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Abstract

Money laundering is an increasing problem for the global economy. To combat money laundering, banks
use transaction monitoring models with particular thresholds to detect unusual transaction behaviour.
However, it is a challenge to determine and evaluate the suitability of a threshold level to ensure that
the risk of misclassification of transactions falls within the bank’s risk appetite. In the threshold tuning
process, the suitability of a threshold level can be evaluated with a sample of the transactions below or
above a threshold level which are reviewed by an analyst.
One problem is that the review process of transactions during the threshold tuning process is time-
consuming. In addition, banks want to be able to quantify the risk of misclassification of transactions
to determine whether this falls within their risk appetite.

This underlines the need to develop a threshold tuning strategy to accelerate the threshold tuning
process in which the risk of misclassification of transactions can be quantified to determine whether it
falls within the bank’s risk appetite. To accelerate the threshold tuning process, a framework was de-
veloped and five threshold tuning strategies were established which evaluate the suitability of different
threshold levels with a given strategy. In addition, several methods to determine a confidence interval
were examined to quantify the risk of misclassification and to ensure that it falls within the bank’s risk
appetite.

The threshold tuning strategies were compared and evaluated on the required amount of reviews of
transactions and the difference between the found and true threshold level using synthetic data sets.
Overall, the bisection threshold tuning strategy is recommended, since this strategy resulted in the
lowest number of required reviews of transactions and resulted in a small difference between the found
and true threshold level.
The results of the synthetic data sets were promising, but more experiments with preferably real trans-
action data or other distributions are required to further evolve and fully validate the framework and
proposed bisection strategy.
The work presented in this thesis contributed to a more risk-based approach to enhance the efficiency
and effectiveness of the threshold tuning process of transaction monitoring models.
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1
Introduction

Money laundering is an increasing problem for the global economy with sums estimated between 2 and
5 per cent of global GDP [6]. Nonetheless, the penalties financial institutions receive for failure of com-
pliance continued to rise with an estimated amount of $42 billion globally in 2016 [15]. On top of that,
the Scientific Research and Documentation Centre (WODC) has estimated that around 16 billion euros
of criminal money was laundered in the Netherlands in 2014. This amount consists of 6.9 billion euros
of domestic criminally obtained money that is laundered in the Netherlands and the inflow of 9.1 billion
euros of laundered money from other countries, reflecting the international nature of money laundering
in the Netherlands [30]. Therefore, regulators around the world encourage innovative approaches to
combat money laundering and protect the integrity and stability of financial institutions.

Money laundering is an illegal process in which criminals make it appear that amounts of money come
from a legitimate source. Financial institutions have an important role as gatekeepers of the stability
and integrity of the global financial system and are required to monitor all transactions passing through
their system and to classify each transaction as unusual or not. Therefore, Anti-Money Laundering
(AML) models, which currently rely mainly on rule-based systems with fixed derived thresholds, aim
to detect unusual behaviour in transaction data [19].

The following example explains how banks could detect money laundering through transaction mon-
itoring. A well-known money laundering method is smurfing, also known as structuring, when large
amounts of money are split up into several small transactions at banks. Suppose that each criminal in
a group of X members in country A has an account at a bank, which may be at different banks. All
members deposit a certain amount of money M in the first few days of the week into their accounts,
which at first will go unnoticed by the bank. After a few days at the end of the week, each member
transfers that certain amount of money to the same account in country B which results in an amount
of M*X flowing into an account in country B every week [29].

To detect smurfing, the bank can develop a transaction monitoring scenario. For example, if more
than 90 per cent of deposited money is transferred to another account within 7 days, the transaction
should generate an alert. An alert refers to a signal indicating a potentially unusual transaction [10].
With such scenarios, the bank tries to detect unusual transaction behaviour. The transactions will gen-
erate an alert when the criminals forward their deposit within a week. The alerts will be investigated
and institutions are obligated to report unusual transactions to the Financial Intelligence Unit (FIU)
immediately after the unusual nature of the transactions becomes known, as described in Article 16
of the Anti-Money Laundering and Terrorist Financing Act (Wwft) [11]. Then, the FIU analyses the
report and sends it to law enforcement if the analysis is confirmed [13]. In this case, money laundering
occurred and the AML model correctly classified the transactions as unusual referred to as true posi-
tives. On the other hand, an AML model can also generate alerts for transactions that did not turn
out to be money laundering. The misclassified alerts are referred to as false positives.

Unfortunately, not all unusual transactions are detected by an AML model. In the previous exam-
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ple, this could happen if the criminals forward the deposit after 8 days while the scenario only generates
an alert for deposits forwarded within 7 days, which has the consequence that the transactions do not
generate an alert. The unusual transactions that are not detected by the AML model are misclassified
and referred to as false negatives, whereas the not detected normal transactions are correctly classified
as true negatives.

How many transactions will be misclassified as false negatives below the threshold level or false positives
above the threshold level depends on the choice of the threshold level. To determine which threshold
level is most appropriate for an AML model, a sample of transactions from above and/or below the
threshold level is taken. This makes it possible to evaluate the effectiveness of a threshold level of
an AML model with a certain confidence level. However, the threshold tuning process is very time-
consuming since all sampled transactions have to be investigated by an analyst.
Moreover, transaction monitoring often presents a significant compliance challenge and AML model
developers have to be careful with the choice for a threshold level. If the thresholds are too sensitive to
unusual transaction behaviour, the thresholds are likely to generate a large number of not interesting
alerted transactions (false positives) which take substantial time to investigate. On the other hand,
thresholds that are not sensitive enough, present the risk of missing interesting transactions (false neg-
atives) that pose a risk to the bank.

Therefore, the first goal of this thesis is to research possibilities to advance the threshold tuning process.
The objective is to define an efficient threshold tuning strategy to accelerate the threshold tuning pro-
cess to determine the most suitable threshold level. The effectiveness and limitations of the proposed
threshold tuning strategy and the relative and absolute performance will be validated.
Furthermore, this thesis will discuss how the uncertainty that arises from sampling in the threshold
tuning process can be quantified. This quantification makes it possible to make statements about the
population of transactions with a certain confidence level after completing the threshold tuning process.
In this thesis, the potential of various threshold tuning strategies will be evaluated using three synthet-
ically generated data sets. This makes it possible to control experiments using prior knowledge of
unusual transactions.

1.1 Research objective
After introducing the thesis subject, it is important to state the research objectives. The research
objectives of this thesis are:

1. How can a threshold tuning strategy be incorporated to accelerate the threshold tuning process
of transaction monitoring models?

2. How can the uncertainty in the threshold tuning process for the chosen threshold level be quanti-
fied?

1.2 Thesis structure
This section introduces the structure of the thesis. Before we dive deeper into threshold tuning strate-
gies to accelerate the threshold tuning process, Chapters 2 and 3 introduce an overview of the necessary
background literature. First, Chapter 2 describes money laundering and the current Anti-Money Laun-
dering validation practices in place at financial institutions. Then, the problem setting is formulated.
This provides the background as to why this thesis focuses on threshold tuning strategies. Chapter 3
describes various confidence interval methods to quantify the uncertainty with sampling and how the
required sample size can be determined. Chapter 4 describes various threshold tuning strategies that are
investigated in more detail in this thesis. Experiments using different synthetic data sets are described
in Chapter 5. These experiments are conducted to gain a more thorough understanding of threshold
tuning strategies’ performances. The empirical results of the experiments are presented in Chapter 6.
Chapter 7 concludes this thesis by providing a conclusion of the results derived in this thesis. Moreover,
recommendations are presented for further research directions.



2
Threshold tuning background

This chapter provides an overview of relevant background information about transaction monitoring
within banks and the threshold tuning process in more detail. This chapter starts with an introduction
to anti-money laundering practices and the transaction monitoring process within banks in Section 2.1.1.
Subsequently, Section 2.2 discusses the threshold tuning process of transaction monitoring models. Fur-
thermore, the problem setting for this thesis is described in Section 2.3. Lastly, Section 2.4 summarises
the most important aspects of the threshold tuning process.

2.1 Anti-money laundering
As briefly introduced in the introduction, money laundering can be described as an illegal process in
which criminals make it appear that amounts of money come from a legitimate source. Criminals often
follow three steps when laundering money. The first step is to secretly inject ‘dirty money’ into the
legitimate financial system, also known as the placement step. This is followed by the layering step,
where criminals try to hide the origin of the money through transactions and bookkeeping tricks. Fi-
nally, criminals can now withdraw the laundered money from a legitimate account and it is integrated
into the system [25].

Money laundering and terrorism funding is a growing problem for society. To address the international
fight against money laundering and terrorist financing, the European Parliament and the Council issued
directives to prevent the use of the financial system for money laundering or terrorist financing based on
the recommendation of the Financial Action Task Force (FATF). The Dutch Central Bank (DNB) su-
pervises the integrity of Dutch financial institutions considering among others the Wwft, which replaces
the Disclosure of Unusual Transactions Act (MOT), and the Sanctions Act (Sw), which was established
in 1977 [9]. On the recommendation of the FATF, DNB set up a guideline to provide financial insti-
tutions with tools to adequately perform their role as gatekeepers of the financial system in 2011. As
a result, in recent years banks have invested heavily in customer due diligence (CDD) and transaction
monitoring processes to identify unusual transactions [7].

2.1.1 Anti-money laundering transaction monitoring process within banks
The DNB has published a guidance report on the post-event transaction monitoring process at banks
[10]. The key aspects of this report are further explained in this section. Many banks use the so-called
‘three lines of defence’ model which is a framework designed to facilitate an effective risk management
system (risk owners, risk oversight and risk assurance). To translate this framework to the transaction
monitoring process, a clear separation of functions is important because inadequate governance of
model development, implementation, use and validation can create an increased risk for the bank. In
the transaction monitoring process, there are often three functions distinguished:

1. The 1st line (business): responsible for transaction monitoring.

3
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2. The 2nd line (compliance): responsible for quality assurance through an independent advisory
and controlling role and periodically challenging first-line model risk management processes.

3. The 3rd line (audit): responsible for an independent check on the functioning of the 1st and 2nd
line.

The functions are separated to minimise model risk as much as possible. Additionally, periodic training
of employees is essential to create awareness of money laundering and terrorist financing risks. Besides
the separation of functions and training, the AML and transaction monitoring process can be divided
into several steps as described in the guidance report by DNB on the post-event transaction monitoring
process at banks and presented in Figure 2.1 [10].

• Customer screening
• Risk identification
• Policies and procedures
• Transaction monitoring
• Model validation

Governance:  1st (business), 2nd (compliance) and 3th line (audit).

Training

Customer
screening

Risk
identification

Policies and
procedures

Transaction
monitoring

Model
validation

SIRAClient CDD
(peergrouping)

Pre-transaction
monitoring

Post-event
transaction
monitoring

Business rules
(scenarios and

thresholds)

Data analysis of
unusual patterns

Alert handeling and
reporting to FIU

Evaluation of
conceptual
soundness

Ongoing
monitoring

Outcome analysis
(back-testing)

BTL and
ATL testing
(sampling)

Figure 2.1: The anti-money laundering transaction monitoring process within banks [10].

Customer screening
First, under the Wwft, banks are required to conduct client screening and draw up a client risk profile.
When determining a Customer’s Due Diligence (CDD) risk rating (low, medium, high), the bank must
establish the expected transaction behaviour through peer grouping. Peer grouping allows the bank
to determine an expected transaction profile to detect unusual transactions. This is necessary so that
banks can ensure that the transactions carried out are consistent with the bank’s knowledge and the
risk profile of the customer. This allows banks to detect unusual transactions.

Risk identification
As a second step, banks need to make a risk identification of their types of customers, products, distri-
bution panels and transactions. This risk analysis should be reported through a Systematic Integrity
Risk Analysis (SIRA). The SIRA consists of a cycle of four aspects [8]:

1. Risk identification based on several factors.
2. Risk analysis where the risk is equal to the probability of the risk multiplied by its impact.
3. Risk management through policies, procedures, systems and controls.
4. Risk monitoring and review.

The actions that follow from the risk analysis depend on the bank’s risk appetite.
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Policies and procedures
Thirdly, banks should make a visible translation of the SIRA into policies and procedures regarding the
transaction monitoring process.

Transaction monitoring
The penultimate step is the transaction monitoring process itself which can be divided into pre-transaction
monitoring and post-event transaction monitoring. Pre-transaction monitoring refers to situations
where there is face-to-face contact between the customer and the bank employee. Examples are when
a customer wants to exchange foreign currency at a bank office or deposit large amounts of cash. Post-
event transaction monitoring refers to the detection of unusual non-cash transactions and can be divided
into three aspects: converting policies and procedures into a set of business rules, detecting unusual
transactions through data analysis and the alert handling and reporting process.

1. Set up of business rules: The set of business rules are detection rules consisting of scenarios and
certain thresholds such as amounts and numbers of transactions or combinations thereof. The
business rules are used to detect unusual transaction patterns that may indicate money laundering
or terrorist financing.

2. Transaction detection through data analysis: Data analysis is used to detect potentially unusual
transaction behaviour whereby an alert is generated. The alerts are then investigated and reported
to FIU-NL immediately after the unusual nature of the transactions becomes known.

3. Alert handling: The alert handling and reporting process involves assessing and reporting the
consequences of the report to FIU-NL and whether additional control measures are necessary.
The considerations and conclusions must be recorded to close an alert or report it to the FIU-NL.

Model validation
The final step is the continuous process of model validation to verify if the models perform as expected
and if the current validation activities are sufficient to reduce model risk. This section about model
validation is largely based on the Model Risk Management report from Comptroller’s Handbook [23].
The goal of validation is to challenge developers and users and to note their findings about shortcomings
that need to be revised. For an effective validation framework, three elements are important: evaluation
of conceptual soundness, ongoing monitoring and outcome analysis.

• Evaluation of conceptual soundness: In the evaluation of conceptual soundness an assessment is
made of the quality of the design and construction of the model. This requires documentation
that supports all model choices, model assumptions, data and theoretical construction.

• Ongoing monitoring: Ongoing monitoring is executed to confirm that a model has been imple-
mented and used correctly, and is performing as intended. In addition, evaluations of changes in
products, customers or market conditions indicate that a model needs to be adjusted.

• Outcome analysis: In outcome analysis, a comparison is made between the expected model output
and the actual outcomes which can be achieved by statistical tests or other quantitative measures.
One form of outcome analysis involves back-testing in which outcomes are compared to the model
forecasts during a sample period that is different from the data used in the model development
with statistical confidence intervals.

Back-testing for many AML models can be difficult or even impossible because there is no specific
manner to compare truly unusual transactions to those identified by the system as unusual. One way
around this is to evaluate AML models via above-the-line (ATL) and below-the-line (BTL) testing in a
given period.

• Above-the-line (ATL) testing involves alert productivity metrics where it takes into account inter-
esting transactions above a threshold (alerted transactions). The goal of ATL testing is to reduce
the number of not interesting alerts to increase the overall effectiveness of scenarios.

• Below-the-line (BTL) testing focuses on transactions below a threshold, which a model would not
identify as interesting and therefore did not generate an alert. A sample of these transactions
is taken to determine the missed interesting transactions which indicate detection failure and
validate whether this risk falls within the bank’s risk appetite. Unlike ATL testing, the goal of
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BTL testing is not to reduce the volume of not interesting alerts, but to validate that the set
threshold level is in line with the bank’s risk appetite.

Banks need to substantiate and document model choices, choices of tests and interpretation of results.
Back-testing requires statistical tests but it is often a challenge to substantiate which test is most ap-
propriate in a given setting or how to interpret the results.

Therefore, this thesis will investigate threshold tuning strategies to accelerate the back-testing and
threshold tuning process.

2.1.2 Transaction monitoring stages
Transactions can go through three stages during the transaction monitoring process at financial institu-
tions; the alert stage, the case stage, and the reporting stage as shown in Figure 2.2 [19]. All transactions
go through the alert stage where the transactions are compared to a set of rules. Alerted transactions
are examined with simple initial manual checks. The alerted transactions are not investigated further
if the transactions appear legitimate. The remaining alerts go to the case stage and the cases are exten-
sively investigated by experienced analysts and labelled as unusual or not unusual. The cases that are
labelled as unusual go to the reporting stage, where the final decision is taken as to whether the case
will be reported to the FIU.

Label 
 Interesting/ not

interesting

Label 
Unusual/ not

unusual

Label 
Reportable/ not

reportable

Alert stage Case stage Reporting stage

Transaction

Alert

No alert (A)

Case

Reported (D)

No Case (B)

Not reported (C)

Legitimate

Money
laundering

Figure 2.2: Stages of the transaction monitoring process and labels for transaction types [19].

2.2 Threshold tuning process of transaction monitoring mod-
els

In section 2.1.1, the different aspects of the transaction monitoring process are briefly introduced. In
this process, data analysis is performed to detect unusual transaction patterns by developing different
scenarios that characterise the expected behaviour of criminals. Returning to the smurfing example
from the introduction, a scenario can be defined as follows:

To detect smurfing, a transaction monitoring model should detect whether large sums of money are
structurally split and received at a certain account (the receiving party) or whether sums of money
are structurally transferred that are just below a publicly known threshold (the sending party). This
scenario should characterise criminal behaviour that may indicate smurfing.
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Subsequently, it is stated in the guidance report by DNB that banks should develop for each sce-
nario one or more (business) rules to mitigate this scenario [10]. For example, the following rules can
be defined for the smurfing scenario example:

• Sending party rule: repeated transactions to a foreign account in a country that is classified as
high risk for money laundering during a certain period, in case the sending party is a customer of
the bank.

• Receiving party rule: repeated transactions from a foreign account in a country that is classified
as high risk for money laundering during a certain period, in case the receiving party is a customer
of the bank.

Thereafter, for each rule, one or more thresholds should be established. In this example, the following
thresholds could be defined:

• The period during which transactions are monitored, for example, one month, two months etc.
• The frequency of money transfers to/from a foreign account, for example, every five days, every

week, every two weeks etc.
• The amount of money that is repeatedly transferred to/from a foreign account, for example, 1000

euros, 2000 euros etc. This may also include monitoring the average transfer amount or the
variance of the transfer amount over the period.

The process of data analysis of unusual transaction patterns to determine a suitable threshold level is
illustrated in Figure 2.3.

Data analysis  
Analysis of unusual
transaction patterns

Scenario 
Characterising

criminal behaviour

Rule
Detection of unusual
transaction patterns

Threshold
level

Figure 2.3: The process from data analysis to a threshold level for transaction monitoring models.

To explain how the most suitable threshold level can be determined, it is important to first explain how
currently different threshold levels are compared which is described in the Model Risk Management
report from Comptrollers Handbook [23]. Afterwards, different threshold tuning strategies will be
introduced to determine the most appropriate threshold level while the underlying probabilities of
unusual transactions for different rules are unknown.

2.2.1 Back-testing process of rules
As described in the previous section, thresholds of transaction monitoring models are used to detect
unusual transaction behaviour. These thresholds are determined during the threshold tuning process
through ATL and BTL testing in a testing environment whereby thresholds are increased or decreased
to identify the best possible threshold levels and parameters. There are two situations to consider when
the threshold tuning process is performed:

• Initial threshold tuning for a new rule: to assess and evaluate different threshold levels to set a
good initial threshold level when no threshold level has been set before concerning a set of specified
performance metrics. In the situation of initial threshold tuning, there is no prior knowledge about
unusual transaction behaviour for a certain rule.

• Periodic evaluation of a threshold for an existing rule: it is stated in the Model Risk Manage-
ment report from Comptrollers Handbook [23] that banks should periodically evaluate models
to determine whether the current threshold level results in the intended performance and if the
performance is sufficient concerning a set of specified performance metrics. In the situation of peri-
odic evaluation of a threshold for an existing rule, there is usually some historical prior knowledge
about unusual transaction behaviour for a certain rule.



2.2. Threshold tuning process of transaction monitoring models 8

Of the two situations mentioned above, the main focus of this thesis will be on initial threshold tuning.
It is important to understand that although initial threshold tuning happens less often than periodic
evaluation of a current threshold for an existing rule, the risk of an incorrect initial threshold level is
higher. An incorrect initial threshold level could result in large numbers of incorrectly alerted transac-
tions, causing a higher workload than necessary, or could result in a high risk for the bank in case too
many unusual transactions are missed. The risk of an incorrect threshold level is lower with periodic
evaluation of a current threshold of an existing rule whereby the risk of the current threshold level is
known and accepted. Therefore, the added value for initial threshold tuning could be considered higher.

Back-testing of a threshold can be performed through ATL and BTL testing. A sample is taken of
the transactions below and/or above the tested threshold level. Subsequently, an analyst evaluates the
sampled transactions from below and/or above the tested threshold level and labels the transactions as
interesting or not. This is illustrated in Figure 2.4 where each short black line represents a threshold
level.

Sample of transactions below tested threshold Sample of transactions above tested threshold

False
negative

(FN)

True
negative

(TN)

True
positive

(TP)

False
positive

(FP)

Not interesting

Interesting

Tested threshold level

Figure 2.4: Illustration of the trade-off for setting the threshold level.

A confusion matrix can be created after all transactions have been evaluated and labelled. All sam-
pled transactions below the threshold labelled as interesting are false negatives, whereas the sampled
transactions labelled as not interesting are true negatives. In addition, all sampled transactions above
the threshold labelled as interesting are true positives, whereas sampled transactions labelled as not
interesting are false positives. An example of a confusion matrix is shown in Figure 2.5.
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True positive, report
to FIU

False positive (type I
error)

False negative (type
II error), report to FUI True negative

TM model
outcome

Will
generate

alert

Will
generate no

alert

Analyst review outcome

Reviewed as
interesting

Reviewed as not
interesting

Confusion matrix

Sensitivity  
(true positive rate) 

TP/(TP + FN) 

Specificity  
(true negative rate)  

TN/(TN + FP)

Accuracy 
(TP + TN)/ 

(TP + TN + FP + FN) 

Positive predictive value
(precision) 

TP/(TP + FP) 

Negative predictive value 
TN/(FN + TN) 

ATL sampling

BTL sampling

BTL + ATL
sampling

BTL + ATL
sampling

BTL + ATL
sampling

Figure 2.5: Example of a confusion matrix including various performance metrics.

With the confusion matrix, the following five performance metrics and their complements can be de-
termined; positive predictive value, negative predictive value, sensitivity, specificity and accuracy. To
determine the positive predictive value, which is presented by the top row of the confusion matrix, it
is only necessary to take a sample of the transactions above the tested threshold. To determine the
negative predictive value, which is given by the bottom row of the confusion matrix, it is only necessary
to take a sample of the transactions below the tested threshold. However, to determine the sensitivity,
specificity or accuracy, it is necessary to take both a sample of the transactions below and above the
tested threshold level. The terminology and derivations from a confusion matrix are summarised in
Appendix A.

Before it is possible to determine the most appropriate threshold level in the threshold tuning pro-
cess, a performance measure must be chosen in conjunction with a criterion, which serves as a stopping
condition for the threshold tuning process. In this thesis, the main focus is on the false omission rate

FN
FN+TN as a measure, which is 1 minus the negative predictive value, since the risk of detection failure is
often an important aspect in the bank’s risk appetite. Furthermore, in this thesis, our own performance
criterion is defined as the Risk Tolerance Level (RTL):

Definition 1. Risk Tolerance level (RTL). The Risk Tolerance Level is the maximum permissible per-
centage X of missed interesting transactions (false negatives) of the sampled transitions below the tested
threshold with a (1− α)× 100% confidence level.

where α is the significance level of a confidence interval, often chosen as 0.05. The back-testing process is
illustrated in Figure 2.6. The only block that changes in the threshold tuning process, when a different
performance measure is chosen, is the yellow block with the possible consequence of sampling transac-
tions below and/or above the tested threshold. Sections 3.3 and 6.5 will discuss in more detail how
the choice for a performance metric other than the false omission rate affects the threshold tuning pro-
cess to determine the most appropriate threshold level which depends on the chosen performance metric.

Back-testing
Test lower/higher

threshold level until
criterion is satisfied

Sampling  
Of transactions below
(and/or above) tested

threshold

Label sampled
transactions 

As interesting or
not

Set
threshold

level

Performance
criterion

i.e false omission rate
<  20%

Rule
For which the most

suitable threshold level
should be determined

Check if criterion is satisfied

Figure 2.6: Illustration of the back-testing process.
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2.3 Problem formulation
As briefly stated in the introduction, the objective of this thesis is to define a threshold tuning strategy
to test threshold levels in an ordered and efficient manner to determine the most appropriate threshold
that satisfies a certain performance criterion. Suppose that the performance of a threshold level is
measured in the false omission rate of a tested threshold level with as a criterion the RTL.

The exploration-exploitation trade-off
The dilemma of finding the most appropriate threshold level, where the risk falls within the bank’s risk
appetite, can be described as a decision problem involving an exploration-exploitation trade-off. The
exploration-exploitation trade-off describes how, when faced with several competing alternatives, a de-
cision maker has to choose between a known good alternative, defined as exploitation, and one or more
unknown but potentially more rewarding alternatives, defined as exploration. In the situation of thresh-
old tuning, a choice has to be made between reviewing transactions from another threshold level than
the threshold level that has the most promising performance at that moment, defined as exploration.
This takes more time but potentially results in a more appropriate threshold level. The other choice is
to continue reviewing transactions from the threshold that has the most promising performance so far,
defined as exploitation. This problem setting, which requires a trade-off between exploration, gathering
enough information about all threshold levels to learn which threshold level is the most suitable, and
exploitation, using the known information to avoid underperforming threshold levels, is reflected by the
multi-armed bandit problem that is introduced by Robbins in 1952 [21].

The multi-armed bandit problem is formulated as follows. A gambler visits a casino and chooses
to play a row of slot machines, each producing a random payout according to some distribution which
is unknown to the gambler. The gambler can learn about the distributions of the slot machines by
pulling different arms, each giving a certain payout. The gambler needs to make a trade-off between
exploiting his existing knowledge and pulling arms that gave the highest payout previously and earning
more in the short term or exploring the other arms to learn the distributions of all arms to receive the
highest payout in the long term. The two-fold goal of the gambler is to develop a sequential strategy to
discover which arm has the highest expected payout and on the other hand maximise his payout while
playing. Translating the two-fold goal to the threshold tuning process would imply the following:

Two-fold threshold tuning objective

• To develop a threshold tuning strategy to determine the most suitable threshold level that satisfies
the performance criterion set beforehand.

• To minimise the amount of sampled transactions that an analyst needs to review to determine
the most suitable threshold level with a (1− α)× 100% confidence level.

Before diving deeper into various threshold tuning strategies to achieve this two-fold objective, Chapter
3 will first describe how the uncertainty that arises during sampling in these threshold tuning strategies
can be quantified.

2.4 Chapter summary
This chapter explained the anti-money laundering transaction monitoring process within banks and
how AML models can be validated. AML models can be evaluated via above-the-line (ATL) and below-
the-line (BTL) testing, taking a sample of the transactions above and/or below the tested threshold
level. To detect money laundering, a scenario and rule is established that should characterise the
criminal behaviour. Depending on the chosen performance metric, a performance criterion can be
defined. Thereafter, in the back-testing process, sampled transactions are reviewed by an analyst with
which a confusion matrix can be created. Depending on the outcome of the reviewed transactions, a
higher or lower threshold level is tested until the most appropriate threshold level that satisfies the
performance criterion is determined.
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Sampling and confidence interval

methods

This chapter describes how the uncertainty that arises during sampling in the threshold tuning process
can be quantified. The back-testing process via BTL and ATL testing discussed in Chapter 2 forms the
basis for the aspects discussed in this chapter.

This chapter is divided into four sections. An important aspect of back-testing threshold levels is
sampling of the transactions below and/or above the tested threshold level. Therefore, Section 3.1 dis-
cusses different random sampling methods. These methods describe different practices on how a sample
can be taken from a population.
Subsequently, Section 3.2 describes how the uncertainty in the sample estimate can be quantified using
a confidence interval since the underlying distribution of the number of usual and unusual transactions
in the population can be described by a binomial distribution. This section provides two performance
criteria to compare five well-known confidence interval methods and explains how the required sample
size can be determined using the confidence interval methods for the binomial distribution.
However, the chosen confidence method described in Section 3.2 is not suitable to determine confidence
interval limits for the sensitivity, specificity, or accuracy as measure since these measures express a
ratio of two random variables with unknown distributions. Therefore, Section 3.3 describes a method
to construct a confidence interval for the sample estimate of a ratio.
Finally, a summary of the important choices that are made in this chapter which will be used further
in this thesis is provided in Section 3.4.

3.1 Random sampling
In Section 2.2, it is described how threshold tuning can be performed by taking a sample from the trans-
actions above and/or below the tested threshold level which is referred to as BTL and ATL testing. In
this section, different techniques how to take a sample from a population of transactions below and/or
above the tested threshold level will be discussed in more detail.

Sampling is the selection of a subset of individual observations from within a statistical population
to estimate the characteristics of the whole population. In this case, the objective of sampling is to
collect samples that are representative of the population. When sampling, it is important to define the
population from which the sample is drawn. A population can be defined as including all observations
with a certain characteristic.

The sampling techniques that will be discussed are probabilistic in nature, implying that each ob-
servation in the population has a specified probability of being included in the sample and that the
actual composition of the sample is random [18]. There are various methods for conducting a random
sample. Common methods of random sampling are simple random sampling, systematic sampling,

11
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stratified sampling and cluster sampling. The difference in sample composition between the different
sampling methods is illustrated in Figure 3.1.

1 2 3 4

5 6 7 8

9 10 11 12

Population Sample

2 5

8 10

1 2 3 4

5 6 7 8

9 10 11 12

Population Sample

1 2 3 4 5 6

7 8 9 10 11 12

Population Sample

3 6

9 12

1 6

7 12

Simple random sampling Systematic sampling

1 2 3 4 5 6

7 8 9 10 11 12

Population Sample

5 6

7 8

Cluster samplingStratified sampling

Figure 3.1: Illustration of sample composition of different probability random sampling methods.

With simple random sampling, each observation has an equal chance of being selected without any
subgroups in the population. In systematic sampling, the population is ordered according to a cer-
tain characteristic. Then observations are selected at a certain interval with a random starting point.
By stratified sampling, the observations are divided into a number of distinct categories (strata) and
a random sample is taken from each stratum as an independent homogeneous sub-population. This
method can be used if one is interested in information about each of a number of subpopulations in
addition to information about the population as a whole [18]. With cluster sampling, the observations
are selected in a certain group (cluster). The difference between cluster and stratified sampling is that
cluster sampling divides a population into groups and then includes all observations of some randomly
chosen groups, whereas stratified sampling divides a population into groups but only includes some
observations of each group. An advantage of cluster sampling is that it can be more cost-effective and
is very suitable for large populations [27].

Overall, the performance and choice of sampling method are mainly dependent on the properties of
the population. In general, stratified and systematic random sampling are more effective than simple
random sampling [12]. However, a major advantage of simple random sampling is its simplicity and
that the technique requires no assumptions about the population.

Therefore, since it is difficult to make assumptions about the unknown population of transactions,
especially concerning the proportion of unusual transactions, the method of simple random sampling is
chosen for back-testing different threshold tuning strategies.

3.2 Confidence interval and sample size methods for the
binomial distribution

In the previous section, it is explained that the transactions below and/or above the tested threshold
level are sampled using ‘simple random sampling’. In this section, different confidence interval methods
for the binomial distribution will be discussed. The advantages and limitations of each method will
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be explained through a simulation study. Afterwards, it will be discussed how the sample size can be
determined from these confidence intervals.

There are various statistical methods to determine the confidence interval for the population proportion
of the binomial distribution. The sample size can be determined using these confidence interval meth-
ods by rewriting the confidence interval formulas. Before discussing the different confidence interval
methods, the definition of a confidence interval is stated.

Definition 2. Confidence Interval (CI). A confidence interval for a population parameter, θ, is a random
interval, calculated from the sample, that contains θ with some specified probability [18].

For example, a 95% confidence interval for a population parameter θ is a random interval that contains
θ with a probability of 0.95. In other words, if one takes many random samples and forms a confidence
interval around each one, about 95% of these intervals would contain θ [18]. To illustrate the concept of
a confidence interval, suppose one draws 20 samples from a population to approximate a 95% confidence
interval for θ. This would mean that on average 5% of the 95% confidence intervals, or 1 out of 20,
would not include θ [18].
Lastly, an interval is called a (1−α)×100% confidence interval if the coverage probability is (1−α)×100%.
Three factors influence the width of a confidence interval given a level of confidence [28]:

• The width of the confidence interval depends on the variance of the sample. If the sample has a
larger variance, the confidence interval will be wider.

• The size of the sample influences the width of the confidence interval. A larger sample size gives
a higher precision and thus a smaller confidence interval, whereby the precision is defined as half
of the expected length of a confidence interval.

• A 99% confidence interval must be wider than a 95% confidence interval, because the interval
must contain the population parameter with more certainty.

3.2.1 CI performance criteria: Coverage Probability and Expected Length
Much research on constructing confidence intervals for a binomial distribution is available in literature.
The two criteria often used to assess the performance of these methods are the Coverage Probability
(CP) and the Expected Length (EL). The Coverage Probability is the actual probability that the interval
contains the true population parameter whereas the ‘nominal coverage probability’ is the confidence level
of a constructed confidence interval which is often set at 95%. The Expected Length is the expected
width of a confidence interval. The binomial distribution probability density function is defined as
follows:

f(k, n, p) = P (X = k) =

(
n

k

)
pk(1− p)n−k (3.1)

for k = 0, 1, 2, ..., n, where
(
n
k

)
= n!

k!(n−k)! .

where k is the number of successes in n trails. Consider a large or infinite population, in which X
is defined as the number of successes, from which a random sample of size n is drawn. Given p
as an unknown population proportion, a two-sided confidence interval with nominal confidence level
(1− α)× 100% can be represented by [L(X), U(X)]. Given a sample size n and population proportion
p the CP and EL are defined as follows [24, 16]:

CP (n, p) =

n∑
k=0

(
n

k

)
pk(1− p)n−kI[L(k),U(k)](p) (3.2)

(with I[a,b](x) = 1 if x ∈ [a, b] and I[a,b](x) = 0, otherwise) and

EL(n, p) =

n∑
k=0

(
n

k

)
pk(1− p)n−k(U(k)− L(k)) (3.3)
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As mentioned before, a confidence interval does not always contain the actual value of the parameter,
but the CP of a random interval [L(X), U(X)] as a solution of equation 3.2 should be (1−α). Further-
more, there is a preference for methods with the smallest EL when both methods have approximately
the same CP [16].

For confidence interval methods for the binomial distribution, a clear distinction can be made be-
tween methods based on a normal approximation and an exact method. The following methods will be
compared:

• Exact method: Clopper-Pearson
• Methods based on normal approximation

– Wald (with a finite population and Yates’ continuity correction)
– Agresti-Coull
– Wilson Score (with a finite population and Yates’ continuity correction)
– Arcsine (with a finite population and Yates’ continuity correction)

These different confidence interval methods are compared because they have been identified in the
literature as having several good properties [16]. In case the CP is taken as criteria to compare the
different confidence interval methods, the methods can be classified into three different groups [24]:

• 1st group: strictly conservative methods, for which the minimum coverage probability is greater
or equal to 1− α− 0.005 for all n ≥ 10 and all p:

min
p

CP (p, n) ≥ 1− α− 0.005, ∀n ≥ 10

• 2nd group: on average correct methods, for which the mean coverage probability is greater or
equal to 1− α− 0.005 for all n ≥ 10:∫ 1

0

CP (p, n)dp ≥ 1− α− 0.005, ∀n ≥ 10

• 3rd group: other methods, which do not belong to group 1 or 2.

Only the first two groups are considered acceptable confidence interval methods. Before delving deeper
into the formulas for the different confidence intervals, the following advantages and disadvantages are
often mentioned in literature for using the exact confidence interval method or the confidence interval
methods based on a normal approximation [16, 4].

Exact method (Clopper-Pearson)
Advantages

• This method is accurate when np < 5 or n(1− p) < 5.
• The calculation of the confidence interval is possible when p = 0 or p = 1.
• No assumption or approximation has to be made about the underlying distribution.

Disadvantage

• The formulas to determine the upper and lower bound of the confidence interval are more complex
and a computer is required to calculate the upper and lower bound.

Normal approximation methods
Advantages

• These methods are in general easy to understand.
• The upper and lower bounds of these methods are easier to calculate by hand.

Disadvantages

• In general, the accuracy suffers when np < 5 or n(1− p) < 5.
• The calculation of the confidence interval is not possible when p = 0 or p = 1.
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3.2.2 Exact method
Clopper-Pearson
The Clopper-Pearson method is considered the golden standard for determining an exact confidence
interval of the probability, based on the binomial probability function [39]. Given α and the sample
proportion p̂ = k

n , the exact confidence limits can be determined by solving the following equations [24]:
n∑

i=k

(
n

i

)
pilower(1− plower)

n−i =
α

2
(3.4)

k∑
i=0

(
n

i

)
piupper(1− pupper)

n−i =
α

2
(3.5)

where plower corresponds to L(X) and pupper corresponds to U(X). For k = 0 and k = n, the solutions
to the equations are explicit:

k = 0; plower = 0, pupper = 1− (α/2)1/n (3.6)

k = n; plower = (α/2)1/n, pupper = 1 (3.7)

For the other cases, the solutions can be determined by the relation [24]:

1− P (X ≤ k − 1) = P (X ≥ k) (3.8)

=

n∑
i=k

(
n

i

)
pi(1− p)n−i =

Γ(n+ 1)

Γ(k)Γ(n− k + 1)

∫ p

0

tk−1(1− t)n−kdt (3.9)

= Ip(k, n− k + 1) = P (X ≤ p) (3.10)
→ P (X ≥ k) = Ip(k, n− k + 1) (3.11)

where Iy(a, b), also called the regularised incomplete beta function, denotes the cumulative distribution
function (CDF) of a beta random variable X with parameters a > 0 and b > 0. The limits of the
interval are equal to the quantiles of the Beta distribution. As result, the Clopper-Pearson confidence
interval is given by [24]:

(plower, pupper) = (βα/2(k, n− k + 1), β1−α/2(k + 1, n− k)) (3.12)

It is not possible to obtain a confidence interval with the exactly specified confidence level, because
there is no closed-form solution, but it is possible to construct a confidence interval that has a coverage
probability of at least (1− α) [24].

A proof of the relation in equation 3.11 is described in the report of Scholz [26] in which two facts
are proven:

1. Let x(p) = P (X ≥ k) and y(p) = Ip(k, n− k + 1). Firstly, it is proven that:

x′(p) =
∂P (X ≥ k)

∂p
=

∂Ip(k, n− k + 1)

∂p
= y′(p) ∀p ≥ 0. (3.13)

2. In addition, it is proven that:

x(p) = P (X ≥ k) = Ip(k, n− k + 1) = y(p) for p = 0. (3.14)

3. From 1 and 2, it can be concluded that P (X ≥ k) = Ip(k, n− k+ 1) for all values of p ≥ 0 which
proves the relation in equation 3.11.

The conclusion in point 3 follows from the fact that x′(p) = y′(p) = f(p) which results in x(p) = y(p)+C.
Furthermore, it is proven that x(0) = y(0) from which follows that C = 0. Therefore, it can be con-
cluded that x(p) = y(p) ∀p ≥ 0 since the functions are continuous which implies the uniqueness of the
solution. A proof of equation 3.11 from which equation 3.12 follows, is given in Appendix C.
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3.2.3 Normal approximation methods
Methods often referred to in literature to determine confidence interval are based on the approximation
of the Bin(n, p) by the N(np, np(1− p)) distribution [24]:

k − np√
np(1− p)

=
k
n − p√
p(1−p)

n

d−→ N(0, 1) (3.15)

and

P

−z1−α/2 ≤
k
n − p√
p(1−p)

n

≤ z1−α/2

 ≈ 1− α (3.16)

where zα/2 and z1−α/2 represent the z scores for the standard normal distribution which describe how
far the score is apart from the mean in units of standard deviations. This method of approximating
the binomial distribution, which is discrete, with the normal distribution, which is continuous, is based
on the Central Limit Theorem (CLT) and is unreliable when the sample size is not sufficiently large
or when the population proportion p is close to 0 or 1. A rule of thumb when these methods may be
used is when np > 5 and n(1−p) > 5 [4]. A well-known normal approximation method is Wald’s method.

Wald’s method
Using p̂ = k

n , the Wald’s confidence interval is given by [24]:

(plower, pupper) = p̂± z1−α/2

√
p̂(1− p̂)

n
=

k

n
± z1−α/2

√
k

n2

(
1− k

n

)
(3.17)

It is important to note that equation 3.17 results in values outside the interval [0,1] which is not possible
for proportions [16]. To avoid this, Wald’s lower and upper bounds are adapted to the formulas in Table
3.2. The lower and upper bound of Wald’s interval can be improved by introducing Yates’ continuity
correction, replacing p̂ by p̃ = p̂± 1

2n [24]. A Continuity Correction has to be applied when a continuous
distribution is used to approximate a discrete distribution. When the sample size is larger than 5% of
the total population when sampling without replacement from a finite population, the estimate of the
standard error must be corrected by multiplying by a Finite Population Correction, FPC =

√
N−n
N−1 to

scale the variance p̂(1−p̂)
n ∗ FPC2 = p̂(1−p̂)

n
N−n
N−1 = p̂(1−p̂)

n N−1
N−n

, replacing n by ñ = nN−1
N−n [41]. The Finite

Population Correction captures the difference between sampling with and without replacement since
the correction term is close to 1 unless the sample is a significant part, i.e. larger than 5%, of the
population which is illustrated in Table 3.1 [20].

n FPC
10 1.000
50 0.998
100 0.995
250 0.987
500 0.975
1000 0.949
5000 0.707
8000 0.447

Table 3.1: The Finite Population Correction term for different sample sizes n for a population size N = 10, 000.

Wilson Score method
The Wilson score method was proposed to determine an asymmetric confidence interval for the propor-
tion p̂ = k

n and is given by [39]:
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(plower, pupper) =
2np̂+ z21−α/2 ± z1−α/2

√
4np̂(1− p̂) + z21−α/2

2(n+ z21−α/2)
(3.18)

=
2k + z21−α/2 ± z1−α/2

√
4k(1− k/n) + z21−α/2

2(n+ z21−α/2)
(3.19)

Yates’ continuity correction and the finite population correction can also be applied to the Wilson score
interval.

Agresti-Coull method
For a 95% confidence interval, z2 = 1.962 ≈ 4 and the midpoint of the Wilson Score interval is equal
to (k + z2/2)/(n + z2) ≈ (k + 2)/(n + 4). Agresti-Coull suggested a simple but effective method of
adding 4 observations to the sample, ñ = n + z2 of which 2 are successes and 2 failures, k̃ = k + z2

2 ,
then p̃ = k̃

ñ = 1
n+z2 (k + z2

2 ) and then applying Wald’s confidence interval [24]:

(plower, pupper) =
k + 2

n+ 4
± z1−α/2

√
k + 2

(n+ 4)2

(
1− k + 2

n+ 4

)
(3.20)

Arcsine method
The Arcsine method is based on the approximate normal distribution after a stabilising transformation
has been applied to the variance [24]:

arcsin

√
k

n

d−→ N

(
arcsin

√
p,

1

4n

)
(3.21)

Applying Yates’ continuity correction improves the performance resulting in higher coverage probabili-
ties [24, 2]. The finite population correction can also be applied to the Arcsine interval.

The lower and upper bounds of the confidence interval for the proportion p of the discussed meth-
ods are summarised in Table 3.2, which are also presented in the paper [24].



3.2. Confidence interval and sample size methods for the binomial distribution 18

Methods Lower bound L(X) Upper bound U(X)
Clopper-
Pearson
k = 0 0 1− (α/2)1/n

0 < k < n βα/2(k, n− k + 1) β1−α/2(k + 1, n− k)
k = n (α/2)1/n 1
Wald

max

(
k
n − z1−α/2

√
k
n2 (1− k

n ); 0

)
min

(
k
n + z1−α/2

√
k
n2 (1− k

n ); 1

)
Agresti-
Coull

max

(
k+2
n+4 − z1−α/2

√
k+2

(n+4)2

(
1− k+2

n+4

)
; 0

)
min

(
k+2
n+4 + z1−α/2

√
k+2

(n+4)2

(
1− k+2

n+4

)
; 1

)
Wilson
Score

2k+z2
1−α/2−z1−α/2

√
4k(1−k/n)+z2

1−α/2

2(n+z2
1−α/2

)

2k+z2
1−α/2+z1−α/2

√
4k(1−k/n)+z2

1−α/2

2(n+z2
1−α/2

)

Arcsine

k = 0 0 sin2

(
min

(
arcsin(

√
k/n) +

z1−α/2

2
√
n

; π
2

))
0 < k < n sin2

(
max

(
arcsin(

√
k/n)− z1−α/2

2
√
n

; 0

))
sin2

(
min

(
arcsin(

√
k/n) +

z1−α/2

2
√
n

; π
2

))
k = n sin2

(
max

(
arcsin(

√
k/n)− z1−α/2

2
√
n

; 0

))
1

Table 3.2: The lower and upper bounds L(X) and U(X) of a (1−α)× 100% confidence level for a two-sided
confidence interval for p for different confidence interval methods.

3.2.4 Simulation study on Coverage Probability and Expected Length
To compare the different methods to determine a confidence interval, a simulation study is conducted
in which the different confidence interval methods are compared on the following two criteria:

• Coverage Probability, as defined in equation 3.2.
• Expected Length, as defined in equation 3.3.

To determine which confidence interval method is most appropriate to use in this thesis, three require-
ments are formulated which are as follows:

Requirements for confidence interval method

• Firstly, the confidence interval method should guarantee a Coverage Probability at least equal to
the nominal Coverage Probability.

• In addition, there is a preference for a confidence interval method that has the smallest EL when
more methods have approximately the same Coverage Probability.

• Lastly, it is preferred that the confidence interval method can always be used, independent of the
population proportion of interesting transactions.
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Simulation study
For the simulation study, the Coverage Probability for the five confidence interval methods, Wald, Wil-
son Score, Agresti-Coull, Arcsine and Clopper-Pearson, is determined via equation 3.2. Subsequently,
the Expected Length was also determined for the five confidence interval methods via equation 3.3.
The simulation study is conducted for a small, medium, and large sample size, n = 50, n = 250, and
n = 500, to assess the influence of a larger sample size on the accuracy of the Coverage Probability and
the influence on the size of the Expected Length of a confidence interval.
In addition, the simulation study is conducted for a small, medium, and large population, N = 500, N =
1000, and N = 10, 000, to assess the influence of a larger population on the accuracy of the Coverage
Probability and the influence on the size of the Expected Length of a confidence interval. Yates’ conti-
nuity correction and the finite population correction are applied to the confidence interval based on the
normal approximation to ensure that the Coverage Probability should not become less accurate for a
smaller population N . The results for the Coverage Probability for samples size 50, 250, and 500 and
population size 500, 1000, and 10,000 for a 95% confidence interval are illustrated in Figure 3.2. The
Coverage Probability (CP) is shown on the y-axis and the population proportion p on the x-axis for
p = [0.01, 0.02, ..., 0.98, 0.99].

Simulation study results: based on the Coverage Probability (CP)
Figure 3.2 shows that the CP of the Wald confidence interval with continuity and finite population
correction for values close to p = 0 and p = 1 is reasonably smaller than the nominal CP for a smaller
sample size, which is visible in Figures 3.2a, 3.2b and 3.2c. Furthermore, the CP of the Agresti-Coull
confidence interval with continuity and finite population correction is around the nominal CP but is
regularly smaller than the nominal CP. In addition, the CP of the Arcsine confidence interval with
continuity and finite population correction is often above the nominal CP but can be smaller than the
nominal CP. Finally, an analysis of the CP for the Wilson Score with continuity and finite population
correction and Clopper-Pearson confidence interval shows that the minimal CP is always larger than the
nominal CP. Based on the results of Figure 3.2, the five confidence interval methods can be classified
as follows:

• 1st group - strictly conservative methods: the Wilson Score with continuity and finite population
correction and the Clopper-Pearson methods belong to this group for a 95% confidence interval.
It is also stated in literature that the Clopper-Pearson confidence interval is a strictly conservative
method [1].

• 2nd group - on average correct method: the Arcsine and Agresti-Coull with continuity and finite
population correction methods belong to this group for a 95% confidence interval. The Agresti-
Coull confidence interval is currently mainly recommended for large samples [16].

• 3rd group - other: the Wald with continuity and finite population correction method belongs to
this group for a 95% confidence interval. Furthermore, it is important to note that for k = 0 or
k = n, Wald’s interval has zero length. In these two cases, it is advisable to use the Clopper-
Pearson equations. Finally, Wald’s confidence interval is unsuitable to use for small samples and
skewed data [41].

These results are in line with the results in the papers [24, 16] in which the Wilson Score with continuity
correction and Clopper-Pearson are classified as strictly conservative methods, the Arcsine transform
with continuity correction and Agresti-Coull are classified as on average correct methods and Wald’s
method is classified as the third group for a 95% confidence interval.
Based on the results of the CP, the Wilson Score with continuity and finite population correction and
the Clopper-Pearson methods are the most reliable and therefore the most suitable to be used to deter-
mine a confidence interval for the proportion of interesting transactions. Since the CP of both methods
is comparable, an analysis of the Expected Length, i.e the expected width of a confidence interval, is
performed, in which there is a preference for the confidence interval method with the smallest EL. The
results for the Expected Length for samples size 50, 250, and 500 and population size 500, 1000, and
10,000 for a 95% confidence interval are illustrated in Figure 3.3.
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(a) n = 50, N = 500 (b) n = 50, N = 1000

(c) n = 50, N = 10000 (d) n = 250, N = 500

(e) n = 250, N = 1000 (f) n = 250, N = 10000

(g) n = 500, N = 1000 (h) n = 500, N = 10000

Figure 3.2: The Coverage Probabilities (CP) of Wald, Agresti, Wilson Score, Arcsine and Clopper-Pearson
confidence interval methods for α = 0.05.



3.2. Confidence interval and sample size methods for the binomial distribution 21

Simulation study results: based on the Expected Length (EL)
From an analysis of Figure 3.3, it is visible that a larger sample size results in a smaller EL, comparing
Figures 3.3a, 3.3b, and 3.3c with Figures 3.3g and 3.3h.
In addition, it becomes clear that the EL is comparable for the Clopper-Pearson and the Wilson Score
confidence interval with continuity and finite population correction when the sample size is a small
fraction of the population, i.e. the sample size is less than or equal to 5 per cent of the population,
which is the case in Figures 3.3b, 3.3c, 3.3f, and 3.3h. However, in the case that the sample size is a
large fraction of the population, i.e. the sample size is more than 5 per cent of the population, the
difference in the EL for the Clopper-Pearson and the Wilson Score confidence interval with continuity
and finite population correction is clearly visible in Figures 3.3d, 3.3e, and 3.3g, whereby the EL for the
Clopper-Pearson confidence interval is a reasonably smaller than the EL for the Wilson Score confidence
interval.
Lastly, the EL of the Clopper-Pearson confidence interval is smaller than the EL for the Wilson Score
confidence interval for a sample size of 250 or larger, even though it is negligible when the sample size
is less than 5 per cent of the population.

As a final remark, the choice of the confidence interval method depends on the desired degree of
conservativeness and which population proportions are expected. If it is expected that the population
proportion will not be close to 0 or 1, then the Wilson Score confidence interval could be used. If for
instance CP (n, p) ≥ 1− α is mandatory, Clopper-Pearson is an appropriate method.

Conclusion
To summarise, the requirements for the most suitable confidence interval method were described at the
beginning of Section 3.2.4. In this thesis, the Clopper-Pearson confidence interval method is chosen to
determine the confidence interval for the population proportion of interesting transactions, because this
method always guarantees a CP that is at least equal to the nominal CP. Secondly, the Clopper-Pearson
method has the smallest EL. Lastly, a considerable advantage is that the Clopper-Pearson method can
always be used, regardless of the proportion of interesting transactions in the population. Although it
is unlikely that the proportion of interesting transactions in a population will be close to 1, proportions
close to 0 cannot be excluded and the conditions np > 5 and n(1− p) > 5 cannot be guaranteed to be
satisfied.
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(a) n = 50, N = 500 (b) n = 50, N = 1000

(c) n = 50, N = 10000 (d) n = 250, N = 500

(e) n = 250, N = 1000 (f) n = 250, N = 10000

(g) n = 500, N = 1000 (h) n = 500, N = 10000

Figure 3.3: The Expected Length (EL) for Wilson Score and Clopper-Pearson confidence interval methods for
α = 0.05.
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3.2.5 Translation to sample size methods
Before the confidence interval limits of the sample estimate can be determined, a sample has to be taken
from the population of transactions. The required sample size n, which is the number of transactions
that need to be reviewed by an analyst, can be determined using the confidence intervals described in
Table 3.2. A well-known method to determine the required sample size is Wald’s confidence interval.

Wald’s sample size
The required sample size can be determined by inverting Wald’s confidence interval where the margin
of error e represented by equation 3.23 is defined as one-half the length of the confidence interval. To
determine the required sample size, with certain Coverage Probability and with a desired margin of
error e, it is necessary to replace the population approximation p̂ with a preliminary point estimate
for p0 for the population proportion of interesting transactions. Rewriting equation 3.23, whereby, the
population approximation p̂ is replaced by preliminary point estimate p0 results in the required sample
size n presented in equation 3.25, rounded up to the nearest integer.

(plower, pupper) = p0 ± z1−α/2

√
p0(1− p0)

n
(3.22)

e = z1−α/2

√
p0(1− p0)

n
(3.23)

n =

⌈
(z1−α/2)

2p0(1− p0)

e2

⌉
(3.24)

When it is difficult to make a preliminary point estimate p0 because no previous study on the population
proportion is available, the conservative p0 = 0.5 can be chosen, which maximises equation 3.24.

The sample size formula that follows from Wald’s adapted upper and lower bounds in Table 3.2 is given
by [16]:

n =


⌈
(z1−α/2)

2p0(1−p0)

(e−p0)2

⌉
, 0 ≤ p0 < e

2⌈
(z1−α/2)

2p0(1−p0)

e2

⌉
, e
2 ≤ p0 ≤ 1− e

2⌈
(z1−α/2)

2p0(1−p0)

(e−(1−p0))2

⌉
, 1− e

2 < p0 ≤ 1

(3.25)

Agresti-Coull sample size
Applying this approach to the Agresti-Coull confidence interval to determine the required sample size
results in the same required sample size as when Wald’s confidence interval method is used, because
the Agresti-Coull confidence interval is the same as Wald’s confidence interval, only with a modified
proportion p̃ = k̃

ñ = 1
n+z2 (k + z2

2 ).

Wilson Score sample size
It is not possible to invert the Wilson Score confidence interval to get an analytic solution for the
required sample size. However, the sample size can be determined with another approach. Given the
Wilson Score confidence interval in equation 3.18 in which the population approximation p̂ is replaced
with a preliminary point estimate p0:

(plower, pupper) =
2np0 + z21−α/2 ± z1−α/2

√
4np0(1− p0) + z21−α/2

2(n+ z21−α/2)
(3.26)

The required sample size n to get a certain Coverage Probability and with a desired margin of error e,
can be determined by solving the following system of non-linear equations [39]:
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pupper ≤

2np0+z2
1−α/2+z1−α/2

√
4np0(1−p0)+z2

1−α/2

2(n+z2
1−α/2

)

plower ≥
2np0+z2

1−α/2−z1−α/2

√
4np0(1−p0)+z2

1−α/2

2(n+z2
1−α/2

)

pupper − plower < 2e

(3.27)

This system of non-linear equations can be solved using a solver function such as scipy.optimize.fsolve()
in Python. The sample size that follows from solving the system of non-linear equations will be rounded
up to the nearest integer.

Arcsine and Clopper-Pearson sample size
This approach of solving a system of non-linear equations can also be applied to the Arcsine and Clopper-
Pearson confidence interval to determine the required sample size by replacing the right-hand side of
the upper two equations with the lower and upper bounds of the Arcsine and Clopper-Pearson confi-
dence interval as presented in Table 3.2. This approach results in three systems of non-linear equations
for the Arcsine and Clopper-Pearson confidence interval, each system for one of the three cases. The
three systems of non-linear equations applied to the Arcsine and Clopper-Pearson confidence interval
are described in Appendix B.

It is important to note that the Wald, Agresti-Coull, Arcsine and Wilson Score confidence interval
methods are based on the normal approximation of the binomial distribution. The rule of thumb for
using these methods is when np > 5 and n(1 − p) > 5 and p is not close to 0 or 1. Therefore, it
is recommended not to use these methods to determine the sample size when it is expected that the
population proportion of interesting transactions could be close to 0 or 1.

Sample size results
For α = 0.05 and α = 0.01 and a margin of error equal to 0.05, 0.04 and 0.03 the required sample sizes
that follow from equation 3.25 and equation, 3.27 in which the upper and lower bounds of a chosen
confidence interval method are applied to the right-hand side of the upper two equations for preliminary
point estimates 0.01 < p0 < 0.99 are presented in Figure 3.4. The sample size using the Agresti-Coull
method is not shown in the figure, since this method results in the same sample size as Wald’s method.

(a) Comparison of the required sample size for a 95% and 99%
confidence interval. (b) Comparison of the required sample size for different e.

Figure 3.4: A comparison of the required sample size with different confidence interval methods for a 95% or 99%
confidence interval with a margin of error e = 0.05, 0.04 and 0.03

First of all, Figure 3.4a shows that the required sample size increases for a confidence interval with a
higher confidence level, 1 − α. The required sample size approximately doubles for a 99% confidence
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interval compared to a 95% confidence interval. This is as expected since the confidence interval must
in this case contain the population parameter 99 out of 100 times instead of 95 out of 100 times, which
results in a larger required sample size.

In addition, Figure 3.4b shows that the required sample size increases for a smaller margin of error
which is equivalent to a narrower confidence interval. This is also as expected since the confidence
interval becomes less wide when a larger sample of the population is taken.
Figures 3.4a and 3.4b are presented separately for each confidence interval method in Figures B.1 and
B.2 in Appendix B.1.

The required sample sizes that are determined with different confidence interval methods for prelimi-
nary point estimates between 0.05 < p0 < 0.5 are presented in Table 3.3 for a 95% confidence level and
in Table 3.4 for a 99% confidence with a margin of error equal to e = 0.05. The required sample size
determined with the Agresti-Coull method is not presented in the table, since this method results in the
same sample size as Walds method. Tables 3.3 and 3.4 show that the required sample size determined
with Wald’s, Wilson Score or the Arcsine method, results in a comparable sample size and the required
sample size determined with Clopper-Pearson confidence interval results in the largest sample size.

p0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Wald 73 139 196 246 289 323 350 369 381 385
Wilson 83 141 196 245 286 320 347 366 377 381
Arcsine 72 138 195 245 287 322 349 368 380 383
Clopper-Pearson 94 158 215 264 306 341 367 387 398 402

Table 3.3: The required sample size with different confidence interval methods for α = 0.05 and e = 0.05 for
preliminary point estimates p0.

p0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Wald 127 239 339 425 498 558 604 637 657 664
Wilson 144 244 339 422 494 552 598 631 651 657
Arcsine 124 237 337 423 496 556 602 635 655 662
Clopper 149 258 356 442 515 574 620 654 673 680

Table 3.4: The required sample size with different confidence interval methods for α = 0.01 and e = 0.05 for
preliminary point estimates p0.

Conclusion
In this thesis, the Clopper-Pearson confidence interval is chosen to determine the confidence interval
upper bound for the unknown population proportion of interesting transactions. Therefore, in this
thesis, the Clopper-Pearson confidence interval will also be used to determine the required sample
size because the determined sample size with the Clopper-Pearson confidence interval guarantees a
(1 − α) × 100% confidence level only for the Clopper-Pearson confidence interval. To determine the
sample size for BTL testing, it is chosen to set the preliminary point estimate p0 equal to the RTL.
With BTL threshold tuning, different threshold levels are tested to determine the threshold level for
which the upper bound of the false omission rate (proportion of FN transactions) is smaller than the
RTL, i.e pupper < RTL. By choosing p0 = RTL, the true population proportion p, which will be smaller
than pupper with (1 − α) × 100% certainty, will also be smaller than p0 with (1 − α) × 100% certainty.
As consequence, the sample size determined with p0 results in a confidence interval with a width that
is at most two times the margin of error. Lastly, the same sample size will be chosen for ATL and BTL
testing in this thesis.
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3.3 Confidence interval using bootstrapping
The Clopper-Pearson method is not suitable to determine the lower and upper confidence interval limits
for the measures sensitivity, specificity and accuracy. The reason for this is that these measures express a
ratio of two random variables with unknown distributions. Therefore, a different approach is required to
determine a confidence interval for these measures. In literature, various parametric approximations for
constructing confidence intervals around a ratio estimator have been proposed. However, the sampling
distribution of these measures is unknown which is a reason to be cautious with parametric techniques
[3]. A non-parametric bootstrap confidence interval is potentially a more suitable method to construct
a confidence interval for these measures since it does not depend on parametric assumptions of the
sampling distribution [3].

3.3.1 Bootstrap estimation of the sampling distribution
Bootstrapping, a computational non-parametric technique for ‘re-sampling’, makes it possible to draw
a conclusion about the characteristics of a population strictly from the existing sample rather than by
making parametric assumptions about the estimator.

Suppose a particular population which has an unobserved probability distribution F from which a
random sample S of size n is taken. The aim is to determine the statistic of interest to make statements
about population parameter θ based on the sample from the population which is illustrated in the first
three steps in Figure 3.5. The bootstrap method considers the observed random sample as an empirical
estimate of the probability distribution [3]. Afterwards, B random samples of size n are drawn from S
with replacement which results in the bootstrap samples as illustrated in steps four and five in Figure
3.5. Subsequently, the statistic of interest θ is calculated for each bootstrap sample. The empirical
distribution of the resulting values θ∗1 , θ

∗
1 , ..., θ

∗
B is a good approximation of the sampling distribution

θ̂ if B is large as illustrated in steps six and seven in Figure 3.5. A confidence interval can then be
constructed using the sampling distribution.

Population Random
sampling

Reviewed
sample

Re-sampling
with

replacement

Bootstrap
samples

Statistic of
interest 

Sampling
distribution

Figure 3.5: Illustration of the bootstrap method for a tested threshold level to determine the sampling population
of the statistic of interest.

The sample estimate for sensitivity, also known as true positive rate (TPR), specificity, also known as
true negative rate (TNR), and accuracy (ACC) can be determined via the following formulas, as already
briefly described in Figure 2.5:
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ˆTPR =
TP

TP + FN
=

p̂an

p̂an+ p̂bn
=

p̂a
p̂a + p̂b

sensitivity (3.28)

ˆTNR =
TN

TN + FP
=

(1− p̂b)n

(1− p̂b)n+ (1− p̂a)n
=

(1− p̂b)

(1− p̂b) + (1− p̂a)
specificity (3.29)

ˆACC =
TP + TN

TP + TN + FP + FN
=

p̂an+ (1− p̂b)n

p̂an+ (1− p̂b)n+ (1− p̂a)n+ p̂bn

=
p̂a + (1− p̂b)

p̂a + (1− p̂b) + (1− p̂a) + p̂b
accuracy (3.30)

where p̂a is the proportion of interesting transactions in the sample above the tested threshold, i.e. the
positive predictive value, and p̂b the proportion of interesting transactions in the sample below the
tested threshold, i.e. the false omission rate.

Suppose that the sensitivity is the measure of interest, i.e. θ = TPR. Since the sample estimate
for sensitivity is estimated using two statistics p̂a and p̂b from two samples, one sample below the tested
threshold level Sb and one sample above the tested threshold level Sa, the bootstrap estimate of the
sampling distribution of the sensitivity can be obtained using the following procedure:

Two-stage bootstrap process:

1. Sample with replacement n observations from both the BTL and ATL samples Sb and Sa to
calculate p∗a and p∗b which are the bootstrap estimates of p̂a and p̂b.

2. The bootstrap estimate of the sensitivity is then given by:

θ∗ =
p∗a

p∗a + p∗b
(3.31)

Repeating this two-stage process B times results in a vector of bootstrap estimates which is the em-
pirical sampling distribution of the sensitivity statistic θ̂. The expectation of the empirical sampling
distribution is denoted by [3]:

θ̄∗ =
1

B

B∑
i=1

θ∗i (3.32)

The bootstrap estimate of the standard error of the estimator is given by the standard deviation of the
empirical sampling distribution [3]:

σ̂∗ =

√√√√ 1

B − 1

B∑
i=1

(θ̄∗ − θ∗i)2 (3.33)

The approximation of the sampling distribution becomes arbitrarily accurate by taking B arbitrarily
large [18]. In practice, there are no formal rules regarding the number of required bootstrap replications
for a reliable estimation of the sampling distribution.

3.3.2 Bootstrap confidence interval
After determining the sampling distribution for the estimator expressed as a ratio, e.g. the sensitivity,
of a tested threshold level, the paper of Briggs [3] describes four commonly used methods to determine
a confidence interval for the estimator.

1. Normal approximation method: the idea of this method is to take the bootstrap estimate of
standard error and assume that the sampling distribution of the estimator is normal. The Wald
confidence interval then results in a (1−α)×100% confidence interval for the estimator. However,
this method may be misleading if the sampling distribution of the estimator is not normal [3].
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This results in the (1− α)× 100% confidence interval:(
θ̂ − zα/2σ̂∗, θ̂ + zα/2σ̂∗

)
(3.34)

2. Percentile method: the idea of this method is to use the quantiles of the sampling distribution
θ̂. The (α2 )× 100 and (1− α

2 )× 100 quantile values of the bootstrap sampling distribution θ̂ are
used as upper and lower confidence interval limits:(

θ∗α/2, θ
∗
1−α/2

)
(3.35)

The advantage of this method is its simplicity. However, the percentile method assumes that the
bootstrap replicates of the estimator are unbiased [3], making this method not suitable if the ratio
estimators θ∗1 , θ

∗
1 , ..., θ

∗
B are biased.

3. Bias corrected and accelerated (BCa) percentile method: this is a modification of the percentile
method taking into account a possible bias and skewness correction in the sampling distribution
of θ̂. The adjusted percentiles are given by [3]:

α1 = Φ

(
ẑ +

ẑ + zα/2

1− â(ẑ + zα/2)

)
(3.36)

α2 = Φ

(
ẑ +

ẑ + z1−α/2

1− â(ẑ + z1−α/2)

)
(3.37)

where Φ is the standard normal cumulative distribution function and zα the 100α percentile point
of the standard normal distribution. In addition, ẑ = Φ(Q) adjusts the sampling distribution for
the bias of the estimator, where Q is the proportion of bootstrap replicates which are less than
the sample estimate θ̂ [3]. Moreover, â adjusts for the skewness of the sampling distribution θ̂. It
is recommended to use a jackknife estimate for â [3]:

â =

∑n
i=1(θ̄

∗∗ − θ̂∗∗i )3

6[
∑n

i=1(θ̄
∗∗ − θ̂∗∗i )2]3/2

(3.38)

with θ̄∗∗ = (
∑n

i=1 θ̂
∗∗
i )/n and θ̂∗∗i jackknife replicate of θ̂ without the ith observation. The per-

centiles from equations 3.36 and 3.37 correspond to those from the percentile method if â and
ẑ are zero. Although the BCa percentile method does not make assumptions on the sampling
distribution, it does make parametric assumptions on the distribution of the observed bias, which
is a potential weakness of this method [3].

4. Percentile-t method: in this case is each bootstrap replicate θ∗ of the estimator transformed into
a standardised variable t∗, given by:

t∗i =
θ∗i − θ̂

σ̂∗i (3.39)

where σ̂∗i is calculated by another round of bootstrapping, requiring substantially more com-
putations which is a considerable drawback of this method. This results in the percentile-t
(1− α)× 100% confidence interval:(

θ̂ − t∗1−α/2σ̂
∗, θ̂ + t∗1−α/2σ̂

∗
)

(3.40)

To summarise, if it is preferred to make a statement about the sensitivity, specificity, or accuracy of
a tested threshold level with a (1 − α) × 100% confidence level, bootstrapping and one of the above-
mentioned bootstrap confidence interval methods can be used.

However, bootstrapping to determine the confidence interval bounds of the sampling distribution of
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the sensitivity, specificity, or accuracy for each tested threshold level is computationally more intensive
than for the false omission rate or positive predictive value with the Clopper-Pearson confidence interval.
The difference in computation time is demonstrated in Section 3.3.3. Once the sampling distribution
is determined, the confidence interval limits can be determined relatively easily if the sampling distri-
bution of one of the chosen measures appears to have a normal distribution, allowing the application
of the normal approximation method. It is also relatively simple to determine the confidence interval
limits if the bootstrap replicates of the estimator are unbiased, making it possible to use the percentile
method. However, if this is not the case, the BCa percentile method can be used, but the parameters ẑ
and â should be determined and this method has the drawback that it makes parametric assumptions
on the distribution of the observed bias.

3.3.3 Simulation of computational time for bootstrap CI
A short simulation is performed to demonstrate the relative intensive computational time of bootstrap-
ping to determine a confidence interval for the sensitivity, accuracy or specificity in comparison to the
required computational time to determine a confidence interval for the false omission rate or positive
predictive value using the Clopper confidence interval. In this simulation, a confidence interval for
sensitivity is determined for case study 1, which is described in Chapter 5, for threshold level 10. First,
a BTL and ATL sample is taken of sample size n and the transactions in the two samples were re-
viewed as interesting (1) or not (0) resulting in two labelled samples. The simulation is performed with
B = [1000, 5000, 10, 000] bootstrap samples.
Then, through the two-stage bootstrap process, the sampling distribution of the sensitivity can be
determined as illustrated in Figure 3.6. It appears that the sampling distribution for sensitivity for
case study 1 of threshold level 10 has a normal distribution which makes it possible to use the normal
approximation method to determine a confidence interval for the sensitivity. Finally, a confidence in-
terval can be determined for the sensitivity using equation 3.34 with a (1− α)× 100% confidence level.
The time required to determine the confidence interval for the sensitivity, the false omission rate and
the positive predictive value are presented in Table 3.6. It can be concluded that the time required
to determine the confidence interval for the false omission rate and positive predictive value with the
Clopper-Pearson confidence interval is significantly shorter than the time required to determine the
confidence interval for the sensitivity with bootstrapping. It is worth noting that the time depends on
the exact algorithm, the computer used and whether other programmes are active, but these results do
show a distinct difference in the computational time.

However, this computational time to determine a confidence interval for sensitivity is negligible in
comparison to the time it takes an analyst to review the BTL and ATL samples of n = 264 transactions
for one threshold level. Assuming an analyst takes at least 10 minutes to review one transaction, review-
ing 2*264 transactions takes about 88 hours, compared to the 70 seconds to determine the confidence
interval for sensitivity with bootstrapping with 10,000 bootstrap samples.

(a) B=1000 (b) B=5000 (c) B=10000

Figure 3.6: The sampling distribution of the sensitivity of case study 1 of threshold level 10 with n = 264.
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B θ θ̄∗ CI for θ pb p̂b CI for pb pa p̂a CI for pa
1000 0.4885 0.4697 (0.3968,

0.5426)
0.2367 0.2614 (0.2094,

0.3188)
0.2261 0.2311 (0.1816,

0.2867)
5000 0.4885 0.4691 (0.3938,

0.5444)
0.2367 0.2614 (0.2094,

0.3188)
0.2261 0.2311 (0.1816,

0.2867)
10000 0.4885 0.4695 (0.3942,

0.5448)
0.2367 0.2614 (0.2094,

0.3188)
0.2261 0.2311 (0.1816,

0.2867)

Table 3.5: Confidence intervals determined with Clopper Pearson for pa and pb and with bootstrapping for θ, with
θ = TPR (sensitivity) and n = 264.

B CI for θ CI for pb CI for pa
1000 5.26868 0.00092 0.00258
5000 33.96111 0.00059 0.00065
10000 70.77295 0.00049 0.00035

Table 3.6: Required time in seconds to compute the confidence interval with Clopper Pearson for pa and pb and
with bootstrapping for θ, with θ = TPR (sensitivity) and n = 264.

3.4 Chapter conclusions
In this section, a summary of the important choices that were made in this chapter is provided. The
choices that were made, which will be used further in this thesis, are the following:

1. Simple random sampling is chosen as random sampling method.
2. The Clopper-Pearson confidence interval method is chosen as the confidence interval method to

determine the confidence interval for the measures false omission rate or positive predictive value.
3. The required sample size is determined with the Clopper-Pearson method.
4. Bootstrapping with one of the four appropriate bootstrap confidence interval methods is chosen

as the method to determine the confidence interval for the measures sensitivity, accuracy or
specificity.



4
Methodology

In this chapter, different threshold tuning strategies used in this thesis are described in more detail. The
current transaction monitoring process and back-testing via BTL and ATL testing discussed in Chapter
2 form the starting point for the tuning strategies discussed in this chapter. In this thesis, the main
focus is on the false omission rate as measure to quantify the risk of missing interesting transactions
below a threshold level, as stated at the end of Section 2.2.

This chapter is divided into several sections. First, the model framework, for the decision problem
that is briefly introduced in Section 2.3, will be described in more detail in Section 4.1 and forms the
basis for the different threshold tuning strategies.
To address the second research objective, two threshold evaluation approaches to quantify the risk of
missing interesting transactions below a threshold level are discussed in Section 4.2 .
To address the first research objective, different tuning strategies are discussed in Sections 4.3 and 4.4.
Two static threshold tuning strategies are discussed in Section 4.3. For these strategies, there is no
exploration phase but only an exploitation phase to determine the most appropriate threshold level.
Subsequently, in Section 4.4, two dynamic threshold tuning strategies are discussed, combining an ex-
ploration and exploitation phase to determine the most appropriate threshold level.
Furthermore, to accelerate the threshold tuning process, Section 4.5 discusses two methods to reduce
the number of transactions that need to be reviewed. Finally, the evaluation metrics used throughout
the thesis experiments are discussed in Section 4.6.

4.1 Model framework
The decision problem introduced in Section 2.3 involving an exploration-exploitation trade-off is re-
flected in the multi-armed bandit problem. An analyst can choose between two options while reviewing
transactions. As a first option, an analyst can choose to review transactions from another threshold
level than the threshold level that has the most promising performance at that moment which is defined
as exploration. On the other hand, an analyst can choose to continue reviewing transactions from the
threshold that has the most promising performance so far which is defined as exploitation. A mathe-
matical framework for this problem is described in the book Bandit Algorithms by Tor Lattimore and
Csaba Szepesvári [22].

The multi-armed bandit framework is a sequential game with a learner and an environment, in an
environment class ε, which is unknown to the learner. The game is repeated T rounds which is called
the horizon. In each round t ∈ [T ], the learner first chooses an action At from a set of K actions
A = {1, 2, ...,K} and then receives a reward Rt ∈ R from the environment. The learner chooses his next
action based on the past which means that At depends only on the past Ht−1 = (A1, R1, ..., At−1, Rt−1).
The learner chooses a particular policy (decision strategy) to choose actions that lead to the maximum
cumulative reward over all T rounds, defined as

∑T
t=1 Rt.

31
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For all bandit problems, two assumptions are made [22]:

1. The learner observes the reward in every round.
2. The learners available choices and rewards in the future are not affected by their current or past

decisions.

In the context of threshold tuning, the first assumption means that every time an analyst reviews a
transaction, the analyst observes whether the transaction is interesting or not. The second assumption
means that the number of possible threshold levels and their suitability remain the same during the
threshold tuning process.

Translation to the threshold tuning process
The multi-armed bandit framework can be translated to the threshold tuning process. The environment
of the threshold tuning process can be described as an action set from which an analyst can choose
to review a transaction from a sample from different threshold levels A = {1, ...,K}. The output of a
reviewed transaction from the sample can be defined as Yt = {0, 1} with an unknown probability vector
µ = [0, 1]k, such that the probability that Yt = 1 is µa given the analyst chose as action At = a. Assume
that the false omission rate FN

FN+TN , i.e. the proportion of interesting transactions below the tested
threshold level, is chosen as measure for the threshold tuning process. The Risk Tolerance Level (RTL)
is chosen as performance criterion, as defined in definition 1. For BTL testing, for each interesting (1)
or not interesting (0) transaction that an analyst has reviewed of a certain threshold level, both the
proportion of interesting transactions p̂ and the upper bound for the proportion pupper can be updated.
Given a RTL, the difference, d, between the RTL and pupper for threshold level i at time t can then be
determined via:

di(t) = RTL− pupper,i(t) for i = 1, ...,K (4.1)

rounded to two decimals. Suppose that 20% is chosen as the maximum allowed percentage of missed
interesting transactions below a tested threshold level, with other words RTL = 0.2. This has the con-
sequence that the difference di(t) between the RTL and the upper bound of the proportion is between
-0.8 and 0.2 since the upper bound of the proportion is always between 0 and 1, thus di(t) ∈ [−0.8, 0.2].
A small positive difference indicates that the tested threshold level is close and below the most appropri-
ate threshold level. If the difference is larger, this implies that the tested threshold level is considerably
lower than the most appropriate threshold level.
On the other hand, a small negative difference indicates that the tested threshold level is close to and
above the most appropriate threshold level. If the difference is larger, this implies that the tested
threshold level is considerably higher than the most appropriate threshold level.

Definition of reward function
To define an appropriate reward function, the aim is to assign a large reward when there is a small
difference between the RTL and pupper for a threshold level. In addition, it is preferable to assign a
higher reward to a small positive difference d, where the tested threshold level is just below the optimal
threshold level, than to a small negative difference d, where the tested threshold level is just above the
optimal threshold level. To achieve this, the following reward function is defined:

Ri(t) =


1

di(t)
∗ w if di(t) > 0

1
0.005 if di(t) = 0 for i = 1, ...,K

| 1
di(t)
| if di(t) < 0

(4.2)

where w is a weight to assign more reward to threshold levels with a positive difference, where pupper
is below the RTL instead of above the RTL. The rewards for the rounded difference di(t) are between
the values 1.25 if di(t) is equal to 0.8 and 100 if di(t) is equal to 0.01 except when di(t) is equal to zero,
which would result in an infinite reward. Therefore, it is chosen to assign a reward of 1

0.005 = 200 if
the rounded difference di(t) is equal to zero, which has as result that Ri(t) ∈ [1.25, 200]. The average
reward is then defined as:

µ̂i(t) =

∑t
s=1 Ri(s)I{Is=i}

nt,i
for i = 1, ...,K (4.3)
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where nt,i =
∑t

s=1 I{Is=i} is the number of transactions an analyst has reviewed for threshold level i
until the end of round t.

Definition of rounds
The rounds can be defined as each review of a transaction from a sample of a certain threshold level
performed by an analyst. Suppose there are K = 20 threshold levels with each a sample of n = 250 trans-
actions. In this case, the maximum amount of rounds is 5000 if an analyst would review all transactions.

In the threshold tuning process, an analyst has two options. The analyst can choose for no explo-
ration phase and directly test/exploit a threshold level. Should the tested threshold level appear to not
be the most suitable, a new threshold level can then be chosen for testing. In this case, no time is lost
in the exploration phase in which the performance of different threshold levels is discovered, but some
time is lost if one of the first tested threshold levels appears not to be the most suitable. This has the
consequence that several threshold levels have to be tested before the most suitable threshold level is
determined.

On the other hand, the analyst can choose to first explore the performance of different threshold
levels before the analyst tests/exploits the most promising threshold level after the exploration phase.
In this case, time is lost in the exploration phase in which the performance of different threshold levels
is discovered, but time is probably gained in the exploitation phase since the most promising threshold
level after the exploration phase is possibly close to the most suitable threshold level. For example, an
analyst can decide to explore different threshold levels during a time horizon of T = 1000 and to exploit
the most promising threshold level after that moment.

Objective of analyst
The objective of the analyst is to minimise the rounds needed to determine the most suitable threshold
level with a (1− α)× 100% confidence level.

Now that the action set, the reward function and the objective are defined, a threshold tuning strategy
can be defined to determine the most appropriate threshold level with as few reviews of transactions as
possible. Before delving deeper into various threshold tuning strategies, two possible threshold evalua-
tion approaches are discussed in Section 4.2, describing which transactions above or below a threshold
can be sampled since no clear guidelines are given in Comptroller’s Handbook about Model Risk Man-
agement [23].

4.2 Threshold evaluation approaches
In Section 2.1.1, back-testing of threshold levels via Above-the-line (ATL) and Below-the-line (BTL)
testing was introduced. However, to be able to test different threshold levels, suitable threshold values
must be determined first.

Explanatory example 1
In the example of smurfing, different threshold levels can be chosen for back-testing. As a simplified
example, suppose the data analysis of transaction volumes to foreign accounts shows that the transac-
tion volumes are between 0 and 80,000 euros in a specific period. The transaction volume is defined as
the total sum of transactions from one bank account in the measured period. The transaction volumes
between 0 and 80,000 euros can be discretised with multiple threshold levels. Suppose that the decision
is made to discretise the transaction volumes per 5,000 euro. This implies that transaction volumes
between 0 and 5,000 euros fall between threshold levels 0 and 1, transaction volumes between 5,000 and
10,000 fall between threshold levels 1 and 2, etc.

In this thesis, transactions are discretised with fixed threshold levels with a certain fixed width be-
tween two threshold levels which is the same between all threshold levels.
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4.2.1 Complete population approach
For BTL testing, to get a clear picture of the population proportion of interesting transactions below
the threshold level that is evaluated, it is logical to take a sample of all transactions between level 0
and the threshold level that is evaluated. On the other hand, for ATL testing, it makes sense to take
a sample of all transactions between the threshold level that is evaluated and all transactions above it.
In this thesis, this approach is defined as the complete population approach and is illustrated in Figure
4.1.

Complete population
approach

Tested
level

Tested
level

1 2 3 4 5 7 8 960 1 2 3 4 5 7 8 960

n n

Below The Line (BTL) testing Above The Line (ATL) testing

Figure 4.1: Illustration of the complete population approach for BTL and ATL testing.

Subsequently, the proportion of interesting transactions in the sample, the sample proportion, can be
determined. Afterwards, the lower and upper bound for the sample proportion can be determined
with the Clopper-Pearson confidence interval. The Clopper-Pearson confidence interval will contain the
population proportion with a (1− α)× 100% confidence level using this approach. This has the advan-
tage that a clear statement can be made about the proportion of interesting transactions for a certain
threshold level. Suppose that, with BTL testing, the upper bound for the proportion of interesting
transaction volumes is determined to be equal to pupper, then the following statement can be made.

The proportion of interesting transactions in the population below threshold level L is with a (1−α)×100%
confidence level less or equal to pupper.

4.2.2 Bucket approach
Another approach is to take a sample of the transactions that are below or above the threshold level but
close to the threshold level that is evaluated. A reason to only take a sample of transactions that are
close to the threshold level that is evaluated, is that these transactions may be more representative of the
proportion of interesting transactions than transactions further below or above the threshold level that is
evaluated. In this thesis, this approach is defined as the bucket approach and is illustrated in Figure 4.2.

Below The Line (BTL) testing Above The Line (ATL) testingBucket approach

Tested
level

1 2 3 4 5 7 8 960

Tested
level

1 2 3 4 5 7 8 960

n n

Figure 4.2: Illustration of the bucket approach for BTL and ATL testing.

However, a major disadvantage of this approach is that the number of interesting transactions further
below or above the evaluated threshold level is unknown as illustrated in Figure 4.3. Continuing with
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exploratory example 1, suppose that the threshold level equal to value 25,000 is evaluated with the
bucket approach for BTL testing. A sample of the transactions between values 20,000 and 25,000 is
taken to determine the proportion of interesting transactions. This proportion will be an estimate
of the blue area in Figure 4.3a divided by the sample size without taking the red areas into account
when determining the proportion. The proportion of interesting transactions between values 20,000 and
25,000 is a local minimum, which has as a consequence that a large group of interesting transactions
below value 20,000 are missed with the bucket approach. As a result, the proportion of interesting
transactions between values 20,000 and 25,000 is considerably lower than the actual proportion of
interesting transactions between values 0 and 25,000. In this case, it can be incorrectly concluded that
the threshold level which is set equal to the value 25,000 satisfies the RTL while this is not the case.
The bucket approach has the risk of not knowing whether a large group of interesting transactions is
missed which makes it impossible to make a statement about the proportion of interesting transactions
with a (1− α)× 100% confidence level.

n

(a) With the bucket approach.

n

(b) With the complete population approach.

Figure 4.3: Illustration of the difference between the bucket and complete population approach.

With the complete population approach, the red areas are included when the threshold level equal to
value 25,000 is evaluated, which is illustrated in Figure 4.3b. Therefore, the risk of not knowing how
many interesting transactions are missed does not apply to the complete population approach.

4.3 Static threshold tuning strategies
Now that all elements to define a threshold tuning strategy are introduced, various threshold tuning
strategies can be explained in more detail. The threshold tuning strategies are divided into static and
dynamic strategies and are defined in this thesis as follows:

Definition 3. Static strategy A static strategy involves only an exploitation phase and no exploration
phase.

Definition 4. Dynamic strategy A dynamic strategy involves both an exploitation and exploration phase.

This section describes two static strategies using the complete population approach for BTL testing
where a sample is taken from transactions between the tested threshold level and level 0. Subsequently,
in Section 4.4, two dynamic strategies are described to get an indication of the advantage of the explo-
ration phase. For the bucket approach, the threshold tuning strategies work in the same manner. In
addition, the tuning strategies are the same for ATL testing, except that instead of taking a sample
from transactions below the threshold level, a sample from transactions above the threshold level is
taken.

Before a threshold tuning strategy can be applied, all transactions in the simulated data set should
first be labelled. The transactions in the simulated data set are labelled as interesting with ones and
are labelled as not interesting with zeros with some underlying distribution which is described in more
detail in Chapter 5. Thereafter, the transaction data is partitioned between threshold levels i = 1, ...,K
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with a fixed width between the different threshold levels. Lastly, for each threshold level i, a sample
of the transactions above Si,a and a sample of the transactions below Si,a should be taken. After the
simulated transaction data set is set up, a threshold tuning strategy can be applied. The first and
perhaps the most obvious strategy is the ‘step strategy’.

4.3.1 Step strategy
The purpose of the tuning strategy is to determine the highest threshold level for which the RTL is
satisfied. At the start, the tuning strategy needs to determine a first threshold level to test. In principle,
any level can be chosen to start with, but experts or data analysts may already have some idea of what
a suitable threshold level might be. For BTL testing for the step strategy, the lowest logical threshold
level is chosen as the first threshold level to test with the expertise of experts. In this thesis, the lowest
logical threshold level is simulated by choosing a random lowest logical level between 10 and 30 per
cent of the number of threshold levels in which the transaction volumes are partitioned. In the case of
K = 20 threshold levels, this means that the lowest logical level is chosen randomly between 2 and 6.

The idea of the step strategy is to test one level lower than the tested threshold level i if pupper,i ≥ RTL
and to test one level higher than the tested threshold level i if pupper,i < RTL which is presented in
equation 4.4.

Lnext =

{
Li + 1 if pupper,i < RTL

Li − 1 if pupper,i ≥ RTL
(4.4)

where Li is the threshold level that is checked by the analyst and Lnext is the threshold level that the
analyst should test next. This process of testing different threshold levels is repeated until the highest
threshold level i is determined for which holds that pupper,i < RTL. The idea of the step strategy is
described in an algorithmic form in recursive Algorithm 2 in Appendix E.1.

The step strategy is illustrated in Figure 4.4 in 2 situations. In situation A∗, level 3 is the first tested
threshold level. A sample of the transactions between levels 0 and 3 is used to determine the lower
and upper confidence bound for the proportion of interesting transactions. Suppose that the upper
confidence bound for level 3 is lower than the RTL, i.e. pupper,3 < RTL, then the next step is to test
threshold level 4 with the same procedure. This process is repeated up to level 8, but at level 8 the
sample of transactions between levels 0 and 8 results in an upper confidence bound for the proportion of
interesting transactions higher than the RTL, i.e. pupper,8 > RTL. This indicates that threshold level
7 is the highest threshold level for which the upper bound of the proportion of interesting transactions
is below the RTL. Therefore, the optimal threshold level, in this case, is level 7.
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Figure 4.4: Illustration of the step strategy in combination with the complete population approach for BTL tuning.
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In situation B∗, a sample of the transactions is used to determine the lower and upper confidence bound
for the proportion of interesting transactions. Suppose that the upper confidence bound for level 3 is
higher than the RTL, then the next step is to test threshold level 2 with the same procedure. For
level 1, the sample of transactions between levels 0 and 1 results in upper confidence bound for the
proportion of interesting transactions lower than the RTL. This indicates that threshold level 1 is the
highest threshold level for which the upper bound of the proportion of interesting transactions is below
the RTL. Therefore, the optimal threshold level, in this case, is level 1.

A possible drawback of the step strategy is that a large number of transactions have to be reviewed and
quite some threshold levels have to be tested if, for example, the optimal threshold level would have
been threshold level 15. However, this drawback can be diminished with the bisection strategy.

4.3.2 Bisection strategy
The bisection strategy follows mostly the same procedure as the step strategy except for the first
threshold level to test and how it chooses the next threshold level to test. The verb bisect means
divide into two parts which is the idea for this strategy. Suppose there are K = 20 possible threshold
levels to test, the first step is to test threshold level 10, which divides the transactions into two parts,
transactions below level 10 and transactions above level 10. If the upper confidence bound for the
proportion of interesting transactions is lower than the RTL, the next step is to choose the middle
level between levels 20 and 10, which is (rounded up) level 15. If the upper bound for the proportion
of interesting transactions is higher than the RTL, the middle level between levels 0 and 10 is chosen,
which is (rounded up) level 5. This procedure of dividing the transactions in two parts is repeated until
the optimal threshold level is determined which is presented in equation 4.5.

Lnext =

{⌈
Li +

Lmax−Li

2

⌉
if phigh,i < RTL⌈

Li − Li−Lmin

2

⌉
if phigh,i ≥ RTL

(4.5)

where Lmin and Lmax are the minimum and maximum checked threshold level by the analyst and
equal to Lmin = 0, Lmax = K at the beginning. The idea of the bisection strategy is described in an
algorithmic form in recursive Algorithm 3 in Appendix E.2.

For the bisection strategy, unlike the step strategy, it is possible to determine in advance the maximum
number of threshold levels that have to be tested to determine the most appropriate threshold level.
Suppose the transactions are partitioned with K threshold levels, then the maximum number of levels
to be tested, m, equals: ⌈

K ∗
(
1

2

)m⌉
= 1 (4.6)

Suppose one chooses to partition the transaction volumes with K threshold levels, then the maximum
of m threshold levels that should be tested with the bisection strategy as presented in Table 4.1.

k 5 10 15 20 25 30 35 40
m 3 4 4 5 5 5 6 6

Table 4.1: The maximum of m threshold levels that should be tested with the bisection strategy given one chooses
to partition the transactions with K threshold levels.

This is a noteworthy advantage when partitioning the transactions with more threshold levels. Suppose
one chooses to partition the transactions with K = 40 threshold levels instead of 20 threshold levels.
By partitioning the transactions with more threshold levels, it is possible to make a more accurate
estimation of the proportion of interesting transactions, since the width between two threshold levels is
narrower. In this case, the maximum number of threshold levels that could be tested only changes from
5 to 6, while the width between two threshold levels becomes twice as small, making the proportion
estimate more accurate.
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Figure 4.5: Illustration of the bisection tuning strategy in combination with the complete population approach for
BTL tuning.

The bisection strategy is illustrated in Figure 4.5 in 2 situations. Comparing situation A∗ of Figure 4.4
to situation C∗, it is immediately visible that the bisection method can determine the optimal threshold
level faster, in the sense that fewer transactions and threshold levels need to be reviewed, if the most
appropriate level is considerably some levels above level 0. In situation C∗ the bisection strategy starts
at level 5, then continues with level 8 and finally checks level 7. In this case, 6 ∗ n transactions need to
be reviewed with the step strategy to reach level 7, while only 3 ∗ n transactions need to be reviewed
with the bisection strategy to reach level 7. However, comparing situation B∗ of Figure 4.4 to situation
D∗, it becomes clear that the step method can determine the optimal threshold level faster when the
most appropriate level is only a few levels above level 0. In situation D∗, the bisection strategy starts at
level 5, then continues with level 3, then level 2 and finally tests level 1. Whereas only 3∗n transactions
need to be reviewed with the step strategy to reach level 1, 4 ∗ n transactions need to be reviewed with
the bisection strategy to reach level 1.

Situation D∗ demonstrates that starting at the middle threshold level by default can sometimes be
disadvantageous resulting in the situation that more transactions and threshold levels need to be re-
viewed to determine the optimal threshold level than with the step strategy. This shortcoming can be
enhanced by using an exploration phase to get a first indication of the proportion of interesting trans-
actions for different threshold levels. Thereafter, the analyst can choose to test the most promising
threshold level as a starting point. This idea is described by the multi-level strategy in Section 4.4.1.

4.4 Dynamic threshold tuning strategies
In the previous section, it is described that the step and bisection strategy have no exploration phase and
that the analyst tests various threshold levels until the most appropriate level is determined. This saves
time because there is no exploration phase but could result in a longer exploitation phase than necessary.
In this Section, the multi-level and Boltzmann exploration strategies are described in more detail. The
multi-level strategy explores a few threshold levels before it continues with the most promising threshold
level in the exploitation phase. In the Boltzmann exploration strategy, the exploration phase is further
extended by exploring all threshold levels.

4.4.1 Multi-level strategy
The multi-level strategy follows mostly the same procedure as the step and bisection strategy but a
short exploration phase is added to this strategy. The idea of the multi-level strategy is to make a first
guess of the proportion of interesting transactions by reviewing a part of the transactions in the sample
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of a few threshold levels, defined as the exploration phase. Thereafter, this strategy continues with the
most promising threshold level in the exploitation phase with the step or bisection strategy. The idea
of the multi-level strategy is described in an algorithmic form in Algorithm 4 in Appendix E.3.

Suppose again that K = 20 and that the percentage of threshold levels that will be explored equals
x = 0.2, implying the exploration of K ∗ x = 20 ∗ 0.2 = 4 threshold levels. In addition, 1

K∗x = 1
4 part

of the transactions in the samples, equivalent n∗ transactions in the sample, of these threshold levels
will be explored. One can choose to review a smaller or larger portion of a sample, for example, 10%
or 50% of the transactions in the sample in the exploration phase, making the estimate less or more
accurate. However, the main idea of the exploration phase is to get an initial idea of the suitability of
certain threshold levels. Therefore, it is chosen to explore 1

K∗x part of the transactions in the samples.
The four threshold levels, Li, that will be explored, are determined as follows:

Li =

⌈
K ∗ j + 1

K ∗ x+ 1

⌉
(4.7)

for j = [0, 1, ...,K ∗ x]. In this case, this results in threshold levels i = 4, 8, 12, 16 to explore. In the
situation that the upper confidence bound of the proportion of interesting transactions greater is than
the RTL for all four explored threshold levels, the lowest threshold level is chosen to continue within
the exploitation phase.
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Figure 4.6: Illustration of the multi-level strategy in combination with the complete population approach for BTL
tuning.

The multi-level strategy is illustrated in Figure 4.6 in two situations. Suppose that in situation E∗, the
first guesses of the proportion of interesting transactions are both below the RTL and it is decided to
exploit threshold level 7 as the first threshold level. Then, from level 7 onward, the step or bisection
strategy can be used. On the other hand, assume that the first guesses of the proportion of interesting
transactions are both above the RTL in situation F ∗. In this case, it is chosen to exploit threshold level
3 as the first threshold level. Then, from level 3 onward, the step or bisection strategy can again be used.

To summarise, with the multi-level strategy, unlike the static threshold tuning strategies, a few thresh-
old levels are explored by an analyst who reviews a subset of sampled transactions before continuing
with the most promising threshold level to exploit. However, this idea, to explore not just a few but
all threshold levels, can be extended even further to minimise the amount of sampled transactions that
need to be reviewed by an analyst.

Over time, an extensive number of algorithms have been formulated to address this problem. Methods
that imply a binary choice between exploitation (the greedy choice) and exploration (uniform probabil-
ity over a set of actions) are known as semi-uniform methods [40]. The simplest variant is the ϵ-Greedy
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strategy. In each round, the ϵ-Greedy algorithm chooses with probability ϵ a random threshold level
from which one transaction will be reviewed (exploration) and with probability 1− ϵ the threshold level
that has the highest average reward (exploitation) from which one transaction will be reviewed. The
main disadvantage of this strategy is that non-optimal threshold levels are still chosen, even after it is
identified that these threshold levels are not optimal. Therefore, this strategy is not the most efficient
to minimise the required amount of sampled transactions that need to be reviewed to determine the
most appropriate threshold level. More details on the ϵ-Greedy algorithm are described in Appendix E.

Another category of strategies is probability matching methods that choose actions according to a prob-
ability distribution that reflects how likely the actions, in this case the different threshold levels, are to
be optimal [40]. A well-known probability matching strategy is Boltzmann exploration, also known as
the Softmax strategy.

4.4.2 Boltzmann exploration strategy
Remember the definitions of difference d, reward R and average reward µ̂ which were stated in Section
4.1 and relevant for the Boltzmann exploration strategy:

di(t) = RTL− pupper,i(t) for i = 1, ...,K

rounded on two decimals.

Ri(t) =


1

di(t)
∗ w if di(t) > 0

1
0.005 if di(t) = 0 for i = 1, ...,K

| 1
di(t)
| if di(t) < 0

µ̂i(t) =

∑t
s=1 Ri(s)I{Is=i}

nt,i
for i = 1, ...,K

Boltzmann exploration is a classic strategy for sequential decision-making under uncertainty which, in-
stead of uniformly exploring all threshold levels which is the case with semi-uniform methods, chooses
each threshold level with a probability that is proportional to its average reward. This strategy selects
a threshold level using a Boltzmann distribution, given initial empirical means µ̂0(0),...,µ̂K(0) [21]:

pselect,i(t+ 1) =
eµ̂i(t)/τ(t)∑K
j=1 e

µ̂j(t)/τ(t)
, i = 1, ...,K (4.8)

where τ is called the temperature factor, controlling the randomness of the choice to explore a threshold
level. In this thesis, it is decided to review 1

50 of the transactions from the sample from each threshold
level to determine the initial empirical means µ̂1(0),...,µ̂K(0), since it provides an estimate of the average
reward for each threshold level but does not require a lot of time from an analyst. It is also possible to
choose the initial rewards µ̂1(0) = v,...,µ̂K(0) = v equal to some value v, or to review more transactions
from the sample from each threshold level to determine the initial empirical means µ̂1(0),...,µ̂K(0) with
more certainty, but some choice had to be made.

When τ is small, the overall exponential element of each threshold level is exponentially proportional
to their current return. As a result, threshold levels with a higher average return will have a higher
chance of being chosen in the exploration phase. When τ → ∞, the overall exponential element of all
threshold levels approaches a resultant value of 1, and the algorithm chooses threshold levels uniformly
at random.
This strategy could be modified in the same manner as the ϵ-Greedy strategy into decreasing Boltzmann
exploration where τ decreases with a particular function with the number of rounds played, for instance
τ(t) = τ(0)/t. Unfortunately, it is noted in literature that determining the correct schedule for τ(t) is
difficult in practice [5]. More precisely, a schedule may choose sub-optimal threshold levels too often
even after having estimated all the average rewards correctly, or commit too early to a sub-optimal
threshold level and never return to a better threshold level. In Chapter 5, a few schedules for τ(t) will
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be compared to determine which schedule results in the best performance for the Boltzmann exploration
strategy for different case studies.

In this thesis, no other bandit algorithms are researched to keep the focus on researching whether
dynamic threshold tuning strategies which have an exploration phase are more efficient than static
threshold tuning strategies which have no exploration phase. A strategy is more efficient if fewer sam-
pled transactions need to be reviewed by an analyst to determine the most appropriate threshold level.
The Boltzmann exploration strategy is described in an algorithmic form in Algorithm 5 in Appendix E.4.

The objective for all threshold tuning strategies is to minimise the required reviews to determine the
most suitable threshold level with a (1−α)×100% confidence level. However, there are two methods to
reduce the required reviews for all threshold tuning strategies in a simple manner which are described
in Section 4.5.

4.5 Methods to reduce the required reviews
This section describes two simple methods to reduce the number of required reviews. The first method
is defined as the ‘early break-off principle’ for BTL testing and is described in more detail in Section
4.5.1. Subsequently, Section 4.5.2 describes how reusing reviewed transactions can further reduce the
required reviews. It is interesting to explore methods that can reduce the number of reviews, as this
can greatly reduce the workload for an analyst.

4.5.1 Early break-off principle
For BTL testing, it is not always necessary to review all transactions of the sample to determine whether
pupper < RTL. Suppose that a threshold level is tested with a sample of n = 250 transactions and that
RTL = 0.2. After reviewing 150 transactions, 51 transactions are reviewed as interesting transactions.
At this moment the upper bound for proportion interesting transactions is at least k

n = 51
250 = 0.204

which is higher than the RTL although not all transactions in the sample are reviewed. In this case,
it is unnecessary to review the remaining 100 transactions, as the proportion k

n can only increase for
the tested threshold level. Therefore, the review process for the threshold level can be terminated
prematurely which is defined as the ‘early break-off principle’. The threshold tuning strategies can
continue in the normal manner for the case that pupper > RTL. In this case, the time required to
review the other 100 transactions in the sample is saved with the ‘early break-off principle’, resulting in
a more efficient procedure to determine the most suitable threshold with a threshold tuning strategy.
This principle can also be applied to ATL testing in the situation that the proportion of interesting
transactions is below some specified minimum productivity tolerance level.

4.5.2 Reusing information of a previously reviewed sample
Another method to reduce the required reviews is reusing information collected during the threshold
tuning process.

Situation that previous tested level is lower than the current tested level
Suppose that the previous tested threshold level is level 5 and the current tested threshold level is level
6 as illustrated in Figure 4.7. In this case, for BTL testing, the transactions between level 0 and 5 in
the sample of threshold level 6, S6, provide no new information compared to the information collected
from the transactions in the sample of level 5, S5, which is illustrated in the left image in Figure 4.7
with the orange line. Only the transactions above level 5 provide new information about the proportion
of interesting transactions for threshold level 6 which is illustrated with the green line. Suppose the
sample size is n = 250 and there are 20 transactions in the sample of threshold level 6, S6, above the
value of threshold level 5, VL5. In this case, the analyst can review the 20 transactions from sample
S6 above VL5 and reuse the information of 250 − 20 = 230 reviewed transactions from sample S5. A
random sample of 230 transactions is taken from sample S5 and combined with the 20 transactions
from sample S6 to determine the proportion of interesting transactions for threshold level 6. This will
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save the analyst the time required to review 230 new transactions.
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Figure 4.7: Illustration of reusing part of a reviewed sample when the previous tested threshold level was higher.

On the other hand, for ATL testing, the analyst can reuse the information of reviewed transactions
from sample S5 above the value of threshold level 6, VL6. Suppose again that n = 250 and there are
210 transactions in the sample of threshold level 5, S5, above the value of threshold level 6, VL6. In
this case, the information of 210 reviewed transactions from sample S5 can be reused. In addition,
the analyst needs to review 250 − 210 = 40 transactions from sample S6. A random sample of 40
transactions is taken from S6 and combined with the 210 transactions from sample S5 to determine the
proportion of interesting transactions for threshold level 6 as illustrated in the right image in Figure 4.7.

Situation that previous tested level is higher than current tested level
Figure 4.8 illustrates the situation where the previous threshold level tested is higher than the current
tested threshold level. In this case, reusing the collected information is reversed for BTL and ATL
testing. For BTL testing, the analyst can reuse the information of reviewed transactions from sample
S6 below the value of threshold level 5, VL5. The difference between the number of transactions that
can be reused and the sample size n can be supplemented with transactions from sample S5, again
via a random sample, to determine the proportion of interesting transactions for threshold level 5 as
illustrated in the left image in Figure 4.8.
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Figure 4.8: Illustration of reusing part of a reviewed sample when the previous tested threshold level was lower.

In contrast, for ATL testing, the analyst can reuse the information of reviewed transactions from sample
S6. Only the transactions below level 6 provide new information about the proportion of interesting
transactions for threshold level 5. In this case, the analyst can review the transactions below VL6 from
sample S5, for instance 30 transactions, and reuse the information of 250− 30 = 220 reviewed transac-
tions from sample S6, via a random sample, to determine the proportion of interesting transactions for
threshold level 5 as illustrated in the right image in Figure 4.8.
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In this chapter, various threshold tuning strategies have been described in detail from which natu-
rally the question arises how the performance of the threshold tuning strategies can be compared and
quantitatively evaluated, which is described in Section 4.6.

4.6 Evaluation metrics
The performance of the various threshold tuning strategies will be evaluated with three case studies.
Two aspects are important in the evaluation of performance. The first aspect is the required amount of
transactions that need to be reviewed by an analyst to determine the most appropriate threshold level,
in other words, the duration of the threshold tuning process.
In addition, it is important to know whether the most appropriate threshold level determined with a
threshold tuning strategy with sampling corresponds to the most suitable true threshold level based on
the true transaction population. The difference between the found threshold level Tstrategy, based on
a sample of the transactions, and true threshold level Ttrue, based on the population of transactions
without sampling can be defined as:

Dthreshold = Ttrue − Tstrategy. (4.9)

In Section 5.2, it will be explained in more detail how the transactions are randomly generated following
some distribution and how the transactions are randomly labelled as interesting (1) or not interesting
(0) following some distribution. This has the consequence that the number of reviews and the difference
can vary a bit each time a threshold tuning strategy is executed due to the random generation of the
distributions and random sampling.

In this thesis, the choice is made to repeat the threshold tuning strategies 25 times for a particular
case study in which a transaction population is randomly generated following some distribution in each
run. In each run, the amount of required reviews and the difference between the found and true thresh-
old level is determined. The choice was made to repeat the threshold tuning strategies 25 times since
the maximum, median and minimum of the number of required reviews and the difference between the
found and true threshold level stabilise after 25 runs for case study 1 as illustrated in Figures G.1 and
G.2 in Appendix G.1. The same conclusion could be drawn for case studies 2 and 3.

4.6.1 Performance evaluation of threshold tuning strategies
To be able to quantify the performance of a threshold tuning strategy and compare it with the other
threshold tuning strategies, the following preferences have been defined:

• The number of reviews: There is a preference for a threshold tuning strategy that requires as few
reviews of transactions as possible to determine the most appropriate threshold level.

• The difference: There is a preference for a threshold tuning strategy with a small difference since
this implies that the found threshold based on the sample is close to the true threshold based on
the population. In addition, there is a preference for a positive difference rather than a negative
difference, since a positive difference indicates that the found threshold level is lower than the
true threshold level which is a safe choice for BTL testing. On the other hand, if the difference
is negative, this indicates that the found threshold level is higher than the true threshold level
which implies that the RTL will not be satisfied for the transaction population. Therefore, it is
preferred to prevent the situation that the difference is negative.

• The spread in performance of a tuning strategy: There is a preference for a threshold tuning
strategy for which the spread in the required amount of reviews and difference to determine
the most appropriate threshold level is as small as possible over 25 runs. A threshold tuning
strategy has a more stable performance if the strategy often requires reviewing a similar number
of transactions and the difference between the found and true threshold level is often the same,
in comparison to a strategy where the required amount of reviews and the difference fluctuate
more. The spread over the 25 runs will be illustrated with box plots showing the maximum, 75%
quantile, median, 25% quantile, and minimum values.



5
Experiments

In this chapter, the set up of synthetic data sets based on tree case studies and different experiments
conducted in this thesis are described in more detail.
This chapter is divided into several sections. In Section 5.1 three common money laundering scenarios
are presented to give more insight into criminal behaviour and how criminals try to circumvent the
law. Subsequently, Section 5.2 explains how the money laundering scenarios described in Section 5.1
are employed to construct a labelled synthetic transaction data set to evaluate the various threshold
tuning strategies. Lastly, Section 5.3 describes the purpose of the different experiments that will be
executed in this thesis.

5.1 Case studies
In this thesis, the threshold tuning strategies presented in Sections 4.3 and 4.4 are applied to three
different case studies to evaluate their performance. There are almost no publicly available labelled
transaction data sets in which transactions are labelled as unusual or not. However, various money
laundering scenarios that financial institutions face are publicly available and can be employed to
construct a labelled transaction data set. Some examples of money laundering scenarios that are
publicly available are [32]:

• Money laundering with an exchange market in combination with smurfing. This method involves
large amounts of illegally obtained cash. This case will be discussed in more detail and is used as
a case study in this thesis.

• Money laundering with derivatives. A derivative contract is a bet placed on the movement of
some underlying market factor. This case will be discussed in more detail and is used as a case
study in this thesis.

• Money laundering through charities and non-profit organisations (NPOs). The operational model
for many NPOs involves cash-intensive fundraising, with numerous combined small cash donations
before being deposited into a bank account, and financial transfers to high-risk countries where
funds can be deployed for humanitarian work which provides an ideal cover for money laundering.
This case will be discussed in more detail and is used as a case study in this thesis.

• Money laundering with trade finance. This method is very complicated to detect since the volume
of trade flows, the complexities of foreign exchange transactions and the involved long-supply
chains indicate that the flows of illicit funds can be hidden from view.

More examples of money laundering scenarios and typologies are publicly available and described by
the FIU-NL [36, 38].
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5.1.1 Case study 1: detecting smurfing of cash deposits
Consider money laundering with an exchange market in combination with smurfing. This case study is
based on the following money laundering scenario ‘black market peso exchange’ [33]. In this scenario,
dollars owned by a drug cartel in the US are exchanged for pesos in Columbia with the help of a broker.
In addition, goods are exported from the US to Colombia, since goods can move across borders, but
moving money is more complicated. This money laundering scenario between the US and Colombia
can be described in 7 steps and is illustrated in Figure 5.1 based on [33].

1. As the first step, a Colombian cartel exports drugs to the US which are sold there. This generates
large amounts of cash dollars for which the Colombian cartel arranges a broker to buy the dollars
generated by the sale of these drugs.

2. The broker then arranges to sell the dollars to a local importer in Colombia who wants to pay an
American supplier for goods, to be exported from the US to Colombia.

3. The broker then arranges for his representative in the US to collect the dollars for the cartel.
4. Subsequently, the broker uses these dollars to pay the American supplier for the goods for export.

This can be done, for example, by placing the cash into multiple bank accounts controlled by the
broker using structured deposits and then forwarding the funds to the supplier via wire transfers.

5. The American supplier exports the goods to Colombia where they are received by the Colombian
importer.

6. The Colombian importer, having received the imported goods, pays the broker in pesos.
7. Finally, the broker now has pesos to pay the Colombian cartel, which he does, after having taken

his commission.

In the fourth step, one or more banks are involved and have a responsibility to report unusual transac-
tions. Under the Bank Secrecy Act, banks and other financial institutions have the obligation to report
cash transactions exceeding 10,000 dollars [14]. In this case, criminals can try to circumvent the law by
structuring large amounts of cash into several small cash deposits which is behaviour that banks will
try to detect. In Section 5.2, it will be further explained how a labelled data set can be constructed
based on this money laundering scenario.

Cash from
drugs sales

Broker's
representative

Drugs Goods

Retail goods
supplier

Colombian
importerBrokerColombian

cartel

Colombia

USA

US dollars US dollars

Pesos Pesos

Figure 5.1: Case study 1: detecting smurfing of cash deposits illustrated with an exchange deal [33].
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5.1.2 Case study 2: detecting unusual profits from derivatives
Consider money laundering through derivatives. A derivative is a type of financial contract, set between
two or more parties, that derives its value from an underlying asset or group of assets. This case study
is based on the following money laundering scenario [37]. In this scenario, a Russian criminal organi-
sation wants to launder criminally obtained funds through trading. This money laundering scenario is
illustrated in Figure 5.2 based on [37]. Important terminology is to understand the difference between
a short and long position on a contract. An investor is said to go ‘long’ on a contract if the investor
is betting that a price will increase in value. Contrarily, if an investor goes ‘short’ on a contract, the
investor bets that the underlying value will decrease [37].
This method for laundering illegal funds is difficult to detect since the complexity of derivatives and the
derivatives market provide perfect cover for hiding money laundering activities [37]. This is because it
is fairly normal that market participants only know the identity of the broker and not of others. This
money laundering scenario can be described in 5 steps.

1. Illicit funds are deposited into a brokerage account, Account A, controlled by a complicit broker.
2. The broker will go both long and short on a particular commodity during a trading day, closing

out both positions at the end of the day. Thereafter, the broker will assign the losses to Account
A, reducing the balance of the account with the ‘dirty’ funds, and assign the profits to Account
B, thus producing more ‘clean’ money.

3. As the next step, the broker will go long and purchase derivative contracts for a particular com-
modity and at the same time, the broker will also go short and sell the same number of derivative
contracts for the particular commodity. Later in the trading day, the broker goes back to the
market and closes out the two open positions.

4. Now assume the price of the underlying commodity has decreased, meaning that the long position
has lost money ad the short position resulted in a profit. The broker then assigns the long (losing
position) to Account A and the short (winning position) to Account B.

5. Thereafter, the profit of the winning position will be less than the amount of the loss of the losing
position. This difference is the price of laundering the money.

Suppose the winning position has made a profit of 50,000 euros and the losing position has made a loss
of 60,000 euros, then it will cost 60,000 euros in ‘dirty’ money to generate 50,000 euros in ‘clean’ money.
If a particular bank account often results in a profit or loss that is considerably higher or lower than
standard gains or losses, this may be an indication of unusual transaction behaviour and require further
investigation. In Section 5.2, it will be further explained how a labelled data set can be constructed to
detect unusual profits or losses of derivatives.

Bank
account A

Bank
account B

Broker

Long position
(loss)

Short position
(profit)

Illicit funds Laundered
funds

Profit assigned
by broker to
account B

Losses assigned
by broker to
account A

Figure 5.2: Case study 2: detecting unusual profits from derivatives [37].
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5.1.3 Case study 3: detecting unusual financial transaction to high-risk
countries

Consider money laundering through charities and NPOs with financial transfers to high-risk countries.
A list of countries that are designated high-risk countries by the FATF and the European Commission is
published three times a year [34]. This case study is based on the following money laundering scenario
[35]. In this scenario, a charity or NPO is exploited for money laundering or terrorism funding. This
exploitation can occur in the collection phase, transfer phase or point of delivery phase in an NPO
operational model. This money laundering scenario is illustrated in Figure 5.3 based on [35]. Money
can be laundered in the transfer phase in the following manner.

In the transfer phase, unknown to the majority of the board of an NPO, there is a minority that
actively launders money or supports a terrorist group. This minority includes an individual who has
access to the NPO’s bank account. The funds that are collected in the US, are consolidated in an
account in Albania, which is a high-risk country [34], where the NPO has an office, before being sent
to the country for which the donations are intended, for example, Somalia. When these various trans-
fers are made, funds are diverted using international wire transfers to the accounts of sham businesses,
supposedly for logistical services, and are ultimately used to support the terrorist group.

When money from a charity or NPO is transferred via a complicated or unnecessary financial con-
struction through a high-risk country to the country for which the money is intended, this can be an
indication of unusual transaction behaviour. In Section 5.2, it will be further explained how a labelled
data set can be constructed to detect unusual financial transactions to high-risk countries.
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NPO in
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NPO in
Albania
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Logistic support
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organisation

Figure 5.3: Case study 3: detecting unusual financial transactions to high-risk countries [35].
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5.2 Translation from scenarios to distributions
This section describes how the synthetic data set can be constructed based on the money laundering
scenarios described in the previous section. It is important to note that the assumptions made to
construct distributions are used as a starting point to illustrate examples of calculations in which the
case studies serve to illustrate possible criminal behaviour. The distributions are constructed to test
the performance of the tuning strategies in situations where the proportion of interesting transaction
volumes is fluctuating/non-monotonic, monotone non-decreasing or constant since there are almost no
publicly available labelled transaction data sets. It is important to emphasise that the plausibility of the
distributions and assumptions has not been tested. Research into other distributions may be interesting
for future research which will be discussed in more detail in Chapter 7.

Case study 1: detecting smurfing of cash deposits
To detect smurfing of cash deposits with a rule, a transaction monitoring model should detect whether
large sums of cash are structurally transferred that are just below the publicly known threshold. This
rule should characterise criminal behaviour that may indicate smurfing.
Assume that criminals will structure the cash deposits into smaller amounts just below the publicly
known threshold of 10,000 euros. Based on this reasoning, the following distributions are constructed
for the transactions.

Suppose that in a particular period in which data analysis for threshold tuning is performed, a bank is
dealing with a population of 10,000 transaction volumes from different bank accounts. The transaction
volume is defined as the sum of the transaction amounts of one bank account in a given period. For
simplicity, assume that the transaction volumes lie between 0 and 40,000 euros, whereby the transaction
volumes of the 10,000 different bank accounts are uniformly distributed between 0 and 40,000 euros
as presented in Figure 5.4c. In addition, assume that there is a higher probability that a transaction
volume is interesting just below the public threshold of 10,000 euros and multiples thereof. For this
purpose, assume that the interesting transactions are β(8, 3) distributed between 0 and 10,000 euros
and multiples thereof as presented in Figure 5.4a. The data set is constructed in which the 10,000 trans-
action volumes from different bank accounts are labelled as interesting (1) with probability p as given
on the y-axis and labelled as normal transaction volume (0) with probability 1− p. The distribution of
transaction volumes and the distribution of interesting transaction volumes are shown in Figure 5.4.

(a) The distribution of unusual transaction volumes of
different bank accounts.

(b) The proportion of unusual transaction volumes of different
bank accounts as defined by equation 5.1.

(c) The distribution of transaction volumes of different
bank accounts.

Figure 5.4: The distributions of case study 1: detecting smurfing of cash deposits.
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For BTL testing, the blue line in Figure 5.4b represents the proportion of interesting transaction volumes
between threshold level zero and a particular threshold level that is defined as:

pb =
yb
Nb

(5.1)

where yb is the amount of interesting transaction volumes from the threshold level equal to value zero
up to a threshold level equal to a particular value and Nb the population of transaction volumes from
the threshold level equal to value zero up to a threshold level equal to a particular value. Suppose there
are 7600 transaction volumes with a value between 0 and 30,000 euros of which 1590 are labelled as
interesting transactions (1), then the proportion of interesting transactions below the threshold level of
30,000 euro equals pb = yb/Nb = 1590/7600 = 0.209

The key reason why this case is interesting is that there is a chance that a threshold tuning strat-
egy determines that the most appropriate threshold level is in one of the local minima. The proportion
of interesting transaction volumes, as presented in Figure 5.4b is a non-monotonic function. Therefore,
the aim of this case study is to evaluate the performance of different threshold tuning strategies if the
proportion of interesting transactions could be described with a non-monotonic function.

Case study 2: detecting unusual profits from derivatives
To detect unusual profits from derivatives, a transaction monitoring model should detect whether profits
from a derivative trade are noteworthy higher than the change in market value in a given period. This
rule should characterise criminal behaviour that may indicate money laundering using derivatives. The
following distributions are constructed for the transaction volumes.

Suppose that in a particular period a bank is dealing with a population of 10,000 trading transac-
tion volumes from different bank accounts which increase or decrease due to a change in the market
value. The change in transaction volume of a bank account relative to the change in the market value
can be expressed as a ratio:

ratio =
∆vtrade

∆vmarket

=

vte
vt0
vme

vm0

(5.2)

where ∆vtrade
is the increase or decrease in transaction volumes of a bank account between the beginning

vt0 and end vte of a particular period and ∆vmarket
the increase or decrease in market value between

the beginning vm0 and end vme of a particular period.

For example, the market value of natural gas per million Btu was 5.712 dollars on 1 July 2022 and
9.33 dollars on 1 September 2022 [31]. During this period, the market value of natural gas changed
by (9.33/5.712) × 100% = 163%. Now suppose that a transaction volume of a bank account in that
period changed by 250%, e.g. vte = 50, 000 and vt0 = 20, 000, while the change in market value was
163%. In this case, the difference in change between the market value and transaction volume of a
bank account is equal to 250/163 = 1.53. Criminals are likely to minimise large differences between a
change in transaction volume on a bank account and the market value because they are aware that it
is noticeable.
Therefore, assume that the ratio lies between 0 and 2 whereby the ratio is N(1, 1

3 ) distributed as pre-
sented in Figure 5.5c. In addition, assume that there is a higher probability of interesting transaction
volumes if the ratio is higher than 1 and is relatively large since the clean money is generated in the
bank account with unusually high profits. For this purpose, assume that the interesting ratios are β(7, 3)
distributed between 0 and 2 as presented in Figure 5.5a. The data set is constructed in which the ratio
is calculated of 10,000 transaction volumes from different bank accounts and are labelled as interesting
(1) with probability p as given on the y-axis and labelled as normal (0) with probability 1 − p. The
distribution of the ratio of 10,000 different bank accounts and the distribution of the interesting ratios
are presented in Figure 5.5.

The main reason why this case is interesting is the comparison of multiplicative changes in transac-
tion volumes. The ratio, as presented in Figure 5.5b is a monotonic non-decreasing function. Therefore,
the aim of this case study is to evaluate the performance of different threshold tuning strategies if
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the proportion of interesting transaction volumes could be described with a monotone non-decreasing
function.

(a) The distribution of unusual ratios relative to the market
value of different bank accounts.

(b) The proportion of unusual ratios relative to the market
value of different bank accounts as defined by equation 5.1.

(c) The distribution of ratios relative to the market
value of different bank accounts.

Figure 5.5: The distributions of case study 2: detecting unusual profits from derivatives.

Case study 3: detecting unusual financial transactions to high-risk countries
To detect unusual financial transactions to or from bank accounts in high-risk countries, a transaction
monitoring model should detect whether financial transactions are transferred via a complicated con-
struction through a high-risk country before the money is transferred to the final bank account in a
given period. This rule should characterise criminal behaviour that may indicate money laundering
using unusual financial transactions to high-risk countries. The following distributions are constructed
for the transaction volumes.

Suppose that in a particular period a bank is dealing with a population of 10,000 transaction volumes
from different bank accounts transferred to or from bank accounts in high-risk countries. For simplicity,
assume that the transaction volumes lie between 0 and 100,000 euros, whereby the transaction volumes
of the 10,000 different bank accounts are β(3, 8) distributed between 0 and 100,000 euros as presented
in Figure 5.6c and that there will be more low than high transaction volumes. In addition, assume
that there is a constant probability of interesting transaction volumes for all financial transactions to
or from bank accounts in high-risk countries. This is a strong assumption to make and probably not
often the case but money laundering can occur in both larger and smaller companies and with both
larger and smaller transaction volumes. For this purpose, assume that the interesting transaction vol-
umes are uniformly distributed between 0 and 100,000 euros as presented in Figure 5.6a. The data
set is constructed in which the 10,000 transaction volumes from different bank accounts are labelled
as interesting (1) with probability p as given on the y-axis and labelled as normal transaction volume
(0) with probability 1 − p. The distribution of transaction volumes and the distribution of interesting
transaction volumes are shown in Figure 5.6.

The key reason why this case is interesting is to investigate how tuning strategies handle situations
where there is almost no difference between the suitability of each threshold level. The proportion of
interesting transaction volumes, as presented in Figure 5.6b, is a constant function. Therefore, the aim
of this case study is to evaluate the performance of different threshold tuning strategies if the proportion
of interesting transactions has a constant function.
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(a) The distribution of unusual transaction volumes of
different bank accounts.

(b) The proportion of unusual transaction volumes of different
bank accounts as defined by equation 5.1.

(c) The distribution of transaction volumes of different
bank accounts.

Figure 5.6: The distributions of case study 3: detecting unusual financial transactions to high-risk countries.

The distributions are generated with numpy.random.distribution() and stats.distribution.pdf (). In
addition, the parameter settings for the different case studies are presented in Table 5.1. In this thesis,
the choice was made to partition the transaction volumes with K = 20 threshold levels, because the
difference in the performance of the various threshold tuning strategies is more visible with a larger
number of threshold levels and narrower widths between the threshold levels. The more threshold levels
are used to partition the transaction volumes, the more the difference in the performance of the various
threshold tuning strategies becomes visible which is illustrated in Section 6.3.3.

Parameter Case 1 Case 2 Case 3
RTL 0.2 0.2 0.2
α 0.05 0.05 0.05
e (MoE) 0.05 0.05 0.05
p0 0.2 0.2 0.2
n (resulting from the choices for p0, e, α) 264 264 264
N 10,000 10,000 10,000
Highest transaction volume (limit x-axis) 40 2 100
Highest proportion value (limit y-axis) 0.7 0.8 0.13
Amount of threshold levels 20 20 20

Table 5.1: The parameter settings for all case studies.
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5.3 Purpose of experiments
This section describes the purpose of different experiments conducted in this thesis to answer the
research questions ‘How can a threshold tuning strategy be incorporated to accelerate the threshold
tuning process of transaction monitoring models?’ and ‘How can the uncertainty in the threshold tuning
process for the chosen threshold level be quantified?’. A total of four different types of experiments were
conducted in this thesis. The first three experiments were conducted for BTL testing to determine the
most appropriate threshold level for which the proportion of interesting transactions satisfied the RTL
with a (1 − α) × 100% confidence level. The fourth experiment was conducted for the combination of
BTL and ATL testing. The four experiments and the purpose of each experiment are as follows:

1. Experiment 1: Threshold evaluation approaches.
In the first experiment, the bucket approach and complete population evaluation approaches,
which were described in Section 4.2, are compared. The two approaches will be compared based
on the difference between the found threshold level, based on a sample of the transactions, and
the true threshold level, based on the population of transactions without sampling. The purpose
of this experiment is to demonstrate that the complete population approach can guarantee that
the found most appropriate threshold level satisfies the RTL with a (1 − α) × 100% confidence
level whereas the bucket approach cannot offer this guarantee. The complete population approach
makes it possible to answer the second research question ‘How can the uncertainty in the threshold
tuning process for the chosen threshold level be quantified?’.

2. Experiment 2: Performance evaluation of tuning strategies for initial threshold tuning.
From experiment 2 onward, only the complete population approach is used for sampling. In
the situation when no information is available, as is the case with initial threshold tuning, the
purpose of this experiment is to determine which strategy requires reviewing the least transactions
to determine the most suitable threshold level. In addition, the purpose of this experiment is to
determine which strategy has the smallest (positive) difference between the found threshold level,
based on a sample of the population of transactions and the true threshold level, based on the
population of transactions. Furthermore, this experiment investigates how performance improves
or deteriorates compared to other threshold tuning strategies when transactions are partitioned
with more threshold levels. Moreover, it will also be investigated how the performance of the
Boltzmann exploration strategy changes due to different schedules for the temperature parameter
τ .
This experiment provides insight into which tuning strategy is most appropriate in a specific
situation and which tuning strategy in general results in the best performance which is important
for the first research question. The various strategies will be compared according to the required
amount of reviews and the difference between the found and true threshold level.

3. Experiment 3: Reduction of required reviews with reusing information of reviewed samples.
Reviewing all transactions from a new sample of a different threshold level is often inefficient
since the collected information from a reviewed sample of a previously tested threshold level can
partly be reused to save time as described in Section 4.5.2. The purpose of this experiment is
to determine how much time can be won if information from a reviewed sample of a previously
tested threshold level is partly reused to determine the most suitable threshold level.
This experiment offers more insight into how, after choosing the most promising threshold tuning
strategy, the threshold tuning process can be further accelerated which is the focus of the first
research question. The various strategies will again be compared according to the required amount
of reviews and the difference between the found and true threshold level.

4. Experiment 4: Influence of measure choice on most suitable threshold level.
The purpose of this experiment is to demonstrate the influence of the chosen measure on the most
suitable threshold level as output.
The reason for interest in this experiment is the limited insight that the false omission rate as
a measure, via BTL testing, provides about the quality of a threshold level. The false omission
rate FN

TN+FN answers the question; of all transactions that would not generate an alert, how
many would the threshold incorrectly predict as not interesting?, but provides no insight into
the productivity of alerted transactions above the threshold level. On the other hand, sensitivity
as a measure answers the question; of all transactions reviewed as interesting, how many would
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the threshold correctly predict as interesting (meaning that the interesting transactions would
generate an alert)? This metric is often used in cases where the classification of false negatives
is a priority. The sensitivity for a threshold level can be determined by taking a sample of both
the transactions below the tested threshold level (BTL testing) and by taking a sample of the
transactions above the tested threshold level (ATL testing). The best performing strategies from
experiments two and three will be compared according to the required amount of reviews and the
difference between the found and true threshold level.



6
Results

In this chapter, the results of different experiments described in Chapter 5.3 are presented. This chapter
is divided into five sections.

Section 6.1 presents the transaction population and the true threshold level for each case study based
on the transaction population is described. In addition, Section 6.2 describes the results of the first
experiment, in which the bucket and complete population approaches are compared. Subsequently,
the performance of the different strategies is evaluated in Section 6.3. This section also investigates
the influence of the temperature parameter for the Boltzmann strategy and the effect of the number
of threshold levels on the number of required reviews and the difference between the found and true
threshold level. Section 6.4 investigates the possible reduction in the required amount of reviews when
information from a previously reviewed sample is reused. Lastly, Section 6.5 discusses the influence of
the chosen measure on the most appropriate threshold level. The main conclusions of the results are
given at the end of each (sub)section.

6.1 Transaction population for each case study
The transaction population for each case study is illustrated in Figure 6.1. The blue bars represent
the total number of transactions up to a given threshold level, e.g. the blue bar for threshold level 10
represents the total number of transactions up to threshold level 11. The red bars in Figure 6.1 indicate
the proportion of unusual transactions between a certain threshold level and level 0, e.g. the red bar
for threshold level 10 represents the number of unusual transactions up to threshold level 11.
The black vertical lines are the standard deviation from the average after 25 runs. The green line is the
RTL that is set in advance. The true threshold level based on the population is defined as the highest
threshold level for which the red bar is below the green line. The true threshold level per run for each
case study can be found in Appendix G.2.

The true threshold level for case study 1 in many runs is equal to level 3 and sometimes level 2,
which is also often the point where the red bar first crosses the green line in Figure 6.1a due to the
small variation in the proportion each run. For case study 2, the true threshold level is often level 11
or 12 and sporadically level 19, which in Figure 6.1b is also the point where the red bar often crosses
the green line for the first time. For case study 3, the true threshold level is equal to level 19 which is
shown in Figure 6.1c because the red bar never crosses the green line.

54
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(a) Case study 1 (b) Case study 2

(c) Case study 3

Figure 6.1: The number of transaction volumes and the proportion of unusual transaction volumes of the
population below a given threshold level.

6.2 Experiment 1: threshold evaluation approaches
The difference in performance between the bucket and complete population approach is analysed with
the step, bisection and multi-level tuning strategies. Section 4.2 briefly explained that the bucket ap-
proach for BTL testing has as major disadvantage that the number of interesting transactions further
below the evaluated threshold level is unknown, whereby there is a risk of choosing a threshold level in
a local minimum for which it is unknown whether a large group of interesting transactions have been
missed. This problem is most apparent in case study 1 where the proportion of interesting transactions
fluctuates as illustrated in Figure 6.2a. In addition, this problem is the most severe for the strategies
that do not start at one of the lowest threshold levels such as the bisection and multi-level strategies.
These strategies have a higher risk of testing a threshold level of which the proportion of interesting
transactions is a local minimum since these strategies do not start at one of the lowest logical threshold
levels which is the case with the step strategy.
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(a) Bucket: case study 1 (b) Bucket: case study 1

(c) Bucket: case study 1

Figure 6.2: The number of transaction volumes and the proportion of unusual transaction volumes of the
population in a bucket below a given threshold level.

For BTL testing, in Figures 6.3a, 6.3b and 6.3c, it can be seen that the median difference between the
found and true threshold level, Dthreshold, is more often closer to zero using the complete population
approach, presented in the four right-hand box plots, in comparison to the bucket approach, presented
in the four left-hand box plots.
For case study 1, it can be seen in Figure 6.3a in the red highlighted left-hand box plots that for median
difference for the multi-level with the step or bisection strategy using the bucket approach is around 14
levels instead of the median difference of 0, which is highlighted in green, using the complete population
approach.
For case study 2, analysing the box plots in Figure 6.3b, it can be seen that the bucket approach results
in a median difference of 3 levels, highlighted in red, compared to the median difference of 1 level using
the complete population approach, which is highlighted in green. The complete population approach
does not necessarily result in a difference of 0 levels. This can be explained by the fact that the most
appropriate threshold level is determined based on the upper bound of the proportion pupper in contrast
to the true threshold level which is determined based on the population proportion p.
For case study 3, analysing the box plots in Figure 6.3c, it can be seen that the median difference for the
bisection and multi-level with the bisection strategy using the bucket or complete population approach
is between 0 and 1 level. For the step strategy and the multi-level with the step strategy using the
bucket or complete population approach is the median difference between 8 and 11 levels and consider-
ably greater. In addition, the spread in the difference is larger for the step strategy and the multi-level
with step strategy which means that the performance is less stable. The step strategy starts by testing
the lowest logical threshold level which means that the step strategy must test many threshold levels
before it reaches the true threshold level 19. The choice of the constant population proportion p = 0.13
could be the cause for the large spread. The difference between the population proportion and the RTL
is not large in this case. This has the consequence that a found sample proportion of about p̂ = 0.15,
which results in pupper = 0.2 (with a chosen margin of error equal to e = 0.05), can already trigger the
stop condition for the step strategy. On the other hand, the bisection and multi-level with bisection
strategies need to test fewer levels to reach level 19 which reduces the likelihood of triggering the stop
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condition, allowing these strategies to end up closer to the true threshold level.

Conclusion

1. Firstly, the complete population approach more often results in a difference close to zero between
the found and true threshold level in comparison to the bucket approach.

2. In addition, the bucket approach has the risk of missing interesting transactions that are not in
the bucket below the threshold level that is tested.

3. Therefore, the complete population approach as described in Section 4.2.1, in which a sample
is taken of all transactions between level 0 and the threshold level that is evaluated with BTL
testing, is used in the rest of this thesis.

(a) For case study 1. (b) For case study 2.

(c) For case study 3.

Figure 6.3: For BTL testing, the difference between the found and true threshold level for the different threshold
tuning strategies.
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6.3 Experiment 2: performance evaluation
In this section, the performance of the four threshold tuning strategies; step, bisection, multi-level, and
Boltzmann exploration is compared. The multi-level strategy combined with the step or the bisection
strategy are considered two different tuning strategies resulting in the comparison of five tuning strate-
gies in total. The tuning strategies are compared according to the required reviews of transactions to
determine the most appropriate threshold level, the difference between the found and true threshold
level and the spread in performance of a threshold tuning strategy over 25 runs as described in Section
4.6.1.

6.3.1 Effect of temperature parameter on Boltzmann Exploration
To compare the performance of the Boltzmann exploration strategy with the other strategies, it is im-
portant to first determine the schedule for the temperature parameter for each case study that gives the
best performance. Thereafter, the Boltzmann exploration with the best temperature schedule will be
compared with the other strategies. The best schedule is defined as the one that results in the fewest
required reviews.

Experiments with two different types of temperature schedules were carried out to determine the best
schedule for the temperature parameter for each case study.

• Constant schedule: the temperature parameter is kept constant over time and is executed for five
large values for τ(0) = [200, 160, 120, 80, 40], focusing on exploration and for five small values for
τ(0) = [20, 15, 10, 5, 1], focusing on exploitation which is described with the formula:

τ(t) = τ(0) for t = 1, ...,K ∗ n (6.1)

• Decreasing schedule: the value for the temperature parameter decreases over time and is executed
for five values for τ(0) =

[
K ∗ n, K∗n

2 , K∗n
3 , K∗n

4 , K∗n
5

]
= [5280, 2640, 1760, 1320, 1056] for K = 20

threshold levels and a sample size equal to n = 264, using p0 = 0.2, α = 0.05 and e = 0.05 as de-
scribed in Table 3.3. The idea of the decreasing temperature is to first focus more on exploration
and to shift the focus to exploitation as more time has passed and more information about the
different threshold levels is available which is described with the formula:

τ(t) = max

(
τ(0)

t
, 1

)
for t = 1, ...,K ∗ n (6.2)

It was chosen that τ(t) should always be greater than or equal to 1, otherwise the exponential
component in equation 4.8 explodes.

These two schedules executed for ten and five different values for τ(0) result in a total of fifteen box
plots for each case study for the following values of τ(0):

τ(0) = [τ1, ..., τ15] = [5280d, 2640d, 1760d, 1320d, 1056d, 200c, 160c, 120c, 80c, 40c, 20c, 15c, 10c, 5c, 1c]

where underscore d denotes the decreasing schedule and underscore c denotes the constant schedule.

Tuning results of the temperature parameter
The required amount of reviews for all three case studies for τ(0) = [τ1, ..., τ15] with K = 20 threshold
levels are presented in box plots in Figure 6.4. The median value is indicated with the orange line, the
25% and 75% quantiles with the blue box and the maximum and minimum values with the black line.
A maximum or minimum as an outlier is indicated by a circle. The box plots illustrating the difference
between the found and true threshold level for all three case studies for τ(0) = [τ1, ..., τ15] are presented
in Figure F.1 in Appendix F since the difference is only taken into consideration if multiple τj result in
a similar performance and to restrict the number of figures in the report.
The following conclusions can be drawn about the effect of the temperature schedule and value of τ(0)
for the three case studies with K = 20 threshold levels:
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1. For all three case studies, the decreasing schedule, τ1, ..., τ5, generally results in fewer required
reviews than the constant schedule with the focus on exploration, τ6, ..., τ10, indicated by a green
bar for the first five τj values and a red bar for the middle five τj values in Figure 6.4.

2. For all three case studies, the constant schedule with the focus on exploitation, τ11, ..., τ15, with
low τ(0) values generally result in fewer required reviews than the constant schedule with the
focus on exploration, τ6, ..., τ10, with high τ(0) values, indicated by a green bar for the last five τj
values and a red bar for the middle five τj values in Figure 6.4.

3. For all three case studies, the decreasing schedule, τ1, ..., τ5, generally results in a similar number
of required reviews as the constant schedule with the focus on exploitation, τ11, ..., τ15, indicated
by the green bars for the first and last five τj values in Figure 6.4.

Conclusion
In this thesis, it is chosen to continue with τ14 for case studies 1 and 3 with K = 20 threshold levels,
since τ5 and τ4 resulted in a larger difference between the found and true threshold level and a relatively
larger spread as illustrated in Figure F.1 in Appendix F.1. τ2 is chosen for case study 2 with K = 20
threshold levels since it resulted more often in a lower number of required reviews than τ14.

The Boltzmann exploration strategy with these specific τj values is compared with the other four tuning
strategies.

(a) For case study 1. (b) For case study 2.

(c) For case study 3.

Figure 6.4: For BTL testing, the required amount of reviewed transactions for a decreasing or constant schedule
for different τ(0) values.

6.3.2 Performance of threshold tuning strategies
In this section, the performance of the five threshold strategies; step, bisection, multi-level with step,
multi-level with bisection and Boltzmann exploration are compared. The required amount of reviews
and the difference between the found and true threshold level for each case study with K = 20 threshold
levels and a sample size of n = 264 is presented in Figure 6.5.
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(a) Reviews for case study 1 (b) Difference for case study 1

(c) Reviews for case study 2 (d) Difference for case study 2

(e) Reviews for case study 3 (f) Difference for case study 3

Figure 6.5: For BTL testing, the required reviews and difference between found and true threshold level with
K = 20 threshold levels and a sample size of n = 264 for the different tuning strategies.

Evaluation of performance based on the required reviews
The following conclusions can be drawn about the required reviews for the three case studies with
K = 20 threshold levels:

1. Median of required reviews: In general, the median required amount of reviews is the smallest
with the bisection strategy, except for case study 1 for which the true threshold is low resulting in
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a better performance of the step strategy. On the other hand, the step and Boltzmann strategy
generally require the most reviews.

2. Spread in required reviews: For all three case studies, the bisection and multi-level with bisection
strategies are the most stable strategies and result in a similar or smaller spread of the required
reviews compared to the other strategies.

3. Behaviour of the strategies per case study:

(a) Case study 1 (non-monotonic function): Taking into account the median required reviews,
the step strategy requires the least reviews of transactions to determine the most suitable
threshold level because the true threshold of 2 or 3 is relatively low. After that, the multi-
level with step strategy requires the fewest reviews, followed by the bisection and multi-level
with bisection strategy. The bisection and multi-level with step or bisection strategies are
the most stable with the smallest spread and the Boltzmann exploration strategy is the least
stable with the largest spread in performance over 25 runs.

(b) Case study 2 (monotonic non-decreasing function): The same conclusions hold as for case
study 1 except that the step strategy, considering the median required reviews, now needs
the most reviews because the true threshold, which is often between levels 11 and 19, is now
considerably higher than in case study 1.

(c) Case study 3 (constant function): In case study 3, the performance of the different strategies
changed slightly compared to case studies 1 and 2. The bisection strategy still requires the
least reviews of transactions to determine the most suitable threshold level. However, it is
worth noting that the step and multi-level with step strategies have relatively larger spreads
compared to the other strategies. The choice of the constant population proportion p = 0.13
in case study 3 could be the cause for the large spread, which has the consequence that
a found sample proportion of about p̂ = 0.15, which could result in pupper = 0.2 (with a
chosen margin of error equal to e = 0.05), can already trigger the stop condition for the step
strategy. In general, the step and multi-level with step strategies need to test more levels
to reach level 19, which makes it more likely that these strategies trigger the stop condition,
pupper > RTL, on any of the levels between the lowest level and level 19 resulting in the
larger spread.

Evaluation of performance based on the difference
In addition, considering the difference between found and true threshold level for the three case studies
with K = 20 threshold levels, the following conclusions may be drawn:

1. Median difference: For all three case studies, the bisection, multi-level with bisection and Boltz-
mann strategies result in a median difference of 0 or 1 between the found and true threshold level.
This is also the case for step and the multi-level with step strategies in case studies 1 and 2 but
not for case study 3.

2. Spread in the difference: For all three case studies, the bisection strategy is the most stable
strategy and results in a similar or smaller spread in the difference compared to the other strategies.
The other strategies show a less stable performance which is most evident in case study 3.

3. Behaviour of the strategies per case study:

(a) Case study 1 (non-monotonic function): Considering the median difference between the found
and true threshold level, all strategies result in a difference of 0. In addition, sometimes the
strategies end up one level too high. A possible explanation for this is that the true threshold
level is often level 3 and sometimes level 2. The strategies almost always end up at level 3
since level 3 has a proportion of interesting transactions approximately equal to the RTL,
which explains the difference of one level. Furthermore, the bisection, the multi-level with
step or bisection and Boltzmann exploration strategies have a chance to determine that the
most suitable threshold level is in local minima, illustrated in Figure 6.1a around level 6, 7,
11 or 12 because these strategies do not start at the lowest logical level like the step strategy.
The small circles in the box plots for multi-level with bisection and Boltzmann strategies
show this behaviour, where the strategy ended in a local minimum 5 levels above the true
threshold.
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(b) Case study 2 (monotonic non-decreasing function): The same conclusions hold as for case
study 1, except that the strategies more often end below the true threshold. The true
threshold level for case study 2 is often level 11 or 12 and sporadically level 19. The strategies
regularly end up one level too low. This happens since the upper confidence bound is used as
the stop criterion. This upper confidence bound will often be above the population proportion
which has the consequence that all strategies often end up one level below the true threshold.
Moreover, threshold level 19 is sporadic the true threshold level while the strategies may end
at level 12 which explains the small circles at a difference of 7 levels in Figure 6.5d. Finally,
the strategies occasionally end one level too high, which is probably caused by the fact that
the proportion of levels 11 to level 13 differ very little.

(c) Case study 3 (constant function): The true threshold level for case study 3 is always the high-
est level which is level 19. In case study 3, the difference between found and true threshold
level of the different strategies changes considerably compared to case studies 1 and 2. The
bisection strategy still has a median difference of 0 and has a small spread in performance.
However, the median difference becomes noteworthy larger for the step and multi-level with
step strategies. The step and multi-level with step need to test more levels to reach level 19,
which makes it more likely that these strategies trigger the stop condition, pupper > RTL,
resulting in the larger spread and the large positive median difference. In contrast, the bi-
section strategy has the smallest spread in the difference because it generally needs to test
fewer levels to reach level 19 which reduces the likelihood of triggering the stop condition,
allowing this strategy to end up closer to the true threshold level.
In addition, the multi-level with bisection and Boltzmann exploration strategies have a me-
dian difference close to 0 but have a large spread. For the multi-level strategy, this is possibly
caused by the fact that the strategy variably starts by testing levels 4, 8, 12 or 16, because
pupper of a sample proportion is around the RTL. As a result, the strategy has to test a dif-
ferent number of levels which has the consequence that the strategy does not always end at
level 19, explaining the spread. In addition, transactions of all threshold levels are reviewed
simultaneously with the Boltzmann exploration strategy. The strategy can regularly test a
level lower than level 19 for which pupper > RTL applies since for all levels the difference be-
tween the upper bound and RTL, d = RTL− pupper, is similar and around 0, which explains
the spread.

The found threshold level with different tuning strategies and true threshold level per run for each case
study can be found in Appendix G.2.

Conclusion
Considering the required amount of reviews, the difference between the found and true threshold level
and the spread in performance over 25 runs, the five strategies can be ranked as presented in Tables
6.1 and 6.2. From this ranking, it can be concluded that the bisection strategy generally results in the
least required reviews, a median difference close to zero and has the most stable performance expressed
in the small spread over 25 runs, which is highlighted in green in the Tables.

Case 1 Step Bisection Multi step Multi bisection Boltzmann
Lowest median 1 2 1 2 3
Smallest spread 3 2 1 1 4
Case 2
Lowest median 3 1 2 2 3
Smallest spread 2 1 1 1 3
Case 3
Lowest median 3 1 3 2 2
Smallest spread 4 1 4 2 3
Total sum 16 8 12 10 18
Total ranking 4 1 3 2 5

Table 6.1: A ranking of the five strategies based on the required amount of reviews with K = 20 threshold levels, 1
indicating the best and 5 the worst performing strategy.
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Case 1 Step Bisection Multi step Multi bisection Boltzmann
Lowest median 1 1 1 1 1
Smallest spread 1 1 1 2 2
Case 2
Lowest median 1 1 1 1 1
Smallest spread 1 1 1 1 1
Case 3
Lowest median 4 1 3 2 2
Smallest spread 2 1 2 2 2
Total sum 10 6 9 9 9
Total ranking 3 1 2 2 2

Table 6.2: A ranking of the five strategies based on the difference between found and true threshold level with
K = 20 threshold levels, 1 indicating the best and 5 the worst performing strategy.

6.3.3 Effect of amount of threshold levels
This section investigates the effect of the number of threshold levels on the performance of the tuning
strategies. To investigate this influence, the population of transactions is doubled from 10,000 to 20,000
transactions and the number of threshold levels from 20 to 40, but all other parameters as α, e and p0
are kept the same. It is interesting to investigate this effect when an analyst needs to handle a large
population of transactions but still wants to accurately determine the most appropriate threshold level,
which requires splitting the transactions with more threshold levels.

Both the relative change in the median and spread and the absolute values for the median and spread in
required reviews and the difference between the found and true threshold are considered to determine
which strategy has the best performance. The change in median ∆median and spread ∆spread in the
required amount of reviews for all three case studies with K = 40 instead of K = 20 threshold levels
is presented in Table 6.3. The change in the median and spread in the difference between the found
and true threshold level for all three case studies with K = 40 instead of K = 20 threshold levels is
presented in Table 6.4. The change in the median and spread is calculated as follows:

∆median =
Xmedian,k=40

Xmedian,k=20
for required amount of reviews (6.3)

∆median = Xmedian,k=40 −Xmedian,k=20 for the difference (6.4)

∆spread =

{
Xmax,k=40−Xmin,k=40

Xmax,k=20−Xmin,k=20
if (Xmax,k=20 −Xmin,k=20) ̸= 0

Xmax,k=40 −Xmin,k=40 if (Xmax,k=20 −Xmin,k=20) = 0
(6.5)

where X is the number of reviews or the difference between the found and true threshold level.

A comparison of the performance with K = 40 instead of K = 20 threshold levels is illustrated with
box plots as Figure 6.5 in Figure 6.6.

Results: the effect of the amount of threshold levels based on required reviews
From Table 6.3 and Figure 6.6, the following conclusions can be drawn:

1. Median of required reviews: When the relative performance of the strategies is compared with
the situation with K = 20 threshold levels, the median required reviews generally increases. An
exception is case study 2, in which the median decreases of the multi-level with step strategy.
However, the spread in the required reviews in case study 2 increases significantly as illustrated in
Figure 6.6c and presented with the orange cell in Table 6.3. In case study 3, the median decreases
for the step strategy, but the median difference between the found and true threshold is large
demonstrating that this strategy often ends at a too low threshold level as presented in Figure
6.6f and presented with the orange cell in Table 6.4. Excluding the step and multi-level with
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step strategies because they have some undesirable behaviour in case studies 2 and 3, the median
required reviews increases the least for the bisection strategy presented with the green marked
cell ‘average ∆ median’ in Table 6.3. The median required reviews increases the most for the
Boltzmann strategy.

2. Spread in required reviews: Not considering the step and multi-level with step strategies again due
to undesirable behaviour in case studies 2 and 3, when the relative performance of the strategies is
compared to the situation with K = 20 threshold levels, the spread in required reviews increases
the least for the multi-level with bisection strategy illustrated with the green marked cell ‘average
∆ spread’ in Table 6.3. The spread in required reviews increases the most for the step strategy
which is caused by the results in case study 2.

3. Considering the absolute performance, as in the situation with K = 20 threshold levels, the
bisection strategy results in the best performance with a low median required reviews and a small
spread for all cases as illustrated in left box plots of Figure 6.6.

Case 1 Step Bisection Multi Step Multi Bisection Boltzmann
∆ median 1.372 1.295 2.136 1.770 1.349
∆ spread 3.083 2.340 0.239 0.785 2.002
Case 2
∆ median 1.778 1.044 1.883 1.193 1.177
∆ spread 3.455 0.956 2.997 0.988 1.435
Case 3
∆ median 0.429 1.250 1.019 1.022 1.166
∆ spread 1.429 0.000 0.929 1.500 0.946
Average ∆ median 1.193 1.196 1.679 1.328 1.231
Average ∆ spread 2.655 1.099 1.388 1.091 1.461

Table 6.3: A comparison of the median and spread in the required amount of reviews with K = 40 instead of
K = 20 threshold levels for all case studies.

Results: the effect of the number of threshold levels based on the difference
From Table 6.4 and Figure 6.6, the following conclusions can be drawn:

1. Median difference: When the relative performance of the strategies is compared with the situation
with K = 20 threshold levels, the median difference generally increases. The median difference
increases the least for the multi-level with bisection strategy presented with the green marked
cell ‘average ∆ median’ in Table 6.4, followed by the bisection and Boltzmann strategy . The
median required reviews increases the most for the step and multi-level with step strategies which
is mainly caused by case study 3 where these strategies often end at a too low a threshold level,
presented by the orange marked cells in Table 6.4.

2. Spread in difference: Not considering the step and multi-level with step strategies again due to
undesirable behaviour in case studies 2 and 3, when the relative performance of the strategies is
compared to the situation with K = 20 threshold levels, the spread in the difference increases the
least for the bisection strategy presented with the green marked cell ‘average ∆ spread’ in Table
6.4. The spread in the difference increases the most for the Boltzmann strategy which is caused
by the results in case study 1.

3. Considering the absolute performance, as in the situation with K = 20 threshold levels, the
bisection strategy results in the best performance with a low median difference and a small spread
in the difference between the found and true threshold level for all cases as illustrated in right box
plots of Figure 6.6.
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Case 1 Step Bisection Multi Step Multi Bisection Boltzmann
∆ median 0.000 0.000 0.000 0.000 0.000
∆ spread 2.000 1.000 2.000 1.800 4.000
Case 2
∆ median 2.000 2.000 2.000 2.000 2.000
∆ spread 1.875 1.000 1.875 1.875 2.250
Case 3
∆ median 18.000 0.000 13.000 -1.000 0.000
∆ spread 1.353 1.000 2.188 1.938 1.941
Average ∆ median 6.667 0.667 5.000 0.333 0.667
Average ∆ spread 1.743 1.000 2.021 1.871 2.730

Table 6.4: A comparison of the median and spread in the difference between found and true threshold level with
K = 40 instead of K = 20 threshold levels for all case studies.

Conclusion

1. Considering the required amount of reviews, the difference between the found and true threshold
level and the spread in performance over 25 runs, the number of threshold levels has the effect
that the median required reviews and difference in general increases with more threshold levels as
well as the spread in the required reviews.
The bisection strategy generally has the lowest absolute median required reviews and difference
and a relatively small increase in the required amount of reviews and difference with twice as
many threshold levels. In addition, the spread in the required reviews and difference does not
increase considerably, relative to the other strategies, with twice as many threshold levels and the
bisection strategy has a stable performance both with K = 40 and K = 20 threshold levels.

2. The step, multi-level with step and Boltzmann strategies have the least stable performance both
looking at the required reviews and the difference between the found and true threshold level
where the number of threshold levels clearly affects the performance of these strategies.
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(a) Change in reviews for case study 1 (b) Change in difference for case study 1

(c) Change in reviews for case study 2 (d) Change in difference for case study 2

(e) Change in reviews for case study 3 (f) Change in difference for case study 3

Figure 6.6: For BTL testing, the effect of the number of threshold levels on the required reviews and the difference
between found and true threshold level with K = 40 instead of K = 20 threshold levels for the different tuning

strategies.
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6.4 Experiment 3: Reduction of required reviews by reusing
information

As briefly explained in Section 4.5.2, reviewing all transactions of a new sample does not always provide
new insights. This experiment investigates the reduction in required reviews of transactions if accumu-
lated knowledge of transactions from a previously reviewed sample of a different threshold level is reused
as described in Section 4.5.2. The reduction in required reviews is calculated as the required reviews with
reusing information divided by the required review without reusing information to determine the most
suitable threshold level. The results are presented in Table 6.5 and illustrated in box plots in Figure 6.7.

Results: the effect of reusing information based on the required reviews
The results in Table 6.5 show that, on average, for all strategies, between 37% and 54% of the required
reviews is needed when information is reused from a previously reviewed sample of a different threshold
level as illustrated in the last row of Table 6.5. This is a large reduction in the median required reviews
and workload for analysts. The results show that the bisection strategy has the largest average reduc-
tion in required reviews although the difference in average reduction is not large compared to the step
strategy. On the other hand, the multi-level with bisection strategy has the least average reduction.
A possible reason why the reduction is less for the multi-level and Boltzmann strategies is that these
strategies have an exploration phase where ’time’ is lost because the reuse of information especially
reduces the required reviews in the exploitation phase. In addition, the left box plots in Figure 6.7
show clearly that the spread in required reviews narrows when information from a previously reviewed
sample is reused.

However, one can wonder what happens to the difference between the found and true threshold level
when information from a previously reviewed sample is reused. For example, does the difference increase
because the information from a previously reviewed sample is reused? To answer that question, the
median difference between found and true threshold level with and without reusing information from a
previously reviewed sample is shown in Table 6.6.

Case 1 Step Bisection Multi Step Multi Bisection Boltzmann
With reuse 329 507 529 686 831
Without reuse 698 973 726 990 1504
Reduction 0.471 0.521 0.729 0.693 0.553
Case 2
With reuse 955 378 653 706 1041
Without reuse 2376 1263 1518 1471 2228
Reduction 0.402 0.299 0.430 0.480 0.467
Case 3
With reuse 569 315 635 672 507
Without reuse 1848 1056 1782 1518 1207
Reduction 0.308 0.298 0.356 0.443 0.420
Average reduction of
reviews

0.394 0.373 0.505 0.539 0.480

Table 6.5: A comparison of the median required reviews with and without using knowledge of a previously
reviewed sample of a different threshold level.

Results: the effect of reusing information based on the difference
The change in difference is calculated as the difference without reusing information minus the difference
with reusing information to determine the most suitable threshold level. The right box plots in Figure
6.7 illustrate that the median difference between the found and the true threshold does not considerably
change when information from a previously reviewed sample is reused. The results in Table 6.6 show
that the average median difference between the found and the true threshold does not change for the
bisection strategy, as presented in the last row of Table 6.6. For the other strategies, the average me-
dian difference changed to a median difference between 0 and 1 greater than without reusing information.
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Case 1 Step Bisection Multi Step Multi Bisection Boltzmann
With reuse 0 0 0 0 0
Without reuse 0 0 0 0 0
∆ in difference 0 0 0 0 0
Case 2
With reuse 1 1 1 0 -1
Without reuse 1 1 1 1 1
∆ in difference 0 0 0 -1 -2
Case 3
With reuse 10 0 6 0 0
Without reuse 11 0 8 1 1
∆ in difference -1 0 -2 -1 -1
Average change in dif-
ference

-0.333 0.000 -0.667 -0.667 -1.000

Table 6.6: A comparison of the median difference between found and true threshold level with and without using
knowledge of a previously reviewed sample of a different threshold level.

Conclusion

1. Considering the required amount of reviews, the difference between the found and true threshold
level and the spread in performance over 25 runs, reusing information of a previously reviewed
sample of a different threshold level is beneficial. In general, less than 50% of the required reviews
is needed when information is reused from a previously reviewed sample with BTL testing. In
addition, the spread in required reviews becomes noteworthy narrower with reusing information
from a previously reviewed sample. Overall, the step and bisection strategy have the greatest
advantage of reusing information from a previously reviewed sample with the largest reduction.

2. In general, the median difference between found and true threshold level remains similar for the
strategies, even though all strategies except the bisection strategy sometimes end up 1 or 2 levels
higher compared to the situation when information is not reused. Furthermore, the spread in the
difference remains similar compared to the situation without reusing information except for the
step and multi-level with step strategies, where the spread widens for case study 3.
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(a) Reduction in reviews for case study 1 (b) Change in difference for case study 1

(c) Reduction in reviews for case study 2 (d) Change in difference for case study 2

(e) Reduction in reviews for case study 3 (f) Change in difference for case study 3

Figure 6.7: For BTL testing, the reduction in the required reviews and the change in the difference between found
and true threshold level with and without reusing information of a previously reviewed sample for the different

tuning strategies.
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6.5 Experiment 4: Influence of measure choice
In this thesis and all experiments carried out so far, the main focus was on quantifying the risk of miss-
ing interesting transactions below the threshold. The false omission rate FN

TN+FN , which is 1 minus the
negative predictive value 1− TN

TN+FN was used as a performance criterion in the experiments. However,
other measures can also be chosen which can result in a different true threshold level. The false omis-
sion rate answers the question: of all transactions that would not generate an alert, how many would
the threshold incorrectly predict as not interesting? The sensitivity, on the other hand, answers the
question: of all transactions reviewed as interesting, how many would the threshold correctly predict
as interesting, meaning that the interesting transactions would generate an alert? This metric is often
used in cases where the classification of false negatives is a priority.

Suppose one is interested in the sensitivity of a threshold level in addition to the risk of missing inter-
esting transactions and that there is a preference for four times fewer false negative transactions than
true positive transactions. This means that one is looking for a threshold level for which the sensitivity
is at least 4

4+1 × 100% = 80%. The sensitivities for the three case studies are illustrated in Figure 6.8.
These figures show that the true threshold level can change by choosing a different measure. For case
study 3, the true threshold level changes from level 19, when looking for a threshold level for which the
maximum false omission rate is lower than the RTL of 20%, while the true threshold level is level 0
when looking for a threshold with a minimum sensitivity of 80%. This example shows the influence of
the chosen measure on which threshold is considered the most appropriate threshold level.

(a) Case study 1 (b) Case study 2

(c) Case study 3

Figure 6.8: The sensitivity and the population proportion of unusual transaction volumes below (FN) and above
(TP) a given threshold level.

Results: the influence of measure on the performance of strategies
The influence of the sensitivity as the measure on the performance of bisection and multi-level with
bisection strategies was tested on the three case studies with K = 20 threshold levels and the results are
presented in Figure 6.9. The same sample size is taken for the sample below as above a threshold level
that is evaluated. In this case, the early break-off principle described in Section 4.5.1 was not applied as
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it was specifically defined for the false omission rate as a measure. However, reusing information from a
previously reviewed sample of a different threshold level was applied. It was chosen to investigate only
the performance of the bisection and multi-level with bisection strategies as they resulted in the best
performance so far.

(a) Reviews for all cases (b) Difference for all cases

Figure 6.9: The required reviews and the difference between the found and true threshold level for the bisection
and multi-level with bisection strategies for all cases using the sensitivity as the measure.

From the results, it can be concluded that the required amount of reviews increases considerably. This
could be expected as both transactions above and below a threshold level should be reviewed by an
analyst. Using the false omission rate as a measure, case study 1 resulted respectively in around 500
and 600 median required reviews for the two strategies, as presented in Figure 6.7a. However, Figure
6.8a shows that this number roughly doubles for case study 1. For case studies 2 and 3, the required
amount of reviews increases even more than a factor of two. A possible cause is that the strategies test
different levels to determine the most appropriate threshold level compared to when the false omission
rate is used as a measure. For case 3, the path of threshold levels that are tested with the bisection
strategy changes from testing levels 10, 15, 18 and then level 19 based on the false omission rate to
testing levels 10, 5, 3, 2 and then level 1 based on the sensitivity.
Furthermore, the results in Figure 6.9b illustrate that in general, the strategies ended at a threshold
level below the true threshold level with a median difference of 1 or 2 levels. Only for case study 3,
where the true threshold level is 0 based on the sensitivity, did the strategies end 1 level too high.
The found threshold level with the bisection and multi-level with bisection strategies and true threshold
level per run for each case study can be found in Appendix G.3

Conclusion

1. The most appropriate threshold depends on the chosen measure used to evaluate the suitability
of a threshold level. It is therefore important to choose a measure that provides insight into the
aspect that is considered important and a requirement that a threshold level should satisfy.

2. The required amount of reviews increases considerably to determine the sensitivity compared to
the required amount of reviews to determine the false omission rate. This could be considered a
drawback to using sensitivity, specificity or accuracy as a measure.
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Conclusion and discussion

This chapter provides a summary of the threshold tuning strategies proposed in this thesis, followed by
a discussion of the implications and limitations of these strategies. This thesis concludes with a section
on topics for further research.

7.1 Conclusions
In this section, the research objectives stated in Chapter 1.1 will be answered and argued using results
derived from this thesis. The first research objective to answer is:

How can a threshold tuning strategy be incorporated to accelerate the threshold tuning process of trans-
action monitoring models?

In this thesis, the performance of five threshold tuning strategies was investigated for initial thresh-
old tuning to accelerate the threshold tuning process of transaction monitoring models. The main focus
of this thesis was on BTL testing and the risk of missing interesting transactions below a threshold level.
From the results in Chapter 6, it can be concluded that the bisection strategy requires the fewest re-
views of transactions to determine the most appropriate threshold level. The multi-level with bisection
strategy has a similar performance but requires slightly more reviews of transactions.

Furthermore, the bisection strategy results in a small difference between the true and found threshold
level and has a stable performance. Another advantage of the bisection strategy is that the bisection
strategy does not require tuning a parameter as is the case for the temperature parameter for the
Boltzmann exploration strategy to improve the performance. However, the bisection strategy could end
up in a local minimum when the proportion of interesting transactions fluctuates because this strategy
does not start by testing the lowest logical level.

Moreover, the threshold tuning process can be accelerated by reusing information from a previously
reviewed sample of another threshold level. This can reduce the number of required reviews in the
tested case studies by more than 50% resulting in a great reduction in the workload for an analyst.

Lastly, it is important to note that the chosen measure affects the required amount of reviews. The
false omission rate as chosen measure results in substantially fewer required reviews compared to the
situation that the sensitivity is chosen as the measure.

In conclusion, there is a preference to use the bisection strategy for initial threshold tuning and reuse
information from a previously reviewed sample of another threshold level to not waste valuable knowl-
edge in the threshold tuning process.

The second research objective to answer is:
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How can the uncertainty in the threshold tuning process for the chosen threshold level be quantified?

In this thesis, five confidence interval methods were evaluated with a simulation study when the main
interest is only false and true negative transactions, determined via BTL testing, or only false and
true positive transactions, determined via ATL testing. From the results in Section 3.2.4, it could
be concluded that the Clopper-Pearson confidence interval method is the most appropriate since the
Clopper-Pearson method always guarantees a coverage probability that is at least equal to the nominal
coverage probability. In addition, the Clopper-Pearson confidence interval method has the great advan-
tage that it can be applied regardless of the proportion of interesting transactions in the population.

It is possible to quantify the uncertainty in the sample proportion with the Clopper-Pearson confi-
dence interval in combination with the complete population approach and make a statement with a
certain confidence level such as; ‘the proportion of interesting transactions in the population below
threshold level L is with a (1− α)× 100% confidence level less or equal to pupper’.

When interested in a variable expressed as a combination of the false and true negative and positive
transactions via BTL and ATL testing, it is possible to quantify the uncertainty via bootstrapping in
combination with the complete population approach. Using bootstrapping, a sampling distribution for
the desired variable can be determined. Subsequently, Wald’s confidence interval or the Bias corrected
and accelerated (BCa) Percentile confidence interval method can be used to quantify the uncertainty in
the variable and to make a statement with a certain confidence level such as; ‘the sensitivity of threshold
level L is with a (1−α)∗100% confidence level at least or equal to θlower’. Which method is appropriate
for the threshold level that is evaluated, should be based on the determined sampling distribution by
bootstrapping.

Lastly, the required sample size in the threshold tuning process depends on the preliminary popula-
tion proportion and the desired confidence level for the confidence interval. The required sample size
increases for a larger preliminary population proportion, with a maximum required sample size for a
preliminary population proportion equal to 0.5. In addition, a larger sample size is required for a con-
fidence interval with a higher confidence level or a smaller margin of error.

In conclusion, it is recommended to quantify uncertainty in the sample proportion using the Clopper-
Pearson confidence interval method when one is only interested in the false and true negative trans-
actions or only interested in the false and true positive transactions. It is recommended to quantify
uncertainty with bootstrapping in combination with the Wald or Bias corrected and accelerated (BCa)
Percentile confidence interval method when one is interested in a variable expressed as a combination
of the false and true negative and positive transactions.

7.2 Discussion
This section reflects on the contribution of this thesis and discusses the obtained results. The bisection
strategy is a suitable strategy for initial threshold tuning in various situations where it is unknown
which threshold level is most suitable. The strategy quickly reduces the number of potentially suitable
threshold levels by halving the number of options after each investigated threshold level. However, the
research conducted in this thesis has its limitations which are discussed below.

Firstly, the performance of the tuning strategies has not been examined for the situation of periodic
evaluation where, unlike with initial threshold tuning, some information is already known about the
suitability of certain threshold levels. Periodic evaluation of an existing rule could be applicable when
new data analysis has shown that the proportion of interesting transactions is higher than desired. In
the case of periodic evaluation, the most appropriate threshold might be fairly close to the original
threshold level which might enable the step strategy to determine the most appropriate threshold level
with fewer reviews of transactions than the bisection strategy. If it is possible to use expert judgement
to make a good estimate of the most appropriate threshold level, the step strategy possibly results in a
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better performance compared to the bisection strategy. It is therefore always important to consciously
consider which strategy is most suitable for a given situation.

In addition, the strategies have been tested on a limited number of distributions that may not be
a representative reflection of the transaction data that banks face in reality. To set up the synthetic
data sets, strong assumptions were made about possible criminal behaviour, but the plausibility of the
assumptions was explored to a limited extent to keep the focus on threshold tuning strategies. It is
important to emphasise that other choices of distributions or parameters in the distributions may lead
to different results.

More research on the performance of the strategies on synthetic data with other distributions is nec-
essary to investigate the performance of the strategies on a wide variety of possible transaction data.
To be more certain of the performance of the tuning strategies, the strategies should be tested on real
labelled transaction data and should discussed with experts in the field.

Moreover, the bisection strategy especially results in a good performance when dealing with a rea-
sonable number of threshold levels. However, if it is decided to divide the transaction data only with
10 threshold levels, for example, the performance of the bisection strategy may become relatively worse
compared to the other strategies.

Furthermore, in the thesis, a sample size with a margin of error of 0.05 was chosen which was 25%
of the RTL in the experiments. However, the relatively large margin of error to the RTL can cause
problems if the population proportion is close to the RTL which can result in a found threshold level
further below or above the true threshold level. A margin of error that is relatively smaller than the
RTL, which requires a larger sample size, mitigates this problem by allowing the sample proportion to
be determined more accurately.

Additionally, the impact of the choice of the percentage of threshold levels which are explored with
the multi-level strategy on the performance of this strategy is not investigated in this thesis. Since the
multi-level also generally resulted in a good performance, it is interesting to investigate whether a higher
percentage for threshold levels explored with the multi-level strategy could lead to better performance.

Lastly, relatively limited attention is paid to the confidence interval for bootstrapping in this thesis.
However, a sampling distribution does not always result in a distribution that resembles the normal
distribution. As an example, consider the sensitivity as a chosen measure which can take values between
0 and 1 and that the sensitivity of a certain threshold level is close to 1. This may result in a sampling
distribution that does not resemble the normal distribution as shown in Figure G.3 in Appendix G.4.
More research could be performed on the confidence intervals for bootstrapping and its applicability in
the threshold tuning process.

7.3 Recommendations for future research
In this section, recommendations for future research are discussed.

Firstly, the threshold tuning framework used throughout this thesis was based on fixed threshold levels.
All transactions were split using threshold levels that were a fixed distance apart. However, this could
limit the threshold tuning process if, for example, the most appropriate threshold level is between two
fixed threshold levels. A more continuous threshold tuning framework that allows flexibility in the dis-
tance between threshold levels might make it possible to end up closer to the optimal threshold value.
In this case, continuous threshold levels might be considered instead of threshold levels discretised with
a fixed distance between them. For the bisection strategy, this would mean that the next threshold level
that should be tested is a value in the middle of the two values instead of in the middle of two fixed
threshold levels. However, it is important to define the minimum difference between the values of two
threshold levels in advance since the threshold tuning process can last a long time if the process is for ex-
ample continued until the difference between two threshold levels is only 50 euros. In this case, it might
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be a waste of time to test an additional threshold level for such a small difference. Further research
about a more continuous threshold tuning framework would be an interesting continuation of this thesis.

In addition, the bisection strategy is now formulated to halve the potential threshold levels each time
after evaluating a threshold level. However, this is not necessarily the smartest choice. Suppose that
transactions are discretised with 20 threshold levels and level 10 is tested first for which an analyst
determines that pupper = 0.22. In this situation, it might make more sense to test a next threshold level
that is about RTL

0.22 = 0.2
0.22 ≈ 0.91 times the value of the tested threshold level rather than a threshold

level at about half the value of the tested threshold level which can be defined as ‘adjusted bisection
with weights’ strategy. It would be interesting to investigate how much more the threshold tuning
process can be accelerated using the ‘adjusted bisection with weights’ strategy.

Lastly, in the case studies, only one variable of interest was considered, or several variables could be
summarised in the variable of interest. In practice, however, there are probably multiple variables that
influence the suitability of a threshold level and cannot always be summarised in one variable. It would
therefore be interesting to investigate and adapt this framework for a situation where multiple variables,
which cannot be summarised in the variable of interest, influence the appropriateness of a threshold
level.
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A
Terminology and derivations from a

confusion matrix

Definitions

• True positive (TP): A test result that correctly indicates the presence of a condition or character-
istic.

• True negative (TN): A test result that correctly indicates the absence of a condition or character-
istic.

• Talse positive (FP): A test result which wrongly indicates that a particular condition or attribute
is present.

• Talse negative (FN): A test result which wrongly indicates that a particular condition or attribute
is absent

Terminology

TPR =
TP

TP + FN
= 1− FNR Sensitivity or True Positive Rate (A.1)

TNR =
TN

TN + FP
= 1− FPR Specificity or True Negative Rate (A.2)

PPV =
TP

TP + FP
Positive Predictive Value (A.3)

FDR =
FP

TP + FP
= 1− PPV False Discovery Rate (FDR) (A.4)

NPV =
TN

TN + FN
Negative Predictive Value (A.5)

FOR =
FN

TN + FN
= 1−NPV False Omission rate (A.6)

ACC =
TP + TN

TP + TN + FP + FN
Accuracy (A.7)

FNR =
FN

TN + TP
= 1− TPR False Negative Rate (A.8)

FPR =
FP

FP + TN
= 1− TNR False Positive Rate (A.9)
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B
Sample sizes

Clopper-Pearson sample size
For the Clopper-Pearson CI, the three cases result in the following systems of equations:
For x = 0 

pupper ≤ 1− (α/2)1/n

plower ≥ 0

pupper − plower < 2e

(B.1)

For 0 < x < n: 
pupper ≤ Beta1−α/2(x+ 1, n− x)

plower ≥ Betaα/2(x, n− x+ 1)

pupper − plower < 2e

(B.2)

For x = n: 
pupper ≤ 1

plower ≥ (α/2)1/n

pupper − plower < 2e

(B.3)

The sample size that follows from solving the system of equations will be rounded up to the nearest
integer.
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Arcsine sample size
For the Arcsine CI, the three cases result in the following systems of equations:
For x = 0 

pupper ≤ sin2

(
min

(
arcsin(

√
p0) +

z1−α/2

2
√
n

; π
2

))
plower ≥ 0

pupper − plower < 2e

(B.4)

For 0 < x < n: 
pupper ≤ sin2

(
min

(
arcsin(

√
p0) +

z1−α/2

2
√
n

; π
2

))
plower ≥ sin2

(
max

(
arcsin(

√
p0)−

z1−α/2

2
√
n

; 0

))
pupper − plower < 2e

(B.5)

For x = n: 
pupper ≤ 1

plower ≥ sin2

(
max

(
arcsin(

√
p0)−

z1−α/2

2
√
n

; 0

))
pupper − plower < 2e

(B.6)

The sample size that follows from solving the system of equations will be rounded up to the nearest
integer.
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B.1 Sample size figures

(a) The required sample size using Wald’s CI. (b) The required sample size using Wilson Score CI.

(c) The required sample size using Arcsine CI. (d) The required sample size using Clopper-Pearson CI.

Figure B.1: A comparison of the required sample size with different CI methods for a 95% or 99% confidence
interval with a margin of error e = 0.05
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(a) The required sample size using Wald’s CI. (b) The required sample size using Wilson Score CI.

(c) The required sample size using Arcsine CI. (d) The required sample size using Clopper-Pearson CI.

Figure B.2: A comparison of the required sample size with different CI methods for a margin of error e equal to
0.05, 0.04 and 0.03 with α = 0.05



C
Proof of Clopper-Pearson CI limits

A proof that the limits of the Clopper-Pearson confidence interval are equal to the quantiles of the Beta
distribution, i.e P (X ≥ k) = Ip(k, n− k + 1) and P (X ≤ k) = 1− Ip(k + 1, n− k), is described in the
report of Scholz [26] in which two facts are proven:

1. Let x(p) = P (X ≥ k) and y(p) = Ip(k, n− k + 1). Firstly, it is proven that:

x′(p) =
∂P (X ≥ k)

∂p
=

∂Ip(k, n− k + 1)

∂p
= y′(p) ∀p ≥ 0. (C.1)

2. In addition, it is proven that:

x(p) = P (X ≥ k) = Ip(k, n− k + 1) = y(p) for p = 0. (C.2)

3. From 1 and 2, it can be concluded that P (X ≥ k) = Ip(k, n− k+ 1) for all values of p ≥ 0 which
proves the relation in equation 3.11.

The conclusion in point 3 follows from the fact that x′(p) = y′(p) = f(p) which results in x(p) = y(p)+C.
Furthermore, it is proven that x(0) = y(0) from which follows that C = 0. Therefore, it can be con-
cluded that x(p) = y(p) ∀p ≥ 0 since the functions are continuous which implies uniqueness of the
solution.

Proof
To prove equation C.1, suppose X is a binomial random variable X. Then:

P (X ≤ k) =

k∑
i=0

(
n

i

)
pi(1− p)n−i (C.3)

and P (X ≥ k) = 1 − P (X ≤ k − 1). It can be proven that P (X ≤ k) is a strictly decreasing in p for
k = 0, 1, ..., n − 1 and that P (X ≥ k) is strictly increasing in p for k = 0, 2, ..., n. Using the identities
i
(
n
i

)
= n

(
n−1
i−1

)
and (n − i)

(
n
i

)
= n

(
n−1
i

)
in equation C.6 and taking the derivative of P (X ≥ k) with

respect to p gives as result:
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x′(p) =
∂P (X ≥ k)

∂p
=

n∑
i=k

(
n

i

)
ipi−1(1− p)n−i −

n∑
i=k

(
n

i

)
(n− i)pi(1− p)n−i−1 (C.4)

=

n∑
i=k

(
n

i

)
ipi−1(1− p)n−i −

n−1∑
i=k

(
n

i

)
(n− i)pi(1− p)n−i−1 + 0 (C.5)

= n

[ n∑
i=k

(
n− 1

i− 1

)
ipi−1(1− p)n−i −

n−1∑
i=k

(
n− 1

i

)
pi(1− p)n−i−1

]
(C.6)

= n

[(
n− 1

k − 1

)
pk−1(1− p)n−k −

(
n− 1

k

)
pk(1− p)n−k−1 (C.7)

+

(
n− 1

k

)
pk(1− p)n−k−1 −

(
n− 1

k + 1

)
pk+1(1− p)n−k−2 (C.8)

+ ...− ... (C.9)

+

(
n− 1

n− 2

)
pn−2(1− p)−

(
n− 1

n− 1

)
pn−1 (C.10)

+

(
n− 1

n− 1

)
pn−1

]
(C.11)

= n

(
n− 1

k − 1

)
pk−1(1− p)n−k = k

(
n

k

)
pk−1(1− p)n−k > 0 (C.12)

where the blue terms cancel each other out. In addition, by the Fundamental Theorem of Calculus, the
derivative of:

Ip(k, n− k + 1) =
Γ(n+ 1)

Γ(k)Γ(n− k + 1)

∫ p

0

tk−1(1− t)n−kdt = k

(
n

k

)∫ p

0

tk−1(1− t)n−kdt (C.13)

with respect to p is equal to:

k

(
n

k

)
pk−1(1− p)n−k (C.14)

which is equal to the derivative of P (X ≥ k) with respect to p. This proves equation C.1. Furthermore,
P (X ≥ k) = 0 and Ip(k, n− k + 1) = 0 for p = 0 which proves equation C.2. Therefore, it can be con-
cluded that the relation P (X ≥ k) = Ip(k, n−k+1) holds. By complement, it follows for k < n that [26]:

P (X ≤ k) = 1− P (X ≥ k + 1) = 1− Ip(k + 1, n− k) (C.15)

This proves that the upper and lower bound for the proportion p for the Clopper-Pearson CI are equal
to the quantiles of the Beta distribution as described in equation 3.12 .



86



87

D
Tuning strategies

Below The Line (BTL) testing

Step strategy

1 2 3 4 5 7 8 9

If %FN < RTL: go up
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n4 n5 n6 n7 n8

Found
level

6 1 2 3 4 5 7 8 9
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tested
level

n3

Found
level

60

If %FN > RTL: go down

n1

A B
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Bisection strategy

1 2 3 4 5 7 8 9

If %FN < RTL: go up

First
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level

n5 n7 n8

Found
level

6 1 2 3 4 5 7 8 9

First
tested
level

Found
level

60

If %FN > RTL: go down

n5n2 n3n1

C D

0

Multi level strategy
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n3* n7*

60

If %FN > RTL: continue with level 3
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First
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levels

60

First
tested
levels

n3* n7*

First
tested
levels

E F

Figure D.1: Illustration of the step, bisection and multi level strategy in combination with the bucket approach for
BTL tuning.
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Above The Line (ATL) testing

Multi level strategy

1 2 3 4 5 7 8 9

If %TP > RTL: continue with level 3

First
tested
levels

60

If %TP < RTL: continue with level 7

1 2 3 4 5 7 8 9

First
tested
levels

60

First
tested
levels

First
tested
levels

Step strategy

1 2 3 4 5 7 8 9

If %TP > RTL: go down

First
tested
level
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level

61 2 3 4 5 7 8 9
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level

Found
level

60

If %TP < RTL: go up

G H

Bisection strategy

1 2 3 4 5 7 8 9

If %TP > RTL: go down

First
tested
level

Found
level

61 2 3 4 5 7 8 9

First
tested
level

Found
level

60

If %TP < RTL: go up

I J

0

0

K L

n3 n4 n5 n6 n7n3n2n1

n5 n6 n7n5n2 n3n1

n3* n7* n3* n7*

Figure D.2: Illustration of the step, bisection and multi level strategy in combination with the complete population
approach for ATL tuning.



E
Strategy algorithms

E.1 Step algorithm
The review process in which the proportion of interesting transactions in the sample is determined, is
described in algorithmic form in Algorithm 1. In addition, upper and lower confidence interval bounds
for the proportion of interesting transactions are also determined in the review process as well as the
amount of reviewed transactions by the analyst.

Algorithm 1 Review Process
Require: n, α, reviews, S

1: s = 0 ▷ sum of interesting transactions
2: for j in range(0, n) do ▷ review process by analyst
3: s+ = s+ S[j] ▷ S[j]=0 or 1, if the transaction in sample S is interesting or not
4: reviews+ = 1 ▷ amount of reviewed transactions
5: end for
6: p = s/n ▷ proportion of interesting transactions
7: plow, phigh = ClopperPearson(...) ▷ function returning Clopper Pearson CI limits
8: return plow, phigh, reviews
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Algorithm 2 Step
Require: RTL, n, α, reviews, S, phigh

1: Si ← S[i] ▷ sample of level i
2: plow, phigh, reviews = ReviewProcess(i, ...) ▷ simulation of review process by analyst
3: phigh[i]← phigh
4: Lchecked+ = 1 ▷ counts number of checked levels
5: if phigh ≥ RTL then ▷ if phigh ≥ RTL, go lower
6: if phigh[i− 1] < RTL then ▷ stop condition
7: Lfinal = i− 1
8: else
9: Lnext = i− 1

10: Lfinal, reviews = Step(Lnext, ...)
11: end if
12: else ▷ else go higher
13: if phigh[i+ 1] ≥ RTL then ▷ stop condition
14: Lfinal = i
15: else
16: Lnext = i+ 1
17: Lfinal, reviews = Step(Lnext, ...)
18: end if
19: end if
20: return Lfinal, Lchecked, reviews
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E.2 Bisection algorithm

Algorithm 3 Bisection
Require: RTL, n, α, reviews, S, phigh, Lmin, Lmax

1: Si ← S[i] ▷ sample of level i
2: plow, phigh, reviews = ReviewProcess(i, ...) ▷ simulation of review process by analyst
3: phigh[i]← phigh
4: Lchecked+ = 1 ▷ counts number of checked levels
5: if phigh ≥ RTL then ▷ if phigh ≥ RTL, go lower
6: if phigh[i− 1] < RTL then ▷ stop condition
7: Lfinal = i− 1
8: else
9: Lnext = ceil(i− i−Lmin

2 )
10: Lmax = i
11: Lfinal, reviews = Bisection(Lnext, ...)
12: end if
13: else ▷ else go higher
14: if phigh[i+ 1] ≥ RTL then ▷ stop condition
15: Lfinal = i
16: else
17: Lnext = ceil(i+ Lmax−i

2 )
18: Lmin = i
19: Lfinal, reviews = Bisection(Lnext, ...)
20: end if
21: end if
22: return Lfinal, Lchecked, reviews
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E.3 Multi-level algorithm

Algorithm 4 Multi-level
Require: RTL, n, α, reviews, S, phigh, Lmin, Lmax

1: n∗ = ceil(n/(K ∗ x)) ▷ amount of transactions that will be explored
2: for j in range(0,K ∗ x) do ▷ EXPLORATION PHASE
3: i = ceil(K ∗ j+1

K∗x+1 ) ▷ explore level i
4: L[j]← i
5: plow, phigh, reviews = ReviewProcess(i, n∗, ...)
6: phigh[i]← phigh
7: end for
8: Lcont = L[j] ▷ continue with highest level for which phigh[i] < RTL
9: ▷ EXPLOITATION PHASE

10: plow, phigh, reviews = ReviewProcess2(Lcont, n
∗, ...) ▷ Small adjustment to Review Process

function
11: if phigh ≥ RTL then
12: Lnext = ... ▷ Determined with chosen strategy to continue with
13: else
14: Lnext = ... ▷ Determined with chosen strategy to continue with
15: end if
16: Lfinal, reviews = Strategy(Lnext, ...) ▷ Continue with chosen strategy Step or Bisection
17: return Lfinal, Lchecked, reviews

where x the percentage of threshold levels which will be explored and n∗ the amount of transactions
in the sample that will be explored. Function ‘Review Process2’ is the same as the function ‘Review
Process’ except that it continues reviewing transactions of the most promising threshold level, changing
line 2 in Algorithm 1 to ‘for j in range(n∗, n)’ and not starting with s = 0.
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E.4 Boltzmann Exploration algorithm

Algorithm 5 Boltzmann Exploration
Require: RTL, n, α, reviews, S, phigh, t

1: n∗ = ceil(n/50) ▷ amount of transactions that will be explored
2: for i in range(0,K) do ▷ GET INITIAL AVG REWARDS, review n∗ transactions for each

level
3: µ̂0,i = AverageReward(i, ...) ▷ function returns average reward for level i
4: end for
5: for i in range(0,K) do ▷ INITIAL PICK PROBABILITY
6: pselect,i = (eµ̂0,i/τ0)/(sum(eµ̂0/τ0))
7: end for
8: for t in range(K ∗ n∗,K ∗ n) do ▷ K ∗ n is max amount of possible required reviews
9: i = int(random(L, pselect[1 : K], 1)) ▷ select level i to review one transaction

10: nt,i+ = 1
11: τt = taufunction(t, τ0) ▷ tau function
12: µ̂t,i = AverageReward(i, ...) ▷ update average reward for level i
13: ▷ STOP CONDITION
14: if nt,i == n then ▷ all transactions in sample Si are reviewed
15: Lchecked+ = 1
16: if phigh[i] ≥ RTL then
17: phigh[i− 1] = ReviewProcess2(i− 1, nt,i−1, ...) ▷ Determine phigh for one level lower
18: Lchecked+ = 1
19: if phigh[i− 1] < RTL then
20: Lfinal = i− 1
21: break
22: else
23: for i in range(0,K) do ▷ UPDATE PICK PROBABILITY AND CONTINUE
24: pselect,i = (eµ̂t,i/τt)/(sum(eµ̂t/τt))
25: end for
26: end if
27: else
28: phigh[i+1] = ReviewProcess2(i+1, nt,i+1, ...) ▷ Determine phigh for one level higher
29: Lchecked+ = 1
30: if phigh[i+ 1] ≥ RTL then
31: Lfinal = i
32: break
33: else
34: for i in range(0,K) do ▷ UPDATE PICK PROBABILITY AND CONTINUE
35: pselect,i = (eµ̂t,i/τt)/(sum(eµ̂t/τt))
36: end for
37: end if
38: end if
39: end if
40: end for
41: reviews = t
42: return Lfinal, Lchecked, reviews
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E.5 Epsilon-Greedy strategy
ϵ-Greedy Strategy (Semi-Uniform method)
The ϵ-Greedy algorithm chooses in each round with probability ϵ a random threshold level (exploration)
and with probability 1− ϵ the threshold level that has the highest average reward (exploitation). There-
fore, given the initial empirical means µ̂1(0),...,µ̂K(0) [21]:

pselect,i(t+ 1) =

{
1− ϵ+ ϵ

k if i = argmaxj=1,...,K µ̂j(t)
ϵ
k otherwise

This strategy purely exploits the threshold level with the highest average reward with ϵ = 0. As epsilon
increases, exploration increases resulting in the optimal threshold level being chosen with a higher
frequency. As epsilon increases, however, a tipping point is reached where there is more exploration
and less exploitation until ϵ = 1. Many variations on the epsilon greedy algorithm have been devised
by such as the ϵ-decreasing strategy in which ϵ decreases (less exploration) over time instead of keeping
ϵ constant. The main disadvantage of this strategy is that non-optimal threshold levels are still chosen,
even after it is identified that these threshold levels are not optimal.



F
Tuning results of the temperature

parameter
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F.1 Difference between found and true threshold level

(a) For case study 1.

(b) For case study 2.

(c) For case study 3.

Figure F.1: For BTL testing, the difference between the found and true threshold level for a decreasing or constant
schedule for different τ(0) values for K = 20 threshold levels.



G
Experiment results

G.1 Stability moment
In Figures G.1 and G.2, it can be clearly seen that the maximum, the median and the minimum amount
of reviews and difference between found and true threshold level stabilise and do not change considerable
after 25 runs for case study 1. The same conclusion could be drawn for case study 2 and 3.
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Figure G.1: For case study 1, the maximum, 75% quantile, median, 25% quantile and minimum amount of
reviews required for different tuning strategies over 25 runs.
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Figure G.2: For case study 1, the maximum, 75% quantile, median, 25% quantile and minimum difference
between the found and true threshold level for different tuning strategies over 25 runs.
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G.2 Found and true threshold for each case based on the
false omission rate

The darker orange the colour of a cell, the further is the found threshold level above the true threshold
level. The darker green the colour of a cell, the further is the found threshold level below the true
threshold level.

Run Step Bisectiion Multi step Multi bisection Boltzmann TRUE
1 3 3 3 3 7 3
2 3 3 3 3 3 2
3 3 3 3 3 3 2
4 3 3 3 3 3 3
5 3 3 3 3 3 3
6 4 4 3 3 3 3
7 3 3 3 3 7 3
8 3 3 3 3 3 3
9 3 3 3 3 3 2

10 3 3 3 3 3 3
11 3 3 3 3 8 3
12 3 3 3 3 3 3
13 3 3 3 3 3 3
14 3 3 3 3 3 2
15 3 3 3 3 3 3
16 4 4 4 4 4 3
17 3 3 3 3 3 3
18 3 3 3 3 3 3
19 3 3 3 3 3 3
20 3 3 3 3 3 3
21 3 3 3 3 3 3
22 4 4 4 4 4 3
23 4 4 4 8 4 3
24 3 3 3 3 3 3
25 3 3 3 3 3 2

Table G.1: The found threshold with different strategies and the true threshold per run for case study 1.
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The darker orange the colour of a cell, the further is the found threshold level above the true threshold
level. The darker green the colour of a cell, the further is the found threshold level below the true
threshold level.

Run Step Bisection Multi step Multi bisection Boltzmann TRUE
1 11 11 11 11 11 12
2 10 10 10 10 10 12
3 11 11 11 11 11 12
4 11 11 11 11 11 12
5 10 10 10 10 10 11
6 12 12 12 12 12 19
7 11 11 11 11 11 11
8 11 11 11 11 11 11
9 11 11 11 11 11 11

10 11 11 11 11 11 11
11 11 13 11 13 13 12
12 10 10 10 10 10 12
13 11 11 11 11 11 11
14 11 11 11 11 11 11
15 11 11 11 11 11 11
16 11 11 11 11 11 12
17 12 12 12 12 12 11
18 11 11 11 11 11 12
19 11 11 11 11 11 11
20 11 11 11 11 11 11
21 11 11 11 11 11 12
22 10 10 10 10 10 11
23 12 12 12 12 12 19
24 12 12 12 12 12 19
25 11 11 11 11 11 11

Table G.2: The found threshold with different strategies and the true threshold per run for case study 2.
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The darker orange the colour of a cell, the further is the found threshold level above the true threshold
level. The darker green the colour of a cell, the further is the found threshold level below the true
threshold level.

Run Step Bisection Multi step Multi bisection Boltzmann TRUE
1 3 19 15 15 2 19
2 11 19 11 11 11 19
3 8 19 19 19 19 19
4 7 19 7 19 11 19
5 3 18 18 18 16 19
6 15 19 15 15 15 19
7 19 19 19 19 19 19
8 3 9 9 19 19 19
9 19 19 19 19 19 19

10 19 19 3 3 19 19
11 5 9 9 19 5 19
12 2 17 17 17 19 19
13 11 14 11 19 19 19
14 4 19 3 3 19 19
15 9 9 9 9 18 19
16 10 18 10 13 13 19
17 13 19 13 13 19 19
18 12 19 12 19 12 19
19 8 19 8 19 8 19
20 4 19 12 19 10 19
21 19 19 19 19 19 19
22 2 19 6 19 19 19
23 11 19 11 11 19 19
24 5 19 5 5 5 19
25 6 19 6 11 15 19

Table G.3: The found threshold with different strategies and the true threshold per run for case study 3.
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G.3 Found and true threshold for each case based on the
sensitivity

The right-hand column shows the difference between the true threshold level based on sensitivity as a
measure instead of the false omission rate as a measure.

Run Bisection Multi bisection TRUE (based on
sensitivity)

TRUE (based on
FOR)

1 2 2 2 3
2 2 2 3 2
3 2 2 2 2
4 2 2 3 3
5 2 2 2 3
6 2 2 3 3
7 2 2 2 3
8 3 3 3 3
9 2 2 2 2

10 2 2 3 3
11 2 2 3 3
12 2 2 2 3
13 2 2 3 3
14 2 2 2 2
15 2 2 2 3
16 2 2 2 3
17 2 2 3 3
18 2 2 3 3
19 2 2 2 3
20 2 2 3 3
21 2 2 3 3
22 2 2 3 3
23 2 2 2 3
24 2 2 3 3
25 2 2 3 2

Table G.4: The found threshold with different strategies and the true threshold per run for case study 1, based on
the sensitivity as measure.
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The darker green the colour of a cell, the further is the found threshold level below the true threshold
level. The right-hand column shows the difference between the true threshold level based on sensitivity
as a measure instead of the false omission rate as a measure.

Run Bisection Multi bisection TRUE (based on
sensitivity)

TRUE (based on
FOR)

1 9 9 12 12
2 10 10 13 12
3 9 9 12 12
4 9 9 12 12
5 8 8 11 11
6 8 8 14 19
7 11 11 11 11
8 10 10 11 11
9 10 10 11 11

10 9 9 11 11
11 10 7 12 12
12 7 7 11 12
13 8 8 11 11
14 9 9 11 11
15 9 9 11 11
16 9 9 10 12
17 9 9 11 11
18 11 11 12 12
19 9 9 11 11
20 9 9 11 11
21 10 10 11 12
22 9 9 11 11
23 7 7 14 19
24 9 11 14 19
25 10 10 11 11

Table G.5: The found threshold with different strategies and the true threshold per run for case study 2, based on
the sensitivity as measure.
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The darker orange the colour of a cell, the further is the found threshold level above the true threshold
level. The right-hand column shows the difference between the true threshold level based on sensitivity
as a measure instead of the false omission rate as a measure.

Run Bisection Multi bisection TRUE (based on
sensitivity)

TRUE (based on
FOR)

1 1 1 0 19
2 1 1 0 19
3 1 1 0 19
4 1 1 0 19
5 1 1 0 19
6 1 1 0 19
7 1 1 0 19
8 1 1 0 19
9 1 1 0 19

10 1 1 0 19
11 1 1 0 19
12 1 1 0 19
13 1 1 0 19
14 1 1 0 19
15 1 1 0 19
16 1 1 0 19
17 1 1 0 19
18 1 1 0 19
19 1 1 0 19
20 1 1 0 19
21 1 1 0 19
22 1 1 0 19
23 1 1 0 19
24 1 1 0 19
25 1 1 0 19

Table G.6: The found threshold with different strategies and the true threshold per run for case study 3, based on
the sensitivity as measure.
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G.4 Bootstrap sampling distribution

(a) Population sensitivity = 0.9734 (level 2) (b) Population sensitivity = 0.8 (level 3)

(c) Population sensitivity = 0.557 (level 4)

Figure G.3: The sampling distribution of the sensitivity of case study 1 of threshold level 2, 3, and 4 with
B = 10000 and n = 264.
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