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Abstract

Numerical integration methods such as the Fourier-based COS method can be used for efficiently and
accurately pricing financial products. The COS method can be applied to options on one underlying stock
as well as on multiple underlying stocks. However, this method suffers from an exponential increase in
computational complexity as the dimensions increase. In this thesis we research how to reduce the
computational time, especially for multi-dimensional options. Firstly, we discuss the COS method.
Secondly, we program this method in three different languages, namely MATLAB, C and CUDA. Thirdly,
we perform numerical tests: MATLAB- and C-code on a CPU and CUDA-code on a GPU. Lastly, we
compare some options for the different computing times of these codes.

Key words: option pricing, European options, multi-dimensional options, COS method, Fourier-cosine
series, Fourier-cosine expansion, fast Fourier transform, discrete cosine transform, C, CPU, CUDA, GPU.
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Acronyms and Notation

1. Acronyms

B-S Black-Scholes (model)

ChF characteristic function

CUDA compute unified device architecture

CPU central processing unit

DCT discrete cosine transform

DFT discrete Fourier transform

FCT fast discrete cosine transform

FFT fast Fourier transform, Cooley-Tukey

GBM geometric Brownian motion

GPU graphics processing unit

i.i.d. independent and identically distributed

MC Monte Carlo (simulation)

MJD Merton’s jump diffusion (model)

OOM out of memory

PDE partial differential equation

PDF probability density function

SDE stochastic differential equation

2. Notation

[a, b], [~a,~b] integration range COS method

α drift of the jump part for the MJD model

B(t) money-savings account

~c real vector
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Chapter 1

Introduction

Computation times for the pricing of multi-asset options increase significantly when the number of
underlying assets increases. In financial markets, where time is of the essence, this increase is a huge
problem. Hence, this more or less restricts the business of the parties involved. Therefore, we perform
research on the basis of the COS method on how we can speed up the computations and mitigate this
problem. Our research has several objectives, namely:

• Extend the COS method mathematically to higher dimensions.

• Program MATLAB-, C- and CUDA-code up to three dimensions.

• Test and compare the computation times for some multi-dimensional options.

This thesis is organized as follows: in chapter 2 we start with a short history of options and option pricing.
Then we introduce some financial terminology and discuss some mathematical definitions, theorems and
lemmas. Furthermore, we discuss the Black-Scholes model and the Merton’s jump diffusion model. Next,
we pay attention to the three major groups of numerical option pricing methods, namely Monte Carlo
simulation, partial differential equations (PDE) methods [43] and Fourier-based methods [17, 33]. Finally,
we focus on the order of convergence.
This thesis is based on the COS method: a Fourier-based option pricing technique. Therefore, in chapter
3 we briefly discuss the Fourier transform, Fourier series, Fourier cosine series, the discrete Fourier
transform, fast Fourier transform and discrete Fourier cosine transform.
In chapter 4, we start our research with the COS method developed by Fang and Oosterlee [17]. We
derive this method for one dimension, discuss the payoff coefficients, focus on the truncation range, give
an error analysis and show the calculation complexity.
In chapter 5, we mathematically extend the one-dimensional (1D) COS method to n dimensions. Then,
we derive the nD COS formula. As in the previous chapter, we discuss payoff coefficients, truncation
range, error analysis and calculation complexity.
In chapter 6, we focus on parallel implementation. The COS method is an assembly of different functions.
The most important functions of this assembly, in the sense of time consumption, are the payoff function,
discrete cosine tranform (DCT), characteristic function and dot product. We have developed specific codes
in the programming languages MATLAB, C and CUDA which enable us to measure the calculation time
of these four functions. Thus, we can judge whether it is useful to implement these functions in a parallel
way.
In chapter 7, we present and compare the results of our numerical experiments. To perform these
experiments, we have developed specific codes in the environments MATLAB, C and CUDA, in order to
program the COS method. Our tests show substantial time differences between these three programming
languages.
Finally, chapter 8 contains the conclusions of this thesis.
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Chapter 2

Preliminaries

In this chapter we give a short overview of option pricing. We pay attention to its history, present some
basic terms, give definitions and theorems, discuss the famous Black-Scholes model1, focus on different
important groups of numerical methods, and explain the order of convergence. These subjects provide a
base for our research.

2.1 History

Futures and options trace their roots back to antiquity. In ancient times, for example, Romans used
contingent claim contracts in shipping. The ancient Greek mathematician and philosopher Thales of
Miletus (624-546 BC) bought an option on olive presses in the off-season; in the season he executed his
right and rented these presses profitably [35]. Future markets can be traced back to the Middle Ages.
They were originally developed to meet the needs of merchants and farmers. But the first thoroughly
organized future exchange was established in the 18th century in Ōsaka-shi (Dōjima Rice Exchange) [34].
In the 19th century other exchanges were founded in Chicago, Frankfurt, New York and London.

The theory of option pricing also has a long history. On March 29, 1900 the French mathematician Louis
Bachelier published his thesis Théorie de la Spéculation, a pioneering analysis of the stock and option
markets. Assuming that stock prices follow a Brownian motion, he drafted an option pricing formula.
His thesis deeply influenced the development of stochastic calculus and mathematical finance. Courtault
et al. therefore consider this date the birth of mathematical finance [11].

Since then, numerous researchers have contributed to this theory. In the 1950s, Samuelson, Osborne and
others replaced Bachelier’s Brownian motion with the geometric Brownian motion. However, their option
pricing theories contained ad hoc elements, and even their creators felt vaguely dissatisfied [20]. In 1973,
Fisher Black and Myron Scholes developed a mathematical model for the pricing of stock options which
has become known as the Black-Scholes model [3]. This model is based on the possibility to create a
dynamic hedge position, consisting of a long position in the stock and a short position in the option,
whose value will not depend on the price of the stock. The B-S model is widely considered as a significant
breakthrough in attacking the option pricing problem, because this problem was reduced to solving a
partial differential equation[4, 27]; the solution has a closed-form. This form means that this model makes
it possible to calculate a theoretical estimate of European-style options very rapidly.

In the same year, 1973, the Chicago Board Option Exchange (CBOE) was founded. Soon afterwards,
all over the world new exchanges opened their doors. Therefore, the paper of Black and Scholes and the
creation of the CBOE can be seen as the most important elements leading to a boom in the use and
trading of options over the last decades.

1also known as Black-Scholes-Merton model because of Merton’s substantial contribution[27].
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The idealistic conditions and model assumptions of the B-S model limit its use. In 1976, Merton [28]
pointed out that ‘abnormal’ variations in the price, due to the arrival of important information about the
stock that has more than a marginal effect on the price, must be added to the B-S model. Merton’s theory
was modeled with so-called jump processes. Other authors also observed skewness and excess kurtosis in
log returns of market data, i.e. these log returns deviate from the normal distribution of Brownian motion.
Therefore, a more general distribution was needed. In the early 1990s, there was a great revival of interest
in the theory of stochastic processes due to new developments and novel applications, particularly option
pricing in mathematical finance [1]. Many authors presented new models driven by stochastic processes
with the important features of Brownian motion, i.e. independent and stationary increments, and with
an infinitely divisible distribution. An important class of these underlying stochastic processes is the class
of extended exponential Lévy processes. Examples are the Variance Gamma (VG) model, the Normal
Inverse Gaussian (NIG) model, the Generalized Hyperbolic model and the CGMY model[9].

Fourier analysis can be applied to pricing European options on assets driven by Lévy processes. A common
method is to derive an integral representation using the Fourier transform. “This blends perfectly with
Lévy processes, since the representation involves the characteristic function of the random variables,
which is explicitly provided by the Lévy-Khintchine formula” [31, p. 38].

Despite the recent crisis in financial markets, research into fast, accurate, robust and easy to calibrate
option pricing techniques is still very much alive. In 2008 and 2009, Fang and Oosterlee published their
papers on their Fourier-based COS method[17, 18]. In 2011, developing their idea, Ding et al. presented
three new methods (FCOS, FSIN and FSER)[15]. In 2012, Ruijter and Oosterlee extended the COS
method to higher dimensions[33]. The COS method is therefore the core business of our research.

2.2 Option terminology

Before we start our research we introduce some financial terminology that will be used in this thesis.

In the last decades derivatives have become increasingly important in financial markets. A derivative can
be described as a financial instrument whose value is derived from the value of one or several underlying
assets, such as stocks, bonds and commodities. Well-known derivatives are futures and options. A future
contract is an agreement to buy or sell an asset at a certain time in the future for a certain price. An
option contract is a similar agreement. The main difference between these contracts is that the holder of
an option does not have to exercise his right.

In this thesis we focus on stock options. A stock option is a derivative whose value is dependent on the
price of a stock (a share in a company). There are two basic types of options: call and put options. A
call option gives the holder of the option the right, but not the obligation, to buy a stock by a certain
date for a certain price. A put option gives the holder of the option the right, but not the obligation,
to sell a stock at a certain date for a certain price. The date specified in the contract is known as the
expiration date or the maturity date. The price specified in the contract is known as the exercise price
or the strike price [21].
With an American option, exercise can take place at any time during the life of the option and the
exercise price is fixed. For a European option, exercise can only take place at the expiration date and the
exercise price is also fixed. When early exercise may be restricted to certain dates the option is known as
a Bermudan option. These options have standard, well-defined properties and are traded actively. Their
prices are quoted by exchanges or by brokers on a regular basis.
Besides standard options (“vanillas”) many nonstandard options exist. These options with more complex
features, created by financial engineers for a number of reasons, are termed exotic products [21]. These
options are traded over-the-counter, a market where traders are usually financial institutions, corporations
and fund managers. The OTC market is an important alternative to regular option exchanges. The prices
of these “exotics” are not quoted.
A standard call or put option is written on one underlying risky stock. We call this derivative a
one-dimensional option. But it is also possible to write an option on two or more underlying risky
stocks. We call these contracts multi-dimensional options (“rainbows” [21]).
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The payoff of a European one-dimensional call option is based on the difference between the price of the
stock S(t) at maturity time T and a fixed strike price K. The current time is t = 0. The holder of (a long
position in) a European call option will exercise his option when S(T ) exceeds K, i.e. S(T )−K ≥ 0; in
this case the option is in-the-money. When, at expiry time T , S(T ) − K ≤ 0, the option is worthless.
The holder will not execute his option right (see figure 2.1 left side), the option is out-of-the-money and
its value equals zero. When S(T ) = K the option is at-the-money.

The payoff of (a long position in) a European call option v(S(t), t) at time T is thus

gcall(S(T )) = (S(T )−K)+ = max(S(T )−K, 0).

The holder of (a long position in) a European put option will exercise his option when S(T ) is less than
K i.e. K −S(T ) ≥ 0. When, at expiry time T , K −S(T ) ≤ 0, the option is worthless and the holder will
not execute his option right (see figure 2.1 right side).

The payoff of (a long position in) a European put option v(t, S(t) at time T is thus

gput(S(T )) = (K − S(T ))+ = max(K − S(T ), 0).

A put and a call option are related when they have the same properties. The put-call parity specifies a
relationship of calls and puts with the identical strike price K and the expiry time T . A very important
feature is that this parity is model-independent and applies at all times. The put-call parity is given by

vcall(S(t), t) = vput(S(t), t) + S(t)−Ke−r(T−t)

where r is the risk-free interest rate.

Figure 2.1: Payoff functions of long call (left) and long put (right)

2.3 Definitions

This section contains the definitions which are important for our thesis. Note that we often use descriptions
of authors such as Shreve[36] and Applebaum[1, 2].

Definition 1. Stochastic process
For the definition of a stochastic process we quote Applebaum [1, p. 1336]: “... a stochastic process is a
family of random variables

{X(t), t ≥ 0}

9



defined on a probability space (Ω,F ,P) and taking values in a measurable space (E, E). Here Ω is a set
(the sample space of possible outcomes), F is a σ-algebra of subsets of Ω (the events), and P is a positive
measure of total mass 1 on (Ω,F) (the probability). E is sometimes called the state space. Each X(t) is
an (F , E) measurable mapping from Ω to E and should be thought of as a random observation made on
E at time t.”

Definition 2. Brownian motion
For the definition of a Brownian motion we quote Shreve [36, p. 94]: “Let (Ω,F ,P) be a probability
space. For each ω ∈ Ω, suppose there is a continuous function W (t) of t ≥ 0, that satisfies W (0) = 0 and
that depends on ω. Then W (t), t ≥ 0, is a Brownian motion if for all

0 = t0 < t1 < t2 < . . . < tm

the increments
W (t1),W (t2)−W (t1), . . . ,W (tm)−W (tm−1)

are independent and each of these increments is normally distributed with

E[W (ti+1)−W (ti)] = 0

Var(W (ti+1)−W (ti)) = ti+1 − ti.”

Definition 3. Stochastic Differential Equation
For the definition of a stochastic differential equation we also quote Shreve [36, p. 264]: “A stochastic
differential equation is an equation of the form

dX(u) = µ(X(u), u)du+ σ(X(u), u)dW (u). (2.1)

Here µ(u, x) and σ(u, x) are given functions, called the drift and diffusion, respectively. In addition to
this equation, an initial condition of the form X(t) = x, where t ≥ 0 and x ∈ R, is specified.”
The SDE (2.1) is short-hand notation for

X(t) = x,

X(T ) = X(t) +

∫ T

t

µ(u,X(u))du+

∫ T

t

σ(u,X(u))dW (u).

Solving a SDE is finding a stochastic process which satisfies both equations.

Definition 4. Lévy process
Applebaum defines the Lévy process as follows [1, p. 1337]: “A Lévy process X = {X(t), t ≥ 0} is a
stochastic process satisfying the following axioms:

• X has independent and stationary increments,

• Each X(0) = 0 (with probability 1),

• X is stochastically continuous i.e. for all a > 0 and for all s ≥ 0, limt→s P(|X(t)−X(s)| > a) = 0.

The first axiom is the most important. Independent means that given any finite ordered sequence of
times

0 ≤ t1 < t2 < . . . < tm <∞,
the increments

X(t1), X(t2)−X(t1), . . . , X(tm)−X(tm−1),

are independent. Stationary means that for any 0 ≤ s < t < ∞, X(t)−X(s) has the same distribution
as X(t− s).”

Definition 5. Characteristic function of a Lévy process
The characteristic function of a Lévy process X(t) is given by:

φt(ω) = E[exp(iωX(t))]

where E[.] is the expectation.

10



Formula 1. Lévy-Khintchine formula
The characteristic function of a Lévy process can be written with its triple (µ, σ, ν) with µ ∈ R the drift,
σ ≥ 0 the Gaussian variance and ν the Lévy density

φt(u) = exp

(
t

[
iµu− 1

2
σ2u2 +

∫
R
(eiux − 1− iux1{|x|<1}ν(dx))

])
, (2.2)

where the Lévy density statifies

• ν(0) = 0,

•
∫
R min(1, |x|2)ν(dx) <∞.

For Formula (2.2) we follow [16, p. 3].

Definition 6. Exponential Lévy process
Let X(t) be a Lévy process, then an exponential Lévy process Y (t) is given by

Y (t) = Y (0) exp(X(t)), t ≥ 0. (2.3)

Definition 7. Geometric Brownian motion
A geometric Brownian motion process S(t) satisfies the following SDE [36, p. 264]

dS(t) = µS(t)dt+ σS(t)dW (t) with S(0) = S0, (2.4)

where µ, σ ∈ R, µS(t) is the drift and σS(t) is the diffusion. With Itô’s lemma it can be proven that
GBM is an exponential Lévy process and the underlying Lévy process X(t) is a Brownian motion with
drift.

Lemma 1. Itô’s lemma
Let S(t), t ≥ 0, be a stochastic process

dS(t) = µ(S(t), t)dt+ σ(S(t), t)dW (t), with S(0) = s, (2.5)

and let h(S(t), t) be a function for which the partial derivatives, ∂h∂t (S(t), t), ∂h
∂S(t) (S(t), t) and ∂2h

∂S2(t) (S(t), t),

are defined and continuous. Then, for every t ≥ 0 holds

dh(S(t), t) =
∂h

∂t
(S(t), t)dt+

∂h

∂S(t)
(S(t), t)dS(t) +

1

2

∂2h

∂S2(t)
(S(t), t)dS(t)dS(t). (2.6)

Substitute dS(t)dS(t) = (µdt+ σdW (t))(µdt+ σdW (t)) ≈ σ2dt then

dh(S(t), t) =
∂h

∂t
(S(t), t)dt+

∂h

∂S(t)
(S(t), t)dS(t) +

1

2
σ2(S(t), t)

∂2h

∂S2(t)
(S(t), t)dt, (2.7)

which can be written in short-hand notation as

dh =
∂h

∂t
dt+

∂h

∂S
dS(t) +

1

2
σ2 ∂

2h

∂S2
dt. (2.8)

For further explanation we refer to Shreve [36, p. 147].

Example 1. Geometric Brownian motion
If S(t) in (2.5) satisfies the GBM with drift µ = rS(t), volatility σ = σS(t) and h(S(t), t) = log(S(t))

then ∂h
∂t = 0, ∂h

∂S = 1/S(t) and ∂2h
∂S2 = −1/S2(t). In combination with (2.8) this gives a Brownian motion

with drift

d log(S(t)) =
1

S(t)
dS(t)− 1

2

σ2S2(t)

S2(t)
dt

=

(
r − 1

2
σ2

)
dt+ σdW (t),

(2.9)
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where (r − 1
2σ

2) is the drift and σ is the volatility. Define X(t) = log(S(t)) and x = X(0) = log(S(0)).
From (2.9) it follows that X(t) is normally distributed with mean x+ (r− 1

2σ
2)t and variance σ2t. As a

result, S(t) is log-normally distributed. For more details we refer to Oosterlee [30].

Definition 8. Characteristic function 1D GBM
Define random variable Z ∼ N(0, 1). The characteristic function of random variable Z reads

φ(ω) = E[eiwZ ] = e−0.5ω2

.

Proof: see appendix A.
To calculate the characteristic function of a random variable R ∼ N(µ, σ2) note that R = µ+ σZ where
Z ∼ N(0, 1). The characteristic function of R reads

φ(ω) = E[eiωR] = E[eiω(µ+σZ)] = eiµωE[eiw(σZ)]

= exp

(
iµω − 1

2
σ2ω2

)
.

At time t, if x = 0 then X(t) is normally distributed with mean (r− 1
2σ

2)t and standard deviation σ
√
t.

The characteristic function of X(t) is:

φt(ω) = E[eiωX(t)]

= exp

(
t

[
i(r − 1

2
σ2)ω − 1

2
σ2ω2

])
.

(2.10)

If x 6= 0 then the stochastic process X(t) have mean x+ (r − 1
2σ

2)t and standard deviation σ
√
t. Then,

the characteristic function reads

φt(ω|x) = E[eiωX(t)]

= exp(ixω) exp

(
t

[
i(r − 1

2
σ2)ω − 1

2
σ2ω2

])
.

Definition 9. Characteristic function nD GBM
For pricing options by the nD COS method under nD geometric Brownian motion we need the nD
characteristic function. This function reads, see [33]:

φt(~ω|~x) = exp(i~x′~ω) exp

(
t

[
i~µ′~ω − 1

2
~ω′Σ~ω

])
, (2.11)

Σij = σiσjρij , (2.12)

µi = r − 1

2
σ2
i , (2.13)

where r is the instantaneous risk-free interest rate, ~µ is the drift vector, Σ the covariance matrix, ~σ the
volatility vector, ρ the correlation matrix and ~x the initial condition vector.

Definition 10. Arbitrage
We quote Shreve [36, p. 230]: “An arbitrage is a portfolio value process X(t) satisfying X(0) = 0 and
also satisfying for some time T > 0

P(X(T ) ≥ 0) = 1, P(X(T ) > 0) > 0.”

Theorem 1. First fundamental theorem of asset pricing
We quote Shreve [36, p. 231]: “If a market model has a risk-neutral probability measure it does not
admit arbitrage.”
Proof. For a proof we refer to Shreve [36].
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Definition 11. Complete market model
We quote Shreve [36, p. 231]: “A market model is complete if every derivative security can be hedged.”
(I.e. for every derivative one can make a replicating portfolio with other financial products which has the
same value).

Theorem 2. Second fundamental theorem of asset pricing
We quote Shreve [36, p. 232]: “Consider a market model that has a risk-neutral probability measure.
The model is complete if and only if the risk-neutral probability measure is unique.”
Proof. For a proof we refer to Shreve [36].

Definition 12. Martingale
We quote Shreve [36, p. 74]: “Let (Ω, F,P) be a probability space, let T be a fixed positive number, and
let F (t), 0 ≥ t ≥ T , be a filtration of sub-σ-algebras of F . Consider an adapted stochastic process M(t),
0 ≥ t ≥ T . If

E[M(t)|F (s)] = M(s) for all 0 ≥ s ≥ t ≥ T,

we say this process is a martingale. It has no tendency to rise or fall.”

Definition 13. Money-savings account
Let B(t) be the value of a bank account at time t ≥ 0. Assume B(0) = 1, an initial investment of 1, and
assume that the bank account evolves according to

dB(t) = r(t)B(t)dt, B(0) = 1,

where r(t) is the risk-free interest rate. Then it follows that

B(t) = e
∫ t
0
r(s)ds

An initial investment of B(0) yields in the money-savings market to a value of B(t) at time t.
We define the discount term by

D(t, T ) =
B(t)

B(T )
= e−

∫ T
t
r(s)ds t ≤ T.

If r(t) is constant, then the discount term becomes

D(t, T ) = e−r(T−t) t ≤ T.

Definition 14. Risk-neutral probability measure
We quote Shreve [36, p. 228]: “A probability measure P̃ is said to be risk-neutral if

1. P̃ and P are equivalent (i.e. for every A ∈ F , P(A) = 0 if and only if P̃(A) = 0), and

2. under P̃, the discounted stock price D(0, t)Si(t) is a martingale for every i = 1, . . . , n.”

Lemma 2. Risk neutral valuation formula
The value of an option v(S(t), t), where t is time and S(t) is the underlying stock price, can be written
as the discounted expectation of its payoff under the risk neutral measure Q [36, p.218].

v(S(t), t) = EQ[e−
∫ T
t
r(s)dsv(S(T ), T )|F(t)], 0 ≤ t ≤ T (2.14)

where F(t) is the filtration at time t.
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2.4 Black-Scholes model

Black and Scholes derived a linear parabolic partial differential equation to calculate the value of European
options. For an explanation of its derivation we follow Wilmott [42]. Assume that the underlying stock
price is modeled as a GBM. Use Π to denote the value of a portfolio of one long option position and a
short position in some quantity ∆, delta, of the underlying stock,

Π = v(S(t), t)−∆S(t). (2.15)

The change of the portfolio value over time is given by

dΠ = dv(S(t), t)−∆dS(t).

The differential of v can be derived from Itô’s lemma (2.8), written as

dv =
∂v

∂t
dt+

∂v

∂S
dS(t) +

1

2

∂2v

∂S2
dS(t)dS(t).

If S(t) is modeled as a GBM model, then the portfolio with deterministic terms dt and stochastic terms
dS(t) changes as follows

dΠ =
∂v

∂t
dt+

∂v

∂S
dS(t) +

1

2
σ2S2(t)

∂2v

∂S2
dt−∆dS(t). (2.16)

The risk (dS(t) terms) in this portfolio can be eliminated by delta-hedging. If

∆ =
∂v

∂S
(2.17)

and substituting (2.17) into (2.16) we find that (2.16) becomes deterministic

dΠ =
∂v

∂t
dt+

1

2
σ2S2(t)

∂2v

∂S2
dt. (2.18)

The value of the portfolio does not depend on the value of the stock price any longer. According to
the no-arbitrage principle, a portfolio without risk increases in value with the risk-free interest rate. A
risk-free portfolio is governed by the following dynamics

dΠ = rΠdt. (2.19)

Substituting (2.15), (2.17) and (2.18) into (2.19) we find that

∂v

∂t
dt+

1

2
σ2S2(t)

∂2v

∂S2
dt = r

(
v − S(t)

∂v

∂S

)
dt.

Dividing by dt and rearranging, we get the Black-Scholes PDE

∂v

∂t
+

1

2
σ2S2 ∂

2v

∂S2
+ rS

∂v

∂S
− rv = 0. (2.20)

The payoff is the value of an option at expiry time T , i.e. the final condition of the Black-Scholes PDE.

Theorem 3. (Feynman-Kac Theorem)
The Feynman-Kac theorem is known in different versions. We use the version of Oosterlee et al. [30].
Given a money-savings account, modeled by dB(t) = rB(t)dt, with a constant risk-free interest rate
r. Let v(S(t), t) be a sufficiently differentiable function of stock price S(t) and time t. Suppose that
v(S(t), t) satisfies the following PDE, with general drift term, µ(S(t), t), and volatility term, σ(S(t), t):

∂v

∂t
+

1

2
σ2(S(t), t)

∂2v

∂S2
+ µ (S(t), t)

∂v

∂S
− rv(S(t), t) = 0, (PDE) (2.21)
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with final condition v(S(T ), T ) given.
The unique solution for v(S(t), t) at time t < T reads

v(S(t), t) = e−r(T−t)EQ[v(S(T ), T )|F (t)], (expectation) (2.22)

where the expectation is taken under the measure Q, with respect to a process S(t), defined by:

dS(t) = µ(S(t), t)dt+ σ(S(t), t)dWQ(t), for t > 0 (SDE) (2.23)

Proof. For a short outline of a proof we also refer to Oosterlee [30].

The PDE (2.21) in the Feynman-Kac theorem becomes the Black-Scholes PDE when we substitute for σ
the term σS and for µ the term rS. By using the Feynman-Kac theorem we can determine the value of
the option by solving the expectation (2.22).

The dynamics of the underlying asset price under the risk-neutral measure are given by

dS(t) = rS(t)dt+ σS(t)dWQ(t).

The interest rate r is fixed and the underlying stock price is a GBM process. Therefore, the option value
can be written as

v(S(t), t) = e−r(T−t)
∫ ∞
−∞

v(S(T ), T )f (S(T )|S (t)) dt

where v(S(T ), T ) is the payoff function and f(S(T )|S(t)) the probability density function of S(T ) given
S(t). From example 1. it is known that log(S(t)) is normally distributed. This means that the PDF is
known. With the help of changing variables the integral can be solved analytically.

Lemma 3. Black-Scholes Formula
The value of a European call option v(S(t), t) under GBM asset dynamics at time t is given by

v(S(t), t) = S(t)N̂(d1)−Ke−r(T−t)N̂(d2), (2.24)

with

d1 =
log
(
S(t)
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

, d2 =
log
(
S(t)
K

)
+
(
r − σ2

2

)
(T − t)

σ
√
T − t

,

where S(t) is the value of the asset at time t, N is the cumulative normal density function, K is the strike
price, r is the risk-free interest rate, T − t is the time to maturity and σ is the volatility of the asset. The
function N is known as

N̂(x) =
1√
2π

∫ x

−∞
e−

1
2 z

2

dz. (2.25)

Proof. For a proof of the B-S Formula (2.24) we refer to the appendix of chapter 14 of Hull [21].

From the put-call parity it follows that the value of a European put option v(S(t), t) under GBM at time
t is given by

v(S(t), t) = Ke−r(T−t)N̂(−d2)− S(t)N̂(−d1) (2.26)

2.5 Merton’s Jump Diffusion model

In 1976, based on Black-Scholes, Merton [28] developed a jump diffusion model (MJD model). In the
MJD model ‘normal’ vibrations in price are modeled by a GBM and ‘abnormal’ vibrations (jumps) in
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price, as a result of the arrival of important new information about the stock, are modeled as a compound
Poisson process. These two stochastic processes are assumed to be independent.
We follow Tankov and Voltchkova [40]. A stochastic jump diffusion process can be written as follows

X(t) = µt+ σW (t) +

N(t)∑
i=1

Yi, (2.27)

where µt + σW (t) is a stochastic process with drift and diffusion, N(t) is a Poisson process with mean
arrival rate λ distributed with an exponential distribution and the Yi are i.i.d. random variables with
distribution f(x).

The characteristic function of (2.27) reads

E[exp(iuX(t))] = exp

(
t

[
iµu− σ2u2

2
+ λ

∫
R

(eiux − 1)f(dx)

])
.

If there is no positive probability of immediate ruin then the jumps (Yi) in MJD are modeled as a normal
distribution N (α, δ2). Then, this characteristic function reads

E[exp(iuX(t))] = exp

(
t

[
iµu− σ2u2

2
+ λ

{
exp

(
iαu− δ2u2

2

)
− 1

}])
. (2.28)

The exponential Lévy process of the asset is defined as

S(t) = S(0) exp (X(t))

= S(0) exp

µt+ σW (t) +

N(t)∑
i=1

Yi


The SDE for the asset price reads

dS(t)

S(t)
= (µ− λκ)dt+ σdW (t) + (eY − 1)dN(t), (2.29)

where κ = E[eY − 1]. The average jump size measured as a percentage of the asset price. Let log (S(t))

to be a martingale under the risk-neutral measure then the total drift is (r − σ2

2 − λκ).
Merton gives an analytical formula for a European 1D call option where the underlying asset is modeled
as SDE (2.29). This analytical formula is called the MJD formula and reads

v(S(t), t) =

∞∑
n=0

e−λ
′∆t(λ′∆t)n

n!
fn, (2.30)

where λ′ = λ(1+κ), fn are the B-S option values given the number of jumps is n hence σ2
n = σ2 +nδ2/∆t

and rn = r − λκ+ n log(1 + κ)/∆t.

nD MJD model

Let ~S(t) be the stock prices at time t. The stock prices ~S(t) are modeled by the following SDE

dSi(t) = (r − λκi)Si(t)dt+ σiSi(t)dWi(t) + (eYi − 1)Si(t)dN(t), i = 1, . . . , n (2.31)

where r is the instantaneous risk-free interest rate, λ is the mean number of arrivals per unit time,
κi := E[eYi − 1], eYi is the random variable giving the percentage left after a jump has occurred, N(t) is
a Poisson process with mean arrival rate λ > 0 and Yi are normally distributed jumps with mean α and
standard deviation δ. Wi(t) and N(t) are independent processes [33, p. B658].
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The log-processes Xi(t) := log(Si(t)) reads

dXi(t) =

(
r − 1

2
σ2
i − λκm

)
dt+ σidWi(t) + YidN(t).

For the derivation of (2.31) see [30, p. 73].

Definition 15. Characteristic function nD MJD
The characteristic function reads [33, p. B658]

φ(~ω|~x) = exp(i~x′~ω)φMerton(~ω),

where

φMerton(~ω) = exp

(
t

[
i~µ′~ω − 1

2
~ω′Σ~ω + λ

{
exp

(
i~α′~ω − 1

2
~ω′ΣJ~ω

)
− 1

}])
,

and

µi =

(
r − 1

2
σ2
i − λκi

)
, Σij = σiσjρij , ΣJij = δiδjρ

J
ij ,

where ρ is the correlation matrix of the diffusion process and ρJ the correlation matrix of the jump part.

2.6 Numerical methods

The PDE of the classic Black-Scholes model can thus be solved analytically (closed-form solutions).
However, for more complex PDEs this analytical technique is not available. Therefore, researchers have
developed other valuation techniques. An import class among other techniques is that of the numerical
methods. These methods can be roughly divided into three major groups.

The first group is Monte Carlo simulation. Hull [21, p. 804] describes this simulation as a procedure for
randomly sampling changes in market variables in order to value a derivative. The use of this simulation
technique is attractive, because it is reliable, the mathematics can be very basic2, better accuracy can
easily be achieved by running more simulations, the simulations can often be changed without much
work and the curse of dimensionality does not occur. However, this method has a great disadvantage:
it takes a lot of computing time. According to Wilmott [42, p. 685] it is slow in comparison with the
finite-difference solution of a PDE for problems up to three dimensions. That is why this simulation
technique is often used to price high-dimensional options; sometimes it is the only practical one.
This technique can also be used for the pricing of European-style options, not only for one-dimensional
options, but for higher-dimensional options as well.

The second group includes PDE methods. Finizio [19, p. 421] describes PDEs as equations that
involve partial derivatives of an unknown function, where the unknown function depends on two or
more independent variables. Famous examples are the wave equation and the heat equation. The wave
equation is written as:

∂2u

∂t2
= c2

∂2u

∂x2
,

where u(x, t) is the vertical position at location x on the string at time t, and the constant c relates to
the tension in the string and how springy it is [37]. This formula of D’Alembert (1746) involves (second
order) derivatives of u. Since these are partial derivatives, it is a PDE.

The heat equation is written as:
∂u

∂t
= α

∂2u

∂x2
,

2v(S(t), t) = EQ[e−
∫ T
t r(s)dsv(S(T ), T )|F(t)] ≈ e−r(T−t) 1

N

∑N
i=1 v(Si(T ), T ), Surkov [39, p. 13]
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where u(x, t) is the temperature of a metal rod at position x and time t, considering the rod to be
infinitely thin, and the constant α is the diffusivity [37, p. 151]. Since this equation also involves partial
derivatives of u, it is a PDE.

Various numerical methods for solving PDEs have been developed, such as the finite difference method
(FDM), the finite element method (FEM), the method of lines (MOL) and the finite volume method
(FVM). However, according to Wilmott, although FDMs form the dominant approach to numerical
solutions of PDEs, they start to become slow and cumbersome at higher (three and more) dimensions
[42, p. 661].

The third group is formed by numerical integration techniques, i.e. the study of how to find the numerical
value of an integral [12]. In this study the process of approximating an integral from values of the
integrand is of central interest. In this process integration points and the weighted values of these points
are important.

These techniques often rely on the characteristic function, i.e. the Fourier transform of the probability
density function of the underlying asset [6, 17, 33]. For speeding up their computational time an efficient
algorithm which is called the fast Fourier transform is often used. A relatively new Fourier-based technique
is the COS method, developed by Fang and Oosterlee [17]. This technique is based on the idea to replace
the PDF of the underlying stock price with its Fourier-cosine series expansion [16]. They showed that
their method is highly efficient.

2.7 Orders of convergence

For a competitive method for pricing of financial derivatives accuracy, speed and convergence play an
important role. The cohesion between the approximation error and the number of integrand evaluations
is called convergence. A method is usually considered superior when the error becomes smaller at a faster
rate when taking more integrand evaluations.

Boyd [5, p. 25] notes that it is useful to have precise definitions for classifying the rates of convergence
for series. These rates are all asymptotic definitions based on the behavior of the series coefficients for
large m. He warns that these definitions may be highly misleading if applied to small or moderate m.
For our research several of these definitions are important.

Definition 16. Algebraic index of convergence
Boyd [5, p. 25] defines the algebraic index of convergence, aic, as the largest number for which

lim
m→∞

|um|maic <∞, m >> 1,

where um are the coefficients of the series.
Boyd also gives an alternative definition: if the coefficients of a series are um and if

um ∼ O(1/maic), m >> 1,

then aic is the algebraic index of convergence, um decays asymptotically.

Definition 17. Exponential convergence
We follow Boyd [5, p. 25]. The coefficients of the series are said to have the property of exponential
convergence if the algebraic index of convergence aic is unbounded - in other words if the coefficients um
decrease faster than 1/maic for any finite power of aic.
Boyd also gives an alternative definition: if

um ∼ O(exp(−q ·meic)), m >> 1,

with q a constant for some eic > 0, then the series has exponential convergence.

18



Definition 18. Exponential index of convergence
Boyd [5, p. 26] defines the exponential index of convergence eic by:

eic = lim
m→∞

log | log |um||
log(m)

.

Definition 19. Rates of Exponential Convergence
We quote Boyd [5, p. 26]. “A series, whose coefficients are um, is said to have the property of
supergeometric, geometric or subgeometric convergence depending upon whether

lim
m→∞

log(|um|)/m =


∞ supergeometric

constant geometric

0 subgeometric.”

Boyd clarifies these concepts of convergence by way of two graphs.

Figure 2.2: Four different convergences [5, p. 27-28]

We shall see that the overall error of the one-dimensional COS method has an exponential convergence
and that the overall error of the n-dimensional COS method (n ≥ 2) has an algebraic convergence.
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Chapter 3

Fourier Transform

An asset price process with independent and stationary increments can be identified by its characteristic
function. Therefore, in the 1990s, the Fourier transform, a widely used and well understood mathematical
tool from physics and engineering disciplines, was introduced into mathematical finance.

In this chapter we discuss the Fourier transform. Firstly, we give some definitions and properties. Secondly
we show the path from Fourier series to Fourier cosine series. Thirdly, we connect the characteristic
function with the Fourier cosine series. Finally, we focus on different discrete transforms in particular
higher dimensional discrete cosine transforms and fast cosine transforms.

3.1 Definitions and properties

For the definition of the Fourier transform and the inverse Fourier transform we follow Deng [14].

Definition 20. Fourier transform and inverse Fourier transform
Let p(x) be a piecewise continuous real function over R which satisfies the integrability condition∫ ∞

−∞
|p(x)|dx <∞.

The Fourier transform of p(x) is defined by

p̂(ω) =

∫ ∞
−∞

eiωxp(x)dx, ω ∈ R, (3.1)

where i =
√
−1 is the imaginary unit. The inverse Fourier transform of p̂(ω) is given by

p(x) =
1

2π

∫ ∞
−∞

e−iωxp̂(ω)dω, x ∈ R. (3.2)

Definition 21. Characteristic function of a random variable
Let R̂ be a random variable having PDF f(x). f(x) is a non-negative function and satisfies the
integrability condition ∫ ∞

−∞
f(x)dx = 1 <∞.

The Fourier transform of f(x), i.e. the ChF, is written as φ(ω) and is defined by

φ(ω) = E[eiωR̂] =

∫ ∞
−∞

eiωxf(x)dx, ω ∈ R. (3.3)

The PDF is the inverse Fourier transform of the ChF. The ChF and the PDF thus form a Fourier pair.
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Figure 3.1: Fourier transform scheme.

The Fourier transform technique in option pricing is displayed schematically in Figure 3.1 [13].

Properties of characteristic functions
Characteristic functions possess several properties, see [14]. We only mention:

• if a, b ∈ R and Zv,Rv are random variables with Rv = a · Zv + b then

φRv(ω) = eibωφZv(aω) (3.4)

where φZv, φRv are the characteristic functions of Zv respectively Rv.

• random variables Zv and Rv have the same distribution function if and only if they have the same
characteristic function.

3.2 Fourier series

A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines.
As such, a Fourier series exploits the orthogonality relationships of sine and cosine functions, see [7].
A function f(x) supported on the domain x ∈ [−π, π] can be written as its Fourier series by

f(x) =
1

2
A0 +

∞∑
n=1

An cos(nx) +

∞∑
n=1

Bn sin(nx),

A0 :=
1

π

∫ π

−π
f(y)dy, An :=

1

π

∫ π

−π
f(y) cos(ny)dy, Bn :=

1

π

∫ π

−π
f(y) sin(ny)dy.

For more details see [5]. Often, it is unnecessary to use the full Fourier series. If a function f(x) is
symmetric, f(x) = f(−x) for all x, then all Bn terms will be zero. The series with only A0 and An terms
is known as the “Fourier cosine series”:

f(x) =
1

2
A0 +

∞∑
n=1

An cos(nx), A0 :=
1

π

∫ π

−π
f(y)dy, An :=

1

π

∫ π

−π
f(y) cos(ny)dy.

The COS method is based on the Fourier cosine series.
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3.3 Fourier cosine series with a Fourier transform

A function f(x) supported on the domain x ∈ [a, b] can be written as its Fourier cosine series by

f(x) =
1

2
A0 +

∞∑
k=1

Ak cos

(
kπ
x− a
b− a

)
(3.5)

=

∞∑
k=0

′
Ak cos

(
kπ
x− a
b− a

)
, (3.6)

where Ak is defined as

Ak :=
2

b− a

∫ b

a

f(y) cos

(
kπ
y − a
b− a

)
dy.

The symbol
∑′

is a summation where the first element is multiplied by one half. The coefficients Ak
can be approximated using the Fourier transform of f(y). This can be done with Euler’s formula. This
formula connects cosine and sine functions. The following identity holds

eix = cos(x) + i sin(x), x ∈ R.

Therefore, a cosine-function can be written as follows

cos

(
kπ
y − a
b− a

)
= Re

{
exp

(
ikπ

y − a
b− a

)}
,

where Re is the real part of a complex number. Putting this equation into the equation for Ak gives

Ak =
2

b− a

∫ b

a

f(y)Re

{
exp

(
ikπ

y − a
b− a

)}
dy =

2

b− a
Re

{∫ b

a

f(y)exp

(
ikπ

y − a
b− a

)
dy

}
.

When taking the correct ω, the formula of Ak and the Fourier transform of f(x) differ only on the
integration range. Suppose the integral over the whole domain is a good approximation of the integral
of the interval. The coefficients Ak can be written as

Ak =
2

b− a
Re

{∫ b

a

f(y)exp

(
i

(
kπ

b− a

)
y − ikπa

b− a

)
dy

}

≈ 2

b− a
Re

{∫
R
f(y)exp

(
i

(
kπ

b− a

)
y − ikπa

b− a

)
dy

}
≈ 2

b− a
Re

{
φ

(
kπ

b− a

)
exp

(
− ikπa
b− a

)}
.

3.4 Discrete Fourier transform and fast Fourier transform

The discrete Fourier transform is one of the specific forms of Fourier analysis. As such, it transforms one
vector into another. The DFT requires a finite sequence of numbers, so that a computer can process this
sequence.

Definition 22. Discrete Fourier transform
Let ~c = (c0, . . . , cM−1) ∈ CM be a vector of M complex numbers. The DFT of ~c is then defined as

DFT(~c)k =

M−1∑
j=0

cje
− 2πi
M jk, k = 0, . . . ,M − 1

where DFT(~c) = (DFT(~c)0, . . . ,DFT(~c)M−1) ∈ CM .

22



This DFT can be written as a matrix-vector multiplication DFT(~c) = GM~c with

(GM )ij = e−2πi ijM ,

where GM is called the Fourier-matrix. This implies a number of multiplications of M2 and a number of
additions of M(M − 1). The arithmetic complexity is O(M2) [44].

The fast Fourier transform (FFT) is an efficient algorithm designed to compute the DFT by minimizing
the number of multiplications and summations. The most common FFT is the Cooley-Tukey algorithm
[10]. If M = 2p, with p a natural number, then the DFT can be calculated with this algorithm with a
process of order

O(M log2(M)) = O(pM).

We refer to [7] and [44].

3.5 Discrete Fourier cosine transform

We only can use the COS method if we are able to determine the Fourier cosine transformation of the
payoff function of the contingent claim. The Fourier cosine transformation of the payoff of a European
vanilla option can be solved analytically. But in the case of other payoff functions, an analytic solution
is often not available. Therefore, the payoff functions require a numerical approximation. For this
approximation we typically use the discrete Fourier cosine transformation. In this section, we present the
DCT for higher dimensions.
For all dimensions the programming languages MATLAB and C are equipped with a DCT subroutine or
a DCT subroutine is available. But this is not the case for the computer language CUDA. However, it is
possible to convert the DCT into a DFT. This conversion makes it possible to perform calculations for
the DCT by means of the FFT.

Definition 23. DCT Type II
Let ~c = (c0, . . . , cQ−1) ∈ RQ be the input vector, then the DCT of ~c is given by

DCT(~c)k = 2

Q−1∑
n=0

cn cos

(
π(2n+ 1)k

2Q

)
, 0 ≤ k ≤ Q− 1 (3.7)

where DCT(~c) = (DCT(~c)0, . . . ,DCT(~c)Q−1) ∈ RQ.

If the calculations of the DCT are performed by the FFT, then this kind of calculation is called the fast
cosine transform (FCT) algorithm.

Definition 24. Fast Cosine Transform (1D)
To calculate the DCT of ~c = (c0, . . . , cQ−1) ∈ RQ, where Q is even, we rewrite (3.7) as a FCT which
reads

FCT(~c)k = 2Re
[
Hk

4QFFT(c̆)k
]
, 0 ≤ k ≤ Q− 1, (3.8)

where

c̆n =

c2n, n = 0, . . . ,
⌊
Q−1

2

⌋
,

cQ−2n−1, n =
⌊
Q+1

2

⌋
, . . . , Q− 1,

(3.9)

and

Hk
4Q = exp

(
−iπk
2Q

)
. (3.10)
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Proof. See Appendix B.3.

Definition 25. Two-dimensional DCT
Let C be a matrix of size Q×Q of real numbers. The 2D DCT of C is given by

DCT(C)k,l = 4

Q−1∑
n=0

Q−1∑
m=0

Cn,m cos

(
π(2n+ 1)k

2Q

)
cos

(
π(2m+ 1)l

2Q

)
, 0 ≤ k, l ≤ Q− 1.

Interchanging gives

DCT (C)k,l = 2

Q−1∑
m=0

[
2

Q−1∑
n=0

Cn,m cos

(
π(2n+ 1)k

2Q

)]
cos

(
π(2m+ 1)l

2Q

)
, 0 ≤ k, l ≤ Q− 1.

We observe that a two-dimensional DCT consists of a 1D-cosine transformation for each row and a
1D-cosine transformation for each column. Also, for more than two dimensions this approach does not
change. Independent of the dimension, the problem is converted into a number of 1D-cosine transformations.

For the 2D COS method, discussed in Appendix C, the payoff coefficients Vk1,k2 are given by

Vk1,k2 ≈
∑Q−1
n1=0

∑Q−1
n2=0

2
b1−a1

2
b2−a2 g(yn1

1 , yn2
2 ) cos

(
k1π

y
n1
1 −a1
b1−a1

)
cos
(
k2π

y
n2
2 −a2
b2−a2

)
∆y1∆y2,

0 ≤ k1, k2 ≤ Q− 1.

The midpoint-rule integration gives us

ynii = ai + (2ni + 1)
bi − ai
Q

∆yi =
bi − ai
Q

i = 1, 2,

Vk1,k2 ≈
2

Q

2

Q

Q−1∑
n1=0

Q−1∑
n2=0

g(yn1
1 , yn2

2 ) cos

(
k1π

2n1 + 1

2Q

)
cos

(
k2π

2n2 + 1

2Q

)
,

=
4

Q2

Q−1∑
n1=0

Q−1∑
n2=0

g(yn1
1 , yn2

2 ) cos

(
π(2n1 + 1)k1

2Q

)
cos

(
π(2n2 + 1)k2

2Q

)
.

So, to calculate the Vk1,k2 coefficients we can use the two-dimensional DCT Type II. However, we have
to divide the answers by the known factor Q2.

Definition 26. Fast cosine transform (2D)
Also for the two-dimensional case a FFT can be used. Define matrix C̆ as

C̆n1,n2
=



C2n1,2n2 , 0 ≤ n1 ≤
⌊
Q−1

2

⌋
, 0 ≤ n2 ≤

⌊
Q−1

2

⌋
,

C2Q−2n1−1,2n2
,

⌊
Q+1

2

⌋
≤ n1 ≤ Q− 1, 0 ≤ n2 ≤

⌊
Q−1

2

⌋
,

C2n1,2Q−2n2−1, 0 ≤ n1 ≤
⌊
Q−1

2

⌋
,

⌊
Q+1

2

⌋
≤ n2 ≤ Q− 1,

C2Q−2n1−1,2Q−2n2−1,
⌊
Q+1

2

⌋
≤ n1 ≤ Q− 1,

⌊
Q+1

2

⌋
≤ n2 ≤ Q− 1,

The 2D FCT is definied as

FCT(C) = 2Re
{
Hk1

4Q

[
Hk2

4QFFT(C̆)k1,k2 +H−k24Q FFT(C̆)k1,Q−k2

]}
(3.11)

Proof. See Appendix B.4.
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Definition 27. n-dimensional DCT
Let P be the nD input array then the nD DCT of P is given by

DCT(P )k1,...,kn := 2n
Q−1∑
mn=0

. . .

Q−1∑
m1=0

Pm1,...,mn cos

(
π(2m1 + 1)k1

2Q

)
. . . cos

(
π(2mn + 1)kn

2Q

)
,

0 ≤ k1, . . . , kn ≤ Q− 1.

Interchanging gives us

DCT(P )k1,...,kn = 2

Q−1∑
mn=0

[
. . . 2

Q−1∑
m1=0

Pm1,...,mn cos

(
π(2m1 + 1)k1

2Q

)
. . .

]
cos

(
π(2mn + 1)kn

2Q

)
,

0 ≤ k1, . . . , kn ≤ Q− 1.

For the nD COS method, g is the payoff function and thus the input for the n-dimensional DCT.

V~k =
2n

Qn

Q−1∑
m1=0

. . .

Q−1∑
mn=0

g(ŷm1
1 , . . . , ŷmnn ) cos

(
π(2m1 + 1)k1

2Q

)
. . . cos

(
π(2mn + 1)kn

2Q

)
0 ≤ k1, . . . , kn ≤ Q− 1.

So, to calculate the V~k coefficients we can use the n-dimensional DCT Type II. However, we have to
divide the answers by the known factor Qn.

In anticipation of chapter 7, we note that our numerical experiments add up to three dimensions.
Therefore, we do not give the definition for nD FCT , but we limit ourselves to the 3D FCT.

Definition 28. Fast cosine transform (3D)
The 3D FCT of the 3D array C of size M1 ×M2 ×M3 is defined as

DCT(C)k1,k2,k3 :=2Re
{
Hk1

4M1

(
Hk2

4M2
Hk3

4M3
FFT(C̆)k1,k2,k3 +Hk2

4M2
H−k34M3

FFT(C̆)k1,k2,M3−k3

+H−k24M2
Hk3

4M3
FFT(C̆)k1,M2−k2,k3 +H−k24M2

H−k34M3
FFT(C̆)k1,M−k2,M−k3

)}
,

where C̆ is defined in appendix B.5.

The COS method is a Fourier-transform based method. In the next two chapters we focus extensively
on this method.
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Chapter 4

One-dimensional COS method

The COS method is a deterministic method for pricing European options with one underlying asset.
This method is also called one-dimensional COS method or 1D COS method. This numerical method
developed by Fang and Oosterlee [17, 18] is based on Fourier cosine series expansions of the discounted
expected payoff. The characteristic function of the underlying asset is used to approximate the Fourier
coefficients.

In this chapter we discuss the 1D COS method. Firstly, we show the derivation of this method. This
derivation leads to the COS formula. Secondly, we focus on the payoff coefficients needed in this formula.
Thirdly, we analyze the truncation range. This range is necessary because the COS method only works
on a finite domain. Fourthly, we analyze the overall error and we pay attention to the computational
complexity. Finally, we derive that the overall error is exponentially decreasing and the calculation
complexity is linear.

4.1 Derivation

We start from the risk-neutral valuation formula:

v(S(t), t) = e−r(T−t)EQ[v(S(T ), T )|S(t)] = e−r(T−t)
∫
R
v(S(T ), T )f(S(T )|S(t))dS(T ), (4.1)

where t is the initial time, T is the maturity time, S(t) is the price of the underlying asset at time
t, v(S(t), t) is the value of the option at time t, r is the constant risk-free interest rate, EQ[.] is the
expectation under the risk-neutral measure and the function f is the probability density function of S(T )
given S(t). At maturity time the value of an option is equal to its payoff.

We insert in (4.1):

x := S(t), y := S(T ), ∆t := T − t.

Then (4.1) reads

v(x, t) = e−r∆t
∫
R
v(y, T )f(y|x)dy. (4.2)

In five steps we derive the 1D COS method, which is an approximation of this integral. We follow [16].

Step 1. Truncate the integration range
The density function f(y|x) decays to zero very fast as y → ±∞ in (4.2). Therefore, v(x, t) can be
well approximated by some finite integration range [a, b] ⊂ R without losing significant accuracy:

v1(x, t) = e−r4t
∫ b

a

v(y, T )f(y|x)dy.

Remark: v1(x, t) is an approximation of v(x, t).
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Step 2. Replace the density function by its cosine expansion
The density function is usually not known; the characteristic function on the other hand is generally
known for Lévy processes. That is why we replace the density function by its cosine expansion in y.
The cosine expansion of f(y|x) on [a, b] is given by

f(y|x) =

∞∑
k=0

′
Ak(x) cos

(
kπ
y − a
b− a

)
, (4.3)

where the series coefficients Ak(x) are defined as

Ak(x) :=
2

b− a

∫ b

a

f(y|x) cos

(
kπ
y − a
b− a

)
dy.

Inserting (4.3) into v1(x, t), gives

v1(x, t) = e−r4t
∫ b

a

v(y, T )

∞∑
k=0

′
Ak(x) cos

(
kπ
y − a
b− a

)
dy. (4.4)

The
∑′

-summation is again a summation where the first term is multiplied by 0.5.

Step 3. Interchange summation and integration
We interchange summation and integration in (4.4). We introduce the terms 2/(b−a) and (b−a)/2
and insert them into (4.4)

v1(x, t) = e−r4t
∞∑
k=0

′ b− a
2

Ak(x)
2

b− a

∫ b

a

v(y, T ) cos

(
kπ
y − a
b− a

)
dy, (4.5)

and we define the Fourier-cosine series coefficients Vk of v(y, T ) on [a, b] as

Vk :=
2

b− a

∫ b

a

v(y, T ) cos

(
kπ
y − a
b− a

)
dy.

Insert Vk into (4.5), gives

v1(x, t) = e−r4t
∞∑
k=0

′ b− a
2

Ak(x)Vk. (4.6)

The integral over the product of f(y|x) and v(y, T ) is now written as a summation of the product
of their Fourier-cosine coefficients.

Step 4. Truncate the series summation
The summation is further truncated because these coefficients have a rapid decay rate.

v2(x, t) = e−r∆t
N−1∑
k=0

b− a
2

Ak(x)Vk. (4.7)

The function v2(x, t) is an approximation of v1(x, t). It contains an overall error consisting of two
approximations compared to v(x, t).

Step 5. Insert the characteristic function
We define the characteristic function of f(y|x) on the interval [a, b] by φA. Take φ as the characteristic
function of f(y|x) over the domain R. If the characteristic function of f(y|x) is known, then it will

27



be defined on the whole domain R. The function f(y|x) decays to zero very rapidly outside the
domain [a, b]. Therefore, φA will not differ much from φ.

Ak(x) =
2

b− a

∫ b

a

f(y|x) cos

(
kπ
y − a
b− a

)
dy (4.8)

=
2

b− a
Re

{
φA

(
kπ

b− a
|x
)

exp

(
−i kaπ
b− a

)}
≈ 2

b− a
Re

{
φ

(
kπ

b− a
|x
)

exp

(
−i kaπ
b− a

)}
.

We introduce Fk(x) defined as

Fk(x) := Re

{
φ

(
kπ

b− a
|x
)

exp

(
−i kaπ
b− a

)}
. (4.9)

We insert Fk(x) into (4.7), which gives the 1D COS pricing formula:

v(x, t) ≈ v3(x, t) = e−r∆t
N−1∑
k=0

′
Fk(x)Vk (4.10)

Remark: v3(x, t) contains an overall error consisting of three approximations compared to v(x, t).

4.2 Payoff coefficients

Before we can use the 1D COS formula we need to know the payoff series coefficients Vk. We defined Vk
to be given by the equation

Vk =
2

b− a

∫ b

a

v(y, T ) cos

(
kπ
y − a
b− a

)
dy, (4.11)

where v(y, T ) is the payoff function of the option which depends on the asset price S(T ) at time T .
In practice, when the characteristic function of an exponential Lévy process is known it will be the
characteristic function of the log-asset price, which is known. Therefore, the payoff function has to be
related to the log-asset price. We perform a change of variables to achieve this transformation. Let x̂
and ŷ be defined as

x̂ := log

(
S(t)

K

)
,

ŷ := log

(
S(T )

K

)
,

then x̂ is a log-asset process. The payoff of a European call option reads

v(ŷ, T ) = max(K(eŷ − 1), 0). (4.12)
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To solve equation (4.11) for a European call option we employ the method described in [17].
For [c, d] ⊆ [a, b] we use two analytic functions:

χk(c, d) : =

∫ d

c

ey cos

(
kπ
y − a
b− a

)
dy

=
1

1 +
(
kπ
b−a

)2

[
cos

(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a
sin

(
kπ
d− a
b− a

)
ed − kπ

b− a
sin

(
kπ
c− a
b− a

)
ec
]
, (4.13)

ψk(c, d) : =

∫ d

c

cos

(
kπ
y − a
b− a

)
dy

=

{
b−a
kπ

[
sin
(
kπ d−ab−a

)
− sin

(
kπ c−ab−a

)]
for k 6= 0,

(d− c) for k = 0.
(4.14)

Insert (4.12), (4.13) and (4.14) into (4.11), then

V call
k =

2

b− a

∫ b

a

max(K(eŷ − 1), 0) cos

(
kπ
ŷ − a
b− a

)
dŷ

=
2

b− a

∫ b

max(a,0)

K(eŷ − 1) cos

(
kπ
ŷ − a
b− a

)
dŷ

=
2

b− a
K
{
χk
(

max(a, 0), b
)
− ψk

(
max(a, 0), b

)}
. (4.15)

The payoff for a European put option is given by

v(ŷ, T ) = max(K(1− eŷ), 0). (4.16)

Insert (4.16), (4.13) and (4.14) into (4.11), then

V
put
k =

2

b− a
K
{
ψk
(
(a,min(b, 0)

)
− χk

(
a,min(b, 0)

)}
. (4.17)

It is possible that an analytic solution is not available for the Vk coefficients. In that case, a numerical
approximation of these coefficients has to be performed. However, this has an impact on the convergence
of the COS method.
We note that our Formulas 4.15 and 4.17 differ from the Formulas (24) and (25) of Fang and Oosterlee

[17]. They implicitly assume that a < 0 for V call
k and b > 0 for V

put
k . We do not restrict these values.

4.3 Truncation range

We need to choose a finite domain [a, b] such that the truncated integral approximates the infinite integral
very well. The integration range [a, b] we used in step 1 of section (4.1) is the rule-of-thumb provided by
[17],

[a, b] :=

[
x̂+ ξ1 − L

√
ξ2 +

√
ξ4, x̂+ ξ1 + L

√
ξ2 +

√
ξ4

]
, (4.18)

where ξ1, ξ2 and ξ4 are the cumulants and L is a scaling parameter. When L increases, the difference
between v3(x, t) and v(x, t) will be smaller. Unfortunately, when L increases, more terms are needed to
reach the same accuracy. A test by [17] shows that L = 10 will give fast and accurate results for option
pricing with ∆t = 0.1 up to ∆t = 10.

We define the function momgen(t) = log
(
E
[
etŷ
])
, t ∈ R, where momgen(t) is the moment-generating

function of random variable ŷ. The i-th cumulant from equation (4.18) is the values at t = 0 of the i-th
derivative to t of function momgen(t).
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4.4 Error analysis

The derivation of the COS formula introduces various errors. In this section we analyse these errors.
We will show that the overall error has exponential convergence when the probability density function,
f(y|x), belongs to C∞([a, b] ⊂ R). We use error analysis for the mathematical justification that the COS
method is fast and highly accurate. We follow Fang and Oosterlee [17].

1. The integration range truncation error
The first error appears at the truncation of the integration range, see section 4.1. The error can be
written as:

ε1 := v(x, t)− v1(x, t) = e−r∆t
∫
R\[a,b]

v(y, T )f(y|x)dy. (4.19)

2. The series truncation error on [a, b]
The second error arises at the truncation of the series summation on [a, b]. The error can be written
as:

ε2 := v1(x, t)− v2(x, t) =
b− a

2
e−r∆t

∞∑
k=N

Ak(x)Vk. (4.20)

3. The error related to approximating Ak(x) by Fk(x), see (4.9)
The third error arises by inserting the Fourier-cosine transform and can be written as:

ε3 := v2(x, t)− v3(x, t) = e−r∆t
N−1∑
k=0

′
Re

{∫
R\[a,b]

exp

(
ikπ

y − a
b− a

)
f(y|x)dy

}
Vk. (4.21)

Lemma 4. (Bounding ε3 with integration range truncation)
Error ε3 consists of integration range truncation errors, and can be bounded by:

|ε3| < Q|ε̂3|,

where Q is some constant independent of N and

ε̂3 :=

∫
R\[a,b]

f(y|x)dy.

Proof. See Fang [16].

So, the errors ε1 and ε3 are related to the domain [a, b]. When this domain is sufficiently large, the overall
error is dominated by ε2. For error ε2, the product of Ak(x) and Vk converges faster than Ak(x) or Vk.
Therefore, ∣∣∣∣∣

∞∑
k=N

Ak(x)Vk

∣∣∣∣∣ ≤ C
∞∑
k=N

|Ak(x)| ,

for some constant C. Hence, error ε2 is dominated by the series truncation error of the density function.

Lemma 5. (Bounding of ε2 with infinitely differential density functions)
Error ε2 converges exponentially in the case of smooth density functions f(x) ∈ C∞([a, b]).

|ε2| < P̂e−(N−1)ν , (4.22)

where ν > 0 is a constant and P̂ is a term that varies less than exponentially with N .
Proof. See Fang [16], Fang and Oosterlee [17].
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Lemma 6. (Bounding of ε2 with discontinuous density functions)
Error ε2 for density functions having discontinuous derivatives can be bounded as follows

|ε2| < P

(N − 1)β−1
(4.23)

where P is a constant and β ≥ aic ≥ 1, aic is the algebraic convergence of Vk.
Proof. See Fang [16], Fang and Oosterlee [17].

From the above we conclude that the overall error ε converges exponentially to zero for smooth density
functions that belong to C∞([a, b] ⊂ R), i.e.

|ε| ≤ |ε1|+ |ε2|+ |ε3| (triangle inequality)

< |ε1|+ P̂ e−(N−1)ν +Q|ε̂3|,

and the overall error converges algebraically when the density function of the underlying process has a
discontinuity in one of its derivatives, i.e.

|ε| ≤ |ε1|+ |ε2|+ |ε3|

< |ε1|+ P

(N − 1)β−1
+Q|ε̂3|.

4.5 Complexity

In the previous section we showed that the decay of the convergence rate of the overall error is exponential.
Therefore, the question arises by how much the computational time increases. In this section, we discuss
this question. We focus on the complexity of the calculations of the COS method. The complexity can
be derived from:

v3(x, t) = e−r∆t
N−1∑
k=0

′
Fk(x)Vk.

The calculation of this sum consists of N coefficients Fk(x) and Vk. The time to calculate any of the
Fk(x) or Vk will be the same for every k. Thus, the calculation time of the Fk(x) elements is O(N) and
the calculation time of the Vk elements is also O(N), where O denotes the order. The summation can
also be done in O(N). Therefore, the total calculation complexity is O(N). From O(N) complexity it
follows that the calculation complexity is linear with the number of terms N.

4.6 Conclusion

We conclude that the 1D COS method is very fast and highly accurate. The convergence rate of the error
for continuous density functions of the underlying asset is exponential; and its computational complexity
is linear. It is important to choose the truncation range carefully.

The 1D COS method has been extended to higher dimensions by Ruijter and Oosterlee [33] and subsequently
by Pellegrino and Sabino [32]. In appendix C we present the 2D COS method. In the next chapter we
discuss the nD COS method.

31



Chapter 5

N-dimensional COS method

If an option is based on one underlying asset we call this option one-dimensional. If an option is based
on more than one underlying asset it is called multi-dimensional. In this chapter we present the nD COS
method. This chapter is organized as follows. Firstly, we show the derivation of the nD COS method,
which leads to the nD COS formula. Thereafter, we focus on the payoff coefficients for this formula,
analyze the truncation range and the overall error, and pay attention to the computational complexity.
Finally, we derive that the overall error converges algebraically and is of second order; and that the
calculation complexity is of nth order.

5.1 Derivation

The value of a European option at time 0 ≤ t ≤ T is given by the risk-neutral valuation formula as
follows

v(~S(t), t) = e−r(T−t)EQ[g(~S(T ))|~S(t)], (5.1)

where ~S(t) denotes an n-dimensional vector of n stock prices at time t, the function g is the payoff
function depending on the stock prices at time T , r is the risk-free interest rate and EQ is the expectation
under the risk-neutral measure. We write (5.1) as an integral and thereby make use of some convenient
shorthand notations:

∆t := T − t, ~x := ~S(t), ~y := ~S(T ).

The risk-neutral valuation formula can be written as an integral

v(~x, t) = e−r∆t
∫
Rn
g(~y)f(~y|~x)d~y (5.2)

under the assumption that the risk-free interest rate r is constant and f is the probability density function
of ~y given ~x.

We distinguish again five successive steps for the derivation of the nD COS method.

1. We truncate the infinite integration range in the risk-neutral valuation formula
Because the probability density function f(~y|~x) decays to zero rapidly for ||~y|| → ∞, we can
approximate (5.2) without losing significant accuracy by a finite integration range [a1, b1] × . . . ×
[an, bn] ⊂ Rn:

v1(~x, t) = e−r∆t
∫ bn

an

. . .

∫ b1

a1

g(~y)f(~y|~x)dy1 . . . dyn

Remark: v1(~x, t) is an approximation of v(~x, t). The subscript 1 means v1(~x, t) contains an error
based on one approximation.
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2. We replace the probability density function by its cosine expansion in ~y
By means of the n-dimensional Fourier-cosine series expansion we can define a function on a finite
domain. The cosine expansion of f(~y|~x) on [a1, b1]× . . .× [an, bn] is given by

f(~y|~x) =

∞∑
k1=0

′
. . .

∞∑
kn=0

′
Ak1,...,kn(~x) cos

(
k1π

y1 − a1

b1 − a1

)
. . . cos

(
knπ

yn − an
bn − an

)
, (5.3)

where A~k(~x) is defined as

A~k(~x) =

n∏
i=1

(
2

bi − ai

)∫ bn

an

. . .

∫ b1

a1

f(~y|~x) cos

(
k1π

y1 − a1

b1 − a1

)
. . . cos

(
knπ

yn − an
bn − an

)
dy1 . . . dyn.

Inserting (5.3) into v1(~x, t) gives

v1(~x, t) = e−r∆t
∫ bn

an

. . .

∫ b1

a1

g(~y)

∞∑
k1=0

′
. . .

∞∑
kn=0

′
A~k(~x)

cos

(
k1π

y1 − a1

b1 − a1

)
. . . cos

(
knπ

yn − an
bn − an

)
d~y.

(5.4)

Remark:
∑′

is a summation where the first term is multiplied by 0.5.

3. We interchange integration and summation
Then, (5.4), reads:

v1(~x, t) =e−r∆t
n∏
i=1

(
bi − ai

2

) ∞∑
k1=0

′
. . .

∞∑
kn=0

′
Ak1,...,kn(~x)·

n∏
i=1

(
2

bi − ai

)∫ b1

a1

. . .

∫ bn

an

g(~y) cos

(
k1π

y1 − a1

b1 − a1

)
. . . cos

(
knπ

yn − an
bn − an

)
d~y. (5.5)

We define V~k as

V~k =

n∏
i=1

(
2

bi − ai

)∫ b1

a1

. . .

∫ bn

an

g(~y) cos

(
k1π

y1 − a1

b1 − a1

)
. . . cos

(
knπ

yn − an
bn − an

)
d~y, (5.6)

and insert V~k into (5.5)

v1(~x, t) = e−r∆t
n∏
i=1

(
bi − ai

2

) ∞∑
k1=0

′
. . .

∞∑
kn=0

′
A~k(~x)V~k. (5.7)

Remark: now we have written the integral over the product of f(~y|~x) and g(~y) as a summation of
the product of their Fourier-cosine series coefficients.

4. We truncate the series summation
The coefficients A~k(~x) and V~k decay rapidly. Therefore, we truncate the series summation in (5.7),
which gives

v2(~x, t) = e−r∆t
n∏
i=1

(
bi − ai

2

) N−1∑
k1=0

′
. . .

N−1∑
kn=0

′
A~k(~x)V~k. (5.8)

Remark: the function v2(~x, t) is an approximation of v1(~x, t). It contains a overall error consisting
of two approximations compared to v(~x, t).
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5. We substitute the series coefficients by the ChF approximation

We define F~k(~x) as

F~k(~x) =

∫
Rn
f(~y|~x) cos

(
k1π

y1 − a1

b1 − a1

)
. . . cos

(
knπ

yn − an
bn − an

)
d~y. (5.9)

We introduce the following trigonometric rule,

n∏
k=1

cos(θk) =
1

2n−1

∑
~e∈G

cos(e1θ1 + . . .+ enθn) for ~θ ∈ Rn, (5.10)

where G = {1}{1,−1}n−1.

Now, we can write (5.9) as

F~k(~x) =
1

2n−1

∑
~e∈G

F~e~k , (5.11)

where

F+
~k

(~x) =

∫
Rn
f(~y|~x) cos

(
k1π

y1 − a1

b1 − a1
+ . . .+ knπ

yn − an
bn − an

)
d~y

=Re

{∫
Rn
f(~y|~x) exp

(
ik1π

y1 − a1

b1 − a1
+ . . .+ iknπ

yn − an
bn − an

)
d~y

}
=Re

{∫
Rn
f(~y|~x) exp

(
ik1π

y1

b1 − a1
+ . . .+ iknπ

yn
bn − an

)
d~y·

exp

(
ik1π

−a1

b1 − a1
+ . . .+ iknπ

−an
bn − an

)}
.

(5.12)

The integral of (5.12) is the ChF of f(~y|~x). Writing F+
~k

(~x) with its ChF gives

F+
~k

(~x) = Re

{
φ

(
k1π

b1 − a1
, . . . ,

knπ

bn − an
|~x
)

exp

(
ik1π

−a1

b1 − a1
+ . . .+ iknπ

−an
bn − an

)}
. (5.13)

We can derive the formula for F−~k
(~x) in almost the same way.

F−~k
(~x) = Re

{
φ

(
k1π

b1 − a1
, . . . ,− knπ

bn − an
|~x
)

exp

(
ik1π

−a1

b1 − a1
− . . .− iknπ

−an
bn − an

)}
. (5.14)

Now we can replace A~k(~x) of (5.8) by F~k(~x). Together with (5.9), (5.13) and (5.14) gives the nD
COS pricing formula

v3(~x, t) = e−r∆t
1

2n−1

N−1∑
k1=0

′
. . .

N−1∑
kn=0

′
(
F+
~k

(~x) + . . .+ F−~k
(~x)
)
V~k (5.15)

Remarks:

(a) We explain
[
F+
~k

(~x) + . . .+ F−~k
(~x)
]
. On the dots in this formula we have to place all other

combinations of F±(~x). The number of terms depends on the dimension. The first superscript
sign is always +. The signs thereafter are either + or -. Some examples:

2D 21 = 2 F+ + F−

3D 22 = 4 F++ + F+− + F−+ + F−−

4D 23 = 8 F+++ + F++− + F+−+ + F−++ + F−−+ + F+−− + F−+− + F−−−

nD 2n−1 It is clear that it is impossible to write all these combinations in the nD COS
pricing formula. Therefore we use the dots notation.
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(b) We define the characteristic function of f(~y|~x) on the interval [a1, b1]× . . .× [an, bn] by φA, and
the characteristic function of f(~y|~x) on the domain Rn as φ. If the characteristic function of
f(~y|~x) is known then it will be defined on the whole domain Rn. The function f(~y|~x) decays

to zero very rapidly outside the domain [~a,~b]. Therefore, φA will not differ much from φ.

(c) The function v3(~x, t) is an approximation of v2(~x, t). v3(~x, t) contains an overall error consisting
of three approximations compared to v(~x, t).

5.2 Payoff coefficients

We defined V~k (5.6) as

V~k =

n∏
i=1

(
2

bi − ai

)∫ b1

a1

. . .

∫ bn

an

g(~y) cos

(
k1π

y1 − a1

b1 − a1

)
. . . cos

(
knπ

yn − an
bn − an

)
d~y,

where g(~y) is the payoff function of an option which depends on the asset prices ~S(T ) at time T .
When we say that the characteristic function of an exponential Lévy processes is known, we mean that
the characteristic function of the log asset prices is known. Therefore, the payoff function g(~y) has to be
transformed to a payoff function based on log asset prices. We perform a change of variables to achieve
this transformation. Let x̂ and ŷ be defined as

x̂ := log

(
~S(t)

K

)
, ŷ := log

(
~S(T )

K

)
,

where x̂ is the log-asset price at initial time and ŷ is the log-asset price at maturity time.

For example, the payoff of an n-dimensional European arithmetic basket call option reads

g(x̂) = max(K(ex̂1+...+x̂n − 1), 0). (5.16)

Remark: when n ≥ 2 it is not possible to calculate the payoff coefficients V~k analytically. Therefore, for
n ≥ 2 we use the n-dimensional DCT to approximate the values of these coefficients, see chapter 3.

5.3 Truncation range

In an infinite domain the COS method is not defined because of the Fourier cosine series expansions.
Therefore, we need to choose a finite domain [a1, b1] × . . . × [an, bn] such that the truncated integral
approximates the infinite integral very well. The integration range [a1, b1] × . . . × [an, bn] we used in
step 1 of section (5.1) is taken from [33],

ai := x̂i + ξ1
i − L

√
ξ2
i +

√
ξ4
i

bi := x̂i + ξ1
i + L

√
ξ2
i +

√
ξ4
i

where ξ1, ξ2 and ξ4 are the cumulants (see sections 7.2.1 and 7.3.1) and L is a scaling parameter.

Remark: when we increase L, the total error of the COS method (difference between v3(~S(t), t) and

v(~S(t), t)) is mitigated, but, unfortunately, more terms are needed to reach the same accuracy and this
consumes more time. L = 10 gives accurate results for option pricing with ∆t = 0.1, . . . , 1 [17].
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5.4 Error analysis

The derivation of the COS formula introduces an error which is composed of three parts. In addition,
the DCT approximation gives rise to an extra error. In this section we discuss these errors and their
convergence properties.

1. First part
The first error appears at the truncation of the integration range. It can be written as:

ε1 = v(~S(t), t)− v1(~S(t), t) = e−r∆t
∫
R\[a1,b1]×...×[an,bn]

g(~S(T ))f(~y|~x)d~y.

2. Second part
The second error arises at the truncation of the series summation on [a1, b1]× . . .× [an, bn]. It can
be written as:

ε2 = v1(~S(t), t)− v2(~S(t), t) =

n∏
i=1

(
bi − ai

2

)
e−r∆t

∞∑
k1=N

. . .

∞∑
ki=N

A~k(~x)V~k.

3. Third part
The third error arises by substituting the series coefficients by the ChF approximation. It can be
written as:

ε3 = v2(~S(t), t)− v3(~S(t), t)

=

n∏
i=1

(
bi − ai

2

)
e−r∆t

N1−1∑
k1=0

′
. . .

Nn−1∑
kn=0

′
(A~k(~x)− F~k(~x))V~k

= e−r∆t
∫ ∫

R2\[a1,b1]×...×[an,bn][
N1−1∑
k1=0

′
. . .

Nn−1∑
kn=0

′
cos

(
k1π

y1 − a1

b1 − a1

)
. . . cos

(
knπ

yn − an
bn − an

)
V~k

]
f(~y|~x)d~y.

4. DCT error
This extra error occurs because the elements of V~k are approximated using a DCT.

εDCT =

n∏
i=1

(
bi − ai

2

)
e−r∆t

N1−1∑
k1=0

′
N2−1∑
k2=0

′
F~k(~x)[V~k − V

DCT
~k

].

Let us assume that V~k terms are exact, then εDCT is zero. Let us also assume that the integration domain
[a1, b1]× . . .× [an, bn] is sufficiently wide, then the ε2 will dominate the overall error. It follows, that for
smooth density functions, i.e. f(~y|~x) ∈ C∞, the overall error ε converges exponentially in N .

Let us assume that V~k terms are not exact, then εDCT exists. This error converges algebraically in Q
with order two, see section 3.5. Therefore, the overall error converges to zero algebraically with second
order in Q.

5.5 Complexity

In this section, we focus on the computational complexity of the calculations for the nD COS method.
This complexity can be derived from

v3(~x, t) = e−r∆t
1

2n−1

N−1∑
k1=0

′
. . .

N−1∑
kn=0

′
(
F+
~k

(~x) + . . .+ F−~k
(~x)
)
V~k.
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The calculation of this sum consists of 2n−1Nn coefficients F~k(~x) and Qn coefficients V~k. The time to

calculate any of the F~k(~x) will be the same for every ~k. Thus, the calculation time of the F~k(~x) elements
is O(Nn), where O denotes the order.
For the elements V~k a DCT function is needed. A single DCT with the FFT method has calculation
complexity O(Q log2(Q)). The DCT has to be applied for every dimension. Thus, a total number of
nQn−1 DCTs is required. The total calculation complexity for all DCTs is O(Qn log2(Q)).

The summation can be done in O(Nn) operations. Q ≥ N : the total complexity of the nD COS method
is:

O(Qn log2(Q)). (5.17)

From (5.17) it follows that the calculation complexity is of the nth order in the number of terms Q.

Remark: for n = 2 the calculation complexity is at least quadratic in the number of terms Q.

5.6 Conclusion

We conclude that the nD (n ≥ 2) COS method is fast and highly accurate. The convergence rate of the
error for continuous density functions of the underlying assets is exponential in N ; and has an algebraic
convergence in Q with order two. Its computational complexity is of the nth order. It is important to
choose the truncation range carefully.

Finally, we note that the dimension n cannot be chosen too large. On the one hand, the computing time
grows exponentially with n as a result of which the curse of dimensionality sets in. On the other hand,
the memory space needed grows exponentially in n and a computer has a limited storage capacity. An
example: if we have 1 GB or 8 GB of memory storage available for the V~k coefficients, then the number
of terms Q per dimension decreases substantially, see table 5.1.

n 1GB 8GB
1 125,000,000 1,000,000,000
2 11,180 31,622
3 500 1000
4 105 177
5 42 63
6 22 31
7 14 19

Table 5.1: number of terms (Q) per dimension with 1GB and 8GB of memory

In this chapter we focused on the mathematics of the nD COS method. Before we perform our numerical
experiments it is useful to test the different parts of the COS algorithm in the three aforementioned
computer languages. We execute these tests in the next chapter.
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Chapter 6

Parallel implementation

In Chapter 7, we will perform our numerical experiments for the nD COS method. Before we start with
these experiments, we test our implementation in order to identify the most expensive functions of the
nD COS method. In this way, we can get insight into the computational cost of these functions using
the different considered programming languages. With this information we will be able to determine
the fastest programming language for our purposes and see which functions can benefit from a parallel
implementation. In sections 6.3, 6.4, 6.5 and 6.6, we discuss the parallel strategy for the four parts of the
method with higher computational cost. We test every part in 1D, 2D and 3D for different numbers of
N and Q. We start with an introduction.

6.1 Introduction

For our numerical experiments with the COS method we use three different programming environments,
namely MATLAB, C and CUDA. We use MATLAB because the original implementation of COS employed
this programming language; MATLAB is our reference. Two important properties of MATLAB are the
availability of different libraries and the fast calculations with matrices. Moreover, it is a user-friendly
script language. We use C because this programming language has become one of the most widely used
languages over the years. Some essential characteristics of C are: C code has to be compiled before it
can be run, it is low-level and it is statically typed. Therefore, we expect C to be faster than MATLAB.
The programming environments C and MATLAB run on a central processing unit (CPU). A CPU
consists of a few cores optimized for serial processing. Serial means that the calculations are performed
sequentially. Serial processing is suitable for calculations which are dependent as well as independent. In
computational finance, many computations are independent. Thus they are also suitable for parallelization.
The use of parallel computing has grown in recent years. In parallel computing multiple computations
are performed at the same time. As a consequence, these calculations must be independent of each other.
Years ago, mainly supercomputers were able to benefit from parallel computing. These computers with
massive numbers of CPUs were able to perform more calculations at the same time.

In 2006 NVIDIA released a compute unified device architecture (CUDA), a general-purpose computing
platform and programming model. CUDA is a heterogeneous programming language (combining GPU
and CPU code) which eases the development of parallel code for NVIDIA’s GPUs. The host1 code is
executed directly on the CPU which interfaces to the GPU. The GPU code has to be written as a kernel
which runs on the GPU. A kernel is a special function that can be defined in the CUDA framework. The
instructions within a kernel will be executed in parallel. A kernel specifies the number of parallel items or
threads by defining a grid. One grid can be divided into thread blocks. The threads in a grid concurrently
execute the same kernel. Threads are grouped together into thread blocks. All the threads in a grid have
access to global memory. Every thread block has per-block shared memory and every thread has its own
private local memory. Every memory has its own characteristics such as speed and size.

1The word host indicates the CPU in CUDA.
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A GPU has a parallel architecture consisting of thousands of smaller cores designed for handling multiple
computations simultaneously. A GPU consists of several streaming multiprocessors. Each streaming
multiprocessor executes a thread block from the grid in a parallel way. The thread blocks are automatically
distributed over the streaming multiprocessors. As a consequence, the thread blocks are performed in an
unknown order and have to be independent of each other. For more details [22, ch. 1.3],[29, 41].

The programmer specifies the number of threads in each block and the number of blocks in the grid. This
flexibility allows the developer to choose the thread’s organization according to the problem at hand. We
have chosen our own organization of threads and blocks. For the sake of simplicity, our key decision
is to launch one thread per element of the array of numbers. For example, for a 1D case, see Figure
6.1, this means that for a vector of 32 elements we launch 32 threads. We group these threads into 4
thread blocks (thus, each block consists of 8 threads). Thus, we can calculate the 32 elements of the
vector simultaneously. Figure 6.1 also shows that each element has its own thread in a specific block.
For instance, element 26 of the vector is calculated by Thread 2 of Block 3.

Figure 6.1: GPU calculations for a vector of length 32 with 4 blocks and 8 threads per block

As an example for the 2D case, we give in Figure 6.2 a schematic overview of a 2D grid consisting of
four 2D blocks, with in every block 64 threads (8x8) and the corresponding matrix of size 16x16. For
purposes of illustration: Thread(5,7) in Block(0,0) calculates element (5,7) of the Matrix, and Thread
(6,2) in Block (1,1) performs the calculations of element (14,10) of the Matrix.

Figure 6.2: GPU calculations for a matrix of size 16x16 with 4 blocks and 64 threads per block
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It is also possible to perform this method, one thread per element, for a 3D array. In that case, the grid
and the thread blocks have to be three-dimensional.
For the most time-consuming parts of this method we build a parallel implementation whereby every
single thread calculates one specific element of the matrix. Then, we test our parallel implementation
and the results will show if parallel computing really offers these time advantages.

For MATLAB and C experiments, we use a workstation with an ‘Intel(R) Core(TM) i5-4670 (3.40GHz
Cache size 6 MB)’ CPU, and 8 GB RAM. The workstation runs on Linux SUSE 11 64-bit. For CUDA,
we use the same computer supplemented with a ‘NVIDIA K600’ GPU card. Also for CUDA, we use
a Beowulf-cluster (‘Little Green Machine’) with two ‘Intel(R) Xeon(R) E5620 (2.40GHz Cache size 12
MB)’ CPUs, 24 GB RAM and two ‘NVIDIA GTX480’ GPUs. The MATLAB version is 2014b, the C
compiler is gcc 4.3.4 where the optimization is set to O3 and the CUDA toolkit version is 6.5.12.

6.2 Algorithm

In this section, we have rewritten the formula in Equation (5.15) according to the different steps involved
in the expression.

Algorithm 1 nD COS method

1: procedure COS method
2: Inputs: n,N,Q ∈ N≥1 and Q ≥ N
3: option characteristics
4: payoff characteristics
5: model characteristics
6: characteristic function of model
7: Output: option value
8: Calc: ~a, ~b
9: Calc: covariance matrices

10: P ← payoff(n,~a,~b,Q)
11: V ← DCT(P )

12: G← Charfunc(n,~a,~b,N)
13: for i = 0 to Nn do
14: Gi ← Gi · Vi
15: s←

∑
iGi

16: return
(

2
Q

)n
· exp(−r · τ) · s

In Algorithm 1 these steps are presented. The most expensive parts are: payoff (line 10), DCT (line
11), Charfunc (line 12) and dot product (lines 13 to 15). We denote these parts by payoff array, DCT,
characteristic function array and dot product. These parts consume the most calculation time because
the number of calculations depends on Q and N respectively. For the two Calc functions, on the lines
8 and 9, their number of calculations depends on n which is far less than Q or N . The number of
calculations of the return function, on line 16, is independent of n, Q and N . Therefore, the last three
mentioned functions consume little time. In the next sections, we describe the expensive parts and their
GPU parallel implementations.

6.3 Part I: Payoff array

The payoff function returns an array P , containing the payoff coefficients. The size of array P is Qn and
its calculation depends on vectors ~a and ~b, the dimension n, the value of Q and the payoff characteristics.
We have developed several payoff codes in MATLAB, C and CUDA, for European options, namely a
1D put-, 1D call-, 2D geometric basket-, 2D arithmetic basket-, 2D exchange- and 3D geometric basket
option. As an example we present the three codes for the 2D geometric basket payoff function in Table
6.1. It is possible to show the other codes in a similar way, see appendix D.
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2D MATLAB payoff function
function [ mat ] = payoffgeo2D( a,b,K,Q )

x = linspace(a(1)+0.5*(b(1)-a(1))/Q,b(1)-0.5*(b(1)-a(1))/Q,Q);

y = linspace(a(2)+0.5*(b(2)-a(2))/Q,b(2)-0.5*(b(2)-a(2))/Q,Q);

[x1,y1] = ndgrid(x,y);

mat = max(K*(1-sqrt(exp(x1+y1))),0);

end

2D C payoff function
void payoffgeo2D(double *h_A, double *h_a, double *h_b, double K, int Q)

{

int x,y;

int offset;

double x2, y2;

for (y=0;y<Q;y++)

{

for (x=0;x<Q;x++)

{

offset = x + y * Q;

x2 = h_a[0] + (x + 0.5) * (h_b[0]-h_a[0])/Q;

y2 = h_a[1] + (y + 0.5) * (h_b[1]-h_a[1])/Q;

h_A[offset] = MAX(K*(1-sqrt(exp(x2+y2))),0.0);

}

}

}

2D CUDA payoff kernel
__global__ void payoff2DGPU(double *d_A, double *d_a, double *d_b, double K, int Q)

{

int x = threadIdx.x + blockDim.x * blockIdx.x;

int y = threadIdx.y + blockDim.y * blockIdx.y;

if(x<Q && y<Q)

{

int offset = x + y*Q;

double x2 = d_a[0] + (x + 0.5) * (d_b[0]-d_a[0])/Q;

double y2 = d_a[1] + (y + 0.5) * (d_b[1]-d_a[1])/Q;

d_A[offset]=MAX(K*(1-sqrt(exp(x2+y2))),0.0);

}

}

Table 6.1: Codes for 2D geometric payoff function

In our parallel implementation every element of the matrix is calculated independently by one CUDA
thread. The kernel function returns the matrix P filled with the payoff coefficients, see Figure 6.2.
In Tables 6.2, 6.3 and 6.4 the execution times (ms) are presented for the 1D put-, 2D geometric put- and
3D geometric put payoff functions, respectively.

In this chapter, we use the following designation for every table:

• Speedup1: MATLAB CPU time divided by C CPU time;

• Speedup2: MATLAB CPU time divided by CUDA K600 GPU time;

• Speedup3: C CPU time divided by CUDA K600 GPU time.

• OOM: Some of the experiments cannot be performed due to memory limitations. This situation is
denoted ‘OOM’ (out of memory).
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Q MATLAB C CUDA K600 Speedup1 Speedup2 Speedup3
64 <0.01 <0.01 0.02 1.00 0.50 0.50

128 0.02 <0.01 0.02 2.00 1.00 0.50
256 0.02 0.02 0.02 1.00 1.00 1.00
512 0.03 0.04 0.02 0.75 1.50 2.00

1024 0.04 0.08 0.02 0.50 2.00 4.00
2048 0.11 0.16 0.02 0.69 5.50 8.00
4096 0.13 0.32 0.03 0.41 4.33 10.67
8192 0.22 0.64 0.04 0.34 5.50 16.00

Table 6.2: Time (ms) to create payoff vector 1D put option and speedups

Q2 MATLAB C CUDA K600 Speedup1 Speedup2 Speedup3

642 0.20 0.08 0.06 2.50 3.33 1.33
1282 0.39 0.32 0.17 1.22 2.29 1.88
2562 1.22 1.27 0.59 0.96 2.07 2.15
5122 4.8 5.07 2.28 0.95 2.11 2.22

10242 16.3 20.3 9.04 0.81 1.80 2.25
20482 49.4 81.1 36.0 0.61 1.37 2.25
40962 199 324 144 0.62 1.38 2.25
81922 780 1297 OOM 0.60 - -

Table 6.3: Time (ms) to create payoff matrix 2D geometric put option and speedups

Q3 MATLAB C CUDA K600 Speedup1 Speedup2 Speedup3

323 1.93 1.5 0.4 1.29 4.83 3.75
643 8.86 11.6 2.9 0.76 3.06 4.00

1283 70.3 92.2 23.4 0.76 3.00 3.94
2563 560 736 187 0.76 2.99 3.94
5123 OOM 5889 OOM - - -

Table 6.4: Time (ms) to create payoff array 3D geometric put option and speedups

The test results show that CUDA implementations outperform, in general, MATLAB and C, see Speedup2
and Speedup3. The only exceptions are Speedup2 of 1D put at Q = 64 and Speedup3 of 1D put at Q = 64
and Q = 128. This is because the overhead costs of CUDA K600 are divided over a too small number of
Q values.
The maximum obtained speedup is 16.00 when Q = 8192 for a 1D put. The speedup increases as Q
increases which means that especially for higher Q values the GPU K600 works at its full potential.
We have also tested our developed payoff kernels on a more advanced GPU (GTX480). In Table 6.5 we
present our results. These results show that CUDA GTX480 outperforms the CUDA K600 for all cases.
Especially when higher Q values are employed, the GPU GTX480 works at its full potential, the obtained
acceleration is significant. The GTX480 card has more memory so larger Q values can be employed.
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Q (1D) GTX480 Speedup Q2 (2D) GTX480 Speedup Q3 (3D) GTX480 Speedup

64 <0.01 2.00 642 0.03 2.00 323 0.08 5.00
128 <0.01 2.00 1282 0.05 3.40 643 0.33 8.79
256 <0.01 2.00 2562 0.08 7.38 1283 2.44 9.59
512 <0.01 2.00 5122 0.25 9.12 2563 19.22 9.73

1024 <0.01 2.00 10242 0.91 9.93 5123 OOM -
2048 <0.01 2.00 20482 3.54 10.17
4096 <0.01 3.00 40962 14.07 10.23
8192 0.01 4.00 81922 56.16 -

Table 6.5: Time (ms) to perform the payoff kernel and comparison GTX480 vs K600

6.4 Part II: DCT

The computation of the DCT function returns an array V containing the DCT of array P . The size of
V is Qn and its calculation depends on the payoff array P of size Qn. For the MATLAB version, Andriy
Myronenko has developed the function mirt dctn. This function is an implementation for the DCT which
is appropriate for all dimensions. Because the mirt dctn is faster than the available 1D DCT and 2D
DCT functions in MATLAB, we use Myronenko’s function for 1D, 2D and 3D. The mirt dctn function
can be found on the Mathworks website [45].
For the C version, we use the fftw exec function which can be found in the FFTW library [46]. This
function can be used to calculate the DCT for 1D, 2D and 3D. This library was developed by Frigo and
Johnson at the Massachusetts Institute of Technology in 2005.
For the CUDA version, we make use of the cuFFT library. The cuFFT library is part of the CUDA
Toolkit. This library is the FFTW equivalent for CUDA. However, the cuFFT library does not contain
an implementation of the DCT function. Therefore, we have written codes for 1D DCT, 2D DCT and
3D DCT. We follow the mathematics of Makhoul [24], see appendix B. He shows that a DCT can be
written as an FFT; the FFT is available in the cuFFT library for all three dimensions.

In our parallel implementation we allocate a new array as large as the input array. Then, we create
as many threads as there are elements in the input array. Every thread shuffles (shuffle kernel): read
one element from the input array and write it to its new location in the new array. Subsequently, an
array for the output of the build-in FFT from the cuFFT library is created. Then, the real to complex
FFT kernel is executed; the result is of size Q/2 + 1, see Makhoul [24]. Every element of the ouput
array is calculated by one thread. Every thread multiplies an input element with exponential functions
(multiplication kernel). The CUDA code of the 3D DCT can be found in Table 6.6. The codes for the
1D and 2D versions are less complex but similar.
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CUDA DCT (3D)

help functions
__device__ int loc(int k, int Q)

{

if(k<(Q/2)) return 2*k;

else return 2*Q-2*k-1;

}

__device__ cuDoubleComplex Wab(double a, double b)

{

cuDoubleComplex wab;

wab = cuexp(make_cuDoubleComplex(0.0,-2.0*a*M_PI/b));

return wab;

}

shuffle kernel
__global__ void shuffle3D(double *output, double *input, int Q)

{

int k1 = blockIdx.x * blockDim.x + threadIdx.x;

int k2 = blockIdx.y * blockDim.y + threadIdx.y;

int k3 = blockIdx.z * blockDim.z + threadIdx.z;

int offset1;

int offset2;

if(k1<Q && k2<Q && k3<Q)

{

offset1 = k1 + k2 * Q + k3 * Q * Q;

offset2 = loc(k1,Q) + loc(k2,Q) * Q + loc(k3,Q) * Q * Q;

output[offset1] = input[offset2];

}

}

multiplication kernel
__global__ void multiply3D(double *output, cufftDoubleComplex *input, int Q, int N)

{

int k1 = blockIdx.x * blockDim.x + threadIdx.x;

int k2 = blockIdx.y * blockDim.y + threadIdx.y;

int k3 = blockIdx.z * blockDim.z + threadIdx.z;

int offsetN;

int q2=Q/2+1; //Q/2+1

cuDoubleComplex ele;

cuDoubleComplex wab1, wab2, wab2m, wab3, wab3m;

if(k1<N && k2<N && k3<N)

{

offsetN= k1 + k2*N + k3*N*N;

wab1 = Wab((double) k1,(double)4*Q);

wab2 = Wab((double) k2,(double)4*Q);

wab2m= Wab((double)-k2,(double)4*Q);

wab3 = Wab((double) k3,(double)4*Q);

wab3m= Wab((double)-k3,(double)4*Q);

cuDoubleComplex V23, V23m, V2m3, V2m3m;
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if(k1<q2)

{

V23 = cuCmul(wab2, cuCmul(wab3, input[k1+ k2 *q2+ k3 *q2*Q]));

V23m = cuCmul(wab2, cuCmul(wab3m,input[k1+ k2 *q2+((Q-k3)\%Q)*q2*Q]));

V2m3 = cuCmul(wab2m,cuCmul(wab3, input[k1+((Q-k2)\%Q)*q2+ k3 *q2*Q]));

V2m3m= cuCmul(wab2m,cuCmul(wab3m,input[k1+((Q-k2)\%Q)*q2+((Q-k3)\%Q)*q2*Q]));

}

else

{

V23 = cuConj(cuCmul(wab2, cuCmul(wab3, input[(Q-k1)+ k2 *q2+ k3 *q2*Q])));

V23m = cuConj(cuCmul(wab2, cuCmul(wab3m,input[(Q-k1)+ k2 *q2+((Q-k3)%Q)*q2*Q])));

V2m3 = cuConj(cuCmul(wab2m,cuCmul(wab3, input[(Q-k1)+((Q-k2)%Q)*q2+ k3 *q2*Q])));

V2m3m= cuConj(cuCmul(wab2m,cuCmul(wab3m,input[(Q-k1)+((Q-k2)%Q)*q2+((Q-k3)%Q)*q2*Q])));

}

ele = cuCmul(wab1,cuCadd(cuCadd(cuCadd(V23,V23m),V2m3),V2m3m));

output[offsetN] = 2*ele.x;

}

}

DCT wrapper
void dct3DFFTGPU(double *output, double *input, int Q, int N)

{

// 3D-DCT makes use of the build-in complex to complex FFT.

// input: double array of length QxQxQ.

// output: double array of length NxNXN.

int TpB = 512;

dim3 TpB1D(TpB);

dim3 BpG1D((Q*Q*Q+TpB-1)/TpB);

TpB = 8;

dim3 TpB3D(TpB,TpB,TpB);

dim3 BpGQ3D((Q+TpB-1)/TpB,(Q+TpB-1)/TpB,(Q+TpB-1)/TpB);

dim3 BpGN3D((N+TpB-1)/TpB,(N+TpB-1)/TpB,(N+TpB-1)/TpB);

double *fftinput;

cudaMalloc((void **)\&fftinput, Q*Q*Q*sizeof(fftinput[0]));

cuDoubleComplex *c_out;

cudaMalloc((void **)&c_out, (Q/2+1)*Q*Q*sizeof(c_out[0]));

shuffle3D<<<BpGQ3D, TpB3D>>>(fftinput,input,Q);

FFTd2z3D(c_out, fftinput, Q);

multiply3D<<<BpGN3D,TpB3D>>>(output,c_out,Q,N);

cudaFree(c_out);

cudaFree(fftinput);

}

Table 6.6: Parallel CUDA implementation of the 3D DCT
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In Table 6.7 we present the results of our experiments with the DCT in the different languages.

dim Qn MATLAB C CUDA K600 Speedup1 Speedup2 Speedup3
1 256 0.10 0.09 0.71 1.11 0.14 0.13
1 512 0.11 0.13 0.89 0.85 0.12 0.15
1 1024 0.14 0.19 0.91 0.74 0.15 0.21
1 2048 0.19 0.33 0.91 0.58 0.21 0.36
1 4096 0.29 0.14 0.73 2.07 0.40 0.19
1 8192 0.51 0.30 0.96 1.70 0.53 0.31
1 16384 1.01 0.59 0.89 1.71 1.13 0.66
1 32768 1.97 1.20 1.27 1.64 1.55 0.94

2 642 0.23 0.30 0.80 0.77 0.29 0.38
2 1282 0.61 1.20 1.10 0.51 0.55 1.09
2 2562 1.92 0.88 2.66 2.18 0.72 0.33
2 5122 7.24 3.59 8.10 2.02 0.89 0.44
2 10242 31.7 20.6 28.5 1.54 1.11 0.72
2 20482 142 116 115 1.22 1.23 1.01
2 40962 605 536 486 1.13 1.24 1.10
2 81922 2493 2582 OOM 0.97 - -

3 323 1.5 0.38 2.28 3.95 0.66 0.17
3 643 9.3 4.39 12.4 2.12 0.75 0.35
3 1283 86 67.7 93.2 1.27 0.92 0.73
3 2563 785 672 755 1.17 1.04 0.89
3 5123 OOM 1.36e04 OOM - - -

Table 6.7: Time (ms) to perform the DCT and speedups

Note that for CUDA the P array is already in the memory of the GPU. This fact results in a performance
improvement since the transfers between CPU and GPU can be avoided.

In Table 6.7, we firstly observe that MATLAB and C compete for 1D and 2D, and that C conquers
its opponent for 3D, see column “Speedup1”. Secondly, C outperforms CUDA K600: Speedup3 barely
exceeds the ratio of 1, see column “Speedup3”. Thirdly, the results show that speedups 2 and 3 increase
with Q. This implies that CUDA performs better for large Q values. Lastly, a memory problem occurs
for CUDA K600 at Q2 = 81922 and at Q3 = 5123 for MATLAB and CUDA K600.

In Table 6.8 we present the results of the DCT kernel test performed on the GTX480 GPU. These results
show that CUDA GTX480 always outperforms the CUDA K600 especially for 2D where Q = 1024 and
higher and 3D where Q = 128 and higher.

Q (1D) GTX480 Speedup Q2 (2D) GTX480 Speedup Q3 (3D) GTX480 Speedup

256 0.18 3.94 642 0.24 3.33 323 0.65 3.51
512 0.40 2.23 1282 0.26 4.23 643 2.24 5.54

1024 0.18 5.06 2562 0.82 3.24 1283 12.0 7.77
2048 0.40 2.28 5122 1.73 4.68 2563 93.4 8.08
4096 0.20 3.65 10242 4.36 6.54 5123 OOM -
8192 0.42 2.29 20482 15.3 7.52

16384 0.21 4.24 40962 61.5 7.90
32768 0.45 2.82 81922 OOM -

Table 6.8: Time (ms) to perform the DCT kernel on the GTX480 and comparison GTX480 vs K600
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6.5 Part III: Characteristic function array

Once the payoff array, P, and DCT computations are performed, the computation of the characteristic
array is carried out. The size of the output array G is Nn and its calculation depends on vectors ~a and
~b, the option characteristics and the ChF of the model. G~k reads

G~k =
(
F+
~k

(~x) + . . .+ F−~k
(~x)
)
. (6.1)

We have developed codes in order to calculate the elements G~k for 1D GBM, 2D GBM, 3D GBM, 1D
MJD, 2D MJD and 3D MJD in the programming languages MATLAB, C and CUDA. Note that the
implementation slightly differs from Equation (6.1) because we have to divide some elements of G by the
factor two. These halves are linked to the special summations which are used in Equation (5.15).

Our parallel implementation for the characteristic array is similar to the payoff array implementation: we
calculate every element in the matrix with one thread. Therefore, we have to calculate the number
of threads. Every thread calculates its own unique thread ID. A thread ID can be one-, two- or
three-dimensional depending on the number of dimensions of the characteristic function. A thread
calculates the value of its characteristic function by means of its own thread ID. When the ID contains
one value of zero in its dimensions, the characteristic function is multiplied by 0.5; when it contains
two values of zero by 0.25; when it contains three values of zero by 0.125. These halves come from the
summations of the nD COS formula, Equation (5.15) of section 5.1.
The calculation complexity of the characteristic function kernel is higher than the calculation complexity
of the payoff kernel. The kernel of the characteristic function contains many more operations than the
payoff kernel. In Table 6.9, we present our developed CUDA code for the 2D GBM characteristic matrix.
The codes for 1D GBM, 3D GBM, 1D MJD, 2D MJD and 3D MJD are similar.

We have only tested 1D GBM, 2D GBM and 3D GBM, because MJD is an extension of GBM and
therefore we do not expect substantially different results. The test results in Table 6.10 show that CUDA
outperforms MATLAB and C. The maximum obtained speedup is more than 25 for 1D where Q = 2048.
Also, these results show that MATLAB is faster than C in general.

We have not only tested the characteristic function kernel on the K600 GPU (Table 6.10), but also on
the GTX480 GPU. In Table 6.11, we show the results of this test and the ratio between these two GPUs
(columns “Speedup”). We observe that the use of the GTX480 GPU gives a major speedup, especially
for 2D and 3D cases. For example, N2 = 10242 K600 GPU 21.2 milliseconds and GTX480 GPU 3.45
milliseconds: Speedup factor is more than 6.
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CUDA characteristic matrix (2D)

help functions
__device__ cuDoubleComplex chargbm2D(double u0, double u1, double t, double *logS0,

double *mu, double *cov)

{

return cuCmul(cu_exp(make_cuDoubleComplex(0.0,u0*logS0[0]+u1*logS0[1])),

cu_exp(make_cuDoubleComplex(-0.5*t*

(u0*u0*cov[0]+u0*u1*(cov[1]+cov[2])+u1*u1*cov[3]),t*(u0*mu[0]+u1*mu[1]))));

}

__device__ double Fkgbm2D(double u0, double u1, double v0, double v1, double t,

double *logS0, double *mu, double *cov)

{

cuDoubleComplex value = cuCmul(chargbm2D(u0,u1, t, logS0,mu,cov),

cu_exp(make_cuDoubleComplex(0.0,v0+v1)));

return value.x;

}

kernel
__global__ void chargbm2DGPU_kernel(double *G, double *precomp, double *precompa,

double t, double *logS0, double *mu, double *cov, int N)

{

int k0 = threadIdx.x + blockDim.x * blockIdx.x;

int k1 = threadIdx.y + blockDim.y * blockIdx.y;

if(k0<N && k1<N)

{

int offset = k0 + k1 * N;

double u0 = k0*precomp[0];

double u1 = k1*precomp[1];

double v0 = k0*precompa[0];

double v1 = k1*precompa[1];

G[offset] = Fkgbm2D(u0, u1, v0, v1, t, logS0, mu, cov)

+Fkgbm2D(u0,-u1, v0,-v1, t, logS0, mu, cov);

if(k0==0) G[offset] *= 0.5;

if(k1==0) G[offset] *= 0.5;

}

}

Table 6.9: CUDA implementation for characteristic matrix (2D)
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dim Nn MATLAB C CUDA K600 Speedup1 Speedup2 Speedup3
1 128 0.02 0.04 0.02 0.50 1.00 2.00
1 256 0.04 0.1 0.01 0.40 4.00 10.00
1 512 0.07 0.18 0.02 0.39 3.50 9.00
1 1024 0.13 0.36 0.02 0.36 6.50 18.00
1 2048 0.20 0.76 0.03 0.26 6.67 25.33

2 642 0.72 0.54 0.11 1.33 6.55 4.91
2 1282 1.75 2.15 0.36 0.81 4.86 5.97
2 2562 8.60 8.62 1.35 1.00 6.37 6.39
2 5122 24.3 34.9 5.3 0.70 4.58 6.58
2 10242 91.6 140 21.2 0.65 4.32 6.60

3 323 8.11 9.47 1.72 0.86 4.72 5.51
3 643 50.1 72.8 12.7 0.69 3.94 5.73
3 1283 382 573 97 0.67 3.94 5.91
3 2563 3004 4610 763 0.65 3.94 6.04
3 5123 OOM 37200 OOM - - -

Table 6.10: Time (ms) to create the charasteristic array and speedups (GBM)

N (1D) GTX480 Speedup N2 (2D) GTX480 Speedup N3 (3D) GTX480 Speedup

128 0.01 2.00 642 0.08 1.38 323 0.35 4.91
256 0.01 1.00 1282 0.13 2.77 643 1.98 6.41
512 0.01 2.00 2562 0.29 4.66 1283 14.8 6.55
1024 0.01 2.00 5122 0.91 5.82 2563 117 6.52
2048 0.01 3.00 10242 3.45 6.14 5123 OOM -

Table 6.11: Time (ms) to create the charasteristic array on GTX480 and comparison GTX480 vs K600
(GBM)

6.6 Part IV: Dot product

The calculation of the dot product depends on array V of size Nn and the Nn sub-array of G. For
MATLAB, a dot product is standard available. For C, a dot product is available in the BLAS library
(Basic Linear Algebra Subprograms). We use a specific BLAS library. This library is part of the Intel
MKL library, which is hand-optimized for our Intel CPU.
For CUDA, we use the dot product from the cuBLAS library. This library is the CUDA equivalent of
the BLAS library. By using this library it is not possible to organize grid, blocks or threads in our own
way. This organization is done by the built-in dot product itself.
In Table 6.12, we show the results of our experiments. Firstly, these results show that the dot product
consumes relatively little time for all languages. Secondly, C outperforms CUDA up to Nn = 643. The
CUDA implementation needs 1283 or more elements to be faster than the C version. Finally, a memory
problem also occurs in this table: for Nn = 5123 the K600 card cannot execute the calculation (OOM).
Table 6.13 contains the results of the test of the dot product, performed on a GTX480. The experiments
show that from Nn = 2562 the GTX480 is faster, as expected. However, we also observe that the
GTX480 is slower than the K600 up to N2 = 1282; a phenomenon we did not observe in the previous
tests. There probably are differences in overhead costs between the K600 GPU and the GTX480 GPU.
We note that because the dot product consumes relatively little time we expect that this slowdown will
not substantially influence the overall performance of the GTX480.
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Nn MATLAB C CUDA K600 Speedup1 Speedup2 Speedup3
512 <0.01 <0.01 0.05 1.00 0.20 0.20

1024 <0.01 <0.01 0.05 1.00 0.20 0.20
2048 <0.01 <0.01 0.05 1.00 0.20 0.20
4096 <0.01 <0.01 0.05 1.00 0.20 0.20
8192 0.02 <0.01 0.06 2.00 0.33 0.17

642 <0.01 <0.01 0.05 1.00 0.20 0.20
1282 0.03 <0.01 0.06 3.00 0.50 0.17
2562 0.13 0.02 0.1 6.50 1.30 0.20
5122 0.33 0.1 0.2 3.30 1.65 0.50

10242 2.07 0.83 0.86 2.49 2.41 0.97

323 0.06 0.01 0.08 6.00 0.75 0.13
643 0.28 0.10 0.20 2.80 1.40 0.50

1283 4.17 1.70 1.53 2.45 2.73 1.11
2563 38.6 13.5 11.4 2.86 3.39 1.18
5123 306 108 OOM 2.83 - -

Table 6.12: Time (ms) to perform the dot product of Nn elements and speedups

Nn GTX480 Speedup N2 GTX480 Speedup N3 GTX480 Speedup

512 0.08 0.63 642 0.08 0.63 323 0.08 1.00
1024 0.08 0.63 1282 0.09 0.67 643 0.12 1.67
2048 0.08 0.63 2562 0.10 1.00 1283 0.41 3.73
4096 0.09 0.56 5122 0.12 1.67 2563 1.97 5.79
8192 0.09 0.67 10242 0.27 3.19 5123 OOM -

Table 6.13: Time (ms) to perform the dot product kernel up Nn elements on the GTX480 and comparison
GTX480 vs K600

6.7 Conclusion

In this chapter, we have presented our parallel implementation of the nD COS method. A detailed
explanation of the different parallelized parts of the code was given. Regarding the performance, our
test results show that the differences in calculation time of MATLAB and C are smaller than expected.
The DCT and the dot product can be calculated faster with C than with MATLAB. In contrast, the
payoff array and the characteristic function array are faster in MATLAB than in C. We did not expect
this result. We guess that our C implementation of these parts is not fully optimized. Furthermore,
the results show that the parts payoff array and characteristic function array perform excellent when
calculated in parallel on the GPU. For large Q values the payoff array speeds up to a factor of 16 (Table
6.2 1D, Q = 8192) and for large N values the characteristic function array to a factor of 25 (Table 6.10
1D, N = 2048).

We also perform the parallel kernels on a faster GPU (GTX480) which results in an additional speedup
between 2 and 10 compared to the GPU (K600). Combining the maximum speedup 25.33 in Table 6.10
(1D, N = 2048) and the speedup 3 in Table 6.11 (1D, N = 2048), the maximum speedup with CUDA
GTX480 reaches to a factor of (3 · 25.33 =) 76. Note that although the experiments with the GPU
(GTX480) were performed on a different machine (Little Green Machine), we expect a similar speedup
on any machine since the time interacting with the CPU is negligible.

The GPUs suffer from a limited amount of available memory. MATLAB too has its memory limitations;
therefore some large problems only can be calculated with C. In general, for larger problems the GPUs
work at their full potential. Therefore, we expect that calculating option values with the nD COS method
in high dimensions will be very suitable for parallelization.
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Chapter 7

Numerical results

7.1 Introduction

In this chapter, we use the COS method for performing numerical calculations on two models in several
dimensions. These models are a correlated GBM and a correlated MJD. We perform these calculations
in three programming languages, namely MATLAB, C and CUDA. For these languages we have written
specific codes. The code of MATLAB is recorded in Appendix E and the relevant parts of the codes of
C and CUDA are recorded in the appendices F and G.
We mainly use the Black-Scholes method and a Monte Carlo simulation to obtain reference values. We
test various European payoffs, namely a call option, a geometric basket put option, an arithmetic basket
call option and an exchange option.

The Black-Scholes values are considered to be exact. Therefore, we calculate the reference values of the
different European options with the Black-Scholes formula. We demonstrate that the COS method is
(very) fast and (highly) accurate for one and medium-sized dimensions (1D, 2D and 3D). For these cases
the programming language CUDA (with video card GTX480), as expected, is by far the fastest way to
price these options.

7.2 GBM model

7.2.1 Parameter set and GBM cumulants

For our numerical calculations we use the following three parameter sets.

Set 1 S(t) = 100, r = 0.02, q = 0, ∆t = 0.1, σ = 0.4.

Set 2 ~S(t) = [90, 110]′, r = 0.04, q = [0, 0]′, ∆t = 1, σ = [0.2, 0.3]′,

ρ =

[
1 0.25

0.25 1

]
.

Set 3 ~S(t) = [90, 100, 110]′, r = 0.04, q = [0, 0, 0]′, ∆t = 1, σ = [0.2, 0.3, 0.25]′

ρ =

 1 0.25 0.1
0.25 1 0.2
0.1 0.2 1

.

where S(t) is the value of the asset at time t, and ~S(t) is a vector of the asset prices at time t,
r is the risk-free rate, q is the continuous dividend,
∆t = T − t is the time to maturity, σ is the volatility and ρ is the correlation matrix.

The cumulants for the GBM model are an adaptation of [26].

ξ1 = ∆t
(
r − σ2

2

)
, ξ2 = ∆t(σ2), ξ4 = 0.
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7.2.2 Tests

7.2.2.1 One-dimensional tests

In this subsection we price a 1D European call option under GBM and use parameter set 1.

We will take three different strike prices K, 80, 100 and 120. The test results are given in Tables 7.1, 7.2
and 7.3. Table 7.1 shows the reference values, Table 7.2 the results of the Monte Carlo simulation and
Table 7.3 the results of the COS method. The time differences in MATLAB between the three methods
show that the Monte Carlo simulation consumes substantially more time than the other methods. For
example K = 80: the Black-Scholes model consumes 0.06 milliseconds CPU time. With N = 64 the
COS method takes 0.08 milliseconds CPU time; and with M̂ = 106 the Monte Carlo simulation takes 22
milliseconds CPU time. Moreover, the Monte Carlo technique has a substantially larger absolute error.
We assume that these findings do not alter for C and CUDA. Therefore, we do not use this simulation
technique for 2D and 3D dimensions if an analytical solution is available.

Black-Scholes values of call option

K reference value error MATLAB time (ms)

80 20.32926862429101 <1e-15 0.06
100 5.138393968748168 <1e-15 0.06
120 0.478986995446254 <1e-15 0.06

Table 7.1: Option value calculation with Black-Scholes formula

time(ms) K = 80 K = 100 K = 120

M̂ MATLAB abs error std error abs error std error abs error std error

1000 6.4e-02 2.0e-01 1.5e-01 1.3e-01 9.7e-02 1.3e-02 1.0e-02
10000 2.2e-01 6.5e-02 4.8e-02 4.2e-02 3.1e-02 4.2e-03 3.2e-03

100000 1.6 2.0e-02 1.5e-02 1.3e-02 1.0e-02 1.3e-03 9.9e-04
1000000 22 6.1e-03 4.8e-03 4.2e-03 3.3e-03 4.5e-04 3.3e-04

Table 7.2: Time and error when pricing a European call option with Monte Carlo simulation

abs error calculation time (ms)
N K=80 K=100 K=120 MATLAB C CUDA K600 CUDA GTX480
16 3.77e-03 1.07e-02 1.12e-02 0.02 <0.01 0.09 0.14
32 1.53e-07 1.51e-07 1.94e-08 0.05 <0.01 0.09 0.14
64 1.42e-14 7.11e-15 1.95e-14 0.08 0.01 0.09 0.12

128 1.42e-14 7.11e-15 1.95e-14 0.10 0.11 0.26 0.35
256 1.42e-14 7.11e-15 1.95e-14 0.21 0.24 0.25 0.35
512 1.42e-14 7.11e-15 1.95e-14 0.47 0.09 0.26 0.36

1024 1.42e-14 7.11e-15 1.95e-14 0.91 0.17 0.12 0.12
2048 1.42e-14 7.11e-15 1.95e-14 1.78 0.34 0.32 0.35
4096 1.42e-14 7.11e-15 1.95e-14 3.39 0.75 0.41 0.35

Table 7.3: Time and error when pricing a European call option with the COS method, L = 10
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In Table 7.2, M̂ is the number of simulations of the value of the stocks paths under GBM. For the 1D
case, it is not necessary to simulate paths, because the analytic solution of the GBM SDE is known, see
Formula (7.1). We can suffice by simulating the points at maturity time directly (the end points of the
paths), by simulating W (∆t).

S(T ) = S(t) exp

((
r − σ2

2

)
∆t+ σW (∆t)

)
(7.1)

We perform one thousand runs for every M̂ , so we can accurately calculate the mean of the absolute error
and the standard deviation of the absolute error. We note that the CPU times of MATLAB is timed for
one run. The test results show that that the standard deviation of the absolute error decays with 1/

√
M̂ .

The test results as shown in Table 7.3 make clear that the 1D COS method is very fast and can highly
accurately reproduce the exact values of the Black-Scholes formula, under the GBM process. We note
that Fang and Oosterlee [17] and Fang [16] have already shown these excellent properties of the 1D
COS method under GBM. But these authors limited themselves to tests with MATLAB. However, our
numerical experiments also include tests with C and different CUDAs. We show that the computation
time of the COS method can be mitigated substantially by using C and CUDA (for high N). For
example, for low N = 16: MATLAB 0.02ms, C <0.01ms and CUDA K600 0.09ms. And N = 512:
MATLAB 0.47ms, C 0.09ms (the speedup factor exceeds 5) and CUDA 0.26ms (the speedup factor is
1.8). For N = 4096: MATLAB 3.39ms, C 0.75ms (speedup factor 4.5) and CUDA K600 0.41ms (speedup
factor 8.3). CUDA shows its potential at very high N (N = 4096), more than 8 times faster as MATLAB.

The test results of MATLAB as shown in Table 7.3 confirm that the calculation complexity is linear. In
Table 7.4, we show this linear complexity in MATLAB (by doubling N the time differences also double).

N MATLAB differences between subsequent times ratio
128 0.10 - -
256 0.21 0.11 -
512 0.47 0.26 2.36

1024 0.91 0.44 1.69
2048 1.78 0.87 1.98
4096 3.39 1.61 1.85

Table 7.4: Time, difference and ratio for 1D COS

Figure 7.1 confirms that the convergence of the absolute errors from Table 7.3 is exponential. With Fang
and Oosterlee [17], we observe that with N = 26 = 64 the 1D COS results correspond with the reference
price in double precision. We also observe that the error convergence rate is similar for the different strike
prices.
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Figure 7.1: Error convergence for pricing European call options (1D COS)

7.2.2.2 Two-dimensional tests

In this subsection we price a 2D European geometric basket put option, a European arithmetic call option
and a European exchange option, under GBM. We use parameter set 2. We compare the COS method
with Black-Scholes or Monte Carlo simulation. The results of this experiment show that the 2D COS
method is also fast and highly accurate, for GBM.

7.2.2.2.1 Geometric basket put option A geometric basket put option is an option whose payoff
depends on the geometric average of several underlying stocks. This basket option has payoff function

g(~S(T )) =
(
K −

√
S1(T )S2(T )

)+

,

g(ŷ) =
(
K(1−

√
exp(ŷ1) exp(ŷ2)

)+

.

If the underlying assets are GBM and the payoff is a geometric basket payoff, then an analytic formula,
an extended Black-Scholes formula with continuous yield dividends, can be derived for the option value,
which reads

v(~S(t), t) = exp(−q̂∆t)ŜN(d̂1)− e−r∆tKN(d̂2) (call) (7.2)

v(~S(t), t) = e−r∆tKN(−d̂2)− exp(−q̂∆t)ŜN(−d̂1) (put) (7.3)

where

d̂1 =
ln(Ŝ/K) +

(
r − q̂ + σ̂2

2

)
∆t

σ̂
√

∆t
, d̂2 = d̂1 − σ̂

√
∆t, Ŝ =

n∏
j=1

Sj(t)
1/n

,

σ̂ =

√∑
i,j σiσjρij

n
, q̂ =

∑n
i=1

(
qi + 1

2σ
2
i

)
n

− σ̂2

2
.

We refer to [23, 33]. The value of the call option v(~S(t), t) is given by stock price Ŝ, volatility σ̂ and
dividend rate q̂. For the initial conditions above

Ŝ0 =
√

90
√

110 = 30
√

11, σ̂ =
√

0.16/2 = 0.2, q̂ = (0.065− 0.04)/2 = 0.0125.

We test two different strike prices, K = 100 and 200. The test results are given in Tables 7.5 and 7.6.
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Black-Scholes values of 2D geometric basket put

K reference value error MATLAB time (ms)

100 6.696961159991261 <1e-15 11.2
200 93.897977093048610 <1e-15 10.2

Table 7.5: Reference values for 2D European geometric basket put options with Black-Scholes formula

Monte Carlo K = 100 K = 200

M̂ time (ms) abs error std error abs error std error

1000 20 0.11 0.42 5.3e-04 5.6e-03
10000 193 0.03 0.13 1.8e-04 2.6e-03

100000 1925 6.7e-05 4.1e-02 6.0e-05 7.8e-04
1000000 19292 1.3e-03 1.2e-02 4.1e-05 2.1e-04

Table 7.6: Time and error when pricing a European geometric basket put option with a Monte Carlo
simulation (100 runs)

For the 2D COS method we take three different N values, 16, 32, 64, N = N1 = N2 and five different Q
values, 64, 128, 256, 512 and 1024. The test results are given in Tables 7.7 and 7.8.

K = 100 N2 = 162

Q2 abs error MATLAB C CUDA K600 CUDA GTX480

642 1.07e-03 0.6 0.20 1.27 0.98
1282 4.48e-04 1.2 0.62 1.35 0.98
2562 4.38e-04 3.4 2.45 2.30 1.48
5122 3.63e-04 11.2 9.89 5.45 1.94

10242 3.81e-04 47.7 44.6 19.0 3.38

N2 = 322

642 1.37e-03 0.9 0.33 1.15 0.78
1282 9.88e-05 1.4 0.76 1.48 0.78
2562 7.46e-05 3.3 2.58 1.95 1.26
5122 4.34e-06 11.7 10.0 5.33 1.72

10242 1.23e-05 46.9 44.4 18.9 3.17

N2 = 642

642 1.37e-03 1.3 0.90 1.32 0.78
1282 9.87e-05 1.8 1.34 1.56 0.98
2562 7.46e-05 4.1 3.15 2.25 1.47
5122 4.39e-06 12.0 10.6 5.64 1.93

10242 1.22e-05 45.4 44.8 19.2 3.44

Table 7.7: Error and time 2D European geometric basket put option (K = 100)
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K = 200 N2 = 162

Q2 abs error MATLAB C CUDA K600 CUDA GTX480

642 5.86e-04 0.8 0.21 1.27 0.96
1282 6.52e-04 1.1 0.66 1.35 0.98
2562 6.67e-04 3.1 2.61 2.30 1.51
5122 6.71e-04 10.2 10.5 5.44 1.97

10242 6.71e-04 45.1 47.0 19.0 3.50

N2 = 322

642 5.84e-06 0.8 0.35 1.15 0.79
1282 2.45e-06 1.3 0.81 1.47 0.79
2562 2.53e-07 3.3 2.75 1.95 1.24
5122 2.06e-07 11.1 10.7 5.32 1.77

10242 8.48e-08 47.0 47.0 18.9 3.26

N2 = 642

642 5.92e-06 1.4 0.95 1.32 0.80
1282 2.36e-06 1.9 1.40 1.56 0.97
2562 3.48e-07 4.2 3.35 2.25 1.45
5122 1.10e-07 10.8 11.3 5.64 1.92

10242 1.04e-08 47.4 47.4 19.2 3.43

Table 7.8: Error and time 2D European geometric basket put option (K = 200)

Also, for the 2D case we observe that the COS method can quickly and accurately reproduce the exact
values of Black-Scholes. Errors of size e-06, e-07 and e-08 are no exception. A few examples:

• the absolute error is 4.34e-06, which is reached by K = 100, N2 = 322 and Q2 = 5122. The
MATLAB CPU time for this accuracy is 11.7 milliseconds; the C CPU time is 10.0 milliseconds;
the CUDA K600 time is 5.33 milliseconds.

• the absolute error is 8.48e-08, which is reached by K = 200, N2 = 322 and Q2 = 10242. The
MATLAB CPU time for this accuracy is 47.0 milliseconds; the C CPU time is 47.0 milliseconds;
the CUDA K600 time is 18.9 milliseconds.

We also observe that CUDA GTX480 outperforms CUDA K600. For N2 = 322, Q2 = 10242 and K = 100
the speedup factor is almost 6.

Appendix C shows that, under the assumption that the Vk1,k2 terms are exact and the integration domain
[a1, b1]× [a2, b2] is sufficiently wide, the ε2 will dominate the overall error. In that case, for smooth density
functions, the overall error ε converges exponentially in N . In Figure 7.2, left side, we plot the absolute
errors for various N with a fixed value of Q, Q = 2048, and observe that the overall error convergences
exponentially in N , as expected.
This appendix also shows that, under the assumption that the Vk1,k2 terms are not exact, εDCT is present
and dominates the absolute error. This error converges algebraically in the number of terms Q with order
two. In Figure 7.2, right side, we plotted the absolute errors for various Q with a fixed value of N , N = 40.
We observe that the overall error convergences algebraically in Q, as expected.
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Figure 7.2: Error convergence for pricing a 2D European geometric put option (K=100)

The results in Table 7.9 confirm that the calculation complexity of the 2D COS method is quadratic in
C. By doubling the Q the ratio is four.

K = 200 N2 = 162

Q2 C difference between subsequent timings ratio

642 0.21 - -
1282 0.66 0.45 -
2562 2.61 1.95 4.33
5122 10.5 7.89 4.05

10242 47.0 36.5 4.63

N2 = 322

642 0.35 - -
1282 0.81 0.46 -
2562 2.75 1.94 4.22
5122 10.7 7.95 4.10

10242 47.0 36.3 4.57

N2 = 642

642 0.95 - -
1282 1.40 0.45 -
2562 3.35 1.95 4.33
5122 11.3 7.95 4.08

10242 47.4 36.1 4.54

Table 7.9: Time analysis of 2D COS geometric basket European put option

7.2.2.2.2 Arithmetic basket call option An arithmetic basket call option is an option whose payoff
depends on the arithmetic average of several underlying stocks. This basket call option has payoff function

g(~S(T )) =

(
S1(T ) + S2(T )

2
−K

)+

,

g(ŷ) =

(
K

(
exp(ŷ1) + exp(ŷ2)

2
− 1

))+

.

It is not possible to calculate the value of an arithmetic basket call option analytically. We prefer to
compare the results of the 2D COS method to a reference value which is determined by another method,
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namely Monte Carlo simulation. With this simulation we have calculated a reference value of 10.1732612.
We note that this value is the mean of 1,000 runs consisting of M̂ = 100, 000, 000 paths.

Monte Carlo simulation value of arithmetic basket call option

reference value standard deviation error MATLAB time (ms)

10.1732612 0.00148 1e-05 6844000

Table 7.10: Reference value for arithmetic basket call option (GBM)

K = 100 N2 = 162

Q2 abs error MATLAB C CUDA K600 CUDA GTX480

642 1.80e-01 0.6 0.24 1.26 0.94
1282 1.83e-01 1.1 0.81 1.33 0.94
2562 1.84e-01 3.4 3.18 2.05 1.45
5122 1.84e-01 11.3 12.8 5.78 1.84

10242 1.84e-01 47.0 55.8 20.3 3.59

N2 = 322

642 5.47e-04 0.8 0.38 1.39 0.75
1282 4.96e-04 1.3 0.94 1.45 0.76
2562 5.08e-05 3.6 3.31 2.14 1.24
5122 5.05e-05 11.8 13.0 5.66 1.70

10242 3.46e-05 47.3 56.0 20.3 3.24

N2 = 642

642 5.44e-04 1.3 0.94 1.57 0.76
1282 4.92e-04 1.8 1.50 1.55 0.97
2562 5.49e-05 4.0 3.88 2.50 1.45
5122 4.64e-05 13.9 13.6 5.97 1.90

10242 3.05e-05 47.5 56.6 20.6 3.48

Table 7.11: Error and time 2D European arithmetic basket call option

For this 2D arithmetic option, we observe that the COS method reproduces the value of the Monte Carlo
simulation quick and accurate. For example, the absolute error is 5.08e-05, which is reached by N2 = 322

and Q2 = 2562. The MATLAB CPU time for this accuracy is 3.6 milliseconds; the C CPU time is 3.31
milliseconds; the CUDA K600 time is 2.14 milliseconds. Note that CUDA GTX480 outperforms CUDA
K600 especially for high Q values. For example, when N2 = 642 and Q2 = 10242 the speedup is almost
6.

K = 100 N2

Q2 162 322 642

642 1.80e-01 5.16e-04 5.12e-04
1282 1.83e-01 4.65e-04 4.61e-04
2562 1.84e-01 8.20e-05 8.61e-05
5122 1.84e-01 1.93e-05 1.52e-05

10242 1.84e-01 3.37e-06 7.38e-07

Table 7.12: Error 2D European arithmetic basket call option

We note that Ruijter and Oosterlee [33] also tested the 2D European arithmetic basket call option.
They used the reference value 10.173230, obtained by using the 2D COS method for Q2 = 50002 and
N2 = 1002. When we use this value instead of the value of our Monte Carlo simulation the test results
shown in Table 7.12 give a higher accuracy.
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7.2.2.2.3 Exchange option An European exchange option between two stocks is the right given to
someone to exchange stock two for stock one at maturity time. This basket option has payoff function:

g(~S(T )) = (S1(T )− S2(T ))
+
,

g(ŷ) = (K (exp(ŷ1)− exp(ŷ2)))
+
.

An analytic solution, based on the Black-Scholes formula, is available for an exchange option, namely
Margrabe’s formula[21, 25].

v(~S(t), t) = e−q1∆tS1(t)N(d1)− e−q2∆tS2(t)N(d2),

d1 =
ln
(
S1(t)
S2(t)

)
+ ∆t

(
q2 − q1 + σ̂2

2

)
σ̂
√

∆t
,

d2 = d1 − σ̂
√

∆t, σ̂ =
√
σ2

1 + σ2
2 − 2σ1σ2ρ.

Exact values of exchange option

reference value error time (ms) MATLAB

4.980814613075189 <1e-15 0.02

Table 7.13: Results for exchange option (GBM) value calculation with Margrabe’s formula

N2 = 162

Q2 abs error MATLAB C CUDA K600 CUDA GTX480

642 6.18e-02 0.6 0.23 1.27 0.96
1282 5.97e-02 1.1 0.74 1.35 0.96
2562 6.07e-02 3.1 2.93 2.05 1.45
5122 6.03e-02 11.0 11.8 5.73 1.85

10242 6.03e-02 49.5 51.8 20.2 3.48

N2 = 322

642 3.05e-03 0.8 0.36 1.38 0.75
1282 3.11e-04 1.3 0.88 1.45 0.75
2562 4.74e-04 4.0 3.09 1.93 1.24
5122 6.23e-05 11.3 12.0 5.63 1.64

10242 1.40e-05 49.5 52.0 20.1 3.20

N2 = 642

642 3.05e-03 1.3 0.93 1.52 0.76
1282 3.13e-04 1.9 1.44 1.52 0.96
2562 4.72e-04 5.4 3.62 2.27 1.45
5122 6.38e-05 15.1 12.5 5.95 1.86

10242 1.55e-05 57.0 52.4 20.4 3.47

Table 7.14: Error and time 2D European exchange option

In Table 7.14 we observe for this exchange option that the 2D COS method can quickly and accurately
reproduce the exact values of Margrabe’s formula. For example, the absolute error is 6.38e-05, which is
reached by N = 64 and Q = 512. The MATLAB CPU time for this accuracy is 15.1 milliseconds; the
C CPU time is 12.5 milliseconds; the CUDA K600 time is 5.95 milliseconds. Note again that CUDA
GTX480 outperforms CUDA K600.
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7.2.2.3 Three-dimensional tests

In this subsection we price a 3D European geometric basket put option, under GBM. We use parameter
set 3. We compare the COS method with the Black-Scholes formula. The results of our experiment show
that the 3D COS method is also highly accurate and especially for low Q values relatively fast, for GBM.

Geometric basket put option The payoff function of a three-dimensional geometric basket put option
reads

g(~S(T )) =
(
K − 3

√
S1(T )S2(T )S3(T )

)+

,

g(ŷ) =
(
K
(

1− 3
√
eŷ1eŷ2eŷ3

))+

.

With formula 7.2 we calculate the reference values, which are shown in Table 7.15.

Black-Scholes values of a 3D European geometric basket put

K reference value error MATLAB time (ms)

75 0.205984525354658 <1e-15 0.90

150 46.264576516644198 <1e-15 0.92

Table 7.15: Value for 3D European geometric basket put option (GBM) calculated with the altered
Black-Scholes formula

K = 75 N3 = 163

Q3 abs error MATLAB C CUDA K600 CUDA GTX480

643 4.61e-03 19.7 19.9 6.60 1.96
1283 4.74e-03 161 179 46.1 6.79
1603 4.75e-03 295 320 99.1 12.5
2563 4.77e-03 1338 1535 376 47.1

N3 = 323

643 3.78e-05 25.8 30.5 9.77 2.53
1283 4.41e-06 167 189 49.3 7.18
1603 4.03e-07 303 330 102 12.9
2563 3.94e-06 1346 1549 379 47.8

N3 = 643

643 3.79e-05 68.0 117 33.9 5.28
1283 4.52e-06 210 276 73.3 9.94
1603 5.07e-07 350 418 126 15.7
2563 3.84e-06 1381 1630 403 50.5

Table 7.16: Error and time 3D European geometric basket put option

In Tables 7.16 and 7.17 we observe that the 3D COS method can accurately reproduce the exact values of
Black-Scholes. But, the calculation in the higher dimension consumes more time. In this higher dimension
the CUDA K600 outperforms MATLAB and C and CUDA GTX480 is much faster than CUDA K600.
For example, the absolute error is 5.07e-07, which is reached by K = 75, N = 64 and Q = 160. The
MATLAB CPU time for this accuracy is 350 milliseconds; the C CPU time is 418 milliseconds; the CUDA
K600 time is 126 milliseconds. Note, CUDA GTX480 outperforms CUDA K600 by a factor 8.0.
The results in Table 7.18 confirm that the calculation complexity of the 3D COS method is cubic in C.
By doubling the Q the ratio becomes eight.
Under the assumptions in section 5.4 the left-side plot of Figure 7.3 shows that the absolute error for
various N with a fixed value of Q = 256 converges exponentially in N , as expected. The right-side plot
of this figure shows that the absolute error for various Q with N = 40 convergences algebraically in Q,
as expected.
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K = 150 N3 = 163

Q3 abs error MATLAB C CUDA K600 CUDA GTX480

643 5.35e-03 19.9 22.7 6.60 1.95
1283 5.46e-03 164 201 46.1 6.92
1603 5.48e-03 296 359 99.2 13.1
2563 5.49e-03 1337 1709 376 49.7

N3 = 323

643 2.38e-05 26.4 33.5 9.78 2.53
1283 5.70e-06 167 211 49.4 7.50
1603 4.86e-06 307 370 102 13.6
2563 1.18e-06 1343 1718 379 50.4

N3 = 643

643 2.39e-05 65.2 122 34.0 5.27
1283 5.81e-06 206 299 73.4 10.3
1603 4.75e-06 342 458 126 16.4
2563 1.29e-06 1386 1809 405 53.2

Table 7.17: Error and time 3D European geometric basket put option

K = 75 N3 = 163

Q3 C difference between subsequent times ratio

643 19.9
1283 179 159.1
2563 1535 1356 8.5

N3 = 323

643 30.5
1283 189 158.5
2563 1549 1360 8.6

N3 = 643

643 117
1283 276 159
2563 1630 1354 8.5

Table 7.18: Error and time 3D European geometric basket put option

Figure 7.3: Error convergence for pricing a 3D European geometric put option (K=150)
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7.3 MJD model

7.3.1 Parameter set and MJD cumulants

For our numerical calculations we use the following three parameter sets.

Set 1 S(t)=100, r=0.02, q = 0, ∆t=1, σ=0.4, α=0, δ=0.15, λ=5.

Set 2 ~S(t) = [90, 110]′, r = 0.04, q = [0, 0]′, ∆t = 1, σ = [0.2, 0.3]′, α = [0, 0.05]′, δ = [0.1, 0.2]′, λ = 4,

ρ =

[
1 0.25

0.25 1

]
, ρJ =

[
1 −0.2
−0.2 1

]
.

Set 3 ~S(t) = [90, 100, 110]′, r = 0.04, q = [0, 0, 0]′, ∆t = 1, σ = [0.2, 0.3, 0.25]′, α = [0, 0.05,−0.03]′,

δ = [0.1, 0.2, 0.15]′, λ = 4, ρ =

 1 0.25 0.1
0.25 1 0.2
0.1 0.2 1

 , ρJ =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 .
where S(t) is the value of the asset at time t, and ~S(t) is a vector of the asset prices at time t,
r is the risk-free rate, q is the continuous dividend, ∆t = T − t is the time to maturity,
σ is the volatility, α is the mean of the jump, δ is the volatility of the jump,
λ is the jump intensity, ρ is the correlation of the assets and ρJ is the correlation of the jumps.

The cumulants for the MJD model are an adaptation of [26].

ξ1 = ∆t
(
r − σ2

2
− λk + λα

)
, ξ2 = ∆t

(
σ2 + λδ2 + λα2

)
,

ξ3 = ∆tλ
(
3δ2α+ α3

)
, ξ4 = ∆tλ

(
3δ4 + 6α2δ2 + α4

)
.

Skewness = ξ3

ξ2
√
ξ2

=
∆tλ(3δ2α+α3)

∆t
√

∆t(σ2+λδ2+λα2)3/2
; excess kurtosis = ξ4

ξ2ξ2
=

∆tλ(3δ4+6α2δ2+α4)
∆t2(σ2+λδ2+λα2)2

.

We note that in the case λ = 0 (GBM) then there is no skewness nor excess kurtosis.

7.3.2 Tests

7.3.2.1 One-dimensional tests

In this subsection we price a 1D European call option under MJD and use parameter set 1.

For this experiment we use three different strike prices K, 50, 100 and 200. The test results are given
in Tables 7.19 and 7.20. Table 7.19 also shows the reference values. The test results as shown in Table
7.20 make clear that the 1D COS method reproduces very quickly and precisely the exact values of the
MJD formula. The time differences between the MJD formula in Table 7.19 and the COS method in
Table 7.20 measured in MATLAB CPU time show that the COS method is substantially faster than the
MJD formula. Although the error of the MJD formula is smaller than the error of the COS method, the
difference between these errors is negligible.
We observe that the computation time of the COS method can be mitigated substantially by using C
and CUDA (for high N). For example, for N = 32: MATLAB 0.06 ms, C 0.03ms (speedup factor 2).
And for N = 2048: MATLAB 1.76 ms, C 0.40ms (speedup factor 4.4) and CUDA K600 0.33ms (speedup
factor 5.3).

MJD values of call option

K reference value error MATLAB time (ms)

50 52.397318140114308 <1e-15 9.5
100 21.345306404263468 <1e-15 9.5
200 3.451431536462926 <1e-15 9.6

Table 7.19: Option value calculation with MJD formula (120 terms)

The test results as shown in Table 7.21 confirm that the calculation complexity is linear. By doubling N
we observe a factor 2 in the ratio column.
Figure 7.4 shows that the convergence of the error is exponential for 1D. We also observe that the error
convergence for the different strike prices is similar.

62



abs. errors calculation times
N K=50 K=100 K=200 MATLAB C CUDA K600 CUDA GTX480
16 5.61e-02 1.17e-01 2.13e-01 0.02 0.02 0.10 0.13
32 5.93e-06 3.56e-05 1.06e-04 0.06 0.03 0.10 0.13
64 6.39e-14 4.26e-14 1.22e-13 0.09 0.06 0.10 0.12

128 7.11e-15 <1e-15 3.69e-14 0.15 0.02 0.25 0.35
256 7.11e-15 <1e-15 3.69e-14 0.27 0.25 0.25 0.34
512 7.11e-15 <1e-15 3.69e-14 0.50 0.10 0.27 0.36

1024 7.11e-15 <1e-15 3.69e-14 0.93 0.20 0.13 0.12
2048 7.11e-15 <1e-15 3.69e-14 1.76 0.40 0.33 0.35
4096 7.11e-15 <1e-15 3.69e-14 3.42 0.79 0.44 0.35

Table 7.20: Error and time when pricing a European call option with the 1D COS method under MJD

N MATLAB difference ratio
16 0.02 - -
32 0.06 0.04 -
64 0.09 0.03 0.75

128 0.15 0.06 2.00
256 0.27 0.12 2.00
512 0.50 0.23 1.92

1024 0.93 0.43 1.87
2048 1.76 0.83 1.93
4096 3.42 1.66 2.00

Table 7.21: Time analysis of 1D COS method under MJD

Figure 7.4: Error convergence for pricing 1D European call options (COS)

7.3.2.2 Two-dimensional tests

In this subsection we price a 2D European geometric basket put option, under MJD. We use parameter
set 2. We compare the COS method results with the altered MJD formula. We test the COS method for
three different N values, 16, 32, 64, N = N1 = N2 and five different Q values, 64, 128, 256, 512 and 1024.
The results in Tables 7.23, 7.24 and 7.25 show that the 2D COS method is also fast and highly accurate,
for MJD.

We use the dimension reduction technique of Cong and Oosterlee [8] to calculate the reference value. For
3D calculations we also use this technique.

63



MJD values of geometric put option (2D)

K reference value error MATLAB time (ms)

50 0.054429494761151 <1e-15 9.6
100 11.561224484806646 <1e-15 9.8
200 97.210213877504671 <1e-15 9.7

Table 7.22: Reference values for 2D European geometric basket put options with MJD formula (120
terms)

K = 50 N2 = 162

Q2 abs error MATLAB C CUDA K600 CUDAGTX480

642 7.77e-03 0.7 0.33 1.30 1.02
1282 8.10e-03 1.2 0.62 1.38 1.02
2562 8.13e-03 3.1 2.41 2.08 1.52
5122 8.12e-03 11.2 9.57 5.48 1.98

10242 8.12e-03 50.3 42.9 19.1 3.40

N2 = 322

642 2.94e-04 0.9 0.40 1.20 0.82
1282 5.07e-05 1.4 0.81 1.28 0.81
2562 3.74e-05 3.8 2.57 1.96 1.30
5122 3.73e-05 11.5 9.77 5.37 1.77

10242 3.73e-05 49.1 42.9 19.0 3.20

N2 = 642

642 2.61e-04 1.3 1.17 1.38 0.83
1282 1.32e-05 2.1 1.58 1.88 1.03
2562 9.67e-05 3.7 3.36 2.32 1.53
5122 8.88e-09 13.8 10.6 5.71 2.00

10242 1.99e-09 48.8 43.6 19.3 3.42

Table 7.23: Error and time 2D European geometric basket put option (K = 50)

K = 100 N2 = 162

Q2 abs error MATLAB C CUDA K600 CUDA GTX480

642 5.82e-02 0.6 0.33 1.30 0.98
1282 4.89e-02 1.1 0.63 1.38 0.99
2562 4.83e-02 3.0 2.49 2.08 1.47
5122 4.83e-02 12.4 9.89 5.49 1.89

10242 4.83e-02 47.2 44.1 19.1 3.27

N2 = 322

642 1.04e-02 0.9 0.39 1.20 0.79
1282 8.78e-04 1.4 0.82 1.28 0.80
2562 5.95e-07 3.7 2.64 1.97 1.27
5122 1.65e-06 13.5 10.1 5.37 1.67

10242 1.93e-06 49.9 44.3 19.0 3.12

N2 = 642

642 1.04e-02 1.5 1.15 1.39 0.81
1282 8.79e-04 2.0 1.57 1.87 1.00
2562 1.51e-06 3.9 3.40 2.32 1.49
5122 2.00e-07 11.8 10.9 5.71 1.98

10242 5.91e-08 50.1 45.0 19.3 3.32

Table 7.24: Error and time 2D European geometric basket put option (K = 100)
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K = 200 N2 = 162

Q2 abs error MATLAB C CUDA K600 CUDA GTX480

642 9.75e-02 0.6 0.33 1.30 0.99
1282 9.76e-02 1.1 0.65 1.37 0.99
2562 9.79e-02 3.3 2.57 2.08 1.48
5122 9.79e-02 11.4 10.2 5.48 1.89

10242 9.79e-02 52.2 45.4 19.1 3.39

N2 = 322

642 3.69e-05 0.9 0.41 1.20 0.79
1282 8.30e-05 1.4 0.85 1.28 0.79
2562 3.22e-05 3.3 2.73 1.99 1.27
5122 3.28e-05 13.2 10.4 5.37 1.67

10242 3.28e-05 47.4 45.9 19.0 3.22

N2 = 642

642 6.80e-05 1.6 1.18 1.38 0.80
1282 5.04e-05 1.8 1.62 1.87 1.01
2562 4.38e-07 3.8 3.52 2.32 1.48
5122 5.47e-09 13.6 11.2 5.71 1.89

10242 5.43e-09 48.8 46.0 19.3 3.46

Table 7.25: Error and time 2D European geometric basket put option (K = 200)

For example, in Table 7.23 the absolute error is 3.74e-05, which is reached by K = 50, N = 32 and
Q = 256. The MATLAB CPU time for this accuracy is 3.8 milliseconds; the C CPU time is 2.57
milliseconds; the CUDA K600 time is 1.96 milliseconds. Note that CUDA GTX480 outperforms CUDA
K600.

The calculation times of MJD are almost the same as GBM. Therefore, the calculation complexity under
MJD is also quadratic in Q. In Figure 7.5 we observe exponential convergence in N and algebraic
convergence in Q, as expected.

Figure 7.5: Error convergence for pricing a 2D European geometric put option (K=100)
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7.3.2.3 Three-dimensional tests

In this subsection we perform an experiment for a 3D European geometric basket put option, under
MJD. We use the third parameter set mentioned in section 7.3.1. We compare the test results of the
COS method with the exact values of the altered MJD formula.

Black-Scholes values of 3D geometric basket call

K value error MATLAB time (ms)

75 2.204256395101063 <1e-15 0.99

150 49.847557528086831 <1e-15 0.98

Table 7.26: Results for 3D European geometric basket call option (MJD) value calculation with
Black-Scholes formula

K = 75 N3 = 163

Q3 abs error MATLAB C CUDA K600 GTX480

643 2.13e-02 23.6 21.0 6.74 2.01
1283 2.15e-02 168 183 46.3 6.76
1603 2.15e-02 307 328 101 12.8
2563 2.15e-02 1342 1580 378 47.9

N3 = 323

643 2.38e-05 29.9 35.3 10.7 2.69
1283 1.97e-05 176 200 50.2 7.44
1603 2.52e-05 314 343 103 13.3
2563 2.28e-05 1353 1593 380 48.5

N3 = 643

643 4.31e-05 89.0 153 40.8 6.19
1283 3.32e-06 237 316 80.1 10.9
1603 2.07e-06 375 461 133 16.7
2563 5.89e-07 1413 1713 410 52.0

Table 7.27: Error and time 3D European geometric basket put option (K = 75)

K = 150 N3 = 163

Q3 abs error MATLAB C CUDA K600 CUDA GTX480

643 2.14e-03 20.9 22.5 6.74 2.02
1283 2.42e-03 166 195 46.4 6.91
1603 2.44e-03 307 348 101 12.9
2563 2.47e-03 1349 1670 377 49.2

N3 = 323

643 6.81e-06 26.4 37.1 10.7 2.68
1283 5.28e-05 178 211 50.2 7.58
1603 5.02e-05 313 363 103 13.6
2563 4.81e-05 1352 1684 381 49.9

N3 = 643

643 3.77e-05 93.0 157 40.8 6.20
1283 5.98e-06 243 330 80.2 11.0
1603 2.74e-06 376 484 133 17.1
2563 3.64e-07 1434 1805 411 53.4

Table 7.28: Error and time 3D European geometric basket put option (K = 150)
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The results in Tables 7.27 and 7.28 show that the 3D COS method reproduces quickly and precisely
the exact values of the 3D MJD formula. According to the 3D GBM case, we also observe that for this
high dimension the calculation time increases significantly: the curse of dimensionality sets in. A few
examples:

• the absolute error is 5.89e-07, which is reached by K = 75, N3 = 643 and Q3 = 2563. The MATLAB
CPU time for this accuracy is 1413 milliseconds; the C CPU time is 1713 milliseconds; the CUDA
K600 time is 410 milliseconds.

• the absolute error is 3.64e-06, which is reached by K = 150, N3 = 643 and Q3 = 2563. The
MATLAB CPU time for this accuracy is 1434 milliseconds; the C CPU time is 1805 milliseconds;
the CUDA K600 time is 411 milliseconds.

The data in these tables demonstrate that the CUDA GTX480 is substantially faster than the CUDA
K600. The speedup rises to a factor of almost 8.

The calculation times of MJD are similar to GBM. Therefore, the calculation complexity under MJD is
also cubic in Q. In Figure 7.6 we observe exponential convergence in N and algebraic convergence in Q,
as expected.

Figure 7.6: Error convergence for pricing a 3D European geometric put option (K=100)

7.4 Conclusion

Under the GBM model and the MJD model we have performed different numerical experiments in 1D,
2D and 3D. The test results show that the COS method is very accurate, robust and fast to very fast in
all these dimensions. We observe time differences between the three programming languages MATLAB,
C and CUDA K600. In general, CUDA consumes less time than the other two languages. Moreover,
CUDA GTX480 outperforms CUDA K600. We also observe the expected rate of error convergence and
calculation complexity.
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Chapter 8

Conclusions

In this chapter we present our conclusion and give some recommendations for further research.

8.1 Conclusions

In 2008, Fang and Oosterlee introduced the 1D COS method [17], a Fourier-based option pricing technique
for European options. This numerical method is based on Fourier cosine series expansions of the
discounted expected payoff. The characteristic function of the underlying asset is used to approximate
the Fourier coefficients. In 2012, this method was extended to higher dimensions by Ruijter and Oosterlee
[33] and subsequently by Pellegrino and Sabino [32].
We discussed the 1D and 2D COS method and then, extended and discussed it for n-dimensions. Under
certain assumptions the error of the nD COS method convergences exponentially in N for smooth density
functions. But when the payoff coefficients are approximated with the DCT, the overall error converges
algebraically with second order. The calculation complexity of the nD COS method is of n-th order in
the number of terms Q. We have noted that n must not be chosen too large. On the one hand, the
computing time grows exponentially with n as a result of which the curse of dimensionality sets in. On
the other hand, the memory space needed grows exponentially in n and a computer has a limited storage
capacity.

The aforementioned authors have observed that the COS method is an accurate, fast and robust option
pricing technique. However, they have only performed their numerical experiments in the MATLAB
environment. We studied how we can speed up computations without losing accuracy and robustness
by using other programming environments, such as C (serial) and CUDA (parallel GPU computing),
especially in the case of multi-asset options. In the case of CUDA, a study about the parallelization
strategy has been carried out.

We have performed several numerical experiments under the GBM model and the MJD model. Under
these models, we have tested 1D call options, 2D geometric put and arithmic call options, exchange
options and 3D geometric put options. We observed that the (1D, 2D, 3D) COS methods perform very
well. In the tested dimensions, it is very fast, very precise and robust. We also observed exponential
convergence in N and algebraic convergence in Q, as expected. The calculation complexity is of n-th
order. For CUDA, we have presented our parallel implementation of the nD COS formula. The tests
of our developed codes show that in particular the payoff function array and the characteristic function
array computations benefit from parallelization on the GPU. For example, the characteristic function
array performs excellent with a speedup by a factor of 76.

We conclude that the nD COS method for pricing European multi-dimensional stock options with parallel
GPU computing is fast, accurate and robust and outperforms the serial computing languages MATLAB
and C.
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8.2 Outlook

In this section we present some suggestions for future research.

In this thesis we have focused on the pricing of some path-independent European stock options. Surkov’s
[38, 39] experiments by means of his Fourier Space Time-stepping method on GPUs (FST-GPU) show
that parallel option pricing for an American 2D “double-trigger stop-loss” option is much more efficient
than a serial computing with his FST-CPU. Therefore, our suggestion is to investigate path-dependent
American options with the nD COS method under the CUDA architecture. Moreover, while the trading
volumes of American options exceed the volumes of European options, the benefits of parallel option
pricing on GPU can spread out widely.

Since our parallel version of nD COS is very efficient in terms of computational cost, it can be employed
when nested simulations are required. Nested simulations are often required in the financial markets. A
recent example is the evaluation of counterparty credit risk, commonly referred to as Credit Valuation
Adjustment (CVA).

In this thesis we have used two classic models: GBM and MJD. Later, different exponential Lévy models
were developed, such as Variance Gamma and CGMY. These modern models are better able to replicate
the log-returns of market data. However, for option pricing in higher dimensions, (≥2D) the characteristic
functions of these models are not available and have to be derived. This derivation is a challenging research
direction.

In this thesis we have done research in different dimensions up to and including 3D. In order to explore
higher dimensions, several limiting factors need to be handled. For the parallel GPU implemetations,
the amount of memory is typically less than in a CPU-based system. To overcome this drawback, we
suggest the use of the later generation GPUs or the extension to multi-GPU approach. Another point
to be considered is that the FFT in the cuFFT library is developed for calculations up to and including
3D. The development of the CUDA implementation for the FFT in n-dimensions can be an interesting
and challenging topic for future research.
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Appendix A

Derivation of ChF of a standard
normal distribution

The characteristic function of a random variable Z with a N (0, 1) distribution reads

φ(ω) = E[expiωZ ] = E[cos(ωZ) + i sin(ωZ)]

=

∫ ∞
−∞

cos(ωz)f(z)dz + i

∫ ∞
−∞

sin(ωz)f(z)dz. (A.1)

The distribution function f(z) of Z is an even function around z = 0 and sin(iωz) is an odd function
around z = 0. Therefore, the second integral is zero. The differential of the ChF reads

d

dω
φ(ω) =

d

dω
E[exp(iωZ)] = E[

d

dω
exp(iωZ)] = E[iZ exp(iωZ)] = iE[Z cos(ωZ)]− E[Z sin(ωZ)]

= i

∫ ∞
−∞

z cos(ωz)f(z)dz −
∫ ∞
−∞

z sin(ωz)f(z)dz. (A.2)

In Equation (A.2) the first integral is equal to zero because of the odd integrand. Inserting into Equation
(A.2) gives

d

dω
φ(ω) = −

∫ ∞
−∞

z sin(ωz)
1√
2π

exp

(
−z

2

2

)
dz =

∫ ∞
−∞

sin(ωz)
d

dz
f(z)dz

= [sin(ωz)f(z)]
∞
−∞ −

∫ ∞
−∞

ω cos(ωz)f(z)dz = −ω
∫ ∞
−∞

cos(ωz)f(z)dz. (A.3)

Equation (A.1) and (A.3) form an ODE

dφ(ω)

dω
= −ωφ(ω) with initial condition φ(0) = 1.

The solution of this ODE reads

φ(ω) = exp

(
−ω

2

2

)
.
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Appendix B

Derivation of FCTs

In Chapter 3, we show that the DCT can be accelerated by means of a FFT. We call this accelerated
DCT the FCT. It is also possible to speed up the FFT itself because the input vector consists of real
elements only. In this way the FCT accelerates even more.
Firstly, in this appendix we discuss the derivation of the FCTs, for 1D and 2D, given by Makhoul[24].
Secondly, we give the formula of the 3D FCT. Lastly, we show the speed up of the FFT by using a real
sequence.

B.1 Definitions

Define H â
b̂

as follows

H â
b̂

= exp

(
−2iπâ

b̂

)
.

Then the following identities hold

HkM
2M = 1, H2k

2M = Hk
M , Ha

b +H−ab = 2 cos

(
2πa

b

)
= 2Re {Ha

b } .

Define the function DFT: CM → CM of complex vector ~c of length M as

DFT(~c)k =

M−1∑
n=0

cnH
nk
M , 0 ≤ k ≤M − 1. (B.1)

Define the function DCT: RM → RM of real vector ~c of length M as

DCT(~c)k = 2

M−1∑
n=0

cn cos

(
π(2n+ 1)k

2M

)
, 0 ≤ k ≤M − 1. (B.2)

Remark: although k is between 0 and M − 1 we sometimes use

DCT(~c)M = 2

M−1∑
n=0

x(n) cos
(
πn+

π

2

)
= 0. (B.3)

B.2 DCT of length M with the use of a DFT of length 2M

Define a real vector c̊ of length 2M which consists of a real times series ~c and its reverse

c̊n =

{
cn 0 ≤ n ≤M − 1

c2M−n−1 M ≤ n ≤ 2M − 1.
(B.4)
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Then the DFT of vector c̊ is given by

DFT(̊c)k =

2M−1∑
n=0

c̊nH
nk
2M , 0 ≤ k ≤ 2M − 1. (B.5)

Inserting (B.4) into (B.5) gives

DFT(̊c) =

M−1∑
n=0

cnH
nk
2M +

2M−1∑
n=M

c2M−n−1H
nk
2M =

M−1∑
n=0

cnH
nk
2M +

M−1∑
n=0

cnH
(2M−n−1)k
2M

=

M−1∑
n=0

cnH
nk
2M +

M−1∑
n=0

cnH
2kM
2M H

(−n−1)k
2M =

M−1∑
n=0

cn

(
Hnk

2M +H
−(n+1)k
2M

)
= H

−k/2
2M

M−1∑
n=0

cn

(
Hnk

2MH
k/2
2M +H−nk2M H

−k/2
2M

)
= H

−k/2
2M

M−1∑
n=0

cn

(
H

(n+0.5)k
2M +H

−(n+0.5)k
2M

)
= H

−k/2
2M 2

M−1∑
n=0

cn cos

(
π(2n+ 1)k

2M

)
(B.6)

= H
−k/2
2M 2Re

{
M−1∑
n=0

cn exp

(
−iπ(2n+ 1)k

2M

)}

= H
−k/2
2M 2Re

{
H
k/2
2M

M−1∑
n=0

cnH
nk
2M

}
for 0 ≤ k ≤ 2M − 1. (B.7)

From (B.6), (B.7) and the definition of the DCT it follows that

DCT(~c)k = H
k/2
2M DFT(̊c)k = 2Re

{
H
k/2
2M

M−1∑
n=0

cnH
nk
2M

}
for 0 ≤ k ≤M − 1.

B.3 Derivation 1D FCT

Define vectors c̆ and c from c̊ as

c̆n := c̊2n, cn := c̊2n+1, 0 ≤ n ≤M − 1.

Remark: both timeseries c̆ and c are of length M and contain all the elements of the vector c. Formula
(B.5) can be written with c̆ and c as

DFT(̊c)k =

M−1∑
n=0

c̆nH
2nk
2M +

M−1∑
n=0

cnH
(2n+1)k
2M , 0 ≤ k ≤ 2M − 1. (B.8)

Note that

cn = c̆M−n−1, 0 ≤ n ≤M − 1. (B.9)
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Inserting (B.9) into (B.8) gives us

DFT(̊c)k =

M−1∑
n=0

c̆nH
2nk
2M +

M−1∑
n=0

c̆M−n−1H
(2n+1)k
2M =

M−1∑
n=0

c̆nH
2nk
2M +

M−1∑
n=0

c̆nH
(2M−2n−1)k
2M

=

M−1∑
n=0

c̆n

(
H2nk

2M +H
(−2n−1)k
2M

)
=

M−1∑
n=0

c̆n

(
Hnk
M +H

(−n−0.5)k
M

)
= H

−k/4
M

M−1∑
n=0

c̆n

(
Hnk
M H

k/4
M +H

(−n−0.5)k
M H

k/4
M

)
= H

−k/4
M

M−1∑
n=0

c̆n

(
H

(n+0.25)k
M +H

−(n+0.25)k
M

)
= H−k4M2

M−1∑
n=0

c̆n cos

(
π(4n+ 1)k

2M

)
= H−k4M2Re

{
M−1∑
n=0

c̆n exp

(
−iπ(4n+ 1)k

2M

)}

= H−k4M2Re

{
Hk

4M

M−1∑
n=0

c̆nH
nk
M

}
. (B.10)

Therefore, the 1D FCT formula reads

FCT(~c)k = 2Re
{
Hk

4MFFT(c̆)k
}
,

where

c̆n =

{
c2n 0 ≤ n ≤

⌊
M−1

2

⌋
,

c2M−2n−1

⌊
M+1

2

⌋
≤ n ≤M − 1.

B.4 Derivation 2D FCT

In a similar way, we discuss Makhoul’s proof of the 2D FCT[24]. We use C, a 2D real matrix of size
M1 ×M2, and define the 2D DCT as

DCT(C)k1,k2 := 4
∑M1−1
n1=0

∑M2−1
n2=0 Cn1,n2 cos

(
k1

(2n1+1)π
2M1

)
cos
(
k2

(2n2+1)π
2M2

)
,

for 0 ≤ k1, k2 ≤M − 1.
(B.11)

We create an extension C̊ of size 2M1 × 2M2 such that

C̊n1,n2 =


Cn1,n2

, 0 ≤ n1 ≤M1 − 1, 0 ≤ n2 ≤M2 − 1,

C2M1−n1−1,n2
, M1 ≤ n1 ≤ 2M1 − 1, 0 ≤ n2 ≤M2 − 1,

Cn1,2M2−n2−1, 0 ≤ n1 ≤M1 − 1, M2 ≤ n2 ≤ 2M2 − 1,

C2M1−n1−1,2M2−n2−1, M1 ≤ n1 ≤ 2M1 − 1, M2 ≤ n2 ≤ 2M2 − 1.

(B.12)

The 2D DFT of C̊ reads

DFT(C̊)k1,k2 =

2M1−1∑
n1=0

2M2−1∑
n2=0

C̊n1,n2
Hn1k1

2M1
Hn2k2

2M2
. (B.13)

We define 2D real matrix C̆, C
1
, C

2
and C

3
as

C̆n1,n2
= C̊2n1,2n2

, C
1

n1,n2
= C̊2n1+1,2n2

,

C
2

n1,n2
= C̊2n1,2n2+1, C

3

n1,n2
= C̊2n1+1,2n2+1.

(B.14)

We write times series C
1
, C

2
and C

3
as functions of C̆ as

C
1

n1,n2
= C̆M1−n1−1,n2

,

C
2

n1,n2
= C̆n1,M2−n2−1,

C
3

n1,n2
= C̆M1−n1−1,M2−n2−1.

(B.15)
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The 2D DFT of C̊ (B.13) reads

DFT(C̊)k1,k2 =

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2
H2k1n1

2M1
H2k1n1

2M2
+

M1−1∑
n1=0

M2−1∑
n2=0

C
1

n1,n2
H

(2n1+1)k1
2M1

H2k2n2

2M2

+

M1−1∑
n1=0

M2−1∑
n2=0

C
2

n1,n2
H2k1n1

2M1
H

(2n2+1)k2
2M2

+

M1−1∑
n1=0

M2−1∑
n2=0

C
3

n1,n2
H

(2n1+1)k1
2M1

H
(2n2+1)k2
2M2

=

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2
H2k1n1

2M1
H2k1n1

2M2
+

M1−1∑
n1=0

M2−1∑
n2=0

C̆M1−n1−1,n2
H

(2n1+1)k1
2M1

H2k2n2

2M2

+

M1−1∑
n1=0

M2−1∑
n2=0

C̆(n1,M2−n2−1)H
2k1n1

2M1
H

(2n2+1)k2
2M2

+

M1−1∑
n1=0

M2−1∑
n2=0

C̆M1−n1−1,M2−n2−1H
(2n1+1)k1
2M1

H
(2n2+1)k2
2M2

=

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2
H2k1n1

2M1
H2k1n1

2M2
+

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2
H

(2M1−2n1−1)k1
2M1

H2k2n2

2M2

+

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2H
2k1n1

2M1
H

(2M2−2n2−1)k2
2M2

+

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2H
(2M1−2n1−1)k1
2M1

H
(2M2−2n2−1)k2
2M2

=

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2

(
H2k1n1

2M1
H2k1n1

2M2
+H

(2M1−2n1−1)k1
2M1

H2k2n2

2M2

+H2k1n1

2M1
H

(2M2−2n2−1)k2
2M2

+H
(2M1−2n1−1)k1
2M1

H
(2M2−2n2−1)k2
2M2

)
=

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2

(
Hk1n1

M1
Hk1n1

M2
+H

(−n1−0.5)k1
M1

Hk2n2

M2

+Hk1n1

M1
H

(−n2−0.5)k2
M2

+H
(−n1−0.5)k1
M1

H
(−n2−0.5)k2
M2

)
=H

−k1/4
M1

H
−k2/4
M2

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2

(
H

(n1+0.25)k1
M1

H
(n2+0.25)k2
M2

+H
−(n1+0.25)k1
M1

H
(n2+0.25)k2
M2

+H
(n1+0.25)k1
M1

H
−(n2+0.25)k2
M2

+H
−(n1+0.25)k1
M1

H
−(n2+0.25)k2
M2

)
. (B.16)

We write formula (B.16) as

DFT(C̊)k1,k2 = H
−k1/4
M1

H
−k2/4
M2

4

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2
cos

(
π(4n1 + 1)k1

2M1

)
cos

(
π(4n2 + 1)k2

2M2

)
. (B.17)

Also, formula (B.16) can be written as

DFT(C̊)k1,k2 =H−k14M1
H−k24M2

2
(

Re

{
Hk1

4M1
Hk2

4M2

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2
Hn1k1
M1

Hn2k2
M2

}

+ Re

{
Hk1

4M1
H−k24M2

M1−1∑
n1=0

M2−1∑
n2=0

C̆n1,n2H
n1k1
M1

H−n2k2
M2

})
=H−k14M1

H−k24M2
2Re

{
Hk1

4M1
Hk2

4M2
FFT(C̆)k1,k2 +Hk1

4M1
H−k24M2

FFT(C̆)k1,M−k2

}
.

Therefore, the 2D FCT formula reads

FCT(C)k1,k2 = 2Re
{
Hk1

4M1
Hk2

4M2
FFT(C̆)k1,k2 +Hk1

4M1
H−k24M2

FFT(C̆)k1,M−k2

}
, (B.18)

where
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C̆n1,n2
=


C2n1,2n2 , 0 ≤ n1 ≤

⌊
M1−1

2

⌋
, 0 ≤ n2 ≤

⌊
M2−1

2

⌋
,

C2n1,2M2−2n2−1, 0 ≤ n1 ≤
⌊
M1−1

2

⌋
,

⌊
M2+1

2

⌋
≤ n2 ≤M2 − 1,

C2M1−2n1−1,2n2
,

⌊
M1+1

2

⌋
≤ n1 ≤M1 − 1, 0 ≤ n2 ≤

⌊
M2−1

2

⌋
,

C2M1−2n1−1,2M2−2n2−1,
⌊
M1+1

2

⌋
≤ n1 ≤M1 − 1,

⌊
M2+1

2

⌋
≤ n2 ≤M2 − 1.
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B.6 DFT of a real sequence

It is possible to accelerate the FFT itself. By eliminating the complex input part and only using a real
input it is possible to decrease the computing time of the FFT. The DFT of a real vector ~c of length M
can be calculated using an M/2 point DFT. We define vectors c̀ and ć as{

c̀n = c2n 0 ≤ n ≤M/2− 1

ćn = c2n+1 0 ≤ n ≤M/2− 1.

We write the DFT of ~c as

DFT(~c)k =

M−1∑
n=0

cnH
kn
M

=

M/2−1∑
n=0

[
c̀nH

2nk
M + ćnH

(2n+1)k
M

]

=

M/2−1∑
n=0

c̀nH
nk
M/2 +Hk

M

M/2−1∑
n=0

ćnH
nk
M/2

= DFT(c̀)k +Hk
MDFT(ć)k, k = 0, . . . ,M − 1.

We define the vector ċ as

ċn = c̀n + ićn n = 0, 1, . . . ,M/2− 1.

Then, we can write DFT(ċ)k, the M/2 point DFT of ċ, as

DFT(ċ)k = DFT(c̀)k + iDFT(ć)k k = 0, . . . ,M/2− 1. (B.19)

Since c̀ and ć are real vectors, their DFTs are Hermitian symmetric

DFT(c̀)k = conj
(
DFT(c̀)M/2−k

)
DFT(ć)k = conj

(
DFT(ć)M/2−k

)
.

Therefore, we write

conj
(
DFT(ċ)M/2−k

)
= DFT(c̀)k − iDFT(ć)k. (B.20)

Then, (B.19) and (B.20) gives
DFT(c)0 = Re {DFT(ċ)0}+ Imag {DFT(ċ)0} , k = 0,

DFT(c)k = 1
2

[
DFT(ċ)k + conj(DFT(ċ)M/2−k)− iHk

M

(
conj(DFT(ċ)M/2−k)

)]
, 1 ≤ k ≤M/2− 1,

DFT(c)M/2 = Re
{

DFT(ċ)M/2

}
− Imag

{
DFT(ċ)M/2

}
, k = M/2.

(B.21)
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Appendix C

Two-dimensional COS method

In this appendix we present the two-dimensional COS method. It serves as a special example of the
contents in Chapter 5. This appendix is organized as follows: firstly, we show the derivation of the 2D
COS method which leads to the 2D COS formula. Thereafter, we focus on the payoff coefficients, the
truncation range, the overall error and the computational complexity. Finally, we show that the overall
error converges algebraically and is of the second order; and that the calculation complexity is also of
the second order. We conclude that the 2D COS method is a very fast and highly precise option pricing
technique for European options.

C.1 Derivation

Just as the derivation of the 1D COS method (see chapter 4) we start from the risk-neutral valuation
formula:

v(~S(t), t) = e−r(T−t)EQ
[
g
(
~S(T )

)
|~S(t)

]
= e−r∆t

∫∫
R2

g(~y)f(~y|~x)d~y, (C.1)

where v(~S(t), t) is the value of the option at time t, ~S(t) are the values of the underlying assets at time t,
r is the constant risk-free interest rate, EQ is the expectation operator, the function f is the probability
density function of ~S(T ) given ~S(t) and the function g is the payoff function.

The derivation of the 2D COS method consists of five steps. We follow [33].

First Step We will truncate the integration range1

The density function f(~y|~x) decays to zero quickly for ||~y|| → ∞. Therefore, v(~S(t), t) can be well
approximated by a finite integration range [a1, b1]× [a2, b2] ⊂ R2:

v1(~x, t) = e−r∆t
∫ b2

a2

∫ b1

a1

g(~y)f(~y|~x)dy1dy2. (C.2)

Second Step We will replace the probability density function by its cosine expansion2

By means of the two-dimensional Fourier-cosine series expansion we can define a function on a finite
domain. The cosine expansion of f(~y|~x) on [a1, b1]× [a2, b2] is given by

f(~y|~x) =

∞∑
k1=0

′
∞∑
k2=0

′
Ak1,k2(~x) cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
, (C.3)

where Ak1,k2 is defined as

Ak1,k2(~x) =
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

f(~y|~x) cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
dy1dy2.

1v1(~x, t) is an approximation of v(~x, t).
2The

∑′
-summation is a summation where the first term is multiplied by 0.5.
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Inserting (C.3) into v1(~x, t) gives

v1(~x, t) = e−r∆t
∫ b2

a2

∫ b1

a1

g(~y)

∞∑
k1=0

′
∞∑
k2=0

′
Ak1,k2(~x) cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
dy1dy2.

(C.4)

Third Step We will interchange the summation and the integration
Then, (C.4), reads

v1(~x, t) =e−r∆t
∞∑
k1=0

′
∞∑
k2=0

′ b1 − a1

2

b2 − a2

2
Ak1,k2(~x)·

2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

g(~y) cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
dy1dy2. (C.5)

We define Vk1,k2 as

Vk1,k2 :=
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

g(~y) cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
dy1dy2. (C.6)

Insert Vk1,k2 into (C.5), gives

v1(~x, t) = e−r∆t
∞∑
k1=0

′
∞∑
k2=0

′ b1 − a1

2

b2 − a2

2
Ak1,k2(~x)Vk1,k2 . (C.7)

Now, the integral over the product of f(~y|~x) and g(~y) is written as a summation of the product of
their Fourier-cosine coefficients.

Fourth Step We will truncate the series summation3

Then (C.7) reads

v2(~x, t) = e−r∆t
N1−1∑
k1=0

′
N2−1∑
k2=0

′ b1 − a1

2

b2 − a2

2
Ak1,k2(~x)Vk1,k2 . (C.8)

Fifth Step We will insert the characteristic function
We define the characteristic function of f(~y|~x) on the interval [a1, b1] × [a2, b2] by φA. Take φ as
the characteristic function of f(~y|~x) on the domain R2. If the characteristic function of f(~y|~x) is
known, then it will be defined on the whole domain R2. The function f(~y|~x) decays to zero very

rapidly outside the domain [~a,~b]. Therefore, φA will not differ much from φ.

Ak1,k2(~x) =
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

f(~y|~x) cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
dy1dy2.

We make use of a trigonometric rule,

cos(θ1) cos(θ2) =
1

2
[cos(θ1 + θ2) + cos(θ1 − θ2)] , (C.9)

and denote Fk1,k2(~x) as

Fk1,k2(~x) =

∫∫
R2

f(~y|~x) cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
dy1dy2.

3The function v2(~x, t) is an approximation of v1(~x, t). It contains a overall error consisting of two approximations

compared to v(t0, ~S(t0)).
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From (C.9) it follows

Fk1,k2(~x) =
1

2

(
F+
k1,k2

(~x) + F−k1,k2(~x)
)
,

where

F+
k1,k2

(~x) =

∫∫
R2

f(~y|~x) cos

(
k1π

y1 − a1

b1 − a1
+ k2π

y2 − a2

b2 − a2

)
dy1dy2,

F−k1,k2(~x) =

∫∫
R2

f(~y|~x) cos

(
k1π

y1 − a1

b1 − a1
− k2π

y2 − a2

b2 − a2

)
dy1dy2.

F+
k1,k2

(~x) =Re

{∫∫
R2

f(~y|~x) exp

(
ik1π

y1 − a1

b1 − a1
+ ik2π

y2 − a2

b2 − a2

)
dy1dy2

}
(C.10)

=Re

{∫∫
R2

f(~y|~x) exp

(
ik1π

y1

b1 − a1
+ ik2π

y2

b2 − a2

)
dy1dy2

exp

(
ik1π

−a1

b1 − a1
+ ik2π

−a2

b2 − a2

)}
.

(C.11)

The integral of (C.11) is the characteristic function of f(~y|~x). Writing F+
k1,k2

(~x) with its characteristic
function gives

F+
k1,k2

(~x) = Re

{
φ

(
k1π

b1 − a1
,

k2π

b2 − a2
|~x
)

exp

(
ik1π

−a1

b1 − a1
+ ik2π

−a2

b2 − a2

)}
. (C.12)

We can derive the formula for F−k1,k2(~x) in almost the same way.

F−k1,k2(~x) = Re

{
φ

(
k1π

b1 − a1
,− k2π

b2 − a2
|~x
)

exp

(
ik1π

−a1

b1 − a1
− ik2π

−a2

b2 − a2

)}
. (C.13)

We combine (C.8), (C.12) and (C.13). This gives us the 2D COS pricing formula4:

v3(~x, t) = e−r∆t
1

2

N−1∑
k1=0

′
N−1∑
k2=0

′
(
F+
k1,k2

(~x) + F−k1,k2(~x)
)
Vk1,k2 . (C.14)

C.2 Payoff coefficients

We defined Vk1,k2 (C.6) by the equation

Vk1,k2 =
2

b1 − a1

2

b2 − a2

∫ b1

a1

∫ b2

a2

g(~y) cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
dy1dy2,

where g(~y) is the payoff function of the option which depends on the asset prices ~S(T ) at time T .
In practice, when the characteristic function is known it will be the characteristic function of the log-asset
prices, which is known. Therefore, the payoff function has to be related to the log-asset prices. We perform
a change of variables to achieve this transformation. Let x̂ and ŷ be defined as

x̂ := log

(
~S(t)

K

)
ŷ := log

(
~S(T )

K

)
,

then x̂ is a log-asset process. The payoff of a two-dimensional European arithmetic basket call option
becomes

g(ŷ) = max(K(0.5(eŷ1 + eŷ2)− 1), 0). (C.15)

It is generally not possible to calculate the payoff coefficients analytically for a two-dimensional European
option. Therefore, we will use the two-dimensional DCT (see section 3.5).

4v3(~x, t) contains a overall error consisting of three approximations compared to v(~x, t).
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C.3 Truncation range

Also in 2D, we need to choose a finite domain [a1, b1]×[a2, b2], such that the truncated integral approximates
the infinite integral closely. The integration range [a1, b1] × [a2, b2] we used in step 1 of section (C.1) is
directly taken from [33],

ai := x̂i + ξ1
i − L

√
ξ2
i +

√
ξ4
i ,

bi := x̂i + ξ1
i + L

√
ξ2
i +

√
ξ4
i ,

where ξ1, ξ2 and ξ4 are the cumulants (see section 4.3), L is a scaling parameter. Tests by [33] show that
L = 10 will give good results for option pricing with ∆t = 1.

C.4 Error analysis

In this section we discuss the errors in the numerical approximation. We will show that the overall error
has an algebraic convergence. Therefore, we perform four steps. We follow Ruijter and Oosterlee [33].

1. First error
The first error appears at the truncation of the integration range (see section C.1). The error can
be written as:

ε1 = v(~x, t)− v1(~x, t) = e−r∆t
∫∫

R2\[a1,b1]×[a2,b2]

g(~S(T ))f(~y|~x)d~y.

2. Second error
The second error arises at the truncation of the series summation on [a1, b1] × [a2, b2]. The error
can be written as:

ε2 = v1(~x, t)− v2(~x, t) =
b1 − a1

2

b2 − a2

2
e−r∆t

∞∑
k1=N

∞∑
k2=N

A~k(~x)V~k.

3. Third error
The third error arises by inserting the Fourier-cosine transform and can be written as:

ε3 = v2(~x, t)− v3(~x, t)

=
b1 − a1

2

b2 − a2

2
e−r∆t

N1−1∑
k1=0

′
N2−1∑
k2=0

′
(A~k(~x)− F~k(~x))V~k

= e−r∆t
∫∫

R2\[a1,b1]×[a2,b2][
N1−1∑
k1=0

′
N2−1∑
k2=0

′
cos

(
k1π

y1 − a1

b1 − a1

)
cos

(
k2π

y2 − a2

b2 − a2

)
V~k

]
f(~y|~x)d~y.

4. Fourth error
This extra error occurs because the elements of Vk1,k2 are approximated by a DCT.

εDCT =
b1 − a1

2

b2 − a2

2
e−r∆t

N1−1∑
k1=0

′
N2−1∑
k2=0

′
F~k(~x)[Vk1,k2(T )− V DCTk1,k2 (T )].
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If the Vk1,k2s are known, the fourth error does not occur. In that situation, the overall error will be
dominated by the second error when the integration range is chosen large enough. That means that
smooth probability density functions of class C∞([a1, b1] × [a2, b2]) will have an overall error ε which
converges exponentially in N .

However, if the Vk1,k2s are not known, we have to approximate the Vk1,k2s by the DCT. And consequently,
the fourth error will occur. In this situation, this error will dominate the overall error. Then, for smooth
density functions of the aforementioned class, the overall error converges algebraically in Q of second
order.

C.5 Complexity

In the previous section we showed that the decay of the convergence rate of the overall error is algebraic.
Therefore, the question arises by how much the computational time increases. In this section, we discuss
this question. We focus on the complexity of the calculations of the 2D COS method. The calculation
complexity can be derived from the 2D COS pricing formula

v3(~x, t) = e−r∆t
1

2

N−1∑
k1=0

′
N−1∑
k2=0

′
(
F+
k1,k2

(~x) + F−k1,k2(~x)
)
Vk1,k2 .

The calculation of this sum consists of N2 elements for F+
k1,k2

(~x), F−k1,k2(~x) and Vk1,k2 . The time to
calculate any of the Fk1,k2 elements will be the same for every k1 and k2. Thus, the calculation time of
all Fk1,k2s is O(N2), where O denotes the order.
We need a DCT to calculate the elements of Vk1,k2 . From section 3.4 we know that a single DCT with
the FFT method has calculation complexity O(Q log2(Q)). The DCT has to be carried out for both
dimensions for each vector; hence, there are 2Q DCTs. Thus, the complexity to calculate all the elements
of Vk1,k2 is O(Q2 log2(Q)).

The summation also has an O(N2) complexity. Q has to be at least the same value as N . Even when
taking Q equal to N , the total complexity of the 2D COS method is:

O(Q2 log2(Q)).

From the notion O(Q2 log2(Q)) it follows that the calculation complexity is at least quadratic in the
number of terms Q.

C.6 Conclusion

We conclude that the 2D COS method is accurate and fast. Accurate because the error analysis shows
that the convergence rate of the error is algebraically and of second order; the Vk1,k2 terms are not exact.
Fast because its computational complexity is at least quadratic in the number of terms Q. It is important
to choose the truncation range carefully.
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Appendix D

Payoff kernel 1D and 3D

In chapter 6, we have performed calculations of the different payoff kernels by means of CUDA. And, we
have presented the 2D kernel. In this appendix we show the other two kernels.

D.1 1D exact put payoff

__device__ double psi(int k, double a, double b, double c, double d)

{

if(k==0) return d-c;

else

{

double kapi = (k*M_PI)/(b-a);

return (sin((d-a)*kapi)-sin((c-a)*kapi))/kapi;

}

}

__device__ double xi(int k, double a, double b, double c, double d)

{

double kapi = (k*M_PI)/(b-a);

double termd = (d-a)*kapi;

double termc = (c-a)*kapi;

double term1 = cos(termd)*exp(d);

double term2 = cos(termc)*exp(c);

double term3 = sin(termd)*exp(d)*kapi;

double term4 = sin(termc)*exp(c)*kapi;

return (1/(1+kapi*kapi))*(term1-term2+term3-term4);

}

__global__ void payoffput1DGPU_exact(double *d_A, double a, double b, double K, int N)

{

int ii = threadIdx.x + blockDim.x * blockIdx.x;

d_A[ii] = (2/(b-a))*K*(psi(ii,a,b,a,0.0)-xi(ii,a,b,a,0.0));

}
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D.2 3D geometric put payoff

__global__ void payoffgeo3DGPU(double *d_A, double *d_a, double *d_b, double K, int Q){

int x = threadIdx.x + blockDim.x * blockIdx.x;

int y = threadIdx.y + blockDim.y * blockIdx.y;

int z = threadIdx.z + blockDim.z * blockIdx.z;

int offset = x + y*Q + z*Q*Q;

if(x < Q && y < Q && z < Q)

{

// Geometric payoff

double x2 = d_a[0] + (x + 0.5) * (d_b[0]-d_a[0])/Q;

double y2 = d_a[1] + (y + 0.5) * (d_b[1]-d_a[1])/Q;

double z2 = d_a[2] + (z + 0.5) * (d_b[2]-d_a[2])/Q;

d_A[offset]=MAX(K*(1-cbrt(exp(x2+y2+z2))),0.0);

}

}
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Appendix E

MATLAB Code

In chapter 7 we have performed our numerical experiments. For these experiments we have developed
specific codes for MATLAB, C and CUDA. In this appendix we show the MATLAB codes for the 1D,
2D and 3D options under GBM and MJD.

E.1 1D COS method GBM

function [ calloption ] = COS1DGBMCALL(S0,K,tau,r,sig,N)

%COS Value of 1D option with the 1D COS method.

% Input of the COS function is S0,K,tau,r,sig,N. Where

% S0 [1x1] Start prices of assets

% K [1x1] Strike price

% tau [1x1] Time to maturity

% r [1x1] Risk free rate

% sig [1x1] Variance of assets

% N [1x1] Number of terms in each dimension

%

% COS1DGBMCALL(S0,K,tau,r,sig,N) is a single element.

[a,b] = abgbm(log(S0/K), r, sig, tau);

Vk = payoffput1D_dctexact(a,b,K,N);

Gk = chargbm1D(a,b,tau,S0,K,r,sig,N);

tot = totsum(Vk,Gk);

putoption = exp(-r*tau)*tot;

calloption = S0 + putoption - K * exp(-r*tau);

end

E.2 1D COS method MJD

function [ calloption ] = COS1DMJDCALL(S0,K,tau,r,sig,alpha,delta,lambda,N)

%COS Value of 1D option with the 1D COS method.

% Input of the COS function is S0,K,tau,r,sig,alpha,delta,lambda,N. Where

% S0 [1x1] Start prices of assets

% K [1x1] Strike price

% tau [1x1] Time to maturity

% r [1x1] Risk free rate
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% sig [1x1] Variance of assets

% alpha[1x1] Mean of the jumps

% delta[1x1] Variance of the jumps

% lambda[1x1] Intensity of the jumps

% N [1x1] Number of terms in each dimension

%

% COS1DMJDCALL(S0,K,tau,r,sig,alpha,delta,lambda,N) is a single element.

[a,b] = abmjd(log(S0/K), r, sig, alpha, delta, lambda, tau);

Vk = payoffput1D_dctexact(a,b,K,N);

Gk = charmjd1D(a,b,tau,S0,K,r,sig,alpha,delta,lambda,N);

tot = totsum(Vk,Gk);

putoption = exp(-r*tau)*tot;

calloption = S0 + putoption - K * exp(-r*tau);

end

E.3 2D COS method GBM

function [ putoption ] = COS2DGBMGEO(S0,K,tau,r,sig,rho,N,Q)

%COS Value of 2D option with the 2D COS method.

% Input of the 2D COS function is S0,K,tau,r,sig,rho,N,Q. Where

% S0 [2x1] Start prices of assets

% K [1x1] Strike price

% tau [1x1] Time to maturity

% r [1x1] Risk free rate

% sig [2x1] Variance of assets

% rho [2x2] Covariance matrix

% N [1x1] Number of terms in each dimension

% Q [1x1] Number of terms in the approximation of the payoff

%

% COS2DGBMGEO(S0,K,tau,r,sig,rho,N,Q) is a single element.

[a,b] = abgbm(log(S0/K), r, sig, tau);

P = payoffgeo2D(a,b,K,Q);

Vk = dctn(P);

Gk = chargbm2D(a,b,tau,S0,K,r,sig,rho,N);

tot = totsum(Vk(1:N,1:N),Gk);

putoption = exp(-r*tau)*0.5*tot;

end

E.4 2D COS method MJD

function [ putoption ] = COS2DMJDGEO(S0,K,tau,r,sig,alpha,delta,lambda,rho,rhoJ,N,Q)

%COS Value of 2D option with the 2D COS method.
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% Input of the 2D COS function is S0,K,tau,r,sig,alpha,delta,lambda,rho,rhoJ,N,Q. Where

% S0 [2x1] Start prices of assets

% K [1x1] Strike price

% tau [1x1] Time to maturity

% r [1x1] Risk free rate

% sig [2x1] Variance of assets

% alpha[2x1] Mean of the jumps

% delta[2x1] Variance of the jumps

% lambda[1x1] Intensity of the jumps

% rho [2x2] Covariance matrix of BS part

% rhoJ [2x2] Covariance matrix of Jump part

% N [1x1] Number of terms in each dimension

% Q [1x1] Number of terms in the approximation of the payoff

%

% COS2DMJDGEO(S0,K,tau,r,sig,alpha,delta,lambda,rho,rhoJ,N,Q) is a single element.

[a,b] = abmjd(log(S0/K), r, sig, alpha, delta, lambda, tau);

P = payoffgeo2D(a,b,K,Q);

Vk = dctn(P);

Gk = charmjd2D(a,b,tau,S0,K,r,sig,alpha,delta,lambda,rho,rhoJ,N);

tot = totsum(Vk(1:N,1:N),Gk);

putoption = exp(-r*tau)*0.5*tot;

end

E.5 3D COS method GBM

function [ putoption ] = COS3DGBMGEO(S0,K,tau,r,sig,rho,N,Q)

%COS Value of 3D option with the 3D COS method.

% Input of the 3D COS function is S0,K,tau,r,sig,rho,N,Q. Where

% S0 [3x1] Start prices of assets

% K [1x1] Strike price

% tau [1x1] Time to maturity

% r [1x1] Risk free rate

% sig [3x1] Variance of assets

% rho [3x3] Covariance matrix

% N [1x1] Number of terms in each dimension

% Q [1x1] Number of terms in the approximation of the payoff

%

% COS3DGBMGEO(S0,K,tau,r,sig,rho,N,Q) is a single element.

[a,b] = abgbm(log(S0/K), r, sig, tau);

P = payoffgeo3D(a,b,K,Q);

Vk = dctn(P);

Gk = chargbm3D(a,b,tau,S0,K,r,sig,rho,N);

tot = totsum(Vk(1:N,1:N,1:N),Gk);

putoption = exp(-r*tau)*0.25*tot;

end
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E.6 3D COS method MJD

function [ putoption ] = COS3DMJDGEO(S0,K,tau,r,sig,alpha,delta,lambda,rho,rhoJ,N,Q)

%COS Value of 3D option with the 3D COS method.

% Input of the 3D COS function is S0,K,tau,r,sig,alpha,delta,lambda,rho,rhoJ,N,Q. Where

% S0 [3x1] Start prices of assets

% K [1x1] Strike price

% tau [1x1] Time to maturity

% r [1x1] Risk free rate

% sig [3x1] Variance of assets

% alpha[3x1] Mean of the jumps

% delta[3x1] Variance of the jumps

% lambda[1x1] Intensity of the jumps

% rho [3x3] Covariance matrix of BS part

% rhoJ [3x3] Covariance matrix of Jump part

% N [1x1] Number of terms in each dimension

% Q [1x1] Number of terms in the approximation of the payoff

%

% COS3DMJDGEO(S0,K,tau,r,sig,alpha,delta,lambda,rho,rhoJ,N,Q) is a single element.

[a,b] = abmjd(log(S0/K), r, sig, alpha, delta, lambda, tau);

P = payoffgeo3D(a,b,K,Q);

Vk = dctn(P);

Gk = charmjd3D(a,b,tau,S0,K,r,sig,alpha,delta,lambda,rho,rhojump,N);

tot = totsum(Vk(1:N,1:N,1:N),Gk);

putoption = exp(-r*tau)*0.25*tot;

end
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Appendix F

C code

In chapter 7 we have performed our numerical experiments. For these experiments we have developed
specific codes for MATLAB, C and CUDA. In this appendix we show the C codes for the 1D, 2D and 3D
options under GBM and MJD.

F.1 1D COS method GBM

double COS1DGBMCALL(double S0, double K, double tau, double r, double sig, int N)

{

double *V, *G;

double L = 10.0;

double a = log(S0/K) + tau*(r-0.5*sig*sig) - L*sqrt(tau*(sig*sig));

double b = log(S0/K) + tau*(r-0.5*sig*sig) + L*sqrt(tau*(sig*sig));

V = (double *) malloc(N*sizeof(V[0]));

G = (double *) malloc(N*sizeof(G[0]));

payoffput1D_exact(V,a,b,K,N);

chargbm1D(G,a,b,tau,S0,K,r,sig,N);

double put = exp(-r*tau)*dotCPUblas(V,G,N);

free(V);

free(G);

return S0 + put - K * exp(-r*tau);

}

F.2 1D COS method MJD

double COS1DMJDCALL(double S0, double K, double tau, double r, double sig, double alpha,

double delta, double lambda, int N)

{

double *V, *G;

double k = exp(alpha+0.5*delta*delta)-1.0;

double mu = r - lambda * k - 0.5*sig*sig;

double c1 = tau*(mu+lambda*alpha);

double c2 = tau*(sig*sig+lambda*alpha*alpha+lambda*delta*delta);
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double c4 = tau*lambda*(alpha*alpha*alpha*alpha+6*delta*delta*alpha*alpha

+3*delta*delta*delta*delta);

double L = 10.0;

double a = log(S0/K) +c1 - L * sqrt(c2 + sqrt(c4));

double b = log(S0/K) +c1 + L * sqrt(c2 + sqrt(c4));

V = (double *) malloc(N*sizeof(V[0]));

G = (double *) malloc(N*sizeof(G[0]));

payoffput1D_exact(V,a,b,K,N);

charmjd1D(G,a,b,tau,S0,K,r,sig,alpha,delta,lambda,N);

double put = exp(-r*tau)*dotCPUblas(V,G,N);

free(V);

free(G);

return S0 + put - K * exp(-r*tau);

}

F.3 2D COS method GBM

double COS2DGBMGEO(double *S0, double K, double tau, double r, double *sig, double *rho,

int N, int Q)

{

double *P, *V, *G, *VN;

double a[2];

double b[2];

abgbm(a,b,S0,K,r,sig,tau,2);

P = (double *) malloc(Q*Q*sizeof(P[0]));

V = (double *) malloc(Q*Q*sizeof(V[0]));

VN= (double *) malloc(N*N*sizeof(VN[0]));

G = (double *) malloc(N*N*sizeof(G[0]));

payoffgeo2D(P,a,b,K,Q);

dct2DFFT(V,P,Q);

QtoN2D(VN,V,N,Q);

chargbm2D(G,a,b,tau,S0,K,r,sig,rho,N);

double dot = dotCPUblas(G,VN,N*N);

free(G);

free(VN);

free(V);

free(P);

return exp(-r*tau)*0.5*(1.0/(Q*Q))*dot;

}
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F.4 2D COS method MJD

double COS2DMJDGEO(double *S0, double K, double tau, double r, double *sig, double *alpha,

double *delta, double lambda, double *rho, double *rhoJ, int N, int Q)

{

double *P, *V, *G, *VN;

double a[2];

double b[2];

double logS0[2] = {log(S0[0]/K), log(S0[1]/K)};

abmjd(a, b, logS0, r, sig, tau, alpha, delta, lambda, 2);

P = (double *) malloc(Q*Q*sizeof(P[0]));

V = (double *) malloc(Q*Q*sizeof(V[0]));

VN= (double *) malloc(N*N*sizeof(VN[0]));

G = (double *) malloc(N*N*sizeof(G[0]));

payoffgeo2D(P,a,b,K,Q);

dct2DFFT(V,P,Q);

QtoN2D(VN,V,N,Q);

charmjd2D(G,a,b,tau,S0,K,r,sig,alpha,delta,lambda,rho,rhoJ,N);

double dot = dotCPUblas(G,VN,N*N);

free(G);

free(VN);

free(V);

free(P);

return exp(-r*tau)*0.5*(1.0/(Q*Q))*dot;

}

F.5 3D COS method GBM

double COS3DGBMGEO(double *S0, double K, double tau, double r, double *sig, double *rho,

int N, int Q)

{

double *P, *V, *G, *VN;

double a[3];

double b[3];

abgbm(a,b,S0,K,r,sig,tau,3);

P = (double *) malloc(Q*Q*Q*sizeof(P[0]));

V = (double *) malloc(Q*Q*Q*sizeof(V[0]));

VN= (double *) malloc(N*N*N*sizeof(VN[0]));

G = (double *) malloc(N*N*N*sizeof(G[0]));

payoffgeo3D(P,a,b,K,Q);

dct3DFFT(V,P,Q);

QtoN3D(VN,V,N,Q);

chargbm3D(G,a,b,tau,S0,K,r,sig,rho,N);

double dot = dotCPUblas(G,VN,N*N*N);
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free(G);

free(VN);

free(V);

free(P);

return exp(-r*tau)*0.25*(1.0/(Q*Q*Q))*dot;

}

F.6 3D COS method MJD

double COS3DMJDGEO(double *S0, double K, double tau, double r, double *sig, double *alpha,

double *delta, double lambda, double *rho, double *rhoJ, int N, int Q)

{

double *P, *V, *G, *VN;

double a[3];

double b[3];

double logS0[3] = {log(S0[0]/K),log(S0[1]/K),log(S0[2]/K)};

abmjd(a,b,logS0,r,sig,tau,alpha,delta,lambda,3);

P = (double *) malloc(Q*Q*Q*sizeof(P[0]));

V = (double *) malloc(Q*Q*Q*sizeof(V[0]));

VN= (double *) malloc(N*N*N*sizeof(VN[0]));

G = (double *) malloc(N*N*N*sizeof(G[0]));

payoffgeo3D(P,a,b,K,Q);

dct3DFFT(V,P,Q);

QtoN3D(VN,V,N,Q);

charmjd3D(G,a,b,tau,S0,K,r,sig,alpha,delta,lambda,rho,rhoJ,N);

double dot = dotCPUblas(G,VN,N*N*N);

free(G);

free(VN);

free(V);

free(P);

return exp(-r*tau)*0.25*(1.0/(Q*Q*Q))*dot;

}
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Appendix G

CUDA code

In chapter 7 we have performed our numerical experiments. For these experiments we have developed
specific codes for MATLAB, C and CUDA. In this appendix we show the CUDA codes for the 1D, 2D
and 3D options under GBM and MJD.

G.1 1D COS method GBM

double GPU_COS1DGBMCALL(double S0, double K, double tau, double r, double sig, int N)

{

double *d_V, *d_G;

double L = 10.0;

double a = log(S0/K) + tau*(r-0.5*sig*sig) - L*sqrt(tau*(sig*sig));

double b = log(S0/K) + tau*(r-0.5*sig*sig) + L*sqrt(tau*(sig*sig));

cudaMalloc((void**)&d_V, N*sizeof(d_V[0]));

cudaMalloc((void**)&d_G, (N+1)*sizeof(d_G[0]));

int thr = 256;

int tpb = (N+thr-1)/thr;

payoffput1DGPU_exact<<<tpb,thr>>>(d_V,a,b,K,N);

chargbm1DGPU(d_G,a,b,tau,S0,K,r,sig,N);

double put = exp(-r*tau)*dotGPU_wrapper(d_V,d_G,&d_G[N],N);

cudaFree(d_V);

cudaFree(d_G);

return S0 + put - K * exp(-r*tau);

}

G.2 1D COS method MJD

double GPU_COS1DMJDCALL(double S0, double K, double tau, double r, double sig, double

alpha, double delta, double lambda, int N)

{

double *d_V, *d_G;

double k = exp(alpha+0.5*delta*delta)-1.0;

double mu = r - lambda * k - 0.5*sig*sig;
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double c1 = tau*(mu+lambda*alpha);

double c2 = tau*(sig*sig+lambda*alpha*alpha+lambda*delta*delta);

double c4 = tau*lambda*(alpha*alpha*alpha*alpha+6*delta*delta*alpha*alpha

+3*delta*delta*delta*delta);

double L = 10.0;

double a = log(S0/K) +c1 - L * sqrt(c2 + sqrt(c4));

double b = log(S0/K) +c1 + L * sqrt(c2 + sqrt(c4));

cudaMalloc((void**)&d_V,N*sizeof(d_V[0]));

cudaMalloc((void**)&d_G,(N+1)*sizeof(d_G[0]));

int thr = 256;

int tpb = (N+thr-1)/thr;

payoffput1DGPU_exact<<<tpb,thr>>>(d_V,a,b,K,N);

charmjd1DGPU(d_G,a,b,tau,S0,K,r,sig,alpha,delta,lambda,N);

double put = exp(-r*tau)*dotGPU_wrapper(d_V,d_G,&d_G[N],N);

cudaFree(d_V);

cudaFree(d_G);

return S0 + put - K * exp(-r*tau);

}

G.3 2D COS method GBM

double GPU_COS2DGBMGEO(double *S0, double K, double tau, double r, double *sig,

double *rho, int N, int Q)

{

double *d_P, *d_V, *d_G;

double a[2];

double b[2];

abgbm(a,b,S0,K,r,sig,tau,2);

cudaMalloc((void**)&d_P,Q*Q*sizeof(d_P[0]));

cudaMalloc((void**)&d_V,N*N*sizeof(d_V[0]));

cudaMalloc((void**)&d_G,(N*N+1)*sizeof(d_G[0]));

double *d_a, *d_b;

cudaMalloc((void**)&d_a,2*sizeof(d_a[0]));

cudaMalloc((void**)&d_b,2*sizeof(d_b[0]));

cudaMemcpy(d_a,a,2*sizeof(d_a[0]),cudaMemcpyHostToDevice);

cudaMemcpy(d_b,b,2*sizeof(d_b[0]),cudaMemcpyHostToDevice);

int thr = 16;

dim3 TpB(thr,thr);

dim3 grid((Q+thr-1)/thr,(Q+thr-1)/thr);

payoffgeo2DGPU<<<grid,TpB>>>(d_P,d_a,d_b,K,Q);

dct2DFFTGPU(d_V,d_P,Q,N);

chargbm2DGPU(d_G,a,b,tau,S0,K,r,sig,rho,N);

double dot = dotGPU_wrapper(d_V,d_G,&d_G[N*N],N*N);
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cudaFree(d_G);

cudaFree(d_V);

cudaFree(d_P);

cudaFree(d_a);

cudaFree(d_b);

return exp(-r*tau)*0.5*(1.0/(Q*Q))*dot;

}

G.4 2D COS method MJD

double GPU_COS2DMJDGEO(double *S0, double K, double tau, double r, double *sig,

double *alpha, double *delta, double lambda, double *rho, double *rhoJ, int N, int Q)

{

double *d_P, *d_V, *d_G;

double a[2];

double b[2];

double logS0[2] = {log(S0[0]/K), log(S0[1]/K)};

abmjd(a, b, logS0, r, sig, tau, alpha, delta, lambda, 2);

cudaMalloc((void**)&d_P,Q*Q*sizeof(d_P[0]));

cudaMalloc((void**)&d_V,N*N*sizeof(d_V[0]));

cudaMalloc((void**)&d_G,(N*N+1)*sizeof(d_G[0]));

double *d_a, *d_b;

cudaMalloc((void**)&d_a,2*sizeof(d_a[0]));

cudaMalloc((void**)&d_b,2*sizeof(d_b[0]));

cudaMemcpy(d_a,a,2*sizeof(d_a[0]),cudaMemcpyHostToDevice);

cudaMemcpy(d_b,b,2*sizeof(d_b[0]),cudaMemcpyHostToDevice);

int thr = 16;

dim3 TpB(thr,thr);

dim3 grid((Q+thr-1)/thr,(Q+thr-1)/thr);

payoffgeo2DGPU<<<grid,TpB>>>(d_P,d_a,d_b,K,Q);

dct2DFFTGPU(d_V,d_P,Q,N);

charmjd2DGPU(d_G,a,b,tau,S0,K,r,sig,alpha,delta,lambda,rho,rhoJ,N);

double dot = dotGPU_wrapper(d_V,d_G,&d_G[N*N],N*N);

cudaFree(d_G);

cudaFree(d_V);

cudaFree(d_P);

cudaFree(d_a);

cudaFree(d_b);

return exp(-r*tau)*0.5*(1.0/(Q*Q))*dot;

}
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G.5 3D COS method GBM

double GPU_COS3DGBMGEO(double *S0, double K, double tau, double r, double *sig,

double *rho, int N, int Q)

{

double *d_P, *d_V, *d_G;

double a[3];

double b[3];

abgbm(a,b,S0,K,r,sig,tau,3);

cudaMalloc((void**)&d_P,Q*Q*Q*sizeof(d_P[0]));

cudaMalloc((void**)&d_V,N*N*N*sizeof(d_V[0]));

cudaMalloc((void**)&d_G,(N*N*N+1)*sizeof(d_G[0]));

double *d_a, *d_b;

cudaMalloc((void**)&d_a,3*sizeof(d_a[0]));

cudaMalloc((void**)&d_b,3*sizeof(d_b[0]));

cudaMemcpy(d_a,a,3*sizeof(d_a[0]),cudaMemcpyHostToDevice);

cudaMemcpy(d_b,b,3*sizeof(d_b[0]),cudaMemcpyHostToDevice);

int thr = 8;

dim3 TpB(thr,thr,thr);

dim3 grid((Q+thr-1)/thr,(Q+thr-1)/thr,(Q+thr-1)/thr);

payoffgeo3DGPU<<<grid,TpB>>>(d_P,d_a,d_b,K,Q);

dct3DFFTGPU(d_V,d_P,Q,N);

chargbm3DGPU(d_G,a,b,tau,S0,K,r,sig,rho,N);

double dot = dotGPU_wrapper(d_V,d_G,&d_G[N*N*N],N*N*N);

cudaFree(d_G);

cudaFree(d_V);

cudaFree(d_P);

cudaFree(d_a);

cudaFree(d_b);

return exp(-r*tau)*0.25*(1.0/(Q*Q*Q))*dot;

}

G.6 3D COS method MJD

double GPU_COS3DMJDGEO(double *S0, double K, double tau, double r, double *sig, double *alpha,

double *delta, double lambda, double *rho, double *rhoJ, int N, int Q)

{

double *d_P, *d_V, *d_G;

double a[3];

double b[3];

double logS0[3] = {log(S0[0]/K),log(S0[1]/K),log(S0[2]/K)};

abmjd(a,b,logS0,r,sig,tau,alpha,delta,lambda,3);

cudaMalloc((void**)&d_P,Q*Q*Q*sizeof(d_P[0]));

cudaMalloc((void**)&d_V,N*N*N*sizeof(d_V[0]));

97



cudaMalloc((void**)&d_G,(N*N*N+1)*sizeof(d_G[0]));

double *d_a, *d_b;

cudaMalloc((void**)&d_a,3*sizeof(d_a[0]));

cudaMalloc((void**)&d_b,3*sizeof(d_b[0]));

cudaMemcpy(d_a,a,3*sizeof(d_a[0]),cudaMemcpyHostToDevice);

cudaMemcpy(d_b,b,3*sizeof(d_b[0]),cudaMemcpyHostToDevice);

int thr = 8;

dim3 TpB(thr,thr,thr);

dim3 grid((Q+thr-1)/thr,(Q+thr-1)/thr,(Q+thr-1)/thr);

payoffgeo3DGPU<<<grid,TpB>>>(d_P,d_a,d_b,K,Q);

dct3DFFTGPU(d_V,d_P,Q,N);

charmjd3DGPU(d_G,a,b,tau,S0,K,r,sig,alpha,delta,lambda,rho,rhoJ,N);

double dot = dotGPU_wrapper(d_V,d_G,&d_G[N*N*N],N*N*N);

cudaFree(d_G);

cudaFree(d_V);

cudaFree(d_P);

cudaFree(d_a);

cudaFree(d_b);

return exp(-r*tau)*0.25*(1.0/(Q*Q*Q))*dot;

}
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