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Abstract 

Key contributor to normal power grid operations is optimal working of the various power grid equipment/apparatus. Non-

optimal operation of any of this equipment causes power quality problems which can pose great risk to the stability of the 

grid. Damaged or partially damaged equipment leaves characteristic signatures in the form of current and voltage waveform 

distortions. Detecting and localizing such signal distortions would contribute to grid reliability as the damaged equipment 

could be replaced in time before it can cause further damage. This paper proposes a Distortion Detection Technique (DDT) 

based on second-difference approach. This distortion detection technique has very low memory requirements and can be 

easily implemented on decentralized systems. The paper investigates the performance of this technique and evaluates it with 

case studies involving different kind of equipment failures simulated on Real Time Digital Simulator (RTDS). 

1 Introduction 

The reliable operation of a power system is dependent on 
the reliable operations of the several smaller apparatus, 
devices and components which all together constitute the 
power system. Any physical apparatus, device or component, 
which is a part of the power system, can be broadly classified 
as an equipment of the power system. Underperformance of 
any of these equipment can lead to unnecessary losses and 
other harmful effects like harmonics, noise, ferro-resonance 
etc.[1]. If left unchecked, harmful effects of failing equipment 
can even cascade to a large-scale blackout. With the passage 
of time, the equipment experiences a wide variety of stresses 
which includes mechanical stresses, electrical stresses, 
thermal cycles etc. [1]. These stresses lead to slow 
degradation of the equipment, which ultimately leads to its 
failure after a certain frame of time. Adverse weather 
conditions are another major contributor to equipment 
damage. Majority of the power system equipment have 
continuous work cycle and are installed in the exterior which 
makes them vulnerable to damage. Hence, the reliable 
working operation of a power system calls for strict vigil and 
periodic maintenance of different equipment’s. There is also 
an important element of cost factor. It is much more advisable 
to replace failing equipment in time rather than risk the 
operations of the entire power grid. Risking operations of the 
entire grid would prove to be extremely costly to rectify and 
cause added inconvenience to the customers.  

In this paper, a Distortion Detection Technique (DDT) 
based on second-difference approach is proposed. DDT is a 
new approach developed by the authors in the field of grid 
monitoring and protection. It has been applied in detection of 
High Impedance Faults (HIF) with successful results [2]. HIF 
is generally hard to detect by conventional protection schemes 
but with the implementation of DDT, HIF detection becomes 
much easier. In this paper, we apply DDT to equipment 
damage detection. Equipment damage is generally hard to 

detect as they have a slow degradation process with a timeline 
stretching from few months to several years. However, they 
leave signatures of their degradation in form of distortions of 
the signals they are monitoring. Higher the degradation, more 
distorted is the signals. DDT aims to detect and analyse these 
distortions to identify failing equipment so that corrective 
actions can be taken before the power grid is affected. 

DDT leverages the fact that a stable AC power system 
would have pure sinusoidal voltage and current waveforms. 
DDT aims to act during the pre-failure period to identify 
equipment damage. A pre-failure period can be defined as a 
time interval between the normal operating conditions of the 
grid and its subsequent collapse [3]. In this period the grid, 
though stable, is enduring more stress than normal. The time 
interval of the pre-failure period is the window of opportunity 
where the measured waveforms can be analysed to detect and 
classify a potentially harmful event for the grid.  

There have been several studies where waveform analytics 
has been used to improve the reliability if the grid. In [4] non-
technical losses have been detected using artificial intelligence 
while in [5] and [6] wavelet transformations have been used to 
detect and classify power quality problems. Texas A&M 
University has developed a tool in [3] where equipment 
damage is addressed through advanced situational awareness 
of the power grid. The tool however relies on massive 
databases of equipment failure and issues recorded by the 
Distribution System Operator (DSO’s) over the years, which 
makes the commercial applicability of the tool costly and 
time-consuming. There has been Advanced Metering 
Initiatives [7] and Distribution Management Systems [8], 
where smart meters have been deployed to capture the 
customer energy usage pattern and record information of 
events at specific intervals. However these systems don’t go 
beyond and are mainly used for billing and related activities. 
DDT on the other hand does online monitoring of the 
waveforms and does not depend on previously recorded 
databases. It is a robust yet lightweight technique which is 
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Figure 1 Sampled Signal f[k] 

 

 

 

much faster than memory consuming processes like wavelet 
transformations. 

DDT relies on difference based approach for detection of the 
distortions in the electrical waveforms measured from the 
grid. DDT forms the core of a larger algorithm that further 
processes the detected distortions in order to classify the 
nature of the event (harmful/not harmful) causing the 
distortion. The classification information is relayed to the 
operator who can then take appropriate actions to maintain the 
reliability of the grid. The detection technique leverages the 
sinusoid nature of voltage and current waveforms in the AC 
grid as explained in the subsequent sections. The 
mathematical backbone of the technique is a simple yet robust 
difference based approach which does not require large 
memory or huge computing power. A similar difference based 
waveform analytics approach has been used for current 
transformer saturation detection and compensation in [9]. 

In this paper, we validate the DDT and the associated 
algorithm by conducting simulations in the Real Time Digital 
Simulator (RTDS). In our first experiment we simulate a 
failing transformer and demonstrate how we detect it. In our 
second experiment, we mimic a set of real life events leading 
to failure of a device as detailed in [3]. The second experiment 
aims to demonstrate credibility of DDT by showing its 
applicability in real life equipment damage events. 

The paper has been structured as follows: Section 2 discusses 

the mathematics behind DDT. Section 3 describes in detail 

the principle of the entire algorithm including the 

classification criteria. Section 4 presents and discusses the 

simulation results obtained. Finally, Section 5 presents the 

conclusions. 

2 DDT as Difference Function 

This section explains the DDT in detail and the mathematical 

principle behind it. The latter part of this section describes 

how DDT forms a part of a larger algorithm which governs 

how detection, analysis and classification of the distorted 

waveforms help in identification of a possible equipment 

failure. The setup is similar as explained in [2], but here a 

low pass filter has been added to improve performance 

against harmonics. Having proved its applicability in case of 

HIF, the main idea of this paper is to show the effectiveness 

of DDT against incipient equipment damage. 

2.1 Distortion Detection Technique as Difference Function 

The current and voltage waveforms in an AC power 
system are sinusoid and can be described as complex 
exponentials using Euler formula as seen in (1) 

                     cos sinj te t j t                             (1)                  

Here is the angular frequency (in radians per second), t is 

time (seconds) and j is the imaginary unit.  

The distinct characteristics of exponential functions are 

that the rate of increase or decrease of an exponential function 

is proportional to the value of the function at that instant. 

Another interesting characteristic of a complex exponential 

function is that they are not infinitely increasing or decreasing. 

These characteristics of the complex exponential functions are 

used for devising the difference based DDT. The DDT 

proposed in this paper uses the first difference instead of 

continuous differentials since the signals that are being 

processed are sampled voltages and currents of the power 

grid.  

The sampled signal [ ]f k , as shown in Fig. 1 is a general 

representation of any voltage or current signal measured from 

the grid. Assuming the signal as a sine wave of period T , 

which can be sampled at N  samples per cycle, the samples 

could be denoted as: ... , 1, 2...n k k k n N   . The samples are 

equally spaced in time-domain at an interval of length h , 

such that:                                                        

                                    𝑇 = ℎ ∙ 𝑁                 (2) 

Let [ ]g k  be the difference of the sample values at sample 

k and 1k  , the first difference at k  can be written as: 

                             
   1f k f k

g k
h

 
                (3)                                                    

Similarly at 1k  : 

                             
   1

1
f k f k

g k
h

 
            (4)                                  

Now, for a pure sine wave, using (3) and (4), it can be 

written that: 

          𝑔[𝑘] > 𝑔[𝑘 + 1], 𝑘 ∈ {𝑛, 𝑛 +
𝑇

4
} ⋃ {𝑛 +

𝑇

2
, 𝑛 +

3𝑇

4
} (5) 

           𝑔[𝑘] < 𝑔[𝑘 + 1], 𝑘 ∈ {𝑛 +
𝑇

4
, 𝑛 +

𝑇

2
} ⋃ {𝑛 +

3𝑇

4
, 𝑛 + 𝑇}  (6) 

 

Hence if [ ]f k  is a pure sine wave, (5) and (6) will always 

hold true. In case, (5) or (6) are violated, the violation will be 
recorded as a distortion. The violation will be interpreted as a 

distortion as for that instant, [ ]f k , would cease to be a pure 

sine wave. These simple yet distinct mathematical principles 
form the backbone of DDT.  
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Figure 2 Distortion Detection Technique Implementation 

Algorithm flowchart 
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3 DDT Implementation Algorithm 

3.1 Distortion Detection Technique Implementation 

In this subsection, we can discuss the DDT implementation in 

detail. DDT forms the main part of an overarching algorithm. 

The algorithm flowchart can be seen in Fig. 2. 

The electrical AC current and voltage waveform 

measurements are taken from the grid and analysed in steps 

as described below: 

 

3.1.1 Low Pass Filter: The first step is to pass the waveforms 

through a low pass filter with the cut-off frequency being the 

fundamental frequency. This filter performs satisfactorily the 

frequency rejection above the first harmonic in order to avoid 

false flags by the technique.  

 

3.1.2 Distortion Detection: The mathematics governing the 

Distortion Detection technique has been explained in the 

previous section. The main objective of this block is to 

implement the distortion detection technique. The input to 

this block is current or voltage waveform𝑓[𝑘], measured with 

a sampling rate 𝑅 from a particular node in the grid. 

Whenever this block detects violation of (5) or (6), a flag is 

raised and distortion reported. The output of this block 

is(𝑑, 𝑡), where 𝑑 indicates the occurrence of the distortion at 

time 𝑡. We can define 𝑑 as,𝑑 = 1 if distortion is detected 

and 𝑑 = 0, if distortion is not detected. The output of this 

block serves as an input to the Distortion Recorder block. 

   

3.1.3 Distortion Recorder: The objective of this block is to 

store the distortion occurrence data from Distortion Detection 

block in a data set of a specified length as explained below. 

This data set is called Memory Buffer. The input to this block 

is (𝑑, 𝑡). The input data is collected and processed by 𝑁    

sample window as it moves along the entire waveform. The 

size of the window is user-dependent and could vary from 

one measuring device to another. If we have 𝑚  measuring 

devices such that 𝑖 = 1,2,3 … 𝑚, then the memory buffer 𝑊𝑖 

in the time interval of (𝑎𝑖 , 𝑏𝑖) can be represented as: 

𝑾𝒊 = {(𝒅𝒇, 𝒕𝒇)|𝒅𝒇 ∈ {𝟎, 𝟏}, 𝒕𝒇 ∈ (𝒂𝒊, 𝒃𝒊), 𝒇 = (𝟏, 𝟐, 𝟑 … 𝑵)}   (7)      

The memory buffer Wi contains the instants of occurrence 

and non-occurrence of distortions in a fixed length of time 

interval (𝑎𝑖 , 𝑏𝑖). Eq. (7) is the output from the distortion 

recorder block and serves as an input to the synchronizer 

block. 

3.1.4 Synchroniser:The synchronizer block helps in aligning 

all the reported distortions such that a correct classification 

can be achieved. The occurrence of a disturbance at a certain 

point in the grid will not have the same impact over the entire 

section of the grid. Same distortion can cause some 

measurement devices to report numerous and frequent 

distortion levels, some lower and some may not report any 

distortion at all. Also, the measurement devices may not have 

uniform sampling rates. 

 One of the pre-requisites for accurate analysis is that all the 

data collected should be synchronized. If not, it will cause 

false flag error leading to wrong results. Hence, for 

synchronization, comparison and further analysis of the 

distortion detection data we need a window of fixed time 

interval to collect all reporting’s from different measurement 

devices during that time interval. The device with the highest 

sampling rate will report maximum distortion detection data 

in that fixed time interval compared to other measurement 

devices. The design of the smallest time interval for a single 

data recording of the window should be small enough to 

record reporting’s from the measurement device of the 

highest sampling rate. Hence, the measurement device with 

the highest sampling rate forms the base reference for other 

measurement devices with lower sampling rates and 

consequently lower reporting rate of the distortion data. 

Henceforth, the design of the base window is governed by the 

measurement device of the highest sampling rate. The base 

window 𝐴 can be represented as: 

                  𝐴 = (𝑎𝑏𝑎𝑠𝑒, 𝑏𝑏𝑎𝑠𝑒) = ⋂ (𝑎𝑖 , 𝑏𝑖)𝑛
𝑖=1       (8) 

The curtailed memory buffer Wǐ, within the size limits of 

the base window can be represented as:  

𝑊�̌� = {𝑤𝑖 = (𝑑𝑓 , 𝑡𝑓)|𝑤𝑖 𝑎𝑛𝑑 𝑡𝑓 ∈ (𝑎𝑏𝑎𝑠𝑒 , 𝑏𝑏𝑎𝑠𝑒)𝑎𝑛𝑑 𝑑𝑓 ∈ {0,1}}          (9)   

The last processing step of this block is to sum the values of 

the distortion occurrences 𝑑𝑓 in Wǐ. We can write: 

                                         𝐶𝑖 = ∑ 𝑑𝑝
|𝑊𝑖̅̅̅̅ |
𝑝=1            (10)   

Thus, (10) is the output from each synchronizer block sent to 

the classifier. 

3.1.5 Classifier: As the name suggests, the main objective of 

this block is to classify events and present the output to the 
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Figure 3 IEEE 9 bus system simulation setup (failing 

transformer) 
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Figure 4 Current Waveforms at different measurement 

points for 30% damage 

 

 
Figure 5 Current Waveforms at different measurement 

points for 60% damage 

operator. The classifier classifies the event as either ‘not 

harmful’ or ‘potentially harmful’. The classifier performs two 

main functions to classify any event causing distortion. The 

two functions are analysis of the reported distortions per 

measuring device and analysis of the reported distortions 

over the entire set of measuring devices: 

The first function is to check the number of distortions 

occurring in each curtailed memory buffer 𝑊�̌�. The value of 

  𝐶𝑖  for each synchronizer block is compared against a 

threshold (𝑡ℎ𝑖). If 𝐶𝑖 >  𝑡ℎ𝑖  , a flag is raised, else the 

classifier doesn’t process it further. The value of the 

threshold is user dependent and is based on the sampling rate 

of the waveforms. A major parameter for threshold value 

selection in our case study was comparison between the 

number of distorted samples recorded during a non-harmful 

event like switching actions and a harmful event like 

incipient equipment damage, HIF etc. A normal switching 

event might result in a small distortion of signal but the 

impact will be reflected on one or two samples and it will not 

repeat itself. Such an event will not exceed the threshold and 

trigger a warning unnecessarily. However a disturbance 

leading to a fault or an equipment failure would result in 

numerous and repeated distortions throughout the waveform, 

due to which the threshold limit value would be exceeded 

multiple times and a warning would be triggered. 

The other function of the classifier block is to check the 

distortions reported from the waveforms recorded by all the 

measuring devices in a certain section of the grid. As the 

input to the classifier has already been synchronized, it is 

easier for classifier to compare the reported distortions across 

different devices in the same interval. A relatively stable 

switching event might not produce distortions in each section 

of the grid but a fault inducing disturbance would affect the 

entire grid and would produce distortions in all sections of 

the grid. The comparison of reported threshold violations 

over the entire measurement set ensures that false positives 

are minimized.  

4 Simulation Results 

4.1 Failing Transformer 

In the simulation setup seen in Fig. 3, IEEE-9 bus system has 

been simulated in RTDS [10]. The measurement points (mp 

1, mp 2, mp 3) record the waveforms at three different points. 

Transformers in a power system are very critical. They are 
costly and time–consuming to replace. One of the most 

common failures in the transformer is slow deformation of 

the insulation and the winding material with usage and time, 

which in turn directly affects the leakage inductance [11-12]. 

The failure of the transformer T1 in our case study has been 

simulated by varying leakage inductance value with time. 

The variation of leakage inductance values over time 

intervals is done to mimic slow degradation of a device in 

real time. The change in waveforms at each interval is 

recorded and analysed by DDT. 

The waveforms are recorded when the equipment damage is 

simulated to be at 30% and 60% respectively. During the 

time frame (0.035 - 0.045)s there are hardly any distortions 

visible even though there are some magnitude change in Fig. 

4, while in Fig. 5, for the same time frame there are visible 

distortions as the equipment is more than 50% damaged. 

However, when DDT is applied to the waveforms of both the 

cases, distortions at multiple samples are detected. A 

summary of the results are presented in Table I. The common 

reporting of the distortions help us to correctly identify a 

major event (incipient fault, equipment damage etc.) affecting 

several sections of a grid. 
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Figure 6 IEEE 9 bus with Switch and Capacitor 

Malfunction 
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Table 1 Distortion Detection at different measurement points 

 

Equipment 

Damage 

mp1 
(distorted 

samples) 

mp2 
(distorted 

samples) 

mp3 
(distorted 

samples) 

Common 

Reporting’

s 

1st Interval 

(30% 

damage) 

12 9 4 4 

2nd Interval 

(60% 

damage) 

17 12 10 9 

4.2 Circuit Breaker Failure (simulation of real-life event) 

The second experiment conducted is based on switch and 

capacitor failure in an IEEE 9 bus system. At bus 8 a 

grounded Y capacitor bank was connected to protect the 

system from surge voltages and reduce triple and other 

harmonic currents. The parameters of the capacitor bank are 

230KV, 60Hz and 0.5mF per phase as seen in Fig. 6.  

The system works without any problem for a long time until 

a fault in the proximity of bus 8 occurs. During the fault the 

protection operation sequence works fine with relay trip 

action and reclosing actions working according to the 

protection scheme. After the fault clearance, the main circuit 

breaker (CB) exhibits an unusual behaviour. The breaker 

starts to switch on and off every 1.5mins, until the capacitor 

is damaged and has lost around 20% of its capacitance. The 

slight damage to the device leads to more unusual behaviour. 

The switching becomes more frequent in nature and takes 

place every 20s till the capacitor is damaged to a loss of 40% 

of its capacitance. The device gets damaged further which in 

turn made the switching problem increase to a recurring 

frequency of every 10s. This damage reduced the capacitance 

of the capacitor bank to 50% of its original capacitance. 

Eventually, as a result of extensive damage and 

malfunctioning capacitor bank, the CB opens and remains 

disconnected. 

The full simulation of the above described chain of events 

was conducted on RTDS, where the CB behaviour was 

simulated through Batch Mode Operation using a script to 

change the characteristics of the capacitor bank. The 

waveforms at various measuring points were recorded and 

analysed. The entire simulation was run for 5mins to record 

the waveforms. In Fig. 7 (a-i), (b-i), (c-i), a 10s extract is 

shown for all the three cases of switching of circuit breaker 

connected to three capacitor bank. The minute distortions at 

the instant of switching are not clearly visible in those 

waveforms. Fig. 7 (a-ii), (b-ii), (c-ii) shows the zoomed-in 

section of the distorted parts (encircled) of the waveforms. 

The distortions are now clearly visible for each of the three 

cases. These waveforms are continuously analysed by DDT. 

The distortions recorded are time stamped which helps in 

knowing the instant of distortion. The distortions are 

processed by the algorithm as discussed in section 3. The 

results are documented in Table 2 where the reported 

distortions for each measuring point for each case of 

switching are listed. The distortions listed in Table 2 are for 

the time frame when switching happens. We can observe that 

as the device damage increases, we detect more and frequent 

distortions. The common reporting’s column contains the 

number of common distortions (distortions at the same time) 

recorded across all the measurement points. This helps to 

eliminate false reporting’s due to inaccuracy or malfunction. 

The amount of common reporting’s also help to assess the 

extent and severity of equipment damage. The classification 

is categorized as either ‘not harmful’ or ‘potentially harmful’. 

The disturbances created by the CB are nearly undetectable 

for the nearest commercial relays but the DDT discussed in 

this paper successfully detects it. DDT can help raise an 

alarm which could be useful for the utilities to replace faulty 

equipment before it leads to an outage. The flicker produced 

by the capacitor bank faulty switching can also damage the 

nearby customers or induce an outage leading to huge losses 

for both electricity providers and consumers but the 

application of the DDT can help in curbing these losses too. 

Overall, DDT and the associated classification algorithm can 

help utilities in identifying and replace damaged equipment’s 

where conventional methods generally fail. 

Table 2 Distortion Detection at different measurement points 

 

Case 

Study 

mp1 
(distorted 

samples) 

mp2 
(distorted 

samples) 

mp3 
(distorted 

samples) 

Common 

Reporting

’s 
CASE I 

(switching 

every 1.5 mins) 

(6.97-7.05)s 

57 54 41 35 

CASE II 

(switching 

every 1.5 mins) 

(6.97-7.05)s 

77 72 65 41 

CASE III 

(switching 

every 1.5 mins) 

(6.97-7.05)s 

117 107 102 67 

 

5 Conclusions 

In this paper the application of Distortion Detection 

Technique is shown in the case of incipient equipment 

damage. Real life equipment failure example was simulated 

in the lab and DDT successfully detects it. DDT is a 

lightweight yet robust tool which proves its performance 

where conventional methods fail. The frequency and intensity 
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Figure 7 Measured currents at mp1, mp2 and mp3. Case I (a-i) switching at 1.5s and (a-ii) zoomed view. Case II (b-i) 

switching every 20 seconds and (b-ii) zoomed view. Case III (c-i) switching every 10 seconds and (c-ii) zoomed view. 

of the distortions vary according to the proximity of the 

measurement point to the place of failure. Hence, future work 

will involve devising technique, which can help to locate the 

exact spot of equipment failure, which will further help in 

saving time and resources. 
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