Delft University of Technology
Software Engineering Research Group
Technical Report Series

Exposing the Hidden-Web
Induced by Ajax

Ali Mesbah and Arie van Deursen

Report TUD-SERG-2008-001

%
TUDelft SE[R{@

TUD-SERG-2008-001

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

(© copyright 2008, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

SE

Mesbah and van Deursen — Exposing the Hidden-Web Induced by Ajax

Exposing the Hidden-Web Induced by Ajax

Ali Mesbah
Software Engineering Research Group
Delft University of Technology
The Netherlands

A.Mesbah@tudelft.nl

ABSTRACT

AJAX is a very promising approach for improving rich interadgivi
and responsiveness of web applications. At the same timex A
techniques increase the totality of the hidden web by sfiadf¢he
metaphor of a web ‘page’ upon which general search engires ar
based. This paper describes a technique for exposing tlderhid
web content behind #Xx by automatically creating a traditional
multi-page instance. In particular we propose a method rfawk

ing AJax applications and building a state-flow graph modeling
the various navigation paths and states within aaxdapplication.
This model is used to generate linked static HTML pages art-a ¢
responding Sitemap. We present our tool calleth@LJAax which
implements the concepts discussed in this paper. AddItionee
present a case study in which we apply our approach to twoxA
applications and elaborate on the obtained results.

Categories and Subject Descriptors

H.5.4 Information Interfaces and Presentation: Hypertext/Hy-
permedia—Navigation H.3.3 [Information Search and Retrieval]:
Search process; D.2.3pftware Engineering: Design Tools and
Techniques

General Terms
Design, Algorithms, Experimentation.

Keywords
ajax, hidden web, crawling ajax, search engine acceggibilieb

engineering.

1. INTRODUCTION

The web as we know it is undergoing a significant change. A
set of concrete technologies, under the umbrella of Ricbrhat
Applications (RIA) andNVeb 2.0 have made the web of today a lot
more interactive and responsive for end users than it usee
few years ago.

A technology that has gained a prominent position is the>A
(Asynchronous JavaScript and XML) [9] approach, in which a
clever combination of JavaScript and Document Object Model
(DOM) manipulation, along with asynchronous server comimun
cation is used to achieve a high level of user interactivitighly
visible examples include Google Maps, Google Documentd, an
the recent version of Yahoo! Mail.

With this new change in developing web applications comes a
whole set of new challenges, mainly due to the fact thatAshat-

Copyright is held by the author/owner(s).

TUD-SERG-2008-001

Arie van Deursen
Software Engineering Research Group
Delft University of Technology & CWI
The Netherlands

Arie.vanDeursen@tudelft.nl

ters the metaphor of a web ‘page’ upon which many web teckhnolo
gies are based. One of these challenges is the wax Mcreases
the totality of thehidden-wel{18].

General web search engines, such as Google and Yahoo!, cover
only a portion of the web called thaublicly indexable welwhich
consists of the set of web pages reachable purely by folpwin
hypertext links, ignoring forms [2] and client-side scifgt. The
pages not reached this way are referred to akbitfiden webwhich
is estimated to comprise several millions of pages [2]. Wi
wide adoption of AAX techniques that we are witnessing today
this figure will only increase.

Although there has been extensive research on finding and ex-
posing the hidden-web behind forms [2, 5, 11, 17, 18], thelérd
web induced as a result of client-side scripting in genardlAIAx
in particular has gained very little attention so far.

Consequently, while #ax techniques are very promising in
terms of improving rich interactivity and responsivened$]|
AJax sites themselves may very well end up in the hidden web.
Thus, they will fail to meet the simple rule that determines $uc-
cess or failure of any public web sitéf you can't find it, it doesn't
exist”.

In this paper, we will be concerned with the question how a web
engineer can expose his or heoax web application to general
search engines. It is unlikely that in the near future seargjines
will change the way they crawl the web, due to the many chgéien
AJAX sites impose on search engines. Hence, the responsibility
rests on the shoulders of web developers to make sure fhg A
applications they build are as accessible and discovebgidearch
engines as possible.

We propose to expose the essential parts of anxAapplica-
tion to the general search engines by creating a traditiomii-
page instance. To that end, we propose a new type of cravder th
can exercise client side code, and which can identify chikal-
ements (which may change with every click) within the bravese
DOM dynamically. The crawler uses these to build ugtate-flow
graph modeling the various navigation paths within anak ap-
plication. This graph is subsequently used to generatedditiaal
multi-page mirror version of the original JAX application, along
with asitemapnforming search engines about the generated pages
that are available for crawling.

The underlying ideas have been implemented in a tool called
CrRAwLJIAX. We have applied €awLJAX to two AJAX applica-
tions, the results of which are discussed in this paper.

The primary application of our approach lies in helping web e
gineers exposing their Ax sites to search engines. Moreover, we
believe that the crawling techniques that are part of ountsmi
have other applications, such as within search engines aufto-
matically exercising all user interface elements of amAsite for

Mesbah and van Deursen — Exposing the Hidden-Web Induced by Ajax

testing purposes.

The paper is structured as follows. We start out, in Sectibg 2
exploring the reasons JAX induces hidden-web content and dis-
cuss the difficulties of crawling and indexing such applmad. In
Section 3, we present some of the existing techniques timabea
used to make Aax sites more accessible to search engines. In
Section 4, we present the overall view of our proposed smiuti
followed by a detailed discussion of our new crawling tegiass,
the generation process, and theAvLJAX tool in Sections 5-7.
In Section 8 the results of applying our methods to twanA ap-
plications are shown, after which Section 9 discusses tlinfis
and open issues. We conclude with a brief survey of relata#i,vao
summary of our key contributions, and suggestions for &nuork.

2. AJAXHIDDEN-WEB INDUCTION

First of all, we take a closer look at whyJAx actually in-
duces hidden-web content.JAX has a number of properties which
makes it extremely difficult for search engines to crawl swei
applications.

Client-side ExecutionThe common ground for all #ax applica-
tions is a JavaScript engine which operates between thesbrow
and the web server, and which acts as an extension to thedmows
This engine typically deals with server communication asdru
interface rendering. This client engine enables us to ergah
and responsive user interface behavior. Any search engiliegy
to approach such an application must have support for theuexe
tion of the scripting language. Equipping a general searawler
with the necessary environment complicates its design raptek
mentation considerably. The major search giants such agl€oo
currently have little or no support for executing JavaSaipe to
scalability and security issues.

State Changes & NavigationTraditional web applications are
based on the multi-page interface paradigm consisting dfiple:
(dynamically generated) unique pages each having a uniéie U

SE

applications. Just retrieving and indexing the delta sthenges
could have the side-effect of losing the context of the clkeang

Clickables Because of the very dynamic nature ofax and the
way events (e.gonclick) can be attached to DOM elements at
run-time, it is not just the hypertext link element that fartine
doorway to the next state. For instanceli & element could also
have aroncl i ck event attached to it so that it becontelckable
Finding these run-time clickables is another non-trivadk for a
crawler.

3. DESIGN FOR DISCOVERABILITY

There are some techniques that assist in making a modsxr A
website more accessible and discoverable [4] by searcmesngi
We briefly discuss a number of such techniques in this sebien
fore introducing our proposed solution.

3.1 Client-side Design

Graceful Degradation In web engineering terms, the concept be-
hind Graceful Degradatiori8] is to design and build for the latest
and greatest user-agent and then add support for less eagebl
vices, i.e., focus on the majority on the mainstream and adtks
support for outsiders. Graceful Degradation allows a wéb tsi
‘step down’ in such a way as to provide a reduced level of servi
rather than failing completely. A well-known example is thenu
bar generated by JavaScript which would normally be totaHy
nored by search engines. By using HTML list items with hygetrt
links inside anoscri pt tag, the site can degrade gracefully.

Progressive EnhancemenfThe term Progressive Enhancement
was first introduced by Steven Champéamd has been used as
the opposite side to Graceful Degradation. This technigus ér
the lowest common denominator, i.e., a basic markup HTML- doc
ument, and begins with a simple version of the web site, tldels a
enhancements and extra rich functionality for the more ackd

In AJax applications, not every state change necessarily has anuser-agents using CSS and JavaScript. Because the batéatcon

associated RsT-based [7] URI [15]. Ultimately, an #ax ap-
plication could consist of a single-page [16] with a singIRWU
This characteristic makes it very difficult for a search aegto
index and point to a specific state on anaX application. For
crawlers, navigating through traditional multi-page weiplaca-
tions has been as easy as extracting and following the teyert
links on each page. In &X, hypertext links can be replaced by
events which are handled by the client engine. Simply ektrac
ing and retrieving the internal hypertext links is not suéfiit any
longer to navigate the application.

Dynamic Representational Modelndexing traditional web appli-
cations consists of following links, retrieving and savihg HTML
source-code of each page. The state changesAx Applications
are dynamically represented through the run-time changete
DOM. This implies that the source code in HTML does not repre-
sent the state anymore. Any search engine aimed at crawlithg a
indexing such applications, will need to have access tatindime
dynamic representational model of the application.

Delta-communication AJAX applications rely on a delta-commu-
nication [15] style of interaction in which merely the stateanges
are exchanged asynchronously between the client and therser
as opposed to the full-page retrieval approach in tradilieveb

1 http://ww. googl e. com support/webnast er s/ bi n/ answer . py?answer =
66355&quer y=cl oaki ng

2

is more accessible to search engine crawlemxAsites built with
Progressive Enhancement methods can improve their disdaire
ity by search engines.

Unobtrusive JavaScript Enhanced behavior and rich functional-
ity through Progressive Enhancement is provided by unelveuy
externally linked JavaScript known &fmobtrusive JavaScript

The concept revolves around the separation of JavaScript fu
tionality from the structure, content, and presentatigreta. An
unobtrusive script, similar to an external CSS, is sileiglyored
by user-agents that do not support it, but is applied by mapac
ble devices.

Figure 2 shows different ways a news page can be opened. Links
in lines 1 and 2 will simply be ignored by search engines where
as in 3 and 4 they can simply follow the ef link and index the
news page. So by thinking about search engines in advariees A
developers can improve the accessibility of the pages.

The ultimate unobtrusive solution (line 4-6) is to register nec-
essary event handlers programmatically, rather thandnlithis is
commonly achieved by assigning a particular CSS selectahjs
caset henews, to the elements which need to be acted upon by the
script. Lines 8-10 show the jQuétyode responsible for attaching
the required functionality to thend i ck event handlers.

2 http://hesketh. com publi cations/ progressi ve_enhancenment _pavi ng-
wayfor future. htm

3http://jquery.com

TUD-SERG-2008-001

SE Mesbah and van Deursen — Exposing the Hidden-Web Induced by Ajax

Ul
i o
<% > click o< Browser
=

[) [
generate click Aupdate event

|

Crawljax Controller F—

generate update generate
sitemap mirror

Ajax
Engine

State Crawling Ajax

Machine Generating Indexable Pages

— Legend —

Mirror site [link | .0 o —@ Access
Generator up —» Control flow

| — Event invocation
transform

Sitemap
Generator

v D Data component
. Processing component
Sitemap Multi-page DOM to HTML] g comp
XML HTML Transformer D Static file

<} Output

Figure 1: Processing view of the @AwLJAX architecture.

1 plication, thus significantly reducing the cost and effdriraking
2 AJAX sites more accessible to search engines.

3
4

o <IMPUL Lype="subll {* Gl ass="henews’ > 4. PROPOSED SOLUTION: POST-SITE
6 <div class="thenews"> GENERATION
2$($(t2§2ﬁ¥v2n%)C' | g';é{ ugg\tmlsoﬂpm ﬁ); In order to improve search engine discoverability far& ap-
10}); plications, we propose a post-site secondary site straitegghich
- - — - —— a linked multi-page mirror site is automatically generaa@r the
Figure 2: Different ways of defining clickables in Ajax. AJax application has been built. This mirror site is fully acéess
ble to the search engines. In this approach, calledv@_Jjax, the
. . input is an AlAX site already in place, with or without using the
3.2 Server-side Generation concepts as mentioned in Section 3, and the output is aitnaalit
Another way to expose the hidden-web content behinaxap- multi-page version of the application displaying the sametent
plications is by making the content available to search rexgiat and structure. Our only requirement for crawling is thatGlitk-
the server-side by providing it in an accessible style. Tértent able (see 5.3.1 for a definition) elements should have unique IDs.
could, for instance, be exposed through RSS feeds. The need for this constraint is explained in Section 5 anthated
In the spirit of Progressive Enhancement, an approachdddlle in our discussion Section 9.
jax* involves building a traditional multi-page website firsteh, Figure 1 depicts the processing view of OURAWLIAX ap-
using unobtrusive event handlers, links and form submissare proach. As can be seen, the architecture can be divided ifolthe
intercepted and routed through tked_Ht t pRequest object. lowing two parts:
Generating and serving both thes® and the multi-page ver-
sion depending on the visiting user-agent is yet anotheroagp. Crawling A JAx: the main purpose of this step is to find and ex-
One option is the use of XML/XSLT to generate indexable pages ecute clickables and note the changes in the run-time DOM
for search crawlers [1]. automatically, in a recursive way. 8tate Machinés used
In these approaches, however, the server-side archieestilir to record the navigational paths and state changes. This ste
need to be quite modular, capable of returning delta changes supports three modes, namélyll Auto ScanDSL, andAn-
required by AiIax, as well as entire pages. notations which can be used, respectively, to crawl automat-
The server-side generation approach increases the caigplex ically, to define the crawling navigational paths in a Domain
development costs, and maintainability effort. In the reedtion Specific Language, and to define the elements to be taken
we propose our solution, which aims at assisting the deeelop into the crawling process by element annotations.

the automatic generation of the indexable version of ther@ap- . . .
Generating Indexable Pages:the state machine with all the states

4 http: // www. domscri pting. com bl og/ di spl ay/ 41 filled in by the previous step is used to generate an index-

TUD-SERG-2008-001 3

Mesbah and van Deursen — Exposing the Hidden-Web Induced by Ajax SE

3 News Ajax Site - Mozilla Firefox.

<htm > <head> <title>News Ajax Site</title> Fie Edt Vew Hstory Eookmarks Toos Hep deliciows
<link href="style.css" rel ="stylesheet" type="text/css"/> G- & BB 2 B [E viieatosimoompemmi e o) [.
<script type="text/javascript" src="jquery.js"></script> =
<script >
$(document).ready(function() { Menu

$(".remote"). click(function(){ Headlines

$(' #content’).load(' content.php?state=" + this.id); Headlines «

. Interviews <« This is the headlines. Choose one of the categories.
}) ' Technology «

1 e
Technology
function changeState(id) {
$('#content').load(' content.php?state=" + id)
return false;

}

</script> </ head>

<body>
<div class="|eftPan"> <h3>Menu</h3> v
 < = = . = >

_Headlines Figure 4: The News site after clicking on the ‘headline’ cli&-
<div class="remote" id="interview > bl

Interviews</div> aole.
<l'i ><span onclick="changeState('technology’);"
id="technol ogyl">Technol ogy . .

 change of the DOM tree on the single-page interface thaerepr
:gidilvzl ass="rightPan"> sents a state change. Such internal state changes can bkedhode

<div id="content"> by recording the paths to these DOM changes to be able toatavig

<l-- This is where the content is |oaded --> the different states.

</ div> For that purpose we definestate-flow graptas follows:

</div> </body> </htm >

DEFINITION 1. A state-flow graphfor an AJAX site A is a 3

Figure 3: Source-code of a Single-page AXx News Site. wple< r.V . E > where:

1. r isthe root node (called Index) representing the initiatsta

able version of the Aax application. This step is responsi- after A has been fully loaded into the browser.

ble for linking up and transforming the DOM instances into
static HTML pages and generatingSitemapfor the gener- 2. V is a set of vertices representing the states. EachV'
ated HTML pages. represents a run-time state

The details of these two main steps are explained in Section 5 3. E is a set of edges between vertices. E&eh vy) € E
and Section 6 respectively. represents a clickable connecting two states if and only if
statew; is reached by executingin statev;.

5. AMETHOD FOR CRAWLING Our state-flow graph is similar to ttevent-flow grapil14], but

AJAX APPLICATIONS different in that in the former vertices astates where as in the
In this section we discuss our approach for crawlingpR in latter vertices arevents Note that ultimately, it is the state changes
more detail. We use a simple single-pag®&A News site as shown that we need in order to generate static HTML pages.
in Figure 3 as example to explain the concepts. An example ren As an example of a state-flow graph, Figure 5 depicts the-state
dered view that can result from this HTML and JavaScript dede flow graph of our News site. It illustrates how from the staage

shown in Figure 4, which displays the view after having aidkhe 3 different states can be reached. Furthermore, clickinthern-
“Headlines” menu item. The difficulties of crawlingiAx applica- dex menu item leads to the headline state, from which twestat
tions were mentioned in Section 2 and this site is a typicahgle are reachable — the Science and Technology headlines aibtevi

of how difficult it is for a general search engine to crawl andax in the main pane in Figure 4.

such applications. Note how all the doorways to other states The state-flow graph is created incrementally as the nodes ar
dynamically set using JavaScript. clicked. Initially, it only contains the root state whilewmstates are

We applyreverse engineeringechniques to deduce a state ma- dynamically created.
chine of the navigational model along the state changes ef th .
AJax application through a dynamic analysis of the run-time DOM 5.2 Crawllng Components
changes. The Crawling Alax process, as shown in Figure 1, is based on
As can be seen in Figure 3, evedias (such as the one withid the following components:
‘i ntervi ew inthe second listitem) can become clickable ina%x
by attaching an event to it. Detecting whether such an eleisen : : - .
clickable by inspecting the code is very difficult due to tlaeious f:g&?é% (t)); Zf;lzgng ?éﬁ;“f&?gggﬁegy)p porting teopieal
ways events can be attached to DOM elements jaXA That is ha ' '
why we conduct a dynamic analysis for this purpose by agtuall Robot: Whilst artificial events can be programmatically triggered

Embedded Browser: CRAWLJAX utilizes an embedded browser

running the application and trying to change its state. on the DOM document tree (e.g., usiglgement . fi reEvent), only
the listeners will be dispatched: Actions associated withdvent
5.1 The State-flow Graph will not be performed due to security issues. Hence, we usebaR
In traditional multi-page web applications, each stateejgre- to simulate real user clicks and inputs on the embedded leraws

sented by a URI. In Aax however, it is the internal structure fire possible events and actions attached to candidateabliek.

4 TUD-SERG-2008-001

SE
Index

[headlineiinterview]

Headlines Interviews technology1]
lsciNologyZ]
Science Technology

Figure 5: The State-flow Graph.

Based on an analysis of the DOM tree we will identify can-
didate clickable elements (see Section 5.3.1). ¥tid ent. x,

Mesbah and van Deursen — Exposing the Hidden-Web Induced by Ajax

<div id="content">
<l-- content of headline has been | oaded -->
<p><h2>Headl i nes</ h2>
This is the headlines.
</ p>

<l'i ><div onclick="changeState(’science’);"
id="science">Scince</div>
<l'i ><a href="#" onclick="changeState('technology’);"
id="technol ogy2">Technol ogy </Ili >

</div>

Choose one of the categories:

Figure 6: The DOM state after clicking on the ‘headline’ ele-
ment.

of the state machine is also changed to this newly added atate
that moment (line 20).
Looking at our example site, our algorithm detects the tletee

client.y> screen coordinates of the such elements are used toments with IDsheadl i ne, i nt er vi ew, andt echnol ogy1 as click-

move the Robot’s pointer to the element’s location.

CRAWLJAX Controller: The controller has access to the embed-
ded browser’s DOM and controls the Robot’s actions. It i®als
responsible for updating the State Machine when relevaamgés
occur in the DOM. After the crawling process is over, the colier
also calls the Sitemap and Mirror site generator processes.

State Machine: The state machine is a data component maintain-
ing the state-flow graph, as well as a pointer to the curremé st

As mentioned before, RawLJAX adopts three different modes
to crawl an Aiax site: Full Auto Scan, Annotations, and DSL. We
present each mode in the subsequent sub-sections.

5.3 Full Auto Scan

In the Full Auto Scan mode, RAWLJAX crawls the site automat-
ically by finding all possible clickables and executing thehigo-
rithm 1 shows the Full Auto Scan algorithm.

5.3.1 Finding Clickables

This mode expects a list of HTML tag element names (dig.,
a, span, i nput) and the URL of the AaXx site to begin with. Ele-
ments having such tag names are considegetlidate clickables
After the required environment is initialized, the recues(depth-

first) crawl procedure is called. For each tag name the present

elements on the DOM are added to the candidate clickablgitist
13).

In order to find out whether a certain element in the candidate
clickable list, is indeed clickable, the crawler instruttie robot to
execute a click (line 15) on the element in the browser.

5.3.2 Comparing DOM Trees: Edit Distance

In order to determine if a click results in a new state, the DOM
before and after a click is compared. For this purposeetliedis-
tancebetween two DOM trees is calculated (line 17) using the Lev-
enshtein [12] method. A similarity threshaotds used under which
two DOM trees are considered clones. This thresholdQL.0)

ables, since clicking on any of them causes the DOM to change.

Algorithm 1 CRAWLJAX Full Scan

: procedure START (url, Set tags)
. browser«— initBrowser(url)

. robot « initRobot()

. sm« initStateMachine()

: crawl(sm, tags)

. linkupAndSaveAsHTML(sm)

. generateSitemap(sm)

: end procedure

. procedure CRAWL (StateMachine sm, Set tags)
11: cs« sm.getCurrentState()

12: Aupdate— diff(cs.getDom(), browser.getbom())
13: SetC « getCandidateClickableSgpdate, tags)
14: for ce Cdo

15: robot.click(c)

16: dom<« browser.getDom()

17: if distance(cs.getDom(), dorm) T then

18: ns« State(c, dom)

19: sm.addState(ns)

20: sm.changeState(ns)

21: crawl(sm, tags)

22: sm.changeState(cs)

23: if browser.history.canBadken
24: browser.history.goBack()
25: else

26: browser.reload()

27: clickThroughTo(cs)

28: end if

29: endif

30: end for

31: end procedure

5.3.3 Delta Updates

can be defined by the developer. A threshold of 0 means two DOM After a clickable has been identified, tbeawl procedure is re-

states are seen as clones if they exactlythe same in terms of
structure and content. Any change is, therefore, seen aat@ st
change.

cursively called to find new candidate clickables and ewahtu
clickables in the delta updates (line 13) of the documert after
each state change. The delta update changes are deteoteghthr

If a change is detected, we add a new state to the state-flew dia Diff [3, 16] algorithm (line 12) by comparing the DOM tree before

gram of the state machine (lines 18-19). The current stategyo

TUD-SERG-2008-001

and after executing a clickable.

Mesbah and van Deursen — Exposing the Hidden-Web Induced by Ajax

cram MyAjaxSite {
url: http://local host/run-example/index.htm

navi gat e
click:
click:

}

navi gat e
click:
click:

}

navi gat e
click:
i nput :
click:

}

Navl {
headl i ne;
science;

Nav2 {
headl i ne;
technol ogy?2;

Nav3 {

interview

article "john doe";
search;

Figure 7: Aninstance of CASL.

Figure 6 shows the DOM state aftéeadl i ne’ has been clicked.
Clicking onheadl i ne loads the corresponding content into the
element with IDcont ent . This new content is seen aslalta up-
dateso CQRAWLJAX looks for candidate clickables in there and finds
thesci ence andt echnol ogy?2 as clickables in the same way.

5.3.4 Navigating the States
As already mentioned, navigating (back and forth) through a

AJAX site is not as easy as navigating a classical web site. A

dynamically created DOM state does not register itself il
browser history engine automatically, so triggering thacB func-
tion of the browser might not bring us to the previous stathis T
complicates traversing the application when crawlingnA

Browser History Support It is possible to register each state
change with the browser history through frameworks sucthas t
jQut;ray history/remote plughor the Really Simple History li-
brary.

If an AJAx application has support for the browser history, then
for changing the state in the browseR&VLIAX simply uses the
built-in history back functionality to move back. For instz, if
CRAWLJAX’s browser is on thé&ci ence state, it needs to go back
to the Headl i nes state to be able to click on thie=chnol ogy2
clickable to end up in th&echnol ogy state. If our News site has
support for history, then going to stdteadl i nes is as simple as
calling the browser back method (lines 23-24).

Click Through From Initial State In case the browser history is
not supported (which is the case with manyak applications cur-
rently), the only way to get to a previous state is by relogdhe
initial page and following the path of clickables from thetied
state to the desired state (lines 26-27).

This is also one of the main reasons behind our requiremant th
clickables should have IDs. When wel oad the application in
the browser, all the internal objects are replaced by nevs anel

SE
5.3.5 Identifying Clone States

Our example shows that tiechnol ogy state can be navigated
to either directly from the ndex state, or through theeadl i nes
state. In order to recognize an already met state, we comgpute
hashcodefor each DOM state and use the hashcodes to compare
every new state to the list of already visited states on theest
flow graph. This way we can easily identify clone states araidav
creating unnecessary duplicated ones in our state machine.

It is worth mentioning that in order to avoid a loop, a list @-v
ited candidate clickables is maintained to exclude alredudycked
elements in the recursive algorithm if needed. Also a demtigth
can be defined to constrain the depth level of the recursivetifon
(not shown in the algorithm).

5.4 Annotations

There are situations in which a Full Auto Scan that takesyever
clickable and every state change on the DOM into accounttis no
desirable. Perhaps only parts of anak site are relevant to be
exposed to search engines.

For that reason, we believe the developer should also ba tiiee
opportunity to define which parts of their application thegnto
be crawled and indexed. One way to do that is throaighotating
the source-code by setting the attribateawl j ax="t rue" on the
clickables.

CrRAWLJAX automatically finds all the annotated elements and
adds only those to the list of candidate clickables. Theogtte
process is the same as the Full Auto Scan process.

5.5 CASL

In addition to the Annotations, we provide the developehvait
Domain Specific Language (DSL) [6] callediAx Crawling Spec-
ification Language (CASL). Using CASL, the developer can de-
fine the elements (based on IDs) to be clicked, along withxhete
order in which the crawler should crawl and index thea& appli-
cation. CASL has two commands basicaltyi ck andi nput .

Figure 7 shows the CASL instance for our example application
Nav1 tells CRAWLJAX to crawl and index the states generated by
clicking onheadl i ne andsci ence in that orderNav3 commands
the crawler to crawl to thént er vi ews state, then insert the text
‘j ohn doe’ into the input elemenarti cl e and afterward click on
thesear ch element and index the resulting states.

6. GENERATING INDEXABLE PAGES

After the crawling Aiax process is finished, the created state-
flow graph is passed to thdirror Site Generationand Sitemap
Generationprocessing components.

6.1 Mirror Site Generation
6.1.1 Linking the States

To enable a general search engine to find all the generated,sta
we first establish links for the DOM states in the state-floapdr.
We do so by examining the element type of the clickables. df th
clickable is a hypertext link (am-element), thér ef attribute is up-
dated. In case of other types of clickables (edgv, span) we re-

the ID attribute is a means to be sure we can follow the path to a place the clickable by a hypertext link element. Tinef attribute

certain state by clicking on those saved IDs in the state mach

Note that because of side effects of the clicks, there is aoagu
tee that we reach the exact same state when we traverse athiD-p
a second time. It is, however, as close as we can get.

5 http://stilbuero.de/jquery/history/
6 http://code. googl e. com p/real | ysi npl ehi story/

6

in both situations represents the link to the name and locati the
to be generated static page.

6.1.2 Transforming DOM to HTML

After the linking process, each DOM object in the state-flow
graph is transformed into the corresponding HTML stringreep

TUD-SERG-2008-001

SE

Mesbah and van Deursen — Exposing the Hidden-Web Induced by Ajax

<htm > <head> <title>News Ajax Site</title>

<link href="style.css" rel="stylesheet" type="text/css"/>

</ head>

<body>

<div class="1eftPan"> <h3>Menu</h3>

<a href="/generated/ headline.htm" class="remote"
id="headl i ne">Headl i nes

<a href="/generated/interview htm" class="remote"
id="interview >Interviews

<a href="/generated/technologyl. htm"
id="technol ogyl">Technol ogy </ a>

<[i> <ful> </div>

<div class="rightPan">
<div id="content">

<p><h2>Headl i nes</ h2>

This is the headline.

</p>

<a href="/generated/ science. htm"
id="science">Scince </|i>

<a href="/generated/ technology2. htm "
id="technol ogy2">Technol ogy

Choose one of the categories:

<lul >
</div> </div> </body> </htm >

Figure 8: The static ‘headline’ page generated by ®AWLJIAX .

sentation and saved on the file system in a dedicated diyector
(e.g.,/generated/). Each generated static file represents the
style, structure, and content of thei#x application as seen in the
browser, in exactly its specific state at the time of crawling

Figure 8 shows the generated HTML file for the ‘headlinedesta
Note how the various #ax clickables e.g.sci ence, from Figure 6
are turned into traditional hypertext links, accessiblesbgrch en-
gines.

6.1.3 Deploying the Mirror Site

Next, the generated pages have to be uploaded to the seover. F
the mirror site to look exactly like the #Xx version, care must be
taken so that internal links, to for instance CSS files andyasa
are not broken.

6.1.4 Linking to thensax Site & Vice Versa

The original Asax site can link to the mirror site to form the
first doorway for search engines. There are also possible why
linking the mirror site pages to the original state in thean& appli-
cation. The simplest approach is to link to the originalestaitthe

AJAX site. This means that the users themselves then have to find

their way to the specific state of the static page.

Another, more elegant, solution involves allowing the user
jump to that very specific state on thes#x site. This requires the
AJax application to implement and support browser bookmarking
for each state. Solutions exist, many of which use the URg-fra
ment identifier [15] to keep track of, and allow users to netior
the application in a given state. Theer - agent property of the
visiting agent could be used [1] to redirect a web user to theee
sponding AAX state in this case. Although the content returned to
the user (AAX) and the search engine (generated HTML pages) is
exactly the same, care must be taken to awtiéking possibili-
ties.

6.2 Sitemap Creation

The Sitemap, initially proposed by Google, is a static XM fil
that allows a web developer to inform search engines abolisUR

7 http://ww. googl e. com support/webnast er s/ bi n/ answer . py?answer =
66355&quer y=cl oaki ng

TUD-SERG-2008-001

<?xm version="1.0"
<url set
xmns:ns="http://www. sitemaps.org/schemas/sitemap/0.9">
<url >
<l oc>
http://1ocal host/run-exampl e/ generated/index. htm
</l oc>
<l ast m0d>2007-10-29</| ast nod>
<changefreg>weekl y </ changefreq>
<lurl>
<url >
<l oc>
http://1ocal host/run-exampl e/ generated/ headline. htm
</l oc>
<l ast od>2007-10- 29</| ast nod>
<changef req>weekl y </ changefreq>
<furl>
<url>
<l oc>
http://1ocal host/run-exampl e/ generated/ technol ogy2. htm
</l oc>
<l ast m0d>2007-10-29</| ast nod>
<changefreg>weekl y </ changef req>
<lurl>
<url >
<l oc>
http://1ocal host/run-exampl e/ generated/ science. html
</l oc>
<l ast m0d>2007-10- 29</1 ast mod>
<changefreg>weekl y </ changefreq>
<furl>
<url >
<l oc>
http://1ocal host/run-exampl e/ generated/interview html
</l oc>
<l ast mod>2007-10- 29</| ast nod>
<changefreq>weekl y </ changefreq>
<lurl>
</urlset>

encodi ng="UTF-8"?>

Figure 9: Generated Sitemap XML file.

on a website that are available for crawling. A Sitemap filesists
of one or more URLs and a number of optional descriptors of the
URL, such as the estimated change rate, date of last modificat
and a local crawling priority. Google, Yahoo!, and Micrasléve
announce®l auto-discovery and support for the protocol.
CrAwLJAX adheres to Sitemap Protocol ®,&nd generates a
valid instance of the protocol automatically after eachwtirsg ses-
sion consisting of the URLs of all generated static pages.
Figure 9 presents the generated Sitemap file for the News site
For each state in the state-flow graph, an URL entry is creaiitd
the location, last modification date, and change frequefidyis
way, general search engines can be notified of the generaitid s
files in a standard way.

7. TOOL IMPLEMENTATION

We have implemented the concepts presented in this paper in a
tool called QRAawLJIAX. At the moment the tool is available on re-
quest. More information about the tool and conducted casbest
can be found on our websi&

CRAWLJAX is implemented in Java 5. We have engineered a
variety of software and web tools to build and rumA&vLIAX.

Here we briefly mention the main modules and libraries.

The embedded browser is implemented using Mozilla XULRun-

nefl. Webclient? is used to access the run-time DOM and the

8 http://ww. googl e. com press/ pressrel/sitemapsorg. htn
9 it p: /1 ww. si t emaps. or g/ prot ocol . php

10 http://swerl . tudel ft.nl/bin/view Main/Craw j ax/
1 http://devel oper. nozill a. org/ en/ docs/ XULRunner /
12 ey p: /I ww. mozi | | a. or g/ proj ect s/ bl ackwood/ webcl i ent /

Mesbah and van Deursen — Exposing the Hidden-Web Induced by Ajax

| Aowe | PETSTORE

DOM string size (byte) 5226 24636
Expected Clickables 16 34
Candidate Clickables 25 36
Clickables 17 28
Generated Static Pages 16 28
Generated Sitmap URLs 16 28
Crawl Performance (ms) 55031 119264
Generation Performance (ms) 31859 65531
DOM Pretty-print (ms) 3965 12046

Table 1: Results of running CRAWLJAX on AOWE and PET-
STORE.

SE

library. Although the site is small, it is representativelaying dif-
ferent types of dynamically set clickables as shown in Fadtr

For the case study we manually added extra clickables iardiff
ent states of the application, especially in the delta gsjab ex-
plore whether deep clickables dynamically injected int® EfrOM
can be found by €awLJAX. The site was deployed on our lo-
cal server and a reference model was created manually by clic
ing through the different states in a browser. In total 16kalbles
were noted of which 10 were on the top level, i.e., index stebe
clickable elements were of the typasdi v, span, andi nput . All
clickables in this application have unique IDs.

Ajaxified Sun PETSTORE

browser history mechanism in the embedded browser. ThetRobo Our second case object is Sun's AjaxifieBTSTORE 2.0°° which

component makes use of thava. awt . Robot class to generate
native system input events on the embedded browser.

The Mirror Site Generator uses JTidyto pretty-print DOM
states and Xcerc&s to serialize the objects to HTML. In the
Sitemap Generator, XMLBeal®sgenerates Java objects from the
Sitemap Scherdd which after being used by €awLJAX to create
new URL entries, are serialized to the corresponding vahldlX
instance document.

The grammar of CASL is implemented in ANTER ANTLR

is used to generate the necessary parsers for CASL. In addi-

tion, StringTemplat® is used for generating the source-code from
CASL.

CRAWLJAX is entirely based on Mavéfito generate, compile,
test (JUnit), and run the application. Log4j is used to omity log
various steps in the crawling process, such as the ideniificaf
DOM changes and clickables.

8. CASE STUDY

We have performed a case study set up according to Kitchen-

ham’s guidelines [10] to evaluate the application of ounfeavork
over two representative JAX sites. Our goals includél) ana-
lyzing the overall performance of our approa¢h) evaluating the
effectiveness of EAwLJAX in obtaining high-quality results in re-
trieving relevant clickables, an(B) assessing the quality of the
static pages automatically generated bya@/LIAX.

Because of the very dynamic nature ofaX applications, and
since other comparable tools are not available to conduaiesi
methods as €AwLJAX carries out currently, it is difficult to de-
fine a baseline against which we can compare the results. édenc
we manually inspect the objects under examination and rmiéter
which expected behavior should form our reference baseline

Case study results including generated sites argv@l JAX log
files are made available through th@ @&vLJaX web site.

8.1 Case Objects

We have selected two JX sites for the experiment, the first
one (AOwE) developed internally by our group and the second
(PETSTORE) is an external open-source web application.

AOWE Ajax Site
The AOwWE AJAX site has been implemented using the jQuengA

13 http://jtidy.sourceforge.ne

14 http://xerces. apache. org/ xerces-j/

15 http://xm beans. apache. org

16 ey p://wwv. si t emaps. or g/ schemas/ si t emap/ 0. 9/ si t emap. xsd
17http://vwwv. antlr.org

18http:IIV\MNv. stringtenplate.org

19 ey p: /I maven. apache. org

8

is built on the Java ServerFaces, and the DojaAtoolkit?L. This
open-source web application is designed to illustrate H@wJava
EE Platform can be used to develop ameX-enabled Web 2.0 ap-
plication and adopts many advanced ricbw& components.

To constrain the reference model we chose two product cate-
gories, namely CATS and DOGS, from the five available caiegor
Manual inspection of the application revealed that altfoowst
elements had IDs, the IDs used were not always unique. The IDs
on elements were also set using the IDs of the items in thédsea
Therefore, we first made all the IDs unique through the abkdla
SQL insert statements of the application for the two chos®n ¢
egories and afterwards annotated all the relevant protkroisi by
modifying a JavaScript method which turns the items re¢idvom
the server into clickables on the interface.

It is worth mentioning that although we were not familiar fwit
the application the modification was carried outir 20 minutes,
most of which was spent on finding outherethe modifications
should take place.

8.2 Tool Configuration

Configuring GRRAwLJAX itself is done through the Maven Project
Object Model (POM). Through the POM, the URL of the site to be
analyzed, and the tag elementeA&vLJAX should look for can be
set. For the similarity threshold we defineds 0, i.e., every single
change in DOM is seen as a change. The depth level was set to 4.

8.3 Results

Table 1 presents the results obtained by runnimg\@LJAX on
Aowe and FETSTORE.

The number of candidate clickables and actual identifiezkeli
ables were read from the log file at the end of each crawling pro
cess. After the generation process, the number of gend+tistl
files and their content were manually examined to see whétleer
pages were the same as the corresponding statesair i terms
of structure, style, and content. Also the internal linkiofgthe
static pages was checked. In addition, the URL entries irgé&me
erated Sitemap XML file were examined.

The execution time for the crawling and generation processe
were computed separately. TBeawling Performanceepresents
the time in milliseconds taken byRAwLJAX to find the clickables
and build the state-flow graph, excluding the time neededétiyp
print the DOM into string. Th&eneration Performancghows the
period taken to generate the static HTML pages and the Sjtema
from the state machine. TH2OM Pretty-printindicates the time
required to transform a DOM object into the correspondindviiT
string representation.

20 http://java. sun. conf devel oper/rel eases/ pet store/
21 http://dojotool kit.org/

TUD-SERG-2008-001

SE

8.4 Observations
As can be seen in Table 1,R@wWLJAX finds 17 clickables on

AoWE instead of the expected 16. After closer inspection, we no-

ticed that the extra false clickable is caused by the folhgardode
pattern: <di v id="x">text</div>. In
this case thepan element is the actual clickable, however, since
thedi v element is inside thepan, it can also be seen as a click-
able. Since clicking on any of the two results in the same sta¢

see that the actual expected 16 HTML pages and Sitemap$ntrie

were correctly generated.

Mouseover-dependent Clickables-or PETSTOREthe scenario is
more complicated. From the 34 annotated clickablesav@LIAx
was able to find only 28. The reason behind this differenchds t
way the items are shown to the useleTSTORE uses aCat al og

Browser to show a set of the total number of the product items and

defines aronMbuse event on an ng element to browse through

Mesbah and van Deursen — Exposing the Hidden-Web Induced by Ajax

appear through complex JAX widgets which require the user to
have an understanding of the application. Theal og Browser

for instance in BTSTOREis an example. The user must under-
stand from the context and shape of the state that hoverirapon
image will allow them to browse the catalog and see more items
Currently, we are exploring how such patterns could be tietec
and the corresponding clickables executed automatically.

9.2 Performance

Itis clear that the running time of AWLJAX increases linearly
with the size of the input. The tool is intended to be usediatiky
by web developers. Therefore, we believe that although &ne p
formance could be improved, the execution time of a few ngisut
to generate a mirror multi-page instance of asAR application
automatically without any human intervention is accepgabl

9.3 Combining the Crawling Modes

the other items one by one. For our robot this means a two step \hen it comes to states that need textual input from the user

action. First RAwLJIAX has to know about thenMbuse behavior
and move the mouse pointer to theg element, after which a new
clickable appears, and then that new element has to be dlidie

6 missing product items were the ones that would be showrain th
manner.

Constantly Updating DOM Another issue we had with 9~
STORE N the beginning of the experiment was that all the 36 can-
didate clickables found were also seen as clickables. Tiés p
nomenon was caused by tbanner . j s which constantly changed
the DOM with textual notifications. Hence, we had to eithes-di
able this banner to conduct our experiment or use a highelasim
ity threshold so that the textual changes were not seen dsvame
state change for detecting clickables.

History Back Implementation CRAWLJAX assumes that if the
Browser Back functionality is implemented, then it is implented
correctly. Yet another interesting observation withiSTOREWas
the fact that even though Back is implemented for some stiaiss
not correctly implemented in the sense that calling the Baethod
brings the browser in a different state than expected whath-n
rally confuses ®AWLJAX. AOWE implements the Back method
correctly.

Performance It takes QRAWLJIAX 55031 ms to crawl AwE and
119264 ms to crawl PTSTORE. As can be seen, the DOM ireR-
STOREIs 4 times bigger than that indwEe which also explains the
higher execution time for the DOM Pretty-print. There argoall
more clickables in BTSTORE. In addition to the increase in DOM
size and the number of clickablesr@wLJAX cannot rely on the
browser Back method when crawlingePSTORE. This means for
every state change on the browsarA/LJAX has to reload the ap-
plication and click through to the previous state to go fertfThis
reloading and clicking through has a negative effect on tréop-
mance. The generation time also doubles fer8roredue to the
increase in the input size.

9. DISCUSSION

This section discusses a number of important charact=isfi
our techniques and discusses both the strengths and opes.iss

9.1 Evaluation

As revealed in the case studyR@wLJIAX can find and crawl
deep clickables correctly. Also the generated HTML pagesar-
rect and represent exactly the corresponding state in the Rer-
sion. The static pages are correctly linked and the Sitemgener-
ated as expected. The weakness seems to be finding clickhbtes

TUD-SERG-2008-001

(e.g., input forms) CASL can be very helpful to crawl and gate
the corresponding state. The Full Auto Scan, however, doées n
have the knowledge to provide such input automatically.réfoee,
we believe a combination of the three modes to take the bestabf
could provide us with a powerful tool not only for crawlingtiaiso
for automatic testing of Aax applications.

9.4 ID Requirement

As far as the ID requirement is concerned, if browser Back is
correctly implemented by an JAX site, the requirement could fall
altogether. Since no reloading of the site is needed to a&vithe
state-flow graph when Back is implemented, persistent IRedco
be set by @AawLJAX which has access to the run-time DOM.

Currently, we are also investigating the possibilities tilizing
XPath to find and record the location of clickables in the DOM
instead of using unique IDs to identify elements persigtent

9.5 Incomplete set of HTML pages

The set of generated HTML pages is by no means complete, i.e.,
CRAWLJAX generates an static instance of theaX application
but not necessariltheinstance. This is partly inherent to dynamic
web applications. Any crawler can only index an instance dy-a
namic web application in a point in time. The order in whicicki
ables are chosen could generate different states. Eveuntsgthe
same clickable twice from an state could theoretically poedtwo
different DOM states depending on, for instance, senae-&ic-
tors. Hence, ®AwWLJAX crawls and generates an instance of the
web application at a certain point in time.

10. RELATED WORK

There has been extensive research on finding and exposing the
hidden-web behind forms [2, 5, 11, 17, 18]. On the contrdrg, t
hidden-web induced as a result of client-side scriptingenegal
and AJax in particular has gained very little attention so far. As far
as we know, there are no academic research papers on cranting
exposing the hidden-webJAx at the moment.

There are, however, some industrial proposed approachigs-fo
proving the discoverability of Aax as discussed in Section 3.

The concept behind RawLJAX, is the opposite direction of our
earlier work RETJAX [16], in which we try to reverse-engineer a
traditional multi-page website to AX.

Shelly and Young [19] discuss the possible ways of improving
the accessibility for DHTML websites. RAwWLJIAX also improves
accessibility towards user-agents that do not supporiStaigt by
creating the multi-page instance.

Mesbah and van Deursen — Exposing the Hidden-Web Induced by Ajax SE

The work of Memoret al. [13, 14] on GUI Ripping for testing
purposes is related to our work in terms of how they revergg en languages: an annotated bibliograpBiGPLAN Not.
neer an event-flow graph of desktop GUI applications by apgly 35(6):26-36, 2000.
dynamic analysis techniques. [7] R. Fielding and R. N. Taylor. Principled design of the
modern Web architecturdCM Trans. Inter. Tech. (TOIT)
2(2):115-150, 2002.
M. Florins and J. Vanderdonckt. Graceful degradationssr
interfaces as a design method for multiplatform systems. In

[6] A.van Deursen, P. Klint, and J. Visser. Domain-specific

11. CONCLUDING REMARKS

In this paper, we have studied howi#x induces hidden-web (8]

content and explored ways of improving the discoverabdftguch

applications. In particular, we have proposed a method dwlcr

AJax applications by automatically detecting and executingkeli
ables and building a state-flow graph representation oftthgime

Ul '04: Proceedings of the 9th international conference on
Intelligent user interfacegpages 140-147. ACM Press,
2004.

paths and states. Besides the Full Auto Scan mode, we provide [9] J. Garrett. Ajax: A new approach to web applications.

the developer with two alternatives: Annotations and a D&lled

CASL, to control the way the site is crawled. We have disadisse
how such a graph can be used to generate a traditional nagg-p

instance of the original application, fully accessible lte search
engines. This mirror site also improves the accessibifitthe ap-
plication towards user-agents that do not support JavgiScri

In summary, this paper makes the following contributions:

[10]

[11]

Adaptive path, 2005t t p: / / www. adapt i vepat h. conl

publ i cations/ essays/ ar chi ves/ 000385. php.

B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case studi
for method and tool evaluatiofEEE Softw,. 12(4):52—-62,
1995.

J. P. Lage, A. S. da Silva, P. B. Golgher, and A. H. F.
Laender. Automatic generation of agents for collecting

hidden web pages for data extracti®ata Knowl. Eng.
49(2):177-196, 2004.

[12] V. L. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversdlybernetics and Control
Theory 10:707-710, 1996.

3] A. Memon, |. Banerjee, and A. Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces fomgsti
In WCRE '03: 10th Working Conference on Reverse
Engineering pages 260-269. IEEE Computer Society, 2003.

[14] A. Memon, M. L. Soffa, and M. E. Pollack. Coverage crider
for GUI testing. INESEC/FSE '01: Proceedings of the 8th
European software engineering conference held jointhj wit
9th ACM SIGSOFT international symposium on Foundations
of software engineeringages 256-267, New York, NY,
USA, 2001. ACM Press.

Future work consists of conducting more case studies to im- [15] A. Mesbah and A. van Deursen. An architectural style for
prove the ability of finding clickables in differentJAx applica- Ajax. In WICSA '07: Proceedings of the 6th Working

tions. Strengthening the tool by extending its functiaiedi and IEEE/IFIP Conference on Software Architectupages

improving the performance is another direction we fores@ée 44-53. |EEE Computer Society, 2007.

will also explore possibilities of dropping the ID requirent by [16] A. Mesbah and A. van Deursen. Migrating multi-page web

adopting alternatives such as XPath. applications to single-page Ajax interfacesA8MR '07:
Proceedings of the 11th European Conference on Software
Maintenance and Reengineerjrgages 181-190. IEEE
Computer Society, 2007.

[17] A. Ntoulas, P. Zerfos, and J. Cho. Downloading textual
hidden web content through keyword queriesJGDL '05:
Proceedings of the 5th ACM/IEEE-CS joint conference on
Digital libraries, pages 100-109. ACM Press, 2005.

[18] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. InVLDB '01: Proceedings of the 27th International
Conference on Very Large Data Baspages 129-138.
Morgan Kaufmann Publishers Inc., 2001.

[19] C. C. Shelly and G. Young. Accessibility for simple to
moderate-complexity DHTML web sites. W4A '07:
Proceedings of the 2007 international cross-disciplinary
conference on Web accessibilipages 65—-73. ACM Press,
2007.

1. An approach to increase the discoverability of hiddei-we
content induced by Aax.

2. A novel method to automatically crawlJAx applications
and build a state-flow graph model of the states and paths.

3. A technique to transform the run-time DOM state changes
of AJax applications into static HTML pages and generate a
corresponding Sitemap.

4. The tool GRRAWLJIAX implementing the methods and con-
cepts discussed in this paper.

5. A case study report covering the application of our apghoa
to two AJAX applications.

12. REFERENCES

[1] Backbase. Designing rich internet applications foreka
engine accessibility, 2005. backbase.com Whitepaper.

[2] L. Barbosa and J. Freire. An adaptive crawler for loogtin
hidden-web entry points. IWWW '07: Proceedings of the
16th international conference on World Wide \\phges
441-450. ACM Press, 2007.

[3] S.S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured
information. INSIGMOD '96: Proceedings of the 1996 ACM
SIGMOD international conference on Management of data
pages 493-504. ACM Press, 1996.

[4] A. Dasgupta, A. Ghosh, R. Kumar, C. Olston, S. Pandey, and
A. Tomkins. The discoverability of the web. WWW '07:
Proceedings of the 16th international conference on World
Wide Webpages 421-430. ACM Press, 2007.

[5] A. F. de Carvalho and F. S. Silva. Smartcrawl: a new strate
for the exploration of the hidden web. WIDM '04:
Proceedings of the 6th annual ACM international workshop
on Web information and data managemeoages 9-15.

ACM Press, 2004.

10 TUD-SERG-2008-001

TUD-SERG-2008-001 S Ec
ISSN 1872-5392

