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Abstract

In real-world scenarios, users provide invaluable data; however, this data is inherently incoherent, incom-
plete, and duplicated, i.e., different data rows refer to the same real-world object. Merging duplications to a
single entry broadens the knowledge of a given real-world object represented within a data set. Applying a
straightforward cross-join operation to check for duplications is infeasible and intractable in big data scenar-
ios. Instead of comparing all rows, the similarity can be approximated by Locality-Sensitive Hashing (LSH).
LSH’s MinHash creates colliding hashes on common tokens. With enough matching hashes, two rows can
be deemed similar. The applications of LSH within an Entity Resolution (ER) pipeline on incoherent and
incomplete big data are thoroughly investigated in this work.

An ER pipeline is introduced to make the deduplication problem tractable. This pipeline consists of four
phases: preprocessing, blocking, matching, and clustering. In the preprocessing, the data is made coherent.
In the blocking, the data is divided into smaller main blocks by blocking on complete properties. These blocks
contain a majority of True-Matches. The created blocks can be augmented with additional blocks that rely on
incomplete properties. In the matching phase, only the Matches found within the blocks are compared, sig-
nificantly reducing the required number of comparisons. The incomplete properties cannot be transformed
into features for every Match; therefore, classifiers are trained per property combination, allowing for opti-
mal Match classification. In clustering, the duplicated rows are merged into a single Entity. These Entities
are created with disconnected sub-graphs of Positive-Matches. These sub-graphs are particularly suscepti-
ble to noise. Therefore, novel implementations of MinHash are used for noise removal and finding missed
True-Matches. The created Entities were tested on an existing model.

Blocks constructed with MinHash on N-gram tokens allow spelling mistakes to be overcome within the
user data, which improves the Pairs Completeness (PC) at the cost of Pairs Quality (PQ) and Reduction Ratio
(RR). Introducing augmentative blocks increases the PC significantly at the cost of PQ and a low cost of RR.
Multiple runs are investigated throughout the pipeline. The runs relying on MinHash showed increased PC
at the cost of PQ and RR. A novel concept of a double-pass pipeline is introduced, in which the baseline ER
pipeline should be initially applied, followed by a more expensive error-corrective MinHash ER pipeline that
can be used on Entities created by the first pass, combining the strengths of the investigated runs.

Keywords: Big Data, Dirty Entity Resolution (D-ER), Locality-Sensitive Hashing (LSH), MinHash, Entity Res-
olution (ER) Pipeline, N-grams
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1
Introduction

The general trend is that more and more data is being created and collected each year, some even expressing it
as a data tsunami [1, 17]. Many who deal with data collection are interested in techniques that can efficiently
harness the information within the data [1, 7]. These large quantities of data, henceforth referred to as big
data, are associated with different challenges [17]. The data is massive in size, making traditional databases
not applicable, and the velocity of the data is too significant for traditional database schemes. In database
management, a common practice is to merge multiple data sets and achieve a larger and higher quality data
set [17]. Properly combining these data sets requires finding duplicates and merging these duplicates into
a single entry, initially coined as the merge-purge problem [18]. In the merge-purge problem, advertisers
bought databases containing personal addresses and joined them with their database [18]. If the person
already existed in the original database, then joining the new database could create a duplicate entry for
the given person, resulting in the problem that a single person could receive multiple instances of the same
advertisement magazines [18]. Databases should be joined in a deduplicated manner, i.e., records referring to
the same real-world object should be merged, removing duplications in the joined data collection. There are
many different names to address this challenge: merge-purge[18], record linkage[23], entity matching[12],
entity deduplication[6], or Entity Resolution (ER)[8, 15, 32].

Entity Resolution (ER) is more complex than it sounds due to how diverse the data between multiple
collections could be. The data quality inside a database could be deficient for various reasons [23]. Entering
the values into the system could introduce writing errors or differences in word selection [23]. Optional fields
are only sometimes provided, making it difficult to rely on them for real-world scenarios. Missing fields for
the users could result in data being appended into another field. The most important aspect of ER is using
the data afterward. Creating links between different equal entities will provide information not available
beforehand by increasing the knowledge base of the real-world entity represented within the data set [7]. ER
generates data that is generally too expensive to acquire [7]. The generated data is information-rich and high-
quality, and its generation is cost-efficient [7]. The comprehensive data is invaluable and can enhance other
data-driven tasks [7]. Although much research has already been conducted in the field of ER, the application
of ER on incoherent and incomplete big data is still in its infancy [23].

There are different focuses within ER. Data sets can be either clean or dirty; in the former, the data set
has no duplications within the collection, while in the latter, the data set contains duplications [23, 36]. With
these focuses, merging two data sets containing no duplicates is called Clean-Clean Entity Resolution (CC-
ER) [38]. It is also possible to merge a clean set with a dirty set. Or even two dirty sets with each other. This
research applies ER to a single dirty data set called Dirty Entity Resolution (D-ER), sometimes called entity
deduplication.

ER is a quadratic comparison problem, as the idea is to compare each row with all the other rows of the
collection [7, 8]. Comparing each entity pair will provide the highest deduplication factor possible. How-
ever, a complete pairwise comparison is only feasible for merging miniature databases as the quadratic time
complexity will quickly become intractable. This research is conducted on the Account data set of Exact,
consisting of approximately 300 million rows. Even though this size is already significant, it will grow faster
after each passing year. Conducting comparisons between each unique pairwise combination will result in
processing 45 quadrillion comparisons, taking several years of computation time while running large com-
putational clusters, which is not feasible in time or money. Proposed ER solutions[19, 25, 28] for this data set
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only utilized a subset and quickly became intractable due to the vast increase in entries.
Applying record linkage on two clean data sets yields a maximum number of comparisons equal to CCC =

|DB1|×|DB2| [6–8]. If record linkage were to be applied on a single dirty data set, then the maximum number
of comparisons would be equal to CD = |DB |× |DB |−1

2 [6, 8], because comparing rowA with rowB , will have the
same outcome as comparing rowB with rowA . Henceforth, the term ’ER’ will refer to the single dirty data set
scenario D-ER.

A matching function takes two different entities and returns a binary value of either 0 or 1 for a Negative-
and Positive-Match, respectively. The matching function relies on expensive similarity measurements [36].
The most computation-intensive task is the comparison of entities and, therefore, the bottleneck of any ER
task [11]. A blocking technique should be implemented to divide the data set into blocks of similar entities
to reduce this bottleneck [7, 11]. By applying a blocking technique, only the entities within a block must be
cross-compared, vastly reducing the number of comparisons required [7, 11]. Comparing only those pairs
within the created blocks will have a time complexity of O(n ∗ b), in which b is the maximum number of
entities in a bucket, and b should be much smaller than n (b << n) [7, 24]. If the collection can be split into
smaller subsets, then it is feasible to execute quadratic time algorithms to achieve greater accuracy [18]. The
main focus of the blocking should be to place different equal entities, i.e., referring to the same real-world
entity, in a joint block [7]. The largest block will dominate the merging step’s time requirement due to the
quadratic comparison problem. Ideally, these blocks should be uniformly distributed [7, 18]. Choosing the
perfect block size will always be a trade-off [7]. Since the blocking process is fully made-to-order, one can opt
for larger blocks, resulting in fewer matches missed while costing more computational time to compare the
additional matches [7]. On the other hand, one can use smaller fast blocks, which lowers the effectiveness of
the blocks [7].

Matching two rows can be done via certain similarity features [7]. These features calculate, for example,
the edit distance between two strings or the number of overlapping words [3, 23]. Generally speaking, ER is
applied to find matches within the data. The algorithm has reached completion after these matches are dis-
covered. However, after finding the Positive-Match, there is the option to merge these two entities and place
them back in the ER pipeline [23]. The match-merge problem requires recalculating the steps required for
matching until it finally results in a solution [23]. Pairs of rows that have not been found in joint blocks will
not be matched with each other and are, therefore, placed in the Negative-Match category [7]. The advantage
of doing so is that an extensive quadratic matching operation between all the different entities within a col-
lection is not required [7]. Not all rows are compared with each other, resulting in missed Positive-Matches.
Clustering methods can, and should, be implemented to retrieve these Positive-Matches based on the spa-
tial location and connectivity between clusters of rows. However, clustering implemented on a data set with
the mentioned characteristics needs to be investigated appropriately, meaning there is a gap in the currently
available methods for clustering distributed big data.

The universal ER pipeline consists of four different phases. First, the data is preprocessed, in which the
incoherent nature of real-world data is treated [8]. Secondly, the data is split into blocks, creating Matches
of rows located in a joint block. Thirdly, these comparisons are classified as Positive- or Negative-Match.
In the ideal situation, all the Matches should be Positive-Matches, meaning the block creation was perfect.
However, in practice, this is never the case and should not be the true aim of blocking.

According to Christen et al., research on the blocking phase ER has two main focuses. The first is creating
new or updating existing blocking algorithms [7]. The second focus is creating the most effective blocking
keys [7]. Designing the blocking keys was a task for system experts, while state-of-the-art research was con-
ducted on making that process automatic [7, 36]. However, it will require training sets that are most likely
unavailable or very costly to generate with real-world data sets [7].

The utilization of Locality-Sensitive Hashing (LSH) throughout the ER pipeline will be investigated. LSH
is an approximation algorithm in which hashes are generated for every row [7, 20]. Usually, when creating
hashes, one wants to have as little overlap as possible, but in LSH, having as much overlap as possible between
similar entities is the desired outcome. The rows are represented in fewer dimensions, making it more likely
that similar rows are given equal hashes [37]. The similarities of different rows can efficiently be approximated
with this technique, making it a perfect fit for application in big data scenarios [40, 41].
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1.1. Problem Definition and Research Questions
This thesis applies a D-ER framework to create clusters of companies referring to the same real-world com-
pany based on Exact’s1 Account data set using Apache Spark’s2 distributed environment. Each step of the
D-ER pipeline will be addressed and tackled as efficiently as possible while still yielding results of high cor-
rectness. The thesis will be a feasibility study on applying D-ER in a real-world incoherent and incomplete
distributed big data scenario. The following Research Question (RQ) must be answered for conducting this
feasibility study:

RQ: Can Locality-Sensitive Hashing techniques help to improve the Dirty Entity Resolution
efficiency and accuracy for incoherent and incomplete distributed big data scenarios?

Several Sub-Questions (SQs) are formulated to answer the main research question. To answer if D-ER can be
applied in a tractable amount of time while still having high correctness, three phases of ER have their own
dedicated SQ, followed by a final SQ regarding the generated deduplicated data set.

Sub-Question 1

SQ1: Can the blocking phase of Dirty Entity Resolution significantly reduce the number of
required comparisons associated with big data, making it tractable while still producing
blocks with high Pairs Completeness and Pairs Quality?

The blocking phase aims to remove all incorrect comparisons before the matching phase, causing a signifi-
cant improvement in time requirement. However, the question of SQ1 is, can a blocking scheme be applied to
distributed big data that is incoherent and incomplete? Moreover, do the blocking schemes allow for creating
blocks high in unique True-Matches and with limited unique False-Matches?

Sub-Question 2

SQ2: Can the matching phase of Dirty Entity Resolution correctly classify comparisons be-
tween incoherent and incomplete rows?

The matching phase will classify comparisons as either referring to the same real-world company or not.
However, users provide the data of the investigated data set, causing it to be incoherent and incomplete,
creating this SQ, SQ2, if it is feasible to classify the comparisons of the blocked data set correctly.

Sub-Question 3

SQ3: Can the clustering phase of Dirty Entity Resolution be applied to cluster distributed big
data with high correctness?

The distributed nature of the data could cause complications with using established clustering methods. For
this SQ, SQ3, it is unclear if clustering can and should be applied due to this distributed nature.

Sub-Question 4

SQ4: Can the created deduplicated data set be used as a solution in existing models to im-
prove their results?

The last SQ, SQ4, is not regarding the feasibility of applying D-ER; it tries to answer the latter high correctness
part of the RQ. If the resulting deduplicated data set is high in quality, then it should improve existing models
of Exact based on the Account data set.

1Exact (exact.com)
2Apache Spark™ (spark.apache.org)

https://www.exact.com/
https://spark.apache.org/
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1.2. Methodologies
All the ER phases were applied to answer the research questions, which are based on several fields of the
Accounts data set, which are: Name, Website, Postcode, Email, Phone, City, State, AddressLine1Street (AL1S),
and AddressLine1Number (AL1N). These fields are utilized to create blocks within the data set, making the
data set tractable, which allows to answer SQ1. In the matching phase, these fields are used to check if two
rows refer to the same real-world object, allowing to answer Sub-Question 2 (SQ2). In the clustering phase,
similar clusters resembling the same real-world company will be merged. The completion of the clustering
phase marks the completion of the ER pipeline, which provides an answer to SQ3.

The outcome of the ER pipeline is a data set that maps the original ID to a newly created EntityID. Rows
that refer to the same real-world company should have the same EntityID. To investigate the correctness of
these EntityIDs, the results are implemented in an existing Late Payment Prediction (LPP) model predicting
if an instance of Accounts will pay its invoices on time. The model relies on the Accounts data set, allowing
the deduplicated data set to be used without any changes to the model itself. This model and its outcomes
will answer the final SQ, SQ4. The main research question can be answered after all these SQs are answered
in succession. The hypothesis is that the outcome of LPP will be improved when using the deduplicated
Account data set. Because merging Accounts removes a cold-start problem associated with new Accounts,
historical data of other Accounts referring to the same real-world company can be used. Also, it ensures the
most up-to-date information of a real-world company within the Exact’s data sets can be found.

1.3. Contributions
This research has multiple contributions to the ER field. Even though ER is an established field, there needs
to be more information available on this kind of data set; most written research is available on standardized
data sets, which are small to medium in size with complete information and are not distributed. This research
hopes to fill the gap in available information on the matter. The main focus of the research is a feasibility
study, finding out whether it is possible and making this study open-ended. New methods can be investigated
and developed on this base framework. The main contributions are listed as follows:

• A blocking schema dependent on LSH is applied and studied.

• Different additions to MinHash are proposed and used within this thesis; these include hash manipu-
lations and novel concepts for token creation.

• A novel multi-model classification setup is applied to classify comparisons.

• A novel concept of using LSH to efficiently transform a graph into clusters using spatial information of
the graph itself.

• Multiple distinct benchmark runs on a data set of incoherent and incomplete distributed big data. Ap-
plying ER to this kind of data set is poorly studied in the literature. This conducted study is a solid
contribution and could serve as a sound basis for similar studies.

• Extensive future work possibilities are addressed, which could all be investigated in future studies.

1.4. Report Structure
This report is structured with multiple chapters. First, the related work is investigated in Chapter 2. Afterward,
the concept of ER is explained in Chapter 3. Each of the phases of the ER pipeline will be documented in a
separate chapter, starting with the preprocessing phase in Chapter 4. In this chapter, the data set of Exact
is taken under the loop, what it consists of, and how it should be preprocessed. In the following chapter,
Chapter 5, the blocking phase of ER, a significant part of the ER pipeline, will be discussed in-depth. This
elaborated chapter discusses how to create blocks within the data set. Afterward, the matching phase is
discussed in Chapter 6. This chapter will classify the Matches as Negative- or Positive-Match, filtering the
data within the created blocks. The final chapter of the ER pipeline is the clustering chapter, as can be read
in Chapter 7. Novel clustering methods relying on LSH are discussed in this chapter. The created data set is
applied to an existing Exact prediction model in Chapter 8; the outcome of this application is discussed in
this chapter. Finally, Chapter 9 presents this study’s conclusion, and Chapter 10 provides the final discussion
and ventures for future work.
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Related work

In this chapter, we investigate the related work. We are starting in Section 2.1 with what has been done by
prior research on the Exact data set. Afterward, a brief overview of research papers on the ER pipeline is listed
in Section 2.2. Section 2.3 is a small section dedicated to noteworthy preprocessing practices. Next, we inves-
tigate different methods to block the data set in Section 2.4. Followed up with Section 2.5 on measuring the
effectiveness of the applied blocking methods. The pruning of blocks and rows is investigated in Section 2.6
and Section 2.7, respectively. Afterward, the methods for comparing texts are found in Section 2.8. Finally, we
present existing studies on clustering approaches in Section 2.9.

2.1. Exact’s Prior Research
In Exact, there exist three preceding conducted studies with a similar focus and using the same data set used
in this thesis [19, 25, 28]. Three prior publications worked on the same Exact data set, and this research will
build upon what has already been achieved. In the work of Hovanesyan (2019), it was shown that ER is a
crucial aspect in order to work with the data. The data is heterogeneous, as the data are real-world entries
with only a required Name, and the other properties are optional to provide. An important aspect is the
preprocessing of the data. Cleaning the data and allowing it to fit a more strict form. Afterward, blocking was
applied to make their ER algorithm tractable. It was noticed that once these blocks become too large, the
algorithm will become unscalable. In order to work with the data, they opted only to use entries with either
a Chamber of Commerce (CoC) or VATNumber, which is roughly 16% of the total size [19]. Each entity has
a Blocking Key Value (BKV) corresponding to their CoC or VATNumber. Entries that have both are placed in
two blocks. The downside of relying on optional data to block the data set is that most of the valuable data is
unused.

Two years after the finalization of Hovanesyan’s MSc thesis, Kostense (2021) utilized Hovanesyan’s pro-
posed algorithm. However, the data set had already more than doubled in size, and it was deemed that
the proposed algorithm was too complex and not scalable enough to be run in a tractable time frame [25].
Kostense contributed by making a lightweight algorithm. Kostense had the clever idea to utilize the type of
the Accounts field. Users of Exact create their own unique type D Account in Accounts representing their
company. Since the type D Account is bound to a unique real-world company, it is not required to match
type D Accounts with other type D Accounts, as it will always result in a False-Match. It is only required to
match each type A Account with a single type D Account. Three distinct techniques were applied to create a
multi-attribute ER algorithm: Matching on CoC, matching on VATNumber, and fuzzy matching on Postcode
and AL1N in combination with Email. Multiple type D Accounts may share the same CoC, VATNumber, or
even a Postcode, AL1N, and Email tuple. For this reason, Kostense agreed with system experts to drop entries
of type D that shared a common field more than ten times [25]. Not all rows of the Accounts set are used in
the ER pipeline, as a row must have one of these three BKVs to be indexed in at least one block.

The latest MSc thesis by Mao (2022) tries to embrace the entire data set; entities that have few provided
fields still need to be matched [28]. The Postcode was used as their blocking algorithm’s only BKV. The rea-
soning is that the majority (roughly 80%) of the entities have a Postcode provided. Only losing roughly 20%
of the entities is already a significant improvement. The blocks created based on these BKVs are disjointed as
only a single Postcode is provided per row. After dividing the data set into disjoint blocks, graph merging is
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Entity Resolution Phase

Paper Year Blocking Matching Clustering

Hernández and Stolfo [18] 1995 ✓

McCallum et al. [29] 2000 ✓

Bilenko et al. [3] 2003 ✓

Chaudhuri et al. [5] 2003 ✓

Christen et al. [7] 2007 ✓

Christen [6] 2011 ✓

Draisbach and Naumann [11] 2011 ✓

Papadakis et al. [33] 2011 ✓

Papadakis et al. [34] 2012 ✓

Fisher et al. [15] 2015 ✓

Papadakis et al. [35] 2015 ✓

Christophides et al. [8] 2019 ✓ ✓ ✓

Li et al. [27] 2020 ✓

Papadakis et al. [37] 2020 ✓ ✓

Jafari et al. [21] 2021 ✓

Niknam et al. [32] 2021 ✓

Table 2.1: Extensive research papers on various phases of the ER pipeline

applied. Experiments within graph merging experiments were conducted. In these experiments, edges found
in a joint block were tested by merging them randomly vs merging them by a method with a threshold. The
experiments show that matching inside the created blocks based on methods outperforms the merging of
random edges, showing the need to clean the generated blocks.

2.2. Paper Overview
Multiple survey papers are read to gather significant knowledge on constructing the ER pipeline. Important
papers to gain insights are listed in Table 2.1. The table links the papers to which part of the ER pipeline
they cover. The preprocessing phase is excluded as it is made to fit per data set and is poorly represented
in the significant papers. The selected papers offer a wide range of cutting-edge implications within ER.
Noticeably, the papers investigating the matching phase have been around for quite a while. These papers
are not necessarily dedicated to the ER problem but can still be implemented in an ER pipeline. The papers
dedicated to the ER problem mainly examine the blocking phase of the ER pipeline. Most research is done
on smaller data sets, allowing a blocking stage that essentially can create a near-perfect block of entities all
referring to the same real-world entity. Using a smaller data set has the effect of making the matching and
clustering stage unnecessary. There is a significant gap in knowledge in the clustering phase; more research
needs to be done on clustering concerning the ER pipeline. The clustering phase is heavily dependent on
the workings and outcome of the previous phases, which can cause each situation requiring clustering to be
unique.

2.3. Preprocessing
The preprocessing phase of the ER pipeline is mainly left out of scientific research, as it is an often deemed
trivial step [2]. Hernández and Stolfo used a database in which synonyms of names were stored [18]. In
the real world, there are numerous manners to express the same thing. For their input, they also applied a
spelling correction program on top of the data, allowing them to correct spelling mistakes and improve their
final matching percentage [18]. Applying such a correction beforehand could make using spelling-correcting
indexing methods unnecessary.
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2.4. Indexing Algorithms
Comparing all the entities will always give the optimal result; however, in a big data scenario, it cannot be cal-
culated in tractable time complexity as entity comparisons suffer from quadratic complexity [7, 8, 11, 24, 35].
The most common way to tackle this problem is to block the collection into multiple disjoint subsets [35].
Splitting or blocking the data set into blocks will lower the number of comparisons at the cost of the quality
of the indexing algorithm [7, 35]. Some rows of True-Matches are not placed in a common joint block and,
therefore, no longer compared [7]. There are many different manners of creating blocks from a collection.
The newer techniques build on top of a predecessor. Knowing how the more advanced blocking techniques
came into existence relies on knowing the rudimentary predecessors of a given blocking technique. Even
though not all techniques are applicable anymore on a big data set, it still is possible to use specific indexing
algorithms for underlying structures within the data set in a divide-and-conquer methodology. The blocking
algorithms rely on BKVs, a field carefully crafted by domain experts to index the rows efficiently. The ma-
jority of the blocking schemes also require parameters that need to be fine-tuned [34]. Research has been
conducted in creating the BKVs and setting the parameters via machine learning, relieving the need to have
domain experts thoroughly investigate an implementation [34].

The most important characteristics of the blocking algorithm are twofold [6, 8]. Firstly, the algorithm
should separate the collection into blocks of closely related entities. Secondly, the number of entities in the
blocks should be as minimal as possible. The former provides information on the fitness of the blocking
scheme (effectiveness), and the latter depicts if the algorithm will be tractable for computation (efficiency).
The problem is that it is not possible to maximize both criteria for a given blocking algorithm [8]; there is
always a trade-off. If all the entities are matched in a large common block, comparing them will take more
time [6]. On the other side, if all the entities are divided into multiple smaller blocks, comparing them will
take less time, but the effectiveness will be lower [6].

Each blocking method is different, according to Christophides et al., they can be classified using the fol-
lowing taxonomy in Table 2.2 [8]. In this project, the data is structured; therefore, only scheme-based index-
ing algorithms will be utilized, as these algorithms have a higher efficiency and effectiveness than scheme-
agnostic indexing algorithms [31]. The algorithm could either be partitioning or overlapping [8]. In the for-
mer, the entity collection is divided into partitions by using a single key from an entity. In the latter, multiple
keys can be constructed from an entity placing it in multiple blocks, causing an overlapping effect. One of
these methods is not necessarily better than another; both can be used depending on the application of the
blocking algorithm. Overlapping will create more keys, allowing it to handle noisier data better [7]. The
downside is that it will create more comparisons. In general, however, overlapping blocking algorithms tend
to create more robust blocks regarding efficiency and effectiveness [6, 8].

Standard Blocking (1969) In Traditional or Standard Blocking, each row in the collection gets a single BKV
assigned, and the collection is partitioned on their BKVs [6, 8, 14]. This results in partitioned blocks, allowing
for higher efficiency but lower effectiveness. Real-world data that is generally noisy will likely fail to be parti-
tioned into the same block. Standard Blocking is the technique on which all the blocking algorithms rely; the
newer techniques try to improve the traditional blocking by extending its method [35]. With Standard Block-
ing, it is possible to generate overlapping blocks using multiple Standard Blocking steps, creating different
BKVs per row [35].

Sliding Window (1995, 2007) In the Sliding Window [18], sometimes called Sorted Neighborhood Indexing,
the entities are sorted on their BKV [6]. Creating the row’s BKV in a Sliding Window is the same as in Standard
Blocking [35]. Afterward, a window is used over the collection, and each entity in a given window is put in a
block [18]. The algorithm relies on how well the BKV can be sorted in order to have an effective neighborhood.
For example, if names were used as BKV, then spelling mistakes at the end will more likely result in a joint
subset while spelling mistakes at the start will most likely result in a disjoint subset [7]. Multiple BKVs per row
will increase the chance that different word spellings will still result in the entities being in joint blocks [7, 11].
The algorithm’s accuracy for smaller window sizes is insufficient [18]. For the Sliding Window to retrieve a
high accuracy, a more extensive set of neighborhoods needs to be compared, which defies the point of in-
dexing [18]. Smaller window sizes benefit from fewer False Positives (FPs), thus increasing the accuracy [18].
There are two approaches to this indexing technique [6]. The first is the sorted array-based approach; each
entity corresponds to a unique windowing row in the collection [18]. The second approach is the inverted
index-based or extended sorted neighborhood approach [7, 35]. In this approach, the entities are grouped
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Schema-awareness

schema-based Keys can be created on specific fields on the structured data

schema-agnostic There is no underlying scheme, the data is unstructured

Indexing Function Complexity

atomic Single key is generated to use in the indexing function

composite Generating multiple keys per row to use in the indexing function

Indexing Function Definition

hash-based Function uses hash generation for the creation of the BKVs

sort-based Function uses sort method to generate the BKVs

learning-based Function uses a machine-learning method to create BKVs

Redundancy attitude

partitioning Creation of disjoint blocks

overlap-positive Creation of joint blocks in which the number of blocks in common is corre-
sponding to show equality

overlap-neutral Creation of joint blocks, equality of rows is independent on the number of
blocks in common

Table 2.2: Taxonomy of Blocking Methods

by their BKV, and each unique BKV corresponds to a windowing row. The sorted neighborhood is an expen-
sive indexing algorithm due to the required sorting step [18]. This inverted index approach achieves higher
performance [35].

N-gram Blocking (2001) In this blocking algorithm, the BKVs are altered to achieve higher robustness
against noise in the BKV [35]. This algorithm changes the BKVs to a N-gram representation [16]. These are
subsets of the key with a size of N . Each N-gram will form a new block [16, 35]. For example, the BKV of ‘Exact‘
with N = 2 will create {’Ex’, ’xa’, ’ac’, ’ct’} as its token set. There is an extended version of N-gram blocking.
In this version, the N-grams of a single BKV are combined and used as the final key [35]. To combine the
N-grams, the number of N-grams per token is calculated as l = ⌊k × t⌋, with k being the number of N-grams
from a BKV and t is a threshold [6]. If a threshold of 0.9 is applied in the example, then the number of N-grams
per token will be ⌊4×0.9⌋ = 3 [6]. All tokens that are possible to be created containing three N-grams are as
follows: {(’Ex’, ’xa’, ’ac’), (’xa’, ’ac’, ’ct’), (’Ex’, ’ac’, ’ct’), (’Ex’, ’xa’, ’ct’)}. To create blocks from these tokens, the
N-grams are merged, resulting in {’Exxaac’, ’xaacct’, ’Exacct’, ’Exxact’} as the set of BKVs. If l = 2, the same
algorithm recursively applies to the sublists created with l = 3 [6]. Applying the extended version will make
the blocks more correlated and smaller [35]. However, if the threshold is low and the length of the BKV is large
compared to q , the number of tokens increases exponentially.

Canopy Clustering (2000) Similar to N-gram blocking, but instead of creating blocks purely on equality, it
creates blocks based on similarity [35]. The data is clustered into overlapping subsets in canopy clustering.
These clusters are based on their spatial location [29, 31]. First, overlapping subsets are created using simple
comparison algorithms that do not require a significant computational cost [29]. A method that can achieve
this is based on the inverted index; each unique word represented in the row will be attached to all the rows
in which the word is present [29]. These lists can be used to efficiently cluster the rows, as when the rows have
no words in common, they will not be compared. These created subsets are called canopies, and each row has
a certain distance above a threshold from the central point of the canopy [29]. Every entity needs to be in at
least one canopy, and entities can be in multiple subsets; therefore, canopy clustering generates overlapping
clusters [29]. After creating these canopies, algorithms with higher computation costs can be applied, as it is
not required to do pairwise comparisons between every entity, only the entities within a canopy [29]. Canopy
Clustering applies both the blocking and matching stages in a single method.
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Suffix Array (2005) In suffix array, tokens are created from the BKV [6]. These tokens are subsets of the
original BKV by removing the left characters to a minimum length of lm [6, 35]. Creating multiple tokens
from a single BKV has the benefit that the scheme is more tolerant of noise in the data. For example, the
BKV ’Exact’ with lm = 3 will create {’Exact’, ’xact’, ’act’} as its set of tokens. The number of tokens created per
BKV is TS A = max(1, lk − lm +1), given the length of a BKV as lk . Creating blocks based on these tokens will
result in a very skewed distribution of the entities. To address this problem, the blocks with proportionally
too many entries are discarded [6, 35]. Noticeably, in the example, only noise at the left of the BKV will be
addressed [6]. Extended Suffix Array is created to help overcome noise at every location of the BKV [35]. This
is done by creating all the possible tokens of a BKV with a length larger than the set minimum of lm . If the
example were to be applied for the extended suffix array, then {’Exact’, ’Exac’, ’xact’, ’Exa’, ’xac’, ’act’} would be
the set of tokens. The number of tokens generated per BKV is

∑TS A
n=1 n [35]. Entities with a large lk compared to

lm will create many tokens and are placed in many different blocks. Limiting the maximum length of a BKV is
advisable to overcome this issue. Like the standard Suffix Array, the most frequent tokens are discarded based
on a set limit [35]. The Extended Suffix Array method resembles the N-gram blocking. The only difference
compared to N-gram is that only the tokens with a maximum length of lm are added [35].

Locality-Sensitive Hashing (2000) LSH is an approximated algorithm in which a higher dimensional in-
put space is mapped to a lower dimensional space [21]. A data indexing solution can be constructed for
search spaces with a low dimensionality. However, these solutions quickly become unscalable for the high-
dimensional search space due to the curse of dimensionality [21]. To circumvent this curse, approximations
can be used to retrieve solutions that are near the exact solution but consume only a fraction of the otherwise
required resources. The nature of the solutions given by the LSH approach is beneficial in spaces that do not
require an exact solution [21]. LSH is an Approximated Nearest Neighbor (ANN) algorithm and, according to
Jafari et al., the most popular one [21].

The concept of LSH is to use randomly created n hash functions to assign entities to a unique hash bucket
created from these hash functions [21]. High-dimensional entities referring to the same real-world object will
have some characteristics in common and are located in the same neighborhood. Applying a hash function,
which maps the entity to a lower dimensional representation, retains this relationship [21].

There are two methods of applying LSH. The first option is to use Bucketed Random Projection (BRP). For
this method, dense vectors must represent the data set, which can be done by training a Word2Vec represen-
tation. The other method, MinHash, relies on sparse vector representations; these sparse vector representa-
tions can be created equal to other blocking techniques, such as N-gram blocking.

In HARRA[23], an LSH MinHash approach is used to block data sets, and they implement their approach
called Iterative-LSH, in which LSH is iteratively applied to large blocks, which will split, depending on the
elements inside each block, the large blocks into smaller blocks. Eventually, this results in hash blocks that
will be similar in size [23].

LSH can be used as the first method in canopy clustering, creating canopies with a low computational
cost. Afterward, a method with more computational cost can clean the canopies of invalid edges [29].

2.4.1. Indexing Algorithms Classification
The indexing algorithms of Section 2.4 can be classified using the taxonomy of Table 2.2. The classification
of the researched indexing algorithms is shown in Table 2.3. Since it was known that the data was structured,
only schema-based indexing techniques were required. The majority of the indexing techniques are based
on a composite complexity. All except one technique generates the sets based on hash, and only one sorted
indexing technique is investigated. No learning-based blocking techniques will be investigated; this study
is a feasibility study. More straightforward techniques with low cost should be investigated first. Learning-
based methods could be applied after ER for this type of data set is deemed feasible for the given application.
All blocking techniques except Standard Blocking will create overlap between blocks. For LSH and N-gram
blocking, the more blocks two rows have in common, the more likely they refer to the same real-world entity.
For the overlap-neutral methods, a single block in common already means that they likely refer to the same
real-world entity.

2.5. Measuring Block Effectiveness
The effectiveness and efficiency of the blocking algorithm can be evaluated with the following three estab-
lished measurements: Pairs Completeness (PC), Pairs Quality (PQ), Reduction Ratio (RR) (Eq. (2.1), Eq. (2.2),



10 Related work

Indexing
Function

Complexity

Indexing
Function

Definition
Redundancy Attitude

Indexing Technique atomic composite
hash-
based

sort-
based

partitioning
overlap-
positive

overlap-
neutral

Standard Blocking ✓ ✓ ✓

Sliding Window ✓ ✓ ✓

N-gram Blocking ✓ ✓ ✓

Canopy Clustering ✓ ✓ ✓

Suffix Array ✓ ✓ ✓

LSH ✓ ✓ ✓

Table 2.3: The classification of the investigated indexing algorithms

Eq. (2.3), respectively) [35]. In Pairs Completeness (PC), the recall is measured, which is the number of
matches in the blocked data set depicted as |D(B)| divided by the number of matches of the complete data
set |D(C )|. In Pairs Quality (PQ), the precision is measured, and the precision in blocking means the num-
ber of matches we have in D(B) divided by the total size of the blocked data set depicted as ||B ||. Finally,
we compare computation costs in the Reduction Ratio (RR), which measures the computational cost of the
comparisons in the blocked data set versus the complete set. Since the focus is on Dirty-ER, the number of
comparisons in the complete set equals |C | ·(|C |−1)/2. Each of these measurements will give a fraction in the
[0,1] range, allowing us to compare different blocking methods with each other in terms of effectiveness (PC)
and efficiency (PQ, RR), which are the measurements depending on ||B ||. The aim is to maximize the blocking
algorithm’s effectiveness and efficiency [35]. However, since blocking reduces the total number of compar-
isons required and comparing all the entities will always result in the highest possible recall, it is a trade-off
between effectiveness and tractability [35]. According to Papadakis et al., achieving a high PC PC (> 0.8) is
essential. Without a high PC, the next methods in the ER pipeline cannot retrieve numerous matches [35].
It would be unfair to place an algorithm that perfectly blocks but takes cubic time to evaluate as the best
possible solution; therefore, blocking time should also be compared [35].

PC = |D(B)|
|D(C )| (2.1) PQ = |D(B)|

||B || (2.2) RR = 1− ||B ||
||C || (2.3)

Essentially, PC and PQ resemble recall and precision, respectively. Balancing these measurements is impor-
tant to find the optimal solution since these two factors are inherently caught in a trade-off. The F-score can
be utilized to find a balance between these factors, as provided in Eq. (2.4). In this equation, β is a value to
address that recall is β times more important than precision. In standard cases, a value of 1 is used for β,
as this is a fair comparison between recall and precision since both are equally important. However, in the
case of ER and especially in the blocking phase, it is advisable to have a high recall at the cost of having a
lower precision. The blocking pipeline is the ER pipeline’s first computational major alteration step. If pairs
cannot be found in this step, it will be more challenging to cluster the matches in the clustering phase of the
ER pipeline. It is also possible to calculate F-scores between PC and RR, as RR and PQ are both considered to
be the efficiency of the blocking phase and thus have the same trade-off relationship with PC.

Fβ = (1+β2) · pr eci si on · r ecal l

(β2 ·pr eci si on)+ r ecal l
(2.4)

2.6. Block Pruning
Fisher et al. researched ER blocking (indexing) techniques [15]. They applied the standard blocking tech-
nique, transforming rows into a single BKV and blocking the collection based on these BKVs. According to
Fisher et al., the blocks should have minimum and maximum sizes [15]. If the block size is smaller than the
minimum, it should be merged with a block nearby in Euclidean space based on the BKV. The creation of
their BKVs consisted of three steps. The first step is to block the collection based on the first two characters of
the name. The second step is split on the Soundex[10] representation of the surname. Soundex is a phonetic
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resemblance of a word. The final step is to add the last four digits of the ZIPcode. In between these steps, the
blocks are split into (B−, B∗, and B+) based on their size compared to the minimum and maximum allowed
block size. In which B− has fewer than the minimum rows within a block, B∗ is within the allowed range,
and B+ has more rows than the maximum allowed. The B− blocks should be merged with the B∗ blocks.
This merging is done by creating a priority queue of descending similarity between the B− and B∗ blocks.
Only the B+ blocks will continue to be blocked on the next step in the blocking process in order to get these
B+ blocks in the desired B∗ range. Eventually, blocks are within the specified range of allowed block size, or
the algorithm runs out of possible blocking keys. The final results are blocks of multiple similar BKVs. This
applied method cannot rely on incomplete data, as this would mean that rows with different fields available
are not a match.

The created blocks are not uniform in their size. The larger the block is, the larger the clique inside the
block, and the number of comparisons required per block grows exponentially to the size of the given block.
Therefore, the largest blocks will consume the most resources. There are some options to mitigate the re-
source dependency of large blocks. These options are either static or dynamic [37]. In static blocking, the
block cleaning methods do not depend on the matching results, while in dynamic block cleaning, the method
is mingled within the matching phase [37].

The idea behind the static methods is that large blocks have less valuable information within them [37].
These blocks could be created during the blocking phase because of common stopwords [37]. Blocks that rely
on stopwords primarily do not refer to a single real-world entity but rather to multiple real-world entities, as
most real-word entities can contain stopwords that are shared with other real-world entities. These largest
blocks could be discarded without negatively impacting the matching phase [8, 37]. With overlapping blocks,
the matches in the largest blocks could still be found in the other overlapping blocks while significantly re-
ducing the number of required computations. For the partitioning blocking methods, removing the largest
blocks will cause these rows not to be matched with any other row.

It is also possible to have blocks that are near a fixed size. Creating blocks of a fixed size can be done
by splitting large blocks into smaller blocks if they surpass a specified maximum size. The blocks below a
specified minimum size can be merged with other smaller blocks. Merging of small blocks should only be
applied if these blocks have the majority of rows in common or if their BKVs are nearly identical.

The final static method transforms the blocks into a graph in which the blocks are vertices. Edges are made
between the vertices based on their BKV and the similarities between the different blocks; if they are similar
above a specified threshold, an edge is created between the nodes with various agnostic functions used to
give the edge weight [37]. The edges are then sorted on their weight to combine the highly interconnected
blocks while skipping the block pairs with low connectivity [37].

Dynamic methods can also be applied to clean the blocks. In Iterative Blocking, these rows are merged
once a True-Match is found between two rows, r1 and r2 [37]. Merging rows has the benefit of expanding in-
formation; Rows previously determined to be a Negative-Match with r1 and r2 can be matched again with r1,2

and possibly result in a Postive-Match [37]. Expanding the knowledge base of single rows within the match-
ing process can yield a larger PC. The matching phase is concluded when no Positive-Matches can be found.
This method can only be applied to D-ER, as the data set has many duplications. Using Iterative Blocking
for CC-ER yields no improvement; at maximum, only a single duplication exists per real-world entity. Du-
plications should be located and merged as early as possible to negate redundant comparisons [37]. Blocks
should be weighted on the probability of Positive-Matches in the block. Blocks with the highest probability
of containing Positive-Matches should be processed first; This process is called Block Scheduling [37].

2.7. Row Pruning
Instead of pruning the blocks, it is also possible to prune comparisons between entities that are unlikely to be
True-Matches of each other. The method of performing such an action is to inverse the index of the blocked
data set, in which the RowID is the primary key, instead of the BlockID. By swapping the primary keys, it is
possible to retrieve the number of blocks rows have in common [37]. Comparisons between two rows with
less than a given threshold of blocks in common are removed from the pool, as these comparisons are not
likely to be a Positive-Match [37]. Cleaning the comparisons will positively impact the PQ and RR, with a
marginally negative impact on PC [37].

A comparison between two rows should, at maximum, only be done once. The simplest method to dis-
card these duplicated comparisons is comparison propagation [33]. Discarding duplicated comparisons can
be performed by changing the structure of the blocks to a graph structure. In this graph structure, the rows are
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vertices, and the comparisons are the edges. Performing this transformation will automatically discard dupli-
cated comparisons, as only a single edge between two distinct vertices can exist. The number of duplicated
comparisons can also be the weight of the vertices [8]. If there are multiple overlapping comparisons between
two vertices, they are more likely equal than if a single comparison existed between them. The weight will,
therefore, give an evidence estimator of probable likeliness to the edge [8]. Building up the Matched data set
should be done by first performing all the comparisons that have a high likelihood of being a Positive-Match,
i.e., in which the vertices have a high weight assigned to them. It is even possible to discard all the entities with
low evidence of being a Positive-Match [8]. According to Christophides et al., these are the pruning methods
possible:

1. Weighted Edge Pruning (WEP): Remove all edges with a weight lower than the given threshold [8, 37].

2. Cardinality Edge Pruning (CEP): Keep the top K edges with the highest weight and prune the edges with
a weight lower than the Kth weight [8, 37].

3. Weighted Node Pruning (WNP): For each node neighborhood, remove the edges with a lower weight
than the threshold [8, 37].

4. Cardinality Node Pruning (CNP): Keep the top K edges with the highest weight for each node neighbor-
hood [8, 37].

Removing entities from a block instead of the edges themselves is also possible. In Low Entity Co-occurrence
Pruning (LECP), the entities with the lowest average edge weights, among others, are pruned [37]. LECP can
always be applied, or it can be applied only on the largest blocks, removing entities from the block that are
poorly connected, resulting in a manageable block in size to perform comparisons on [37]. These large blocks
could also be split into smaller blocks by finding communities and creating new blocks out of them [9, 37].

According to Papadakis et al., no block pruning method will consistently outperform the other meth-
ods [37]. Instead, combining multiple block pruning methods can create a more robust block pruning pro-
cess [37]. However, combining multiple row pruning methods is not possible [37]. Only a single row pruning
method can be part of the cleaning process [37]. Generally, these row-pruning methods have a higher com-
putational cost than block-pruning methods [37].

2.8. Fuzzy Matching
Different rows need to be linked together; this process is called record linkage. It is impossible to compare two
bodies of text directly with each other; they need to be transformed into values that a machine can interpret.
The distance or similarity between texts can be measured in different ways, called fuzzy matching. In fuzzy
matching, the texts are transformed into feature values, which correlate to the similarity of the two texts in
question. These features are in the range of 0 to 1, dissimilar to similar, respectively.

In most ER implementations, the correctness of the applied record linkage needs to be investigated. Ac-
cording to Niknam et al., most ER blocking evaluations rely mostly on whether equal entries are placed in the
same bucket, regardless of the linkage[32]. However, they claim that blocking in combination with linkage
plays a significant role in ER and should be evaluated together.

2.8.1. Edit-Distance Measures
The number of transformations required to transform one string to the other corresponds to the distance [5].
This distance can be used to compare two strings, s1 and s2, with each other [3].

Levenshtein Levenshtein similarity relies on strings [3, 26]. It uses the Levenshtein distance, the number of
character transformations required to transform one text to the other. In Levenshtein, The allowed transfor-
mations are addition, substitution, and deletion [26].

Jaro similarity In Jaro similarity, three parts make up the similarity. First, the characters in common are
calculated for the two strings s1 and s2, denoted as m. The characters in common are then divided by the
length of the two strings separately. Secondly, the transposition is calculated, which is done by calculating
the edit distance on the substrings of the characters in common for both strings. The transposition t is the
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halved number of the edit distance required. These three similarities are summed and divided by three. The
Jaro similarity equation is shown in Eq. (2.5).

Jaro(s1, s2) =
{

0 if m = 0
1
3 ( m

|s1| +
m
|s2| +

m−t
m ) otherwise

(2.5)

Jaro-Winkler similarity The same Jaro similarity is used in Jaro-Winkler, but there is an addition to the
prefix both strings have in common. Winkler utilizes the similarity of the start of both words. The prefix
similarity, denoted as l , is measured starting from the first character up to four characters [3]. The prefix sim-
ilarity is divided by a constant factor; the standard is 10. Afterward, it is multiplied by the inverse of Jaro. The
Jaro-Winkler similarity is shown in Eq. (2.6). The Jaro-Winker similarity is widely used in ER applications [39].
According to Bilenko et al., the similarities between Jaro and Jaro-Winkler are intended for smaller strings [3].
Their research showed that Jaro-Winkler performed worse than Jaro for the given data set [3].

Jaro-Winkler(s1, s2) = Jaro(s1, s2)+ l

10
(1− Jaro(s1, s2)) (2.6)

2.8.2. Token-Based Measures
Two texts are split into sets of tokens, SA , SB ; afterward, these sets can be compared, and the similarity can be
calculated [3]. The number of tokens in common directly represents the similarity. An advantage of token-
based measurements is that the similarity is independent of word order.

Jaccard Jaccard similarity relies on sets of tokens. With Jaccard similarity, the similarity of these two sets of
strings is calculated as shown in Eq. (2.7).

Jaccard(S A ,SB ) = |S A ∩SB |
|S A ∪SB |

(2.7)

TF-IDF In Jaccard similarity, all the words have the same weight, independent of their rarity. Jaccard essen-
tially acts as the Term Frequency (TF). A weight that will be lower if it is a frequent term can be assigned to
this TF. Inverse Document Frequency (IDF) is the number of rows where the term occurs, but the inverse is
taken to give the most frequent terms the least weight. Often, TF-IDF performs better than methods that do
not consider term frequency, but not always [3].

2.9. Entity Clustering
As shown in Table 2.1, more research is needed on clustering the resolved entities. Only Christophides et al.
have a section dedicated to this phase [8]. The missed connections between different created entities can be
found with a clustering phase, in which implicit connections between different vertices are made [8]. Trans-
forming the graph into a set of disjoint sub-graphs, also known as Connected Components, can be used to
infer these implicit relationships [8]. Noise within these Connected Components is troublesome as they will
merge vastly different sub-graphs if a single noisy link exists between them, causing the recall to go up but
diminishing the precision [8].

Different graph nodes can be selected as the center of a cluster, and then other nodes are connected to
their nearest center [8]. This application can be improved by merging cluster centers that are similar to-
gether [8]. Another method is Star Clustering, in which all the vertices are put on a stack, sorted from highest
to lowest degree [8]. Then, pop the vertex with the highest degree of the stack and create a cluster of the said
vertex and all of its neighbors. These neighbors are also removed from the available stack. Continue until
the stack is empty and disjoint clusters are generated. After Star Clustering, it is possible to apply additional
clustering techniques to merge the disjoint clusters and find more implicit connections [8].





3
Entity Resolution

In this chapter, we will concisely show the ER pipeline and its division into multiple phases: preprocessing
(Section 3.1), blocking (Section 3.2), matching (Section 3.3), and clustering (Section 3.4). The concepts of
these phases are written here, and the elaborated application of each phase will be described in their own
chapter. A depicted overview of the pipeline process is given in Fig. 3.1. To measure the performance of the
ER implementation, a Ground Truth (GT) is required, which is discussed in Section 3.5.

3.1. Preprocessing
The first step in the ER pipeline is the preprocessing of the data. In this thesis, unprocessed (raw) data suf-
fers from several issues commonly reported for big data in most real-world scenarios [18]. Since the data
is not uniform, the same field can be created in many different manners. Missing parts, misspellings, syn-
onyms, and additional information can cause inconsistencies within the data [18]. If the subsequent phases
are generated from unaligned data, then it will cause similar entities to be placed in disjoint clusters [7, 18].
Therefore, it is essential to apply a well-defined preprocessing phase. The fully detailed preprocessing phase
is explained in Chapter 4.

3.2. Blocking
Since comparing each row with all the other rows is infeasible, the data is divided into multiple blocks. Similar
rows should be mapped to the same block. Blocking is a significant aspect of the ER pipeline and crucial for
dealing with big data sets. Without proper blocking, the next phases are intractable. The blocking algorithms
applied should be cheap in computational cost. Blocking aims to construct blocks so that each block only
has rows referring to the same real-world entity. In practice, however, this is unrealistic; multiple similar real-
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world entities will be mapped to the same blocks, which will be classified in the subsequent phase. Decisions
must be made on whether the blocks should favor precision or recall. In the ideal situation, one should
construct the BKV from sufficiently available properties with the most negligible error, i.e., the highest quality
possible [7]. The aim should be to create many correct buckets with small sizes, as cross-comparisons within
buckets are quadratic per bucket size. This should be possible for CC-ER, as real-world entities are unique
for both data sets. However, in the case of D-ER, this is impossible with real-world data due to some real-
world entities dominating the data set. As a result, some buckets will be huge, while others will be almost
empty [7, 18]. The applied blocking phase is detailed in Chapter 5.

3.3. Matching
Each BKV is transformed into a complete undirected graph in the matching phase. Afterward, all the edges
are stored in a distinct data set, dropping duplicated block Matches. Since the number of possible Matches
is significantly smaller than a total data set comparison, it can be possible to use more expensive algorithms
to perform Matching inside the blocks. In the matching phase, the idea is that the same recall remains while
increasing the precision. The entire applied matching phase is provided in Chapter 6. Throughout the project,
multiple definitions exist regarding ’Match’. Table 3.1 explains all these different definitions and will be used
henceforth.

Meaning Created by

Match A comparison between two Accounts that have a block, created by
the blocking phase, in common. The existence of a comparison
creates an edge between the two IDs. However, it has yet to be
discovered if this match is correct.

blocking-output

True-Match A comparison between two Accounts, which both have a valid la-
bel provided by the user and these two labels are equal.

user-input

False-Match Similar to True-Match, however, the two labels are unequal. user-input

Positive-Match The classifier predicted that the Match is a True-Match, which is
not necessarily correct.

classifier-output

Negative-Match The classifier predicted that the Match is a False-Match, which is
not necessarily correct.

classifier-output

Table 3.1: Match Terminology

3.4. Clustering
The matching phase will create a large matched graph containing Positive-Matches while discarding all the
Negative-Matches. These Negative-Matches are only determined by comparing the two Accounts of a Match.
In the clustering phase, spatial information of the Positive-Match within the graph can be considered and
used to determine the correctness of the Positive-Match. Matches are created by Accounts with joint BKVs.
Due to the blocking, not all the rows referring to the same real-world entity can be blocked together. There
are most likely still Positive-Matches that were missed. These missing Matches will be searched and added
to the total Positive-Match pool. Finally, Entities can be created, which are groups of disjoint Accounts. Each
unique Account will be mapped to a single Entity, giving an EntityMapper data set as the final output of the
ER pipeline. These EntityMappings are theoretically maximized in terms of recall and precision while having,
given the data size, a relatively lightweight algorithm. The clustering of the data set is detailed in Chapter 7.

3.5. GroundTruth
It is important to consider what the resolved data set should represent, i.e., when two different rows are a
True-Match or a False-Match, meaning they both refer to the same real-world entity. In order to test the
performance of the applied ER pipeline, all the True-Matches should be found. Even for a small subset of
100,000 entities, it is still required to label 5 billion possible matches if they are a True- or False-Match. It is
infeasible to label these matches manually.

The use of unique identifiable properties logically retrieves True-Matches. For Exact’s data set, multi-
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ple properties uniquely describe a real-world entity. The most noticeable are VATNumber and CoC. Both
fields are unique to real-world companies. Therefore, these properties can be used to construct a GT data
set with high confidence that the True-Matches are valid True-Matches [19, 25, 28]. Theoretically, using a
single unique identifiable property is sufficient to create a GT data set, but in the case of Exact, it is possible
to use both the VATNumber and CoC property to create the GT data set. The ActiveAccounts subset of the
Accounts data set has approximately 85 million unique IDs. If the data set is filtered on entries with both a
valid VATNumber and CoC, it results in a data set of roughly 7.6 million unique IDs with both fields provided,
as seen in Table 3.2. Such a large data set is sufficient for measuring the performance of applied techniques.
The creation of the GT is simply grouping by the VATNumber and CoC; afterward, all the unique IDs are then
collected, and the rows grouped together form a clique, which makes up the GT. It can be seen that the GT
primarily consists of False-Matches, while there are only some True-Matches. This imbalance of True- and
False-Matches throughout the pipeline should be considered per pipeline phase.

Type Amount

Labeled Accounts 7,617,382

Labeled Comparisons 29,012,250,458,271

Labeled True-Matches 7,256,780,795

Labeled False-Matches 29,004,993,677,476

Table 3.2: Label Distributions in GT





4
Preprocessing

In this chapter, we investigate the first phase of the ER pipeline, as detailed in Section 3.1. We start by fa-
miliarizing ourselves with the Accounts data set and applying transformations to make the data coherent in
Section 4.1. Afterward, we investigate the characteristics per property of the Accounts data set in Section 4.2.
Next, in Section 4.3, we investigate the GT. There are also comparisons known as False-Matches without ap-
plying ER, discussed in Section 4.4. Finding common words is more complex for D-ER, and the problem is
explained in Section 4.5. Lastly, we show that inverting the index gives a significant advantage for limited
costs in Section 4.6.

4.1. Exact Account Data
First, it is required to get familiar with the data and how it is structured. The users are only required to provide
a Name for creating an Account; all the other fields are optional. For this reason, the data inside the Accounts
table is heterogeneous. The data is ambiguous due to the lower quality of incomplete fields. The fields are
shown in Table 4.1. It is in Exact’s interest to use the active Accounts. Accounts with at least a single trans-
action assigned to them in the last two years are deemed active. The ActiveAccounts data set has a size of
roughly 85 million rows. Each reference to the Accounts data set hereafter refers to the ActiveAccounts data
set. To work with the data, the data must be cleaned in the preprocessing step of the ER. For each property,
the accents of the accented letters are removed, making the strings more coherent.

Name All letters are changed to lowercase. Afterward, all common words that indicate business structures,
such as ’bv’ and ’GmbH’, are removed [19, 25, 28]. The regex to remove these common words can be found in
Appendix A.1. Also, words consisting of a single letter and prepositions are removed.

Postcode All the whitespace is removed, and only the digits and letters are kept. Secondly, the letters are
capitalized. Thirdly, there is a match if the value starts with four digits and ends with two capital letters.
Postcodes starting with a ’0’ and those that have prohibited suffixes are removed. Entries not following this
match are discarded.

VATNumber First, all the whitespaces are removed. Secondly, we capitalize the letters. Thirdly, we check if
the entry follows the format of starting with ’NL’ followed by nine digits, followed by a ’B’ and two digits. All
the entries in which the first nine digits are ’0’ are removed.

ChamberOfCommerce First, we remove everything that is not a digit. Afterward, we keep all entries with
either eight or twelve digits. All the entries in which the first eight digits are ’0’ are removed since that is not a
valid CoC.

AddressLine1 The AddressLine1 (AL1) is transformed to initcap format; in this format, the first letter of
every word is capitalized. Words that consist only of ’0’ are removed. Afterward, we extracted words that
contained a number from the AL1 and inserted them into a new column called AL1N. The words that are not

19
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Key Description Flag

Name The name of an Account Required

Postcode The postal code of the Account optional

Email The email address associated with the Account optional

Phone The phone number associated with the Account optional

Fax The fax number associated with the Account optional

Website The website of the Account optional

State The state where the Account is located optional

City The city where the Account is located optional

AddressLine1 The main address of the Account optional

AddressLine2 Additions to the main address optional

AddressLine3 Additions to the main address optional

VATNumber Tax number given by the government to track a company
and their tax payments

optional

ChamberOfCommerce Number that is given by the Dutch Chamber of Commerce
which deals company registration within the Netherlands

optional

Type Either D, A, which refers to a division and an account in a
division, respectively

generated

Table 4.1: The data structure of Accounts

extracted are part of the street name and are also placed in a new column called AL1S. The same actions are
applied to AL2 and AL3.

Email After examining the data, it was shown that some users enter multiple Email addresses per field. The
preprocessing should take into consideration that this field can have multiple entries. The applied prepro-
cessing steps were as follows: First, all the accents are removed from the letters. Secondly, when multiple
Emails are filled in, different separators are used, so they need to be mapped to a uniform separator. Thirdly,
not allowed characters for emails are removed. Fourthly, a simple regex is used to extract the valid Emails,
which can be found in Appendix A.3. Finally, Emails can contain a ’+’ with some additional information, and
the additional information is removed.

Website First, change all the letters to lowercase. Secondly, some divisions use a comma where a dot should
be, so replace those with a dot. The whitespace around dots is also removed. Thirdly, the Website prefixes
are removed with a regex, as seen in Appendix A.2.1. Afterward, the addresses and their domain are extracted
from the list, removing paths and queries from the fields. Some users provide multiple Website addresses per
field, which should be considered; the regex is in Appendix A.2.2.

Phone, Fax A row could consist of multiple Phone numbers, which should be considered. Users use dif-
ferent separators to fill in multiple phone numbers, and the different separators should be converted to a
uniform one. Next, the invalid characters are removed from the field. Afterward, the Phone numbers are
extracted with a regex, as seen in Appendix A.4.

City, State, Country Generic preprocessing is applied to these properties. The letters’ accents are removed
and then transformed to initcap format.

The preprocessing step applied to the Accounts data set is a step that is also performed in the previous
theses and their handling of the data [19, 25, 28]. The additional preprocessing contributions that are applied
in this implementation are the following:

• Accents from accented letters are removed, increasing text similarity as accents are used sporadically.
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• Common words other than business structure, such as prepositions, are removed from the Name prop-
erty.

• Fields that can hold multiple entries are considered, and their different values are extracted, including
but not limited to Website, Email, and Phone.

• A more forgiving Phone validation is used.

• The use of initcap to emphasize the importance of the starting letters for words.

• Preprocessing on more properties of Accounts.

• AL1S and AL1N are automatically extracted from AL1.

4.2. Property Characteristics
Preprocessing is an essential step in order to work with ambiguous big data. More insights into the available
raw and preprocessed data can be seen in Fig. 4.1. First, the availability of each property is depicted as ’raw’,
representing the ratio of how many times that property is filled-in by the user. It can be seen that the avail-
ability of the properties differs. The always available property is the Name property. For availability reasons,
the Name is the base to apply further methods on. Phone, Email, Postcode, AL1, and City are all reasonably
available to be utilized. The column ’Preprocessed’ shows the total ratio of valid properties after applying the
rules described in Section 4.1, while the ’Validness’ column shows the ratio of valid filled-in properties. Some
properties do not have any rules that can falsify the filled-in field, for example, AL1. Other properties can be
falsified if the filled-in property does not follow the generic pattern; for example, the Postcode has a generic
pattern that must be followed. The Accounts is a data set that has multinational data in it. Some multina-
tional data is universal, such as a Name or Email address. However, some data requires a format dependent
on the country of origin. It can be seen from Fig. 4.1 that Postcode and VATNumber have a lower validity. This
lower validity is because only the Dutch formats for Postcode and VATNumber are allowed in the preprocess-
ing. Thereby, fields that might be valid for the given country are invalidated; however, ER is only applied with
Dutch companies in mind for this project’s scope. The ratio of adjusted characters is shown as ’Adjustments’
to show that preprocessing makes the data uniform. The Levenshtein distance between the raw and prepro-
cessed valid fields is calculated to retrieve this ratio. The Levenshtein distance is essentially an edit distance in
which the number of adjustments is counted [26]. These adjustments can either be an insertion, deletion, or
substitution [26]. Levenshtein distance is the minimal number of characters that must be changed to trans-
form the raw string into the preprocessed one [26]. To get the ratio per property, the Levenshtein distance is
divided by the length of the largest string, and the average is taken per property. Most adjustments done to
the strings are in the form of removing invalid letters and changing letters from uppercase to lowercase, so
entries mainly consisting of numbers, such as VATNumber and CoC, score a low adjustment ratio. The State
property has a high adjustment ratio as the state is provided in upper case and will be transformed to initcap
as the preprocessing step.

4.3. GroundTruth availability
Creating the GT, as described in Section 3.5, has the benefit of being cheap, fast, and highly accurate. How-
ever, the only notable disadvantage is that the data set is essentially filtered on the rows of the data set that are
adequately filled in. If the rows have a VATNumber and CoC filled in, there is a higher chance that the other
fields are also filled in, as users who correctly fill in multiple fields tend to make their entries as complete as
possible. This results in the GT measuring the performance of the entire ER pipeline on the best rows the
data set has to offer, which is a problem that might occur while dealing with incomplete data sets. A robust
ER pipeline does not solely rely on these properties; neither will be the case for this implementation. How-
ever, it is important to consider the availability of the properties of the GT set, as depicted in Fig. 4.2. Since
the GT is created from entries with a valid VATNumber and CoC, they are always available in the GT data
set. The distribution of some properties increased while others decreased. The Website, State, Postcode, AL1,
and City all have their availability increased in the GT data set, while Phone and Email got their availability
decreased. Even though the distribution of available properties is changed when taking the GT, it is still a fair
comparison to use the GT to resemble the entirety of the Accounts data set.

Since the AL3, Fax, and AL2 properties are inadequately represented in the preprocessed set and the GT,
these properties are discarded for further use within the ER pipeline. It can be noticed that Phone and Email
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Figure 4.1: Insights of the applied preprocessing to the Accounts data set

are the fields that are less represented in the GT; this is most likely due to the Accounts data set containing
end-users of companies. The end-users have their contact information put into the Accounts data set, and
these end-users most likely do not have their own company, thus lacking a CoC. Accounts without a CoC
are not part of the GT, thereby explaining the lower availability factor for Phone and Email in the GT. The
other properties have higher availability factors in the GT than the overall property availability. This higher
availability can be explained by the fact that if users are filling in the VATNumber and the CoC, they are more
likely to provide the other properties.

4.4. Known False-Matches
It is possible to deduce False-Matches before applying ER. The Accounts data set has a generated property
called Type. Type can either be A(ccount) or D(ivision). Type D are users of Exact, and type A are clients of the
users. Therefore, Accounts with type D are unique real-world entities, as real-world companies do not sign
up multiple times for Exact software. Resulting in the fact that a row of type D can never be a True-Match
with another row of type D; they are all False-Matches. There are roughly 700.000 type D Accounts, resulting
in 250 billion False-Matches known before the ER pipeline.

A similar scheme can be deduced for the division. Rows with the same division should not be compared,
as users do not create multiple Accounts for the same real-world entity. The little or no edge cases that are
doing so are not worth the extra calculations. Not comparing rows created by the same user results in roughly
21 trillion known False-Matches to be excluded.

If both of these known False-Matches are considered and removed from the possible matching pool, then
roughly 22 trillion required comparisons are already eliminated. Even though that is a lot of eliminated com-
parisons, the entire matching pool consists of 44,630 trillion possible matches. Lowering the total number
of the matching pool by 0.04 percent is insignificant, but these known False-Matches could also be used for
heuristics throughout the different stages of the ER pipeline.

4.5. Common words
Numerous common words can be found throughout the filled-in fields of the Accounts data set. These com-
mon words can take on many different forms; the Name field consists of different business structures that
are common throughout the different unique names that make up the Name column or fields in the Phone
column that have, for example, the value ’06-12345678’. Common words mostly provide little context about
the meaning of a sentence, as vastly different entities can share the same common words [30]. In a CC-ER,
finding and removing these common words from the data set is almost trivial. Term Frequency - Inverse Doc-
ument Frequency (TF-IDF) can be applied to calculate the uniqueness of each word in the document. Each
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Figure 4.2: The distribution of available properties of the GT compared to Accounts

row in the data set is considered as a document. TF-IDF compares the number of times a word appears in the
document to the number of documents in which the word appears. In CC-ER, TF-IDF can be applied to elim-
inate the common words from the data set, as there exists at most only one duplication per real-world entity.
In D-ER, however, it is not advisable to be used. Entities can be duplicated many times in such a data set,
and as a result, unique words can even be more common than common words. If, for example, many entities
refer to the real-world entity ’Exact’, then by using TF-IDF, ’Exact’ is considered a common word. Marking
unique identifiable words as common words is faulty behavior and should be avoided. One can manually
seek and remove the most common words by researching the words and their count. However, this will most
likely result in only the most frequently occurring common words being exterminated, leaving the numerous
infrequent common words in the data set.

To automatically retrieve the list of common words for D-ER, one can use their GT. A method similar to TF-
IDF can be applied to find the common words in D-ER. The TF remains the same; however, the IDF changes
to work with the GT instead. The number of unique GT pairs linked to a word are retrieved. In the case of
’Exact’, only a couple of GT pairs exist in which that word is found. A common word such as ’BV’ can be found
in many Names, while there are also many GT pairs in which that word can be found. Thus, by applying some
thresholds, it is possible to automatically find and remove the common words from the pool to enrich the
context of the words and allow for fewer misclassifications, reducing the overall noise of the ER and positively
impacting the recall and precision. Applying this technique to shared properties between different real-world
entities will not work. A unique Postcode could be shared between many entities while referring to different
real-world entities; as a result, the majority of unique Postcodes can be tagged as ’common words’ if this
concept is applied. Therefore, one should use this technique on identifiable properties per real-world entities
such as Name, Phone, Fax, Email, and Website. It is also possible to apply this technique on a combination of
columns, for example, Postcode in combination with AL1S, to remove combinations with little context from
the data set.

4.6. Inverting the Index
Redundant comparisons should be limited as much as possible. If there are identical rows, for example, row1

= row2, then comparing row3 to row1 will give the same result as comparing row3 to row2. If the rows are truly
equal, then by default, they will be referring to the same real-world company, as it is impossible to distinguish
different real-world companies from identical rows. It is important to note that the effects of inversing the
index are linked to the degree of duplication within the used data set. A high degree of deduplication will
result in a high comparison reduction when the indices are inverted. On the other hand, a low deduplication
degree results in a limited reduction in comparisons when the indices are inverted. The cost of inverting the
index is negligible, while the improvement can be significant.
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Type Amount

ActiveAccounts Count 84,597,242

InverseIDs Count 63,201,285

ActiveAccounts Comparisons 3,578,346,634,704,661

InverseIDs Comparisons 1,997,201,181,224,970

Table 4.2: InverseIDs Comparison Improvement

In the InverseID, the rows are grouped by all their properties except their ID. These properties are shown
in Fig. 4.2, which are AL1, City, Email, Name, Phone, Postcode, State, and Website. If the selected fields of
the rows are equal, they will receive the same InverseID. Inverting the index can be done with a mapper, in
which ID will be mapped to InverseID in a n-to-1 relationship, as in multiple unique IDs can be mapped to a
unique InverseID. The significance of using InverseIDs in D-ER can be seen in Table 4.2. Applying InverseIDs
decreases the total number of rows by roughly 25 percent. Due to the exponential nature of cross-comparing
all the rows, applying InverseIDs decreases the total number of comparisons by roughly 45 percent. With
little cost, applying InverseIDs to D-ER has a significant impact.



5
Blocking

In this chapter, we investigate the second phase of the ER pipeline, as detailed in Section 3.2. This phase
builds on the preprocessed data as described in Section 2.3. Reducing the number of comparisons is the
blocking phase’s key characteristic, as discussed in Section 5.1. Next, in Section 5.2, we investigate how to
apply blocking on the Accounts data set. Afterward, the different applications of LSH are investigated in
Section 5.3. After selecting MinHash as a promising LSH method, we dive deeper into the details of Min-
Hash, what it is, and how to apply it, as discussed in Section 5.4. After explaining MinHash, we discuss which
parameters are optimal and which should be fine-tuned in Section 5.5. Afterward, in Section 5.6, we show
an improvement to the Sliding Window (Section 2.4). Applying multiple blocking schemes, as discussed in
Section 5.7, is possible. The addition of different schemes to the proposed MinHash blocking scheme is in-
vestigated in Section 5.8. Experiments are conducted on different augmentation setups with a smaller GT,
allowing us to find the most optimal block creation for the data set. Lastly, four different runs are introduced
in Section 5.9; these different runs are used throughout the thesis to show the differences in applying LSH to
the created deduplicated data set.

5.1. Blocking Measurements Focus
The most important aspect of the blocking phase is not necessarily the PC or the PQ; the key characteristic
of applying a blocking scheme is having a high RR, with only a limited impact on the PC and PQ. However,
even though RR and the PQ are correlated in terms of the efficiency in the blocking phase, they both address
different aspects of efficiency.

It is also crucial to keep the PC as high as possible, as lowering the PC in the blocking phase will have
deteriorating effects on the later phases of the ER pipeline. The data set is enormous, and cross-comparing
everything will result in many comparisons, as seen in Table 4.2. Therefore, the aim is to perform the com-
parison with a relatively small number of comparisons. However, this will cause the RR to be a value near 1.
In order to gain more valuable insights into the differences between applied schematics, a transformation is
applied to the RR, which allows distinguishing differences between RRs more clearly. This transformation is
called the Theoretical SpeedUp (TSU), as seen in Eq. (5.1). It represents the speedup that should theoretically
be achieved if the time requirement is linear to the number of comparisons. The RR will be asymptotically
blown up near the maximum value of 1, equivalent to the theoretical speedup achieved with blocking com-
pared to not applying any blocking.

TSU = 1/(1−RR)−1 (5.1)

5.2. Blocking Specifics for Accounts
In order to block every row of the Accounts data set, each row must have at least one BKV. If different rows
share the same BKV, they will belong to the same block and, therefore, be compared. For this reason, the
Name property is used as the basis for creating blocks, as the user is required to fill it in.

The traditional blocking methods are created to merge data sets in a clean-clean manner, i.e., the data
sets do not contain any duplicates within them. Such a merge will at most result in a single duplication for
each real-world entity. The case for D-ER is to find duplicated real-world entities in a given set, normally this
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will result in some duplications to be found, e.g., 1 to 10 duplicated rows for a single unique real-world entity.
However, in the case of Exact, some rows are highly duplicated. Since all the users use the Exact software,
the majority of them created an Account for Exact. This results in a highly skewed distribution of duplicated
rows. If the entities were perfectly blocked, a block with the entities referring to Exact will still be populated
with approximately 300.000 rows, resulting in CD ≈ 4.5 ·1010 comparisons.

Most blocking techniques create tokens from a BKV to address the noise in the data, resulting in the row
being placed in many disjoint blocks. If there is a high degree of exploratory for finding similar entities, then
the blocking algorithm could create many erroneous blocks with only a few correct blocks. Such an output
will negatively impact the PQ while only marginally improving the PC. Blocking techniques that create many
disjoint blocks reason that one can drop the most populated blocks to increase the PQ and only minimally
impact the PC. In the case of Exact, however, dropping these blocks will significantly lower the PC, as the
most populated blocks are all blocks that could refer to highly deduplicated entities within the Accounts data
set. The number of comparisons quadratically grows per the size of the block. If blocks containing the highly
duplicated rows were dropped, then the many connections between rows of a correct block would not be
found anymore and significantly affect the PC. For this reason, blocking techniques that create many disjoint
blocks per row are not feasible for the Accounts data set. These include, as discussed in Section 2.4, N-gram
Blocking, Canopy Clustering, and Suffix Array. The created BKVs are inverted on their index. Inverting is done
by partitioning per BKVs and discarding the BKVs with only a single InverseID in them. These partitioned
BKVs are the created blocks of the blocking pipeline.

5.3. Locality-Sensitive Hashing
Locality-Sensitive Hashing (LSH) is an ANN method; hashes are created from each row, and these hashes
approximate the similarities between different rows. There are two main implementations of LSH, which are
BRP and MinHash. To apply LSH, the rows must be represented in a machine-readable vector format. The
former relies on dense vector representations, and the latter relies on sparse vector representations. Both
implementations are suitable for different applications.

In BRP, the Euclidean distance between different rows of D(A) is approximated. A random vector repre-
senting a hyperplane is formed to create a hash in BRP, and the dot product between said vector and every
row is calculated. Sparse vector representation will not work with BRP, as the idea behind a sparse vector is
that the vector consists mostly of zeros. If both vectors consist mostly of zeros, then most of the vector is the
same since all these zeros match. This results in the vectors almost being an exact match, even though the two
vectors do not share a single item. This incorrect match is, of course, not the required behavior. Therefore, a
smaller dense vector should be constructed that represents each item in a smaller dimension.

MinHash is an algorithm for approximating the Jaccard similarity between two sets of objects. Jaccard
similarity is calculated by dividing the number of elements in common with the number of unique elements
in the combined set, as seen in Eq. (2.7). In the Jaccard similarity, the dense vector representation is not
applicable, as these vectors are learned representations of words in the rational space. It is improbable that
close words share the same rational number, causing almost no buckets to be created from a dense vector.
Instead, a sparse vector should be used. In Jaccard similarity, only the elements of the rows are compared.
None of the zeros of the sparse vectors will influence the outcome, as they do not represent any token.

5.3.1. Name Context Investigation
In order to decide which variation of LSH to apply, the context of the words must be investigated. BRP uses
word embeddings to create vectors per row. An example of word embeddings is Word2Vec, which creates
dense vector representations of words that make up an Account Name. Each word gets a random dense vector
within such a Natural Language Processing (NLP) algorithm. Then, feeding the algorithm context around the
words will transform the random dense vector into a representation that closely resembles the word based
on the context. Pre-trained Word2Vec embeddings exist on, for example, the English language. However, the
use case within this application is specifically to embed companies in the space. These pre-trained models
are trained for generic linguistical use cases, and using them for specific environments will not be effective.
No pre-trained Word2Vec embeddings exist specifically for the Dutch company space, so using a pre-existing
model is out of the question; a custom embedding must be learned. For BRP, context is required to learn
a vector representation per word. The context of a word is based on the surrounding words. Typically, the
context is learned from descriptions with multiple sentences of many words. However, no such description
exists for the rows in Account. Only the Name column can be used to learn Word2Vec embeddings. However,
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Figure 5.1: The number of words per Name of Accounts

with limited context, this might be an issue.
To investigate the count of words per Name row is investigated with their distribution in Fig. 5.1. It can be

noticed that the majority of the Names only consist of one up to three words. If the context only consists of a
single word, learning a Word2Vec embedding is impossible, as it has no context. The context might be limited
within Name. If there is just a single word, then it is likely that the word will uniquely identify the company.
However, if an additional word is added, the additional word might be shared among other distinctive com-
panies. These additional words could express city names or professions, for example. Thus, with more words
added, it is more likely that the second word will be a common word that does not necessarily distinguish
the company, as explained in Section 4.5. Labels attached to words can be used to compare the strength of
words.

Each row in Accounts with a label attached is split into their word representations. Then, it is possible to
see the number of different labels attached to each word. Some words are shared between distinct compa-
nies; these should have a lower context strength, while other words will uniquely describe a company and,
therefore, have a high context strength. To express the context strength of a word, the Mean Squared Error
(MSE), as seen in Eq. (5.2), is used.

MSE = 1

n

n∑
i=1

(Yi − Ŷ2)2 (5.2)

The MSE has a few variables. n is the number of samples, Yi is the observed value, and Ŷ2 is the predicted
value. Some changes must be made to use MSE to express WordRichness. The WordRichness is expressed
using the formula shown in Eq. (5.3). First, the MSE is calculated per word. Instead of n being the size of all
samples, they are now n(w) the size of labeled samples for a given word. Yi represents the error-less case,
meaning this should be the highest achievable value for the WordRichness, which is 1. Ŷ2 will now represent
the distribution of labels over w . The words are grouped by the label; the fraction of the current label over the
entire set of labels attached to the word will represent Ŷ2. Every word has a label attached; first, the number of
repetitions of the current label within w will be retrieved as denoted as w(li ) and divided by the total number
of labeled words, giving a fraction of how many labels make up the entire label knowledge base of w . In this
case, the MSE ranges from 0 to 1, from no errors to only errors. In the context richness, 1 represents a word
that uniquely describes a real-world company, while values near 0 represent a common word shared between
many real-world companies.



28 Blocking

1 2 3 4 5 6 7 8 9
WordCount per Name property

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Na

m
e 

Pr
op

er
ty

 W
or

d 
Co

nt
ex

t R
ich

ne
ss

Context Richness per WordCount for Name properties of Labeled Accounts

Figure 5.2: The Word Context Richness on the Name property per WordCount of GT

WordRichness(w) = 1− 1

|w |
|w |∑
i=1

(1− |w(li )|
|w | )2 (5.3)

The WordRichness of every word that makes up the Name property of GT can be calculated. Every Name
property consists of a variable number of words; the ContextRichness of a row is the summation of all the
WordRichnesses per row. This means the maximum ContextRichness per Name row is the number of words
the row consists of. Therefore, it is possible to investigate if there is more ContextRichness when a Name
entry consists of more words. The results can be seen in Fig. 5.2. It shows that if the Name consists of a single
word, it mostly has a high ContextRichness. If the row consists of multiple words, then the ContextRichness
increases per number of words; however, the median ContextRichness increments significantly slower than
the maximum ContextRichness when the number of words per row increases. This slow increment means
that when more words are added, they are mostly common words, which will not provide context for learning
a representation. Because of the limitations with the context of the Name property, learning a Word2Vec em-
bedding will not be effective. Instead, a MinHash implementation should be investigated and implemented.

5.4. MinHash Implementation
For MinHash, a sparse vector representation is needed for the rows of the data set. To create this sparse vector
representation, a vocabulary is required. For data set D(A), the vocabulary v(A) is created, which consists of
all the possible tokens that make up D(A). For the creation of a vocabulary, different parameters can be
tweaked. A minimum TF can be applied, meaning that the token must be duplicated several times within
a document itself. A minimum and maximum Document Frequency (DF) can be set. A unique token must
be duplicated more than the minimum and less than the maximum DF in the corpus. A maximum size can
be assigned to the vocabulary; a larger size contains more knowledge about the documents but increases the
time and space requirements.

The created vocabulary model assigns a unique index to each token that follows the specified parameters.
This model allows the transformation of the documents into a vector representation. The TF per token of
the vocabulary is stored in a vector per document, which allows each row of D(A) to be transformed into an
array of indices of size |v(A)| representing the v(A). Each row of D(A) only consists of a few tokens with a
TF above 0 from v(A). Creating a vector for each row will consist primarily of zeros, as it only contains a few
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tokens of v(A). Therefore, sparse vectors should be used for the MinHash method. Only keep track of all
the tokens that the document contains. Using sparse vectors results in enhanced space efficiency. Instead of
representing the TF, opting for a one-hot encoder is also possible, which will set all the TF’s above 0 to 1. In
the thesis, one-hot encoding is not applied, as this will lose the TF information and could cause the creation
of more erroneous blocks. Generating a hash is based on the token it contains and the TF of said token in the
document.

5.4.1. Vocabulary Token Creation
To create the tokens of the vocabulary, one can split the text by whitespace, creating lists of words. Each
unique word will be an entry in the vocabulary. Doing so has the problem that spelling mistakes or near-
identical words will be given a different index in the vocabulary, making it impossible for them to become
a match. Tokens unknown in the vocabulary cannot be processed and are therefore lost. The text can be
split into N-grams, as discussed in Section 2.4, representation to overcome these issues. The splitting of the
text into this representation has the benefit of overcoming spelling mistakes by using the Jaccard similarity,
as only the tokens containing the spelling mistake will be misaligned, while the correctly spelled tokens are
aligned. There is only one side-effect: the longer words will be transformed into more tokens, giving the
longer words more overall weight within the Jaccard similarity. Instead of using a single N to construct the N-
grams, it is possible to use a range of N . This addition to N-gram is already implemented in FastText1[4, 22]. It
transforms the text into N-grams from MinN up to MaxN . With a broader range of N-grams, more structure
is preserved in the token representation. If the alphabet consists of a characters, then the number of tokens
that could be created per N are aN . This means that a large N will create many unique tokens, dominating the
fewer tokens created by lower values of N . Larger N are also more impacted by spelling errors. Using a larger
N creates fewer tokens per word as the size of the token increases. A larger N will create more misaligned
tokens between the correct word and the word with a single spelling mistake, up to a maximum of N different
tokens for a single spelling mistake. A selected N that is too large will make it more challenging to create
buckets of words containing spelling errors.

In addition to the range of N , extra weight is also given to the start and end of a word. FastText does this by
adding angular brackets around the words. In the tried implementation, the brackets are not added around
each word but around each document. FastText works per word, but with the MinHash implementation,
it is also possible to use the whitespace segments of the documents; two adjacent words are connected by
whitespace, transforming the document into N-grams will also create tokens containing said whitespace.
Therefore, extra tokens are already created for words ending and starting in the middle of the document. So,
only adding brackets around the start and end of the document will create extra tokens for equal starting and
ending combinations.

In the first pass, all the unique tokens are given an ID in the vocabulary. With the vocabulary, a document
can be transformed into a sparse vector; all the IDs making up the N-gram will be stored in this sparse vector.
New unforeseen words that were not part of the vocabulary creation still have a high chance that tokens of the
vocabulary will represent them, as the unforeseen word will consist of different N-grams already contained
in the vocabulary. With the use of FastText, it is possible to overcome the issue of spelling mistakes and the
problem of out-of-vocabulary words.

5.4.2. Hash Generation
MinHash algorithm uses the created vocabulary to generate its hashes. Multiple hashes per row can be gen-
erated. To generate hashi for a given row, an array from values 0 up to |v(A)| representing all the tokens of
v(A) is required. A random permutation p of the index array approximates the Jaccard similarity of multiple
rows. Now, pi is the permutated index array used to generate hashi . Each row gets the hash equal to the id of
the first token of pi contained within the row’s tokens. If two different rows have the same hash, they have a
token in common and do not contain all the tokens earlier in the pi ; thus, the generated hash contains more
information than just an index within the vocabulary alone. So, each row gets a hash value directly related
to its list of tokens. Therefore, rows not sharing a common token could never receive the same hash value.
With more hashes, comparing two different lists of hashes, the closer it resembles the Jaccard similarity be-
tween the two documents. In the case of removing spelling mistakes, this approximation is beneficial, as this
allows for spelling correctness. Using LSH in the blocking phase should create almost identical but not truly
identical blocks.

1https://github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText
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Multiple permutations generate different hashes of the rows in D(A). So far, a list of hashes can be gen-
erated that resemble the Jaccard similarity for D(A) without comparing each row with another row of D(A)
as it is only required to compare rows that have at least a single hash in common for the Jaccard similarity.
Retrieving the matches is just a matter of grouping the rows with equal hashes, ensuring they have tokens in
common. A group of n hashes is called a hash table. A hash table is an AND-clause of n hashes. For two rows
to be grouped, they must share n identical hashes. However, it is certainly possible that creating a single hash
table will not give the desired result, as if one of the n hashes is misaligned, then both rows will be placed in
disjoint blocks. Therefore, m different hash tables are generated per row, giving more chance for near identi-
cal rows to be placed in at least a single joint block. These additional hash tables resemble an OR-clause. The
total number of required hashes is nm. The combination of these AND- and OR-clauses is called the AND-OR
amplification; an example of the amplification for n = 3 and m = 2 is given in Eq. (5.4)

(hash1 ∧hash2 ∧hash3)∨ (hash4 ∧hash5 ∧hash6) (5.4)

5.4.3. Hash Manipulations
The result of the MinHash algorithm is an array of hashes for each row in the data set. These hashes could be
manipulated to gather the correct neighborhood of similar rows as efficiently as possible. The computational
cost of the MinHash significantly relies on the number of generated hashes. In the applied method, the only
manipulation performed was the AND-OR amplification, in which the array of hashes is split into multiple
disjoint subarrays of hashes. However, three other techniques were tried to create more combinations of
subarrays based on the initial array.

Hash Expansion On top of the AND-OR amplification of the generated hash array, it is also possible to
expand the hash tables. Expanding a hash table allows for error within the hash table itself. Expanding a hash
table transforms the table of size n, a(n) to n · a(n −1). Creating n new sub-tables from the table in which
each sub-table has a single element removed from the initial table, creating n unique sub-tables based on the
initial array. A single hash table (1,2,3) will be expanded into the sub-tables of ((1,2), (1,3), (2,3)). Grouping
rows by their sub-tables will, in this case, allow for a 1

3 fault tolerance between the different hash arrays, as
each sub-array misses a single element from the initial hash array of size 3.

Generally, one would alter the numHashTables to create more hash tables, but expanding the hash table
into sub-tables is time-efficient compared to generating more hashes. Therefore, expanding should be con-
sidered for manipulating hash arrays, or arrays in general, to reduce the possible time requirements of the
blocking phase. Hash Expansion showed that it worked on creating more blocks without too much computa-
tional cost for n = 1. However, if the hash expansion were to be applied recursively, it would create too many
blocks depending on the numHashesPerTable, consuming too much space and causing the pipeline to fail.

Hash Permutation Sampling In hash sampling, it is possible to create overlapping subsets from the gener-
ated hashes, unlike the AND-OR amplification. In essence, random samples of a fixed size are taken from the
main hash array; the random sampled array is smaller than the main hash array. The same random sample
is retrieved from each row. Theoretically, this is an excellent strategy to handle the generated hash arrays
efficiently, cheaply creating blocks from just a few hashes. One way to create hash sampling is to permutate
the hash arrays of each row in the same pattern and take the first n hashes as the block, resulting in a sin-
gle smaller permutated hash array created out of the larger array. One can repeat the same process to create
many smaller hash arrays from a single larger hash array. However, it was impossible to effectively implement
such a concept with the provided tools, as the idea behind other strategies is to reduce the total number of re-
sources required to approximate the alignment of different hashes. With a built-in function to permutate the
hashes equally for each row, it should be possible to have an as accurate but faster method than the generic
AND-OR amplification.

Hash N-gram Sampling Implementing hash sampling efficiently in the PySpark environment was impossi-
ble. However, a concept already used is N-grams. N-grams can also be created for the hash arrays on the hash
level. A window is slid over the hashes to create highly overlapping sub-tables of the primary hash array. This
method was not computationally intensive and resulted in many blocks compared to the AND-OR amplifi-
cation. The generated hash tables via the N-gram method are a superset of the ones generated with AND-OR
amplification. The problem was that the generated hash tables were highly overlapping, as each sub-table
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only differed in a single hash with the next sub-table in the window. Without much difference between the
generated hash tables, only a few extra rows are compared, even though many new blocks are generated.
Therefore, implementing N-gram for hash sampling is not efficient or ineffective.

5.5. MinHash Parameter Selection
The optimal parameters are discussed for the MultiGram MinHash implementation as described in The pa-
rameters discussed in Sections 5.4.1 and 5.4.2. Each ER implementation will require slightly different pa-
rameters. One can approximate the best parameters using the GT, but the GT only considers labeled rows;
the entire corpus might behave differently regarding PC and PQ. All of the possible parameters will now be
discussed below per parameter.

MinN The MinN determines the smallest N of the N-gram for the FastText representation. It is an important
aspect of what the smallest vocabulary tokens should represent. With a low N , less subsequent structure is
required for rows to become a match. The MinN should ideally always be set to 2, as tokens consisting of just
two characters will serve as basic tokens in the vocabulary.

MaxN The MaxN determines the largest N of the N-gram for the FastText representation. MaxN is an im-
portant parameter that enforces the quantity of structure within different rows that needs to be aligned for
them to become a match. If set too large, too much equal structure is required between two different rows
to become a match. Therefore, the MaxN should not be set to a value that is too high, as that would create
too many unique tokens and negatively impact spelling correctness. With this this information, a decision is
made to select 3 as MaxN, as it will create more tokens with additional structure on the document while not
creating too many unique tokens. If one wants to enforce having more shared structure between the rows in
a block, then the MaxN can be increased.

MinTF The MinTF represents the minimum number of token occurrences within the document itself. This
means that if set to anything other than 1, there should be duplicated N-grams in each document for all the
rows of the Account data set. The majority of the documents will not contain duplicated tokens. Creating the
vocabulary on these duplicated tokens will cause the creation of very strict and poor vectors. Therefore, the
TF will always be set to 1.

MinDF The MinDF is the minimum number of occurrences per token across the rows to include the token
in the vocabulary. MinDF enforces that there is, for each vocabulary token, a minimum number of occur-
rences in the Account data set. If the minimum is set to 1, it will increase the likelihood of creating blocks
with only a single row inside, as only a single row has that unique token. For a higher minimum, fewer unique
tokens will make up the vocabulary, meaning that the tokens created by misspellings seen infrequently in the
corpus will not be valid tokens of the vocabulary. One could argue that there should be at least two occur-
rences of a given element in the vocabulary because the elements with only a single occurrence could never
create a match between two rows. However, unique tokens that do not match also provide valuable infor-
mation to block rows on; therefore, MinDF is set to 1, the strictest form for creating the vocabulary. It does
create a large vocabulary, but eventually, it will result in the least number of comparisons between the rows
possible. This is because rows of these one-of-a-kind tokens will likely end up alone in a block. A low MinDF
causes less collision within the generated hashes, increasing the RR of the MinHash blocks. If more collisions
are required for rows containing these low DF tokens, then one can increase the number of numHashTables
to create more blocks per row instead.

MaxDF The MaxDF is the maximum number of occurrences per token to include the token in the vocabu-
lary. A few highly frequent tokens can dominate the vocabulary; the MaxDF can be tweaked to address that.
Since MinHash utilizes a random permutation of the list of indices from the vocabulary, the sporadic and the
frequent tokens are equal points of interest for MinHash. This means the most occurring N-grams do not
dominate the generated hashes. The MaxDF is maximized in the runs, ensuring the vocabulary consists of
all the possible tokens. The reasoning behind this is that if set to a number, it might cause problems because
no tokens could be created for the heavily duplicated rows, as expressed in Section 5.2, causing these heavily
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duplicated rows not to be included in the MinHash. Including terms with a high DF will increase the possi-
bility of creating large blocks. However, if this is the case, then the numHashesPerTable could be increased to
make the blocks rely on more hashes, creating blocks of a smaller size.

VocabSize The VocabSize is the maximum allowed size of the vocabulary, allowing it to reduce a vocabulary
that is too large to a smaller format by dropping elements of the vocabulary. Setting it to a specific smaller
size will decrease the time complexity but at the cost of the created block quality. No maximum size was
specified for the implementation, meaning that the vocabulary would contain all the tokens that follow the
set parameters.

numHashesPerTable The number of hashes per table created by the MinHash. If set to a small value, only
a few hashes must be aligned for two rows to become a match. If set to a large value, more tokens must be
equal. This parameter directly impacts the PQ and the RR of the MinHash. Setting numHashesPerTable too
low for the given corpus will create more noisy blocks, negatively impacting the PQ and the RR. If set too high,
it will negatively impact the PC, as it will be too difficult for two rows to have many shared hashes and require
a larger numHashTables. First, the numHashesPerTable should be selected, and the created blocks should be
investigated on the quality. When the quality is on par, the numHashTables can be selected.

numHashTables The number of hash tables created by the MinHash. This parameter directly relates to
PC, as more hash tables are generated per token, which means more blocks are created per row, and these
extra blocks could provide new comparisons. If the numHashesPerTable is too low, it could create more
noisy blocks and lower the PQ. If numHashesPerTable is increased, the blocks become stricter, and there-
fore, numHashTables should also be increased to create more of these stricter blocks. MinHash requires
numHashesPerTable · numHashTables hashes to be generated. Selecting the parameters for the hash gener-
ation is a trade-off between effectiveness and efficiency.

5.5.1. Parameter Tuning
The theoretical part of Section 5.4 is implemented, and the tunable parameters will be investigated to allow
for optimal block creation of rows on their Name property. Creating experiments on the entire D(A) corpus
is not feasible; there are too many required comparisons to create the runs. Therefore, a smaller subset of
the GT is used, denoted as Ground sub-Truth (GT1). Each row in GT1 is in at least one True-Match with
another row of GT1. The composition of the GT1 compared to GT is shown in Table 5.1. The Ratio of the
False-Matches compared to True-Matches is almost identical between the different GT versions. Since the
GT1 is significantly smaller than the GT, they cannot be compared directly. The results of GT1 should only be
compared with other results relying on GT1.

Type GT GT1

Labeled Accounts 7,617,382 100.000

Labeled Comparisons 29,012,250,458,271 4,999,950,000

Labeled True-Matches 7,256,780,795 1,255,398

Labeled False-Matches 29,004,993,677,476 4,998,694,602

False-Match Ratio 3996.95 3981.76

Table 5.1: Composition of GT1 compared to GT

The main focus of interest is the MinN and MaxN of the vocabulary, which are essential to shape the created
vocabulary. An exhaustive parameter tuning is performed for MinN=2 and MinN=6, with the MinHash pa-
rameters set to numHashTables=2 and numHashesPerTable=6 on the Name properties of rows in GT1. These
runs are compared to a baseline of Standard Blocking on the Name property. MinHash is the technique in
question for these runs. Applying more advanced techniques will always reduce the RR and should increase
the PC; a trade-off exists between these characteristics. F-scores are applied to gain insights into optimal so-
lutions by balancing this trade-off. The main characteristic of the blocking phase is a high RR, and since the
differences in RR are minimal between different runs, it is good to factor in the more significant importance
of RR as a large β in the Fβ-score, making RR β times more important than PC. If a small β is used, it favors
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creating more edges between the rows. Otherwise, if a largeβ is used, fewer edges between rows are favorable,
as can be seen in Figs. 5.3 and 5.4 respectively.
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Figure 5.3: MinHash runs with a low β= 8, making RR 8 times
more important than PC
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Figure 5.4: MinHash runs with a high β= 32, making RR 32 times
more important than PC
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Figure 5.5: MinHash runs with a fair β= 16, making RR 16 times more important than PC

With a β of 8 and 32, the outliers will be selected as the best options. A fairer trade-off factor is required
to ensure high RR while also improving the PC. If the PC is high in the blocking phase, the recall will also
be high by the end of the ER pipeline. A fair F-score of these factors would be F16. Since the differences in
RRs between the runs are small, and the difference between PCs is higher. The most important aspect of the
blocking phase is the RR; thus, it should be factored in to have more weight bound to it. The results of this
setting can be seen in Fig. 5.5. It is visible that some runs in terms of F16 perform worse than the baseline,
while some perform better than the baseline. It seems like the differences in F16 score are minimal, but one
needs to consider that the RRs are close together; a small change in the F-score can have a big impact on the
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Run configurations for varying MinN and MaxN with F16 for GT1 (MultiNGram LSH MinHash)

Figure 5.6: PC vs RR for the varying MinN and MaxN for GT1 and their accompanied F16-Score

final result, especially if the entire corpus is considered instead of the scaled-down GT1.
The exhaustive search results can now be compared with the balanced F16-score of the trade-off between

PQ and RR. MinHash is an ANN; therefore, randomness is involved in calculating the results. To reduce ran-
domness throughout the runs, a repetition factor of 5 is applied, and the average PC and RR are used as the
run metrics for the specific configurations. These exhaustive parameter tuning results are depicted in Fig. 5.6.
It is shown that the discussed MultiGram parameters are the optimal configuration for GT1 with a given F16-
score between PQ and RR. Namely, the MinN of 2 and the MaxN of 3 have the highest F16-score.

After investigating the created blocks on the entire corpus, including the unlabeled rows, it showed with
a manual inspection that numHashesPerTable of 6 is too strict for the selected MultiGram settings; thus, it
was lowered to 5 to make the blocks more lenient on different spelled fields. Afterward, the numHashTables
is increased to 5 to create more blocks, allowing for more matches. If the data set is fully labeled, then the
PC and PQ address the entire corpus, which can be used to determine the perfect numHashesPerTable and
numHashTables. For this implementation, a value of numHashesPerTable is set first with domain knowledge
in mind, and afterward, one can increase the numHashTables to increase the number of generated matches
at the cost of time and space requirements.

5.6. Sliding Window Optimizations
As described in Section 2.4, the Sliding Window has the drawback of making large blocks for the BKVs depend-
ing on the N . If the entire neighborhood is inserted into the list of IDs in a BKV, then the blocks would heavily
overlap between BKVs in a similar neighborhood. If the sorted neighborhood exists out of three elements (A,
B , C ), then in the neighborhood of A, the elements B and C should not be compared. Applying this addition
makes the blocks smaller and more resource-friendly due to the exponential number of comparisons a larger
block requires. In addition, the Sliding Window can also be transformed into a Sliding Comparison Window,
in which instead of only creating a match on the neighborhood, the BKVs themselves should be compared if
they are close enough to match. In the implementation, the comparison is based on the Levenshtein distance
between the two BKVs. A threshold will help increase the PQ and RR while allowing for a larger N , increasing
the PC. Applying these optimizations makes the Sliding Window an effective and fast method that is an im-
provement to Standard Blocking and Sliding Window with the cost of extra computations. It should also be
noted that only properties that can use a sorting method should be used in a Sliding Window approach. Using
the Sliding Comparison Window on meaningless BKVs, such as a generated hash BKVs, will create contextless
blocks full of noisy comparisons.
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5.7. Multi-Disciplinary Blocking
There is not a single ’best’ blocking scheme. It is always a trade-off between PC, PQ, and RR. However, it is
possible to augment a single blocking scheme with another blocking scheme. As pointed out by Papadakis
et al., it is possible to transform each property field of a row into a BKV [35]. Multiple BKVs based on different
methodologies can be created, harnessing the characteristics of a given blocking scheme with the data. For
example, the Sliding Window relies on how strings are sorted into neighborhoods. If two entities refer to the
same real-world object, these entries will be put in the same neighborhood if noise exists at the end of the
string. If the noise is at the start of the string, then it is likely that these rows are not put in a joint block.
Allowing to adjust for noise at the end of a string is a strong characteristic of merging data types such as
websites or email addresses. A Sliding Window approach will create blocks of rows that only differ in the
top-level domain. For example, rows that end in ’exact.com’ and ’exact.nl’ will be put in a joint block.

Only some of the rows of Accounts have a filled-in Email. So, it is not possible to rely only on a scheme
that blocks purely based on Email, but it can be used as an additional blocking methodology to improve the
blocking pipeline’s results for a relatively low cost. In the matching step, the algorithm will only calculate if
there is a match between two unique IDs; thus, if there is a link between ID1 and ID2 in multiple blocks, then
the comparison between ID1 and ID2 is only done once. If a set of matches created by a blocking scheme is
a subset of another collection and these collections are joint, then the number of required comparisons will
remain the same. For this reason, it should be beneficial to create a few sparse but dedicated blocks and join
them in the collection of matches.

5.8. Account Blocking Augmentation
Augmenting the created blocking data set with multiple properties other than the Name property is possible.
Other blocking pipelines can be appended to the created blocking data set. Duplicated comparisons in the
blocked data set do not significantly impact the computation time in the further phases of the ER pipeline,
as they are filtered out of the set. Multiple properties could augment the created data set to improve PC, as
more possible matches can be found. The RR will be lower as more comparisons are added, thus lowering
the ratio described in Eq. (2.3). It is impossible to claim anything about the impact on precision by applying
augmentations, as it depends on how well the augmentations are created; augmenting with blocks of higher
PQ than the baseline will increase the PQ, while a lower PQ augmentation might create more matches, but
the blocks will be of lower quality. Therefore, the augmentations are a trade-off between PC, PQ, and RR.

The properties considered to be added as an augmentation to the blocked data set are high in quality but
only sometimes available. If a row does not have a filled-in property used in the augmentation, then that row
is not considered for said augmentation. Only rows with all the required properties can augment the blocked
data set of a given augmentation scheme. The following properties and their applied augmentation scheme
are investigated:

1. A Sliding Comparison Window approach on the Website property, as some domains, are exactly the
same, but they only differ in their extension, i.e., ’exact.nl’ and ’exact.com’. A Sliding Window approach
is perfect for using sorting to its advantage. Standard Blocking of websites by just removing the top-
level domains is also possible, so removing ’.nl’ or ’.com’ would create similar blocks. It is opted to use
the Sliding Comparison Window instead.

2. A Sliding Comparison Window approach on the Email property, such an approach has potential for
this property similar to the Website property. Different domain extensions could be used in an email
address.

3. A Sliding Comparison Window approach on the Phone property. The Phone fields differ in their nota-
tion at the start of the entry, i.e., ’+316-12345678’ and ’06 12345678’; therefore, the sorting should be
based on the end of the field. This can be achieved by reversing each Phone field before applying the
Sliding Comparison Window, allowing the properties to be alphabetically sorted at the end instead.

4. As Kostense mentioned, the Postcode can be enhanced by the AL1N [25]. A Standard Blocking tech-
nique is applied to block these properties. Since AL1N can have multiple numbers of the AL1 in them,
the AL1N should be split before merging with the Postcode, and the fields should be concatenated as a
BKV in Standard Blocking.

The Sliding Comparison Windows uses a window size of 5 and a minimum Levenshtein similarity of 0.7.
These parameters can also be tweaked but serve as a proof of concept for applying augmentations. These
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Isolated Runs Combined Runs

Blocking Methods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

MinHash_Name ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SB_Phone ✓ ✓ ✓

SB_Email ✓ ✓ ✓

SB_Website ✓ ✓ ✓

SB_Postcode_AL1N ✓ ✓ ✓ ✓

SCW_Phone ✓ ✓ ✓

SCW_Email ✓ ✓ ✓

SCW_Website ✓ ✓ ✓

Table 5.2: The Augmentation Run Configurations

Blocking
Time (s)

Pair
Completeness

Pair
Quality

Reduction
Ratio

F1-score
(PC, PQ)

Run1 28.57814 0.74639 0.88767 0.99880 0.81092

Run2 0.81822 0.02942 0.88393 0.99950 0.05694

Run3 0.80320 0.02402 0.89489 0.99933 0.04678

Run4 0.58852 0.03995 0.84098 0.99859 0.07628

Run5 0.86911 0.48981 0.82812 0.99922 0.61554

Run6 1.34205 0.03404 0.82244 0.99938 0.06537

Run7 1.37425 0.02444 0.73102 0.99916 0.04730

Run8 1.01433 0.04050 0.81119 0.99852 0.07715

Table 5.3: Measurements of Isolated Augmentation Runs on GT1 (5 Repetitions)

augmentations are made with domain knowledge in mind. Thus, these blocks are already high in quality.
However, if blocks are made that have rows referring to many different real-world objects, then these blocks
would negatively impact PQ. For example, if Standard Blocking with just the Postcode is applied as an aug-
mentation, then the created blocks would have a high number of True Positives (TPs) but also many FPs,
resulting in many unwanted comparisons [28].

Multiple augmentation runs can be made from these configurations as an isolated or combined augmen-
tation run. To see the effect of Sliding Comparison Window over Standard Blocking, the aforementioned
augmentation schemes based on a Sliding Comparison Window are also implemented as Standard Block-
ing. The created augmentation runs are shown in Table 5.2. Run1 is the baseline for scheme augmentation
with the optimal parameters discussed in Section 5.5.1. Run2−8 are runs where the augmentation is isolated,
showing the characteristics of solely blocking based on the separate augmentation. Isolating gives insight
into the performance difference based on blocking techniques. Run9−17 are runs that combine the baseline
with other augmentations. Each run is applied on GT1 with a repetition factor of 5, and the average is taken
as the measurement.

5.8.1. Isolated Augmentation Runs
The run configuration of the isolated runs can be seen in Table 5.2. The results of these isolated augmentation
runs are shown in Table 5.3. It can be noticed that the baseline run, Run1, has a high PC and PQ compared to
the other runs. Because Runs2−8 rely on properties that are not always available, they will have a lower PC and
a higher RR than Run1, as fewer blocks are created since fewer rows can be used within these augmentation
schemes. The performance differences between applying the Sliding Comparison Window and the Standard
Blocking can be investigated with the isolated runs. Comparing Run2,6, Run3,5, and Run4,8, there is a clear
difference between the two blocking techniques. Standard Blocking is faster and has a higher PQ and RR but
a lower PC. However, the Sliding Comparison Window consistently outperforms the Standard Blocking on the
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Blocking
Time (s)

Pair
Completeness

Pair
Quality

Reduction
Ratio

F16-score
(PC, RR)

Run1 28.57814 0.74639 0.88767 0.99880 0.99749

Run9 28.83880 0.75165 0.87443 0.99879 0.99751

Run10 28.88144 0.74584 0.87167 0.99880 0.99748

Run11 30.34928 0.75610 0.89026 0.99880 0.99755

Run12 31.18664 0.82913 0.81800 0.99876 0.99797

Run13 31.86963 0.74961 0.87936 0.99883 0.99754

Run14 31.11874 0.74497 0.87584 0.99882 0.99750

Run15 49.23674 0.75439 0.88018 0.99881 0.99755

Run16 73.67435 0.83838 0.81918 0.99876 0.99802

Run17 35.68965 0.83570 0.81373 0.99877 0.99801

Table 5.4: Measurements of Combinative Augmentation Runs on GT1 (5 Repetitions)

trade-off between PC and PQ with a β of 1. The augmentation that relies on the physical address, Run4 has a
relatively high PC as the not-always-available property is still provided for most rows, as seen in Section 4.2.
The PQ is also good, especially with such a high PC, giving the run a relatively high F1-score.

5.8.2. Combinative Augmentation Runs
Combinative runs merge additional augmentation schemes (Run2−8) with the scheme that relies on the Min-
Hash scheme (Run1). The run configuration of the combinative runs can be seen in Table 5.2. The results of
these combinative augmentation runs are shown in Table 5.4. The F16-score of PC versus RR can be directly
compared, as all the runs include the MinHash scheme. The first thing that can be noticed is that when the
physical address augmentation is added to the MinHash, then there is a significant improvement in the PC
and the F16-score at the cost of the PQ. Run10 is the only run with a lower F16-score compared to Run1, the
other runs all are an improvement to the F16-score. All the runs relying on the Sliding Comparison Window
(Run13,14,15) have a higher F16-score than their Standard Blocking counterpart (Run9,10,11), showing that the
addition of a Sliding Comparison Window can be used as a way to improve the create blocks in comparison to
simple partitioning. In the isolated runs, the Standard Blocking methods were faster, but in the augmentation
runs, the combined Sliding Comparison Window methods were faster to compute, as seen in Run16,17. Both
of the augmentations applied in these runs are an excellent addition to improve the outcome of the blocking
phase. The F16-scores are so close that a decision can be made. In the matching phase, the PQ will be im-
proved by classification. Increasing the PC in the subsequent phases is more complicated. Therefore, Run16

is selected as the best run despite having a slightly lower F16-score. Choosing the augmentation run with an
improvement in PC versus the drop in PQ is a good decision if the trade-offs are similar.

5.9. Benchmark Runs
Benchmark runs will be conducted throughout the ER pipeline to show the effect of implementing various
schemes. These benchmarks showcase different characteristics of the blocking phase. The following bench-
mark runs are conducted:

1. RunBaseline: In this run, the blocks are created by simply grouping on the Name property, creating
non-overlapping blocks of Accounts.

2. RunLSH: Blocks are created with the use of LSH, as described in Section 5.5.1, creating five different
blocks for each Account row, causing overlapping blocks of Accounts. This run allows for correcting
error mistakes.

3. RunAugBaseline: The baseline run is improved by the addition of the augmentations as described in
Section 5.8, transforming the created blocks into overlapping blocks and allowing the linking of differ-
ent spellings of real-world company names by relying on the other available properties.



38 Blocking

4. RunAugLSH: The same augmentations are included as RunAugBaseline with the same LSH settings as
RunLSH. This run creates the highest overlap of matches in Accounts of all the runs, resulting in the
highest confidence of correctly deduplicating the Accounts.

Run PC PQ RR TSU Comparisons

RunBaseline 0.70740 0.89753 0.999999187 1229959 2,909,319,298

RunLSH 0.73453 0.73436 0.999989479 95051 37,646,059,617

RunAugBaseline 0.81401 0.80092 0.999998693 765217 4,676,244,916

RunAugLSH 0.83425 0.69483 0.999987909 82709 43,264,011,035

Table 5.5: Blocking Benchmark Runs

The results of the benchmark runs are shown in Table 5.5. PC in the blocking phase means how often Ac-
counts with the same labels are found in a joint block. The PCs of these runs are reasonably high. In the most
simplistic run, the RunBaseline, the PC is already near 0.707, with a PQ of near 0.898 and a TSU that is theo-
retically 1,229,959 times faster to calculate than the complete cross-join comparison. The high PC means the
entries with the same VATNumber and CoC mostly share the same Name. Exact has a feature that allows in-
serting equal fields if the company was selected via a company selector, which can explain the high PC. Since
in RunBaseline, the blocks are created by just grouping on the Names, having the exact Name in common
will only result in two Accounts sharing a block; therefore, it has a high PQ. In RunLSH, it can be seen that
the PC goes up, while in comparison, the PQ has a higher negative impact; this can be explained by the larger
generated blocks on very common parts within the Names of Accounts. Suppose a randomly permutated
LSH block was created on common words, i.e., city names, or professions. In that case, the created block will
mainly consist of False-Matches. The lower PQ should not be the primary concern; however, the number of
added comparisons is a primary concern. As in the Matching phase, all these Matches will be compared and
classified as a True- or False-Match. Increasing the PQ, but with the cost of the extra comparisons. The addi-
tion of the augmentations is a great addition, as seen in RunAugBaseline. Instead of non-overlapping blocks,
there is now an interwoven connection between accounts residing in multiple blocks. The PC increases, while
the PQ decreases, with limited costs for added comparisons. RunAugLSH has the highest PC yet the lowest
PQ and RR, resulting in the highest number of comparisons that should be performed in the Matching phase.
If no block cleaning is performed, applying the Matching phase on RunAugLSH should take approximately
15 times longer than that of RunBaseline.
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In this chapter, we investigate the third phase of the ER pipeline, as detailed in Section 3.3. Different blocks
containing False-Matches were created in the blocking phase. This phase builds on the benchmark result as
described in Section 5.9, in which classifiers will determine if a Match is a Negative- or Positive-Match. All
the Negative-Matches will be discarded, while the Positive-Matches are kept. In Section 6.1, we give each row
of Accounts an identifier to express which properties are available for the given row. Allowing for a novel way
to handle incomplete data. Afterward, in Section 6.2, we select the property features that will be used for
classification. The setup for the classifiers is explained in Section 6.3. In Section 6.4, four different classifica-
tion models are tried and compared with each other to select the best-fitting model. Finally, in Section 6.5,
The best classification models found in the chapter are applied to the created blocks, and their results are
discussed.

6.1. PropertyMask
Each filled-in row of the Account data set is not enforced to have all their properties filled in, as shown in
Section 4.2; therefore, classification of the data set is not possible on its own. Missing properties form a
tough challenge. When creating the features, some cannot be calculated and, therefore, will be missing. An
imputer1 can be put in place to fill in the missing values. However, there are only a few options to set the
imputer to:

• Static: In static imputing, one can assign a static value as the feature value if one of the properties is
missing. Simply setting it to a value of zero (Negative-Match) is incorrect, as an unknown property does
not mean the Match is a Negative-Match.

• Mean/Median: Using the Mean or Median to fill in the missing feature value makes it more fair for
unknown values. Using the mean or median will give it a value close to the boundary, making it easier
to flip to a Negative-Match or Positive-Match. The only problem is that if all the properties except the
Name property are unknown, it results in almost all values being on the boundary position, making it
highly likely that the Match will be classified as a Positive-Match, which is erroneous.

As a result, creating a classifier with an imputer to correct the many missing features will not generate the
desired outcome. For this reason, instead of a single classifier, it is possible to create multiple classifiers, and
each of these classifiers is solely created for a unique set of known features. This splitting of the data set is
ideal, as the data set is too large to work with as a single unit. Implementing a divide-and-conquer mentality
will reduce the memory requirements while processing the data but can increase the time required to process
the data. Therefore, a balance is required between splitting and not splitting the data set.

Since the Name property is always available, each classifier can always rely on that property. However,
not all the other properties are always available. The number of classifiers we need to train is 2n , in which
n is the number of properties that are not always available. The more classifiers that are trained, the better
the predictions will be on the data set. However, more classifiers come at the cost of additional training
time. Training of these classifiers is only done once and can be used on the current and future versions of the

1https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.Imputer.html
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data set. For this data set, it was decided to use 8 different properties, which will require 28 = 256 different
classifiers to be trained. These 8 properties could be used to classify the Match adequately in the data set.
Using more properties will take considerably more time to train, and using fewer properties is not ideal as
that will make the Accounts poorly represented. It is advisable to harness as much information from the data
set as possible to make the result accurate. Lowering the n will make it so that not all valuable information is
used.

It is also possible to use different classifier setups; for example, only train classifiers up to a certain number
of available properties. By only using the m most important properties out of the n available properties,
reducing the total number of required classifiers at the cost of some precision is possible.

The final properties selected for the classifiers are Name, Website, Postcode, Email, Phone, City, State,
AL1S, and AL1N. To decide which of the 256 classifiers to use, each InverseID gets a PropertyMask. This
PropertyMask uses bits as a boolean representation of the properties available for the given InverseID. Each
property gets its own BitMask assigned b(i ) = 2i , in which i is the order of the property, and b is an integer
representing the i-th bit. The Properties and their BitMasks in binary and decimal representations are shown
in Table 6.1.

Index Property BitMask2 BitMask10

7 Website 10000000 128

6 Postcode 01000000 64

5 Email 00100000 32

4 Phone 00010000 16

3 City 00001000 8

2 State 00000100 4

1 AddressLine1Street 00000010 2

0 AddressLine1Number 00000001 1

Table 6.1: BitMask for each Property

The PropertyMasks depend on the available properties of the row, either available or unavailable. Therefore
a two-case function b(r, i ) is implemented:

b(r, i ) =
{

b(i ) if i available in r

0 else

For each row, it is now possible to calculate their PropertyMask as follows
∑n

i=1 b(r, i ); since each of b(i ) rep-
resents a unique bit, summing the bits together yields the PropertyMask that represent the availability of
properties for a given row r . For a comparison, features are created from the information of two different
Accounts. To retrieve the classifier that is trained on the available features, it only takes a single bitwise-AND
operation to retrieve the correct classifier as follows:

ClassifierMask(r1,r2) = r1 & r2

Now, one can group the Matches based on the ClassifierMasks, creating 256 subsets in which all the properties
are known for the given classifiers. Instead of imputing the missing values, different classifiers will be trained
to work with actual values. Each Match created by the blocking phase can now be passed to their specialized
classifier, and a decision can be made if it is a Positive- or Negative-Match.

6.2. Feature Selection
Classifiers are trained on Matches between two different Accounts; it can either result in a Positive- or a
Negative-Match, classifying the comparison. However, a classifier cannot be applied to purely text data; the
differences between the text of a comparison must be transformed into features.

Within the PySpark environment, the more advanced fuzzy matching features, as discussed in Section 2.8,
were not provided. Implementing them would mean User Defined Functions (UDFs) need to be used, which
are inherently slow methods and will not work for this big data setting. In this setting, it is crucial to engineer
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fast and reliable features. The two implemented features satisfy these criteria while possible in the PySpark
environment. These features are Levenshtein and Jaccard similarity, and both similarities will be in the range
of 0 to 1, from dissimilar to similar, respectively. Even though these features are generic, they still provide
good results [3]. The features are created from the properties of a comparison. If both Accounts of the com-
parison have the given property available, then that property can be transformed into a feature. The selected
properties to become features are shown in Table 6.1.

6.2.1. Levenshtein Similarity
The Levenshtein distance is the number of characters, which does not have a precise range and is dependent
on the size of the strings. In order to compare the Levenshtein distance, the distance is divided by the maxi-
mum string size of the two strings, as seen in Eq. (6.1), and this division will return the distance. The inverse of
this distance is taken to get the similarity. The Levenshtein similarity allows for correcting spelling mistakes.
The words with the most characters of the string will have the most impact on the Levenshtein similarity.

lvsMax(s1, s2) = 1− LevenshteinDistance(s1, s2)

max(|s1|, |s2|)
(6.1)

6.2.2. Jaccard Similarity
Since the properties of the Accounts are strings, there are multiple ways to transform them into a set of tokens.
One benefit of Jaccard is that two strings expressing the same words but are ordered differently will still have
a high similarity, which is not necessarily the case for lvsMax.

The methods tried are splitting the strings into their word representation and splitting as an N-gram rep-
resentation. Both implementations give different results. Splitting the string into words will give the same
weight per word independent of the word size; however, it does not allow for spelling mistakes. If one char-
acter in a word differs, it will not be similar. If the text is split into N-grams, it will allow for spelling mistakes;
however, the larger words will have more impact on the Jaccard similarity, as more N-grams can be created
from the larger words compared to the smaller words, causing the larger words to dominate the smaller words
in terms of importance.

Both options for splitting the strings into sets are valid. However, since both N-grams and split words rely
on the same property, the feature value they produce will be heavily correlated. Therefore, one of these set-
tings should be selected as the base for the Jaccard Similarity. Since lvsMax already works to address spelling
corrections, it is opted to use Jaccard similarity on split words. If the N-gram option were selected, then large
words would overshadow smaller words throughout the different features, which is not desired as words with
just a few characters can give as much information as words with plenty of characters.

Jaccard similarity can also be used to check if two strings are exact matches of each other. If both texts
only consist of a single word, after splitting the text into the word representation, there are two lists with both
a single word; these two words can either be equal or not equal, essentially the same as checking for an exact
match. Properties that always consist of a single word will, therefore, have a Jaccard similarity of 0 or 1.

6.2.3. Feature Importance
Finding the feature’s importance is essential to see if the created feature is well-defined. To understand which
features can be used for this problem, a simple logistic regression model is trained on the labeled Property-
Mask255 to find the feature’s importance. All the properties are available in this model and bound to a label.
The training and test sets are evenly distributed in True- and False-Matches in this model. In permutation
feature importance, a single feature is permutated independently throughout the test set, and the difference
in accuracy is measured. The isolated feature is important if the accuracy drops relatively much after per-
mutating a given feature. A feature excluded in advance is lvsMax on AddressLine1Number (AL1N); as street
numbers do not consist of many digits, applying error correction on top of a few digits will not make sense,
as different numbers can still give a high lvsMax similarity.

In Fig. 6.1, the feature importance of different features is shown. For each feature, 20 permutations are
performed, and the average is taken as the feature’s importance. It can be noticed that Jaccard on split words
(sw) of Name and Website are highly important features. They show to be exponentially more important
compared to the other features. It can also be noticed that both Jaccard and lvsMax can be used as a feature,
as neither is always more important than the other for all the features. For some features, the Jaccard is more
important, while for others, the lvsMax is of more significance. The last that can be noticed is that some
features are unimportant and should be removed. For all 20 runs, the accuracy improved after permutating
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Figure 6.1: Feature Importance on separated Features

lvsMax of AddressLine1Street and Jaccard of Email, and for some of the runs, the accuracy improved after
permutating Jaccard of City. It shows that if these features were to be removed, the accuracy would increase,
which is what was done.

After removing these poor features, a combined feature importance is created, in which all features that
correspond to the same property are merged. Instead of independently permutating the feature importance
as shown in Fig. 6.1, they are permutated per property. The result of the feature property importance can
be seen in Fig. 6.2. It can be seen that the Name and Website are by far the most important properties to
classify if the Match is a Negative- or Positive-Match. City, State, and AL1 are the least important features;
this can be explained by the fact that these features all express a physical address. If one of these features gets
permutated, there is still information on the physical address in one of these other features. The classifier
learned that a mix of these features results in the highest accuracy, so permutating a property corresponding
to the physical address will not have high importance, as information will remain in these other features. The
feature property importance order was selected as the order of PropertyMasks, as seen in Table 6.1.

6.2.4. Feature Correlation
In Section 6.2.3, it was explained that features expressing the physical location of companies are probably
highly correlated. A Pearson correlation plot is shown in Fig. 6.3 to allow for further investigation of the cor-
relation between the features. Pearson correlation is used when the features are on an interval scale, and this
correlation is expressed in the range of -1 to 1, negatively to positively correlated. If the Pearson correlation
is near 0, then there is no correlation. Unlike feature importance, which requires a model to be trained, no
training is needed to calculate feature correlation. The correlation can be calculated across all available sam-
ples, not just the labeled samples from PropertyMask255. The features in Fig. 6.3 are those without the bottom
three features of Fig. 6.1.

The desired features should have a high correlation with the Match and a low correlation with other fea-
tures. If there is a high correlation with Match, then it means if the feature increases, the chance of a True-
Match, on average, will also increase. If the feature is not correlated to other features, that feature expresses
a unique context. The correlation plot has a few characteristics that can be noticed. The first is that the
lvsMax and Jaccard of the same property are highly correlated, which makes sense as they are both based
on the same property; thus, they must be highly correlated. However, although they are highly correlated,
they are not the same, meaning both features express the property differently. There is also a relatively high
correlation between features expressing the physical location of the Accounts. The features City, Postcode,
AddressLine1Number, AddressLine1Street, and State are relatively highly correlated since these features all
express the physical location. Since the Accounts data set is incomplete, and most properties are unavail-
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Figure 6.2: Feature Importance per Property
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Figure 6.3: Pearson Correlation of all the Features

able per Match, a high correlation means that even though some properties are unavailable, they can still
be used to express physical addresses independently. The lvsMax of Name is an outlier, as it only has a high
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correlation to itself and the Jaccard of Name. The correlation to the other properties is relatively low. All the
Names follow either the English or Dutch language. Even though these Names are different, they could still
follow generic language patterns, meaning they can consist of the same groups of characters. Very common
words, such as a city name, are part of most Names. This results in the feature value increasing while it is not
necessarily a Match. The lowest correlation between a Match and a feature is 0.17, and all the features are not
heavily correlated with each other; therefore, it can be concluded that the selected features are a fair mix of
feature correlations and can be used as features for training classifiers.

6.3. Training and Testing sets
By using the knowledge of the previous sections, different models can be trained and compared with each
other. Ultimately, one Model is selected as the best performing and used for all the benchmark runs.

6.3.1. Labeled Match Distribution
There are a limited number of labeled Accounts. If these labeled Accounts are cross-compared with each
other, it results in mostly False-Matches, while there will only be a limited number of True-Matched, as seen
in Table 3.2. There are roughly 4000 times more false than true labeled matches. Because of this imbalance of
labeled matches, classifiers will, most likely, always predict a Match to be a Negative-Match as this will give a
very high accuracy, which is erroneous behavior.

It is crucial to balance the data so that a fair decision can be made on a Match if it is Positive-Match or a
Negative-Match. Therefore, the number of True-Matches gets sampled out of the False-Matches, creating an
even split of true and false labeled matches. There is only one problem: the majority of False-Matches are two
completely different Accounts, meaning that all the features of such a False-Match are likely to be near zero.
If classifiers get trained on False-Matches that are almost always dissimilar, then if a single feature is above
average, it will, most likely, be classified as a True-Match, generating a lot of FPs.

More complicated False-Match cases should be used to train the classifiers, and these problematic cases
are already available, namely the results of RunAugLSH. In RunAugLSH, blocks are created of highly similar
Accounts, False-Matches within these blocks are, therefore, complex cases to classify and ideal to use as the
training set of the classifiers.

Now that a fair balance of True-Matches and False-Matches exists, they can be divided into a train and
test set. For the train and test set, an 80/20 split is used. However, dividing the data set into a training and
test set is more complex with a multi-model schema, as discussed in Table 6.1. Each classifier has its own
ClassifierMask, representing the properties that must be available for using that classifier, as discussed in
Section 6.1.

The labeled Accounts are not evenly distributed across the PropertyMasks. Some PropertyMasks have
more labeled Matches than others. PropertyMasks with more available properties can also be used as labeled
matches for a given PropertyMask. All the Matches of the highest PropertyMask, meaning all properties are
available, can be used for every one of the classifiers. Simply dropping the unused properties in that classifier
will create a valid comparison for the classifier. The idea behind this implementation is that an Account
referring to a particular real-world company will still refer to that same company even if the user forgot to
fill in a property, meaning that dropping a property will not change the real-world company it refers to. The
equality of Eq. (6.2) needs to hold for a given MatchPropertyMask and a ClassifierMask so the classifier can
use that Match for its knowledge base.

MatchPropertyMask & ClassifierMask == ClassifierMask (6.2)

Since there are 256 different PropertyMasks available, plotting them all inside a single plot will make it too
complex to comprehend. Therefore, it is opted only to investigate the most interesting PropertyMasks. The
most interesting PropertyMasks to investigate are in which no property is available (PropertyMask0), the case
in which only a single property is available (PropertyMask2n ; 0 ≤ n < 8), and finally, the case in which all
properties are available (PropertyMask255).

After creating the 80/20 train and test set for all the PropertyMasks with their valid Matches, the total
set sizes per investigated PropertyMask are shown in Fig. 6.4. This plot shows that the training and test sets
differ across the PropertyMasks, which makes sense since PropertyMask0 includes all the other Property-
Mask training and testing sets, and the training and testing set of PropertyMask255 is included in all the other
PropertyMasks. It can be noticed that, therefore, the set with the smallest training and testing set still has
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two million samples in its training set, of which one million are True-Matches and the other one million are
difficult False-Matches.
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Figure 6.4: The Training and Test set sizes of the inspected PropertyMasks

6.4. Classification Models
Different classifiers can be used to classify a problem; some are simple, while others are complex. More flexi-
ble classification models can use certain features better than a simpler classifier. Investigating different mod-
els for a classification problem and selecting the most fitting one is essential. Four classification models were
tested: LogisticRegression, DecisionTree, RandomForest, and GradientBoostedTree. These are listed from
least complex to most complex. The classifiers are trained on the investigated PropertyMasks as described in
Section 6.3. After finding the best-performing model, it is applied to all the different PropertyMasks.

When the recalls of the different models are compared in Fig. 6.5, it can be seen that the LogisticRegres-
sion performs the worst on average, the DecisionTree and the RandomForest perform roughly equally, and
the GradientBoostedTree performs the best on all the inspected PropertyMasks. The precision of the mod-
els follows the same pattern as how the models perform for the recall, which can be seen in Fig. 6.6. The
GradientBoostedTree has the highest precision of all the inspected PropertyMasks. Since a fair distribution
of labels was used, the accuracy can also be measured to indicate the performances of the classifiers. The
accuracy for the classifiers can be seen in Fig. 6.7. The LogisticRegression has the worst accuracy, followed
by DecisionTree and RandomForest, which both have similar accuracy. The GradientBoostedTree has the
highest accuracy across all the PropertyMasks. So far, the GradientBoostedTree performs the best in recall,
precision, and accuracy. The only downside of using the GradientBoostedTree as the classifier is that the time
taken to train the model is significant, as seen in Fig. 6.8.
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Figure 6.9: Recall of the different Models for the inspected
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Figure 6.10: Precision of the different Models for the inspected
PropertyMasks
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Figure 6.11: Accuracy of the different Models for the inspected
PropertyMasks
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Figure 6.12: Training Times of the different Models for the
inspected PropertyMasks

The models are trained on the entire data set, which has more than enough data samples to classify the prob-
lem. Therefore, it might be possible to sample each classifier’s training set to a given size. The PropertyMask
with the least number of training samples is PropertyMask255, as seen in Fig. 6.4, since it requires all the prop-
erties to be available. All the training sets of the other PropertyMasks are a superset of PropertyMask255. The
training size of PropertyMask255 is slightly over two million different matches with a 50/50 distribution of a
True- and a False-Match. All the other classifiers relying on another PropertyMask are guaranteed to have a
training set size of at least that of PropertyMask255. Therefore, it is possible to use a fixed sample size across all
the classifiers. All the classifiers have a train set sampled to one million True-Matches and one million False-
Matches, resulting in a training set size of two million, and the model used is the best-performing model with
the worst training time, the GradientBoostedTree. The GradientBoostedTree2000000 has the same settings as



6.5. Benchmark Runs 47

GradientBoostedTree but a training set of two million entries for all the different classifiers trained. It can be
noticed that sampling the training set to a fixed size yields a near identical recall, precision, and accuracy,
as seen in Figs. 6.9, 6.10 and 6.11, respectively, but with a training time that is significantly less than that of
GradientBoostedTree, as seen in Fig. 6.12. With just a few features, the classification problem is not overly
complex, meaning the models trained can still be effective with just a limited number of samples. Therefore,
the GradientBoostedTree2000000 is selected to be the classifier for all the PropertyMasks, as it shows to have a
high recall, precision, and accuracy, in combination with a now manageable total training time.

6.5. Benchmark Runs
The benchmark runs are split into two parts. First, a benchmark is run on the raw data set, in which the data
set is prepared for classification. Secondly, the classification of the runs is benchmarked.

6.5.1. Creating Raw Benchmark Runs
Raw Matches have yet to be classified as True-Matches or False-Matches. These Raw Matches are created and
stored per MatchPropertyMask so that each classifier can access the correct MatchPropertyMasks without
recalculating all the Raw Matches for each classifier. The Recall, Precision, and RR of Table 6.3 should be
identical to the results of Table 5.5 for the runs that do not have a pruning phase applied. Since RunBaseline
and RunAugBaseline do not have a pruning step applied, the measurements are the same.

In Table 6.3, the number of comparisons of the runs that include LSH are significantly higher than those
of the baseline. Therefore, a pruning step can be applied, as discussed in Section 2.6. In this case, since the
LSH causes an increase in comparisons, it is opted only to prune the blocks created by the LSH. The Pruning
method applied is that blocks created by LSH that have more than 1000 InverseIDs in them will be ReBlocked
by the Name. In essence, this will reduce the number of comparisons required, but it will lose the spelling
correctness of the largest blocks. However, since the largest blocks are the most likely to be erroneous, as
discussed in Section 5.9, doing so does not cause a significant loss. In Table 6.2, applying this ReBlocking
on the LSH runs will roughly reduce the total number of comparisons by a factor of four while significantly
increasing the precision and only negligibly impacting recall.

Run Pruning Recall Precision RR TSU Comparisons

RunLSH × 0.73453 0.73436 0.999989479 95051 37,646,059,617

RunLSH LSH-RB1000 0.72155 0.86790 0.999997401 384792 9,299,411,424

RunAugLSH × 0.83425 0.69483 0.999987909 82709 43,264,011,035

RunAugLSH LSH-RB1000 0.82110 0.78169 0.999996896 322153 11,107,549,706

Table 6.2: LSH Pruning Differences

The final Raw Benchmark Runs can be viewed in Table 6.3. With the applied pruning settings on the LSH it
shows a good comparison between the runs. Implementing LSH over the baseline will provide higher recall
but lower precision while creating more comparisons. Adding augmentations to the blocking scheme will
increase the recall but lower the precision. The number of comparisons is the final number of comparisons
that need to be classified by the classifier, meaning that the RR and TSU are final for the given runs. That the
TSU is final means the slowest run is 322,153 times faster than cross-comparing all the Accounts, while the
fastest run is 1,229,959 times faster. This significant speedup will allow the matches to be classified within
hours instead of years.

Run Pruning Recall Precision RR TSU Comparisons

RunBaseline × 0.70740 0.89753 0.999999187 1229959 2,909,319,298

RunLSH LSH-RB1000 0.72155 0.86790 0.999997401 384792 9,299,411,424

RunAugBaseline × 0.81401 0.80092 0.999998693 765217 4,676,244,916

RunAugLSH LSH-RB1000 0.82110 0.78169 0.999996896 322153 11,107,549,706

Table 6.3: Matching Raw Benchmark Runs
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6.5.2. Classifying the Raw Benchmark Runs
The Raw Benchmark Runs must be classified, requiring the classifiers described in Section 6.4. The Matches
can be classified after applying each specific classifier with its unique ClassifierMask on the corresponding
PropertyMatchMasks, as seen in Table 6.4. The precision is calculated with the GT, while the classifiers clas-
sify the Matches as Positive or Negative. After classifying, the general trend is that recall decreases slightly
while precision increases. The most notable is the number of Negative-Matches. The Negative-Matches are
the Matches that will be removed, as they are classified not to be a True-Match. For the RunBaseline, there are
just a few Negative-Matches, which makes sense as blocks are created of Accounts having exactly the same
Name. The classifiers are trained on all the Matches labeled as a True-Match, and when the Names are iden-
tical, it is most likely to be a True-Match. The Negative-Matches are most likely Matches with the same name,
yet all their other properties are filled in and differ from one another. There are more Negative-Matches in the
runs that rely on LSH, which makes sense as introducing spelling correctness can cause many FPs. The num-
ber of Positive-Matches is important, as in the clustering phase, more True-Matches means more knowledge
about the graph, meaning more confidence in applying further methods. The RunLSH and RunAugBaseline
are close in the number of True-Matches, even though RunLSH does not implement augmentation.

Run Pruning Recall Precision Positive-Matches Negative-Matches

RunBaseline × 0.70742 0.89755 2,909,195,858 123,440

RunLSH LSH-RB1000 0.72019 0.89188 3,495,198,921 5,804,212,503

RunAugBaseline × 0.79295 0.82460 3,679,956,373 996,288,543

RunAugLSH LSH-RB1000 0.79828 0.82078 4,217,941,009 6,889,608,697

Table 6.4: Matching Cleaned Benchmark Runs
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In this chapter, we investigate the fourth and final phase of the ER pipeline, as detailed in Section 3.4. This
phase builds on the benchmark result described in Section 6.5. First, in Section 7.1, we will be investigating
how to transform the graph of Positive-Matches to an EntityMapper. In the next section, Section 7.2, NoiseR-
emoval is applied to the matches. NoiseRemoval relies on looking at the similarity of neighborhoods between
vertices that have a Positive-Match. Afterward, missed True-Match edges can be discovered, as discussed in
Section 7.3. In MissingLinks, the neighbors of the vertices are used once again, but this time to discover new
edges. Finally, the results of applying these clustering methods on the runs will be discussed in Section 7.4.

7.1. Entity Mapping
The output of the matching phase is a graph in which the vertices are Accounts, and the edges the Positive-
Matches. The ER pipeline should serve as a solution that can be used directly to deduplicate the Accounts
data set. The input of the ER pipeline is a table of Accounts. The desired output of the ER pipeline is that
Accounts that are duplicates of a real-world company will have the same identifier, called EntityID. There-
fore, a mapping table that maps AccountIDs to EntityIDs in an n-to-1 relation should be created. Within this
mapper, there is only a single instance per AccountID in the mapping table, while there can be many dedu-
plicated EntityIDs since many AccountIDs should be able to be mapped to a single EntityID. Therefore, the
graph should be transformed into a mapping.

Cliques can be used to create the mapping. Cliques are groups of vertices within the graph that share an
edge with all the other members of their group. These cliques can serve as the basis for creating the Entities.
Each clique receives a unique identifier, their EntityID. Afterward, connected cliques can be compared and
merged into a larger Entity. However, there is a problem with using cliques: finding cliques within a graph is a
notoriously hard problem [13]. Discovering cliques may be possible for smaller data sets, but it is not suitable
for big data as it is unscalable.

Creating Entities can be achieved by locating all the disconnected sub-graphs from the graph. These
disconnected sub-graphs then get their unique EntityID. Using this technique creates loosely defined cliques
out of the disconnected sub-graphs. Since there are only edges between vertices that are a Match, in theory,
the graph should consist of many disconnected sub-graphs that all refer to a unique real-world company.
However, since the classifiers rely only on a few features, they are prone to creating noise. A single edge
between two disconnected sub-graphs will connect these sub-graphs; such an edge is called a bridge edge.
Removing the bridge edges will increase the total number of disconnected sub-graphs. In the Blocking phase,
an elaborated schema is implemented to create as much overlap between the Accounts as possible on all their
provided properties, and this means that there is a high chance of creating many bridge edges, which might
create a single large clique out of the graph. Indeed, while the graph consisted of a majority of bride edges,
without any additional transformation on the graph, the deduplicated data set consisted of a single EntityID
containing almost all the AccountIDs, drastically impacting the performance of the generated EntityMapper,
as can be seen in Table 7.1. The only run in which not applying noise removal is viable is the RunBaseline.
In this run, the blocks are non-overlapping, disallowing the creation of a single large cluster with a single
EntityID. However, in the runs with overlapping block generation, a single large Entity is created containing
most of the AccountIDs. This results in an excellent recall as the majority of the AccountIDs are mapped
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together via this massive EntityID, while the precision is, because of this large cluster, extremely inadequate.
When using disconnected sub-graphs to generate EntityIDs, applying noise removal for schemes relying on
overlapping blocks is a must, as can be concluded from this experiment.

Run Clustering Recall Precision F1-Score EntityIDs Size

RunBaseline NoClustering 0.70742 0.89754 0.79122 27,205,371 32.16%

RunLSH NoClustering 0.80423 0.00037 0.00074 11,462,887 13.55%

RunAugBaseline NoClustering 0.99604 0.00026 0.00052 7,906,152 9.35%

RunAugLSH NoClustering 0.99865 0.00025 0.00050 4,950,982 5.85%

Table 7.1: EntityMapping Measurements of applying NoClustering

7.2. Removing Noise
The bridge edges should be found and removed to create a graph of many disjoint components that can
be transformed into EntityIDs. The classifiers used in the Matching phase are sufficient in classifying the
potential that two Accounts are a match; however, if companies share, for example, the physical address,
then this can introduce a FP. Neighbors in common can be used to mitigate these FPs. If the two Accounts of
an edge have little neighbors in common, then it is most likely a bridge edge.

In smaller data sets, it is possible to calculate precisely the number of neighbors the two Accounts of
an edge have in common. However, in the case of big data, it is not feasible to calculate the neighbors in
common for each Account since an Account will have an edge to many other Accounts. Therefore, a better
idea is to approximate the neighbors in common. MinHash can be implemented again to approximate the
common neighbors; this implementation differs from how it was applied in Chapter 5. Previously, N-grams
were utilized to create the vocabulary on which MinHash is applied. To remove noise, the vocabulary will
consist of all the InverseIDs. There is only a problem with the PySpark implementation of MinHash, and
that is the vocabulary size of LSH has an undocumented maximum size of 5 million. Since there are over 63
million InverseIDs, the lesser connected InverseIDs will be discarded. There is a big tail of poorly connected
InverseIDs; dropping these will likely not have a significant impact.

First, a Neighborhood needs to be constructed for each InverseID. The Neighborhood consists of all the
other InverseIDs that the InverseID has an edge to, as denoted by Neighbors(InverseID), and the InverseID
itself. Adding the InverseID itself to its Neighborhood is crucial. If InverseID1 and InverseID2 have the same
set of neighbors, excluding InverseID1 and InverseID2 in common, then the set of Neighbors(InverseID1) is
not equal to Neighbours(InverseID2). If the Neighborhood is used, which appends the InverseID, then Neigh-
borhood(InverseID1) and Neighborhood(InverseID2) would be equal. Secondly, the vocabulary of each In-
verseID can be constructed, which is a one-hot encoding of its Neighborhood, giving a large sparse vector per
InverseID. Thirdly, several hashes can be generated using MinHash in combination with the vectors provided
by the vocabulary. The final step is to retrieve for each edge(InverseID1, InverseID2) the number of hashes
InverseID1 and InverseID2 have in common. The edge should be discarded if it is below a certain threshold.

After removing the noise with LSH, disconnected sub-graphs can again be discovered. The bridge edges
can now be found and removed from the graph using spatial information. Locating sub-graphs without these
bridge edges will make it so that most InverseIDs do not end up in a single EntityID but spread across several
EntityIDs.

7.2.1. NoiseRemoval Benchmark
To remove noise in the edges, 40 hashes are generated for each InverseID, which allows approximating the
similarity of the Neighborhood of the vertices that are connected via an edge. The ApproxSim is calculated
by the number of hashes the vertices have in common, divided by the total number of hashes generated per
vertex. Even though the results of RunBaseline were already sufficient without any clustering applied, they
can still be improved. Therefore, a graph is generated to look into the ApproxSim versus the frequency and the
precision, as can be seen in Fig. 7.1. Each of the possible ApproxSim values are buckets that have their own
precision and number of True-Matches inside of them labeled frequency. It can be noted that the ApproxSim
of RunBaseline is relatively high, as it starts at 0.675. The distribution of edges per ApproxSim bucket grows
exponentially to fully approximated equal Neighborhoods. The precision is calculated per bucket, which can
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be used to investigate which threshold of ApproxSim should be used to remove the most noise. Selecting
a threshold of the ApproxSim will cause all the buckets with an ApproxSim lower than the given threshold
to be discarded. Since the number of edges grows exponentially per larger ApproxSims, dropping the lower
ApproxSims should have a negligible negative impact on the recall. In contrast, it can have a more significant
impact on improving the precision in comparison to NoClustering. For the RunBaseline, dropping edges with
an ApproxSim below 0.725 is a good idea, as this will keep the higher precision buckets and discard the lower
precision buckets.
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Figure 7.1: The NoiseRemoval characteristics of RunBaseline

In RunLSH, Fig. 7.2, it can be seen that the precision grows relatively linear, which can make it more
challenging to decide which threshold to select. The general idea is to select a threshold in which there still
is a high distribution of the total number of edges combined with all the buckets being high in precision.
Therefore, a local peak is selected at 0.875 as the threshold to keep the edges. The buckets in the range from
0.875 to 1 are high in precision and have the most edges inside this range.
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Figure 7.2: The NoiseRemoval characteristics of RunLSH

For the RunAugBaseline, the precision does not grow smoothly per ApproxSim, as seen in Fig. 7.3. There-
fore, there is no absolute best threshold to select at first sight. Three local peaks have the most interesting
characteristics: 0.4, 0.525, and 0.675. The peak of 0.4 has higher precision than the precision of the Approx-
Sim of 1 bucket, but the two following ApproxSims have an overall lower precision. The peak of 0.525 does not
have this occurrence. The latter peak has high precision and still a high total frequency of the edges, making
it a perfect fit to be selected as the threshold. Both of these peaks will be tested.

Finally, in the RunAugLSH, Fig. 7.4, there are two peaks again that are points of interest. These peaks are
0.55 and 0.725. The 0.55 peak shows a resemblance to the results of NoiseRemoval in RunAugBaseline. There
is a higher frequency and a high precision at this peak, followed by some ApproxSim of lower precision but
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Figure 7.3: The NoiseRemoval characteristics of RunAugBaseline

also lower frequency. Onwards from the 0.725 peak, the precision of the subsequent buckets until the final
bucket is larger than the precision of the final bucket.
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Figure 7.4: The NoiseRemoval characteristics of RunAugLSH

For each of the Runs, the previously selected ApproxSim thresholds are applied and visible in Table 7.2.
Alongside these peaks, the strictest form of NoiseRemoval, which has an ApproxSim threshold of 1, is also ap-
plied to investigate if the number of hashes used, which was 40, is sufficient. If the measurements of threshold
1 outweigh that of the selected peaks, then the ApproxSim should be calculated with more hashes. The Run-
Baseline is a unique case in which applying NoiseRemoval will yield worse results than NoClustering, as seen
in Table 7.1. This is most likely due to the discussed shortcomings of the MinHash within PySpark. Since
there is no overlap between blocks, some blocks will not contain a Positive-Match that is part of the LSH vo-
cabulary, causing the entire block to be disbanded into separate Entities. This also causes the size to increase
when applying NoiseRemoval on RunBaseline, which will not happen with overlapping blocks, as with more
connections, an InverseID will likely have at least a single Positive-Match that is part of the MinHash vocabu-
lary. In the overlapping blocks, the F1-Scores increase when applying NoiseRemoval. In RunLSH, the selected
peak of 0.875, compared to the threshold of 1, has a significantly higher recall than the loss in precision. This
result makes 0.875 an excellent choice to be used as the threshold of NoiseRemoval in RunLSH. In RunAug-
Baseline, multiple peaks were investigated, showing that a threshold of 0.675 has the highest F1-Score. This
threshold is selected and will be used in further methods of this run. Lastly, in RunAugLSH, it can be noticed
that the threshold of 0.525 has poor precision yet high recall. The threshold of 0.725 has a lower recall but
higher precision, giving a high F1-Score. Finally, the threshold of 1 has a low recall and high precision. The
threshold of 0.725 is more averaged compared to the other investigated thresholds of RunAugLSH; therefore,
the EntityMapper generated with NoiseRemoval of threshold 0.725 will perform better than its counterparts
for this run.
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During these runs, it can be noticed that a lower threshold will increase the recall, as more True-Matches
are kept, while it lowers the precision. A local maximum should be selected that fits the required function of
the EntityMapper; if one wants to create an EntityMapper with little error, then a high number of hashes com-
bined with a high threshold should be selected, granting a high precision at the cost of the recall. Otherwise,
if the EntityMapper is used for exploratory use, then a lower number of hashes and a lower threshold can be
used, giving a high recall at the cost of precision. Each NoiseRemoval run creates a different total number of
unique EntityIDs, roughly half to two-thirds in size compared to the number of unique AccountIDs. A smaller
size will help other down-the-line models handle fewer unique Accounts, making size an important overall
aspect.

Run ApproxSim40 Recall Precision F1-Score EntityIDs Size

RunBaseline 0.725 0.69877 0.89787 0.78591 58,194,435 68.79%

RunBaseline 1 0.69640 0.89808 0.78448 58,199,682 68.80%

RunLSH 0.875 0.70715 0.89451 0.78987 50,806,031 60.06%

RunLSH 1 0.67113 0.89929 0.76864 52,262,337 61.78%

RunAugBaseline 0.4 0.95093 0.00555 0.01104 44,230,722 52.28%

RunAugBaseline 0.525 0.88675 0.69985 0.78229 45,448,906 53.72%

RunAugBaseline 0.675 0.80875 0.81251 0.81063 46,742,748 55.25%

RunAugBaseline 1 0.28568 0.93063 0.43716 48,794,216 57.68%

RunAugLSH 0.525 0.89058 0.61016 0.72417 41,935,974 49.57%

RunAugLSH 0.725 0.77731 0.81855 0.79740 44,295,941 52.36%

RunAugLSH 1 0.28979 0.93860 0.44285 48,253,764 57.04%

Table 7.2: The Result of applied NoiseRemoval settings for the Benchmark Runs

7.3. Locating Missing Links
Due to the blocking stage, not all the accounts are compared. The accounts that are most likely similar are
blocked into similar blocks, causing the creation of a Match. Therefore, edges can still be missing between
different generated Entities. After removing the noise, missing links can be found using MinHash. In Miss-
ingLinks, for each vertex, the connected neighbor vertices are vectorized. Since the concept is to find the
missing links, the use of the neighborhood is not required, as the vertices do not have a link with each other,
which is a difference compared to NoiseRemoval. Then, with the vectorized neighborhood, hashes can be
generated for each vertex equally, as explained in Chapter 5. Several hashes are generated, and these hashes
are divided across the hash tables. Different vertices with the same table of hashes are connected with an
edge, which is the missing link that is found. There are two parameters to adjust: the numHashesPerTable
and the numHashTables, as discussed in Section 5.4. The former makes the found MissingLinks more likely
to be similar, while the latter will increase the number of links that could be found per vertex. Both parame-
ters will increase the required number of hashes generated by the LSH. The number of hashes required is the
numHashesPerTable times numHashTables. The benefit of using MinHash to find missing links is that the
problem becomes tractable, and it can be calculated how long it will take to generate the required hashes for
all the vertices.

7.3.1. MissingLinks Benchmark
There are two scopes of implementing MissingLinks; the first is the InverseID scope, which is equal to the
graphs used in the matching phase of the ER pipeline. The second scope is on EntityID scope. Since Nois-
eRemoval needs to be applied before the MissingLinks, it is possible to use the generated EntityMapper to
transform the entire InverseID graph to an EntityID map simply by mapping these InverseIDs to their cor-
responding EntityIDs. Both scopes are applied on the best-performing NoiseRemoval setting, as seen in Ta-
ble 7.2. The numHashesPerTable and the numHashTables are set to 20 and 10, respectively, meaning that
for each InverseID or EntityID (dependent on the scope), 200 hashes will be generated. If at least a single
hash table is equal to that of another InverseID or EntityID, then these different InverseIDs or EntityIDs are
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considered to refer to the same real-world company, meaning that they can be merged. The result of this
experiment can be found in Table 7.3.

Run MissingLinks Recall Precision F1-Score EntityIDs Size

RunBaseline × 0.70742 0.89754 0.79122 27,205,371 32.16%

RunBaseline InverseID 0.70742 0.89754 0.79122 27,205,371 32.16%

RunBaseline EntityID 0.70742 0.89754 0.79122 27,205,371 32.16%

RunLSH × 0.70715 0.89451 0.78987 50,806,031 60.06%

RunLSH InverseID 0.71538 0.89301 0.79439 41,040,759 48.51%

RunLSH EntityID 0.71510 0.89343 0.79438 38,813,407 45.88%

RunAugBaseline × 0.80875 0.81251 0.81063 46,742,748 55.25%

RunAugBaseline InverseID 0.81112 0.81232 0.81172 37,282,869 44.07%

RunAugBaseline EntityID 0.81097 0.81259 0.81178 33,029,113 39.04%

RunAugLSH × 0.77731 0.81855 0.79740 44,295,941 52.36%

RunAugLSH InverseID 0.78051 0.81838 0.79900 34,082,778 40.29%

RunAugLSH EntityID 0.78042 0.81855 0.79903 31,289,149 36.99%

Table 7.3: Measurements of MissingLinks per Scope for the Benchmark Runs

In the column ’MissingLinks’, the applied scope is noted, with × marking that no MissingLinks was ap-
plied to that run, which translates to the best NoiseRemoval setting of Table 7.2. One thing that is easily
noticed is that applying NoiseRemoval on the RunBaseline will not have an effect. This phenomenon can be
explained by the fact that the run is non-overlapping. In this run, each created block in the blocking phase will
have its own unique EntityID, so no missing links can be found between different blocks, as there are no edges
connecting the different blocks. The general trend that can be seen is that both scopes increase the F1-scores
and the deduplication factor, as can be seen in a decrease in size. Applying MissingLinks on both scopes will
be roughly equal in terms of recall and precision, with the InverseID scope performing marginally better on
recall while the EntityID scope performs marginally better in terms of precision. The main difference can
be seen in size; EntityID will create fewer unique Entities compared to the InverseID scope. Fewer Entities
generated with still a comparable F1-score compared to InverseID means that the EntityID scope performs
better. It can merge more Entities and still achieve an F1-score as high as the InverseID scope. Therefore, the
EntityID scope is used for further application.

Instead of applying MissingLinks with several hash tables, performing it with just a single hash table and
applying multiple merge passes is also possible. Theoretically, this should cost fewer resources and allow one
to find the local maximum without specifying the total number of hashes. However, since using LSH only
requires limited resources, this experiment was not conducted, as MissingLinks already shows significant
results in reducing the size of the generated EntityMapper.

7.4. Benchmark Runs
The best-performing EntityMapper per ER run is selected. These EntityMappers are listed in Table 7.4. These
final mappers are created by applying NoiseRemoval with their given ApproxSim40 as the NoiseRemoval
threshold. Afterward, MissingLinks is applied on the EntityID scope, which is the EntityMapper created by

Run ApproxSim40 NoiseRemoval Recall Precision F1-Score EntityIDs Size

RunBaseline 0.725 EntityID 0.70742 0.89754 0.79122 27,205,371 32.16%

RunLSH 0.875 EntityID 0.71510 0.89343 0.79438 38,813,407 45.88%

RunAugBaseline 0.675 EntityID 0.81097 0.81259 0.81178 33,029,113 39.04%

RunAugLSH 0.725 EntityID 0.78042 0.81855 0.79903 31,289,149 36.99%

Table 7.4: Measurements of the EntityMappers for the Benchmark Runs
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the NoiseRemoval. In the runs that do not rely on augmentation, it can be seen that the RunLSH has a higher
F1-score than RunBaseline but a lower reduction in size. For the runs relying on augmentation, the RunAug-
Baseline has a higher F1-score, but a lower size reduction than RunAugLSH. Possible solutions to increase the
results of the RunAugLSH are discussed in Chapter 10. The final noticeable result is that the augmentation
has a relatively high recall but a relatively low precision.





8
Applied

In this chapter, we apply the ER pipeline to Late Payment Prediction (LPP), an existing model within Exact,
and the results of this application are shown. First, in Section 8.1, we briefly introduce LPP combined with
the problems applying ER could theoretically solve. Afterward, the created EntityMappers of the ER pipeline
are applied to train LPP models, and we discuss their findings in Section 8.2.

8.1. Late Payment Prediction
To see the improvement in using the deduplicated Accounts data set over the original version, the results of
the ER are used in the LPP module. This module predicts if the given Account will pay their next invoice on
time. On the lowest level, the module looks at the Account data attached to the invoice. By using the dedu-
plicated Accounts data set, it is possible to overcome some issues in comparison to the duplicated Accounts
data set:

• Cold start: If the user just created the Account, then there is no historical data attached to this Account,
making it difficult to predict if they will pay their invoice on time. However, suppose other Accounts
that refer to the same real-world company are attached to the same Entity. In that case, it is possible to
fill in the missing data with historical data of those Accounts.

• Latest Information: LPP looks at the 2000 latest invoices to determine if the Account will pay their
invoice on time. These are the latest invoices attached to the Account but not necessarily the real-
world company’s latest ones in the data lake. If the Entity is used instead of the Account, it will utilize
the real-world company’s latest known information in the database.

• Smaller size: There are fewer unique Entities than unique Accounts. Therefore, the training problem
will become more manageable, allowing more expensive operations to be applied to classify the prob-
lem more efficiently and effectively.

8.2. Benchmark Runs
The best-performing EntityMapper per ER run, as shown in Section 7.4, is used to train the LPP classification.
The training sets are balanced. The provided labels are uniform for the classification; there is a 50/50 split
between late invoices and those paid before expiration. Therefore, because of this uniformity, it is possible
to measure the accuracy of the classifier. A classification model is trained on the entire data set on which no
ER is applied. Models are also trained for the different EntityMappers runs. Mao’s best LPP model settings
are used to create the models are used to create the models [28]. The results of these different runs are shown
in Table 8.1, which shows that applying ER has an adverse effect on the results of LPP. Applying no ER has
the highest accuracy, recall, and precision. It is also noteworthy that the measurements are not significantly
worse when ER is applied, even though the size of these data sets with ER applied is significantly smaller than
the original data set. These results might indicate something inherently wrong with the EntityMapper used.

A few things can be noticed when taking the Accounts data set under the loop. The ER pipeline is im-
plemented to find rows referring to the same real-world companies. However, not all the Account rows refer
to a real-world company. In the Accounts data set, there are also end-users, i.e., persons, not companies.
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EntityMapper Data Scope Accuracy Recall Precision F1-Score

No ER Full 0.78344 0.62424 0.54835 0.58384

RunBaseline Full 0.77402 0.59343 0.51216 0.54980

RunLSH Full 0.77169 0.58832 0.50824 0.54536

RunAugBaseline Full 0.77165 0.58824 0.50815 0.54527

RunAugLSH Full 0.77014 0.58500 0.50544 0.54232

Table 8.1: Results of using the created EntityMappers of the Benchmark Runs on LPP

Most, if any, of these personal Account rows will not have a CoC, as having such a number is limited to com-
panies. This results in personal Account rows not being part of the GT, as no label can be attached to these
rows. This means that the ER pipeline never considers the existence of persons in the data set, only com-
panies. These personal rows cause the application of ER to have undesired effects. After investigation, the
ER pipeline will cluster rows with the same forename or surname together as if they were sub-divisions of a
real-world company. Generating clusters of people who have parts of their name in common will give an un-
desired side-effect. The contact information of an employee of a company can be filled in for an Account row
instead of the company’s contact information. These personal fields are fields like Name, Email, and Phone.
These persons should never be a Positive-Match with a company or vice versa. Even if the person works at
said company, they are and should not be equal. It is possible for specific company clusters to incorrectly
merge with these personal clusters because of matches within an employee-associated Account row.

The ER pipeline should perform differently for companies and persons. Ideally, the data set needs to be
split into a data set of company and personal rows before the entire ER pipeline starts. Splitting the data
set into these two counterparts makes the initial data set smaller and easier to process. Therefore, due to
the clustering of end-user surnames, implementing the outcome of the ER pipeline directly into existing
modules such as LPP might not improve the module’s outcome. LPP Runs are performed on a data subset
of Account rows associated with a real-world company. These additional runs are performed to see if the
outcome increases if these personal Account rows are discarded.

8.2.1. Company Subset Benchmark
For the second benchmark experiment, a subset of AccountIDs that should refer to a company is selected
instead of using the entire data set. For the preprocessing, as discussed in Chapter 4, the business structures
were removed to clean up the Names. However, these business structures will now be used to create a set
of Accounts that will likely represent a real-world company. A small subset of large Dutch companies is also
added to filter upon, shown in Appendix A.5. The complete Accounts data set is filtered on rows that contain
at least a single word of the filter list, creating the Company subset. This set of CompanyAccounts consisted of
approximately 6 out of the 85 million Accounts in them, making the data set substantially smaller. The same
LPP settings are used to create the runs performed on this Company data subset. The CompanyAccounts also
has a uniform training and testing set, and the results are shown in Table 8.2.

EntityMapper Data Scope Accuracy Recall Precision F1-Score

No ER Company 0.74788 0.66039 0.62090 0.64003

RunBaseline Company 0.72740 0.63090 0.58999 0.60976

RunLSH Company 0.72800 0.63190 0.59026 0.61037

RunAugBaseline Company 0.72778 0.63120 0.59133 0.61061

RunAugLSH Company 0.72517 0.62787 0.58581 0.60611

Table 8.2: Results of using the created EntityMappers of the Benchmark Runs with a Company Scope on LPP

The performed run has the same pattern as Table 8.1, which can be seen in Table 8.2. All the ER runs perform
worse for the given model. There are a few different views on this phenomenon. The LPP model has features
that Mao optimized for the dirty Accounts data set [28]. Using an entirely different input data set requires
different parameters and features. However, implementing changes to these parameters and features will be
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outside the scope of this feasibility study on the ER pipeline.
During the ER process, the main idea of the pipeline is to create entities that refer to the same real-world

company. Causing, for example, different sub-divisions or physical stores of a real-world company to be
mapped to the same given EntityID. However, this merged notion of entities is not always the correct form
for all the models. There is no clear notion of what a company is and should represent within the Accounts
data set. Some models require these entities to be split into different sub-divisions or physical stores. The
same can be argued for LPP. If the invoice payment is performed not on a company level but per sub-division
or physical store, then using this entity as a whole will make no sense; they should be split up into differ-
ent compartments. Further methods that split the created entities into their division component should be
investigated so they can be applied to different models.

Even though the results of applying the different EntityMappers do not improve the performance of LPP,
they could still be used on the cold start cases. Account rows that previously had no invoices attached to them
could not be used in LPP. However, invoices can now be found and used by merging these new Account rows
with the more established rows. While still providing the measurements as seen in Tables 8.1 and 8.2.





9
Conclusion

In this chapter, we recap the findings discussed in each section of the thesis, which will help address the main
Research Question (RQ). In order to address the main RQ, each of the Sub-Questions (SQs) will first be re-
viewed and addressed. These SQs can be found in Section 1.1. The thesis is performed on the data set offered
by Exact but not solely created for Exact. The implemented methods are generalized and can be applied to
other data sets with the same characteristics. These characteristics are big data sets with duplications, i.e.,
multiple rows refer to the same real-world object, and where the rows are provided by users, making them
incoherent and incomplete. A knowledge gap exists in implementing D-ER pipelines for data sets following
the characteristics above. The characteristics of the data set are investigated in a D-ER to make the findings
applicable to other data sets. D-ER means that a single data set with duplicates is used for the ER. This thesis
aims to determine if applying an ER pipeline starring LSH to the given data set is feasible. The desired out-
come of such an ER pipeline is to create an EntityMapper that maps IDs to EntityIDs. These formed EntityIDs
create new ventures of gathering statistics and implementing additional models.

The applied ER pipeline consists of four phases: preprocessing, blocking, matching, and clustering. An
elaborated preprocessing phase is implemented to make the data as coherent as possible. In the blocking
phase, blocks are created to reduce the required comparisons. In the matching phase, these blocks are
cleaned by removing all the Negative-Matches. Finally, in the clustering phase, novel implementations
of the LSH MinHash method are applied to remove noise and find missing edges to create the desired
EntityMapper. Except for the clustering phase, the runs relying on LSH outperformed the other runs. This
shows there is merit in applying LSH to the ER pipeline.

The main RQ is: "Can Locality-Sensitive Hashing techniques help to improve the Dirty Entity Resolution
efficiency and accuracy for incoherent and incomplete distributed big data scenarios?" In order to address this
question, multiple SQs need to be investigated and implemented. An investigation of applying LSH to the
ER pipeline is required. Therefore, multiple distinctive runs are investigated throughout the different stages
of the ER pipeline to address this question. Each run starts the same; the incoherent user-provided raw data
is made coherent in the preprocessing phase. Rows that have, after preprocessing, exactly the same filled-in
properties are merged. These cleaned fields can be used to predict if a Match is a Positive-Match.

Deduplication of small data sets could be possible with a cross-join operation; however, in the case of
big data, this cross-join operation is infeasible and intractable as this operation grows quadratically in size.
Almost all the Matches created by a cross-join operation are False-Matches, wasting significant compu-
tation power. Instead, the big data set should be split into smaller blocks with a high likelihood of being
True-Matches, and only cross-join operations should be done in these smaller blocks. The blocking phase is
responsible for creating these blocks within the data set. This significant phase makes the problem tractable,
bringing us to SQ1: "Can the blocking phase of Dirty Entity Resolution significantly reduce the number of
required comparisons associated with big data, making it tractable, while still producing high-quality blocks?"

SQ1’s primary focus is on the total number of comparisons after blocking, as ER can not be feasibly ap-
plied without a high reduction of comparisons. Four distinct run configurations are introduced in the block-
ing phase and used throughout the ER pipeline: RunBaseline, RunLSH, RunAugBaseline, and RunAugLSH.
These four runs rely on the same preprocessing, making it possible to compare them. RunBaseline are blocks
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created with Standard Blocking on the always available property for each data set row, the Name row. Sec-
ondly, the RunLSH is created; in this run, the LSH method MinHash is used on the always available property to
block the data. MinHash has the advantage of correcting spelling mistakes and finding matches with similar
patterns within the property. In order to give a fair comparison, these two runs are joined with an additional
blocking scheme, which is an augmentation and relies on the incomplete data of the data set. Incomplete
data cannot be used as the base for blocking the data set, as that would mean rows will be left out of the ER
pipeline. However, these incomplete data sets can augment the general blocking scheme. Multiple augmen-
tative blocking schemes were investigated, and the best-performing augmentations were combined and then
joined to RunBaseline and RunLSH to create RunAugBaseline and RunAugLSH, respectively.

An interesting outcome of the blocking phase is that applying blocking with the most simple RunBaseline
would take 1.229.959 times fewer comparisons than the exhaustive cross-join. This run has a good PC and an
excellent PQ. The most complex configuration, the RunAugLSH, still divided the total required comparisons
by 82.709 times. The PC was better in this run, but the PQ was worse than RunBaseline. This result can be
reasoned due to LSH applying error correction, which relies on creating more (required) comparisons. Error
correction results from splitting the words into N-grams and creating blocks based on similar sets of tokens.
The experiments also showed that applying augmentations significantly improves the PC at the cost of PQ.
However, PQ will be improved in the next phase, making the outcome favorable.

The aforementioned allows us to address SQ1. It is possible to implement a blocking phase that can block
similar rows together, reducing the total number of required comparisons by a significant number of times.
Not only is this possible, but the results also show that this can be done with a high PC and PQ.

The second sub-question, SQ2, is as follows: "Can the matching phase of Dirty Entity Resolution cor-
rectly classify comparisons between incoherent and incomplete rows?". Due to the incomplete nature of the
properties within the data set, classification is not straightforward. Only one property is always provided, but
classification on only that property will not give the desired results. Including more properties in a match
will generally result in a higher confidence in the results by a classifier. Multiple classifiers were trained
to overcome the issue of training a classifier on incomplete data; each classifier corresponds to its unique
subset of available properties. Splitting the comparisons into disjoint subsets and their uniquely trained
classifiers has the extra benefit of a divide-and-conquer mentality while also giving more robust results.
These different subsets can all be classified in parallel for big data, improving the required time for large sets;
however, this comes at the cost of additional overhead computations.

The experiments showed that the recall will slightly decrease after applying the classifiers, but the preci-
sion significantly increases. With the aforementioned implementation and their results, creating a matching
phase on a data set created with (user-provided) incoherent and incomplete rows of data is possible. These
classifiers will improve the PQ while only slightly affecting the PC.

The next sub-question, SQ3, is the last question regarding the inner workings of the applied ER pipeline
and goes as follows: "Can the clustering phase of Dirty Entity Resolution be applied to cluster distributed big
data with high correctness?" The output of the matching phase is a graph, and the output of the ER pipeline
should be an EntityMapper, which maps a unique ID to an EntityID. In order to create the mapping, clusters
within the graph must be found and given an EntityID. One way to implement this is to split the graph into
their disjoint sub-graphs. Using these sub-graphs as unique Entities of rows is an efficient method of creating
such a mapper. However, disjoint sub-graphs are particularly susceptible to noise within the graph. The
existence of bridge edges linking otherwise disjoint sub-graphs together will invalidly merge sub-graphs,
which erroneously resulted in the creation of one large cluster that almost encapsulated all the different
rows. In the matching phase, two rows are only compared by their available properties, but in the clustering
phase, it is possible to compare rows with their spatial information in the graph. The edge is valid if the
two rows share the majority of neighbors in the graph. If the two rows of an edge consist mainly of distinct
neighbors, the edge is discarded. In this method, coined NoiseRemoval, the fraction of neighbors in common
is found with the novel use of LSH MinHash, in which an edge is removed if the fraction found is below the
specified threshold. NoiseRemoval was shown to be effective in removing noise, as separate clusters could
now be generated that have good recall and high precision.

After NoiseRemoval, missing edges can be found. These missing edges were missed due to not being
blocked together or marked as Negative-Match by the classification. A novel clustering technique, Miss-
ingLinks, is introduced to find these missing links. MissingLinks uses a technique similar to NoiseRemoval,
but the technique is slightly adjusted to accommodate finding the missing links. LSH MinHash is applied on
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the neighbors of each row, and then hashes are generated for each row. If the hashes overlap between two
rows, they share neighbors; an edge will be created between them if sufficient hashes overlap. It showed that
MissingLinks marginally affected the recall and precision while significantly reducing the number of Entities
created. Merging more Entities and still having the same good measurements is an excellent outcome.

With the aforementioned, the SQ3 can be addressed. The recall and precision are marginally lower after
applying the clustering phase. However, transforming an interconnected graph into clusters of disjoint
Entities will always come with a natural loss. A marginal loss is an excellent result; thus, clustering can be
applied to D-ER while maintaining the correctness of the matching outcome.

The final Sub-Question, SQ4, applies the created EntityMapper to an existing model and goes as fol-
lows: "Can the created deduplicated data set be used as a solution in existing models to improve their results?"
The different EntityMappers were used to train a LPP model. However, the outcome was worse when
applying the ER pipelines, which can be caused by the inconsistency of what the data represents within the
data set and, more importantly, the notion of what the Entities should represent. The ER pipeline merges all
companies’ sub-divisions into a single Entity. However, each sub-division may handle its invoices differently
than one another in the company. Therefore, for the case of LPP, an additional step of splitting the created
Entities into their sub-divisions should be implemented. Even with a worse result, it is now possible to give a
prediction for newly created rows that have no historical information attached to them.

The address to SQ4 is inconclusive. For the current model, it does not necessarily improve the outcome,
although, with the use of ER, it is now possible to predict new Account rows without historical data. However,
the average result is worse than not applying ER. The created EntityMappers are not a ready solution for
the LPP model to improve its outcome, but that might be different for other models, as other models might
require a different notion of what an Entity resembles.

The main RQ can be addressed with all the conclusions drawn on the SQs. In the implemented D-ER
pipeline, LSH MinHash is used in the blocking stage to create blocks of similarly spelled rows. Although using
LSH does require more comparisons, it will improve the PC at the cost of PQ. Applying an efficient matching
phase on the incomplete big data is possible. In the clustering phase, LSH enables, efficiently and effectively,
the removal of noise within the Positive-Matches based on spatial information. Links that are missed can
also be found for distributed big data scenarios. The implementation of MinHash allows these two clustering
methods to be applied. Without using LSH, the comparison would require a large space requirement. For
the final created EntityMappers by the four different runs, the recall will improve faster than precision
decreases when applying LSH. A significant and cheap improvement was the addition of augmentations.
Finally, the applied scenario showed that it performs slightly worse when applying the created Entities, but
by using these Entities it is possible to classify rows without historical data. A slightly different Entity notion
could increase the outcome for the specific scenario, which requires an additional step. For other scenarios,
however, merging sub-divisions from Entities into a single Entity will likely be correct.

Using LSH MinHash as a technique in an ER pipeline will improve the efficiency and accuracy of the re-
solved Entities within incoherent and incomplete big data of Exact’s customers. LSH helps to find matches
between incoherent rows that refer to the same real-world object. However, the traditional ER pipeline must
be altered to fully utilize such an approach’s strength. First, a more straightforward pipeline should be ap-
plied, and afterward, a more extensive error-corrective pipeline relying on LSH should be implemented.





10
Discussion & Future Work

In this final chapter, we discuss the limitations of this research work. We will also present an overview of the
future works. The thesis is a feasibility study; after conducting such a study, it opens new ventures within the
data that can be explored. The directions for future work will be elaborately provided. We start by explaining
the limitations of using PySpark in Section 10.1. Afterward, we discuss the labels and other possible ways to
measure effectiveness in Section 10.2. Next, in Section 10.3, we introduce a new double-pass pipeline that
combines the strengths of the investigated implementations. The created Entities can be transformed into
multiple sub-Entities, as discussed in Section 10.4. This section is followed by possible future work on apply-
ing the ER pipeline on different timesteps and investigating how the rows change over time to gather more
information on the data, as explained in Section 10.5. We discussed in Section 8.2 that the Accounts data set
has imperfections; we dive into them and their possible solutions in Section 10.6. In Section 5.4.3, we dis-
cussed the investigated manipulations, but future research is warranted, as they can be very effective. These
hash manipulations are briefly described in Section 10.7. The Matching phase relies on multiple classifiers,
as shown in Section 6.4. However, data sets with many varying properties could result in too many required
classifiers. Additional setups should be investigated, as discussed in Section 10.8. In Section 10.9, we discuss
additional use cases for applying the unique words, as explained in Section 5.3.1. Lastly, we present a novel
addition to MultiGram in Section 10.10, which could improve MultiGram’s results when implemented.

10.1. PySpark Limitations
The big data was handled in a distributed manner with PySpark in Python. PySpark is selected by Exact as the
environment for working with big data. The environment enables the processing of big data in a distributed
manner but has some inherent limitations. PySpark is being mapped to the Apache Spark engine in Scala.
Due to the difference in environments, using UDFs in PySpark is inherently slow. It is so slow that processing
a simple UDF for a thousand rows already adds so much overhead that computation is not feasible. The
added overhead makes it impossible to use UDFs to create highly sophisticated functions that can be used
throughout the ER pipeline. It is only possible to use complex methods from PySpark or create methods that
do not require the inherently slow UDFs. The only problem of not being able to use these complex function
constructors results in the methods being rather rudimentary by being bound to what is possible within the
PySpark environment itself. This is a significant limitation and disallows complex methods such as Jaro-
Winkler. The addition of methods written in the Scala Apache Spark environment and imported within the
PySpark environment should be investigated. Having more methods at one’s disposal could result in better
results.

Another problem with using PySpark is that an undocumented limit was reached in the size of the created
models. If the CountVectorizer1, which creates the vocabulary for the LSH MinHash implementation, receives
a VocabSize larger than five million, the execution would be terminated. Because of this issue, using the
entire wanted vocabulary as the knowledge base of other methods is only sometimes possible. Due to this
limitation, additional decisions must be made on which settings will generate the best executable model.
This means the current implementation and results shown for all methods based on LSH could be improved

1https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.CountVectorizer.html
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if this inherent limitation is gone. Investigation and removing this inherent limitation will, therefore, directly
improve the results.

10.2. Label Generation
The project is based on big data. By definition, the data set will be too big to be labeled correctly by hand;
therefore, the labels are generated from the information provided by the users. However, these labels are not
always correct and can be split into two distinct groups:

• True-Matching: If the label is a match, then both the VATNumber and CoC are precisely the same
value. It is improbable that, by chance, these overlap; therefore, the matching labels are almost entirely
correct.

• False-Matching: The labels do not match by either their VATNumber, CoC, or both. A single uncor-
rected spelling mistake within one of these four fields (two per row) will already result in the incorrect
label for the comparison.

With this clear division and the inclusion of spelling mistakes by the user, it is possible to claim that numerous
comparisons classified as FP should be TP. The number of TPs will be greater, while the number of FPs will
decrease. Since fewer Negative-Matches exist, the True Negative (TN) will be decreased. While the number
of False Negative (FN) will marginally increase, allowing for spelling mistakes, it means that both the VAT-
Number and CoC of the companies need to be almost identical to be considered a spelling mistake, which is
extremely unlikely.

r ecal l = T P

T P +F N
(10.1) pr eci si on = T P

T P +F P
(10.2)

Applying this claim, the recall, as shown in Eq. (10.1), would be increased due to TP and an almost unaffected
FN. This can be explained by the fact that incorrectly labeled rows are now found. The precision, expressed
in Eq. (10.2), would be increased more significantly than the recall since TP increases and FP decreases. This
adjustment in label generation can find the incorrectly labeled rows that should have been a match. How-
ever, applying a different implementation for label generation that encapsulates spelling mistakes will require
more resources.

10.2.1. Entity Notion
The classifier deems some Matches as a correct Match and are a Positive-Match, but the label marked it as
a False-Match, making the Positive-Match a FP. However, after investigating the FPs, there are explainable
cases in which a Matches should be viewed as TP. These are the following cases are:

1. The rows match in all their fields except their physical address; this company could be a franchise with
multiple addresses. Each physical store has its own VATNumber.

2. The company has a single headquarters, which is used as their contact information. The Accounts can
be equal in all their properties, but there is a structure hidden in this company, in which each sub-
division has its own CoC or VATNumber.

3. Outdated information: even though the Accounts are filtered on having at least a single transaction
within the last two years, it is possible that the account still uses an outdated VATNumber or CoC.

The first two cases boil down to what the created Entity should represent: do all the sub-divisions need to be
merged into a single Entity or not? This notion of an Entity also changes depending on the company; some
companies use different CoCs or VATNumbers to address their sub-division, while others only use a single
CoC or VATNumber for all their departments. In the last case, outdated information resolves in creating an
FP. In the future, the changes in the row’s CoC and VATNumber can be tracked to see how these change over
time. Instead of only looking at the current CoC or VATNumber, the historical versions can be used to check
if these rows are a True-Match.
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10.2.2. Label Generation Scopes
There are some disadvantages to using the labels based on the VATNumber and CoC. Companies with multi-
ple sub-divisions or physical stores sometimes have different VATNumbers or CoCs for each department. So
even if Accounts are part of the same unique real-world company, they can have different labels attached.

The question that comes forward is what a real-world company is. Is a franchise a single company or mul-
tiple smaller companies? In Exact’s case, the data set will make the distinction with the information the user
has provided. The trained classifiers find more TPs if these sub-divisions are considered Positive-Matches
with each other. That means that the classifiers think an entire franchise is a single company. This notion of
an Entity is neither right nor wrong; it depends on the representation that further applications require.

The other problem with using the labeled data for classification is that the users provide the data, meaning
spelling errors can be made while typing. In the case of Exact, different settings can be used on the labels to
determine whether the Match is a False or a True-Match.

• Strict: When using strict labels to create the metrics, both the VATNumber and CoC must be equal,
ensuring a high probability that these two Accounts refer to the same real-world company.

• Lenient: When using lenient labels, only one VATNumber or CoC must be equal to be classified as a
True-Match.

• Error-Corrected(n): It is also possible to correct the user error with edit-distance if either the VATNum-
ber or CoC have a n edit-distance from each other, then it is still classified as a True-Match.

The uses of these different ways of handling the labels serve their own purpose. Classifiers should be trained
on a data set that is labeled correct, meaning the strict case is the best to train the data on. Error-correctness
can be used for both the strict and lenient options. However, when applied to the lenient case, many correctly
classified False-Matches will be transformed into True-Matches, which is erroneous. This change also means
that the False-Matches are more likely to be correctly labeled False-Matches. Creating strict and lenient labels
can be done with simple grouping. Applying error correction, however, means that all the labels need to be
cross-compared, which still requires at least 29 trillion comparisons, as seen in Table 3.2. Another novel
implementation is to use LSH again to create buckets of highly similar labels and only compare those for
possible spelling mistakes. Although the result is an approximation, every improvement on the created labels
can be used to produce more correct classifiers.

10.3. Double-Pass Pipeline
Throughout the pipeline, the basic augmented run, RunAugBaseline, performs well with a relatively small
number of required comparisons and has the highest performance, as seen in Table 7.4. The intermediate
steps show that the error correction application of LSH blocks increases the PC. Combining these two ER
runs into a single combined ER double-pass run is possible and allows the combination of the strengths of
both RunAugBaseline and RunLSH. After the first pass, another ER pass is possible since the output of the ER
process is equal to what the ER process requires as its input. The only difference is that the IDs are mapped
to a new EntityID. So, another ER pipeline can be immediately applied in a double-pass fashion afterward.

First, all the Accounts are merged with more straightforward methods, similar to methods used in
RunAugBaseline. Afterward, a more extensive pipeline can be applied since many rows are merged, re-
ducing the input size. This pipeline can link Entities created by the first pass while taking error corrective
measures. The applied LSH second pass can essentially be seen as a way to cluster the created disjoint En-
tities EntityMapper of the first pass. Instead of applying error correction directly, it is a way to create new
Matches. These newly created Matches are created to overcome the problem of differently spelled rows not
being placed in a joint block within the blocking phase of the first pass. This implementation enables error
correction while consuming fewer resources than the RunLSH requires. This double-pass solution can be
applied to all existing ER pipelines for link discovery and should result in a higher PC with the possibility of
lower PQ.

10.4. Cluster Splitting
As stated in Chapter 8, further research should be conducted on splitting the final created clusters into their
components. This cluster splitting could be applied for this cause and filter out rows not belonging to the En-
tity, creating more precise Entities. One idea for implementing the splitting of clusters is applying MinHash.
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First, all the properties in the row can be merged into a single string, and that string can be used to create
hashes with MinHash. The fraction of overlapping hashes can be used as a weight of the edges between dif-
ferent rows. Afterward, the rows can be split into sub-components by these weighted edges using a clustering
method. Transforming the Entities into sub-components could improve the results of existing models. The
PQ will be improved while the PC could slightly decrease.

10.5. Adaptive Entity Resolution
Currently, the data set of a specific point in time is used to apply the runs. Nevertheless, it is possible to rerun
the ER pipeline on different time frames; seeing how companies in the Accounts data set change over time
can give rise to an entirely new world of data within this data set. By doing so, the delta Accounts, which are
Accounts that are new or have a field updated, can be placed into additional blocks, finding more connections
with the other rows in Accounts. More information about a company itself can be discovered. Creating a new
type of data within the provided data set, i.e., companies acquiring new locations, rebranding with a name
change, or the merging of companies. Currently, if a company merges with another, it can cause a weird effect
within ER because afterward, there might be three different companies, the original two and the merged one.
Losing information about the company but in the sense of LPP, merging these two disjoint companies with
different payment styles will result in incorrect behavior.

The current implementation allows for multiple adaptive runs by ensuring the algorithms that use any
sense of randomness are always run with the same seed, removing the randomness. The delta Accounts
can be rerun through the pipeline. If done per interval, the number of delta Accounts is small, making it
possible to keep applying ER on a specific interval, i.e., weekly, without requiring significant resources. The
same blocks are mainly created when using adaptive ER, so the PQ will be mostly the same. The PC will be
improved as more matches can be found using historical data. RR will be increased per time step, but since
the ER pipeline will now only work with delta Accounts, there are fewer required comparisons per time frame.

10.6. Pre-Splitting
The active rows of the Accounts data set are used for the applied ER pipelines. However, this data set contains
different types of what rows represent within the data set, as seen in Section 8.2. In the current implementa-
tion, the idea is only to create labels for the rows of interest; this will automatically give the unwanted rows
no impact in the classification phase. However, since these rows still go through the entire ER pipeline, they
can introduce noise within the generated Matches. In the blocking phase, Chapter 5, different blocks are cre-
ated on family names, for example. These poorly created blocks are not expressed in terms of PC and PQ, as
discussed in Section 8.2.

The Accounts data set should be split into personal and company rows, which is a unique case for the
given data set used, but other data sets could also face a similar problem. Future ER pipelines should start
with an in-depth investigation of the GT. Detecting which rows have a label attached and, more importantly,
which rows do not have a label attached. If a subset of similar rows lacks labels, it should be looked into what
will happen if that subset is removed from the data set before applying the ER pipeline. So, these rows will
not be mapped to an Entity, as they are not included in the ER pipeline.

Another problem with the data set and what could be split into separate problems is that the entire ER
pipeline uses data cleaned on the Dutch formats, i.e., Postcode. Different countries have different schemes
for their Postcodes, invalidating other countries’ Postcodes by default. It might be as simple as splitting the
data set beforehand and applying multiple ER pipelines on the disjoint data sets; each split data set should
have its own implementation.

10.7. Hash Manipulation
After applying the LSH algorithm, an array of hashes is generated that can be manipulated. Some ideas are
tried and shared in Section 5.4.3. However, these or new ideas should be investigated further to manipulate
the hashes into creating many different blocks without much computational cost. A solid performing hash
manipulation can increase the blocking algorithm’s efficiency and effectiveness for a little computational
cost. It could thus serve as a significant improvement factor in creating many blocks.
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10.8. Many Feature Classifiers
If many features rely on not always available properties, then the currently implemented classification
scheme will become too large as 2n classifiers are required to classify the problem. The exponential nature
will make a large n require too many classifiers. Instead of classifiers with all the possible available properties,
it can also be possible to train classifiers of size m, in which (m > n), with subsets of size n, essentially losing
out on some (less significant) property values while still being able to classify the problem more precisely
than only using the always available properties.

10.9. Unique Words Concatenation MinHash
Only the Name property is currently used for LSH MinHash in the blocking phase. Adding all the properties
into a single document, separated by whitespace, might be feasible. Afterward, the common words can be
retrieved from this single line, as discussed in Section 5.3.1. The common words are now known, which can be
removed before applying the MinHash, making it possible to create longer strings with uniquely identifiable
words for real-world entities, which can serve as the basis for applying MinHash in the blocking phase. This
new blocking technique circumvents the problem of the incomplete dataset by appending all the rows to a
single line, but being doing so, information is lost about what the words actually represent. If only the words
that address unique cases for a real-world entity are kept, then the merged information can be used in an LSH
MinHash blocking scheme. This blocking scheme should have a high PQ and a high RR. However, it depends
on how much the words are shared between different entities; if rows do not contain any unique words, these
rows cannot be used in such a blocking technique, impacting the PC. Such a blocking technique can also be
applied as an augmentation scheme, improving the overall PQ and PC of the applied blocking phase.

10.10. Skip-MultiGrams
If N-gram is applied to two words where one has a single erroneous character, then at most N tokens will be
different between the two. The size of N largely influences the Jaccard similarity used within error correction.
A larger N will give a lower Jaccard similarity. A larger N will contain more information on the structure of the
word; thus, a larger N does help decrease the number of FPs. Nevertheless, it also comes with the problem of
making the tokens more dissimilar per spelling error between the rows.

Therefore, the following novel concept coined the Skip-MultiGrams, can be introduced to negate this
problem while still containing more information about the structure of the words. Skip-MultiGrams is an
alteration to the MultiGrams discussed in Section 5.4.1. The way the N-grams are created is different in this
alteration. MinN should be set to two, making all the tokens contain at least two characters. For each token
created, only keep the two outer characters and replace all the inner characters with a skip character, such
as the underscore character. In essence, tokens will always contain just two characters (excluding the skip
character). If the alphabet consists of a characters, then for each N , the maximum number of unique tokens
would be a2. This results in the number of tokens created with SkipGrams being independent of N , solving
the overshadowing caused by a larger N within MultiGram. In MultiGram, a spelling mistake would make
the generated tokens at most N tokens different per N , but with the implementation of Skip-MultiGrams,
a spelling mistake would at most only make 2 tokens different per N . This alteration can overcome the in-
herent problems with applying MultiGrams for a MinHash implementation and should be investigated. This
updated version should find more connections of better quality between rows. If used as the base for gener-
ating MinHash, it could improve the PC, PQ, and RR.
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Acronyms
AL1 AddressLine1. 19–21, 24, 35, 42

AL1N AddressLine1Number. 4, 5, 19, 21, 35, 40–42

AL1S AddressLine1Street. 4, 20, 21, 23, 40, 42

ANN Approximated Nearest Neighbor. 9, 26, 34

BKV Blocking Key Value. 5, 7–11, 16, 25, 26, 34, 35, 78

BRP Bucketed Random Projection. 9, 26

CC-ER Clean-Clean Entity Resolution. 1, 11, 16, 22, 23

CEP Cardinality Edge Pruning. 12

CNP Cardinality Node Pruning. 12

CoC Chamber of Commerce. 5, 17, 19, 21, 22, 38, 58, 66, 67, Glossary: Chamber of Commerce

D-ER Dirty Entity Resolution. vii, 1–3, 11, 16, 19, 23–25, 61–63

DF Document Frequency. 28, 31, 32

ER Entity Resolution. vii, xiii, xv, 1–6, 9, 10, 12, 13, 15, 16, 19, 21–23, 25, 31, 33, 35, 37, 39, 49, 53, 54, 57–59,
61–63, 65, 67, 68, 76

FN False Negative. 66

FP False Positive. 7, 36, 44, 48, 50, 66, 69

GT Ground Truth. xiii, xv, 15, 17, 19, 21–23, 25, 28, 31, 32, 48, 58, 68, 77

GT1 Ground sub-Truth. xiii, xv, 32, 34, 36, 37, Glossary: Ground sub-Truth

IDF Inverse Document Frequency. 13, 23

LECP Low Entity Co-occurrence Pruning. 12

LPP Late Payment Prediction. xv, 4, 57–59, 63, 68

LSH Locality-Sensitive Hashing. vii, xv, 2–4, 9, 10, 25, 26, 29, 37, 38, 47, 48, 50, 52–54, 61–63, 65, 67–69, 76–78

MSE Mean Squared Error. 27

NLP Natural Language Processing. 26

PC Pairs Completeness. vii, xiii, 3, 9–11, 25, 26, 31–38, 62, 63, 67–69

PQ Pairs Quality. vii, 3, 9–11, 25, 26, 31, 32, 34–38, 62, 63, 67–69

75
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RQ Research Question. 3, 61, 63

RR Reduction Ratio. vii, xiii, 9–11, 25, 31–38, 47, 68, 69

SQ Sub-Question. 3, 4, 61, 63

SQ1 Sub-Question 1. 3, 4, 61, 62

SQ2 Sub-Question 2. 3, 4, 62

SQ3 Sub-Question 3. 3, 4, 62, 63

SQ4 Sub-Question 4. 3, 4, 63

TF Term Frequency. 13, 23, 28, 29, 31

TF-IDF Term Frequency - Inverse Document Frequency. 13, 22, 23

TN True Negative. 66

TP True Positive. 36, 66, 67

TSU Theoretical SpeedUp. 25, 38, 47

UDF User Defined Function. 40, 65, Glossary: User Defined Function

WEP Weighted Edge Pruning. 12

WNP Weighted Node Pruning. 12

Glossary
Account A single row of the Account data set from Exact, containing divisions and their Accounts. This data

set is used for applying the ER pipeline on. 5, 16, 19, 20, 22, 26, 41, 44, 50, 57–59, 63, 66–68, 76–78

AccountID The ID of a row in Accounts. 49, 53, 58

Accounts The data set used to apply ER on, the dataset contains rows referring to real-world persons and
companies, this data set is dirty, meaning there exist duplicated references in to the same real-world
entity. xiii, xv, 4, 5, 17, 19–23, 25–27, 35, 38–42, 44, 47–49, 57–59, 65, 67, 68, 76–78

ActiveAccounts A subset of Accounts in which each row has at least a single transaction assigned to them in
the last two years. The data set has a size of roughly 85 million rows. 17, 19

AND-OR amplification The way the generated hashes of LSH are handled. Rows get multiple hash tables,
consisting of hash AND-clauses. All the hashes of a hash table must be equal to be part of the same
block. The different hash tables are the OR-clauses, causing the creation of multiple blocks per row. 30

Apache Spark Apache Spark is an engine allowing the processing of big data in a distributed fashion. 65

ApproxSim Approximated similarity of neighborhoods between two vertices. The approximation is done
with MinHash and used as a threshold to consider the edge as noise. 50–54

BitMask Each property represents a specific bit, the specific bit is the BitMask of that property. xv, 40

Chamber of Commerce The Chamber of Commerce property from the Account data set. Each Dutch com-
pany must have a Chamber of Commerce number for tax and legal applications. 5, 20

City The City property from the Account data set. 4, 20, 21, 24, 40, 42

ClassifierMask The PropertyMask that is used for this classifier. The classifier must have all the selected
properties of this mask available for each row that needs to be classified. 40, 44, 48
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Company Generated dataset in which the Accounts are filtered by Name if they contain company related
strings. 58, 77

CompanyAccount An Account that is in the Company subset of Accounts. 58

Country The Country property from the Account data set. 20

Email The Email property from the Account data set. 4, 5, 20–24, 35, 40, 42, 58, 79

Entity An group of merged Accounts created by the selected EntityMapper. vii, 16, 49, 52–54, 57, 62, 63,
65–68

EntityID A new ID given to rows of Accounts, mapping multiple rows to a single entity that all should refer
to the same real-world company. The EntityMapper transforms the ID to the EntityID. 4, 49, 50, 53, 54,
59, 61, 62, 67, 77, 78

EntityMapper A data set that has two columns, an initial ID and an EntityID, it maps the unique ID to an
EntityID shared by other IDs. xv, 16, 49, 52–54, 57–59, 61–63, 67, 77

EntityMapping The mappings of an EntityMapper that maps the unique ID to an EntityID shared by other
IDs. xv, 16, 50

Exact Cloud business software for Small and medium-sized enterprises and their accountants, the thesis is
conducted on the Account dataset from Exact. i, iii, 4, 5, 16, 17, 19, 22, 23, 26, 38, 57, 61, 63, 65, 67, 76

FastText Library developed by Facebook that is an extension of Word2Vec. Instead of words, a range of N-
grams is used to overcome spelling errors and find more structure within the data. 29, 31, 77

Fax The Fax property from the Account data set. 20, 21, 23, 79

Ground sub-Truth A subset of GT, a smaller set is required to perform experiments in feasible time and
space. The measurements created from this GT subset are not the same as measurements that are
created from the GT but are sufficient to compare the results of the experiments. xiii, 32

initcap String transformation, changing the first letter of each word to a capital letter and the other letters to
lowercase. 19–21

InverseID Instead of using AccountIDs, the InverseID can be used. The InverseIDs are groups of accounts
that have the same properties. The lowest InverseID of the group will represent the InverseID. xv, 24,
26, 40, 47, 50, 52–54, 77

LSH-RB1000 A pruning method applied to runs containing LSH, in which blocks larger than 1000 InverseIDs
are regrouped by their Name. 48

MatchPropertyMask A mask given to a Match, which is a combination bitwise-AND operation between the
PropertyMasks of the two rows of the Match. 44, 47

MinHash An implementation of LSH, that relies on sparse vectors representing each row. vii, xiii, 4, 9, 25, 26,
28–33, 37, 50, 52, 53, 61–63, 65, 67–69, 76–78

MissingLinks Clustering method that uses MinHash to discover missed edges. If the vertices share a majority
of neighboring vertices, then they can be linked again via MinHash by creating an edge between them.
Afterward, the disconnected sub-graphs and transforming them into unique EntityIDs. xv, 49, 53, 54,
62, 63

MultiGram N-gram creation in the manner of FastText, in which the tokens are constructed with a range of
N . 34, 65, 69

N-gram Splitting a sentence in words of size N, can also be applied on character level. vii, 8–10, 26, 29–31,
41, 50, 62, 69, 77
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Name The Name property from the Account data set. xiii, 4, 5, 19–28, 32, 35, 38–44, 47, 48, 58, 62, 69, 77, 79

NoClustering Clustering method of applying no clustering method but only finding the disconnected sub-
graphs and transforming them into unique EntityIDs. xv, 50–52

NoiseRemoval Clustering method that uses MinHash to see if the vertices of an edge share sufficient neigh-
bors, without much overlap in neighbors, the edge is deemed as noise and is discarded. Afterward, the
disconnected sub-graphs and transforming them into unique EntityIDs. xiii, xv, 49, 51–55, 62

Phone The Phone property from the Account data set. 4, 20–24, 35, 40, 58, 79

Postcode The Postcode property from the Account data set. 4, 5, 19–21, 23, 24, 35, 36, 40, 42, 68

PropertyMask A mask given to rows of Accounts, this mask resembles which properties are available for a
given row. xiii, 40–42, 44–47, 76, 77

PySpark The Apache Spark implementation in Python code language, it essentially maps the majority of
available functions from Python to the Spark implementation in Scala. 30, 40, 41, 50, 52, 65

RunAugBaseline Run in which blocks are created by grouping on Name in combination with augmentation
of other properties. xiii, 38, 47, 48, 50–55, 58, 61, 62, 67

RunAugLSH Run in which blocks are created by applying LSH on Name in combination with augmentation
of other properties. xiii, 38, 44, 48, 50–55, 58, 61, 62

RunBaseline Run in which blocks are created by grouping on Name. xiii, 38, 47–55, 58, 61, 62

RunLSH Run in which blocks are created by applying LSH on Name. xiii, 38, 48, 50–55, 58, 61, 62, 67

Sliding Comparison Window A blocking technique which simply partitions the data on the created BKVs,
afterward a window is slid over the alphabetically sorted rows. Their BKVs are compared with Leven-
shtein; if they are below the selected threshold, they are discarded. 34–37

Sliding Window A blocking technique which simply partitions the data on the created BKVs and afterward
slides a window over the sorted BKVs, creating closely related blocks in terms of BKV. 7, 10, 25, 34, 35

Soundex Method that transforms a word to its phonetic resemblance. 10

Standard Blocking A blocking technique which simply partitions the data on the created BKVs. 7, 9, 10, 32,
34–37, 62

State The State property from the Account data set. 4, 20, 21, 24, 40, 42

User Defined Function Functions defined by the user in the PySpark implementation, however, require too
much overhead that they are unusable within a big data application. 40

VATNumber The VATNumber property from the Account data set. 5, 17, 19–22, 38, 66, 67

Website The Website property from the Account data set. 4, 20, 21, 23, 24, 35, 40–42, 79

Word2Vec Representing a word as a dense vector. This representation can be learned via machine-learning.
9, 26–28, 77
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Appendix

Here, additional information is provided. This information is not important to know for this thesis but is
important for reproducing the results of this thesis.

A.1. Stopwords

( ^ | \ s ) ( ( ( ( b \ . ? v | n \ . ? v \ . ? t | t \ . ? v \ . ? n | t \ . ? n \ . ? v | v \ . ? o \ . ? f | v \ . ? v \ . ? e | n \ . ? v ) | [ \ . \ − ] * |
t e s t | aan | vennootschap | maatschap | eenmanszaak | s t i c h t i n g | zzp | van | vd | de | der | den | het | en |
dhr | hr | mevr | mevrouw | heer | nederland | netherlands | fam | fa |gmbh| bewoners | deze |mw| holding |
l t d | the | bvba | group | in | co | famil ie | voor | and | you | for | mr | t e r | b i j | miss | mrs ) \ . ? ) ( \ s | $ ) ) +

Listing A.1: The regex of stopwords used to clean the Name field

A.2. Website regex
The pre-processing phase uses multiple regexes, which are shown below.

A.2.1. Website suffix regex

( ( h+ t +p+s + : * [ \ / \ \ \ ] + ) | (www[ \ / \ \ \ ] * [ \ . , ] ) ) +

Listing A.2: The regex used to leniently remove Website prefixes

A.2.2. Website extract regex

[\ −a−z0 −9]+(\ . [\ − a−z0 − 9 ] { 2 , } ) +

Listing A.3: The regex used to extract valid Website addresses

A.3. Email regex

( [ a−z0−9_ \ −][ a−z0−9_ \ − \ . \ + ] * ) ? [ a−z0−9_\ −]+@[ a−z0 −9\ −\._ ] * \ . [ a−z0 −9\ −]{2 ,}

Listing A.4: The regex used to extract valid Email addresses

A.4. Phone/Fax regex

( \ + [ 0 − 9 ] { 2 } | \ + [ 0 − 9 ] { 2 } \ ( 0 \ ) | \ ( \ + [ 0 − 9 ] { 2 } \ ) \ ( 0 \ ) | 0 0 [ 0 − 9 ] { 2 } | 0 6 ? )
( [ 0 − 9 ] { 9 } $ |[0 −9\ −\ s ] { 1 0 } )

Listing A.5: The regex used to extract valid Phone/Fax numbers
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A.5. Applied Business Filter

’bv ’ , ’ vof ’ , ’nv ’ , ’ cv ’ , ’ s t icht ing ’ , ’ maatschap ’ , ’ vereniging ’ , ’ coöperatie ’ ,
’ cooperatie ’ , ’eenmanszaak ’ , ’ zzp ’ , ’ vennootschap ’ , ’ asml ’ , ’ prosus ’ , ’ unilever ’ ,
’ shel l ’ , ’ ing ’ , ’ phil ips ’ , ’ heineken ’ , ’ ahold ’ , ’ delhaize ’ , ’ akzonobel ’ , ’dsm’ ,
’ exact ’

Listing A.6: The words to filter the accounts on to have a high likelihood that the filtered account represent a company
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