. The central limit theorem will first be established
for Xn =

∑n
j=1 V (yj) where V (y) = f(y)− qf(y) and will then be extended to

a more general V .
We want to begin by proving that the central limit theorem can be used for Xn.
To do this we will show that Xn follows the Martingale central limit theorem
which is stated in the paper. The idea is to write our additive function as a
sum of a martingale and an approximation of a martingale. In this way the
Martingale central limit theorem can be used on both terms in order to show
that the additive function converges to the normal distribution. The Martingale
central limit theorem found in the paper is the following.

Let {Zj : −∞ < j <∞} be a stationary ergodic process such that
E[Zn+1|Fn] = 0 a.e, where Fn is the σ-field generated by Zj for j ≤ n.
For such a martingale difference sequence the distribution of Xn(t) =
1√
n
[Z1 + · · · + Z[nt]] converges weakly to the distribution of Brownian

motion with variance σ2 provided E[Z2
n] = σ2 <∞.

Based on this it is possible to define a theorem for the case of an additive
function.

Theorem 1. If there exists a function f such that V (x) = f(x) − qf(x) then
the central limit theorem holds for Xn = 1√

n

∑n
i=1 V (Xi).

Proof. We want to show that Xn =
∑n

i=1 f(yi) − qf(yi−1) is a martingale in
order for the central limit theorem to hold. This will be done in two steps.
Step 1 Define X ′

n =
∑n

i=1(f(y
′
i) − qf(y′i−1)) to show that indeed X ′

n is a
martingale.
We start of by defining Z ′

j = f(y′j)− qf(y′j), then we can write X ′
n =

∑n
j=1 Z

′
j .

What follows is that we can show that Z ′
n+1 is indeed a martingale.

E[Z ′
n+1|Fn] = E[f(y′n+1)− qf(y′n)|Fn] = E[f(y′n+1)|Fn]− E[qf(y′n)|Fn]

=∗ E[f(yn+1′)|Fn]− qf(y′n) = qf(y′n)− qf(y′n) = 0

At ∗ we take out what is known.
So we have seen that indeed X ′

n is indeed a martingale.
Step 2 Next we are able to show that the central limit theorem for Xn

follows from that of X ′
n. We can see that
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Xn =

n∑
j=1

(f(y′j)− qf(y′j)) =

n∑
j=1

f(yj)−
n∑

j=1

qf(yj)

=

n∑
j=1

(f(y′j)− qf(y′j−1) + qf(y0)− qf(yn)

=

n∑
j=1

Z ′
j + qf(y0)− qf(yn) = X ′

n + qf(y0)− qf(yn)

Which gives that

Xn√
n
=
X ′

n√
n
+
qf(y0)− qf(yn)√

n
→ X ′

n√
n

as n→ ∞

Then by using the Martingale central limit theorem it can be seen that the

convergence of
X′

n√
n
to the normal distribution implies the convergence of Xn√

n
to

the normal distribution. Proving that Xn√
n
converges to the normal distribution.

4.2 Computation of limiting variance

In this section the equation of the limiting variance of 1√
n

∑n
i=1 V (yi) will be

constructed. We will be using the spectral measure of the operator q in order to
find this variance equation. The variance equation can be found by using that
q is a self-adjoint, bounded operator whose spectrum is in [−1, 1]. The reason
for this spectrum is that the operator is a contraction in L2(µ) as is shown
in the end of section 2.2 . Using the spectral measure for operator q we need
that E[Z2

n] = σ2 < ∞ in order to comply with the condition of the Martingale
central limit theorem.
We start by defining a Markov chain {yj} which is reversible. Furthermore, we
also know that the operator q(x, dy) is self-adjoint in L2(µ). The self-adjointness
property is given below

⟨qf, g⟩ =
∫
qf(x)g(x)dµ(x)

=

∫
f(x)qg(x)dµ(x)

= ⟨f, qg⟩

Since {yj} is reversible we also know that it is stationary, the proof for this can
be found in section 2.4 .
Now that we know this a new theorem can be formulated.
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Theorem 2. If V ∈ Dom((I − q)−1)), such that it satisfies the condition of
Theorem 1, then

∫
1

(1−λ)2 eV (dλ) <∞. This implies that

σ2 = lim
n→∞

1

n
E[(

n∑
i=1

V (xi))
2] =

∫ 1

−1

1 + λ

1− λ
eV (dλ) <∞

Proof. Define q(x, dy) as the transition probability with µ(dx) as a reversible
stationary probability measure. Also V (y) is a function onX with

∫
V 2(x)µ(dx) <

∞, and
∫
V (x)µ(dx) = 0. The properties of the integrals of V 2(x) and V (x) are

needed because we must have that the variance of V (x) is finite and the mean
of V (x) is equal to zero. Next the following computation can be made

lim
n→∞

1

n
EP

µ [(V (y1) + · · ·+ V (yn))
2]

= lim
n→∞

1

n
EP

µ [(

n∑
i=1

V (yi))
2]

= lim
n→∞

1

n

(
2

n∑
i=1

∑
j>i

EP
µ [V (yi)V (yj)]−

n∑
i=1

EP
µ [V (yi)

2]
)

(1)

Because we have stationarity it follows that

n∑
i=1

∑
j≥i

EP
µ [V (yi)V (yj)] =

n∑
i=1

∑
j≥i

Eµ[V (y0)V (yj−i)] (2)

=

n∑
i=1

∑
j>i

∫
V (y)qj−iV (y)µ(dy)

in similar fashion we get that, using stationarity,

1

n

n∑
i=1

EP
µ [V (yi)

2] =

∫
V 2(y)µ(dy) (3)

Substituting equations (2) and (3) into (1) gives us

lim
n→∞

1

n

(
2

n∑
i=1

∑
j>i

∫
V (y)qj−iV (y)µ(dy)

)
−

(∫
V 2(y)µ(dy)

)
(4)

From what we know from spectral measures (Mendelberg & Tomberg, 2010) we
can rewrite the integrals in (4) into their spectral form. We can see that since∫

V (y)qnV (y)µ(dy) = ⟨V, qnV ⟩ =
∫ 1

−1

λneV (dλ)
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where eV is the spectral measure of V , the integrals in (4) become∫
V (y)qj−iV (y)µ(dy) =

∫ 1

−1

λj−ieV (dλ)

∫
V 2(y)µ(dy) =

∫ 1

−1

eV (dλ)

Which after substitution into (4) becomes

lim
n→∞

1

n

(
2

n∑
i=1

∑
j>i

∫
V (y)qj−iV (y)µ(dy)

)
−

(∫
V 2(y)µ(dy)

)
=

lim
n→∞

1

n

(
2

n∑
i=1

∫ 1

−1

λj−ieV (dλ)
)
−
(∫ 1

−1

eV (dλ)
)

Since we know that all eigenvalues λ ∈ [−1, 1] we can see that

2

n∑
i=1

n−i∑
v=0

λv =
2

n

n∑
i=1

1− λn−i+1

1− λ
− 1

And as n→ ∞ we can see that this goes to 2
1−λ − 1 = 1+λ

1−λ .
This means that we get that

lim
n→∞

1

n
(2

n∑
i=1

∫ 1

−1

λj−ieV (dλ)−
∫ 1

−1

eV (dλ)) →
∫ 1

−1

1 + λ

1− λ
eV (dλ) <∞ (5)

as n→ ∞.

The condition that
∫ 1

−1
1+λ
1−λeV (dλ) <∞ is equivalent to V ∈ Range((I − q)−

1
2 ).

This is because ⟨(I − q)−
1
2V, (I − q)−

1
2V ⟩ = ⟨V, (I − q)−1V ⟩ <∞ if and only if∫ 1

−1
1

1−λeV (dλ) <∞. The requirement that
∫ 1

−1
1

(1−λ)2 eV (dλ) <∞ is actually a

stronger requirement than
∫ 1

−1
1

1−λeV (dλ). This is because (1−λ)
2 goes to zero

much quicker than 1− λ as λ goes to 1. This has as a consequence that 1
(1−λ)2

blows up much quicker than 1
1−λ as λ goes to 1. This has as a result that if we

have that
∫ 1

−1
1

(1−λ)2 eV (dλ) < ∞ then we definitely have
∫ 1

−1
1

1−λeV (dλ) < ∞.

So V ∈ Dom((I − q)−1)) implies V ∈ Dom((I − q)−
1
2 )).

4.3 A simple example with a finite Markov chain

In this section we will give a elementary example for a simple case of calculating
the variance. This is done as an illustration of the computation which was done
in the previous section.
Let’s say there is a situation in which a state space is defined to be Ω = {1,−1},
and a function V : Ω → {1,−1} is defined to be V (y) = y. Then it is possible to

15



write function V as a column vector, V (Ω) =

[
1
−1

]
. Let us define the following

transition probabilities

P (Xi+1 = 1|Xi = 1) = P (Xi+1 = −1|Xi = −1) = a

P (Xi+1 = 1|Xi = −1) = P (Xi+1 = −1|Xi = 1) = b

which can be put in the following transition matrix q =

[
a b
b a

]
, where positions

(1,1) and (2,2) are transitions from 1 to 1 and -1 to -1, and positions (1,2) and
(2,1) are transitions from 1 to -1 and -1 to 1.
From this matrix q the two normalized eigenvectors and their eigenvalues can
be found to be

e1 =
1√
2

[
1
1

]
with λ1 = 1, e2 =

1√
2

[
1
−1

]
with λ2 = a− b

From these eigenvectors it can be seen that indeed V ∈ Range(I − q). Thus the
central limit theorem defined in Theorem 1.1 can be used, as well as equation
5 to help calculate the variance.

σ2 =

∫ 1

−1

1 + λ

1− λ
eV (dλ) =

∗ 1 + (a− b)

1− (a− b)
⟨V, e2⟩2L2(µ)

=
1 + (a− b)

1− (a− b)
· 1
2
⟨
[
1
−1

]
,
1√
2

[
1
−1

]
⟩ = 1 + a− b

1− (a− b)

To conclude, as n → ∞ it can be seen that by the central limit theorem
of Theorem 1 the sum 1√

n

∑n
i=1 V (yi) converges to the normal distribution

N(0, 1+a−b
1−(a−b) ) with the variance given by the equation of Theorem 2.
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5 Simulations of the random walk in a random
environment

After showing how the theorem functions using theoretical mathematics, it can
also be shown that the random walk in a random environment converges to a
normal distribution with the use of simulations. In this section the real Kipnis-
Varadhan central limit theorem is not really used. This is because Xn is already
a martingale because of the symmetry of the distribution. Because of this the
Martingale central limit theorem suffices. It is however a great way to show that
the central limit theorem holds for a Markov chain in a random environment.

5.1 The random environment as a line of numbers

First of all we start with a random environment ξ consisting out of a random
sequence of 1’s and −1’s such that ξ ∈ {−1, 1}Z. We define yi as the position in
the environment at time i. In order to see if Xn√

n
= 1√

n

∑n
i=1 V (yi) converges to

the normal distribution, where V (yi) is the difference between the position of
yi and yi−1, we will look at the histogram of the values for Xn√

n
for an increasing

number of simulations.
Let us begin with defining the environment process. The environment process
is defined as τXn

ξ for an environment ξ, where the Markov chain Xn is a mar-
tingale with ergodic increments. The environment process is a reversible and
ergodic process.
The second thing which we will define is two different probability distributions.
One of the distributions is defined if we are at a position with a 1. The distri-
bution will be

P (Xi+1 = x− 1|Xi = x, ξ(x) = 1) = P (Xi+1 = x+ 1|Xi = x, ξ(x) = 1) = 0.5

The distribution for a position with −1 will be the following

P (Xi+1 = x−1|Xi = x, ξ(x) = −1) = P (Xi+1 = x+1|Xi = x, ξ(x) = −1) = 0.25

P (Xi+1 = x−2|Xi = x, ξ(x) = −1) = P (Xi+1 = x+2|Xi = x, ξ(x) = −1) = 0.25

These distributions are visualized in figure (5).

In each simulation the value for 1√
5000

∑5000
i=1 V (yi) was computed after making

5000 ’jumps’. The amount of simulations are 1000, 50000, 100000 and 500000.
The histograms in figure (10) were using the values of the previous sum. The
code for the construction of these histograms can be found in the Appendix.

From the histograms it can be seen that the more simulations are done, the
more the distribution of the sums 1√

5000

∑5000
i=1 V (yi) converges to that of the

normal distribution. From each number of simulations the sample mean and
sample variance were calculated. These values are presented in the table below.
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Figure 5: Visualization of the random environment with the different distribu-
tions

(a) Histogram for 1000 simulations (b) Histogram for 50000 simulations

(c) Histogram for 100000 simulations (d) Histogram for 500000 simulations

Figure 6: The histograms for the different amount of simulations with their corre-
sponding normal distribution in red.

# simulations Sample mean Sample variance
1000 0.0149 1.6654
50000 -0.0091 1.6572
100000 −9.9306 · 10−4 1.6520
500000 7.0176e · 10−4 1.6406
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Since the sample mean can be seen as the average position in which the random
walk ends after 5000 steps, it is logical to round it to the closest integer. Doing
this would result in a sample mean of 0, or the same position in which the
random walk started. This is a logical thing since the mean of each step is
either

E[V (yi+1)|ξ(yi) = 1] = −1 · 1
2
+ 1 · 1

2
= 0

or

E[V (yi+1)|ξ(yi) = −1] = −2 · 1
4
− 1 · 1

4
+ 2 · 1

4
+ 1 · 1

4
= 0

The variance is specific for this distribution. One can imagine that taking big-
ger steps with the same probability would result in a bigger possible spectrum
for the value of 1√

5000

∑5000
i=1 V (yi) to be in. For example, let us multiply the

amount of steps taken in the last two probability distribution by a factor of two.
The probability distributions on ξ(x) = 1 will become

P (Xi+1 = x− 2|Xi = x, ξ(x) = 1) = P (Xi+1 = x+ 2|Xi = x, ξ(x) = 1) = 0.5

and on ξ(x) = −1 will become

P (Xi+1 = x−2|Xi = x, ξ(x) = −1) = P (Xi+1 = x+2|Xi = x, ξ(x) = −1) = 0.25

P (Xi+1 = x−4|Xi = x, ξ(x) = −1) = P (Xi+1 = x+4|Xi = x, ξ(x) = −1) = 0.25

This would result in the histogram found in figure (7), with the corresponding
normal distribution in red.

As one can see, this random walk also converges towards the normal distribution.
In this normal distribution the sample mean can again be rounded to be equal
to 0. On the contrary, the sample variance has increased to 6.5366. So it can
be concluded that increasing the distance which is traveled each step results in
the variance increasing. Likewise, decreasing the distance results in a decrease
of variance.
To conclude, from the histograms it is clear that as the amount of simulations
increases the distribution of the sum 1√

5000

∑5000
i=1 V (yi), where V (yi) is the

difference in the position of yi and yi−1, converges to the normal distribution.
If the probability distribution is the same as used in this section the exact normal
distribution to which the random walk converges is a normal distribution with
mean 0 and variance 1.64.

5.2 The random walk in a random environment in 2D

After looking at the random walk on a random number line the model can be
extended to a variant in 2D. In this 2D variant, for which the code can be found
in the Appendix, the following probability distributions are used, for ξ(x, y) = 1

P (Xi+1 = (x− 1, y)|Xi = (x, y), ξ(x, y) = 1) = 0.25
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Figure 7: Histogram for 100000 simulations with a multiplied probability dis-
tribution

P (Xi+1 = (x+ 1, y)|Xi = (x, y), ξ(x, y) = 1) = 0.25

P (Xi+1 = (x, y + 1)|Xi = (x, y), ξ(x, y) = 1) = 0.25

P (Xi+1 = (x, y − 1)|Xi = (x, y), ξ(x, y) = 1) = 0.25

and for ξ(x, y) = −1

P (Xi+1 = (x− 2, y − 1)|Xi = (x, y), ξ(x, y) = −1) = 0.25

P (Xi+1 = (x− 1, y − 2)|Xi = (x, y), ξ(x, y) = −1) = 0.25

P (Xi+1 = (x+ 2, y + 1)|Xi = (x, y), ξ(x, y) = −1) = 0.25

P (Xi+1 = (x+ 1, y + 2)|Xi = (x, y), ξ(x, y) = −1) = 0.25

This is visualized in figure (8). The two different colours represent the two
different distributions for different values of ξ(x, y). The decimal number besides
each arrow represents the probability of taking this path.

Similarly as for in the previous two chapters it is possible to construct his-
tograms for both the differences in position for the x direction as well as the
differences in the y direction for an increasing amount of simulations. For these
comparisons the random environment will be a 1000×1000 matrix in which 500
’jumps’ will be made.
Let us first look at the histograms for the difference in x position in figure (9).
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Figure 8: The two different probability distributions in a 2D space

# simulations Sample mean Sample variance
1000 22.3506 1.4993
50000 22.3594 1.4786
100000 22.3600 1.4711
500000 22.3591 1.4723

What can be seen as the biggest difference between the previous section and this
section is that the sample mean found for all different number of simulations
is rounded to be 22 instead of 0. The reason for this is that the amount of
jumps have been decreased in order to decrease the computation time. Since
the process is started at position 0, or in the matrix x = 500, and 5000 jumps
are made it can be seen that 500√

5000
≈ 22 corresponds with the position 0. So

looking purely at the position it can be concluded that the sample mean is
at position 0. After again putting all values for the sample mean and sample
variance in the table above it can be seen that the distribution of the values of
the sum 1√

500

∑500
i=1 V (yi), where V (yi) is the difference between the x position

of yi and yi−1, converges to a normal distribution with mean 0 and variance 1.47.

Now that we have shown that the distribution of the sum in the x position
shows clear convergence to a normal distribution we can check if the distribu-
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(a) Histogram for 1000 simulations of the
x position in 2D.

(b) Histogram for 50000 simulations of
the x position in 2D.

(c) Histogram for 100000 simulations of
the x position in 2D.

(d) Histogram for 500000 simulations of
the x position in 2D.

Figure 9: The histograms for the different amount of simulations in x direction with
their corresponding normal distribution in red.

tion of the sum on the y position shows the same convergence. The histograms
for the y direction can be found in figure (10).

Where the following sample mean and variance were found for each number
of simulations.

# simulations Sample mean Sample variance
1000 22.2987 1.5348
50000 22.3603 1.4646
100000 22.3612 1.4648
500000 22.3585 1.4747

What can be directly seen is that the histogram of the y position does show
convergence to the normal distribution.
To conclude, for the given distributions the central limit theorem applies and is
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(a) Histogram for 1000 simulations of the
y position in 2D.

(b) Histogram for 50000 simulations of
the y position in 2D.

(c) Histogram for 100000 simulations of
the y position in 2D.

(d) Histogram for 500000 simulations of
the y position in 2D.

Figure 10: The histograms for the different amount of simulations in y direction with
their corresponding normal distribution in red.

shown. The distribution of the sum shows a converge to the normal distribution
for both the x and y direction.
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6 Random walk in random environment in con-
tinuous time

The simulations done in section 5 have given a lot of insight but because the
Markov chain was already a martingale the true Kipnis-Varadhan central limit
theorem was not needed since the Martingale central limit theorem already suf-
ficed. In this section we will prove that the Markov chain in continuous time
meets the conditions for the Kipnis-Varadhan central limit theorem. Further-
more, we will derive an equation for the limiting variance.

6.1 Defining the process

Up until now the only only discrete time has been considered. But what if the
time is not discrete but is a continuous process.
We can define a process {Xt : t ≥ 0} with transition rates c(x, y), such that

• it starts from x = X0,

• the wait time on each x is exponentially distributed with parameter λx =∑
y ̸=x c(x, y),

• the jump to point y happens with probability π(x, y) = c(x,y)
λx

.

Then the process is a Markov process because the exponential distribution is
memoryless. This means that the future is independent of what happened in
the past. To put this in equations

P (X > s+ t|X > t) = P (X > s)

This characteristic of the exponential distribution can be easily shown using the
distribution functions as well. Let us define T as the waiting time in point x,
then

P (T ≥ t) = e−λt

P (T ≥ t+ s) = e−λt+s

Then it follows that

P (T ≥ t+ s|T ≥ s) =
e−λ(t+s)

e−λs
= e−λt

So the probability of the waiting time T in x being bigger than t+ s is equal to
the probability of the waiting time T in x being bigger than t. This also proves
the Markov characteristic of the time process.
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6.2 The semigroup and generator

Before we can say anything about the reversibility or stationarity of the process
we need to define a few things. The first one is the semigroup. The semigroup
applied to a function f(x) is defined in the following way

Stf(x) = Ex[f(Xt)] = E[X(t)|X0 = x]

The semigroup has the following three properties that will be used throughout
the coming sections.

• S0 = I,

• St+s = StSs,

• Stf ≥ 0 if and only if f ≥ 0.

The property that St+s = StSs will come in useful when proving the stationarity
in the next section.
The next thing to define is the generator. The generator is defined to be

L = lim
t→0

St − I

t

Where the connection between the semigroup and the generator is described in
the following equation

d

dt
Stf = StLf = LStf

From this we find that St = etL.

Knowing this we can define the generator applied to a function f ,

Theorem 3. Lf(x) = limt→0
Stf(x)−f(x)

t =
∑

y c(x, y)(f(y)− f(x))

Proof.

Stf(x) = EX [f(Xt)]

= f(x)e−λxt +
∑
y

λxte
−λxtπ(x, y)f(y) + o(t)

= f(x)(1− λxt) +
∑
y

λxtπ(x, y)f(y) + o(t)

= f(x) + t
∑
y

λxπ(x, y)(f(y)− f(x)) + o(t)

=∗ f(x) + t
∑
y

c(x, y)(f(y)− f(x)) + o(t)

= f(x) + tLf(x) + o(t) (6)
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* using that π(x, y) = c(x,y)
λx

.

From this it follows that, by rearranging the terms and the fact that o(t)
t

goes to zero as t goes to zero, we are left with Lf(x) = limt→0
Stf(x)−f(x)

t =∑
y c(x, y)(f(y)− f(x)).

The reason that o(t)
t goes to zero as t goes to zero is the following. When looking

at the second line of the whole of equation (6) we can see the following equation
f(x)e−λxt +

∑
y λxte

−λxtπ(x, y)f(y) + o(t). This equation can be seen as the

probability that we make zero jumps (f(x)e−λxt) plus the probability that we
make one jump (sumyλxte

−λxtπ(x, y)f(y)) plus the probability that we make
more than one jump (o(t)). Intuitively we know that as our time interval [0, t]
decreases as t goes to zero we have that the probability of jumping more than
once goes to zero.
Now that we have defined these concepts we are able to prove that the process
is stationary, reversible and ergodic.

6.3 Stationarity, reversibility and ergodicity

Before the theorem can be applied it must be checked that the Markov process
is stationary. From checking stationarity it is only a small step to check if the
Markov process is reversible as well.

To be stationary we want to show that
∫
Stf(x)dµ =

∫
f(x)dµ for all t. From

equation (6) it can be seen that we obtain
∫
Stfdµ =

∫
fdµ +

∫
tLf(x)dµ by

taking the integral of both sides of the equation. Thus we get that
∫
Stf(x)dµ =∫

f(x)dµ holds for all t and f if and only if
∫
Lfdµ = 0 for all f .

Next we take a look at the reversibility. Reversibility is defined as
∫
(Stf)gdµ =∫

f(Stg)dµ or equivalently, ⟨Stf, g⟩L2(µ) = ⟨f, Stg⟩L2(µ) for all t and all bounded
and measurable functions f and g. Looking at equation (6) again, it can be seen
that this is true if and only we have that

∫
(Lf)gdµ =

∫
f(Lg)dµ for all t and

for all f, g. Reversibility implies µ(x)c(x, y) = µ(y)c(y, x) for all x and y.

And lastly we consider the ergodicity. We have that the measure µ is ergodic if
and only if Stf = f for all t implies that f =

∫
fdµ for µ almost surely. This

again implies that the situation of figure (3) is excluded. Every state in the
process can be reached such that we can again jump from this state to another
state.

6.4 The Kipnis-Varadhan central limit theorem in contin-
uous time

The Kipnis-Varadhan theorem is already discussed in discrete time in the previ-
ous sections. In this sub-section the Kipnis-Varadhan theorem will be discussed
for a function V in continuous time. Furthermore, we will derive a function for

26



the variance. And there will be given a requirement for V for which we can test
if the theorem as a whole holds.

Given the reversible Markov process {ηs, s ≥ 0} with martingale sequence

Xt =
∫ t

0
V (ηs)ds. The Kipnis-Varadhan central limit theorem states that

1√
t

∫ t

0

V (ηs)ds→ N(0, σ2)

with

σ2 = 2

∫ ∞

0

Eµ[StV ]V dt

= 2⟨(−L)−1V, V ⟩

= 2||(−L)− 1
2V ||2L2(µ)

Thus we have that σ2 <∞, which implies that the central limit theorem holds,
if and only if V ∈ Dom((L)− 1

2 ).
The equation for the variance is found in the following way

σ2 = lim
t→∞

E[(
1√
t

∫ t

0

V (ηs))
2]

1

t

∫ t

0

∫ t

0

Eµ[V (ηs)V (ηr)]dsdr =
2

t

∫ t

0

ds

∫ s

0

drEµ[V (ηs−rV (ηo)]

=
2

t

∫ t

0

ds

∫ s

0

drEµ[V (ηr)V (η0)]

=
2

t

∫ t

0

ds

∫ s

0

drµ(dη)V (η)E[V (ηr)|η0 = η]

=
2

t

∫ t

0

ds

∫ s

0

drµ(dη)V (η)SrV (η)

=
2

t

∫ t

0

ds

∫ s

0

dr⟨SrV, V ⟩

=
2

t

∫ ∞

0

dr⟨SrV, V ⟩
∫ t

r

ds

= 2

∫ ∞

0

dr⟨SrV, V ⟩ t− r

t
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Then we see that as t→ ∞

2

∫ ∞

0

dr⟨SrV, V ⟩ t− r

t
= 2

∫ ∞

0

dr⟨SrV, V ⟩

using Sr = erL

= 2

∫ ∞

0

dr⟨erLV, V ⟩

using that

∫ ∞

0

erLdr = (−L)−1 results in

= 2⟨(−L)−1V, V ⟩ = 2||(−L)− 1
2V ||2

From this computation we can see that the optimal condition on V is that we
must have that V ∈ Dom((−L) 1

2 ).

It is possible to test whether indeed V ∈ Dom((−L)− 1
2 ). This is because if

V ∈ Dom((−L)− 1
2 ) then V = (−L) 1

2φ. This means that

|⟨V, ψ⟩|L2(V ) = ⟨(−L) 1
2φ,ψ⟩

= ⟨φ, (−L) 1
2ψ⟩

≤∗ ||φ||2||(−L) 1
2ψ||2

= ||φ||2
√
⟨ψ,−Lψ⟩

* by the Cauchy-Schwarz inequality
So if this is true for all ψ we get that

⟨V, ψ⟩2 ≤ ||φ||22⟨ψ, (−L)ψ⟩
= ⟨φ,φ⟩⟨ψ, (−L)ψ⟩

or if there exists a constant C ∈ R such that for all functions ψ the following
statement is true

⟨V, ψ⟩ ≤ C⟨ψ,Lψ⟩ (7)

If indeed this is true it follows that V ∈ Dom((−L)− 1
2 ).

6.5 The random conductance model

An application of the theory is the random conductance model. This is a model
with describes the way in which an excitable object moves through an environ-
ment. An example of this would be an electron which moves through a metal
with impurities. The varying levels of purity inside the metal dictate the time it
takes for the electron to move, and the probability to which neighbouring posi-
tion it moves. In this section the central limit theorem of Kipnis-Varadhan will
be put to the test by making simulations for a random environment of transition
rates. In order to visualize these rates one can look at the following figure.
The conductance model is a process in which a random walk, defined by Xt, will
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Figure 11: Transition rates from moving at position 0.

happen in continuous time according to the transition rates. These transition
rates are symmetric. To put this in equations

ξ(x, x+ e) = ξ(x+ e, x) = ξ(x+ e, x+ e− e)

This means that the transition rate of going from position x to x+e is the same
as going from x+ e to x.
In order to simplify the notation a new operator will be introduced. τ will be
this operator and will be defined as

τaξ(x, e) = ξ(x+ a, x+ a+ e)

Thus, the previous rates can be written as τeξ(x, x− e). Where all ξ(x, x+ e)’s
are independent and identically distributed with µ being the joint distribution
of these transition rates.

The environment process is the process seen from a random walk in a given en-
vironment ξ, which jumps between points x and x+e based the rates ξ(x, x+e).
The way in which the environment of rates moves seen from the random walk
is denoted as τXt

ξ.

In order to be able to use Kipnis-Varadhan’s theorem it is required to show
that the environment process of the condunctance model is a reversible and
ergodic process. Later it will be required to show that the Markov process for
the difference in position is a martingale.

6.6 Reversibility and ergodicity of the environment pro-
cess

In this section it will be shown that the environment process is reversible and
ergodic. Firstly we will prove the reversibility of the environment process. Then
we will be prove that the environment process is ergodic.

The generator of the environment process is given by the operator L. This
operator is equal to

Lf(ξ) =
∑
e

ξ(0, e)(f(τeξ)− f(ξ))
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Theorem 4. µ is reversible.

Proof. ∫
ξ(0, e)f(τeξ)g(ξ)dµ(ξ) =

∫
τ−eξ(0, e)f(ξ)g(τ−eξ)dµ(ξ)

=∗
∫
ξ(0,−e)f(ξ)g(τ−eξ)dµ(ξ)

* Using that τ−eξ(0, e) = ξ(0,−e).
This results in,∑

e

∫
ξ(0, e)f(τeξ)g(ξ)dµ =

∑
e

∫
ξ(0,−e)f(ξ)g(τ−eξ)dµ

=
∑
e

∫
ξ(0, e)f(ξ)g(τeξ)dµ

meaning ∫
Lf(ξ)g(ξ)dµ(ξ) =

∫
f(ξ)Lg(ξ)dµ(ξ)

proving that µ is indeed reversible.

Next, we check that µ is ergodic

Theorem 5. µ is ergodic.

Proof. Lf = 0 implies

⟨f,−Lf⟩L2(µ) = −
∫
ξ(0, e)(f(τeξ)− f(ξ))f(ξ)dµ(ξ)

=
∑
e

−
∫
ξ(0, e)f(τeξ)f(ξ)dµ(ξ) +

∑
e

∫
ξ(0, e)f(ξ)2dµ(ξ)

=
1

2
[
∑
e

∫
ξ(0, e)f(ξ)2dµ(ξ) +

∑
e

∫
ξ(0, e)f(τeξ)

2dµ(ξ)

− 2
∑
e

∫
ξ(0, e)f(ξ)f(τeξ)dµ(ξ)]

=
1

2

∑
e

∫
ξ(0, e)(f(τeξ)− f(ξ))2dµ(ξ)

Since Lf = 0 it can be seen that ⟨f,−Lf⟩ = 0 resulting in f(τeξ) = f(ξ) for all
e. This implies that f = c, where c is a constant, since µ is independent and
identically distributed.
Since the function is a constant it can reach every state, making the environment
process ergodic.
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6.7 The martingale difference sequence

The last requirement before being able to apply the theorem is that the difference
sequence must be a martingale.
Define F(t) = σ{X(s) : 0 ≤ s ≤ t} for the Markov process {X(t), t ≥ 0} with
generator L. Then we have that

f(X(t))− f(X(0))−
∫ t

0

Lf(X(s))ds =M(t) (8)

In order to prove that this is a martingale we have to prove that Ex[M(t)|F(s)] =
M(s) where Ex is the expectation knowing starting point X0 = x. This can
proven by proving that Ex[M(t) −M(s)|F(s)] = 0 for all 0 ≤ s ≤ t, or, by
showing that

Ex[f(X(t))− f(X(s))|F(s)] = Ex

[∫ t

0

Lf(X(r))dr|F(s)
]

Using the fact that Stf(x) = Ex[f(X(t))] we find that

St−sf(X(s))− f(X(s)) =

∫ t

s

Sr−sLf(X(s))dr

Since we know that d
drSr−s = LSr−s we find∫ t

s

Sr−sLf(X(s))dr =

∫ t

s

d

dr
(Sr−sf(X(s))dr = St−sf(X(s))− f(X(s))

which proves that M(t) is a martingale.
Now that we know this we can do something similar for the random conductance
model. We know that a given ξX has the generator

Lξf(x) =
∑
e

ξ(x, x+ e)(f(x+ e)− f(x))

If we then apply what we found for the general case to Lf(x) with f(x) = x we
find that

X(t)−X(0)−
∑
e

∫ t

0

eξ(X(s), X(s) + e)ds =M(t)

is a martingale. If we define the environment process by τX(t)ξ := ξ(t) we get

X(t)−X(0)−
∑
e

∫ t

0

eξ(X(s), X(s)+e)ds = X(t)−X(0)−
∑
e

∫ t

0

eξ(s)ds =M(t)

By putting
∑

e eξ(0, e) = V (ξ) and substituting this in the previous equation
we find

X(t) =

∫ t

0

V (ξ(s))ds+M(t)

is a martingale.
Now we know that we are in a situation in which the central limit theorem of
Kipnis-Varadhan can be applied to

∫ t

0
V (ξ(s))ds (Komorowski, Landim & Olla,

2012).
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6.8 Variance requirement

Showing that σ2 < ∞ is equal to showing that V ∈ Dom((−L)− 1
2 ). As shown

before it suffices to show that |⟨V, ψ⟩| ≤ C⟨ψ,−Lψ⟩ for all ψ ∈ Dom(L).

Theorem 6. V (ξ) = ξ(0, ej)− ξ(0,−ej) ∈ Dom((−L)− 1
2 ).

Proof. We want to show that |⟨V, ψ⟩| ≤ C⟨ψ,−Lψ⟩ where V (ξ) = ξ(0, ej) −
ξ(0,−ej).

|⟨V, ψ⟩| =
∫
(ξ(0, ej)− ξ(0,−ej))ψ(ξ)dµ(ξ)

=

∫
(ξ(0, ej)− τ−ejξ(0, ej))ψ(ξ)dµ(ξ)

= −
∫
ξ(0, ej)(ψ(τej )− ψ(ξ))dµ(ξ)

≤∗
(∫

ξ(0, ej)dµ(ξ)
) 1

2
(∫

ξ(0, ej)(ψ(τejξ)− ψ(ξ))2dµ(ξ)
) 1

2

≤ C ·
∑
e

∫
ξ(0, ej)(ψ(τeξ)− ψ(ξ))2dµ(ξ)

* follows from∫
ξ(0, ej)(ψ(τeξ)− ψ(ξ))dµ(ξ) =

∫ √
ξ(0, ej)

√
ξ(0, ej)(ψ(τejξ)− ψ(ξ))dµ(ξ)

≤
[∫

ξ(0, ej)dµ(ξ)

∫
ξ(0, ej)(ψ(τejξ)− ψ(ξ))2dµ(ξ)

] 1
2

≤ C
√
⟨ψ,−Lψ⟩

for all ψ and where C is a constant.
So indeed V ∈ Dom((−L)− 1

2 ).

As shown in the proof we have that V ∈ Dom((−L)− 1
2 ) when

∫
ξ(0, e)dµ(ξ) <∞

for all e. From this we can conclude that all conditions are satisfied and the
central limit theorem holds for 1√

t

∫ t

0
V (ηs)ds.
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7 Simulations for the random conductance model

As we have seen the theory suggests that the random conductance model should
indeed converge to the normal distribution according to the Kipnis-Varadhan
central limit theorem. In order to see if this is indeed the case we can do
simulations. As done in previous sections we can use the outcome of these
simulations to verify the theory. The number of simulations done will again
be 1000, 50000, 100000 and 500000. Furthermore, just like the simulations
done in previous sections histograms will be constructed to check for normality.
The simulations were done using the Matlab code which can be found in the
Appendix. After running the code for the different amount of simulations the
following histograms were constructed. The red line in each histogram is the
normal distribution plotted using the sample mean and sample variance found
in the table under the plots as parameters.

(a) Histogram for 1000 simulations of the
position.

(b) Histogram for 50000 simulations of
the position.

(c) Histogram for 100000 simulations of
the position.

(d) Histogram for 500000 simulations of
the position.

Figure 12: The histograms for the different amount of simulations of the position of
the conductance model.

From the data the sample mean and variance can be computed. These values
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Figure 13: 20 jumps extracted, plotted time spent at the position against the
position itself.

are presented in the following table.

# simulations Sample mean Sample variance
1000 -0.1092 2.4746
50000 0.0052 2.3186
100000 0.0026 2.3279
500000 0.0044 2.3198

From these values it can be seen that the distribution of 1√
t

∫ t

0
V (ξ(s))ds con-

verges to the normal distribution N(0, 2.32). It is allowed to round the sample
mean since the sample mean only tells us something about the mean of the
positions. These positions are all integer numbers.
The time spent at the different positions is also of importance. From the data
a short section of jumps was extracted in order to illustrate what happens at
the different positions. These 20 jumps can be seen in figure 13. Because the
time spend at the positions is exponentially distributed it is not equal for all
positions. For example, the time spent at position 104 after 5 jumps is equal to
4.9 time units while after the next jump the time spent at position 105 is only
0.1 time units.

To conclude, after simulating the value 1√
t

∫ t

0
V (ηs)ds for an increasing amount

of simulations it can be seen that the distribution of the integrals converge to
the normal distribution. From the table it can be seen that the precise normal
distribution to which it converges is N(0,2.3198).

34



8 Summary

In this paper we started by explaining what a Markov chain is. After this we de-
fined some key concepts such as stationarity, reversibility and ergodicity which
were used throughout the rest of the paper. Next, the classical central limit
theorem was stated in order to refresh the reader of this theorem and to show
that, because of the dependence, this theorem is not applicable for the Markov
chains we discussed earlier.
In the next section we started working on the Kipnis-Varadhan central limit
theorem. We defined the Martingale central limit theorem and used it to show
that the additive functions can be approximated by a martingale. This had the
result that the Martingale central limit theorem implies the central limit the-
orem for the additive functions. Furthermore, we also derived an equation for
calculating the limiting variance. For this we used the key concepts discussed in
section 2 and another concept called spectral measures. The section is finished
by a simple example in order to illustrate what we have discussed previously.
In the next section we used simulations in one-dimension and two-dimensions to
show that, in a random environment, the distribution of the additive functions
indeed converges to that of the normal distribution. Because the probability
distributions defined on the random environment was a symmetric distribution
the Kipnis-Varadhan central limit theorem was not yet needed since the Mar-
tingale central limit theorem already applied.
After this we defined some key concepts for a Markov chain working in con-
tinuous time. The Kipnis-Varadhan central limit theorem was proven for these
Markov chains as well. Furthermore, a different equation was derived to find
the limiting variance for continuous time Markov chains.
In section 7 the random conductance model was explained. In this chapter
the random conductance model was used in order to make simulations to show
that the Kipnis-Varadhan central limit theorem works. After simulating the
Markov chain in continuous time we indeed saw that the histograms show con-
vergence towards the normal distribution. This shows that for the simulations
the Kipnis-Varadhan central limit theorem works.
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Appendix

Code for the random sequence

1 f o r q=1:1000
2 %Amount o f s imu la t i on s
3

4 %Build random environment
5

6 n = 10000;
7 %Environment s i z e
8 x = rand (1 , n) ;
9 %Create n random number between 0 and 1

10

11 f o r i =1:n
12 i f x ( i ) < 0 .5
13 x ( i ) = −1;
14 %I f random number i s lower than 0 .5 s e t t h i s

po int equal to −1
15 e l s e
16 x ( i ) = 1 ;
17 %I f random number i s h igher than 0 .5 s e t t h i s

po int equal to 1
18 end
19 end
20

21 %Def ine p r obab i l i t y d i s t r i b u t i o n s and work the
environment

22

23 x0 = round (n/2) ;
24 %Find middle va lue o f environment as s t a r t i n g po int
25 m = 5000 ;
26 %Amount o f s t ep s we are going to s e t in our

environment
27 f o r j =1:m
28 i f x ( x0 ) == 1
29 r = rand (1) ;
30 %Generate random number
31 i f r < 0 .5
32 x0 = x0 − 1 ;
33 %I f random number i s lower than 0 .5 s e t

s tep to l e f t
34 e l s e
35 x0 = x0 + 1 ;
36 %I f random number i s h igher than 0 .5 s e t

s tep to r i gh t

37



37 end
38 e l s e i f x ( x0 ) == −1
39 r = rand (1) ;
40 %Generate random number
41 i f r < 0 .25
42 x0 = x0 − 2 ;
43 %I f random number i s lower than 0 .25 s e t

two s t ep s to l e f t
44 e l s e i f ( 0 . 2 5 < r ) && ( r < 0 . 5 )
45 x0 = x0 − 1 ;
46 %I f random number i s between 0 .25 and 0 .5

s e t s tep to l e f t
47 e l s e i f ( 0 . 5 < r ) && ( r < 0 . 75 )
48 x0 = x0 + 1 ;
49 %I f random number i s between 0 .5 and 0 .75

s e t s tep to r i g h t
50 e l s e
51 x0 = x0 + 2 ;
52 %I f random number i s h igher than 0 .75 s e t

two s t ep s to r i g h t
53 end
54 end
55 pos ( j ) = x0 ;
56 %After tak ing the s tep add the new l o c a t i o n o f

the o r i g i n to the l i s t
57 end
58 pos = [ n/2 pos ] ;
59 %Add s t a r t i n g po int to the l i s t o f l o c a t i o n s o f the

o r i g i n
60

61 %Find the d i f f e r e n c e between each po s i t i o n
62

63 f o r k=1:( l ength ( pos )−1)
64 d(k ) = pos (k+1)− pos (k ) ;
65 %Find the s t ep s taken by the o r i g i n
66 end
67 V(q ) = sum(d) / sq r t (m) ;
68 %Take the sum of a l l s t ep s and normal ize
69 pos = 0 ;
70 %Re i n i t i a t e the l i s t o f p o s i t i o n
71 end
72

73 histogram (V)
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Code for the random sequence in 2D

1 y=100000;
2 %Amount o f s imu la t i on s
3

4 %Build random environment
5

6 f o r q=1:y
7 n = 1000 ;
8 %Environment s i z e
9 xy = rand (n , n) ;

10 %Create a nxn matrix with random numbers between 0
and 1

11

12 f o r i =1:n
13 f o r j =1:n
14 i f xy ( i , j ) < 0 .5
15 xy ( i , j ) = 1 ;
16 %I f po int ( i , j ) i s sma l l e r than 0 .5 s e t i t equal

to 1
17 e l s e
18 xy ( i , j ) = −1;
19 %I f po int ( i , j ) i s l a r g e r than 0 .5 s e t i t

equal to −1
20 end
21 end
22 end
23

24 x0 = round (n/2) ;
25 y0 = round (n/2) ;
26 %Set begin po in t s in the middle o f the matrix
27

28 m = 500 ;
29 %Amount o f s t ep s in the random walk
30

31 posx (1 ) = x0 ;
32 posy (1 ) = y0 ;
33 f o r i =1:m
34 i f xy ( x0 , y0 ) == 1
35 r = rand (1) ;
36 %Generate random number
37 i f r < 0 .25
38 x0 = x0 − 1 ;
39 %I f random number i s sma l l e r than 0 .25 s tep

once to the l e f t
40 e l s e i f ( 0 . 2 5 < r ) && ( r < 0 . 5 )
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41 y0 = y0 − 1 ;
42 %I f random number i s between 0 .25 and 0 .5

s tep once down
43 e l s e i f ( 0 . 5 < r ) && ( r < 0 . 75 )
44 x0 = x0 + 1 ;
45 %I f random number i s between 0 .5 and 0 .75

step once to the r i g h t
46 e l s e i f ( 0 . 7 5 < r ) && ( r < 1)
47 y0 = y0 + 1 ;
48 %I f random number i s between 0 .75 and 1 step

once up
49 end
50 e l s e i f xy ( x0 , y0 ) == −1
51 r = rand (1) ;
52 %Generate random number
53 i f r < 0 .25
54 x0 = x0 − 2 ;
55 y0 = y0 − 1 ;
56 %I f random number i s sma l l e r than 0 .25 take

two s t ep s to the l e f t and one down
57 e l s e i f ( 0 . 2 5 < r ) && ( r < 0 . 5 )
58 x0 = x0 − 1 ;
59 y0 = y0 − 2 ;
60 %I f random number i s between 0 .25 and 0 .5

take one step to the l e f t and two down
61 e l s e i f ( 0 . 5 < r ) && ( r < 0 . 75 )
62 x0 = x0 + 2 ;
63 y0 = y0 + 1 ;
64 %I f random number i s between 0 .5 and 0 .75

take two s t ep s to the r i gh t and one up
65 e l s e i f ( 0 . 7 5 < r ) && ( r < 1)
66 x0 = x0 + 1 ;
67 y0 = y0 + 2 ;
68 %I f random number i s between 0 .75 and 1 take

one step to the r i g h t and two up
69 end
70 end
71 posx ( i +1) = x0 ;
72 posy ( i +1) = y0 ;
73

74 f o r j =1:( l ength ( posx )−1)
75 d( j ) = posx ( j +1) − posx ( j ) ;
76 %Di f f e r e n c e s in po s i t i o n on x
77 g ( j ) = posy ( j +1) − posy ( j ) ;
78 %Di f f e r e n c e s in po s i t i o n on y
79 t ( j ) = sq r t ( ( d( j ) ) ˆ2+(g ( j ) ) ˆ2) ;
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80 %Di f f e r e n c e in abso lu t e p o s i t i o n
81 end
82 Vx(q ) = sum(d) / sq r t (m) ;
83 Vy(q ) = sum( g ) / sq r t (m) ;
84 Vt(q ) = sum( t ) / sq r t (m) ;
85 posx = 0 ;
86 posy = 0 ;
87 end
88 end
89 histogram (Vx)
90 histogram (Vy)
91 histogram (Vt)
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Code for the conductance model

1 x=10000;
2 f o r q = 1 : x
3 n = −100:1 :100 ;
4 %Construct ion o f number l i n e
5 prob = rand (1 , l ength (n)−1) ;
6 %Random ra t e s
7

8 x0 = round ( l ength (n) /2) ;
9 %Begin po int

10 m = 20 ;
11 %Amount o f jumps
12 time (1 ) = 0 ;
13 %I n i t i a l time i s 0
14 pos (1 ) = x0 ;
15 %Sta r t i ng po int
16 e l l ap s ed t ime (1 ) =0;
17 f o r i =1:m
18 lambda = prob ( x0 ) + prob ( x0 + 1) ;
19 %Lambda i s sum of ra t e l e f t and r i gh t o f cur rent

p o s i t i o n
20 time ( i +1) = exprnd ( lambda ) ;
21 e l l ap s ed t ime ( i +1) = e l l ap s ed t ime ( i )+time ( i +1) ;
22 %Time spend at po s i t i o n i s exponen t i a l l y

d i s t r i b u t e d with va r i ab l e
23 %lambda
24 r = prob ( x0 ) /lambda ;
25 %Probab i l i t y o f jumping to the l e f t
26 w = rand (1) ;
27 %Generate random number between 0 and 1
28 i f w < r
29 x0 = x0 − 1 ;
30 %I f random number i s below 0 .5 take step l e f t
31 e l s e
32 x0 = x0 + 1 ;
33 %I f random number i s above 0 .5 take step

r i g h t
34 end
35 pos ( i +1) = x0 ;
36 %Save new po s i t i o n
37 end
38 f o r j = 1 : l ength ( pos )−1
39 dx ( j ) = pos ( j +1)−pos ( j ) ;
40 %Di f f e r e n c e between two po s i t i o n s
41 ab ( j ) = dx ( j ) ∗ time ( j +1) ;
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42 %The d i f f e r e n c e in po s i t i o n t imes time spent on
t h i s p o s i t i o n

43 %(Area )
44 end
45 V(q ) = sum(ab ) / sq r t (sum( time ) ) ;
46 %Sum of a l l a r eas ( i n t e g r a l ) normal ized by d i v i d i ng

by t o t a l time spend
47 %pos = 0 ;
48 %Reset p o s i t i o n f o r next loop
49 end
50 h i s t f i t (V)
51 x l ab e l ( 'Value f o r 1/ sq r t ( t ) ∗ i n t 0 ˆ t V(mu s ) ds ' )
52 y l ab e l ( 'Frequency ' )
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