class DomainWallGenerator(QUBOGenerator):
def bgm_from_graph(self, G: nx.Graph) -> dimod.BinaryQuadraticModel:
bgm = dimod.BinaryQuadraticModel("BINARY")
for n in G.nodes:
Goal: minimize separator set.
bgm.add_1linear(2*n, self.params.seperator_penalty)

Constraint: domain-wall encoding constraint
bgm.add_1inear(2*n, 4*self.params.node_uniqueness)
bgm.add_quadratic(2*n, 2*n + 1, -4*self.params.node_uniqueness)

Balance constraint

bgm.add_1linear_equality_constraint([x for n in G.nodes for x in (
(2*n, 1),
(2*n + 1, -2)
self.params.get_balance_weight(len(G.nodes)), len(G.nodes))

(i, j) in G.edges:

degree = G.degree[1i]

Constraint: set A and B must not share edges.

bgm.add_linear_from([
(2*j + 1, int(self.params.independent_sets/degree)),
(2*j, -int(self.params.independent_sets/degree)),
(2*1 + 1, int(self.params.independent_sets/degree)),
(2*x1, -int(self.params.independent_sets/degree))

1)

bgm.add_quadratic_from([
(2*x1 + 1, 2*xj + 1, -2*int(self.params.independent_sets/degree)),
(2x1 + 1, 2xj, int(self.params.independent_sets/degree)),
(2x1, 2*j + 1, int(self.params.independent_sets/degree)),

1)

Second goal: minimize edge cut
bgm.add_linear_from([

TU Dé1 1f.params.edge_cut),
,Isklf.params.edge_cut)
qu add_quadratic(2*i, 2*j, -2*self.params.edge_cut)
return bgm

N\esteo
aissection

UsSing quantum
annealing

by

GAJ Custers

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Thursday April 17, 2025 at 10:30 AM.

Student number: 5119995

Project duration: January 8, 2024 — April 17, 2025

Thesis committee: Prof. dr. ir. R. E. Kooij, TU Delft, supervisor
Dr. H. Wang, TU Delft
S. G. van der Linde, TNO

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

Despite it being masked behind the cover of a scientific report, the journey of completing my Master’s
thesis has been one of the most difficult endeavors I've taken thus far. Unfortunately this was not due
to the challenge of my research, but due to the state of my health. Therefore | would like to precede my
acknowledgments by highlighting that many of these people did not just support me as an academic,
but also as a human being.

Firstly, I'd like to thank the direct supervisors of my project, Rob Kooij, Stan van der Linde and Robert
Wezeman. Without their knowledge, expertise and understanding this report would be not have seen
the light of day. I'd also like to thank Milena Kooij-Janic, for overseeing my internship at TNO, and
especially for the compassion she gave given my situation. | also want to thank my family, with special
mention of Steven, for always managing to cheer me up, and being my quantum mechanics sparring
buddy.

Lastly, I'd like to thank the countless of friends and acquaintances that have shaped my study period
at the TU Delft. A special thank you to Pepijn and Niels, for being there no matter what, and knowing
how to cheer me up even when the odds aren’t looking amazing.

G.A.J. Custers
Rotterdam, April 2025

Introduction

1.1 Finite Element Analysis
1.2 Graph theoretic model for fill-in
1.3 The reordering problem
1.4 Quantum computation

15 Goals

Related works

2.1 Local pivotal reordering methods
2.1.1 Markowitz method
2.1.2 Minimum degree ordering
2.1.3 Minimal fill-in
2.1.4 Tie breaking

2.2 Special form methods
2.2.1 Cuthill-McKee

2.3 Existing quantum methods
231 HHL.
2.3.2 Variational solvers
2.3.3 Quantum minimum fill

Nested Dissection

3.1 Thealgorithm.
32 MeTiS.
3.2.1 Multilevel dissection
3.2.2 Graph coarsening
3.2.3 Graph partitioning
3.2.4 Uncoarsening

Quantum Annealing

4.1 Simulated annealing
4.2 Quantum annealing
4.2.1 Modeling problems as Ising models
4.2.2 Discrete integer encoding
4.2.3 Minor embedding

Methods

5.1 Goals and constraints
5.1.1 Discrete Quadratic Model
5.1.2 Minimal separator goal
5.1.3 Minimal edge cut goal
5.1.4 Setindependence constraint
5.1.5 Balance soft constraint

5.2 One hot encoding QUBO
5.2.1 Encoding constraint
5.2.2 Goals and constraints

5.3 Domain wall encoding QUBO
5.3.1 Encoding constraint
5.3.2 Goals and constraints

5.4 Hyperparameters

5.5 Formulation complexity
5.6 Algorithm workflow

Contents

Vi Contents

6 Results 35
6.1 Datasets 35
6.1.1 Syntheticdatasets 35

6.2 Onrecursive QUBO application 36
6.2.1 Treerepresentationofsolutions 36

6.3 Experimentalsetup. e 37
6.3.1 Performance 37
6.3.2 Scaling 38
6.3.3 Hyperparameter exploration L 38

6.4 Performanceresults L e 39
6.4.1 Fill-inperformance 39
6.4.2 Energy-fillin. L 41

6.5 Scalingresults 41
6.6 Hyperparameter explorationresults L Lo 42
6.6.1 Sizeexploration. 42
6.6.2 Energy-fillin. L 43
6.6.3 Domainwall. 43

7 Discussion 45
7.1 Encoding e e 45
7.1.1 Performance 46
7.1.2 Violations e 47

7.2 Performance 47
7.3 Methods. 48
7.3.1 Graphcoarsening e e 48
7.3.2 Hyperparameters. e 48

7.4 Researchgoals. 48

Introduction

1.1. Finite Element Analysis
In almost all science or engineering related field of study we find problems that are modeled by partial
differential equations (PDE). These arise when the rate of change of a property is directly related to
another one. For example, the heat equation models the heat diffusion through a medium, in which
case the rate of change of heat over time is directly related to rate of change of heat over distance. In
a few isolated cases, PDEs have known analytical solutions, however, most PDEs cannot be solved
analytically. Instead, we often use numerical methods to provide an approximation to a solution. One
of these methods is called Finite Element Analysis (FEA) or the Finite Element Method (FEM). As it
turns out, this is a computationally intensive process, with the main computational load falling on that
of solving systems of linear equations, which is commonly performed using Gaussian Elimination [28].
To illustrate, and to give context for the rest of this work, we present a small example. Suppose we
have the following boundary value problem:

—az(;;(zx):f(x), 0<x<1, w(0)=0, wu(1)=0. (1.1)

This formulation has strong requirements on the properties of u(x). Namely, that it is twice differ-
entiable. In many cases (such as on the interface of different materials or mediums) the first derivative
is not continuous and as such the second derivative cannot be evaluated numerically. A naive ap-
proach could be to integrate both sides of (1.1) across its entire domain 0 < x < 1, removing the second
derivative.

du x
—a:fo fdx. (1.2)

However, this integral requires the average of f(x) and —3—1; to be equal across the entire domain.
This is far from the original formulation, which required the functions to be equal at every point. Instead
of integrating of the entire domain, we can integrate over a very small domain, splitting the original
domain up into discrete elements.

We can concisely represent this by introducing a set of functions v called the test functions. One
of such functions is non-zero only in a specific region of the domain, as such "sampling” the integral
at different points. Multiplying (1.1) by v on both sides, and using integration by parts we arrive at the
weak formulation. This procedure only works because we have set u(0) = u(1) = 0.

1 1
f v, . f fodx. (1.3)
0o Jdx dx 0

To evaluate this expression we have to define v. We find v to be limited to a set of functions which
are quadratic integrable ([01 v2dx < o) and v(0) = v(1) = 0 [45]. Now we can define our elements,
which in the 1D case can be done simply defining points x; = ih, where i = 0,1,...,nand h = % where
n is the number of elements. On these elements we can define our test functions. There are many
test functions we can use, often some piecewise linear function is used. For 1D this is the hat function,

1

2 1. Introduction

R T ey u(x)
¢1 ¢2 b3 Ps Ps P P7 Ps o

Xo X1 X2 X3 Xa X5 Xe X7 Xg X9 Xi10

Figure 1.1: Imaginary solution u(x) plotted with the discretized domain xo, ..., x10 and the basis functions ¢4, ..., ¢9.

as defined in (1.4). In higher dimensions this function has a similar shape, like a triangle in 2D, or a
triangular pyramid in 3D.

XX jf Xi—1 S x <X
Gi(x) =1 HHL=Eif x S x <xigq (1.4)
0 otherwise

Now, we can express the solution as an approximation based on the test functions:

n-1

Ua(®) =) ety (x). (1.5)

j=1

The constants c; are unknowns that we need to find. To do so we first substitute the approximate
solution ug (x) for u(x) in the weak formulation in (1.3).

Z flad”)(cx)ov / fdx. (1.6)

Recall that v is the set of test functions, so now to construct the system of equations we consider
the equality in (1.6) for every v € {¢1, ¢2, ..., Pn-1}-

e e . G o [R

1 3¢, 0 10¢2 0 104 a¢ 1

0 ox ax A% Jo x ax A% - Jo Bx —ax dx || €2 fo fo2dx -
[fo 2ot 0y [Onr 02 gy [081 08n gy || Cnoa] L] fpng dx]

The integral f01 aa‘f; r I dx for a given i, is related to the overlap of the functions ¢; and ¢;. Using
Figure 1.1 we can see that most pairs of functions do not overlap. In fact, only neighboring functions

have an overlap. Hence, most of the integrals in (1.7) evaluate to O.
For the integrals on the diagonal we evaluate [, %2 9% dx. To do this we can use the derivative of
bi:

if xi1<x<ux;

=

d¢; .
a‘i‘ =4-% if x S X < Xiq1
0 otherwise

and the fact that every interval (x;_1,x;) is of length h. We quickly see fo (‘3 Y2dx =2

As for the off-diagonal elements we can recognize that there is no overlap except when they are
directly adjacent, meaning only j1 9% a""“ dx is non-zero. In this case the integral evaluates to —%.
Hence the full systems of equatlons |s as foIIows

1.1. Finite Element Analysis 3
Te 1 [[fprdx
2 1 9 0 0 o] o
BT A R oll e Jo fb2dx
o o8 1 oll € Jo fbsdx
heohoo) ca |=| [i foadx (1.8)
o o o o -+ 2 1
h h, g. Cn_ 1
1 n-2 odx
0o 0 0 o 0 -z]| 7 foljzzn idx
- - L /0 n-— ;

Finally, to find our approximation for u(x) we have to solve this system of equations. In the example
Figure 1.1 we have quite a large discretization step, and hence the matrix size will be limited. However,
large discretization also means large approximation error (we can calculate this error, but this is not
relevant to the discussion in this work). As it turns out, in real world applications the matrices of the
form shown in (1.8) can get extremely large. One method of efficiently solving these systems is to solve
by using Gaussian elimination.

Gaussian elimination The matrix is equation shown in (1.8) can in general be expressed as Ax = b,
where x is the vector of unknowns we wish to determine. An efficient way of solving this system is by
transforming matrix A into the so called row-echelon form, which results in an upper triangular matrix
U. In U the last unknown is only related to a single value in b, and so it can be found directly. Once we
have determined the first unknown, we can substitute this into the following expression, which, due to
the upper triangular matrix form, only depends on the last two unknowns. We can cascade this pattern
until we have determined the entirety of x [15].

To transform the matrix into this row-echelon form, we can use Gaussian elimination, for which the
process is as follows.

« Start at column k = 0 of matrix A, we will make sure every entry in this column below the first row
will be 0 (eliminated).

r

» For every row i below row k subtract r;l;c Ry from R;, where R,, is the n-th row of A.

» Repeat this process for every column. Afterwards the matrix is in row-echelon form.

Pivoting It might be the case that the value r ; = 0, making the fraction :;’; undefined. To illustrate
why this is an issue, we present the following elimination state. '

X X X X
0 x X
< X x (1.9)
X X X

Here, an x means a generic non-zero is present. Obviously if we terminated the elimination process
when we encountered ri ; = 0 unconditionally, we it would result in incorrect results. To mitigate this
possibility, we can check if any of the rows j < k have r; ; # 0. We then swap the first j that satisfies this
condition with row k, and proceed. This technique is called pivoting. In the context of this work we
assume we do not require to perform pivoting, as considering the possibility of pivoting makes analysis
much more difficult. FEM applications rarely require pivoting, so this assumption is acceptable for our
desired application.

Fill-in The size and structure of the matrices resulting from FEM depend on how the elements are
constructed. In many real world applications, there are many elements, on the order of millions, making
the resulting matrices large [28]. Additionally, as is seen in the example (1.7), besides the diagonal,
there is only a non-zero entry in the matrix when the elements overlap. In real world applications
elements are not very densely connected, meaning that that many matrix elements will be zero, and
do not contribute to subsequent computation. We refer to matrices like this as sparse matrices, where
a majority of the elements are zero. This is in contrast to dense matrices, where most of the matrix
entries are non-zero.

4 1. Introduction

Sparse and dense matrices in general require different computational approaches, this is also the
case for Gaussian elimination. Here the performance is highly dependent on the sparsity structure
of the matrix. While the subtraction step in Gaussian elimination serves to eliminate elements in the
matrix, in a sparse one it is not guaranteed that this step does not add elements to the matrix. Indeed
the action will eliminate the entry in column k, but this action might also introduce entries where they
were previously zero in any column below i < k. We can observe this is the case on the second row of
the matrix in (1.8) already. Adding % to the column will eliminate the leftmost —%, but introduce extra %
entries in place of zeros.

This phenomenon is called "fill-in”, and is the center of much research in the numerical analysis
domain. More specifically we can define fill-in as the introduction of non-zeros during the elimination
process where there previously weren’t any. Sparse matrices lend themselves to efficient storage by
taking advantage of the fact that the zeros do not contribute to calculations. However, with decreased
sparsity these storage formats and algorithms lose their efficiency. In practice the loss of efficiency due
to fill-in is so severe that it is beneficial to perform pre-processing on the matrix to avoid the fill-in [28]
[15]. We will elaborate on the analysis of fill-in in the following sections.

1.2. Graph theoretic model for fill-in

It is possible to represent A as a graph G = (V,E), and analyze the elimination pattern from a graph
theoretical perspective. A matrix can be represented as a graph by considering treating every matrix
entry a;; for arow i and column j as an edge (i,j) connecting node i to node j. The value of the matrix
entry corresponds to the weight of the edge. If the graph is undirected, then the matrix is symmetric. In
general we refer to the matrix representation of a graph as an adjacency matrix. Figure 1.2 shows an
example matrix and its graph equivalent. Suppose in this example we wish to eliminate the first row. If
we apply the first iteration of Gaussian elimination to the example matrix in Figure 1.2, the result is A;
in (1.10).

1 3 2 5 2
0 -8 -6 -15 -6
A =|0 -6 -3 -10 -4 (1.10)
0 -15 -10 -24 -10
0 -6 -4 -10 -3

Where A is sparse, A, is far from it; most of the matrix is non- zero. This behavior is a direct result
of the connectedness of the first row. The lack of non-zeros in the first row, and the presence of zeros in
the other rows, gives rise to an increase in non-zeros after elimination. We can also model this using a
graph visualization. Referring to Figure 1.2b we can see that node 1 (which is the first row of the matrix)
is connected to every other node in the graph. The graph equivalent of fill-in is the addition of edges.
In general the set of all edges added due to the elimination of a variable v is called the deficiency set,
and is given by the expression in (1.11). The magnitude of this set is the fill-in.

Def(v) = {(u,w)|(u,v) EE,(v,w) €EE,(u,w) ¢ E}. (1.11)

In simpler terms, (1.11) says that fill-in occurs whenever elimination of a node v causes nodes u, w that
are connected through v to be disconnected. Then an edge (u,w) must be added to re-connect them.
We can use this definition to define the elimination graph

Gy = (V-{v}, E(V-{v}UDef(v)). (1.12)

Assuming n = |V|, Def;(v) is the deficiency of v on a graph G;, and an ordering on V is a bijection
a:{0,1,..,n} & V then we can calculate the all fill-in elements using

F(G,a):UDefil (a(i)). (1.13)

The cardinality of F(G,) is the total number of filled in elements for a given ordering «a.

We can apply this definition of fill-in on the example in Figure 1.2b. Every vertex except itself is
connected through vertex 1. Hence, eliminating vertex 1 disconnects every other vertex from each
other, meaning Def (1) = {(2,5),(5,4),(5,3),(2,3),(2,4),(3,4)}, and |Def (1)| = 6.

1.3. The reordering problem 5

1 3 2 5 2
3 1.0 0 0
20100 H—0—0
5 0 010
2 0 0 0 1
@)
(a) A matrix. (b) The equivalent graph.

Figure 1.2: An example matrix and its equivalent graph representation.

1.3. The reordering problem

The addition of extra non-zeros into a sparse matrix can substantially increase the time to compute
the Gaussian elimination. Extra working memory is required to store these non-zeros, which also
increases the memory bandwidth requirement of the algorithm. Furthermore, sparse matrix formats
are not usually designed with the possibility of updates in mind. This means that, depending on the
data structures used, elimination of a row can become very expensive, as the data structure might need
to be rebuilt. Lastly, it is more computationally expensive to perform computation on more values.

The cost of fill-in is in fact so high that there is a comprehensive academic selection of algorithms
designed to reduce the fill-in associated with Gaussian elimination on sparse matrices [28] [15] [33] [23]
[24]. To reduce the fill-in, we can change the order in which we perform elimination. In the previous
section we've seen that the order with which we eliminate variables (or nodes) has an effect on the
total fill-in we produce across the elimination process. It logically follows that we might be able to find
an order of nodes that results in the lowest possible amount of fill-in. As it turns out, finding such an
order for all possible matrix structures is NP-Hard [48].

As such, it's of interest to design heuristic algorithms that make a best effort to produce the lowest
fill-in. In general, many proposed reordering algorithms use the abstraction of this elimination graph as
a basis for their design. The cardinality of the deficiency set in the graph abstraction directly correlates
to the expected fill-in in the matrix. Therefore, algorithms designed to find an order a such that F(G, a)
is minimized, will also find a low matrix fill-in.

Reordering strategies broadly fall into two categories, those of the local pivotal kind, and those of the
special form kind [15]. Local pivotal strategies are algorithms which consider the matrix only locally, and
make a new decision on the ordering at every elimination step. An example of this is minimum degree
ordering, where the next vertex to be eliminated is chosen to be the one with least degree [4]. Special
form algorithms take a global approach, whereby the matrix is permuted into a "favorable” form [15].
These favorable forms give rise to augmented solving methods that result in less fill-in when compared
with the original matrix. The exact workings of some common reordering strategies are covered in
depth in Chapter. 2.

It is important to highlight that there is not a single strategy that is optimal for every use case. There
are several factors that determine the performance of a reordering algorithm. Clearly the quality of
the ordering (how much fill-in is produced in the end) is a factor. However, so is the computational
requirement to get to this ordering. It is not beneficial to perform a preprocessing step if adding this
step makes the entire solving process take longer. Another factor to consider is the structure and
size of the input dataset. For example, minimum degree ordering generally works quite well on small
datasets, while nested dissection works better for large datasets [15]. Finally, another important factor
to consider is whether or not the algorithm lends itself to parallelization. There can be cases where a
higher quality serial ordering has slower solving time than a parallelisable lower quality ordering.

This work focuses on nested dissection, a special form algorithm. This algorithm performs a partic-
ular form of graph partitioning, whereby the graph is split into two or more connected components. It
does so by removing a set of vertices - hereafter referred to as the separator. In general the resulting
ordering produces less fill-in when we are able to find a separator of minimal size. The algorithm is

6 1. Introduction

explained in more detail in Chapter 3. Finding a separator of minimal size is NP-Hard, which means
state of the art implementations use a combination of heuristics to find a good separator [2] [31] [26]
[27]. In this work we evaluate the use of a quantum computing powered heuristic for finding separators
in the context of nested dissection.

1.4. Quantum computation

The field of quantum computing studies how we can leverage quantum physical effects for computation.
At the heart of this innovation is the utilization of quantum bits, or qubits for short. In contrast to classical
bits (which can only be of a discrete value of 0 or 1), qubits are subject to the principle of uncertainty,
meaning that their value cannot be represented as a binary variable. Instead, we represent the value
of a qubit as a linear combination of states, weighted by the probability of observing a particular state.

Bra-ket notation A single qubit system has two basis vectors. A common way of expressing these
vectors is using Bra-ket notation. For the purpose of this work we can assume that |v) refers to a vector
b, and (v| refers to its complex conjugated transpose. Then to express the state of a single qubit system

we write [)) = «|0) + B |1), where |0) = [(1)] and [1) = [O] a and B are complex numbers that represent

1
the state of the system, such that |a|? +|B|? = 1. The values |«|?, |3]* can be interpreted as the probability
of reading the respective state upon measurement. For example, the state |¢) = % |0) + % |1) means

that there is an equal probability of observing either |0) or |1). The phenomenon of probability dictating
the measurement of a system is called superposition.

While superposition may appear counter productive for performing computation, this property can
allow us to construct algorithms that have substantial speedup on problems that classical comput-
ers ordinarily struggle with. An example of such an algorithm is Grover’s algorithm, which gives a
quadratic speedup for unstructured search [36]. On a classical computer unstructured search takes
0(n), whereas Grover’s algorithm can solve the same problem in 0(y/n).

Quantum annealing In the domain of quantum computers that are two main streams of computa-
tion: gate-based and annealing based. In gate based quantum computers algorithms take form as
specialized quantum circuits, consisting of gates. These gates represent mathematical building blocks
that operate on the state of qubits. In a gate based quantum algorithm calculations are performed on
the probability of the qubit to collapse to a particular value. Probabilities can be adjusted such that
performing a measurement has a high probability of reading a correct result for a given problem.

Quantum annealing (QA) is another paradigm of quantum computation. In contrast to gate based
quantum computing, annealing focuses only on solving optimization problems of a particular form.
Every problem submitted to a quantum annealer comes in the form of a quadratic unconstrained binary
optimization (QUBO) problem [13]. This problem is then encoded in the physical quantum system.
Such a system naturally tends towards its lowest energy state, i.e. the most favorable configuration
given the present constraints. A quantum annealing system encodes the target given optimization
problem in such a way that the lowest energy state of the quantum system corresponds to the most
optimal solution of the QUBO problem. The specifics of quantum annealing are discussed in Chapter
4,

QA has been applied to several NP-Hard combinatorial problems, such as the graph coloring prob-
lem [30], graph partitioning problem [46] and even SAT solving [6].

Quantum operators In quantum mechanics the state of a quantum system is expressed using bra-
ket notation. The behavior of this system is modeled using the Schrédinger wave equation. The wave
equation can be used to perform queries on various physical properties of the system. This is accom-
plished using Hermitian matrices named operators. An operator A can be applied to the state [) of
the system, if [i) is an eigenvector of the operator then

Alp)=alp) (1.14)

, Where a is the corresponding eigenvalue, representing the value of the queried property. There are
many operators for the various physical properties of a quantum system. For example, the Hamiltonian

1.5. Goals 7

operator H is one that queries the total energy of the system. The exact form of this matrix depends on
the particular system it is querying. In this work we focus on the quantum Hamiltonians corresponding
to the transverse field Ising model (TFIM), which are of the form

N-1
== (g0} +0%0%) (1.15)
n=0

[16], where each ¢; is the magnetic spin of a particle along a particular axis. The TIFM is examined in
more detail in Chapter 4.

1.5. Goals

In general graph partitioning is a difficult optimization problem to solve. There are many existing heuris-
tics (some of which are examined in Chapter 3), but with the new development of quantum annealing
as a meta-heuristic, it is interesting to see how well this method can be applied to graph partitioning in
the context of numerical analysis.

To this end, this work aims to answer the following research questions:

» How can we formulate the nested dissection graph partitioning problem as an optimization prob-
lem suited for quantum annealing?

» How well does this formulation perform when compared to other heuristic methods for performing
nested dissection?

* What does the inclusion of a quantum step mean for the Finite Element Analysis pipeline?

Related works

The question of matrix reordering is one that has seen extensive research for many years. In general,
the community has settled on two main reordering strategies, local pivotal and special form methods
[15]. While both methods are heuristics, local pivotal methods are of the greedy kind and special
form methods use divide and conquer strategies. The main advantage of special form methods is not
necessarily in the reduction in fill-in, but rather that they are better suited for parallelised processors.
This is in contrast to the local pivotal methods, which are by definition difficult to parallelise.

In this section we examine several methods to reorder matrices, and other quantum linear solving
methods.

2.1. Local pivotal reordering methods
Local pivotal methods work in close tandem with the Gaussian elimination process. At every stage k

the reordering method determines the next pivot ai(]’.‘) in the (n-k) - (n - k) submatrix that minimizes
some expression. This expression differs per local pivotal method, and several criteria will be explored
in this subsection.

2.1.1. Markowitz method

One of the earliest ordering strategies was proposed by Markowitz in 1957 [37]. For each row i in the
submatrix, rl-" denotes the number of non-zero entries in said row, at Gaussian step k. Similarly, for
each column j, c}‘ denotes the number of non-zero entries in said row. Then the Markowitz criterion is

(rf=1)-(¢f - 1), 2.1)

which is minimized at each step of the elimination process. This expression can be interpreted as
finding the pivot for each iteration which modifies the least coefficients for the remaining submatrix.
Implementation of this criterion is not trivial, as it requires knowledge of the sparsity structure of every
k-th submatrix. This is apparent when considering that minimizing (2.1) means knowing r; and c; for
every i and j.

2.1.2. Minimum degree ordering

When we know our matrix is symmetric, the above criterion simplifies. More specifically, it is now
enough to find an i such that ri(k) is minimized, and using al-(ik) as pivot. Since the matrix is symmetric,
the rows and columns have the same sparsity pattern, meaning we only need information on one of the
axes. This technique is called minimum degree ordering, and is a very popular method. Finite element
methods often produce symmetric matrices.

The name minimum degree ordering comes from the graph interpretation of the matrix. This in-

terpretation comes naturally when the matrix is symmetric. Minimizing rl-(k) in this case is equivalent
to choosing the vertex i that has the lowest degree in the graph. Despite being a conceptually sim-
ple algorithm, lots of research has been done to improve the computation time. While only having to

scan all rows on every iteration, on large matrices a naive implementation might not be performant

9

10 2. Related works

enough to justify re-ordering the matrix. Below a few innovations on the minimum degree algorithm are
summarized.

Multiple minimum degree The multiple minimum degree algorithm, proposed by Liu et al [35] uses
several observations to reduce the storage of and work done on the elimination graph. To support
the computation an alternative data structure is used instead of the elimination graph to simulate the
elimination process. The datastructure used is called a quotient graph, which primarily stores cliques
instead of nodes. In a clique it is not required to track edge information, just a list of nodes suffices.
Therefore storage requirements of these graph are shown to be no worse than the elimination graph,
and are often better.

One of the optimizations identified in multiple minimum degree is that of indistinguishable nodes.
The adjacency set Adj,; (i) of a node i on graph G is the set of all nodes connected to i. Suppose nodes
i and j satisfy Adj; (i) U {i} = Adj; () U {j}, then they can be eliminated in any order while maintaining
the same fill-in; in other words, they are indistinguishable. This observation can be used to delay the
degree computation. Instead of recomputing the degree in the neighborhood of elimination for each
eliminated node, one can recompute the degree only when the entire set of indistinguishable nodes
are eliminated.

We can use the concept of indistinguishable variables to identify “supernodes”. These are sets of
indistinguishable nodes. It is possible to also order by the degree of the supernodes instead of their
constituent nodes. This is called the external degree, defined as d; = t; - |i| + 1, where t; is the degree
of some node i € i, called true degree. It has been shown that ordering by external degree instead of
true degree results in better orderings.

Another way to delay degree computation is using the concept of outmatched nodes. A node i is
said to be outmatched by a node j if Adj,; (i) € Adj;(j). This also implies that degree(i) < degree(j).
Therefore, we don’t need to update the degree of j until i has been eliminated.

Finally, we can further delay degree computation using multiple elimination. Instead of considering
only a single pivot per elimination round, we consider multiple independent pivots of the same minimum
degree. More specifically, eliminating i only changes nodes not in Adj;(i). Therefore, we can look for
a new pivot in the subgraph G — (Adj; (i) U {i}). If this pivot has the same degree as i then we can
eliminate it in the same step. This process is continued until the subgraph is empty.

Approximate degree Approximate degree is an algorithm that builds on multiple minimum degree,
using an optimized method of computing the external degree of nodes [1]. Instead of computing an
exact value of d;, it computes an upper bound d;. In the k-th elimination step node p is chosen as pivot,
d¥ is given by

n-k,
df =min{dk 1+ |A\i| (2.2)
AN+ [Ap\i| + Beeey\ (p) [Ae\Ap]

, Where A; is the set of non-eliminated nodes adjacent to i and &; is the set of eliminated variables
adjacent to i. It turns out that this upper bound is much easier to calculate then the exact external
degree, resulting in a substantial asymptotic speedup.

2.1.3. Minimal fill-in

We can also consider another greedy ordering criterion instead of the Markowitz criterion. One method
is to use a local minimal fill-in criterion. At every elimination point we search for the pivot which will
cause the least amount of fill-in. Like previous local pivotal strategies, this approach is not a global
one, so it is not guaranteed to find a globally optimal ordering.

When compared to other local pivotal strategies, local minimal fill-in has higher computational costs.
This is because one not only needs to know the sparsity pattern at every step, but must also calculate
the amount of fill-in each node generates. It has not been shown that minimal fill-in produces better or-
derings than other local pivotal strategies. Combined with the higher computational costs, this strategy
is not popular.

2.2. Special form methods 11

Figure 2.1: Example of a graph in which a tie-breaking choice leads to a difference in fill-in.

2.1.4. Tie breaking

Local pivotal methods are simple and effective algorithms for reducing fill-in, but unfortunately their
performance characteristics are difficult to determine. There are some graph classes for which perfor-
mance bounds are known. For example, it is known that minimum degree is optimal for tree graphs
[15]. However, the amount of problem classes for which the performance of local pivotal methods is
known is very limited.

The primary reason for this is the problem of tie-breaking. To illustrate tie-breaking, suppose we
apply minimum degree ordering on the graph shown in Figure 1.2. In this figure we start with a simple
graph at the top. Here vertex 1 and 5 both have a degree of two. Therefore there are two valid choices
for which node to eliminate first under minimum degree ordering. In this small example the subsequent
graphs show that this choice indeed has an effect on the fill-in of the ordering. If we begin by eliminating
vertex 5 we see that the resulting graph is a 2x2 grid. Fully eliminating the 2x2 grid results in single
filled in edge. However, if we instead choose to eliminate vertex 1 first, then we obtain a graph which
has no fill-in when fully eliminated. In the presented example the overall fill-in is equal, irrespective
of the initial choice, however, it has been demonstrated in numerical experiments that the tie-breaking
choice has significant effect on the total fill-in [24].

The literature on tie-breaking strategies for minimum degree ordering is sparse. The SuperLU
linear solver package mentions the ordering strategies used, but makes no mention of the tie-breaking
strategy it uses for minimum degree [32]. George et al. reported in 1989 that the popular minimum
degree implementations all relied on a randomized tie breaking strategy [24].

2.2. Special form methods

We have discussed ordering methods that locally minimize some factor such as degree or fill-in. In
this section we consider algorithms that don’t directly minimize a specific criterion, but instead aim to
permute the matrix into some particular form. For nested dissection the matrix is transformed into an
arrow-head matrix. In Cuthill-McKee [11] the resulting matrix is a band matrix.

In a band matrix there is no fill-in outside of the band, so the off-diagonal component remains
untouched, and does not need to be stored. Minimizing the bandwidth of the band matrix reduces the
fill-in. The bandwidth of a matrix is defined as 2m + 1, where the m is the semibandwidth, which is in
turn defined as the smallest integer such that when a;; = 0, |i - j| > m. Cuthill-McKee aims to find a
restructuring of the matrix resulting in lowest bandwidth.

Nested dissection creates a different matrix structure, namely an arrow-head matrix. This is a
blocked matrix with a diagonal component, and a filled border in the last row and column. Since this
algorithm is extensively examined in Chapter 3, we defer to that chapter for more information on nested
dissection.

12 2. Related works

2.2.1. Cuthill-McKee

The Cuthill-McKee algorithm makes use of so called level sets [11]. These are sets of nodes constructed
from the neighbors of nodes in a lower level set. To construct a level set one can use the following
procedure.

» Take an initial set S; consisting of a single node, the starting node.

» Every other set S;, i + 1 is filled with the neighbors of all the nodes in S;_;.

Cuthill-McKee builds upon this principle, and also provides a method to order the nodes within each
S;. During construction of S;, the neighbors of the vertex ordered the previous level S;_; are explicitly
ordered first, and subsequently the neighbors of the vertex ordered second in the level S;_, are ordered
second, etc. The result of following this procedure to relabel a matrix is a band matrix, with each block
in the band corresponding to a level set S;, with a smaller bandwidth. The bandwidth is directly related
to the size (and therefore number) of the level sets. Smaller level sets (and consequently more of them)
results in a lower bandwidth. It turns out that reversing the Cuthill-McKee ordering lowers the produced
fill-in [15]. Hence the algorithm is often referred to as Reverse Cuthill-McKee (RCM).

Obviously the starting node will have an effect on the magnitude of the bandwidth. It is not immedi-
ately apparent which starting node is going to result in the lowest bandwidth. There are many proposed
heuristics for choosing the starting node, but one popular one is a greedy approach. In this approach
we try to optimize the number of level sets by trying each node in the last level set S; as a new starting
point. We continue this process until a new starting node does not result in higher k. The initial starting
point is chosen at random.

2.3. Existing quantum methods

Aside from quantum annealing there are also multiple other quantum methods available for numerical
analysis. Some of these approaches aim to completely replace Gaussian elimination, while others put
focus on the reordering problem. A few of the most relevant quantum methods are summarized in this
section.

2.3.1. HHL

HHL [14] is a gate based quantum algorithm for solving the Quantum Linear System Problem (QLSP).
QLSP is the quantum analogue of solving Ax = b for x. Formally, the QLSP is:

A™'|b)
%) = == (2.3)
|A-1|b)]
The approach HHL takes to solve the QLSP is a spectral one. One can get an intuition for the ap-
proach HHL takes by considering we can express a matrix A using the outer product of its eigenvectors
u;.

1

A=) 2jluj){ul (2.4)
=0

-

, Where 1; is the eigenvalue corresponding to the i-th eigenvector u;.
Using the fact that an eigenvalue 4; for A means A~ has an eigenvalue 4;*, we can express A™!
in a similar way.

N-1
A= 27) (2.5)
j=0

We can rewrite b as a linear combination of A’s eigenvectors.

=

-1

b= > Bjlu) (2.6)

-
i}
[=}

2.3. Existing quantum methods 13

Then x = A~'b can be expressed in terms of A’s eigendecomposition.

N-1
x= > 47) (2.7)
j=0

Thus, assuming we can efficiently compute the eigenvalues of A, we can easily calculate x. This
procedure has running time of O(polylogN). HHL is able to accomplish this by combining various
known quantum buildings blocks, primarily the Quantum Phase Estimation (QPE), a quantum algorithm
that finds eigenvalues. A detailed explanation of the HHL procedure is out of the scope of this work.
Nevertheless, a high level overview of the workings is presented.

1. Input vector b is encoded in qubit form.

. Use Hamiltonian Simulation to apply e*Af to |b) over a superposition of t.

. Use QPE to find the eigenvalues of e*A* and decompose |b) into the eigenbase of e'At,

2
3
4. Use controlled rotations to calculate the inverse eigenvalues.
5

. Extract the calculated values out of the quantum system.

Limitations While the HHL algorithm is a valuable tool, with many different theoretical applications
[14], such as for example electrical network analysis [47], it does not come without limitations.

Firstly, due to the fact that both the input and output are encoded as a quantum system, input
and output is not straightforward. Both reading and writing has time complexity O(n), suppressing
the asymptotic speedup. This places limitations on the application HHL should be used in. For the
input, HHL performs well in situations where the input is generated by some other quantum process.
Moreover, HHL is only useful if one is not necessarily interested in the exact value of x, but rather the
expectation value of (x| M |x), where M is some Hermitian matrix.

Secondly, the nature of the Hamiltonian Simulation algorithm places limitations on the sparsity struc-
ture of A. Hamiltonian Simulation is a quantum algorithm that approximates the evolution operator e*Af.

The complexity bound for Hamiltonian Simulation is 0(logns4€"2), where s is an upper bound on the
number of non-zeros for each row of A, k is the condition number for Ax = b and ¢ is an error term.
Importantly, s and k affect the exponential speedup that Hamiltonian Simulation provides. This places
a limitation on the types of systems that can be efficiently solved with HHL. One type of system that
typically has matrices with high condition number is in fact a finite element system [18]. This makes

HHL unsuited to finite element applications.

2.3.2. Variational solvers

In reality the gate depth of HHL instances quickly outgrow the current physical possibilities. This is not
limited to just HHL, and many other gate based quantum algorithms do not outperform their classical
counterparts due to technological limits. Although current quantum computers are not at the necessary
scale for running these complex algorithms, they can be used for running hybrid algorithms. These
are algorithms whereby a combination of classical and quantum techniques is utilized to produce the
desired result. One of such algorithms is called the Variational Quantum Eigensolver (VQE).

VQE VQE is able to efficiently determine the expectation of some observable over some wavefunc-
tions using quantum methods [20]. Computing these expectations on classical platforms is exceedingly
difficult. The input state for which the expectation is determined is varied by a classical component. In
this way, a classical optimizer can vary the input of the system, and use the quantum observable as a
heuristic. In many cases the input is varied such that the observable is minimized.

VQLS VQE has many applications, this includes solving linear systems. VQLS is an adaptation of
VQE applied to the QLSP [7]. In practice "adapting” means defining an ansatz for the gate sequence,
and a cost function which the classical part optimizes. To solve a linear system, the algorithm takes as
input some matrix A and some vector b. VQLS assumes that A is represented as a linear combination
of unitary matrices, and that this representation can be efficiently represented as a set of quantum

14 2. Related works

gates. One can use a quantum algorithm for expressing a sparse matrix as unitaries, the complexity of
which depends on, among other factors, the sparsity of the matrix [5]. This is a similar assumption to
the one made in HHL, where an efficient preparation of input state is necessary for strong performance.
The input vector b is taken as a gate sequence U, producing a quantum state |b), which is proportional
tob.

Once the inputs are determined, we can start the optimization process. During the optimization
phase the inputs, along with a gate sequence V(a) are used to produce a value for the cost function
C(a). A classical computer then uses some optimization algorithm to solve main C(a). Recently it

has become popular to use gradient descent as optimization method. This can be done efficiently
by recognizing that C(«) is differentiable, and thus the gradient of the cost function can be directly
computed using the quantum circuit. The final value for « is used in the quantum circuit |x(a)) =
V(a)|0). For an optimal amin, |x(a)) is proportional to the solution x.

2.3.3. Quantum minimum fill

The previous two quantum algorithms for solving linear systems have been focused around gate based
systems. However, as outlined in the introduction, gate based approaches are not the only quantum
approaches one can take. Indeed, there is also prior work on the topic of using quantum annealing to
aid linear solvers. In particular, Komiyama et al. present a combinatorial formulation of the minimum-fill
problem, which they call the Quantum Minimum Fill algorithm [29].

To model the minimum-fill problem as a QUBO problem the authors construct a matrix and vector
of binary values. A matrix entry a;; represents a node i being removed at elimination step j. The
vector entry v; is 1 when edge i needs to be added to the graph during the elimination process. Each
pair of nodes in the graph that does not already have an edge between them receives an entry in this
vector. The model’s optimization goal is to minimize the number of 1’s present in the edge vector,
i.,e. min), cze. To ensure edges get appropriately added, several constraint expressions are used.
Firstly, the model assumes that there is only one node eliminated in each step, which is enforced by
Zi(Zj aij — 1)% = 0. Secondly, a constraint must be introduced that enforces the addition of edges into
the edge vector. An edge is added when:

* A node u is to be deleted
* And nodes i and j in the neighborhood of u have not already been deleted.

* And node i and j both have an edge connected to u.

These constraints are enough to simulate the process of elimination in QUBO form. A minimization
of the QMF Hamiltonian yields the order with the lowest possible fill-in for the given problem.

Limitations While Quantum Minimum Fill provides an algorithm to solve the minimum fill problem, it
might be difficult to realize practically for appreciable problem sizes. This stems from the poor scalability
in terms of required qubits. For solving an nxn matrix the algorithm needs at least n? binary variables.
Crucially, this is the amount of binary variables required, and not qubits. In reality, due to topological
limitations, the amount of actual qubits required on the quantum annealer will be considerably larger
than the amount of binary variables. This is compounded by the fact that this QUBO formulation has
a large number of connections between its variables. Physical quantum computers do not support
all-to-all connectivity on their qubits, the number of couplers is limited. This means that for a physical
realization of the QUBO problem, the number of qubits exceed the number of binary variables, due to
the effects of embedding.

Nested Dissection

Nested dissection (ND) is a heuristic divide and conquer algorithm for solving the minimum fill-in prob-
lem. The algorithm aims to produce an elimination order that results in an arrow-head matrix with
minimal bandwidth. The arrow-head matrix is a type of square matrix where the non-zeros only lie on
the diagonal and on the last row and column. ND was first introduced by George et al. in 1973 [23],
applying it on grid graphs as obtained in finite element methods. They showed that on this graph class
nested dissection is able to find the asymptotic optimal ordering.

Section outline This section begins by explaining the nested dissection algorithm in detail, and the
intuition for why it is a successful heuristic. We examine why making a nested dissection ordering
is difficult in the general case. Some classes of graphs have a known bounded quality on nested
dissection, these are outlined. We provide an overview of the state of the art ND implementation
MeTiS that shall be used as a benchmark for classical methods.

3.1. The algorithm

Nested Dissection is a special form algorithm, meaning that it aims to globally restructure a given matrix
A into a specific form. Particularly, ND tries to re-order the matrix into an arrow-head form where the
off-diagonal components are as large as possible. An arrow-head matrix is shown in (3.3). There
exists an alternate direct solving method for this form of matrix, whereby the diagonal blocks undergo
elimination, but the off-diagonal blocks stay intact. In this way only the diagonal blocks experience fill-
in, while the off-diagonal blocks keep their sparsity [15]. A lower bandwidth of the diagonal is therefore
also associated with a lower fill-in. An optimal nested dissection ordering is one that produces the
lowest possible bandwidth in the diagonal.

Graph dissection To produce this arrow-head matrix structure we relabel nodes in a graph such
that neighboring nodes are ordered close together in the matrix. Take for example the matrix structure
corresponding to the graph shown in Figure 3.1:

4 6

Figure 3.1: Example of a dissection, removing the red nodes from the graph and their incident edges results in two distinct
connected components.

15

16 3. Nested Dissection

X X
X X X
xX X

X
X X x (3.1)
X X

X X X

x

The goal is to relabel the rows and columns of this matrix such that most of the non-zero entries are
concentrated around the diagonal. One way of achieving this is by subtracting a set of vertices and
their associated edges such that the graph is split into two separate connected components. This is
called graph dissection. In the case of our example a dissection is shown in Figure 3.1 by way of the
red highlighted vertices 2 and 5. It is clear that when the red vertices are removed the graph is split in
half, and there are two equally sized connected components A = {1,4} and B = {3, 6} left. We can take
the red vertices and place them in a set S = {2,5}. This is named the separator set.

We can then observe what happens when we order the vertices in A first, then the vertices in B and
the vertices in S. Reordering here means that the rows and columns are interchanged to match the
new ordering. This changes the structure of the matrix.

X X X
X X X
X X X (3.2)
X X X
X X X X
X X X X

The sparsity structure of the matrix in (3.2) now resembles that of (3.3), where each A;; is a 2x2
matrix. In this form the occurrence of fill-in is constrained to the diagonal and border blocks. No fill-
in occurs in the empty off-diagonal matrices. Herein lies the core principle behind dissection based
heuristics. The heuristic aims to maximize the size of the empty off-diagonal blocks, thereby localizing
the fill-in as much as possible. The size of the separator set determines the size of the off-diagonal
blocks, the smaller the separator, the larger the off-diagonal component.

Computing a separator Finding the smallest possible separator turns out to be a computationally
difficult problem. This problem is called the vertex separator problem (VSP), and has been proven to
be NP-Hard [3]. The VSP on a graph G = (V,E), withn =|V| and a 8(n) < n, is to find sets 4, B, S such
that

1. thereis no (i,j) € E such thati € A and j € B,
2. max{|A4],|B|} < B(n),
3. |S| is as small as possible.

We say a separator is valid when it satisfies both constraint 1 and 2. It is optimal when it is valid
and satisfies 3.

The algorithmic complexity of this problem depends on the definition of g(n). There are some
cases where a polynomial solution is known. An example of this is the k-connectivity problem, which
is colloquially defined as finding the smallest k such that the graph becomes disconnected when k
vertices are removed. We can express this in terms of the VSP by using f(n) < n-k - 1. A popular
algorithm to calculate the k-connectivity uses a maximum flow procedure [19]. An augmented graph is
constructed, where each vertex v in the graph is split into a v;;, and vy, with an edge of capacity one
to connect them. Every edge (u,v) € E on the original graph becomes (uyy¢, Vin) On the augmented
graph. Finding the paths that contribute to the maximum flow between a vertex pair (a,b) on the
augmented graph is equivalent to finding all paths from a to b with a unique vertex set. A path with a
unique vertex set is referred to as a disjoint vertex set. The number of disjoint vertex sets is equal to
amount of vertices needed to disconnect a from b. To find the k-connectivity we iterate over all pairs
(a,b), a # b in the graph and find the lowest number of disjoint vertex sets. In the worst case this
procedure has a running time of 0(n>).

3.2. MeTiS 17

In the case of graph dissection, we are interested in forms of the VSP where 8(n) = an, for some
constant a. This is a balanced VSP, and is fundamentally different from the k-connectivity problem
described above. The k-connectivity problem considers the graph locally, determining the partition
using properties of pairs of nodes. However, solving a balanced VSP requires a global consideration
of the graph, which is significantly more difficult. There are some combinations of a and graph classes
that are known to have polynomial solutions. We say a graph satisfies a f (n)-separator theorem when
it is known that a separator can be found that satisfies |S| < Bf(n), B > 0. Grid graphs, like the
ones shown in Figure 3.1 are known to satisfy a \/n-separator theorem [34]. This result is used in the
original paper describing nested dissection on grid graphs [23]. Planar graphs are found to have a
\/n-separator theorem with 8 = 2+/2 and a = % This separator can be found in 0(n) [34]. Graphs of
bounded genus also satisfy the \/n-separator theorem, with g = , /g, where g is the genus of the graph
[33]. Chordal graphs satisfy a similar condition, they satisfy a \/m-separator theorem, with m being the

number of edges in the graph [25].

Nested dissection Nested dissection is a recursive application of graph dissection [23]. Every graph
dissection produces two subgraphs that can be dissected another time. This procedure differs from
a single dissection in the sense that the submatrices A and B are also structured as an arrow-head
matrix [15]. On large graphs it is often the case that dissecting the subgraphs improves the matrix
structure. The following is the complete procedure for nested dissection on a graph G = (V, E), derived
from adjacency matrix A.

» Find a vertex set S c VV such that the removal of those vertices split G into two independent vertex
sets A, B. Sets A, B make two subgraphs that share no edges between them.

» Each subgraph S, 4, B has a corresponding submatrix. Rearrange A using these submatrices,
placing each submatrix on the diagonal, A first, B second and S last.

* Recursively apply these steps to A and B, until some stopping condition is met.
Completing this process rearranges matrix A into an arrowhead like structure.

A Az
A= Azz; Azj (3.3)
Az1 A3z Ass

The sub-matrices A; j are not of uniform size. The off-diagonal sub-matrices are the connections
between the found subgraphs.

Due to the recursive nature of the nested dissection procedure, it lends itself well to parallelization.
Every submatrix can be dissected in parallel. Moreover, because a large chunk of the matrix is inde-
pendent of each other, one can also eliminate those submatrices in parallel. This is one of the largest
advantages of nested dissection. While some other heuristics like MDO might be able to order with
lower fill-in, they are generally not parallelisable. For very large matrices, where computation without
vector processors is not feasible, this is an important feature.

3.2. MeTiS

While there are some known polynomial solutions to the VSP, these are valid for specific graph types.
The matrices resulting from FEM are not necessarily one corresponding to graph type satisfying a /n-
separator theorem. On these matrices we must use heuristics to compute the dissection. MeTiS [27]
is a state of the art package that uses a multilevel heuristic to compute the dissection. It implements a
nested dissection routine, along with some other local pivotal methods which are used when the graph
size is small. In this section we examine the MeTiS implementation in detail.

3.2.1. Multilevel dissection
A multilevel dissection is a dissection strategy whereby the partitioning is performed on a much smaller
graph obtained through a graph coarsening method. The high level algorithmic overview is as follows.

* Reduce the input graph size using graph coarsening.

18 3. Nested Dissection

Il

(a) A maximal, but not maximum matching. (b) A maximal and maximum matching.

Figure 3.2: An example graph showing two possible maximal matchings, one of which is maximum. The edges marked in red
are part of the matching set.

fﬁ/ . oo

(a) The non-coarse graph. (b) The corresponding coarsened graph.

Figure 3.3: An example showing how to use a matching to coarsen the graph. Vertices are merged together when they are part
of the same matching. The merged vertices are marked in the same color.

» Perform partitioning on coarsened graph.
» Expand graph to original size, attempting to improve the partition at every expansion step.

The benefit of multilevel dissection is that it allows usage of more complex partitioning algorithms.
As with any heuristic solving NP-Hard or Complete problems, there is a trade-off between quality and
speed. Various graph partitioning algorithms are discussed in Section 3.2.3. In short, there are some
graph partitioning schemes that take a prohibitively long time to execute on large problem sizes, but
also result in considerably higher quality partitions. Therefore, it is worthwhile to use graph coarsening
to scale the graph down to a size where it becomes viable to use these more expensive partitioning
methods.

In the rest of this section we expand on the various available coarsening and partitioning strategies.

3.2.2. Graph coarsening

The general goal of graph coarsening is to transform a large graph into a structurally similar smaller
graph. MeTiS aims to coarsen a graph until itis below 100 vertices. A fundamental part of their algorithm
makes use of graph matching. To understand how MeTiS coarsens graphs, we must first understand
the process of matching.

Maximal matching A matching in the context of graph theory is a set of edges that are non-adjacent.
In other words, a set of edges for which each of the edges do not share a vertex with each other. A
maximal matching is a matching in which every edge of the graph is connected to at least one matched
vertex. In contrast, a maximum matching is one where the number of matched edges is maximized.
Figure 3.2 shows an example graph with two possible maximal matchings, one of which is a maximum
matching.

We can use a matching to produce a coarser, but structurally similar version of the graph. Every
pair of nodes u, v belonging to the same matched edge (u,v) is merged into a single node. In this
process the weight of each pair of nodes is summed to produce the weight of the new merged node
w. We then use E,, = E, U E,\{(u,v)}, where E; is the set of edges adjacent to some node i. If there
is a pair of edges (u, k), (v, k), then they are merged into a single edge (w, k) and their weights are
summed. This process is repeated iteratively, until the graph has been coarsened to under 100 nodes.

An example is shown in Figure 3.3. The maximal matching from Figure 3.2b is used and the matched
vertices are colored in. In this case every node in the graph is part of a matching. The merged vertices
have the same color as its components.

This example also demonstrates why the graph coarsening approach is not a destructive one with
regards to actually partitioning the graph. As we shall outline later, the goal of the partitioning stage is

3.2. MeTiS 19

to find a partitioning with minimal edge cut. The vertices that are part of the edge cut are then included
in the separator set, which completes the dissection. It is important to consider that the number of
matched edges is highest in the most connected area of a graph. This is also the area of the graph
where the edge cut is least likely to be created, because a high degree of connectivity likely increases
the edge cut. Hence not much information is lost when these connected components are merged
together into a large node, since they are not likely to participate in the edge cut anyways.

Since the goal of a coarsening round is to reduce the number of vertices in the graph, it is beneficial
to have the most possible edges in each matching. A maximal matching is then the ideal solution,
considering it maximizes the number of matches edges. However, the computational complexity of this
operation is generally higher than that of finding the maximal matching. For this reason, MeTiS uses
algorithms to find a maximal matching.

3.2.3. Graph partitioning

Having obtained a coarser graph, it is now easier to perform partitioning. In this step a minimum edge
cut partitioning algorithm is used to generate a partitioning. Several partitioning methods are evaluated
by METIS, with all performing somewhat similarly. The methods used for partitioning are as follows
[26].

» Spectral dissection - a method where spectral information is used to partition the graph. The
second largest eigenvector y is computed, whose values are used in a comparison. Every y; <r
is assigned to one set, and the rest of the nodes to the other set. r is chosen as the weighted
median of the values of y. In this way, the nodes are roughly split in half.

» KL dissection - a greedy method which starts with an initial partition and attempts to improve
the partition (i.e. lower the edge cut) by iteratively swapping vertices from set to set. Once no
improvement can be found the algorithm finishes.

» Graph growing - in this method we start from a random node and explore the graph in a breadth
first manner until we have covered roughly half the nodes in the graph. Then the rest of the graph
(which is unmarked) is put into the other set, to obtain a final partition. To make sure a larger
portion of the search space is explored, it is possible to start multiple frontiers simultaneously.
MeTiS usually chooses 10 frontiers. The partition can also be further refined by using it as input
for KL dissection.

» Greedy graph growing - this method is similar to the last one, except at each BFS iteration the
nodes on the frontier are ordered by increasing edge cut. Thus at each iteration a node with the
lowest additional edge cut is added.

3.2.4. Uncoarsening

During the uncoarsening phase the smaller graph is expanded back to its original size. The partition
is projected onto an uncoarsened graph by assigning expanded vertices to the same set as its parent.
Suppose we have a set of vertices that were collapsed to a vertex v during the coarsening phase. Then
these vertices are assigned to the same partition that v belongs to. Since the coarsening phase is an
iterative process, the uncoarsening process is also iterative. This allows for iterative improvement of
the partition during uncoarsening. MeTiS accomplishes this by applying the KL dissection algorithm
during each phase of uncoarsening. A projected partition is used as the input to KL. Since this is already
a good partition, KL is likely to converge in a few iterations. In the experience of the MeTiS researches
this usually happened within three to five iterations.

Quantum Annealing

There are many more examples of NP- Hard or Complete problems that face researchers. While we
can build heuristic algorithms using assumptions about specific underlying problems, there is also a
need for algorithms that can efficiently solve difficult problems without having to rely on assumptions.
These methods are called "metaheuristics”, and we shall discuss several of them in this chapter.

The input of these algorithms is some optimization goal, usually expressed as some cost function f.
A metaheuristic aims to find the global minimum of £, without prior knowledge of the solution landscape.

4.1. Simulated annealing

A well known concept in the field of metallurgy is that of annealing. This is a process whereby a
solid that has been worked on is heated up, and subsequently allowed to slowly cool down. The
solid, facilitated by a sufficiently high temperature, is able to rearrange its internal structure. After the
annealing process, the solid has more favorable physical properties, having assumed a lower energy
structural configuration.

As the name suggests, simulated annealing is emulating this physical process as a computational
process. Metropolis et al. proposed a Monte Carlo method for simulating the evolution of a physical
system, depending on a temperature T [39]. This simulation is applicable to any cost landscape, not just
that of a physical solid. Hence it is possible to use this technique to solve any combinatorial optimization
problem.

Optimization using simulated annealing The algorithm proposed by Metropolis et al. works as
follows.

» Given the state of the system, a randomly generated disturbance is applied.

+ If the energy difference AE between the current and disturbed system is negative , then the dis-
turbance is accepted as the new state, and the process continues using this new state.

 If AE is positive, then the disturbed state is accepted depending on the probability distribution

exp—kA—ET, where kj, is the Boltzmann constant, and T is the temperature of the system.
B

* Repeating these steps will eventually lead to a system close to thermal equilibrium. Once the
system is sufficiently close to thermal equilibrium for a given T, the temperature is lowered and
the disturbance process is repeated.

» The process is finished when the temperature has reached a stop criterion (for example, if the
temperature has reached 0).

Figure 4.1 shows an example of an energy landscape suitable for solving with simulated annealing.
The landscape has several energy troughs, separated by large peaks. Simulated annealing is able
to escape a local minimum while the temperature is high. Over time the temperature is lowered, and
states with a higher energy are less likely to be accepted, decreasing the chance the energy peaks are
passed.

21

22 4. Quantum Annealing

Energy

>
>

State

Figure 4.1: A high temperature allows the system to escape local minima. The arrow shows an example of the system moving
to a higher energy, likely to be accepted under high temperature conditions.

Adiabatic condition Intuitively, the speed at which T is decreased has influence on the solution
quality. The adiabatic condition is when T is varied such that the global optimum is found. Suppose
we wish to find the minimum energy of some system represented by the Hamiltonian H (i.e. an Ising
model). Geman et al. [22] showed that the annealing schedule that satisfies the adiabatic condition is
of the form

pN

1) = log(at+1)

, where p is the entry-wise matrix norm of H, N the number of variables in the system and « a constant
relating to the energy gap between the ground and first excited state of the system. This is an important
result because it shows the computational equivalence of SA and the optimization problems it is applied
to. For an NP-Hard optimization problem, the logarithmic component in (4.1) means the equivalent SA
process has exponential convergence time [40]. This proves that SA does not provide a polynomial
time algorithm to solve non-polynomial problems.

@.1)

4.2. Quantum annealing

Quantum annealing (QA) is a metaheuristic similar to simulated annealing in the sense that it explores
the solution landscape driven by some fluctuation. In contrast to simulated annealing, QA uses quantum
fluctuations instead of simulated thermal ones [21]. Considering in Figure 4.1 SA "climbs” over energy
peaks, an analogy for QA is that instead the system "tunnels” through energy peaks.

We shall see that similarly to simulated annealing, quantum annealing also requires an annealing
schedule. The quantum annealing schedule which satisfies the adiabatic condition is

I(t) = a(6t+c)’ﬁ (4.2)

, where a and ¢ are constants relating to the problem’s spectral gap and N is the number of variables
in the problem [40]. As with the schedule for SA, this schedule runs in exponential time, meaning it
does not reduce NP problems to polynomial time. However, this schedule is faster than the one for
SA. ltis for this reason there is a lot of new research investigating the use of quantum annealing. The
idea is that even though adiabatic evolutions take infeasibly long, the faster convergence time of QA
compared to SA suggests QA is able to produce higher quality results than SA in the same amount of
time.

The following section covers the working principles of quantum annealing, and how to express
optimization problems such that they are applicable to be solved using a quantum annealer.

Lenz-Ising models A widely studied model in the field of statistical physics is that of the classical Ising
model. While the Ising model has applications in many fields of study (such as chemistry, molecular

4.2. Quantum annealing 23

biology and various disciplines in physics) we are primarily concerned with the magnetic application of
the model. Consider a two dimensional lattice of N magnetic particles, arranged in a grid. The Ising
model is used to represent the magnetic interactions between particles in the lattice. The Hamiltonian
of the model is of the following form

H=H(o)=- Z]”alaj Zhlal (4.3)

<i,j>

, where J defines the interaction strength between pairs of particles, and h defines the strength of an
external field acting on each particle [10]. Here o; € {-1,1} is the magnetic spin of particle i.

Finding a o = {0y, 01, ..., oy-1} such that H(¢g) is minimized is an NP-Hard optimization problem. As
we shall see later in this section, it possible to express an arbitrary optimization problem in terms of an
Ising model.

Transverse field Ising model Quantum annealers (like the D-Wave Advantage) make use of the
transverse field Ising model (TFIM), which is defined as follows.

N N
=T (t)Arr + Hising = F(t)zaix +z hia{ Z Jijoi o} (4.4)

i=1 i=1 <i,j>

, Where ¢* and ¢% are the Pauli spin operators, which are quantum operators corresponding to a
particle’s spin in the x and z axis respectively [40]. Their eigenvectors correspond to the unit spin on
their axis. For example, the eigenvectors of ¢* are (1) and (1) .

What sets the TFIM apart from the classical Ising model is the introduction of the transverse term
Arr, which is defined along the x-axis. The spin operators along different axes are non-commuting.
This means it is physically impossible to apply these operators simultaneously [44]. Observing the
spin of a particle along one axis puts the particle in a superposition along the other axes. This is a
fundamental property of quantum systems. It is now no longer sufficient to use classical methods to
study the properties of this system.

The annealing process The goal of the annealing process is to bring our quantum system into a
state which corresponds to the ground state of F1|5ing. Without intervention, this does not happen au-
tomatically. We must introduce a term which induces an exploration of the solution landscape. In the
TFIM, this is achieved using the transverse component HArp. At the start [(t=ty) =KK> 1. Now

* is the dominating component in the system, putting the z-axis spins in a superposition. This state
is considered the magnetic disordered state, because of the uncertainty of the z-aligned spins. It has
a ground state which is aligned along the x spin axis [38].

Over the course of the annealing process, I'(t) is reduced, increasing the relative strength of the
Hising component 1. The system reaches a point at which Hising is the dominant component. In this
state the contribution of the transverse field is minimal, and the ground state of the system must be
aligned along the z spin axis. This is called the ordered state. In both the ordered and the disordered
state the presence of a non-commuting component causes disturbances. These disturbances allow
the system to explore the energy landscape.

4.2.1. Modeling problems as Ising models

Using the quantum annealing process we can find the ground state of an arbitrary Ising Hamiltonian
Phsing. The corresponding state vector is the lowest energy configuration of the classical Ising model
Hising. As we have seen before, finding this configuration is NP-Hard. We can transform other combi-
natorial optimization problems to its equivalent Ising model, and then use quantum annealing to find its
solution. This is accomplished by changing the J; ; values in the Ising Hamiltonian such that a ground
state |s) satisfies argming f(s). The translation of an optimization problem to its equivalent Ising model

"In the D-Wave quantum annealer not only is the strength of Arr decreased, but 131|5ing is simultaneously increased. For our
theoretical analysis this does not matter, but in the presence of thermal fluctuation, increasing the strength of the Ising component
increases the reliability of the computation.

24 4. Quantum Annealing

requires some work, and the formulation for nested dissection in this form is the primary contribution
of this work.

Quadratic unconstrained binary optimization In the Ising Hamiltonian the state vector |s) has s; €
{-1,1}. While this is convention for its physical interpretation, it is often more intuitive to be able
to express states in terms of binary variables. To this end we construct a new state vector |b) with
domain b; € {0,1}. This variant of the Ising model is called quadratic unconstrained binary optimization
(QUBO) model. For all intents and purposes they are equivalent, and converting between the two
representations is trivial using the following equations:

bi:Si+1,
2

si=2b; -1

(4.5)

Example Suppose we are a company that needs to decide which projects to fund. Each project
has an associated cost and profit, and the company is on a limited budget. The company seeks to
maximize the profit, while staying within the bounds of their allotted budget. Now we very clearly have
an optimization goal, and constraints. This is exactly how we shall later develop the QUBO formulation
of the minimum vertex separator problem of nested dissection. For now, we can transform our simple
budget allocation problem into a QUBO.

To do so we define three binary values x;, x2, x3, which correspond to the three projects our fictional
company can invest in. Next we can define our optimization goal by writing the expression p;x; +
p2Xx2 + p3x3, Where each p; is the profit corresponding to each p;. For the constraint, we must define
an expression which evaluates to a large number when the summed cost is below or above b, our
budget. To achieve we can leverage a quadratic formulation, as follows: (c1x; + coxz + c3x3 —b)?. Now
if (c101 + c2x2 + c3x3) is significantly above or below b, the quadratic expression will evaluate to a large
number.

Adding up the optimization goal and constraint gets us the complete formulation of our problem as
a QUBO:

H(x1,%2,%3) = —(p1X1 + P2Xz + p3x3) + (C1X1 + C2x2 + c3x3 — b)?

We can transform this expression into a matrix with Q; ; like we previously discussed by expanding
the quadratic expression and collecting similar terms. Note that because they are binary variables,
every x? = x;.

2 2 2 2
H(x1,%x2,x3) = —(p1X1 + D2X2 + P3X3) + C1X1 + C3X2 + C5X3 + b

—bcix1 — beaxy — bezxz + 2¢1C2X1 X2 + 2€1C3X1X3 + 2C2C3X2X3

2 2 2 2
H(x1,%2,x3) = x1(cf —bc1—p1)+x2(c5 —bca—p2) +x3(c5 —bc3—p3) +2€1C2X1X2 +2€1C3X1X3+2C2C3X2X3+D

In this expanded form we can collect the quadratic and linear terms into the matrix Q and express
the entire formulation as H(s) = Qs +c, where s =[x; x, x3], and

2
ci—bci-; c1C2 c1C3
2
Q= C2€C1 c; —bcy —p2 C2C3
2
C3C1 C2C3 c3 —bcz —p3

, and ¢ = b2. Finding an s that minimizes the function H(s) = Qs + ¢ solves our optimization
problem. Making these matrices by hand is often quite a cumbersome task. Fortunately, D-Wave, the
manufacturer of the largest quantum annealer currently available, provides some Python utilities that
make the construction of QUBOs easier. This will be elaborated upon in Chapter 5. It is important to
understand that despite whatever representation one might consider using, the quantum annealer still
only accepts problems described as an interaction matrix, like the one we just developed.

4.2. Quantum annealing 25

Column Cross

o

NS
\v
&
4.2.2. Discrete integer encoding

As alluded to in previous sections, while qubits are able to take a superposition of multiple values at
once, their values still collapse to either a 1 or 0 upon measurement. This means (as is also the case
with classical computers) that if we wish to encode values beyond 1 and 0 in a logical group (such as
a discrete integer), we must devise some mathematical scheme to handle this.

One might quickly arrive at encoding integers the same way they are on classical computers, by
representing them in base-2 binary values. The number of bits required for storing m different values
is log, m, which is very good scaling. However, logical variables are used in a different way in classical
and quantum computers. In classical computers when we think about the efficiency of a representation,
we consider what impact this has in terms of Random Access Memory, both in the amount of storage
it takes and the access patterns.

On a quantum annealer, the situation differs. Indeed, the number of qubits is limited, but more
pressingly the number of couplers (physical interactors between qubits) is also limited. This presents a
different limitation on the encoding we use compared to classical computers. One of the limiting factors
when it comes to coupling is that physically the interactions are only able to be of the second order.
This means the variables can have at most a quadratic interaction. Binary encoded variables have
higher order interactions, which can be converted to quadratic interactions at the cost of extra auxiliary
qubits. It is more intuitive to use different encoding schemes which are more tailored to the quantum
annealing application.

In Chapter 5 we present two common QUBO encoding techniques, namely One Hot [42] and Do-
main Wall [8] encoding.

Figure 4.2: An example of a QPU topology.

4.2.3. Minor embedding

As with most matrices, the interaction matrix of QUBO and Ising problems can also be interpreted as
a graph. When we do this for an arbitrary problem it quickly becomes apparent that these graphs can
become quite connected. For a simulated solver this is not necessarily an issue, but this does become
problematic when we wish to evaluate these problems on a physical system, such as on a quantum
annealer. This is because a physical system is also constrained by a physical topology, and at the time
of writing these topologies do not allow for unbounded connectivity between all nodes.

Instead, topologies of input problems are required to be mapped on the underlying topology of the
quantum annealer [12]. Figure 4.2 shows an example of one of these topologies. In this case it’s the
Chimera unit cell topology, which was used by the D-Wave 2000Q systems. The edges in this graph
represents a physical coupler able to couple qubits together. That gives rise to interaction as modeled
by the Ising model. Chimera qubits have a nominal length of four, meaning they are connected to four
different qubits in the same unit cell. They have a degree of six, which also includes their connection to
qubits outside of their unit cell. Our problem Ising models may not necessarily be limited to a maximum
degree of six, and often they are not. Furthermore, the problem Ising models may be of a shape which
is incompatible with the annealer topology. This is where the process of minor embedding emerges.

26 4. Quantum Annealing

Minor embedding is the process of mapping these high degree Ising models onto the lower degree
QPU topology. Need for high degree nodes is simulated by "chaining” qubits together. This means they
are coupled in such a way that they are strongly incentivized to hold the same value. The strength of
this chain is called the chain strength, and is a parameter that can be tuned when submitting a problem
to D-Wave. Minor embedding in general is NP-Complete, and therefore D-Wave uses a heuristic minor
embedder for most problems.

The embedding of the problem graph onto the QPU topology can have a major impact on the solution
quality. Some patterns can be avoided in the problem formulation to make minor embedding easier. In
general, the more variables a particular variable interacts with, the more difficult the embedding tends
to be. For example, all to all connections are particularly costly.

Methods

To solve the minimum vertex separator problem on a quantum annealer, we have to express the prob-
lem as an Ising model. Just as in the example QUBO presented in Chapter 4, we start by identifying the
goals and constraints of the problem, and subsequently express these in some quadratic form. Unlike
the example, we are dealing with a problem that involves discrete options (i.e. which set does the node
belong to?), and thus we have to use a binary encoding method. For the purpose of investigation, we
develop the QUBO in two different encoding methods, the One Hot and Domain Wall methods.

To avoid repetition, we first express the goals and constraints in an encoding agnostic manner,
through the Discrete Quadratic Model (DQM). In essence, this formulation works on discrete variables
instead of binary ones, removing the need for an encoding technique. Later, after having presented
the workings of both encoding techniques, we translate the DQM representation to a binary one.

Finally, we examine what the inclusion of a quantum step means for a generalized finite element
solver.

5.1. Goals and constraints

As discussed in Chapter 4, the natural language of quantum annealers is that of an Ising model, often
expressed as a quadratic unconstrained binary optimization (QUBO) problem. However, not all prob-
lems can be mapped directly to a binary model. An intermediate model operating on discrete variables
is a useful abstraction to express goals and constraints, irrespective of their final binary encoding. To
this end we use the discrete quadratic model (DQM) to express the goals and constraints correspond-
ing to nested dissection. After the DQM description, the model is encoded as a QUBO problem using
the "One hot” and "Domain wall” techniques.

5.1.1. Discrete Quadratic Model
A Discrete Quadratic Model (DQM) is a method of expressing an optimization problem. The most
general DQM is as follows

HDQM:ZA(i)(di)+ZB(i,j)(di:dj)- (51)
i izj

Here each d; is a discrete variable, and each A(;), B(; j) are real valued functions operating on these
variables. In the case of nested dissection, after a dissection each node is assigned to one of three
sets 4, B, S. We can encode this in the DQM by introducing a variable d; € {4, B, S} for each node in
our graph.

It is also possible to express a DQM as a set of binary variables, which will make the encoding of
our goals and constraints more intuitive. We can represent a single d; as a set of binary variables x; 4,
where « refers to the variable’s state. More specifically, each x; , is such that

1, di =
- 5.2
Ya {0, otherwise (5-2)

27

28 5. Methods

O—O—©
&)
(oo O—O—

(a) First dissection. (b) Second dissection steps.

Figure 5.1: Example of a dissection that produces non-optimal ordering on a 3x3 grid graph.

Using this notation it is easy to express complex Hamiltonians based on the assigned set to each
node. For example, to penalize nodes being assigned to set B, we can construct the Hamiltonian

5.1.2. Minimal separator goal

As described in Chapter 3, the performance of nested dissection is directly correlated with the size of
the separator set S in each step. To this end we assign a linear penalty for each node i assigned to the
separator set S,

n-1

HMS :in,g. (53)

i=0

5.1.3. Minimal edge cut goal

George [23] shows that on various graph types (including grid graphs) it is possible to construct a nested
dissection ordering which is optimal in terms of fill-in. However, not every nested dissection ordering is
an optimal one. Figure 5.1 shows valid dissection decisions on a 3x3 grid graph that produces a non-
optimal ordering. The optimal solution has the first dissection along the middle of the graph, instead of
the diagonal.

Without additional work, the optimal and non-optimal solutions are energetically equivalent to a
quantum annealer. To solve this, we identify that the difference between the two solutions is the number
of edges intersected by the separator set. The dissection on the diagonal cuts 8 edges, while the
vertical/horizontal dissection only cuts 6 edges.

To minimize the edge cut between S and sets A and B, we penalize every edge connecting S with
A or B. This is achieved by leveraging the properties of binary variables. For a given edge e¢;; € E
the expression x; 4x; 5 = 1 iff the edge connects a node in A to a node in B. Since a node can be in
either 4 or B, for a given edge e; ;, it is required to consider both cases n; € A and n; € B. This can be
expressed in DQM form with the following Hamiltonian.

(xi,ij,s + xi,ijls + xj,Axi,s + xj,Bxl-,s). (54)
{i.j}eE

5.1.4. Set independence constraint

As described in Chapter 3, we only have a valid separator when we there are no edges connecting set
A and B. The approach outlined in the previous subsection is used again. Instead of penalizing edges
between S and A4 or B, we penalize edges between A and B. This gives rise to the following Hamiltonian

5.2. One hot encoding QUBO 29

Set | One hot
A | [100]
B | [010]
S | [001]
Table 5.1: Encoding scheme with one hot encoding
His = Z (xi,aXjB +XiBXja). (5.5)
{ij}eE

5.1.5. Balance soft constraint
Only applying the set independence constraint to the minimization of the separator set is insufficient.
The ground state of this resulting Hamiltonian will be one where every node is assigned to either set A
or B. This solution minimizes the size of the separator, and ensures no edges connect set A and B.
An improved encoding would also penalize imbalance between A and B. This improves the solution
quality two-fold. Firstly, it prevents the model placing all nodes in the same set. Secondly, balanced
set sizes help distribute computational load in multithreaded situations. Indeed it is possible to con-
sider balancing sets A and B as another optimization goal. However, since the lack of a balancing
Hamiltonian results in the model producing invalid solutions, we consider it a constraint instead.
The constraint is satisfied when |4| = |B|, any deviation from this equality should be penalized.
Therefore, in the following Hamiltonian, we square the difference between |4| and |B|, becoming 0
when |4| = |B|, otherwise it introduces a penalty.

2
n-1
Hpc = {Z XiA— xi,B} : (5.6)

i=0

5.2. One hot encoding QUBO

One hot encoding is a straightforward technique for encoding discrete integer problems in binary form.
For a discrete variable x with m different values, we create a group b of m bits. The first bit by is 1 if
and only if the variable has a discrete value of 0. This pattern is repeated for every possible value of x.
In the case of nested dissection we have m = 3. The encoding for each set is presented in Table 5.1.

5.2.1. Encoding constraint

For there to be a valid one hot encoding, only one bit in the bitset is allowed to be 1. This constraint
must be encoded in the QUBO. Intuitively, there is a valid one hot encoding when the sum of all bits is
equal to 1. This is described by the following Hamiltonian.

m-1 2
HOsz(Z bi—l) . (5.7)
i=0

5.2.2. Goals and constraints

Translating the DQM representation to a one hot encoding QUBO is trivial. We can replace every x,,
where a € {4,B,S} with a corresponding b;, where i is the corresponding bit index according to Table
5.1. All translated goals and constraints are summarized in Table 5.2.

5.3. Domain wall encoding QUBO

Domain wall encoding is a more recent technique to encode discrete integer problems as a QUBO.
The technique is inspired by the equivalent magnetic effect, where a domain wall is defined to be the
interface between two magnetic moments. For our purposes, a domain wall can be defined to be
present when two adjacent binary variables i and i + 1 have unequal values. Suppose we wish to

30 5. Methods

Goal/constraint DQM QUBO
Minimal separator goal Yo Xis Y bio
Minimal edge cut goal Z{i_j}eE(xi,ij,g + Z{i’j}(bilob}'_z +bi1bja +
XipXjs t+XjaXis + bj,obi,z + bj,1bi,2)
XjBXis)
Balance constraint {Z?:_ol XiA — xi,B}Z (o bip — bi1}?
Set independence Yijyer(Xiaxjp + Yijyer(biobja+bjobia)
constraint XjaXiB)

Table 5.2: Goals and constraints expressed in DQM and QUBO form for one hot encoding.

@@
Figure 5.2: One dimensional Ising chain encoding a logical variable of m = 3. The red and blue node represent the virtual binary
variables b_; and by,—1 respectively.

represent a variable x of size m. We construct a chain of m — 1 binary variables, the variable’s logical
value is encoded in the location of the domain wall in this chain. The chain is visualized in Figure 5.2.
For a chain of binary variables b = bg, by, b2, -+, b2, We introduce two "virtual” binary variables b_; = 0
and by,—1 = 1. They are not present in the QUBO, however, defining the boundary conditions as such
simplifies the mathematics.

To encode the three different sets required for nested dissection, we can extend Table 5.1 to Table
5.3. As can be seen each set is encoded as the position of a domain wall in a chain of binary variables.
For set A the wall is present between b, and b, = 1, for set B between by and b,, etc.

5.3.1. Encoding constraint

As with one hot encoding, domain wall encoding requires a constraint to be added to the QUBO to keep
variables in a valid state. For domain wall encoding there is only a valid state when there is a single
domain wall present in the variable chain. When using spin variables s; € {-1,-1} this constraint can
be neatly described using the Hamiltonian

m-2
Hpw = -k Z SiSit1- (5.8)
i—1

Intuitively this formulation can be substantiated by considering that each present domain wall in-
creases the Hamiltonian’s energy. The boundary conditions s_; = -1, s;y—; = 1 enforces the presence
of at least a single domain wall. The Hamiltonian enforces that no other domain walls can be present.

To translate between spin variables and binary variables (required for the QUBO formulation), we
can use the substitution s; = 2b; — 1. The Hamiltonian using binary variables is

m-2

HBDW =—-K Z 1+ 4bl’bi+1 - Zbl - 2bi+1. (59)
i=—1

For the case when m = 3 (we have three sets) this equation simplifies to

Set | One hot | Domain wall

A | 100} | 0[00]1
B | [010] | 0[01]1
S | (001 | o0[11]1

Table 5.3: Encoding scheme extended with domain wall encoding

5.4. Hyperparameters 31

HBDW:—K(1—4b0+4b0b1). (510)

Each node in our graph is assigned to a set, hence the final Hamiltonian is summed over all nodes
i €{0,1,2,--,n}, with each being represented by a set of binary variables b; o, b; 1

n-1

HBDW = —KZ 1- 4‘bi,0 + 4‘bi,04‘bi,1- (511)

i=0

Constant term in encoding constraint One might notice that in (5.11) there is a constant term, that
when taken out of the sum is equal to —nk. This constant term is not obviously present in the spin
variable formulation of the encoding constraint ((5.8). However, if we calculate the value of Hpy, when,
m = 2, sp = s; = -1, then we find it's equal to —k. Indeed, if we work out the value for any set of
valid m = 3 domain wall encodings we find Hpyy = —k. This phenomenon is inconsequential from the
perspective of an annealer, since a violation of the domain wall is still energetically higher.

Practically, however, the presence of a constant term does result in confusion when interpreting the
results. When implementing the spin variable formulation, every solution will have a large offset if not
compensated. With the binary formulation, the constant is explicitly stated in the formulation. In our
implementation of the binary model the constant is deliberately not included to make the energy values
easier to compare with one-hot encoding.

5.3.2. Goals and constraints
Goals and constraints expressed in terms of DQM variables can be translated to domain wall encoding
using

Xq = b - ba1, (5.12)

subject to the boundary conditions b_1 = 0, b;,_1 = 1. Apart from the encoding constraint, the goals
and constraints are the same ones as described in Section 5.1.

Determining the form of the constraints in QUBO form is more work for domain wall than it is for
one-hot encoding. To encode in one-hot form it is as simple as replacing the discrete variable with the
corresponding binary one. However for domain wall encoding one must perform considerable amounts
of algebra to reach constraint expressions.

Goal/constraint DQM QUBO
Minimal separator goal Yo xis Yo bio
Minimal edge cut goal Z{i,j}eE(Xi,Ax]"S + Z{i_j}(bw +bjo-

Xi,BXj,S + XjAXi,S + Zbi_obj_o)
Xj BXi,s)
Balance constraint {3Fs xia - xi,B}Z {n+ X1 big — 2bi1)2
Set independence Z{i,j}EE(xi,ij,B + Z{i,j}EE(bj,l —-bjo+
constraint XjaXiB) bi1 —bio—2bi1bj1 +
bi,Obj,l + bi,lbj,O)

Table 5.4: Goals and constraints expressed in DQM and QUBO form for domain wall encoding.

5.4. Hyperparameters

One thing that has not been mentioned so far is the concept and importance of hyperparameters. So
far we have only defined the goals and constraints of our QUBO (which is indeed the most crucial step),
but we have not yet summed them together to form the final formulation. When summing the individual
components, we have the choice to apply a multiplier to each goal and constraint. These multipliers
are more commonly referred to as hyperparameters. It turns out that the choice of hyperparameters

32 5. Methods

can have a significant impact on the quality and stability of a solution. This is also the case for the
QUBOs defined for nested dissection.

Currently there is no known way to efficiently optimize the hyperparameters of a QUBO, and choices
often rely on intuition. As we see in Chapter 6, the optimal choice of hyperparameters often depends on
the problem structure. Additionally, there can be unexpected interactions between different goals and
constraints that make a general optimization strategy difficult to achieve. The only general optimization
strategy is that of a plain parameter sweep. The nested dissection QUBO has five separate hyper-
parameters, which makes for a considerable solution space, especially considering multiple problem
sets. This makes finding the optimal hyperparameters, or even patterns that might help us choose
them, difficult.

Nonetheless, as a baseline, we choose the hyperparameters such that the constraints weigh heav-
ier than the optimization goals. The reason for this is that in our problem statement the constraints are
hard requirements. Without following the constraints, the resulting solution is useless, and subsequent
iterations of nested dissection are unable to complete. Thus, we reflect this requirement in the hyper-
parameters, because a valid solution with high separator size is still better than an invalid solution with
low separator set size.

5.5. Formulation complexity

The formulation of the QUBO is in essence a data transformation. As with any transformation, there
is an algorithmic complexity associated with performing this task. For both the one hot and domain
wall encoded QUBOs we have several Hamiltonians that sum over either n or |E|, where E is the set of
edges in the graph. Hence in total in at least the first dissection step the QUBO formulation complexity
is O(n + |E|). We can see that this is the same for every other dissection step as well. The k + 1th
dissection step involves the creation of twice the amount of QUBOSs solved in the kth step. Each of
these formulations use half the amount of nodes of the previous step. So while the number of variables
in each QUBO changes, the overall amount of used variables stays the same. Assuming each step
approximately dissects the graph evenly, the full nested dissection completes in log, n steps. Hence
the total complexity of the QUBO based nested dissection algorithm is O((n + |E|) log, n).

5.6. Algorithm workflow

The addition of a quantum step impacts the workflow of a finite element solver. Here we examine the
traditional and quantum solver pipeline. The traditional pipeline is shown in Figure 5.3. It is important
to highlight that while matrix preprocessing is an important part of the pipeline, it does not need to run
for every iteration. An ordering is effective regardless of the values that occupy the matrix. Hence if the
input problem only changes numerically, but not structurally, then we can reuse the ordering, without
having to recompute the preprocessing. This is quite common in finite element applications, where the
structure of the matrix is determined only by the discretization of the function domain. The particular
function does not impact the matrix structure.

The matrix preprocessing pipeline changes when a quantum step is introduced. There is more
preprocessing involved than compared to the classical approach. In particular, the QUBO needs to
be constructed. Then the problem is submitted to D-Wave, where it is first minor embedded and then
annealed. Afterwards, we use a post-processing step to optimize the returned solution even more,
before decoding it and using it in the ordering.

5.6. Algorithm workflow

. o Matrix . .
PDE Problem Discretization preprocessing Matrix solving
) Heuristic Ord
partioning raer

Figure 5.3: Traditional solver pipeline

— QUBO. DWave Post-process Decode Order
construction

Figure 5.4: Matrix solver step with quantum annealing.

Results

6.1. Datasets

6.1.1. Synthetic datasets
Synthetic datasets are ones that are computer generated. Below is a summary of every synthetic
dataset used, and its form.

Grid graph As the name implies, a grid graph is one that has the form of a grid. Several examples
have already been presented. These graphs primarily emerge from finite element applications, and is
therefore an interesting graph form to examine. Moreover, the nested dissection heuristic was devel-
oped principally for efficiently ordering grid graphs. Hence, it is interesting to consider the performance
of the QUBO on this dataset.

Wheel graph A wheel graph is a graph where one node is surrounded by a collection of connected
nodes. An example is presented in Figure 6.1. This graph is interesting because an optimal solution
is trivially found by both minimum degree and nested dissection. Additionally, the dissection is quite
simple, as any cut down the middle of the wheel, no matter the size, is the optimal dissection.

Erd6és-Rényi graph An Erdés-Rényi graph is a type of randomly sampled graph, it is sampled in
a binomial manner. For this reason it is also known as a binomial graph. It has two parameters, n
and p, which is why often the graph will be referred to as a G, graph. To generate a G, graph, we
fix the set of vertices V = {1, 2,..,n} and the number of edges N = (’2‘) The set of all edges is then
E ={eop, e2,..en}. Then, we sample each edge with a probability of p [17].

Figure 6.2a shows an example of what an n = 10, p = 0.3 graph looks like. For the rest of the
experiments p = 0.3, and n is varied.

Geometric graph A random geometric graph is a random graph where the points are generated
inside some geometric space, and edges are generated to connect nodes which are in a specific radius
of each other. The nodes are placed in a k dimensional space, with probability p. These nodes are
connected with each other if they are in radius r of each other [43]. Figure 6.2b shows an example
geometric graph. Notice how the geometric method naturally introduces distinct components in the

Figure 6.1: A wheel graph.

35

36 6. Results

Example of Newman-Watts-Strogatz graph

Example of Erdds-Rényi graph Example of geometric graph

%o

(c) Example of a Newman Watts Strogatz
(a) Example of an Erd6s—Rényi graph. (b) Example of a geometric graph graph

Figure 6.2: Examples of the randomly generated graphs used in experiments.

graph. In every experiment we use r = 0.3 and k = 2. The example is generated using n = 10. ltis
possible for this algorithm to produce disconnected graphs. Our formulation of the nested dissection
algorithm is agnostic to disconnections within the graphs.

Newman Watts Strogatz graph The Newman Watts Strogatz method of generating a random graph
is one that aims to simulate a “small-world” scenario, with a high degree of clustering. To do this, all
n nodes are initially connected in a cycle. Then each node is connected to its k nearest neighbors.
Finally shortcuts are introduced by introducing a new edge (u,w), where w is a random node, for each
edge (u, v) with probability p. For this graph a k, p and n must be chosen. Every experiment varies n,
and uses p = 0.3. The nearest neighbor parameter k = max(5,2) [41].

6.2. On recursive QUBO application

Regardless of solving a QUBO using simulated or quantum annealing, every solver will produce a set
of solutions, with varying solution energies. Assuming a correct QUBO formulation, the lowest energy
solution should correspond to the optimal solution. While this assumption is easy to verify for certain
simple problems, in more complicated solver pipelines this becomes less obvious. Such is also the
case for nested dissection, where our QUBO serves to replace a heuristic, which itself is used to guide
another heuristic.

Another important point of analysis is that of hyperparameters. The specific tuning of hyperparam-
eters is not immediately obvious, neither is the effect they have on the overall algorithm performance
(i.e. how much fill-in is produced?). Just like solution energy, it is not obvious what the higher order
effects are of different hyperparameters. For example, loosening the balance constraint might degrade
the immediate performance of the QUBO in the first iteration of ND, and subsequently lead to more
favorable solutions in the higher order iterations, ultimately leading to a lower overall fill-in.

It is therefore useful to be able to examine how well solution energy correlates with algorithm per-
formance. Due to the recursive nature of nested dissection, where a QUBO is applied multiple times,
this is not a trivial task. In our pipeline every invocation of the QUBO depends on the solution that
preceded it. This makes visualization and analysis of the results tedious, as it is impossible to predict
the effects of the first solution on the subsequent solutions.

6.2.1. Tree representation of solutions

To make the visualization and analysis of solutions more accessible, we organize the set of all solutions
in a tree structure. This tree structure is illustrated in Figure 6.3. Every node represents a sample taken
from a solver, containing the different set assignments and the recursion level at which the sample was
taken. A solution instance is a path from a single root node to a single leaf node. Paths are defined
using hashes. Each node contains a "parent” attribute, which is a hash value that corresponds to its
parent’s hash value. The hash is calculated considering all node parameters except its hash value.

A tree is a natural way of expressing the steps of nested dissection, as each recursion step creates
two new "branches” (at every step the ND is invoked again twice). The solution space can then be
explored by examining every possible path in the tree. Each new path is a new solution, for which we
can calculate the fill-in. This technique is used in various experiments presented in this section.

The procedure for generating a complete nested dissection order from this tree is as follows.

6.3. Experimental setup 37

Aﬁ\B ,,,,,,,, A /}R\B Level 0

‘DD‘ DD‘ o g g o Level 1

/\/\/\/\

Figure 6.3: Tree representation of nested dissection results used for evaluating the impact of different dissection decisions.

Level 2

1. Append each node at Level 0 to a stack, initialize a corresponding partial ordering for each node.
Pop a node from the stack, this is the current node.

Append the current node’s separator set contents to the partial ordering.

> oD

If the partial ordering’s length is equal to the total amount of vertices in the graph, this partial
ordering becomes a full ordering and is appended to the set of orderings. This also implies that
the current node is a leaf node.

5. For every child on the left and right side, push the child node to the stack. If there are multiple
children on either side, then for every child that is not the first one, initialize a new partial ordering.
This ensures that a new path also results in a new ordering.

6. Return to step 2.

6.3. Experimental setup

In this section we describe the various experiments that were performed. The main performance indi-
cator of the QUBO formulation is how much fill-in the suggested ordering results in. We also investigate
how well the QUBO scales, which shows how large problem size can get before physical quantum com-
puters are unable to solve the problem. Scaling is also important because in general smaller QUBOs
are easier to solve. Finally, we also present various experiments related to exploring the hyperparam-
eter search space.

6.3.1. Performance

Fill-in To evaluate the performance of the QUBO, we use it to produce a nested dissection ordering for
several different problem sets and sizes. We run this experiment on every synthetic dataset described
in Section 6.1.1. The experiments are run on graph sizes 10, 20, 50, 100 and 150. Most of the
experiments are completed using simulated annealing. The reasons for this are two-fold. Firstly, current
quantum annealers are time shared, and running many large scale nested dissection experiments on
a physical quantum annealer is not cheap. For this reason we limited the quantum annealing based
experiments to only grid graphs. Secondly, the problem sizes that are able to run on quantum annealers
are inherently limited in size. Simulated annealing does not suffer from these limitations, as classical
computers are currently able to handle much larger problem sizes. Additionally, classical computation
resources are widely available, in contrast to quantum computing resources.

For the quantum annealing sampler we use the TNO quantum toolbox to wrap the D-Wave provided
QPU (quantum processing unit) sampler. Included in this wrapper is a post-processing tool that uses
gradient descent to greedily optimize the results return by the quantum annealer. We enable this for
this experiment.

Since we are testing performance, the nested dissection procedure is followed as defined in Section
5.6.

We test against MeTiS’ MDO and nested dissection implementation. The default behavior of MeTiS
is to use its built in MDO implementation when the input graph is under 100 nodes. This behavior is
changed so that it always uses nested dissection when asked to.

Energy - fill-in Another way to measure the performance is by considering the relationship between
energy and fill-in. Whereas measuring just the fill-in tells us how useful the QUBO is in practice, mea-
suring the energy - fill-in relationship can tell us how well the QUBO is formulated. The goal of an

38 6. Results

annealer is to find the lowest energy state of the given QUBO problem. Thus, if the QUBO is well
formulated we expect a direct correlation between the energy of the solution and the produced fill-in.

We design an experiment to test this across various graph sizes and graph types. For every QUBO
solved in the nested dissection process we usually take the lowest energy solution as the accepted one
and continue. In this experiment we are interested in what happens at higher energy. Therefore, we
take the 100 lowest energy solutions of each QUBO instead, and we apply the algorithm recursively
for each dissection occurring for each of these 100 solutions. This is where the tree representation of
solutions is very useful, with each unique order being its own branch of the tree. To accumulate the
energies of the multiple dissection steps, the energies are added.

After walking the resulting solution tree, we are left with a collection of solutions each with a unique
energy and fill-in pair. Larger graph sizes are associated with higher solution energy, even if it is solved
optimally. As such we require a normalization step, where within each graph size the energy and fill-in
are normalized between zero and one. This allows us to effectively compare the data between graph
sizes. Once the data is normalized every unique energy, fill-in pair is plotted on a scatter plot, and we
attempt a linear regression to examine the correlation between energy and fill-in.

6.3.2. Scaling

One of the most limiting factors in quantum computer experimentation is the relatively small size of
available hardware. This is also the case for quantum annealers. Therefore an important metric is how
the model scales, i.e. how many variables (and by extension qubits) does the model require for a given
problem size. As discussed in Section 5.3, domain wall requires less binary variables to represent
the same problem space. In one hot encoding, we need m binary variables to represent m states in
our logical variable. For domain wall we only require m — 1. While this might seem like a marginal
improvement, for our case of m = 3 this is still a 33% improvement.

Another claimed advantage of domain wall is that the encoding embeds more easily onto the qubit
topology. This claim is substantiated by the improved chain breaking rate when compared to one
hot encoding. We can reason about this theoretically by recognizing that the domain wall encoding
constraint only interacts with neighboring variables. This means at least this constraint can be minor
embedded without the need for any chains. However, this does not hold for all constraints. Still, we
might expect that because of the different connections between binary bits, this also leads to different
(and possibly easier) embeddings.

To test this the following experiment is conducted. A grid graph is generated of varying sizes,
ranging from 3x3 to 10x10. A QUBO is generated with both a one-hot and domain wall encoding.
Using DWave’s minor embedding tool this QUBO problem is minor embedded onto the qubit topology
of the Advantage 4.1 system, using the default parameters. At the time of writing this is DWave’s most
advanced quantum annealer. We then plot the number of qubits used in both embeddings.

6.3.3. Hyperparameter exploration

As mentioned in Section 5.4, hyperparameter optimization is an important but difficult part of proper
QUBO formulation. For the presented QUBO it is not feasible to go through the entire hyperparameter
search space, since we have five hyperparameters. However, we can still get some intuition for how
hyperparameters affect QUBO performance with some simple experiments.

The consequence of badly chosen hyperparameters is at best a poor solution, and at worst no
solution at all. Through manual experimentation it is found that there is a high chance a random choice
of hyperparameters results in the QUBO being unable to complete the nested dissection process. The
chance of successful completion of the algorithm decreases as the problem size increases. This is in
part due to the added difficulty of optimally solving large QUBOs, but as is shown later, also due to the
choice of hyperparameters. The choice of hyperparameters turns out to be a considerable problem
when completing the performance experiments described in the previous section.

With this in mind, in the rest of this section we present several experiments exploring the hyperpa-
rameter search space with particular focus on achieving a complete solution.

Size exploration The largest issue when running the performance experiments is the incomplete
solutions on larger sized graphs. An incomplete solution manifests when a constraint is broken. Below
we summarize the symptoms of a broken constraint.

6.4. Performance results 39

* Encoding constraint - If this constraint is broken the solution no longer makes logical sense. It's
impossible to reason about the performance of the algorithm when the encoding is broken.

» Balance - While in theory it is possible to have unbalanced results, in practice it is observed
that when there is unbalance all nodes are put into one set. This means no dissection is being
performed and the algorithm infinitely recurses.

» Set independence - In principle this constraint is also not required to produce results we can
do fill-in analysis on. However, the QUBO construction code makes the assumption that each
dissection step produces independent subgraphs. If a node fails this assumption, it will participate
in both of the following dissection steps, meaning it will be present in the elimination list at least
twice. To avoid having to cover this case in the code, it is treated as a fatal error.

We assume the sampler is able to find a solution that is acceptably close to the global optimum.
There is no way to reliably verify this assumption for an arbitrary input. However, with this assumption
we are able to reason that an incomplete solution means the hyperparameters are not optimally tuned.
We shall see that this assumption holds insofar we are able to find a hyperparameter configuration that
results in complete solutions at larger graph sizes.

In this experiment we are not interested in the performance of the model, as such we don’t need
to tune the parameters of the goals. This reduces the size of the exploration space considerably. We
can reduce the search space even further by coupling the hyperparameters together by means of a
multiplier. Failure to solve a graph at larger sizes can manifest for two reasons. Firstly, there might be
some implicit degree or graph size dependence in the QUBO (we shall discuss in the following section
that this is indeed the case). Secondly, a larger graph means more variables in the QUBO, meaning
the linear solver has a larger landscape to explore. For both these cases, scaling the hyperparameters
in lock step with a multiplier can uncover if these hypotheses are correct.

The experiment is defined as follows. For each run we multiply the size of the graph with a multiplier.
This value is passed as the value of the hyperparameter for every constraint mentioned above. We
then run our nested dissection implementation, which returns an ordering if it is successful, and nothing
if it is not. We take 100 samples for every multiplier in every dataset. Every dot in the plot shows the
percentage of samples that completed successfully. A fully red dot means none succeeded, a fully
yellow dot means everything succeeded. The experiments were performed using simulated annealing.

Energy - fill-in As mentioned in a previous section, the energy - fill-in relation is a useful tool for
determining how well the QUBO is formulated. In addition to graph size, we can also examine the
formulation quality across different hyperparameter configurations. To perform this for the entire search
space is infeasible, so as in the previous section we limit ourselves to working with a multiplier. The
experiment is very similar to the one defined in Section 6.3.1, except we do not vary the graph size,
but instead we vary the hyperparameter multiplier. The graph size is kept constant at 100.

6.4. Performance results
In this section we present the results of the experiments defined in Section 6.3.1.

6.4.1. Fill-in performance

Experiment Execution time (s)
MDO 0.00051
MeTiS 0.00040
QA-QUBO-DW 760
QA-QUBO-OH 560
SA-QUBO-DW 14
SA-QUBO-OH 11

Table 6.1: Execution times of the various ordering methods for a 8x8 grid graphs

Figure 6.4 shows the performance of the various algorithms on every synthetic graph type except
on grid graphs. We can see that for every graph type except for wheel graphs the classical algorithms

40

6. Results

Fill-in using simulated annealing for different geometric graphs

175 mmm mdo
= metis

- sa-qubo-dw
= sa-qubo-oh

Fill in (relative)

2) p) g g
Graph size

(a) Geometric graph

Fill-in using simulated annealing for different GNP graphs

175 = mdo
= metis
= sa-qubo-dw
150 = sa-qubo-oh

Fill in (relative)

2 B p) g g
Graph size

(b) Erdés-Rényi graph

Fill-in using simulated annealing for different wheel graphs

= mdo
= metis
- sa-qubo-dw
== sa-qubo-oh

Filin (relative)

=

E]) g 8
Graph size

(d) Wheel graph

Fill-in using simulated annealing for different NWS graphs

= mco
s = metis
- = sa-qubo-dw
= qubo-on
30
g 25
f20
Z1s
10
0s
0.0
E 2 7 E]
Graph size

(c) Newman Watts Strogatz graph

Figure 6.4: Fill-in produced by the QUBO formulation using simulated annealing on various graph types and sizes. The fill-in
value is presented relative to MDO. A lower value is better. The missing bars represent failed experiments.

Fill-in using simulated annealing for different grid graphs

2.51

2.01

g
n

Fill in (relative)

g
o

0.5

0.0-

mdo

metis
ga-qubo-dw
ga-qubo-oh
sa-qubo-dw
sa-qubo-oh

©o n ©o o <
- o~ m < ©o
Graph size

100

144

Figure 6.5: Fill-in performance on differently sized grid graphs. Inlcudes results from quantum annealer.

6.5. Scaling results 41

Energy vs fill-in varied across graph size on geometric graph Energy vs fill-in varied across graph size on grid graph Energy vs fill-in varied across graph size on NWS graph
10 e 0 ° % o 01 a® ° o o

(a) Geometric graph (b) Grid graph (c) Newman Watts Strogatz graph

Figure 6.6: Results of the energy vs fill-in experiment varied over graph sizes. The wheel graph types is omitted due to lack of
spread in the data. The Erd6s-Rényi graph is omitted because of a lack of solutions at higher graph sizes. The lines represent
a linear best fit, for which we expect positive correlation.

outperform the QUBO based nested dissection. The exact performance differs per graph type. The
difference between classical approaches and the QUBO is the least pronounced for geometric graphs.
However, on NWS graphs the algorithm has trouble finding complete results, and on Erdés-Rényi
graphs we see that above 20 nodes the QUBO never finds a complete nested dissection.

The grid graphs are evaluated separately since they include results from the quantum annealer, an
experiment that wasn’t performed for the other graph types. These results are presented in Figure 6.5.
We see that on smaller graph types the performance is quite similar across all methods tried. However,
this trend lessens as the graph size increases, and we see that the classical methods outperform the
quantum methods. It is interesting to note that on the largest graph size it seems the domain wall
encoding performs better than one hot encoding. Furthermore, we are unable to make a decisive
conclusion about the comparison between simulated and quantum annealing. However, from the data
that is in the figure, it seems simulated annealing performs slightly better than quantum annealing.

The execution times of the various ordering methods for an 8x8 grid graph is shown in Table 6.1.
We can see that the execution time of QA is 6 orders of magnitude larger than for MDO and MeTiS. It
is is also slower than SA, but just by a single order of magnitude.

6.4.2. Energy - fill-in

In Figure 6.6 the fill in of solutions with varying energies is plotted. For a well formulated QUBO we
expect that the fill-in is positively correlated (i.e. at higher energy we expect a high fill-in). Again the
data differs significantly between graph type. The grid graph (Figure 6.6b has a positive correlation for
every graph size. This is not the case for the NWS and geometric graph, where for larger graph sizes
the corelation becomes negative. We can use this result to explain the poor performance of the QUBO
formulation on those respective graphs. The fact that the quality of the formulation differs between
graph types suggests that there is a significant deviation in the optimal hyperparameter configuration
between different graph types.

6.5. Scaling results

In this section we present the results of the experiments defined in Section 6.3.2. Figure 6.7a shows
the result of the minor embedding experiment. We expect there to be at least a % ratio between the
amount of qubits used by domain wall and one hot, since in our case domain wall only needs two thirds
of the variables one hot requires. A ratio between % means that domain wall embeds easier than the
equivalent one hot QUBO. The turning point is shown on the chart as the orange dotted line.

The results show that domain wall doesn’t necessarily embed better than one hot. However, this is
not a conclusive experiment. The QUBO model presented in this work is one that is generally difficult
to embed due to the fact it has an all-to-all relation in the balance constraint. This constraint has the
same connectivity in both one hot and domain wall, and it generally dominates the overall connectivity
of the QUBO.

Figure 6.7a does highlight an important advantage of domain wall, which is that it uses less variables
by definition. The consequence of this is that a 10x10 grid can still be embedded on Advantage 4.1 by

42 6. Results

Number of qubits requ Wall and One Hot encoding
ntage

for embedding domain
dvantage

o onetot ol e .

© Domain vl

2000

21000

500 . 025

.
3

5 3]

3 ‘ 3 5
Dimension of grd graph Dimension of grd graph

(a) Number of qubits required for different sized grid graphs using (b) Ratio between qubits required for different sized grid graphs
both domain wall and one hot encoding. using both domain wall and one hot encoding.

Figure 6.7: Results of the scaling experiments.

Geometric graph size experiments o GNP graph size experiments o NWS graph size experiments »
. . . . B

] . 0.6]] . 0.6]]]] 0.6

Multiplier
Multiplier
Multiplier

00 00 00
100 120 140 20 40 60 00 120 140 20 40 60 00 120 140

20 40 60

80 80 80
Graph size Graph size Graph size

(a) Geometric graph (b) Erdés-Rényi graph (c) Newman Watts Strogatz graph

Grid graph size experiments o Wheel graph size experiments o

Multiplier
Multiplier

00 0.0
20 40 60 80 100 120 140 20 a0 60 80 100 120 140
Graph size Graph size

(d) Grid graph (e) Wheel graph

Figure 6.8: Results of the size exploration on various synthetic datasets. Each dot is a particular combination of multiplier and
graph size. The color gradient represents the fraction of experiments that succeeded. A dot having a value of 1.0 means all
experiments completed successfully.

domain wall, but not by one hot.

6.6. Hyperparameter exploration results
In this section we present the results of the experiments defined in Section 6.3.3.

6.6.1. Size exploration
Figure 6.8 shows the results for every dataset. The deterministic graph types (Figure 6.8d and Figure
6.8e) all succeeded consistently. While it's expected that there will be less variance for these graph
types, there is also some randomness induced by the Monte Carlo process powering simulated anneal-
ing. The results of these simulations allowed us to perform every other experiment with confidence they
would actually succeed. However, the little change in results show that the multiplier abstraction might
be limiting the hyperparameter configurations we are able to explore. If we were truly exploring a
comprehensive part of the search space, we would expect some of our configurations to lead to failure.
Despite this, there are some interesting results on the random graph types. These are shown in
Figures 6.8a, 6.8b and 6.8c. Both the NWS and Geometric graphs are relatively stable, with most
instances being solved 100% of the time. However, the Erd6s-Rényi graph does not get solved for any

T . P ; number of edges _
multiplier at any size above or equal to 50 nodes. This is because the graph density (5 rperofrodes =

@. Since the algorithm aims to split the graph into two connected components, at some graph
density it no longer makes sense to partition the graph. The explanation for these results is then that
this point lies somewhere around the 50 node mark for Erdés-Rényi graphs.

6.6. Hyperparameter exploration results 43

Energy vs fill-in varied across multipliers on geometric graph Engergy vs fill-in varied across multipliers on grid graph anergy vs fill-in varied across multipliers on NWS graph
. . o

500

o 1800 2000 2200 2400 2600 2800 450 500 550 600 650 700 750 1400 1600 1800 2000 2200 2400 2600 2800
Fill-in Fill-in Fill-in
(a) Geometric graph (b) Grid graph (c) Newman Watts Strogatz graph

Figure 6.9: Results of the energy vs fill-in experiment varied over various multipliers. The wheel graph types is omitted due to
lack of spread in the data.

These figures were made after finding a dependence on the node degree in the hyperparameter
configuration in the domain wall formulation. These findings are described in Section 6.6.3. Without this
fix, the results looked considerably worse, with most graph types failing at almost every multiplier. In
Section 6.3.3 we made the assumption that the used sampler is able to find a solution acceptably close
to the global optimum. This assumption is required to make any conclusions about the configuration
of hyperparameters. Since we are able to confirm a degree dependence using this experiment, we
can confirm this assumption to the extent that the QUBO solver (in this case simulated annealing) is
adequate for us to find this dependence. Consider that the solver could have been so poor it would
have been impossible to find any discernible relationships.

6.6.2. Energy - fill-in

In the energy - fill-in experiment with a varying multiplier we see a similar result to the one we observed
in the previous section. We see in Figure 6.9 that changing the multiplier has limited effect on the
quality of our QUBO formulation. Indeed the corelation between energy and fill-in does change with
varying multiplier. However, as an example, the geometric graph stays negatively correlated regardless
of which multiplier is chosen. This can suggest we didn’t examine a range of multiplier large enough,
or that a multiplier simply does not have a large effect on the quality of the formulation.

6.6.3. Domain wall

The use of domain wall encoding warranted a more thorough look at the energetic effects of our goals
and constraints. Specifically, as a consequence of hyperparameter exploration experiments it turned
out to be important to examine the consequences of the encoding constraint being broken. A break
in the encoding constraint caused a large negative spike in energy. For valid solutions the energy
is centered around 0, with extra energy for the penalty on nodes in S and edge cuts. However, for
solutions with nodes that broke domain wall encoding, the energy was far below 0. This shows that the
problem is not an insufficient search of the solution space, but rather that it is energetically favorable
to break the encoding constraint.

For this particular case, several nodes had broken their domain wall encoding, having a binary
value of [1,0]. This led to some sanity checking, and analysis of the energetic effects of each of the
constraints. Firstly, it is possible our encoding constraint is not formulated properly, which could explain
the tendency to break the encoding. However, Hgpy = 4k with by = 1, b; = 0, which is a positive number
and hence cannot be the source of our large negative component.

The rest of the constraints can be considered using a process of elimination. Looking at Table
5.4, it is immediately clear that the only expression able to evaluate to a negative number is the set
independence constraint, considering every b; € {0,1}. Indeed, for i =[1,0] and j = [1,0] or j = [0,0],
we find Hg; = —ks; Or Hs; = —2ks;. This means that if kg; is large enough, it can become energetically
favorable to break the encoding constraint. Crucially, Hs; is negative for j = [0,0], which means that
the energetic effects of a bad encoding are not limited to the invalid nodes only. A single invalid node
can potentially introduce multiple instances of negative Hs;.

The question then arises, what should ks; be so that we don’t break the encoding, but still ensure
our dissection actually produces independent sets? We can consider that ks; should have a value such

44 6. Results

that an encoding violation does not subtract more energy than Hgpy, adds. Every badly encoded node
adds 4xppw to the solution energy. Suppose i = [1,0], and every other node j = [1,0] or j = [0, 0], then
Hg; subtracts at least 2kg;d; from the solution energy, where d; is the degree of node i. This highlights
that the effects of this phenomenon depend on the structure of the problem graph. Hence, the correct
Ks; changes according to the input. However, we can change the formulation of Hs; to scale each term
by dii, negating the degree dependence. Now, every invalid node i = [1,0] subtracts at least —2ks; from
the solution energy, a constant. This allows us to define 2kgpy as an upper bound for xg;.

Similarly, we can find a lower bound for kgs; by considering how the set independence constraint is
broken. The biggest factor involved in breaking this constraint is the separator penalty. It incentivizes
the solver to look for solutions with the least number of nodes in the separator set. If kg, is too low, the
solver may decide that lowering the number of separator nodes is more energetically favorable than
upholding the set independence constraint. Every node that is assigned to the wrong set (i.e. set 4 or
B instead of S) adds 2ks; to the solution energy. For every allocated separator the penalty adds ks to
the solution energy. Hence, the lower bound for kg; is at least %KZS.

On computing the degree In the related works we have outlined the minimum degree algorithm,
which relies on knowing the degree at every step of the elimination process. This induces consider-
able computational overhead, causing development of the approximate algorithms that avoid directly
calculating node degree as much as possible. To compensate for the degree dependency of the set
independence constraint, we propose to divide ks; by the real degree. This requires knowledge of the
degree of every node at every step of the nested dissection process.

Given entire research directions exist to avoid exactly this calculation, how justified is then to ex-
plicitly include this calculation in our approach? The complexity of computing the degree in a graph is
O(|E]). In minimum degree we must compute the degree every round of elimination, which happens
n times. Hence minimum degree has a complexity of O(n|E]). In the case of our QUBO formulation,
we do not have to construct the formulation n times. Assuming every dissection roughly halves the
graph at every step, we expect logn dissection steps. Hence we only need to compute the degree
O(|E|logn) times, a better result than minimum degree.

Discussion

The main contribution of this work is the formulation of and experimentation with a QUBO problem capa-
ble of performing the necessary graph partitioning suitable for nested dissection. A general formulation
method is given, able to produce QUBO problems on arbitrary graphs. These QUBO problems were
then solved using both a quantum and classical annealing method. We successfully solved several
problem instances on the D-Wave quantum annealer. The solution to these problems are used in a
matrix reordering heuristic, with the aim of reducing the fill-in during Gaussian elimination. The per-
formance of the QUBO problems are evaluated by considering the fill-in resulting from eliminating the
corresponding matrix using the annealing powered ordering. These results are compared to state of
the art classical alternatives.

For almost every problem instance the QUBO formulation is outperformed by the classical state of
the art. On some small problem instances (3x3 and 4x4 grid graphs) the QUBO formulation solved
using simulated annealing outperformed MeTiS. However, the total execution time of the QUBO for-
mulated solutions are several orders of magnitude higher (~ 10° times) higher than that of the classical
alternatives. This means that as of the moment of writing, performing nested dissection using QUBO
formulations for graph partitioning does not offer a compelling alternative to the current state of the art.

There are several reasons for this. The fact that the QUBO formulation produces larger fill-in com-
pared to classical alternatives already shows this method is unsuitable right now. However, even if
the QUBO based ordering produced less fill-in, the classical alternatives would still be more attractive
due to the large execution time associated with quantum annealing. The long execution time comes
primarily from the embedding algorithm. For example, embedding an 8x8 grid takes roughly 10 min-
utes to complete. Due to the physical limits of quantum annealers this is a required step. Without
improvements in embedding time, quantum annealing for nested dissection may remain unattractive,
as the embedding time may very well negate any reduction in elimination time.

Besides the novel QUBO formulation, this work also provides insights into the process of designing
QUBO problems in an applied setting. During the design process it became clear that the hyperpa-
rameters play a significant role in the performance of the formulation. This claim is substantiated by
the energy-performance analysis, which suggests that in its current formulation the QUBO problem is
not well tuned for effectively solving nested dissection. The large number of goals and constraints also
made exploration of the hyperparameter space non-trivial. Exploration was attempted using a method
based on multipliers, which fixes the ratio between different parameters, shrinking the search space
considerably. Through this exploration, a pattern in the domain wall encoding was identified. Here,
another contribution is made, namely the discovery that a violation of domain wall constraints does not
merely break the formulations logical interpretation, but also has mathematical consequences. This
property was used to derive a limit on some of the hyperparameters, a result which is not trivial when
using one-hot encoding.

7.1. Encoding

One of the contributions of this work is a direct applied comparison between the two most popular
methods of QUBO encoding. Recall that the goal of the encoding method is to be able to efficiently

45

46 7. Discussion

express a discrete integer problem encoded as a set of binary variables. The constraining factor here
is not necessarily the number of binary variables but also the ways by which these variables interact
with each other. One can accomplish this with the two most popular methods: domain wall encoding
and one hot encoding.

One hot encoding is an intuitive encoding, whereby each state of the integer variable is encoded
as a separate binary variable. This means to express an integer problem with m different states, we
require m bits.

In domain wall encoding the integer value is encoded in the position of a domain wall within a series
of bits. A domain wall is the boundary at which the series has a differing value. So for example, in the
bit string "0011” the domain wall is on the second position (regardless of which direction we read). This
formulation allows us to express an integer problem using m - 1 bits, where m is the number of states
we need to represent. Itis believed that a domain wall encoding of a problem generally performs better
than the one hot equivalent [8]. We investigated this claim by running every experiment for one hot and
domain wall.

In general domain wall embedded more easily, primarily due to the lower amount of variables re-
quired. Domain wall should also be easier to embed because of a more favorable interaction graph.
However, this favorable interaction graph is only for the encoding constraint, and not necessarily for
any other goals and constraints. Therefore, while the domain wall encoding constraint is easier to em-
bed, a QUBO problem with more complex goals and constraints does not benefit from this advantage.
We conclude that for the embedding performance the primary gain in domain wall for applied QUBO
formulations is the reduction of variables.

In addition to evaluating the perform claims, while experimenting with hyperparameter exploration,
we found that domain wall has an interesting property when it comes to the enforcement of constraints.
This property actually allows one to find mathematical relationships between the different hyperparam-
eters, which is not possible in one hot encoding. Using this property allowed us to form a formulation
that was adequate enough to run all the displayed performance experiments.

7.1.1. Performance

In the original paper introducing the domain wall encoding the author mentions several advantages of
using domain wall over one hot encoding [8]. For example, in relation to quantum annealers, the author
mentions that the domain wall encoding does not need to go through an invalid state to arrive at a new
one. In other words, we only need a single bit flip to arrive at a new valid state. This is in contrast to
one hot, which requires at least two. In theory this leads to a better performing QUBO.

We attempted to evaluate this theory by considering both a one hot and domain wall formulation
in our performance experiments. In general, it seems the domain wall formulation performed better.
In all but two experiments when comparing the relative performance of domain wall and one hot, the
domain wall encoded QUBO produced an ordering that results in lower fill-in. The two experiments
in which this was not the case were on the grid graph instance at 4x4 and 7x7 instance. Given that
annealing and embedding is a stochastic process, and that on the grid graphs the experiments were
not repeated, these cases are treated as an outlier. The overall better performance of domain wall is
also confirmed by some literature [9].

However, it is difficult to attribute this advantage to a particular cause. Apart from having a lower
barrier to state transition, the domain wall encoding also enjoys the use of less qubits overall. A QUBO
with less variables is easier to solve by definition, which means that the improvements we observed
in the performance results may well be due to the fact that domain wall encoded QUBOs have less
variables. Since the variable number advantage is one of constant offset (m — 1 for domain wall and
m for one hot), one could make a more informed conclusion about the reason domain wall performs
better by considering problems where m >> 1, making the effect of lower number of variables negligible.
Given that this work is primarily focused on the performance evaluation of QUBO formulations for
nested dissection (which has m = 3), this investigation falls out of scope. However, as future work it
is interesting to consider the performance of the encoding schemes on a QUBO with many discrete
options.

Other than the relative intuition of one hot, we see no reason not to express every QUBO using
domain wall.

7.2. Performance 47

7.1.2. Violations

One of the most interesting aspects when comparing one hot and domain wall encoding is the effects
of encoding violations in each case. In one hot encoding, an encoding violation leads to a logical error.
While the result doesn’t necessarily have to make sense, an invalid one hot variable still lives in the
realm of the specified constraints and goals. For example, suppose we take our dissection QUBO, and
consider a node that violates the one hot encoding. We now have a node that is either assigned to
multiple sets or is not assigned to any. Obviously in the context of our problem, both these cases are
meaningless. It is not satisfactory to simply not order a node, and neither is it appropriate to order a
node twice. Nevertheless, in both these cases the allocated nodes still respect our constraints. If a
node is placed in two sets, it is still properly considered in the balance constraint. It will also still be
considered in the set independence constraint, and penalized if any other unfortunate nodes happen to
be connected to it. While the solution may be contextually meaningless to the user, mathematically the
model still produces sensible results. This is not the case for a domain wall encoded model. In a domain
wall encoded model, an encoding error instantly renders the model both logically and mathematically
useless.

At first glance this property of domain wall may seem like a disadvantage. However, Section 6.6.3
demonstrates how we can use this phenomenon to our advantage. In general, as discussed in Section
5.4, it is difficult to systematically determine which hyper-parameters constitute an optimal QUBO. The
mathematical breakdown of the domain wall encoding on encoding violations at least in some cases is
able to provide a way to derive a concrete relationship between hyper-parameters. For example, in the
dissection QUBO it is possible to identify how certain parameters scale and, crucially, how they scale
in relation to each other. This reduce the dimensions of the hyper-parameter search space.

It is not guaranteed that these opportunities arise in every domain wall encoded problem. Never-
theless, it is still important to highlight the possibility that we domain wall can provide clear relationships
between hyper-parameters.

7.2. Performance

As mentioned previously, the performance compared to classical methods is subpar. In general the
QUBO nested dissection produces worse results when compared to MeTiS, and requiring substantially
more time to arrive at this result. As such, it is not recommended to use this method over the available
classical methods.

Nonetheless, this does not allow us to discard the notion of quantum integration in linear solver
workflows altogether. We currently do not use simulated annealing to solve the graph partitioning
portion of nested dissection due to its poor performance when compared with other heuristics. This
poor performance is demonstrated in performance results. Notably, simulated annealing also required
significantly more compute time to arrive at a worse result.

However, this does not say anything about the possible future for quantum annealing. In theory,
quantum annealing arrives to a global optimum asymptotically quicker than simulated annealing does,
under adiabatic conditions. Notably, in our results the quantum annealer performed on par with the
simulated annealer, while the annealing time for the quantum solver was orders of magnitude lower.
There is currently still significant setup time associated with the quantum annealer, which means that
the overall experiment time was higher for the quantum annealer. However, the actual annealing time
is orders of magnitude lower. This is an important result, as it shows the power of quantum anneal-
ing compared to simulated annealing, even in the beginning stages of the technology. Therefore, it
is possible that with more technological advancement it is the case that this QUBO formulation can
outperform the classical approaches in both fill-in and overall compute time.

To reach this point there are still several advancements that need to be made. We will consider the
requirement of advancements in hyperparameter exploration in a following section. Besides that, we
note that currently a quantum annealing problem endures extremely high setup time due to the relative
difficulty of minor embedding. To be able to confidently assert the advantage of quantum annealing,
it is important that the cost of minor embedding is reduced. It is a difficult issue, since it is itself an
NP-Complete problem. Nevertheless, as long as the cost of minor embedding is larger than the cost
of directly computing the nested dissection, quantum annealing does not offer any advantage over
classical methods.

48 7. Discussion

7.3. Methods

Apart from the limitation of quantum annealing, there are also several ways we can improve the pro-
posed method.

7.3.1. Graph coarsening

The state of the art nested dissection package MeTiS is designed to work on large sparse input graphs.
However, it does not perform its partitioning heuristic on graphs of such scale. Instead it uses graph
coarsening techniques to reduce the problem size due to around 100 vertices, and performing partition-
ing on that. It is possible to use a similar approach to reduce the size of the QUBO problems we have
to evaluate. As is shown in the results, the QUBO formulation performs drastically worse for larger
input sizes, meaning we can heavily benefit from smaller graphs. Furthermore, we can also use this to
potentially overcome the limited physical size of current quantum annealers. A potential future avenue
of research is investigating the effect of coarsening graphs on the utility of the QUBO formulation.

7.3.2. Hyperparameters

One of the biggest difficulties in developing the QUBO formulation was the impact of hyperparameters
on the performance of the formulation. In fact, the initial mathematical formulation was relatively easy
compared to the task of picking proper hyperparameters. The suboptimal pick of hyperparameters also
prohibited proper evaluation of the model’s performance, as the approach was only able to evaluate
small (and trivial) graphs. What we have decidedly observed from the various energy - fill-in experi-
ments is that both the current hyperparameter configuration, and the methods to explore the possible
configurations, is inadequate. We see weak correlation between energy and fill-in at best, with sev-
eral graph types even having a negative corelation. The model has the correct goals and constraints,
evidenced by the production of valid nested dissection orderings. Assuming we are not limited by the
underlying solver, it leaves no other possibility that the model is badly tuned. We expect that there is a
set of hyperparameters for which the correlation between energy and fill-in is a positive one. We also
expect this would improve the performance of the model.

We have attempted to explore the search space of the hyperparameters using a multiplier analogue.
This multiplier ties the value of three different hyperparameters together, such that a three dimensional
search space is now a one dimensional one. It turns out that this approach of exploring the hyperparam-
eter search space is inadequate. This is evidenced by the fact that no change in multiplier significantly
changes the corelation between energy and fill-in. Given that this is exactly the metric that we are trying
to improve, this is not satisfactory.

Hence an alternative way to explore the hyperparameter search space is required. Currently, this is
an open research problem. Naively exploring a large search space becomes computationally infeasible
for more complex QUBO problems like the one presented in this work. That might also not lead to a
universal solution, as we have seen that the quality of the QUBO formulation doesn’t just depend on
a specific set of hyperparameters, but also on the graph type and graph size. This does imply that
patterns can be identified on the basis of the input problem. Indeed, we have been able to identify
one hyperparameter pattern in this work. However, we are not aware of a mathematical framework
by which we can accomplish this in a structured manner. Perhaps this can be developed with enough
research.

Thus we conclude that in the context of this work, the lack of a feasible hyperparameter exploration
strategy hampered the performance of the formulation. We expect that if more reliable methods and
computationally feasible methods for hyperparameter exploration are available, we are able to find a set
of hyperparameters for which the model performs better. Looking beyond this work, we can also state
that the lack of proper techniques for hyperparameter exploration pose a large threat to the adoption
of quantum annealing techniques or metaheuristic techniques in general.

7.4. Research goals

At the beginning of this work we stated several research questions that drove the direction for this work.
For clarity, they are repeated here.

» How can we formulate the nested dissection graph partitioning problem as an optimization prob-
lem suited for quantum annealing?

7.4. Research goals 49

» How well does this formulation perform when compared to other heuristic methods for performing
nested dissection?

* What does the inclusion of a quantum step mean for the Finite Element Analysis pipeline?

In principle the first question has been confidently answered by the expression of the minimum
vertex separator problem as a QUBO using multiple encoding techniques. However, what remains
unclear is if this is the most optimal formulation of the problem. There is still more clarity needed on
the topic of hyperparameters, a vital part of the QUBO formulation.

This is also related to the response to the second question. With the current formulation the QUBO
formulation performs rather poorly when compared to other heuristic methods for performing nested
dissection. This is if one considers the performance both in the produced fill-in, and the time it took
to arrive to that solution. Again, the importance of hyperparameters is emphasized. They most likely
have a large impact on the performance of the formulation, and as such, without more research into the
hyperparameter configuration, it is unclear if the performance is yet to be improved, even on current
hardware.

Lastly, in this work we also presented a computational model for Finite Element Analysis that in-
cludes a quantum step. In principle not much changes, except there is some more preprocessing
involved in formulating the QUBO. As of right now, the inclusion of a quantum step also implies the
need for cloud access, as there are no commodity quantum annealers available that a downstream
user could purchase. However, there is no guarantee that with more technological advancement that
will always stay the case.

(1]
(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

Bibliography

Patrick R Amestoy, Timothy A Davis, and lain S Duff. “An approximate minimum degree ordering
algorithm”. In: SIAM Journal on Matrix Analysis and Applications 17.4 (1996), pp. 886—905.

C Ashcraft et al. “Nested dissection revisited”. In: (2016). URL: https://epubs.stfc.ac.
uk/manifestation/27193200/RAL-TR-2016-004.pdf.

Egon Balas and Cid C. De Souza. “The vertex separator problem: A polyhedral investigation”. In:
Mathematical Programming 103.3 (July 2005), pp. 583-608. ISSN: 00255610. DOI: 10.1007/
5S10107-005-0574-17.

Piotr Bermanf and Georg Schnitger. “ON THE PERFORMANCE OF THE MINIMUM DEGREE
ORDERING FOR GAUSSIAN ELIMINATION*". In: SIAM J. MATRIX ANAL. APPL 11.1 (1990),
pp. 83-88. URL: https://epubs.siam.org/terms-privacy.

Dominic W. Berry, Andrew M. Childs, and Robin Kothari. “Hamiltonian Simulation with Nearly
Optimal Dependence on all Parameters”. In: Proceedings - Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2015-December (2015), pp. 792—809. ISSN: 02725428.
DOI: 10.1109/F0CS.2015.54. arXiv: 1501.01715.

Zhengbing Bian et al. Solving SAT (and MaxSAT) with a quantum annealer: Foundations, en-
codings, and preliminary results. 2020. DOI: 10.1016/7.1ic.2020.104609. URL: https:
//doi.org/10.1016/5.1c.2020.1046009.

Carlos Bravo-Prieto et al. “Variational Quantum Linear Solver”. In: Quantum 7 (2023). ISSN:
2521327X.DOI: 10.22331/9-2023-11-22-1188. arXiv: 1909.05820.

Nicholas Chancellor. “Domain wall encoding of discrete variables for quantum annealing and
QAOA". In: Quantum Science and Technology 4.4 (2019). ISSN: 20589565. DOI: 10.1088/
2058-9565/ab33c2. arXiv: 1903.05068.

Jie Chen, Tobias Stollenwerk, and Nicholas Chancellor. “Performance of Domain-Wall Encoding
for Quantum Annealing”. In: IEEE Transactions on Quantum Engineering 2 (2021), pp. 1-16.
ISSN: 26891808. DOI: 10.1109/TQE.2021.3094280. arXiv: 2102.12224.

Barry A Cipra. “An Introduction to the Ising Model”. In: Source: The American Mathematical
Monthly 94.10 (1987), pp. 937-959.

Elizabeth Cuthill and James McKee. “Reducing the bandwidth of sparse symmetric matrices”. In:
Proceedings of the 1969 24th national conference. 1969, pp. 157-172.

D-Wave. Minor Embedding. https://docs.dwavequantum.com/en/latest/quantum
research/embedding intro.html. Accessed: 2024-12-15.

Hristo Djidjev et al. “Efficient Combinatorial Optimization Using Quantum Annealing”. In: (2016).
arXiv: 1801.08653v2.

Bojia Duan et al. “A survey on HHL algorithm: From theory to application in quantum machine
learning”. In: Physics Letters, Section A: General, Atomic and Solid State Physics 384.24 (2020),
p. 126595. ISSN: 03759601. DOI: 10.1016/7 . physleta.2020.126595. URL: https:
//doi.org/10.1016/]j.physleta.2020.126595.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford University
Press, Jan. 2017. ISBN: 9780198508380. DOI: 10.1093/acprof :0s0/ 9780198508380 .
001.0001. URL: https://doi.org/10.1093/acprof:0s0/9780198508380.001.
0001.

Jacek Dziarmaga. “Dynamics of a Quantum Phase Transition: Exact Solution of the Quantum
Ising Model”. In: Phys. Rev. Lett. 95 (24 Dec. 2005), p. 245701. DOI: 10.1103/PhysRevlett.
95.245701. URL: https://link.aps.org/doi/10.1103/PhysRevLett.95.245701.

51

https://epubs.stfc.ac.uk/manifestation/27193200/RAL-TR-2016-004.pdf
https://epubs.stfc.ac.uk/manifestation/27193200/RAL-TR-2016-004.pdf
https://doi.org/10.1007/S10107-005-0574-7
https://doi.org/10.1007/S10107-005-0574-7
https://epubs.siam.org/terms-privacy
https://doi.org/10.1109/FOCS.2015.54
https://arxiv.org/abs/1501.01715
https://doi.org/10.1016/j.ic.2020.104609
https://doi.org/10.1016/j.ic.2020.104609
https://doi.org/10.1016/j.ic.2020.104609
https://doi.org/10.22331/q-2023-11-22-1188
https://arxiv.org/abs/1909.05820
https://doi.org/10.1088/2058-9565/ab33c2
https://doi.org/10.1088/2058-9565/ab33c2
https://arxiv.org/abs/1903.05068
https://doi.org/10.1109/TQE.2021.3094280
https://arxiv.org/abs/2102.12224
https://docs.dwavequantum.com/en/latest/quantum_research/embedding_intro.html
https://docs.dwavequantum.com/en/latest/quantum_research/embedding_intro.html
https://arxiv.org/abs/1801.08653v2
https://doi.org/10.1016/j.physleta.2020.126595
https://doi.org/10.1016/j.physleta.2020.126595
https://doi.org/10.1016/j.physleta.2020.126595
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1103/PhysRevLett.95.245701
https://link.aps.org/doi/10.1103/PhysRevLett.95.245701

52 Bibliography

[17] P Erdos and A Renyi. “On random graphs I”. In: Publ. math. debrecen 6.290-297 (1959), p. 18.

[18] Alexandre Ern and Jean-Luc Guermond. “ESAIM: Mathematical Modelling and Numerical Anal-
ysis EVALUATION OF THE CONDITION NUMBER IN LINEAR SYSTEMS ARISING IN FINITE
ELEMENT APPROXIMATIONS”. In: 40.1 (2006), pp. 29-48. DOI: 10.1051/m2an:2006006.

URL: www.edpsciences.org/m2an.

[19] Shimon Even. “ An Algorithm for Determining Whether the Connectivity of a Graph is at Least k
”. In: SIAM Journal on Computing 4.3 (1975), pp. 393—-396. ISSN: 0097-5397. DOI: 10.1137/
0204034.

[20] Dmitry A. Fedorov et al. “VQE method: a short survey and recent developments”. In: Materials
Theory 6.1 (2022). DOI: 10.1186/s41313-021-00032-6. arXiv: 2103.08505.

[21] A.B.Finnila etal. “Quantum annealing: A new method for minimizing multidimensional functions”.
In: Chemical Physics Letters 219.5-6 (Mar. 1994), pp. 343-348. ISSN: 0009-2614. DOI: 10 .
1016/0009-2614(94)00117-0.arXiv: 9404003 [chem-ph].

[22] Stuart Geman and Donald Geman. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-6.6 (1984), pp. 721-741.DOI: 10.1109/TPAMI.1984.4767596.

[23] Alan George. “NESTED DISSECTION OF A REGULAR FINITE ELEMENT MESH*". In: SIAM J.
NUMER. ANAL 10.2 (1973). URL: https://epubs.siam.org/terms-privacy.

[24] Alan George and Joseph W H Liu. “THE EVOLUTION OF THE MINIMUM DEGREE ORDERING
ALGORITHM”. In: 31 (1 1989), pp. 1-19. URL: https://epubs.siam.org/terms-privacy.

[25] John R. Gilbert, Donald J. Rose, and Anders Edenbrandt. “A SEPARATOR THEOREM FOR
CHORDAL GRAPHS?’. In: Journal of Algorithms 5.3 (1984), pp. 391-407. ISSN: 01966774. DOI:
10.1016/0196-6774(84)90019-1. URL: https://epubs.siam.org/terms-privacy.

[26] George Karypis and Vipin Kumar. “A fast and high quality multilevel scheme for partitioning irregu-
lar graphs”. In: SIAM Journal of Scientific Computing 20.1 (1998), pp. 359-392. ISSN: 10648275.
DOI: 10.1137/S1064827595287997.

[27] George Karypis, Kirk Schloegel, and Vipin Kumar. “P AR M E | S (I Parallel Graph Partitioning
and Sparse Matrix Ordering”. In: Memory 95.January (2003), pp. 1-29.

[28] Sophia Kolak et al. “Evaluating Quantum Algorithms for Linear Solver Workflows”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 13999 LNCS (2023), pp. 634-647. ISSN: 16113349. DOI: 10 .
1007/978-3-031-40843-4 47/FIGURES/6. URL: https://1link.springer.com/
chapter/10.1007/978-3-031-40843-4 47.

[29] Tomoko Komiyama and Tomohiro Suzuki. “Sparse Matrix Ordering Method with a Quantum An-
nealing Approach and its Parameter Tuning”. In: Proceedings - 2021 IEEE 14th International
Symposium on Embedded Multicore/Many-Core Systems-on-Chip, MCSoC 20211 (2021), pp- 258—
264.DO0I: 10.1109/MCS0C51149.2021.00045.

[30] Julia Kwok and Kristen Pudenz. “Graph Coloring with Quantum Annealing”. In: (). arXiv: 2012.
04470v1.

[31] Dominique LaSalle and George Karypis. “Efficient nested dissection for multicore architectures”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 9233 (2015), pp. 467—-478. ISSN: 16113349. DOI: 10 .
1007/978-3-662-48096-0_ 36/TABLES/5. URL: https://link. springer.com/
chapter/10.1007/978-3-662-48096-0_36.

[32] Xiaoye S. Li. “An overview of SuperLU: Algorithms, implementation, and user interface”. In: ACM
Transactions on Mathematical Software 31 (3 2005), pp. 302-325. ISSN: 00983500. DOI: 10.
1145/1089014.1089017.

[33] J Lipton and R E Tatjan. “A Separator Theorem for Graphs of Bounded Genus”. In: JOURNAL
OF ALGORITHMS 5 (1984), pp. 177-189.

https://doi.org/10.1051/m2an:2006006
www.edpsciences.org/m2an
https://doi.org/10.1137/0204034
https://doi.org/10.1137/0204034
https://doi.org/10.1186/s41313-021-00032-6
https://arxiv.org/abs/2103.08505
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1016/0009-2614(94)00117-0
https://arxiv.org/abs/9404003
https://doi.org/10.1109/TPAMI.1984.4767596
https://epubs.siam.org/terms-privacy
https://epubs.siam.org/terms-privacy
https://doi.org/10.1016/0196-6774(84)90019-1
https://epubs.siam.org/terms-privacy
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1007/978-3-031-40843-4_47/FIGURES/6
https://doi.org/10.1007/978-3-031-40843-4_47/FIGURES/6
https://link.springer.com/chapter/10.1007/978-3-031-40843-4_47
https://link.springer.com/chapter/10.1007/978-3-031-40843-4_47
https://doi.org/10.1109/MCSoC51149.2021.00045
https://arxiv.org/abs/2012.04470v1
https://arxiv.org/abs/2012.04470v1
https://doi.org/10.1007/978-3-662-48096-0_36/TABLES/5
https://doi.org/10.1007/978-3-662-48096-0_36/TABLES/5
https://link.springer.com/chapter/10.1007/978-3-662-48096-0_36
https://link.springer.com/chapter/10.1007/978-3-662-48096-0_36
https://doi.org/10.1145/1089014.1089017
https://doi.org/10.1145/1089014.1089017

Bibliography 53

[34] Richard J.Lipton and Robert Endre Tarjan. “A Separator Theorem for Planar Graphs”. In: https://doi-
org.tudelft.idm.oclc.org/10.1137/0136016 36.2 (July 1979), pp. 177-189. ISSN: 00361399. DOI:
10.1137/0136016. URL: https://epubs-siam-org.tudelft.idm.oclc.org/doi/
10.1137/0136016.

[35] Joseph W.H. Liu. “Modification of the minimum-degree algorithm by multiple elimination”. In: ACM
Transactions on Mathematical Software (TOMS) 11.2 (1985), pp. 141-153. ISSN: 15577295.
DOI: 10.1145/214392.214398.

[36] Aamir Mandviwalla, Keita Ohshiro, and Bo Ji. “Implementing Grover’s Algorithm on the IBM Quan-
tum Computers”. In: Proceedings - 2018 IEEE International Conference on Big Data, Big Data
2018 (2018), pp. 2531-2537. DOI: 10.1109/BigDhata.2018.8622457.

[37] Harry M Markowitz. “The Elimination form of the Inverse and its Application to Linear Program-
ming”. In: (1957). DOI: 10.1287/mnsc.3.3.255. URL: http://pubsonline.informs.
orghttp//www.informs.org.

[38] McGreevy. “Where do quantum field theories come from?” University of California San Diego.
Lecture Notes. Phsyics 293a. 2024. URL: https://mcgreevy.physics.ucsd.edu/s14/
239%a-lectures.pdf.

[39] Nicholas Metropolis et al. “Equation of State Calculations by Fast Computing Machines”. In: The
Journal of Chemical Physics 21.6 (June 1953), pp. 1087-1092. ISSN: 0021-9606. DOI: 10 .
1063/1.1699114. URL: /aip/jcp/article/21/6/1087/202680/Equation-of -
State-Calculations-by-Fast-Computing.

[40] Satoshi Morita and Hidetoshi Nishimori. “Mathematical foundation of quantum annealing”. In: J.
Math. Phys 49 (2008), p. 125210. DOI: 10.1063/1.2995837. URL: https://doi.org/10.
1063/1.2995837.

[41] Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. “Random graphs with arbitrary de-
gree distributions and their applications”. In: Physical review E 64.2 (2001), p. 026118.

[42] Shuntaro Okada, Masayuki Ohzeki, and Shinichiro Taguchi. “Efficient partition of integer opti-
mization problems with one-hot encoding”. In: Scientific reports 9.1 (2019), p. 13036.

[43] Mathew Penrose. Random geometric graphs. Vol. 5. OUP Oxford, 2003.

[44] CY She and H Heffner. “Simultaneous measurement of noncommuting observables”. In: Physical
Review 152.4 (1966), p. 1103.

[45] Gagandeep Singh. “Short introduction to finite element method”. In: Norwegian University of Sci-
ence and Technology (2009).

[46] Hayato Ushijima-Mwesigwa, Christian F A Negre, and Susan M Mniszewski. “Graph Partition-
ing using Quantum Annealing on the D-Wave System”. In: 17 (). DOI: 10.1145/3149526.
3149531. URL: https://doi.org/10.1145/3149526.3149531

[47] Guoming Wang. “EFFICIENT QUANTUM ALGORITHMS FOR ANALYZING LARGE SPARSE
ELECTRICAL NETWORKS”. In: (2017). arXiv: 1311.1851v10.

[48] Mihalis Yannakakis. “Computing the minimum fill-in is NP-complete”. In: SIAM Journal on Alge-
braic Discrete Methods 2.1 (1981), pp. 77-79.

https://doi.org/10.1137/0136016
https://epubs-siam-org.tudelft.idm.oclc.org/doi/10.1137/0136016
https://epubs-siam-org.tudelft.idm.oclc.org/doi/10.1137/0136016
https://doi.org/10.1145/214392.214398
https://doi.org/10.1109/BigData.2018.8622457
https://doi.org/10.1287/mnsc.3.3.255
http://pubsonline.informs.orghttp//www.informs.org
http://pubsonline.informs.orghttp//www.informs.org
https://mcgreevy.physics.ucsd.edu/s14/239a-lectures.pdf
https://mcgreevy.physics.ucsd.edu/s14/239a-lectures.pdf
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
/aip/jcp/article/21/6/1087/202680/Equation-of-State-Calculations-by-Fast-Computing
/aip/jcp/article/21/6/1087/202680/Equation-of-State-Calculations-by-Fast-Computing
https://doi.org/10.1063/1.2995837
https://doi.org/10.1063/1.2995837
https://doi.org/10.1063/1.2995837
https://doi.org/10.1145/3149526.3149531
https://doi.org/10.1145/3149526.3149531
https://doi.org/10.1145/3149526.3149531
https://arxiv.org/abs/1311.1851v10

	Introduction
	Finite Element Analysis
	Graph theoretic model for fill-in
	The reordering problem
	Quantum computation
	Goals

	Related works
	Local pivotal reordering methods
	Markowitz method
	Minimum degree ordering
	Minimal fill-in
	Tie breaking

	Special form methods
	Cuthill-McKee

	Existing quantum methods
	HHL
	Variational solvers
	Quantum minimum fill

	Nested Dissection
	The algorithm
	MeTiS
	Multilevel dissection
	Graph coarsening
	Graph partitioning
	Uncoarsening

	Quantum Annealing
	Simulated annealing
	Quantum annealing
	Modeling problems as Ising models
	Discrete integer encoding
	Minor embedding

	Methods
	Goals and constraints
	Discrete Quadratic Model
	Minimal separator goal
	Minimal edge cut goal
	Set independence constraint
	Balance soft constraint

	One hot encoding QUBO
	Encoding constraint
	Goals and constraints

	Domain wall encoding QUBO
	Encoding constraint
	Goals and constraints

	Hyperparameters
	Formulation complexity
	Algorithm workflow

	Results
	Datasets
	Synthetic datasets

	On recursive QUBO application
	Tree representation of solutions

	Experimental setup
	Performance
	Scaling
	Hyperparameter exploration

	Performance results
	Fill-in performance
	Energy - fill-in

	Scaling results
	Hyperparameter exploration results
	Size exploration
	Energy - fill-in
	Domain wall

	Discussion
	Encoding
	Performance
	Violations

	Performance
	Methods
	Graph coarsening
	Hyperparameters

	Research goals

