
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Exposing the Hidden-Web
Induced by Ajax

Ali Mesbah and Arie van Deursen

Report TUD-SERG-2008-001

SERG

TUD-SERG-2008-001

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2008, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Exposing the Hidden-Web Induced by Ajax

Ali Mesbah
Software Engineering Research Group

Delft University of Technology
The Netherlands

A.Mesbah@tudelft.nl

Arie van Deursen
Software Engineering Research Group
Delft University of Technology & CWI

The Netherlands

Arie.vanDeursen@tudelft.nl

ABSTRACT
AJAX is a very promising approach for improving rich interactivity
and responsiveness of web applications. At the same time, AJAX

techniques increase the totality of the hidden web by shattering the
metaphor of a web ‘page’ upon which general search engines are
based. This paper describes a technique for exposing the hidden
web content behind AJAX by automatically creating a traditional
multi-page instance. In particular we propose a method for crawl-
ing AJAX applications and building a state-flow graph modeling
the various navigation paths and states within an AJAX application.
This model is used to generate linked static HTML pages and a cor-
responding Sitemap. We present our tool called CRAWLJAX which
implements the concepts discussed in this paper. Additionally, we
present a case study in which we apply our approach to two AJAX

applications and elaborate on the obtained results.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hypertext/Hy-
permedia—Navigation; H.3.3 [Information Search and Retrieval]:
Search process; D.2.2 [Software Engineering]: Design Tools and
Techniques

General Terms
Design, Algorithms, Experimentation.

Keywords
ajax, hidden web, crawling ajax, search engine accessibility, web
engineering.

1. INTRODUCTION
The web as we know it is undergoing a significant change. A

set of concrete technologies, under the umbrella of Rich Internet
Applications (RIA) andWeb 2.0, have made the web of today a lot
more interactive and responsive for end users than it used tobe a
few years ago.

A technology that has gained a prominent position is the AJAX

(Asynchronous JavaScript and XML) [9] approach, in which a
clever combination of JavaScript and Document Object Model
(DOM) manipulation, along with asynchronous server communi-
cation is used to achieve a high level of user interactivity.Highly
visible examples include Google Maps, Google Documents, and
the recent version of Yahoo! Mail.

With this new change in developing web applications comes a
whole set of new challenges, mainly due to the fact that AJAX shat-

Copyright is held by the author/owner(s).

.

ters the metaphor of a web ‘page’ upon which many web technolo-
gies are based. One of these challenges is the way AJAX increases
the totality of thehidden-web[18].

General web search engines, such as Google and Yahoo!, cover
only a portion of the web called thepublicly indexable webwhich
consists of the set of web pages reachable purely by following
hypertext links, ignoring forms [2] and client-side scripting. The
pages not reached this way are referred to as thehidden web, which
is estimated to comprise several millions of pages [2]. Withthe
wide adoption of AJAX techniques that we are witnessing today
this figure will only increase.

Although there has been extensive research on finding and ex-
posing the hidden-web behind forms [2, 5, 11, 17, 18], the hidden-
web induced as a result of client-side scripting in general and AJAX

in particular has gained very little attention so far.
Consequently, while AJAX techniques are very promising in

terms of improving rich interactivity and responsiveness [15],
AJAX sites themselves may very well end up in the hidden web.
Thus, they will fail to meet the simple rule that determines the suc-
cess or failure of any public web site:“if you can’t find it, it doesn’t
exist”.

In this paper, we will be concerned with the question how a web
engineer can expose his or her AJAX web application to general
search engines. It is unlikely that in the near future searchengines
will change the way they crawl the web, due to the many challenges
AJAX sites impose on search engines. Hence, the responsibility
rests on the shoulders of web developers to make sure the AJAX

applications they build are as accessible and discoverableby search
engines as possible.

We propose to expose the essential parts of an AJAX applica-
tion to the general search engines by creating a traditionalmulti-
page instance. To that end, we propose a new type of crawler that
can exercise client side code, and which can identify clickable el-
ements (which may change with every click) within the browser’s
DOM dynamically. The crawler uses these to build up astate-flow
graph modeling the various navigation paths within an AJAX ap-
plication. This graph is subsequently used to generate a traditional
multi-page mirror version of the original AJAX application, along
with asitemapinforming search engines about the generated pages
that are available for crawling.

The underlying ideas have been implemented in a tool called
CRAWLJAX. We have applied CRAWLJAX to two AJAX applica-
tions, the results of which are discussed in this paper.

The primary application of our approach lies in helping web en-
gineers exposing their AJAX sites to search engines. Moreover, we
believe that the crawling techniques that are part of our solution
have other applications, such as within search engines or for auto-
matically exercising all user interface elements of an AJAX site for

SERG Mesbah and van Deursen – Exposing the Hidden-Web Induced by Ajax

TUD-SERG-2008-001 1

testing purposes.
The paper is structured as follows. We start out, in Section 2by

exploring the reasons AJAX induces hidden-web content and dis-
cuss the difficulties of crawling and indexing such applications. In
Section 3, we present some of the existing techniques that can be
used to make AJAX sites more accessible to search engines. In
Section 4, we present the overall view of our proposed solution,
followed by a detailed discussion of our new crawling techniques,
the generation process, and the CRAWLJAX tool in Sections 5–7.
In Section 8 the results of applying our methods to two AJAX ap-
plications are shown, after which Section 9 discusses the findings
and open issues. We conclude with a brief survey of related work, a
summary of our key contributions, and suggestions for future work.

2. AJAX HIDDEN-WEB INDUCTION
First of all, we take a closer look at why AJAX actually in-

duces hidden-web content. AJAX has a number of properties which
makes it extremely difficult for search engines to crawl suchweb
applications.

Client-side ExecutionThe common ground for all AJAX applica-
tions is a JavaScript engine which operates between the browser
and the web server, and which acts as an extension to the browser.
This engine typically deals with server communication and user
interface rendering. This client engine enables us to create rich
and responsive user interface behavior. Any search engine willing
to approach such an application must have support for the execu-
tion of the scripting language. Equipping a general search crawler
with the necessary environment complicates its design and imple-
mentation considerably. The major search giants such as Google1

currently have little or no support for executing JavaScript due to
scalability and security issues.

State Changes & NavigationTraditional web applications are
based on the multi-page interface paradigm consisting of multiple
(dynamically generated) unique pages each having a unique URL.

In AJAX applications, not every state change necessarily has an
associated REST-based [7] URI [15]. Ultimately, an AJAX ap-
plication could consist of a single-page [16] with a single URL.
This characteristic makes it very difficult for a search engine to
index and point to a specific state on an AJAX application. For
crawlers, navigating through traditional multi-page web applica-
tions has been as easy as extracting and following the hypertext
links on each page. In AJAX, hypertext links can be replaced by
events which are handled by the client engine. Simply extract-
ing and retrieving the internal hypertext links is not sufficient any
longer to navigate the application.

Dynamic Representational ModelIndexing traditional web appli-
cations consists of following links, retrieving and savingthe HTML
source-code of each page. The state changes in AJAX applications
are dynamically represented through the run-time changes on the
DOM. This implies that the source code in HTML does not repre-
sent the state anymore. Any search engine aimed at crawling and
indexing such applications, will need to have access to thisrun-time
dynamic representational model of the application.

Delta-communication AJAX applications rely on a delta-commu-
nication [15] style of interaction in which merely the statechanges
are exchanged asynchronously between the client and the server,
as opposed to the full-page retrieval approach in traditional web

1 http://www.google.com/support/webmasters/bin/answer.py?answer=
66355&query=cloaking

applications. Just retrieving and indexing the delta statechanges
could have the side-effect of losing the context of the changes.

Clickables Because of the very dynamic nature of AJAX and the
way events (e.g.,onclick) can be attached to DOM elements at
run-time, it is not just the hypertext link element that forms the
doorway to the next state. For instance, adiv element could also
have anonclick event attached to it so that it becomesClickable.
Finding these run-time clickables is another non-trivial task for a
crawler.

3. DESIGN FOR DISCOVERABILITY
There are some techniques that assist in making a modern AJAX

website more accessible and discoverable [4] by search engines.
We briefly discuss a number of such techniques in this sectionbe-
fore introducing our proposed solution.

3.1 Client-side Design

Graceful Degradation In web engineering terms, the concept be-
hind Graceful Degradation[8] is to design and build for the latest
and greatest user-agent and then add support for less capable de-
vices, i.e., focus on the majority on the mainstream and add some
support for outsiders. Graceful Degradation allows a web site to
‘step down’ in such a way as to provide a reduced level of service
rather than failing completely. A well-known example is themenu
bar generated by JavaScript which would normally be totallyig-
nored by search engines. By using HTML list items with hypertext
links inside anoscript tag, the site can degrade gracefully.

Progressive EnhancementThe termProgressive Enhancement
was first introduced by Steven Champeon2 and has been used as
the opposite side to Graceful Degradation. This technique aims for
the lowest common denominator, i.e., a basic markup HTML doc-
ument, and begins with a simple version of the web site, then adds
enhancements and extra rich functionality for the more advanced
user-agents using CSS and JavaScript. Because the basic content
is more accessible to search engine crawlers, AJAX sites built with
Progressive Enhancement methods can improve their discoverabil-
ity by search engines.

Unobtrusive JavaScript Enhanced behavior and rich functional-
ity through Progressive Enhancement is provided by unobtrusive,
externally linked JavaScript known asUnobtrusive JavaScript.

The concept revolves around the separation of JavaScript func-
tionality from the structure, content, and presentation layers. An
unobtrusive script, similar to an external CSS, is silentlyignored
by user-agents that do not support it, but is applied by more capa-
ble devices.

Figure 2 shows different ways a news page can be opened. Links
in lines 1 and 2 will simply be ignored by search engines where
as in 3 and 4 they can simply follow thehref link and index the
news page. So by thinking about search engines in advance, AJAX

developers can improve the accessibility of the pages.
The ultimate unobtrusive solution (line 4-6) is to registerthe nec-

essary event handlers programmatically, rather than inline. This is
commonly achieved by assigning a particular CSS selector, in this
casethenews, to the elements which need to be acted upon by the
script. Lines 8-10 show the jQuery3 code responsible for attaching
the required functionality to theonClick event handlers.

2 http://hesketh.com/publications/progressive enhancement paving
way for future.html
3 http://jquery.com

Mesbah and van Deursen – Exposing the Hidden-Web Induced by Ajax SERG

2 TUD-SERG-2008-001

Robot

Crawljax Controller Ajax
Engineupdate

 DOM

update

UI

event

Browser click

generate click

update

State
Machine

Sitemap
Generator

Mirror site
Generator

generate
sitemap

generate
mirror

event

Linkerlink
up

DOM to HTML
Transformer

transform

Crawling Ajax

Generating Indexable Pages

Legend

Control flow

 Data component

Processing component

Access

Event invocation

Output

Sitemap
XML

 Multi-page
HTML Static file

Figure 1: Processing view of the CRAWLJAX architecture.

1
2
3
4
5 <input type="submit" class="thenews"/>
6 <div class="thenews">

8 $(".thenews").click(function() {
9 $("#content").load("news.html");

10 });

Figure 2: Different ways of defining clickables in Ajax.

3.2 Server-side Generation
Another way to expose the hidden-web content behind AJAX ap-

plications is by making the content available to search engines at
the server-side by providing it in an accessible style. The content
could, for instance, be exposed through RSS feeds.

In the spirit of Progressive Enhancement, an approach called Hi-
jax4 involves building a traditional multi-page website first. Then,
using unobtrusive event handlers, links and form submissions are
intercepted and routed through theXMLHttpRequest object.

Generating and serving both the AJAX and the multi-page ver-
sion depending on the visiting user-agent is yet another approach.
One option is the use of XML/XSLT to generate indexable pages
for search crawlers [1].

In these approaches, however, the server-side architecture will
need to be quite modular, capable of returning delta changesas
required by AJAX, as well as entire pages.

The server-side generation approach increases the complexity,
development costs, and maintainability effort. In the nextsection
we propose our solution, which aims at assisting the developer in
the automatic generation of the indexable version of their AJAX ap-

4 http://www.domscripting.com/blog/display/41

plication, thus significantly reducing the cost and effort of making
AJAX sites more accessible to search engines.

4. PROPOSED SOLUTION: POST-SITE
GENERATION

In order to improve search engine discoverability for AJAX ap-
plications, we propose a post-site secondary site strategy, in which
a linked multi-page mirror site is automatically generatedafter the
AJAX application has been built. This mirror site is fully accessi-
ble to the search engines. In this approach, called CRAWLJAX, the
input is an AJAX site already in place, with or without using the
concepts as mentioned in Section 3, and the output is a traditional
multi-page version of the application displaying the same content
and structure. Our only requirement for crawling is that allClick-
able (see 5.3.1 for a definition) elements should have unique IDs.
The need for this constraint is explained in Section 5 and evaluated
in our discussion Section 9.

Figure 1 depicts the processing view of our CRAWLJAX ap-
proach. As can be seen, the architecture can be divided in thefol-
lowing two parts:

Crawling A JAX : the main purpose of this step is to find and ex-
ecute clickables and note the changes in the run-time DOM
automatically, in a recursive way. AState Machineis used
to record the navigational paths and state changes. This step
supports three modes, namelyFull Auto Scan, DSL, andAn-
notations, which can be used, respectively, to crawl automat-
ically, to define the crawling navigational paths in a Domain
Specific Language, and to define the elements to be taken
into the crawling process by element annotations.

Generating Indexable Pages:the state machine with all the states
filled in by the previous step is used to generate an index-

SERG Mesbah and van Deursen – Exposing the Hidden-Web Induced by Ajax

TUD-SERG-2008-001 3

<html> <head> <title>News Ajax Site</title>
<link href="style.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script>
$(document).ready(function() {

$(".remote").click(function(){
$(’#content ’).load(’content.php?state=’ + this.id);

});
});

function changeState(id) {
$(’#content ’).load(’content.php?state=’ + id);
return false;

}
</script> </head>

<body>
<div class="leftPan"> <h3>Menu</h3>

Headlines
<div class="remote" id="interview">

Interviews</div>
<span onclick="changeState(’technology ’);"

id="technology1">Technology

</div>
<div class="rightPan">

<div id="content">
<!-- This is where the content is loaded -->

</div>
</div> </body> </html>

Figure 3: Source-code of a Single-page AJAX News Site.

able version of the AJAX application. This step is responsi-
ble for linking up and transforming the DOM instances into
static HTML pages and generating aSitemapfor the gener-
ated HTML pages.

The details of these two main steps are explained in Section 5
and Section 6 respectively.

5. A METHOD FOR CRAWLING
AJAX APPLICATIONS

In this section we discuss our approach for crawling AJAX in
more detail. We use a simple single-page AJAX News site as shown
in Figure 3 as example to explain the concepts. An example ren-
dered view that can result from this HTML and JavaScript codeis
shown in Figure 4, which displays the view after having clicked the
“Headlines” menu item. The difficulties of crawling AJAX applica-
tions were mentioned in Section 2 and this site is a typical example
of how difficult it is for a general search engine to crawl and index
such applications. Note how all the doorways to other statesare
dynamically set using JavaScript.

We applyreverse engineeringtechniques to deduce a state ma-
chine of the navigational model along the state changes of the
AJAX application through a dynamic analysis of the run-time DOM
changes.

As can be seen in Figure 3, even adiv (such as the one with id
‘interview’ in the second list item) can become clickable in AJAX

by attaching an event to it. Detecting whether such an element is
clickable by inspecting the code is very difficult due to the various
ways events can be attached to DOM elements in AJAX. That is
why we conduct a dynamic analysis for this purpose by actually
running the application and trying to change its state.

5.1 The State-flow Graph
In traditional multi-page web applications, each state is repre-

sented by a URI. In AJAX however, it is the internal structure

Figure 4: The News site after clicking on the ‘headline’ click-
able.

change of the DOM tree on the single-page interface that repre-
sents a state change. Such internal state changes can be modeled
by recording the paths to these DOM changes to be able to navigate
the different states.

For that purpose we define astate-flow graphas follows:

DEFINITION 1. A state-flow graphfor an AJAX site A is a 3
tuple< r,V ,E > where:

1. r is the root node (called Index) representing the initial state
after A has been fully loaded into the browser.

2. V is a set of vertices representing the states. Eachv ∈ V

represents a run-time state inA.

3. E is a set of edges between vertices. Each(v1,v2) ∈ E

represents a clickablec connecting two states if and only if
statev2 is reached by executingc in statev1.

Our state-flow graph is similar to theevent-flow graph[14], but
different in that in the former vertices arestates, where as in the
latter vertices areevents. Note that ultimately, it is the state changes
that we need in order to generate static HTML pages.

As an example of a state-flow graph, Figure 5 depicts the state-
flow graph of our News site. It illustrates how from the start page
3 different states can be reached. Furthermore, clicking onthe In-
dex menu item leads to the headline state, from which two states
are reachable – the Science and Technology headlines also visible
in the main pane in Figure 4.

The state-flow graph is created incrementally as the nodes are
clicked. Initially, it only contains the root state while new states are
dynamically created.

5.2 Crawling Components
The Crawling AJAX process, as shown in Figure 1, is based on

the following components:

Embedded Browser: CRAWLJAX utilizes an embedded browser
capable of executing JavaScript and the supporting technologies
required by AJAX (e.g., DOM,XMLHttpRequest).

Robot: Whilst artificial events can be programmatically triggered
on the DOM document tree (e.g., usingelement.fireEvent), only
the listeners will be dispatched: Actions associated with the event
will not be performed due to security issues. Hence, we use a Robot
to simulate real user clicks and inputs on the embedded browser to
fire possible events and actions attached to candidate clickables.

Mesbah and van Deursen – Exposing the Hidden-Web Induced by Ajax SERG

4 TUD-SERG-2008-001

Index

Headlines

[headline]

Interviews

[interview]

Technology

[technology1]

[technology2]

Science

[science]

Figure 5: The State-flow Graph.

Based on an analysis of the DOM tree we will identify can-
didate clickable elements (see Section 5.3.1). The<client.x,
client.y> screen coordinates of the such elements are used to
move the Robot’s pointer to the element’s location.

CRAWLJAX Controller: The controller has access to the embed-
ded browser’s DOM and controls the Robot’s actions. It is also
responsible for updating the State Machine when relevant changes
occur in the DOM. After the crawling process is over, the controller
also calls the Sitemap and Mirror site generator processes.

State Machine: The state machine is a data component maintain-
ing the state-flow graph, as well as a pointer to the current state.

As mentioned before, CRAWLJAX adopts three different modes
to crawl an AJAX site: Full Auto Scan, Annotations, and DSL. We
present each mode in the subsequent sub-sections.

5.3 Full Auto Scan
In the Full Auto Scan mode, CRAWLJAX crawls the site automat-

ically by finding all possible clickables and executing them. Algo-
rithm 1 shows the Full Auto Scan algorithm.

5.3.1 Finding Clickables
This mode expects a list of HTML tag element names (e.g.,div,

a, span, input) and the URL of the AJAX site to begin with. Ele-
ments having such tag names are consideredcandidate clickables.
After the required environment is initialized, the recursive (depth-
first) crawl procedure is called. For each tag name the present
elements on the DOM are added to the candidate clickable list(line
13).

In order to find out whether a certain element in the candidate
clickable list, is indeed clickable, the crawler instructsthe robot to
execute a click (line 15) on the element in the browser.

5.3.2 Comparing DOM Trees: Edit Distance
In order to determine if a click results in a new state, the DOM

before and after a click is compared. For this purpose theedit dis-
tancebetween two DOM trees is calculated (line 17) using the Lev-
enshtein [12] method. A similarity thresholdτ is used under which
two DOM trees are considered clones. This threshold (0.0−1.0)
can be defined by the developer. A threshold of 0 means two DOM
states are seen as clones if they areexactlythe same in terms of
structure and content. Any change is, therefore, seen as a state
change.

If a change is detected, we add a new state to the state-flow dia-
gram of the state machine (lines 18-19). The current state pointer

...
<div id="content">
<!-- content of headline has been loaded -->
<p><h2>Headlines</h2>
This is the headlines. Choose one of the categories:

</p>

<div onclick="changeState(’science ’);"

id="science">Scince</div>
<a href="#" onclick="changeState(’technology ’);"

id="technology2">Technology

</div>
...

Figure 6: The DOM state after clicking on the ‘headline’ ele-
ment.

of the state machine is also changed to this newly added stateat
that moment (line 20).

Looking at our example site, our algorithm detects the threeele-
ments with IDsheadline, interview, andtechnology1 as click-
ables, since clicking on any of them causes the DOM to change.

Algorithm 1 CRAWLJAX Full Scan
1: procedure START (url, Set tags)
2: browser← initBrowser(url)
3: robot← initRobot()
4: sm← initStateMachine()
5: crawl(sm, tags)
6: linkupAndSaveAsHTML(sm)
7: generateSitemap(sm)
8: end procedure
9:

10: procedure CRAWL (StateMachine sm, Set tags)
11: cs← sm.getCurrentState()
12: ∆update← diff(cs.getDom(), browser.getDom())
13: SetC← getCandidateClickables(∆update, tags)
14: for c∈C do
15: robot.click(c)
16: dom← browser.getDom()
17: if distance(cs.getDom(), dom)> τ then
18: ns← State(c, dom)
19: sm.addState(ns)
20: sm.changeState(ns)
21: crawl(sm, tags)
22: sm.changeState(cs)
23: if browser.history.canBackthen
24: browser.history.goBack()
25: else
26: browser.reload()
27: clickThroughTo(cs)
28: end if
29: end if
30: end for
31: end procedure

5.3.3 Delta Updates
After a clickable has been identified, thecrawl procedure is re-

cursively called to find new candidate clickables and eventually
clickables in the delta updates (line 13) of the document tree after
each state change. The delta update changes are detected through a
Diff [3, 16] algorithm (line 12) by comparing the DOM tree before
and after executing a clickable.

SERG Mesbah and van Deursen – Exposing the Hidden-Web Induced by Ajax

TUD-SERG-2008-001 5

crawl MyAjaxSite {
url: http://localhost/run-example/index.html;

navigate Nav1 {
click: headline;
click: science;
· · ·

}

navigate Nav2 {
click: headline;
click: technology2;
· · ·

}

navigate Nav3 {
click: interview;
input: article "john doe";
click: search;

}
· · ·

}

Figure 7: An instance of CASL.

Figure 6 shows the DOM state after ‘headline’ has been clicked.
Clicking onheadline loads the corresponding content into thediv
element with IDcontent. This new content is seen as adelta up-
dateso CRAWLJAX looks for candidate clickables in there and finds
thescience andtechnology2 as clickables in the same way.

5.3.4 Navigating the States
As already mentioned, navigating (back and forth) through an

AJAX site is not as easy as navigating a classical web site. A
dynamically created DOM state does not register itself withthe
browser history engine automatically, so triggering the ‘Back’ func-
tion of the browser might not bring us to the previous state. This
complicates traversing the application when crawling AJAX.

Browser History Support It is possible to register each state
change with the browser history through frameworks such as the
jQuery history/remote plugin5 or the Really Simple History li-
brary6.

If an AJAX application has support for the browser history, then
for changing the state in the browser, CRAWLJAX simply uses the
built-in history back functionality to move back. For instance, if
CRAWLJAX ’s browser is on theScience state, it needs to go back
to the Headlines state to be able to click on thetechnology2
clickable to end up in theTechnology state. If our News site has
support for history, then going to stateHeadlines is as simple as
calling the browser back method (lines 23-24).

Click Through From Initial State In case the browser history is
not supported (which is the case with many AJAX applications cur-
rently), the only way to get to a previous state is by reloading the
initial page and following the path of clickables from the initial
state to the desired state (lines 26-27).

This is also one of the main reasons behind our requirement that
clickables should have IDs. When wereload the application in
the browser, all the internal objects are replaced by new ones and
the ID attribute is a means to be sure we can follow the path to a
certain state by clicking on those saved IDs in the state machine.

Note that because of side effects of the clicks, there is no guaran-
tee that we reach the exact same state when we traverse an ID-path
a second time. It is, however, as close as we can get.

5 http://stilbuero.de/jquery/history/
6 http://code.google.com/p/reallysimplehistory/

5.3.5 Identifying Clone States
Our example shows that theTechnology state can be navigated

to either directly from theIndex state, or through theHeadlines
state. In order to recognize an already met state, we computea
hashcodefor each DOM state and use the hashcodes to compare
every new state to the list of already visited states on the state-
flow graph. This way we can easily identify clone states and avoid
creating unnecessary duplicated ones in our state machine.

It is worth mentioning that in order to avoid a loop, a list of vis-
ited candidate clickables is maintained to exclude alreadychecked
elements in the recursive algorithm if needed. Also a depth length
can be defined to constrain the depth level of the recursive function
(not shown in the algorithm).

5.4 Annotations
There are situations in which a Full Auto Scan that takes every

clickable and every state change on the DOM into account is not
desirable. Perhaps only parts of an AJAX site are relevant to be
exposed to search engines.

For that reason, we believe the developer should also be given the
opportunity to define which parts of their application they want to
be crawled and indexed. One way to do that is throughannotating
the source-code by setting the attributecrawljax="true" on the
clickables.

CRAWLJAX automatically finds all the annotated elements and
adds only those to the list of candidate clickables. The restof the
process is the same as the Full Auto Scan process.

5.5 CASL
In addition to the Annotations, we provide the developer with a

Domain Specific Language (DSL) [6] called AJAX Crawling Spec-
ification Language (CASL). Using CASL, the developer can de-
fine the elements (based on IDs) to be clicked, along with the exact
order in which the crawler should crawl and index the AJAX appli-
cation. CASL has two commands basically:click andinput.

Figure 7 shows the CASL instance for our example application.
Nav1 tells CRAWLJAX to crawl and index the states generated by
clicking onheadline andscience in that order.Nav3 commands
the crawler to crawl to theInterviews state, then insert the text
‘john doe’ into the input elementarticle and afterward click on
thesearch element and index the resulting states.

6. GENERATING INDEXABLE PAGES
After the crawling AJAX process is finished, the created state-

flow graph is passed to theMirror Site Generationand Sitemap
Generationprocessing components.

6.1 Mirror Site Generation

6.1.1 Linking the States
To enable a general search engine to find all the generated states,

we first establish links for the DOM states in the state-flow graph.
We do so by examining the element type of the clickables. If the
clickable is a hypertext link (ana-element), thehref attribute is up-
dated. In case of other types of clickables (e.g.,div, span) we re-
place the clickable by a hypertext link element. Thehref attribute
in both situations represents the link to the name and location of the
to be generated static page.

6.1.2 Transforming DOM to HTML
After the linking process, each DOM object in the state-flow

graph is transformed into the corresponding HTML string repre-

Mesbah and van Deursen – Exposing the Hidden-Web Induced by Ajax SERG

6 TUD-SERG-2008-001

<html > <head > <title>News Ajax Site </title>
<link href="style.css" rel="stylesheet" type="text/css"/>
</head >
<body >
<div class="leftPan"> <h3>Menu </h3>

<a href="/generated/headline.html" class="remote"

id="headline">Headlines
<a href="/generated/interview.html" class="remote"

id="interview">Interviews
<a href="/generated/technology1.html"

id="technology1">Technology
 </div>

<div class="rightPan">
<div id="content">

<p><h2>Headlines </h2>
This is the headline. Choose one of the categories:

</p>

<a href="/generated/science.html"

id="science">Scince
<a href="/generated/technology2.html"

id="technology2">Technology

</div> </div> </body > </html >

Figure 8: The static ‘headline’ page generated by CRAWLJAX .

sentation and saved on the file system in a dedicated directory
(e.g., /generated/). Each generated static file represents the
style, structure, and content of the AJAX application as seen in the
browser, in exactly its specific state at the time of crawling.

Figure 8 shows the generated HTML file for the ‘headlines’ state.
Note how the various AJAX clickables e.g.,science, from Figure 6
are turned into traditional hypertext links, accessible bysearch en-
gines.

6.1.3 Deploying the Mirror Site
Next, the generated pages have to be uploaded to the server. For

the mirror site to look exactly like the AJAX version, care must be
taken so that internal links, to for instance CSS files and images,
are not broken.

6.1.4 Linking to theAJAX Site & Vice Versa
The original AJAX site can link to the mirror site to form the

first doorway for search engines. There are also possible ways of
linking the mirror site pages to the original state in the AJAX appli-
cation. The simplest approach is to link to the original state of the
AJAX site. This means that the users themselves then have to find
their way to the specific state of the static page.

Another, more elegant, solution involves allowing the userto
jump to that very specific state on the AJAX site. This requires the
AJAX application to implement and support browser bookmarking
for each state. Solutions exist, many of which use the URL frag-
ment identifier [15] to keep track of, and allow users to return to
the application in a given state. Theuser-agent property of the
visiting agent could be used [1] to redirect a web user to the corre-
sponding AJAX state in this case. Although the content returned to
the user (AJAX) and the search engine (generated HTML pages) is
exactly the same, care must be taken to avoidcloaking7 possibili-
ties.

6.2 Sitemap Creation
The Sitemap, initially proposed by Google, is a static XML file

that allows a web developer to inform search engines about URLs

7 http://www.google.com/support/webmasters/bin/answer.py?answer=
66355&query=cloaking

<?xml version="1.0" encoding="UTF -8"?>
<urlset
xmlns:ns="http://www.sitemaps.org/schemas/sitemap/0.9">

<url>
<loc>
http://localhost/run-example/generated/index.html
</loc>
<lastmod>2007-10-29</lastmod>
<changefreq>weekly </changefreq>

</url>
<url>
<loc>
http://localhost/run-example/generated/headline.html
</loc>
<lastmod>2007-10-29</lastmod>
<changefreq>weekly </changefreq>

</url>
<url>
<loc>
http://localhost/run-example/generated/technology2.html
</loc>
<lastmod>2007-10-29</lastmod>
<changefreq>weekly </changefreq>

</url>
<url>
<loc>
http://localhost/run-example/generated/science.html
</loc>
<lastmod>2007-10-29</lastmod>
<changefreq>weekly </changefreq>

</url>
<url>
<loc>
http://localhost/run-example/generated/interview.html
</loc>
<lastmod>2007-10-29</lastmod>
<changefreq>weekly </changefreq>

</url>
</urlset>

Figure 9: Generated Sitemap XML file.

on a website that are available for crawling. A Sitemap file consists
of one or more URLs and a number of optional descriptors of the
URL, such as the estimated change rate, date of last modification
and a local crawling priority. Google, Yahoo!, and Microsoft have
announced8 auto-discovery and support for the protocol.

CRAWLJAX adheres to Sitemap Protocol 0.99, and generates a
valid instance of the protocol automatically after each crawling ses-
sion consisting of the URLs of all generated static pages.

Figure 9 presents the generated Sitemap file for the News site.
For each state in the state-flow graph, an URL entry is createdwith
the location, last modification date, and change frequency.This
way, general search engines can be notified of the generated static
files in a standard way.

7. TOOL IMPLEMENTATION
We have implemented the concepts presented in this paper in a

tool called CRAWLJAX. At the moment the tool is available on re-
quest. More information about the tool and conducted case studies
can be found on our website10.

CRAWLJAX is implemented in Java 5. We have engineered a
variety of software and web tools to build and run CRAWLJAX.
Here we briefly mention the main modules and libraries.

The embedded browser is implemented using Mozilla XULRun-
ner11. Webclient12 is used to access the run-time DOM and the

8 http://www.google.com/press/pressrel/sitemapsorg.html
9 http://www.sitemaps.org/protocol.php

10 http://swerl.tudelft.nl/bin/view/Main/Crawljax/
11 http://developer.mozilla.org/en/docs/XULRunner/
12 http://www.mozilla.org/projects/blackwood/webclient/

SERG Mesbah and van Deursen – Exposing the Hidden-Web Induced by Ajax

TUD-SERG-2008-001 7

AOWE PETSTORE

DOM string size (byte) 5226 24636
Expected Clickables 16 34
Candidate Clickables 25 36
Clickables 17 28
Generated Static Pages 16 28
Generated Sitmap URLs 16 28
Crawl Performance (ms) 55031 119264
Generation Performance (ms) 31859 65531
DOM Pretty-print (ms) 3965 12046

Table 1: Results of running CRAWLJAX on AOWE and PET-
STORE.

browser history mechanism in the embedded browser. The Robot
component makes use of thejava.awt.Robot class to generate
native system input events on the embedded browser.

The Mirror Site Generator uses JTidy13 to pretty-print DOM
states and Xcerces14 to serialize the objects to HTML. In the
Sitemap Generator, XMLBeans15 generates Java objects from the
Sitemap Schema16 which after being used by CRAWLJAX to create
new URL entries, are serialized to the corresponding valid XML
instance document.

The grammar of CASL is implemented in ANTLR17. ANTLR
is used to generate the necessary parsers for CASL. In addi-
tion, StringTemplate18 is used for generating the source-code from
CASL.

CRAWLJAX is entirely based on Maven19 to generate, compile,
test (JUnit), and run the application. Log4j is used to optionally log
various steps in the crawling process, such as the identification of
DOM changes and clickables.

8. CASE STUDY
We have performed a case study set up according to Kitchen-

ham’s guidelines [10] to evaluate the application of our framework
over two representative AJAX sites. Our goals include(1) ana-
lyzing the overall performance of our approach,(2) evaluating the
effectiveness of CRAWLJAX in obtaining high-quality results in re-
trieving relevant clickables, and(3) assessing the quality of the
static pages automatically generated by CRAWLJAX.

Because of the very dynamic nature of AJAX applications, and
since other comparable tools are not available to conduct similar
methods as CRAWLJAX carries out currently, it is difficult to de-
fine a baseline against which we can compare the results. Hence,
we manually inspect the objects under examination and determine
which expected behavior should form our reference baseline.

Case study results including generated sites and CRAWLJAX log
files are made available through the CRAWLJAX web site.

8.1 Case Objects
We have selected two AJAX sites for the experiment, the first

one (AOWE) developed internally by our group and the second
(PETSTORE) is an external open-source web application.

AOWE Ajax Site
The AOWE AJAX site has been implemented using the jQuery AJAX

13 http://jtidy.sourceforge.ne
14 http://xerces.apache.org/xerces-j/
15 http://xmlbeans.apache.org
16 http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd
17 http://www.antlr.org
18 http://www.stringtemplate.org
19 http://maven.apache.org

library. Although the site is small, it is representative byhaving dif-
ferent types of dynamically set clickables as shown in Figure 2.

For the case study we manually added extra clickables in differ-
ent states of the application, especially in the delta updates, to ex-
plore whether deep clickables dynamically injected into the DOM
can be found by CRAWLJAX. The site was deployed on our lo-
cal server and a reference model was created manually by click-
ing through the different states in a browser. In total 16 clickables
were noted of which 10 were on the top level, i.e., index state. The
clickable elements were of the typesa, div, span, andinput. All
clickables in this application have unique IDs.

Ajaxified Sun PETSTORE

Our second case object is Sun’s Ajaxified PETSTORE2.020 which
is built on the Java ServerFaces, and the Dojo AJAX toolkit21. This
open-source web application is designed to illustrate how the Java
EE Platform can be used to develop an AJAX-enabled Web 2.0 ap-
plication and adopts many advanced rich AJAX components.

To constrain the reference model we chose two product cate-
gories, namely CATS and DOGS, from the five available categories.
Manual inspection of the application revealed that although most
elements had IDs, the IDs used were not always unique. The IDs
on elements were also set using the IDs of the items in the database.
Therefore, we first made all the IDs unique through the available
SQL insert statements of the application for the two chosen cat-
egories and afterwards annotated all the relevant product items by
modifying a JavaScript method which turns the items retrieved from
the server into clickables on the interface.

It is worth mentioning that although we were not familiar with
the application the modification was carried out in+− 20 minutes,
most of which was spent on finding outwhere the modifications
should take place.

8.2 Tool Configuration
Configuring CRAWLJAX itself is done through the Maven Project

Object Model (POM). Through the POM, the URL of the site to be
analyzed, and the tag elements CRAWLJAX should look for can be
set. For the similarity threshold we definedτ as 0, i.e., every single
change in DOM is seen as a change. The depth level was set to 4.

8.3 Results
Table 1 presents the results obtained by running CRAWLJAX on

AOWE and PETSTORE.
The number of candidate clickables and actual identified click-

ables were read from the log file at the end of each crawling pro-
cess. After the generation process, the number of generatedHTML
files and their content were manually examined to see whetherthe
pages were the same as the corresponding states in AJAX in terms
of structure, style, and content. Also the internal linkingof the
static pages was checked. In addition, the URL entries in thegen-
erated Sitemap XML file were examined.

The execution time for the crawling and generation processes
were computed separately. TheCrawling Performancerepresents
the time in milliseconds taken by CRAWLJAX to find the clickables
and build the state-flow graph, excluding the time needed to pretty-
print the DOM into string. TheGeneration Performanceshows the
period taken to generate the static HTML pages and the Sitemap
from the state machine. TheDOM Pretty-print indicates the time
required to transform a DOM object into the corresponding HTML
string representation.

20 http://java.sun.com/developer/releases/petstore/
21 http://dojotoolkit.org/

Mesbah and van Deursen – Exposing the Hidden-Web Induced by Ajax SERG

8 TUD-SERG-2008-001

8.4 Observations
As can be seen in Table 1, CRAWLJAX finds 17 clickables on

AOWE instead of the expected 16. After closer inspection, we no-
ticed that the extra false clickable is caused by the following code
pattern: <div id="x">text</div>. In
this case thespan element is the actual clickable, however, since
thediv element is inside thespan, it can also be seen as a click-
able. Since clicking on any of the two results in the same state, we
see that the actual expected 16 HTML pages and Sitemap entries
were correctly generated.

Mouseover-dependent ClickablesFor PETSTORE the scenario is
more complicated. From the 34 annotated clickables, CRAWLJAX

was able to find only 28. The reason behind this difference is the
way the items are shown to the user. PETSTORE uses aCatalog
Browser to show a set of the total number of the product items and
defines anonMouse event on animg element to browse through
the other items one by one. For our robot this means a two step
action. First CRAWLJAX has to know about theonMouse behavior
and move the mouse pointer to theimg element, after which a new
clickable appears, and then that new element has to be clicked. The
6 missing product items were the ones that would be shown in that
manner.

Constantly Updating DOM Another issue we had with PET-
STORE in the beginning of the experiment was that all the 36 can-
didate clickables found were also seen as clickables. This phe-
nomenon was caused by thebanner.js which constantly changed
the DOM with textual notifications. Hence, we had to either dis-
able this banner to conduct our experiment or use a higher similar-
ity threshold so that the textual changes were not seen as a relevant
state change for detecting clickables.

History Back Implementation CRAWLJAX assumes that if the
Browser Back functionality is implemented, then it is implemented
correctly. Yet another interesting observation with PETSTOREwas
the fact that even though Back is implemented for some states, it is
not correctly implemented in the sense that calling the Backmethod
brings the browser in a different state than expected which natu-
rally confuses CRAWLJAX. AOWE implements the Back method
correctly.

Performance It takes CRAWLJAX 55031 ms to crawl AOWE and
119264 ms to crawl PETSTORE. As can be seen, the DOM in PET-
STORE is 4 times bigger than that in AOWE which also explains the
higher execution time for the DOM Pretty-print. There are also 11
more clickables in PETSTORE. In addition to the increase in DOM
size and the number of clickables, CRAWLJAX cannot rely on the
browser Back method when crawling PETSTORE. This means for
every state change on the browser CRAWLJAX has to reload the ap-
plication and click through to the previous state to go further. This
reloading and clicking through has a negative effect on the perfor-
mance. The generation time also doubles for PETSTOREdue to the
increase in the input size.

9. DISCUSSION
This section discusses a number of important characteristics of

our techniques and discusses both the strengths and open issues.

9.1 Evaluation
As revealed in the case study, CRAWLJAX can find and crawl

deep clickables correctly. Also the generated HTML pages are cor-
rect and represent exactly the corresponding state in the AJAX ver-
sion. The static pages are correctly linked and the Sitemap is gener-
ated as expected. The weakness seems to be finding clickablesthat

appear through complex AJAX widgets which require the user to
have an understanding of the application. TheCatalog Browser
for instance in PETSTORE is an example. The user must under-
stand from the context and shape of the state that hovering onan
image will allow them to browse the catalog and see more items.
Currently, we are exploring how such patterns could be detected
and the corresponding clickables executed automatically.

9.2 Performance
It is clear that the running time of CRAWLJAX increases linearly

with the size of the input. The tool is intended to be used internally
by web developers. Therefore, we believe that although the per-
formance could be improved, the execution time of a few minutes
to generate a mirror multi-page instance of an AJAX application
automatically without any human intervention is acceptable.

9.3 Combining the Crawling Modes
When it comes to states that need textual input from the user

(e.g., input forms) CASL can be very helpful to crawl and generate
the corresponding state. The Full Auto Scan, however, does not
have the knowledge to provide such input automatically. Therefore,
we believe a combination of the three modes to take the best ofeach
could provide us with a powerful tool not only for crawling but also
for automatic testing of AJAX applications.

9.4 ID Requirement
As far as the ID requirement is concerned, if browser Back is

correctly implemented by an AJAX site, the requirement could fall
altogether. Since no reloading of the site is needed to navigate the
state-flow graph when Back is implemented, persistent IDs could
be set by CRAWLJAX which has access to the run-time DOM.

Currently, we are also investigating the possibilities of utilizing
XPath to find and record the location of clickables in the DOM
instead of using unique IDs to identify elements persistently.

9.5 Incomplete set of HTML pages
The set of generated HTML pages is by no means complete, i.e.,

CRAWLJAX generates an static instance of the AJAX application
but not necessarilythe instance. This is partly inherent to dynamic
web applications. Any crawler can only index an instance of ady-
namic web application in a point in time. The order in which click-
ables are chosen could generate different states. Even executing the
same clickable twice from an state could theoretically produce two
different DOM states depending on, for instance, server-side fac-
tors. Hence, CRAWLJAX crawls and generates an instance of the
web application at a certain point in time.

10. RELATED WORK
There has been extensive research on finding and exposing the

hidden-web behind forms [2, 5, 11, 17, 18]. On the contrary, the
hidden-web induced as a result of client-side scripting in general
and AJAX in particular has gained very little attention so far. As far
as we know, there are no academic research papers on crawlingand
exposing the hidden-web AJAX at the moment.

There are, however, some industrial proposed approaches for im-
proving the discoverability of AJAX as discussed in Section 3.

The concept behind CRAWLJAX, is the opposite direction of our
earlier work RETJAX [16], in which we try to reverse-engineer a
traditional multi-page website to AJAX.

Shelly and Young [19] discuss the possible ways of improving
the accessibility for DHTML websites. CRAWLJAX also improves
accessibility towards user-agents that do not support JavaScript by
creating the multi-page instance.

SERG Mesbah and van Deursen – Exposing the Hidden-Web Induced by Ajax

TUD-SERG-2008-001 9

The work of Memonet al. [13, 14] on GUI Ripping for testing
purposes is related to our work in terms of how they reverse engi-
neer an event-flow graph of desktop GUI applications by applying
dynamic analysis techniques.

11. CONCLUDING REMARKS
In this paper, we have studied how AJAX induces hidden-web

content and explored ways of improving the discoverabilityof such
applications. In particular, we have proposed a method to crawl
AJAX applications by automatically detecting and executing click-
ables and building a state-flow graph representation of the run-time
paths and states. Besides the Full Auto Scan mode, we provide
the developer with two alternatives: Annotations and a DSL called
CASL, to control the way the site is crawled. We have discussed
how such a graph can be used to generate a traditional multi-page
instance of the original application, fully accessible to the search
engines. This mirror site also improves the accessibility of the ap-
plication towards user-agents that do not support JavaScript.

In summary, this paper makes the following contributions:

1. An approach to increase the discoverability of hidden-web
content induced by AJAX.

2. A novel method to automatically crawl AJAX applications
and build a state-flow graph model of the states and paths.

3. A technique to transform the run-time DOM state changes
of AJAX applications into static HTML pages and generate a
corresponding Sitemap.

4. The tool CRAWLJAX implementing the methods and con-
cepts discussed in this paper.

5. A case study report covering the application of our approach
to two AJAX applications.

Future work consists of conducting more case studies to im-
prove the ability of finding clickables in different AJAX applica-
tions. Strengthening the tool by extending its functionalities and
improving the performance is another direction we foresee.We
will also explore possibilities of dropping the ID requirement by
adopting alternatives such as XPath.

12. REFERENCES
[1] Backbase. Designing rich internet applications for search

engine accessibility, 2005. backbase.com Whitepaper.
[2] L. Barbosa and J. Freire. An adaptive crawler for locating

hidden-web entry points. InWWW ’07: Proceedings of the
16th international conference on World Wide Web, pages
441–450. ACM Press, 2007.

[3] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured
information. InSIGMOD ’96: Proceedings of the 1996 ACM
SIGMOD international conference on Management of data,
pages 493–504. ACM Press, 1996.

[4] A. Dasgupta, A. Ghosh, R. Kumar, C. Olston, S. Pandey, and
A. Tomkins. The discoverability of the web. InWWW ’07:
Proceedings of the 16th international conference on World
Wide Web, pages 421–430. ACM Press, 2007.

[5] A. F. de Carvalho and F. S. Silva. Smartcrawl: a new strategy
for the exploration of the hidden web. InWIDM ’04:
Proceedings of the 6th annual ACM international workshop
on Web information and data management, pages 9–15.
ACM Press, 2004.

[6] A. van Deursen, P. Klint, and J. Visser. Domain-specific
languages: an annotated bibliography.SIGPLAN Not.,
35(6):26–36, 2000.

[7] R. Fielding and R. N. Taylor. Principled design of the
modern Web architecture.ACM Trans. Inter. Tech. (TOIT),
2(2):115–150, 2002.

[8] M. Florins and J. Vanderdonckt. Graceful degradation ofuser
interfaces as a design method for multiplatform systems. In
IUI ’04: Proceedings of the 9th international conference on
Intelligent user interfaces, pages 140–147. ACM Press,
2004.

[9] J. Garrett. Ajax: A new approach to web applications.
Adaptive path, 2005.http://www.adaptivepath.com/
publications/essays/archives/000385.php.

[10] B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case studies
for method and tool evaluation.IEEE Softw., 12(4):52–62,
1995.

[11] J. P. Lage, A. S. da Silva, P. B. Golgher, and A. H. F.
Laender. Automatic generation of agents for collecting
hidden web pages for data extraction.Data Knowl. Eng.,
49(2):177–196, 2004.

[12] V. L. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals.Cybernetics and Control
Theory, 10:707–710, 1996.

[13] A. Memon, I. Banerjee, and A. Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for testing.
In WCRE ’03: 10th Working Conference on Reverse
Engineering, pages 260–269. IEEE Computer Society, 2003.

[14] A. Memon, M. L. Soffa, and M. E. Pollack. Coverage criteria
for GUI testing. InESEC/FSE ’01: Proceedings of the 8th
European software engineering conference held jointly with
9th ACM SIGSOFT international symposium on Foundations
of software engineering, pages 256–267, New York, NY,
USA, 2001. ACM Press.

[15] A. Mesbah and A. van Deursen. An architectural style for
Ajax. In WICSA ’07: Proceedings of the 6th Working
IEEE/IFIP Conference on Software Architecture, pages
44–53. IEEE Computer Society, 2007.

[16] A. Mesbah and A. van Deursen. Migrating multi-page web
applications to single-page Ajax interfaces. InCSMR ’07:
Proceedings of the 11th European Conference on Software
Maintenance and Reengineering, pages 181–190. IEEE
Computer Society, 2007.

[17] A. Ntoulas, P. Zerfos, and J. Cho. Downloading textual
hidden web content through keyword queries. InJCDL ’05:
Proceedings of the 5th ACM/IEEE-CS joint conference on
Digital libraries, pages 100–109. ACM Press, 2005.

[18] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. InVLDB ’01: Proceedings of the 27th International
Conference on Very Large Data Bases, pages 129–138.
Morgan Kaufmann Publishers Inc., 2001.

[19] C. C. Shelly and G. Young. Accessibility for simple to
moderate-complexity DHTML web sites. InW4A ’07:
Proceedings of the 2007 international cross-disciplinary
conference on Web accessibility, pages 65–73. ACM Press,
2007.

Mesbah and van Deursen – Exposing the Hidden-Web Induced by Ajax SERG

10 TUD-SERG-2008-001

TUD-SERG-2008-001
ISSN 1872-5392 SERG

