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Abstract / Summary

Small solar system bodies have received increasing scientific attention over the past decades. Studying their
primitive origins can reveal important insights on the formation of planets, as well as the general evolution
of the Solar System. Also their potential threat to life on Earth upon collision and their potential to act as
stepping stones for deep space exploration make these bodies interesting to explore. Especially CubeSats,
being small and lightweight, are promising candidates for such missions.

To facilitate the design of small body missions, this research investigates the non-linear effects of uncer-
tainties in an asteroid’s environment on the orbital motion of a CubeSat. Uncertainties in the asteroid’s mass,
irregular gravity field and solar radiation pressure have been studied prior. Rotational state uncertainties
have not been researched, but do affect the CubeSat’s motion indirectly through the orientation of the irreg-
ular gravity field. These are therefore selected as the subject of this work. This aids in identifying orbits that
are robust against these uncertainties, thereby minimizing the required fuel for trajectory corrections and
maximizing the mass for science instruments or increasing the mission duration.

The study of the non-linear effects of rotational state uncertainties requires the application of non-linear
uncertainty propagation methods. Non-Intrusive Polynomial Chaos was selected for its ease of implemen-
tation, promising computational efficiency and ability to provide statistical information directly. In this
method, a set of samples from the uncertain domain are propagated to a desired time according to the
black-box dynamics that govern the orbital motion. Subsequently, a polynomial approximation, a so-called
Polynomial Chaos Expansion, is constructed for these final states as a function of the uncertain variables.
This then allows for finding the final states for all possible characterisations of these uncertain variables, in a
Monte Carlo like fashion, without further numerical integrations. Above that, the Polynomial Chaos Expan-
sion terms can be used to compute statistics, such as the mean and covariance, analytically. In this work,
different initial conditions are propagated and the states at various times are approximated by Polynomial
Chaos Expansions. All Polynomial Chaos Expansions were verified by comparison with Monte Carlo simula-
tions.

A study on the settings of Non-Intrusive Polynomial Chaos was conducted. It showed that the required
settings, such as polynomial order, number of samples and method of solving for the coefficients can vary
significantly, depending on the studied case. In addition, limitations in the application of this method to
Kepler elements were encountered for orbits that approach the singularities in this element set.

In general, the results show an increase in the trajectory dispersions and non-linearities encountered
with an increase in propagation times and with a decrease in orbital altitude. However, exceptions to this
trend were encountered. In the case of a retrograde equatorial orbit, the inclination was found to reach its
maximum dispersion already within 5 days and stagnates thereafter. This is a result of the accelerations
exerted by the asteroid’s gravitational bulges in its equatorial plane, which varies in space along with changes
in the rotation pole under these uncertainties.

A comparison to uncertainties in the asteroid’s mass revealed that the effects of rotational state uncertain-
ties are relatively small, especially considering the small uncertainty in mass that was used. However, again
an exception was encountered. The right ascension of the ascending node of a polar orbit at 5 km was found
more sensitive to changes in the asteroid’s rotation pole than in its mass. Thus, depending on the objective
of an analysis, mission designers could be required to include rotational state uncertainties in their analyses.

Finally, a broader study of different initial orbital geometries revealed that retrograde orbits are more
stable against rotational state uncertainties. However, depending on the exact initial orbital geometry, in
terms of inclination and right ascension of the ascending node, prograde orbits can be just as stable. Also
here it was found, though, that the inclination is more stable for polar orbits than for inclined and equatorial
orbits.

In conclusion, the finding that retrograde orbits are more stable against rotational state uncertainties
helps mission designers to select promising orbits for actual missions. As these orbits are also beneficial for
geodetic parameter estimation, they both minimise the required fuel for trajectory corrections and maximise
the scientific return. Nonetheless, a wide variety of non-linear effects due to rotational state uncertainties
can be encountered in the asteroid’s environment. Therefore, their influence should always be checked in
mission design studies, even though in general their effects are relatively small.
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1
Introduction

The space industry has been and will continue growing rapidly [1]. The need to map the current state of
climates worldwide [2], to forecast the weather[3] and to have reliable internet access and communication
capabilities at remote locations [4] have inspired a wide variety of satellite missions around Earth. This large
increase in space missions has been enabled by a reduction in the cost of launches [5] and the emergence
of small satellite systems, such as CubeSats [6]. The exploration of space beyond Earth orbit has also re-
ceived more interest recently. For example, the JUpiter ICy moons Explorer (JUICE), launched in April 2023,
will characterise the ocean layers on Ganymede [7], while the James Webb Space Telescope [8], launched in
December 2021, will study light emitted by galaxies in the distant past.

The scientific community has also increasingly focused on the smaller celestial bodies within the Solar
System [9]. These bodies are considered to be the most ancient remnants from different stages of the Solar
System’s evolution [10]. Their diverse characteristics, in terms of their constituent elements and internal
structure, serve as indicators of these different stages [11], while their orbital characteristics and rotational
states provide information on the physical processes they have undergone [12]. Exploring the features of
these small objects can therefore offer valuable information about the formation, growth and evolution of
planets and the Solar System as a whole. A subset of these bodies, known as near-Earth objects (NEOs),
approach or intersect Earth’s orbit. Having the potential to collide with Earth, these small bodies pose a
threat to life, and civilization, on Earth, sparking the need for small body space missions to avoid such events.
Although many large NEOs have been identified already, large efforts are ongoing to detect a vaster majority
of them and the smaller ones [13]. The testing of deflection techniques has also been initiated with the kinetic
impact of DART on Dimorphos [14]. Lastly, the exploration of small bodies is motivated by the potential for
mining materials scarce on Earth [15].

Numerous space missions committed to exploring the large variety of comets and asteroids have been
motivated by these interests [16]. NEAR-Shoemaker has orbited Eros [17], Rosetta visited 67P/Churyumov-
Gerasimenko [18], OSIRIS-REx took a sample from Bennu [19] and DART impacted Dimorphos [20, 14].
Planned missions include OSIRIS-APEX visiting Apophis during its close approach to Earth [21], HERA study-
ing the aftermath of the DART impact [22] and Psyche exploring a metallic asteroid to learn about the origin
of planetary cores [23].

Unlike planets, the mass of small bodies is insufficient to force them to spherical shapes. The resulting
irregular gravity field in combination with the solar radiation pressure (SRP) perturbation, which is significant
due to the weak gravity, cause high non-linearities in the dynamical environment and thereby complicate the
design and execution of missions to small bodies. There is a high risk of colliding with or rapidly departing
from the vicinity of the body after only a cursory period of observation. This work contributes to the large
efforts required to carefully plan small body missions, by studying the dynamical environment of such a body.
Previously, research has focused on general considerations [24], the motion around oblate bodies [25, 26] and
contact binaries [27] and uncertainties in mass, SRP [28], irregular gravity [29, 30] and initial states [31]. The
influence of uncertainties in the possibly complex rotational state of the asteroid [24] on the orbital motion
has not been studied, while they indirectly affect the orbital motion, through the orientation of the asteroid’s
irregular gravity field and the changes therein. Rotational state uncertainties are therefore selected as the
subject of this work.

The highly non-linear dynamical environment of small bodies necessitate the application of non-linear

1



2 1. Introduction

uncertainty propagation methods to study uncertainties. In this work, the effects of uncertainties in a small
body’s rotational state are studied using Non-Intrusive Polynomial Chaos (NIPC). This sample based methods
considers the orbital motion as a black-box function and approximates the states at given times by Polyno-
mial Chaos Expansions (PCE), as a function of the uncertain parameters. This method was selected over
Monte Carlo (MC) methods [32], Differential Algebra [33], the Unscented Transform (UT) [34], the State
Transition Tensor (STT) [35] and intrusive Polynomial Chaos (PC) [36] due to its ease of implementation,
its promising computational efficiency and its ability to analytically compute statistical information from the
PCE.

In this thesis work, the uncertainties in the rotational state parameters are studied for a particular case
study object. Oblate near-Earth asteroid 2000 ET70, of which Earth-based radar observations are available,
was selected for its representative size, shape and rotation period [24, 37]. The largest gravity perturbations,
based on its shape, are those described by the Spherical Harmonic (SH) C̄20 and C̄22 terms, which define
its oblateness and equatorial elongation, respectively. Uncertainties related to both a pre-mission scenario
and a post early-characterisation phase are studied, because these different uncertainty magnitudes are ex-
pected to result in different degrees of non-linearity and dispersion and are representative of different mis-
sion phases. A CubeSat is employed to orbit this asteroid, because they have been proven to be promising
candidates for space exploration. For example, the HERA mission, planned for launch in 2024, utilises two
CubeSats, Juventas and Milani, for characterising the DART impact on Dimorphos [38]. CubeSats have the
advantages of being smaller, lighter and faster to develop than their larger counterparts [39]. Although this
is accompanied with limits in their operational and scientific capabilities, research efforts are focused on in-
creasing the autonomous capabilities of CubeSats [40]. Nonetheless, it could still be required to employ them
alongside a larger spacecraft or with several CubeSats in a real mission.

1.1. Research question
The main objective of this research, as just introduced, is thus to study the non-linear effects of an asteroid’s
rotational state uncertainties on a CubeSats orbital motion. To guide the research effort into a more precise
direction, the main research question, based on this objective, is formulated as:

What are the non-linear effects of an asteroid’s rotational state uncertainties on the orbital motion of a
CubeSat?

To structure the research effort into clearer sub-directions, the main question was divided into sub-questions:

• What are the capabilities of Non-Intrusive Polynomial Chaos and what challenges are encountered in
its application to orbital motion around asteroids?

• What orbital aspects are affected the most by rotational state uncertainties?

• Do particular interactions between rotational state parameters and irregular gravity field components
contribute relatively more to the dispersion of orbits than others?

• Should rotational state uncertainties be considered in mission design studies and operational proce-
dures?

1.2. Report structure
The main part of this research has been documented as a journal paper article in chapter 2. chapter 3 sum-
marises the conclusions drawn in the research by answering the research question and provides recommen-
dations for future research. The journal paper contents are complemented by the appendices of this re-
port. Appendix A presents the design of the nominal orbits, while Appendix B provides an analysis of the
required propagation settings for sufficient accuracy and efficiency. The performance of NIPC is studied in
Appendix C, the conclusions of which formed guidelines in determining the settings used for the analyses
performed in this work. The methodology described in Appendix D is used to filter discontinuities in the Ke-
pler elements, so that they can be properly analysed. Finally, Appendix E presents additional results on the
initial orbital geometry grid analysis and provides a more elaborate discussion for the analysis that studies in-
teractions of rotational parameters with the irregular gravity field in terms of the degree 2 spherical harmonic
coefficients.
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A B S T R A C T
Context Small solar system bodies have received increasing scientific attention, because of their primitive origins and potential
threat to life on Earth. Studying them with small and lightweight CubeSats can reveal important insights in the evolution of
the solar system.
Aims To facilitate the design of small body missions, this work investigates the non-linear effects of uncertainties in an
asteroid’s rotational state on the orbital motion of a CubeSat.
Methods Non-Intrusive Polynomial Chaos is employed for the non-linear, yet efficient, propagation of these uncertainties
in the highly non-linear dynamical environment of the asteroid. Different initial conditions are propagated and the states at
various times are approximated by Polynomial Chaos Expansions, from which statistical information of the dispersion of the
trajectories can be computed analytically.
Results In general the effects are smaller compared to those due to uncertainties in mass. However, the rotational state pa-
rameters can in particular cases affect the angular Kepler elements more, e.g. the right ascension of the ascending node of
a polar orbit. In addition, retrograde orbits are found to be more stable against rotational state uncertainties than prograde
orbits. Depending on the exact initial orbital geometry, also prograde orbits can be stable, though. Again, different results
were also obtained, such as the inclination being more stable for polar orbits than for retrograde orbits. Finally, limitations in
the application of NIPC to Kepler elements were encountered for orbits that approach the singularities in this element set.
Conclusions In conclusion, a wide variety of effects due to rotational state uncertainties can be encountered, because of the
highly non-linear dynamical environment. Therefore, their influence should always be checked in mission design studies,
even though in general their effects are relatively small.

Keywords: Non-intrusive Polynomial Chaos, asteroid, non-linear sensitivity analysis, rotational state

1 Introduction
The large variety of small solar system bodies has received in-
creasing attention over the past decades (Hestroffer et al., 2019).
Being believed to be the most primitive celestial bodies, they
could be remnants from the formation of the Solar System and
its different evolutionary stages (Bottke Jr. et al., 2002). Their
composition and internal structure are records of the conditions
within the young Solar System. (DeMeo and Carry, 2014). Ob-
serving and characterising these bodies may therefore reveal
key insights into the early development of planets, prior to their
interior differentiation, as well as the Solar System in general.
Similarly, their orbital and rotational states characterise their
dynamical evolution (Morbidelli et al., 2005). Also the threat to
life, and civilization, on Earth upon collision and the potential

⋆ E-mail: m.j.m.vannistelrooij@student.tudelft.nl

for mining materials scarce on Earth motivate the exploration of
small solar system bodies (Swindle et al., 2017).

These various interests have inspired numerous space mis-
sions committed to exploring a variety of comets and asteroids
(Barucci et al., 2011). NEAR-Shoemaker orbiting Eros (Miller
et al., 2002), Rosetta visiting 67P/Churyumov-Gerasimenko
(Lhotka et al., 2016), OSIRIS-REx returning a sample from
Bennu (Lauretta et al., 2017) and DART impacting Dimorphos
(Cheng et al., 2018) are some examples. Currently planned mis-
sions include OSIRIS-APEX visiting Apophis during its close
approach to Earth (Benson et al., 2023), HERA studying the
DART impact (Madeira et al., 2023) and Psyche exploring the
same name bearing metallic asteroid in an effort to uncover the
origin of planetary cores (Zuber et al., 2022).

The small mass of asteroids is insufficient to force them to
spherical shapes. The resulting weak and irregular gravity fields
cause high non-linearities to be encountered in a spacecraft’s or-
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bital motion around them (Feng et al., 2019a), which is directly
impacted by the body’s rotation. This is further complicated by
solar radiation pressure (SRP), which forms a significant pertur-
bation already over short time periods. The design and execu-
tion of such missions is therefore difficult, but has been facili-
tated by studies of the highly perturbed and uncertain dynamical
environment of small bodies. The implications and general con-
siderations are described extensively by Scheeres (2012). Taka-
hashi and Scheeres (2020) investigate the effects of J2 and J3
on frozen terminator orbits and Feng and Hou (2018) derive a
semi-analytical method for propagating orbital motion around
oblate asteroids. The sensitivity of orbits to uncertainties in the
asteroids mass and SRP (Feng et al., 2022), the irregular grav-
ity field (Melman et al., 2013; Feng et al., 2021) and the initial
state within, and the mass of, a binary system (Fodde et al.,
2022) have also been researched extensively. Uncertainties in
the possibly complex rotational state of small bodies indirectly
affect a spacecraft’s orbital motion, through the orientation of
the small body and the changes therein. The influence of the
possibly complex rotational state of a small body (Scheeres,
2012; Feng et al., 2019b) on this motion has not been studied
and is the subject of this work.

Where linear uncertainty propagation methods can be applied
in situations that are nearly linear in order to study the sen-
sitivity of the orbital motion to specific parameters, the char-
acteristics of the asteroid’s environment necessitate the appli-
cation of non-linear uncertainty propagation methods. Monte
Carlo (MC) methods (Maybeck, 1982) have been employed in
these problems (Melman et al., 2013), as they are easily im-
plemented, yet they are also most inefficient. Differential Alge-
bra (DA) (Armellin et al., 2010; Feng et al., 2021; 2022) and
polynomial algebra (Fodde et al., 2021; 2022) have been re-
searched extensively in this field as well. Although other non-
linear uncertainty propagation methods, such as the Unscented
Transform (UT) (Julier et al., 2000), the State Transition Tensor
(STT) (Park and Scheeres, 2006) and Polynomial Chaos (PC)
(Wiener, 1938), have been applied in astrodynamics problems,
they are yet untouched in asteroid applications. In this work, the
non-intrusive variant of polynomial chaos is employed, which
approximates the output of a black-box function through a Poly-
nomial Chaos Expansion (PCE). This method was selected for
its ease of implementation, its promising efficiency and its abil-
ity to compute statistical moments and Sobol’ indices analyti-
cally from the PCE.

The uncertainties in rotational state parameters are studied
for oblate near-Earth asteroid 2000 ET70, of which Earth-based
radar observations are available and which has a representa-
tive size and rotation period (Naidu et al., 2013). In addi-
tion, a CubeSat is used as the spacecraft that orbits the aster-
oid. CubeSats have been proven to be promising candidates
for deep space exploration and have the advantage of being
smaller, lighter and faster to develop than their larger counter-
parts (Poghosyan, 2017). This is, however, also accompanied
with limits in their capabilities, both operational and scientific.

This work is structured as follows. First, section 2 presents
the general dynamical framework used in this work. Subse-
quently, section 3 presents the Non-Intrusive Polynomial Chaos
(NIPC) method and elaborates on the considerations that must
be made with regard to its use. In addition, the statistical in-
formation that can be obtained with this method and the uncer-
tainty indicators used for the analyses are presented in this sec-
tion. Section 4 ties together the foregoing sections by present-
ing the characteristics of asteroid 2000 ET70, the uncertainties
studied, the orbits considered and the specific dynamical model
settings applied. Then, section 5 dives into the performance of
NIPC and provides some general guidelines that were found
when testing the settings available in this method. It also pro-
vides an overview of the NIPC settings used in this work. The
results of the various sensitivity analyses are presented and dis-
cussed extensively in section 6. Finally, section 7 summarises
the conclusions and recommendations of this work.

2 Dynamical model
The CubeSat’s orbital motion around the asteroid, in Carte-
sian coordinates r = [x y z]T, is defined in an inertial ref-
erence frame, Fin. This frame is centered at the asteroid’s Cen-
ter of Figure (CoF), its x-axis oriented towards vernal equinox
at J2000, its z-axis oriented perpendicular to the North of the
ecliptic and the y-axis complementing the right handed frame.
The orbital motion is governed by the Equation of Motion
(EoM):

r̈(t) = agrav + asrp + a⊙,pm (1)

where agrav is the gravitational acceleration exerted by the as-
teroid, asrp is the acceleration due to SRP and a⊙,pm is the
Sun’s third body point mass (PM) acceleration. The EoM is
used to propagate the state, x(t) = [r(t) ṙ(t)]T in Fin, to
various times t, subject to an initial state x(t0).

The asteroid’s gravitational acceleration is modelled using
the Spherical Harmonics (SH) model, commonly truncated for
degree n and order m (Montenbruck and Gill, 2000):

agrav = Rz(−λ)Ry(β − π
2
)·

Rz(− 2π
Tast

(t− t0))∇U(r, ϕ, τ)

U(r,ϕ, τ) =
µ

r

∞∑

n=0

n∑

m=0

[(
R

r

)n

·

P̄nm(sinϕ)
(
C̄nm cosmτ + S̄nm sinmτ

)
]

(2)

Here, U is the gravitational potential defined in the co-rotating
asteroid-centered reference frame, such that r, ϕ and τ are the
radius, latitude and longitude with respect to the asteroid. µ is
the asteroid’s gravitational parameter, R its reference radius,
P̄nm are the normalised Associated Legendre Polynomials and
C̄nm and S̄nm are the normalised SH coefficients. The gravita-
tional acceleration in the asteroid-fixed reference frame is trans-
formed to Fin through three rotations, R. The first rotation is
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Fig. 1. Magnitudes of accelerations with respect to asteroid
2000 ET70 (a = 0.947 AU, e = 0.124, i = 22.3◦)

around the asteroid’s rotation pole with a magnitude inversely
proportional to the asteroid’s rotation period Tast and propor-
tional to the propagation time t− t0. The other rotations trans-
form the asteroid-fixed frame of the initial epoch t0 to Fin, tak-
ing into account the ecliptic latitude β and ecliptic longitude λ
of the rotation pole in Fin.

The SRP acceleration is modelled with the Cannonball model
(Scheeres, 2012), because of its low computational cost and
good accuracy:

asrp = − P⊙
4πc

CRSref

m

rCS/⊙
r3
CS/⊙

(3)

whereP⊙ = 3.827·1026 W is the total power output by the Sun,
c = 2.998 · 108 ms−1 is the speed of light, CR is the CubeSat’s
SRP coefficient, Sref its SRP reference area, m its mass and
rCS/⊙ the Sun’s position vector as seen from the CubeSat.

Finally, based on the comparison of accelerations provided
in Figure 1, where R represents the asteroid’s mean radius (Ta-
ble 2), the Earth’s third body PM is concluded negligible, as
it is many orders of magnitudes smaller than the other acceler-
ations. As such, only the Sun’s third body PM acceleration is
included in this work, which is given as the difference between
that exerted on the CubeSat and on the asteroid:

a⊙,pm = µ⊙

(
rCS/⊙
r3
CS/⊙

− r⊙
r3
⊙

)
(4)

with r⊙ being the Sun’s position as seen from the asteroid.
The EoM contains many case-dependent parameters. They

are governed by the choice of asteroid or spacecraft design. Sev-
eral of these parameters are also subject to uncertainty. They are
not known exactly by mission designers, either due to the large
effort required or the inability to determine them with current
technology. This work focuses on uncertainties that arise due
to a lack of knowledge, which can be reduced with additional
information (Eldred, 2009). Examples are µ, C̄nm and CR. β,
λ and Tast are uncertain as well. They affect the orbital motion
indirectly, by defining the asteroid’s orientation and its change
over time. Thereby they define how the gravitational potential
U varies in inertial space and time, as indicated by Equation 2.

Uncertainties are usually defined with Probability Density
Functions (PDF) (Feng et al., 2019b). Gaussian or Uniform dis-
tributions (Eldred, 2009) are most commonly used, because in
typical astrodynamics problems only a nominal value and un-
certainty magnitude are known or estimated, rather than higher
order moments that would describe more complicated PDFs.
The nominal value, typically the expected value for the Gaus-
sian and Uniform distributions, is the value that best fits refer-
ence data or observations. Specific information on the uncer-
tainties studied in this work is given in section 4.

The mismodelling of parameters, due to uncertainties, results
in dynamical model errors. To quantify this type of error, which
is the subject of this work, errors originating from other sources
should be controlled. These include the dynamical model errors
originating from the choice of models and the integration error
originating from solving for the state of interest, x(t), numer-
ically. The error due to model choices, for each of the acceler-
ation terms in the EoM, can be reduced by employing increas-
ingly sophisticated models. It is realised though, that the current
study of uncertainties is not necessarily about finding the true
orbit solution, but merely about finding reliable estimates of the
errors therein due to the uncertainties. This can justify allowing
a larger error in the model of one acceleration, when studying
the effects of uncertainties in another. Although the errors due
to model choices may then be larger than the size of the errors
due to uncertainties that should be captured, this error may still
be properly captured. Of course, indirect effects should still be
considered, as they may indirectly affect the errors due to un-
certainties as well, especially for longer propagation times. The
dynamical model choices that are made in this regard are elabo-
rated upon in section 4. On the other hand, the integration error
directly affects the accuracy with which errors due to uncertain-
ties can be captured. The required integration error is therefore
set at the minimum of the errors due to uncertainties that need to
be captured. A priori it is not known what magnitude of errors
due to uncertainties will be encountered, but in terms of posi-
tion deviations of the CubeSat, it is physically significant to be
able to capture effects in the order of cm to dm-level. Errors be-
low cm-level are insignificant and need not be detected, because
they yield no significant change in the CubeSat’s orbit. Integra-
tion errors of cm to dm-level maximum are thus acceptable.

The numerical propagations were performed with the
Python-interfaced TU Delft Astrodynamics Toolbox (TudatPy)
developed by the Astrodynamics & Space Missions department
of Delft University of Technology1.

3 Non-Intrusive Polynomial Chaos
The effects of uncertain parameters in the EoM are studied
with Non-Intrusive Polynomial Chaos (NIPC), the foundation
of which was laid by Wiener (1938). This method is used to es-
timate the distribution of the state of interest, x(t), subject to

1 https://docs.tudat.space/
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variations in the uncertain parameters gathered in ξ. The state
subject to these uncertainties is denoted x(t, ξ). This section
elaborates on NIPC, the options therein, the considerations to
take into account and the statistical information that can be ob-
tained.

NIPC is a black-box non-linear uncertainty propagation
method. This means that a limited number of samples are drawn
from the domain of the uncertain parameters ξ and propagated
according to the dynamics governed by the EoM, which is con-
sidered the black box in this work. The propagated states at the
time of interest of all samples are used to generate an approx-
imation function of this state, with the uncertain parameters ξ

as independent variables. This function is a set of multivariate
orthogonal polynomials Ψ(ξ), also referred to as the Polyno-
mial Chaos Expansion (PCE) (Xiu and Karniadakis, 2002; Xiu,
2010; Eldred, 2009):

x(t, ξ) =c0(t)Ψ0

+

∞∑

i1=1

ci1(t)Ψ1(ξi1
)

+

∞∑

i1=1

i1∑

i2=1

ci1i2(t))Ψ2(ξi1
, ξi2

)

+

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ci1i2i3(t)Ψ3(ξi1
, ξi2

, ξi3
)

+ ... (5)

In practise, the state is approximated by a truncated summation,
by using a polynomial of of finite order p. By summing over the
individual polynomial terms indicated by j, rather than by the
uncertainties in a term as indicated by i1, i2, etc., a shorthand
notation is given as:

x(t, ξ) ≈
P∑

j=0

cj(t)Ψj(ξ) (6)

where Ψj(ξ) =

l∏

i=1

ψj
i (ξi)

where cj(t) are the PCE coefficients to be obtained for the time
of interest. ψj

i (ξi) forms an orthogonal polynomial basis func-
tion, denoting the contribution of uncertain parameter i to poly-
nomial term j. The last line of Equation 6 therefore informs that
each polynomial term consisting of l variables, can be obtained
by a multiplication of univariate polynomial terms ψj

i (ξi), one
for each of these l variables. Note that Equation 6 constructs a
PCE for each state variable and thus the PCE coefficients have
to be computed for each of them (Xiu and Karniadakis, 2002;
Eldred, 2009).

Besides NIPC, also an intrusive variant of PC exists. This
method considers a direct substitution of the PCE, Equation 6,
into the EoM. Such a PCE is, in this case, also made and substi-
tuted into the EoM for the uncertain parameters. By projecting

the EoM onto each of the orthogonal polynomial basis func-
tions, it can be rewritten so that the PCE coefficients become
the state variables and can be solved for with numerical inte-
gration methods (Xiu and Karniadakis, 2002; Lacor and Savin,
2018). The intrusive method can be more efficient, especially
with an increasing number of uncertain parameters. However,
its main disadvantage is that the EoM becomes coupled and ex-
tensive code modifications would be required to implement it in
existing tools, such as TudatPy (Xiong et al., 2014). Therefore,
this method was not considered in this work.

In essence, the NIPC method is an adaptation of the widely
adopted, yet inefficient, Monte Carlo (MC) method, by using
clever sampling techniques and combining the information that
is available within these samples wisely to construct a poly-
nomial approximation of the state distribution. The clever use
of this information is what makes this method computationally
more efficient than the MC method (Hosder et al., 2007).

The major burden of NIPC, aside from finding the solutions
to the black-box function (EoM), lies in the computation of the
P + 1 PCE coefficients per state coordinate. Nonetheless, the
same samples can be reused for each. The number of PCE coef-
ficients per state coordinate follows from (Xiu and Karniadakis,
2002; Eldred, 2009):

P + 1 =
(n+ p)!

n!p!
(7)

where n denotes the number of uncertain parameters in ξ and
p denotes the polynomial order. Equation 7 clearly shows the
curse of dimensionality, i.e. the number of PCE coefficients
increases exponentially with n and p. As will be discussed in
the following subsections, the number of samples required in-
creases with the number of PCE coefficients. Thus, the method
becomes exponentially more costly with the number of uncer-
tain parameters and the degree of non-linearity of the problem.

3.1 Methods for computing c(t)

The PCE coefficients can be computed using the propagated
states with several methods. Two of these are considered in this
work, because of their availability in ChaosPy (discussed in sub-
section 3.4): Pseudo-spectral projection and Point Collocation.
These methods are elaborated upon next.

3.1.1 Pseudo-spectral projection

Similar to the intrusive Polynomial Chaos method, the Pseudo-
spectral projection (PSP) method relies on a projection onto the
orthogonal polynomial basis functions. Where in the intrusive
method this projection is done for the complete EoM, here it is
done only for the PCE of the state of interest. In this way the
error made in the approximation of the states is orthogonal to
the PCE and therefore minimised for the used PCE. The coef-
ficients for a specific time tl follow from (Eldred, 2009; Vasile
and Manzi, 2023):
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cj(tl) =

∫
ρ(ξ)x(tl, ξ)Ψj(ξ)dξ

⟨Ψ2
j ⟩

(8)

≈
∑N

k=1 wkx(tl, ξk)Ψj(ξk)

⟨Ψ2
j ⟩

where ⟨Ψ2
j ⟩ =

l∏

i=1

⟨(ψj
i )

2⟩

where quadrature rules are used to generate N nodes ξk with
weights wk, which approximate the integral in the numerator
with ρ(ξ) representing the PDF of ξ. ⟨Ψ2

j ⟩ is the inner prod-
uct of multivariate polynomial term j, which follows from the
product of inner products of its constituent univariate polyno-
mial terms, which can be computed analytically (Eldred, 2009).

For multiple uncertain parameters, univariate quadrature
rules are extended through full tensor products. Common rules,
such as Clenshaw-Curtis, Gaussian, Fejer and Legendre quadra-
ture yield N = (q + 1)n quadrature nodes for quadrature or-
der q. Other rules follow slightly different relations. Nonethe-
less, for all rules it holds that N grows exponentially with n.
When the number of uncertain parameters grows beyond cer-
tain values, depending on the problem at hand, full tensor prod-
uct quadrature becomes inefficient, similar to MC methods. In
this case, Smolyak sparse grids can be considered to keep the
required number of nodes low (Smolyak, 1963; Xiong et al.,
2010). Although it can theoretically be deduced that a quadra-
ture order q = p+1 is required to compute the PCE coefficients
for a polynomial of order p with high accuracy (Eldred, 2009),
this has limited use in practise. The reason is that, as will be
encountered for some cases that are studied in section 6, the
accuracy of the PCE will strongly depend on whether the distri-
bution of the state of interest can actually be well represented by
a polynomial of order p at all. Nonetheless, computing the PCE
coefficients for higher orders with sufficient accuracy requires
more samples than for lower orders.

3.1.2 Point Collocation

The Point Collocation method constructs a linear system,
x(t, ξ) = Ψ(ξ)c(t), and follows a least-squares regression to
compute the PCE coefficients at a specific time tl:

c(tl) ≈
(
Ψ(ξ)TΨ(ξ)

)−1

Ψ(ξ)Tx(tl, ξ) (9)

As a minimum, the number of samples must equal the num-
ber of PCE coefficients to avoid an under-determined system,
but it is recommended to use twice this amount for signifi-
cantly better approximations (Hosder et al., 2007). These sam-
ples can be generated in two ways. Again, quadrature rules can
be employed, yielding the Point Collocation Quadrature (PCQ)
method. In contrast to PSP, the weights are not used in this
method, but in theory could be added to the least-squares re-
gression. Additionally, quasi-random sampling sequences, such

as Sobol, Hammersley and Halton, can be employed, yielding
the Point Collocation Quasi-Random (PCR) method.

3.1.3 Considerations

The polynomial basis functions, ψj
i (ξi), can take any form,

such as Hermite, Laguerre, Jacobi and Legendre polynomials. It
was realised by Xiu and Karniadakis (2002), that each weight-
ing function, which defines the inner product with respect to
which one of these polynomials is orthogonal, is equal to the
PDF of an uncertainty distribution, aside from a constant fac-
tor. For example, the PDF of a standard Gaussian distribution,

1√
2π
e
−x2

2 , is the same as the weighting function of Hermite

polynomials, e
−x2

2 , aside from the constant factor 1√
2π

. Xiu
and Karniadakis (2002) have shown that choosing the poly-
nomial basis functions according to the uncertainty distribu-
tion yields exponential convergence of the PCE approximation,
which is maximum.

When uncertain parameters behave according to different dis-
tribution types, the polynomial basis function becomes a mix
of different types. When these uncertain parameters are corre-
lated, an additional step is required for optimal performance.
This step entails a transformation from uncorrelated standard
uncertain parameters, such as Gaussian distributions with mean
0 and standard deviation 1 or uniform distributions between -1
and 1, to the real, correlated uncertain parameter values. This
transformation could be considered part of the black-box func-
tion in NIPC. In this case, the uncorrelated standard uncertain
parameters are the independent variables of the PCE. This trans-
formation decouples the multidimensional integrals that occur
in the inner products of multivariate polynomials, ⟨Ψ2

j ⟩, into a
product of one-dimensional integrals, meaning that Equation 8
still holds. As will be elaborated in section 4, this study only
considers uncorrelated uniform distributions. Thus, there is no
need to do the transformation to uncorrelated standard uncertain
parameters.

3.2 Statistical information

A powerful characteristic of NIPC is that statistical characteris-
tics of the distribution of the state can be retrieved from the PCE
directly. That is, for this only the PCE coefficients and the evalu-
ations of the multivariate polynomial terms at the used nodes are
required. The expectation, E, of a state variable follows directly
from its zeroth coefficient, because its corresponding polyno-
mial term equals 1. The covariance matrix, P , can be obtained
from the other PCE coefficients and their corresponding poly-
nomial terms. For time tl they follow from:

E[x(tl, ξ)] =m(tl) = c0(tl) =
[
cx1,0(tl) cx2,0(tl) ... cxq,0(tl)

]T
(10)
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P (tl) =




P∑
j=1

⟨Ψ2
j ⟩c2x1,j(tl)

P∑
j=1

⟨Ψ2
j ⟩cx1,j(tl)cx2,j(tl) . . .

P∑
j=1

⟨Ψ2
j ⟩cx1,j(tl)cxq,j(tl)

P∑
j=1

⟨Ψ2
j ⟩cx2,j(tl)cx1,j(tl)

P∑
j=1

⟨Ψ2
j ⟩c2x2,j(tl) . . .

P∑
j=1

⟨Ψ2
j ⟩cx2,j(tl)cxq,j(tl)

...
...

. . .
...

P∑
j=1

⟨Ψ2
j ⟩cxq,j(tl)cx1,j(tl)

P∑
j=1

⟨Ψ2
j ⟩cxq,j(tl)cx2,j(tl) . . .

P∑
j=1

⟨Ψ2
j ⟩c2xq,j(tl)




(11)

where the dependence of Ψj on ξ has been left out for brevity.
cxi,j is the j-th coefficient corresponding to state variable xi.
Higher order moments of the distribution can be obtained simi-
larly (Savin and Faverjon, 2017).

The contribution of a specific uncertain parameter, or an in-
teraction of multiple uncertain parameters, to the variance can
be obtained by summing the contributions of all terms contain-
ing those uncertain parameters. This allows for the simple com-
putation of Sobol’ indices, s, both of a finite order and of total
order, by dividing these contributions by the total variance σ2

(Sudret, 2008). As an example, the second order Sobol’ index,
s2(tl), for the interaction between uncertain variables i1 and i2
on state coordinate x1 is:

s2 =
⟨Ψ2

i1,i2⟩cx1,i1cx1,i2

σ2
x1

(12)

where Ψi1,i2 indicates the polynomial term(s) that are only a
function of both i1 and i2. In essence, all of the information
on relative contributions is already contained in the individual
terms and the coefficients of the PCE. In Equation 12, the de-
pendence of c on time tl has been left out for brevity. This will
also be done in the next subsection about uncertainty indica-
tors, but it must be remembered that all statistical information
and uncertainty indicators are always computed for a specific
time tl.

3.3 Uncertainty indicators

Besides the statistical moments and Sobol’ indices, other uncer-
tainty indicators are often used to provide information on addi-
tional characteristics of the effects of uncertainties. Firstly, the
diffusion coefficient α is based on the idea that the variance
grows proportionally to tα and is computed for state variable xi
as (Vasile and Manzi, 2023):

αxi ≈
log

(
P∑

j=1

⟨Ψ2
j ⟩c2xi,j + 1

)

log(t)
(13)

This indicator is used to analyse the relative growth of the vari-
ance throughout different periods in the propagations.

The degree of non-linearity of a particular problem can be
analysed with the non-linearity index Sp+1. It is computed only
using the PCE coefficients, by summing them for each poly-
nomial order and estimating this sum for one polynomial order

higher with a logarithmic regression (Fodde et al., 2022):

Sl =
∑

|κ|=l

cκ (14)

logSl ≈ logA+Bl → Sp+1 (15)

where |κ| = l indicates the subset of the PCE coefficients that
belong to a multivariate polynomial term of order l. The idea
behind this concept is that, the larger Sp+1, the more important
this term and the higher the non-linearity of the problem.

Finally, a more practical approach, from a mission operations
point of view, is developed in this work. This approach con-
structs PCEs of the Kepler elements (semi-major axis a, eccen-
tricity e, inclination i, argument of periapsis ω, right ascension
of the ascending node Ω and true anomaly θ), which only re-
quires a transformation from the Cartesian elements to them
before computing the PCE coefficients. The idea is to trans-
form the variation in each individual Kepler element into a dis-
tance d, in m. This distance is computed between indicative or-
bits corresponding to the distribution of the states of interest.
These indicative orbits are the expected orbit and the orbit at
one standard deviation from the expected orbit. The expecta-
tion E and standard deviation σ are obtained from the PCE with
Equation 10 and 11 for each Kepler element (Ea and σa for the
semi-major axis, etc.). The distance is computed for each Ke-
pler element individually (da for semi-major axis, de for eccen-
tricity, etc.). This requires the decoupling of the effects on each
element and thus some assumptions to be made. For the distance
da it is assumed that the orbit is circular, which is representative
for typical missions, because then da is equal to the standard de-
viation of a. The distance de is maximum and equal at periapsis
and apoapsis and thus conservatively computed there. This also
assumes that the semi-major axis remains its expected value, be-
cause it simplifies the equation and still allows for analysing the
individual effects. For the computation of di it is also assumed
that the orbit is circular and that the semi-major axis remains its
expected value for the same reasons. The distances follow from:

da = σa (16)

de = Eaσe (17)

di = 2Ea sin
σi

2
(18)

where the latter equation can also be used for ω, Ω and θ. These
equations thus decouple the dispersion per Kepler element and
are therefore indicative of the relative effects on each orbital
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Table 1. NIPC setting options within ChaosPy

Setting Options

Computation method PSP, PCQ PCR

Polynomial type Hermite, Laguerre, Jacobi, Legendre, ...
Polynomial order 1, 2, ...

Extra option Normal polynomials
Cross-truncated polynomials

Quadrature order 1, 2, ...

Quadrature rule

Clenshaw-Curtis
Gaussian

...
(16 options)

Sampling sequence

Sobol
Hammersley

...
(11 options)

Sample size ⩾ P + 1

Extra option Smolyak sparse grid Antithetic

characteristic. Because of the assumptions made for this decou-
pling, these distances only provide a first-order indication of the
magnitude of the dispersion in each element. They thus only al-
low for comparing the relative effects on the Kepler elements
qualitatively to isolate the ones that are affected the most. This
gives insight into the type of maneuvers that could be required
to steer the CubeSat back into its planned orbit.

It has been realised that some of the Kepler elements, ω, Ω
and θ are defined within a limited range of values from 0◦ to
360◦. This is problematic for the construction of the PCE, if
values near these boundaries are encountered. A part of the un-
certain domain then takes on values near 0◦ and a neighbouring
part takes on values near 360◦, causing a discontinuity to arise.
Such discontinuities are filtered, by shifting values of one part
of the uncertain domain by 360◦, so that the discontinuity is
removed and the PCE can be constructed.

3.4 ChaosPy

The implementation of NIPC was enabled by ChaosPy, an
open source Python software toolbox (Feinberg and Langtan-
gen, 2015). The availability of a user guide and API2 made the
implementation straightforward. ChaosPy has been extensively
verified and validated with two other software toolboxes that in-
corporate NIPC: The Dakota Project and the Opus Open Turns
library. An overview of all the possible setting options within
the NIPC framework in ChaosPy is presented in Table 1.

The methodology described so far, including the dynamical
model and the NIPC framework, and the inputs and chosen set-
tings of the models which are subject of the next section, are
summarised in the flowchart in Figure 2.

2 https://chaospy.readthedocs.io/

4 Case study
The NIPC framework presented in section 3 can be applied to
any uncertain problem. Here, it is applied to the dynamics of
a CubeSat orbiting an asteroid, as generally described in sec-
tion 2. The detailed inputs that define the case study of this work
are presented and elaborated upon in this section.

4.1 Asteroid 2000 ET70

Near-Earth asteroid (162421) 2000 ET70, in the following re-
ferred the as ’the asteroid’, is selected for this work. This Aten
asteroid with an absolute magnitude of 18.37 was discovered
in 2000 and orbits the Sun at a = 0.947 AU with e = 0.124

and i = 22.3◦, making it go slightly beyond Earth’s orbit (JPL,
2022). Relevant physical characteristics of the asteroid are pre-
sented in Table 2 (Naidu et al., 2013). Its shape, shown in Fig-
ure 3, reveals large ridges and concavities. The asteroid was se-
lected mainly for of its size and rotation period, which are repre-
sentative of a large group of asteroids (Scheeres, 2012) and the
availability of a shape model from Earth-based radar observa-
tions (Naidu et al., 2013). The asteroid has not been previously
visited by a spacecraft.

The normalised SH coefficients required to model the gravita-
tional potential of the asteroid, according to Equation 2, were re-
trieved from the constant density shape model using the Global
Spherical Harmonic (GSH) package which uses the model de-
scribed by Root (2021). The main reason for using this pack-
age is its readily availability and its ability to simultaneously
compute SH coefficients of any degree and order numerically.
Another option would have been to compute them according
to the method described by Balmino (1994). Although these
yield straightforward equations for the degree 2 and 4 SH co-
sine coefficients of even orders for an ellipsoid as a function of
its semi-axes, this computation becomes burdensome for other
coefficients and more complicated shape models. SH cosine co-
efficients of uneven degree and/or order and sine coefficients are
sought, though, because they may contribute significantly to the
revelation of the effects of uncertainties in the rotational state
parameters, especially over long propagation times. Nonethe-
less, high accuracy in these SH coefficients is not required, as
they are highly uncertain, due to the unknown heterogeneous in-
terior density distribution. As such, the GSH package provides
the most efficient tool to obtain a set of nominal SH coefficients.
The SH coefficients are obtained with the asteroid’s mean ref-
erence radius, R = 1131.6 m, and a constant density of 2000
kgm−3 (Naidu et al., 2013) and are listed in Appendix A. For
verification purposes, C̄20 and C̄22 were compared to those ob-
tained from the ellipsoid’s semi-axes with the analytical equa-
tions from Balmino (1994). These differ by 8% and 20%, re-
spectively, which indicates that the orders of magnitude are the
same and that these values are therefore good representatives
for the asteroid.

A 6-Unit CubeSat of 8 kg is employed to orbit the asteroid,
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Fig. 2. Flowchart of the methodology of this work

Table 2. Asteroid 2000 ET70 characteristics (Naidu et al., 2013)

Quantity Value

Size 2.61 x 2.22 x 2.04 km
R 1131.6 m
µ 810.05 m3s−2

β, λ −50◦, 80◦

Tast 8.96 hr
SH Coefficients Appendix A

Fig. 3. Asteroid 2000 ET70’s shape model containing 4000
vertices and 7996 faces (Naidu et al., 2013) (scale 1:68000)

similar to the Milani and Juventas CubeSats of the HERA mis-
sion that will visit the Didymos system (Topputo et al., 2021).
It is given an SRP reference area of 0.2 m2 and SRP coefficient
CR = 1.1, representative of present day spacecraft designs (Pe-
ter et al., 2020).

4.2 Uncertainties

In this work, the uncertainties in the asteroid’s rotational param-
eters, β, λ and Tast (Equation 2), are studied. Both uncertainties
related to pre-mission scenarios and post early-characterisation
phases are studied. The pre-mission scenario entails that an as-
teroid has not been visited yet, but Earth-based radar observa-
tions are available that constrain the asteroid’s size, shape and

rotation. The post early-characterisation phase has better con-
strained asteroid properties, because of the availability of opti-
cal spacecraft observations of the asteroid. These are still from
relatively far away, though, such that the irregular gravity field
has not been constrained.

Firstly, the effects are studied for three orbits, as presented
in subsection 4.3, over 5, 15 and 30 days. This includes a real-
istic time period (5 days) between real mission trajectory cor-
rections and allows for analysing the long-term and non-linear
effects of these uncertainties (15 and 30 days). This analysis is
performed considering the pre-mission scenario, involving rel-
atively large uncertainties, that follow from Earth-based radar
observations, made during a close flyby to Earth of the asteroid.
These are obtained from Naidu et al. (2013) and are expected to
result in significant non-linearity and dispersion in the trajecto-
ries. Thereby, this analysis gives both insight in the dynamical
effects of rotational state uncertainties and in the functioning of
NIPC in this application.

Secondly, this analysis is put into perspective by an analy-
sis of the same pre-mission uncertainties in β and λ and an
uncertainty of 1% in the asteroid’s mass, or gravitational pa-
rameter. Mass uncertainties have been studied before by Feng
et al. (2022) and Fodde et al. (2022) and can show significant
dispersion and non-linearities. They should therefore allow for
a qualitative comparison. Although the 1% uncertainty does not
correspond to the pre-mission scenario of this asteroid (which
would be > 15%), it is more representative of binary asteroids
which can be more accurately characterised through their mu-
tual orbits (Naidu et al., 2020). In addition, the mass uncertainty
is anticipated to yield significantly larger trajectory dispersions
than the rotational state parameters, thus the smaller value was
also partially chosen to make the effects due to both mass and
rotation distinguishable and to be able to study this case effi-
ciently with a low order polynomial. It must be realised, there-
fore, when interpreting the results, that the mass uncertainty of
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a single asteroid is typically > 15 times larger and that the rel-
ative contribution changes accordingly.

Thirdly, the rotational state parameters are studied with
post early-characterisation uncertainties. These uncertain mag-
nitudes are substantially smaller than their pre-mission coun-
terparts, but their exact values will depend on the specific mis-
sion planning, especially on the orbital distance to the asteroid.
Nonetheless, already at still large orbital distances from the as-
teroid, optical observations can fix the rotational state param-
eters with great accuracy. Estimates for the OSIRIS-REx mis-
sion to Bennu (Lauretta et al., 2019) and the impact mission to
Didymos (Zannoni et al., 2017) show uncertainties in the or-
der of 0.1-0.25◦ for the rotation pole orientation in this phase.
The conservative upper value is used in this work. Similarly,
optical observations can fix the rotation period with greater ac-
curacy than radar observations. Optical observations were used
to fix 2867 Stein’s sidereal rotation period to 0.00002 hr (Lamy
et al., 2008) and that of Bennu and Eros to 0.000002 hr (Lau-
retta et al., 2019; Yeomans et al., 2000). It was decided to use
a conservative rotation period uncertainty of 0.00001 hr in this
work. These uncertainties are studied within a broad grid of ini-
tial states at orbital distances of 2.5 km, 5 km and 10 km, to
study which orbital geometries are more robust against these
uncertainties. This study is performed over 5 days only, be-
cause this scenario comes close to the actual mission operations
where maneuvers will be executed after a similar period. In ad-
dition, this relatively short propagation time allows for the study
for many different initial conditions to still be performed effi-
ciently with a low polynomial order. The smaller uncertainties
are used, because they relate to the values actually present dur-
ing a detailed characterisation phase, which is typically the mis-
sion phase for the considered altitudes (Lauretta et al., 2017).

Finally, the interactions between the rotational state param-
eters and the degree 2 SH coefficients are studied. This could
provide insights into which components of the irregular gravity
field, as indicated by Equation 2, contribute more to the propa-
gation of the rotational state uncertainties to the orbital motion.
This analysis could potentially explain the results of the previ-
ous analyses. Although the asteroid’s shape will be fixed with
much greater accuracy, uncertainties in the SH coefficients still
persist, due to density heterogeneity inside the asteroid. This un-
certainty has not been reduced in the foregoing mission phases,
because the CubeSat is still too far to estimate the SH coeffi-
cients well. As such, SH uncertainties arising from the uncer-
tain interior density distribution are used as values for the post
early-characterisation phase. Only SH coefficients of degree 2
are considered here. These are directly related to the asteroid’s
inertia tensor and can therefore be estimated to constrain the
body’s interior. Degree 1 coefficients are much less uncertain,
because they can also be well estimated from optical observa-
tions over a sufficiently long time. The rotation pole can be iden-
tified from a time sequence of optical observations, while the
center of figure can be computed geometrically for each individ-
ual observation as well. The offsets between the two in various

Table 3. Uncertainty magnitudes (given as half the uniform
range)

Uncertainty Nominal Pre-mission Early-charact.

β, λ −50◦, 80◦ ±10◦ ±0.25◦

Tast 8.96 hr ±0.01 hr ±0.00001 hr
C̄20 Appendix A - ±0.0050
C̄22 Appendix A - ±0.0030

C̄21, S̄21, S̄22 Appendix A - ±0.0015
M 1.214 · 1013 kg - ±1%

directions are direct measures of the degree 1 coefficients, as the
center of mass lies on the rotation pole by definition. Degree 3,
and higher, coefficients are expected to have significantly less
effect on the orbit, because of the

(
R
r

)n term, with R < r, in
Equation 2. The degree 2 SH coefficients uncertainties were ob-
tained from a study on Phobos (Le Maistre et al., 2019), where
many of the nominal SH coefficients are similar to those in this
work. It was assumed, however, that unlike Phobos, the asteroid
has no large crater. Therefore, the heavily fractured and com-
pressed porous interior models are unlikely and thus not con-
sidered here, yielding slightly smaller uncertainty magnitudes.
The uncertainty for S̄22 was not studied by Le Maistre et al.
(2019), because it is nearly zero by definition for Phobos orbit-
ing Mars with synchronous rotation. This is not the case for the
asteroid in this work and the uncertainty S̄22 was therefore set
equal to that of C̄21 and S̄21.

The uncertain parameters in this work are assumed to have
uncorrelated uniform distributions. This is largely because of
the lack of knowledge on more details of the distributions of
these quantities. In addition, using uniform distributions re-
moves the possibility to sample extreme outliers, as the case
for Gaussian distributions, which is anticipated to be disadvan-
tageous for the NIPC performance. It means that ChaosPy au-
tomatically employs Legendre polynomials to achieve the most
optimal convergence rate. The uncertain magnitudes of the stud-
ied parameters are given in Table 3 as half of their uncertainty
range, in a sense similar to the definition of one standard devia-
tion.

4.3 Orbits of interest

The detailed sensitivity analysis requires nominal orbits to be
studied. These should start from initial conditions in different
orbital regimes to allow for distinguishing between the effects
in these regimes. In addition, it is required that these orbits re-
main bounded to the asteroid and close to their original orbit
over a sufficient time span. This both guarantees that the effects
that are observed belong to the orbital regime that the CubeSat
is started out in and represents a realistic scenario in the case
multiple CubeSats are employed to study an asteroid.

Ideally, periodic orbits would be considered, but these do not
exist due to the highly irregular gravitational field and SRP. It
was therefor opted to seek for orbits that are close to periodic,
thus which remain close to their initial orbit parameters, for a
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Table 4. Initial conditions in the asteroid’s body-fixed frame of
initial epoch

Orbit nr a [m] e [-] i [◦] ω [◦] Ω [◦] θ [◦]

1 2678.26 0.126 178.42 57.2 52.0 317
2 5147.11 0.050 92.2 286.9 254.4 130.4
3 11197.54 0.053 86.8 70.2 72.5 294.1

period of 15 up to 30 days. Usually, orbit maneuvers are per-
formed more regularly, so this should allow for sufficient detail
in the analysis considering real mission scenarios.

Three bounded orbits were sought, with semi-major axes of
about 2.5 km, 5 km and 10 km and ideally low eccentricities.
Monte Carlo simulations were performed for a small range of
semi-major axes around each of the three values and with the
full ranges of i and Ω. The position and velocity differences
with respect to the initial state were computed after one full rev-
olution. Regions in the state-space where these differences are
low are closer to periodic. Additional Monte Carlo simulations
were then performed in these regions, including variations in e,
ω and θ. Some orbits with low position and velocity differences
were taken and an attempt was made to improve them via dif-
ferential correction to the initial state. This did not result in sys-
tematically improved orbits, because of the high non-linearity
of the dynamics. Especially when applying the correction for
state deviations after several full orbits, which was also tried
for improved long-term behaviour, this procedure broke down.
Nonetheless, good nominal orbits were found for different or-
bital regimes, with initial conditions given in Table 4 and an
initial epoch of midnight 19 February 2031. They are shown in
Figure 4. Orbit 1 is retrograde equatorial and orbit 2 and 3 are
polar orbits, with Ω values about 180◦ apart. Such orbits are
also beneficial for maximizing the scientific return of the aster-
oid (Fayolle, 2020).

4.4 Dynamical model settings

The rotational state parameters only indirectly affect the accel-
erations experienced by the CubeSat. They affect the gravita-
tional field orientation and its change over time, which in turn
affects the gravitational acceleration (Equation 2). Orbits close
to the asteroid feel more of the irregular gravity field than orbits
farther away. Therefore, these orbits closer by require higher
fidelity models of the asteroids gravity field, by using higher
degree and order SH terms. However, the gravitational accel-
eration for orbits farther away are smaller and these may re-
quire the inclusion of other perturbations, such as third body
point masses, to obtain sufficient accuracy in the orbit compu-
tation. However, because of the indirect effect of the asteroid’s
rotation on the CubeSat’s orbit, it is more important to include
higher degree and order SH coefficients than to include every
single third body perturbation. Similarly, it has been argued in
the foregoing subsections that uncertainties in SH coefficients
can be large. If they are larger than their nominal values, their

(a) Orbit 1 (clockwise travel direction)

(b) Orbit 2 (clockwise travel direction)

(c) Orbit 3 (counter-clockwise travel direction)

Fig. 4. Nominal orbits

nominal values could be set to zero, because the effects of their
uncertainty could then still be captured properly. However, for
the revelation of the effects of rotational state uncertainties, it
is beneficial to use non-zero nominal values. As mentioned in
section 2, it is realised that the current work is a sensitivity anal-
ysis, which means that it is not strictly about absolute accuracy
in single orbit computations, but merely about accuracy in the
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orbit deviations when varying uncertain parameters. A pertur-
bation like SRP is not directly linked to the asteroid’s rotational
state parameters, but its effects may change as orbits deviate
under these uncertainties, for example by varying the eclipse
duration or via other non-linearities. This perturbation is there-
fore considered important. Similarly, a third body perturbation
does not change directly under the asteroids rotational state un-
certainties. However, as an orbit deviates under this uncertainty,
the third body acceleration changes accordingly and may cause
further deviations. Under these considerations and having com-
pared, through step-wise increments in model fidelity, the in-
fluence of several perturbations on the CubeSats position, the
following accelerations settings were selected for the three or-
bits:

- Orbit 1: SH up to degree 5 and order 5 and Cannonball SRP.
- Orbit 2: SH up to degree 2 and order 2 and Cannonball SRP.
- Orbit 3: SH up to degree 2 and order 2, Cannonball SRP and

Sun PM.

The reason for including the Sun PM for orbit 3 is that, at this
orbital altitude, this perturbation yields a 15 m trajectory devi-
ation after one orbit, while it remains below 10 m after 30 days
for orbit 1 and 2. It was anticipated that this could be sufficient
to change the nominal orbit 3 such that the deviations under ro-
tational state uncertainty could very well be different.

The integration settings were selected to yield 10−1 m ac-
curacy after 30 days, as elaborated upon already in section 2,
which is sufficient to allow for distinguishing physically dif-
ferent orbits. The RKDP-8(7) integrator was used, with fixed
step sizes of 3000 seconds and 9000 seconds for orbit 2 and
3, respectively. For orbit 1, however, a variable step size in-
tegrator with absolute and relative tolerance of 10−10 was re-
quired for an accuracy of 10−1 m, because of the occurrence
of eclipses. Similarly, the broad initial state grid analysis was
also performed with this variable step size integrator for the two
larger orbital altitudes, for the same reasons that eclipses occur
for a significant portion of the initial states. All propagations
were performed with the Cowell propagator.

Finally, the states, after being propagated according the EoM
in the inertial frame Fin, are transformed to and analysed in the
asteroid-fixed frame of the initial epoch Fast, which is defined
with the nominal rotational state parameters βnom and λnom as
follows:

Fast = Ry(
π
2
− βnom)Rz(λnom)Fin (19)

As such, the z-axis points along the asteroid’s rotation pole.
Fast is used to give a direct meaning to the scientific obser-
vations that are made based on the orbital geometry, especially
when states are also transformed to Kepler elements, and to
avoid kinematic rotation effects. The latter would be introduced
when the the frame co-rotates with the asteroid and if the trans-
formations were done with off-nominal values for β and γ.

5 NIPC performance
The NIPC options available in ChaosPy were tested extensively
for various uncertainties applied to the different orbits and prop-
agation times. This section will elaborate on this study by pre-
senting the measures that define the NIPC performance, the con-
clusions drawn from this study and the settings chosen for the
detailed sensitivity analyses performed.

5.1 Measures of performance

The accuracy of a polynomial approximation is analysed us-
ing two measures, ζRMSE and ζmax, inspired by Fodde et
al. (2021). Both measures are computed for an ensemble of
N = 500 Sobol samples, by comparing their true final posi-
tions following from a MC simulation, rl,MC , with their NIPC
position approximations, rl,NIPC . The measures were slightly
adjusted from the original work, because it used dimensionless
state variables, which is not the case in this work. This means
that taking the norm of the measures over all state variables is
not appropriate. Here, only the position variables are consid-
ered. This is a valid approach as well, because throughout a tra-
jectory, the velocity directly affects the position thereafter, and
vice versa. Thus, if the velocity has been effected with large dis-
persion or with high non-linearity, this has also been propagated
to the position coordinates. Thus, the performance in position
should also be a good indicator of the performance in velocity.

RMSE =

√√√√ 1

N

N∑

l=1

∥rl,NIPC − rl,MC∥2 (20)

ϵmax = max
1⩽l⩽N

(
∥rl,NIPC − rl,MC∥2

)
(21)

dmean =
1

N

N∑

l=1

∥rl,MC − 1

N

N∑

k=1

rk,MC∥ (22)

ζRMSE =
RMSE

dmean
, ζmax =

ϵmax

dmean
(23)

Firstly, the Root-Mean-Squared Error (RMSE) is used as a mea-
sure for the overall performance, as given by Equation 20. Sec-
ondly, the maximum error ϵmax within this ensemble of 500
samples is used as a measure for the largest outlier, i.e. the sam-
ple that is approximated worst, as given by Equation 21. The
performance measures, ζRMSE and ζmax, are then given as a
fraction of the mean distance dmean of the 500 MC samples to
the mean position of this ensemble, as given by Equation 22.
The use of these fractions is motivated by the fact that the ac-
curacy of the NIPC approximation of individual samples may
be lower if the spread in the MC ensemble is large, because this
will have less influence on the final statistical quantities of the
ensemble. If the spread in the MC ensemble is small, the NIPC
approximation of individual samples needs to be more accu-
rate to obtain sufficiently accurate statistical information for the
ensemble. Here, the idea is that this required accuracy can be
determined relative to the spread in the MC ensemble.
NIPC will also be applied to different element sets, such as the
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Kepler elements. Again, the Cartesian position elements can be
used to verify the performance, because of the direct transfor-
mation that exists between the element sets.

5.2 Conclusions on settings

The performance of NIPC was studied for the three orbits and
three propagation times with different numbers of uncertainties
and corresponding magnitudes with a wide variety of setting
combinations from the ones listed in Table 1.

This process was started with testing the performance of the
different methods for computing the PCE coefficients for simple
cases. A simple case is in this regard one with low non-linearity
and dispersion. Subsequently, the non-linearity and dispersion
was increased, by increasing the propagation time and decreas-
ing the orbital altitude, which complicates the PCE construc-
tion. Simultaneously, the variety of settings that was tested was
incremented, first by testing different sampling/quadrature rules
and subsequently applying Smolyak sparse grids and normal
and cross-truncated polynomials. For many PCEs, the NIPC
approximation ensembles were visually compared to the true
MC ensembles. This gave insight in the values for ζRMSE and
ζmax that are required for sufficiently accurate approximations.
In general, the NIPC performance is heavily dependent on the
orbit and propagation time considered and iterations over vari-
ous settings were often required for individual cases in order to
find good settings. Nonetheless, some general guidelines were
found as well. The most important conclusions, which more or
less hold in general, that were drawn from this study and were
used as guidelines for determining the detailed sensitivity anal-
ysis settings are listed:

- ζRMSE ⩽ 0.01 and ζmax ⩽ 0.1 result in quantitatively ac-
curate NIPC approximations and statistical information.

- PCQ converges for fewer samples than PSP. Where PSP con-
verges to smaller ζRMSE , PCQ converges to smaller ζmax,
but differences are minimal.

- The choice of quadrature rule can improve performance by a
factor two in ζRMSE and even more in ζmax.

- PCR can outperform PCQ for five or more uncertain param-
eters

The better performance for certain quadrature rules, such as the
Gaussian quadrature rule, could be explained by the fact that
its nodes are located at the the zeros of polynomials that are
orthogonal to a PDF weighting function. Thereby it minimises
the error (Eldred, 2009).

In addition, it was observed that the computation time re-
quired to compute the PCE coefficients scales exponentially
with the polynomial order. It was encountered for a case with 8
uncertainties and a 7th order polynomial that this computation
took almost two hours, without considering the time for prop-
agations. This is unworkable when multiple of such analyses
have to be performed in order to tune the settings and guarantee
accuracy.

Table 5. NIPC settings used

ξ Method p Sample rule N

β, λ, Tast

Pre-mission

β, λ, M (1%)
Pre-mission

PCQ 5 Gaussian 125 (q=4)

β, λ, Tast

Early-char.
PCQ 3 Gaussian 27 (q=2)

β, λ, Tast,
C̄2m, S̄2m

Early-char.
PCR 3 Hammersley 495 (3(P+1))

5.3 Settings used

Based on the analyses performed and the conclusions drawn,
settings were chosen for the cases that are studied in this work.
Table 5 provides the final choice of NIPC settings used for the
analyses that are performed and presented in section 6. Subse-
quently, Figure 5 presents the corresponding NIPC performance
when these settings are used for the case with pre-mission un-
certainties for β, λ and Tast. The performance for orbit 1 prop-
agated for 30 days does not reach the recommended accuracy.
Still these settings were used, because the increase in polyno-
mial order, and thus the required number of quadrature nodes,
was considered too large to reach the recommended accuracy.
Nonetheless, as shown by a comparison to cases with sufficient
accuracy in Figure 6, the NIPC approximation still matches the
qualitative behaviour of the MC ensemble quite well and thus
qualitative conclusions can still be drawn from this analysis.
The NIPC performance for the analysis including mass uncer-
tainties and the cases with early-characterisation uncertainties
all have ζRMSE < 0.007 and ζmax < 0.04 for propaga-
tion times of 5 days. Only one special case that was investi-
gated, which includes uncertainties in the degree 2 SH coeffi-
cients and undergoes large dispersions, has ζRMSE = 0.02 and
ζmax = 0.2. Although larger than advised, they are sufficient
to obtain qualitatively accurate Sobol’ indices for this analysis
as well.

6 Results and discussion
In this section the results of the detailed sensitivity analyses,
performed with the settings given in the previous section, are
presented and discussed, as summarised in Figure 2. First, sub-
section 6.1 elaborates on the analysis of pre-mission uncertain-
ties in β, λ and Tast. It provides a comparison of their effects
on the different orbits, as well as the relative contribution by
each parameter. Subsection 6.2 explains some of the remark-
able results of the foregoing analysis. Subsequently, subsec-
tion 6.3 puts that analysis into perspective by comparing the
contribution of uncertainty in β and λ to that in the asteroid’s
mass. Then, subsection 6.4 presents a broader analysis of ini-
tial states to study which orbital geometries are more robust
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Fig. 5. NIPC performance for: PCQ, p = 5, Gaussian quadrature, q = 4 and pre-mission uncertainties for β, λ and Tast

(a) Orbit 1 after 30 days (b) Orbit 1 after 15 days (c) Orbit 2 after 30 days

Fig. 6. Final position of 500 MC samples and their NIPC approximations (corresponding to Figure 5)

against rotational state uncertainties. This is done with early-
characterisation uncertainties, because these are more represen-
tative of the actual mission phase at these altitudes. Finally, sub-
section 6.5 presents a brief analysis of the interaction between
rotational state parameters and irregular gravity field compo-
nents, in an effort to explain the results of subsection 6.4.

6.1 Sensitivity to rotational state uncertainties

The maximum uncertainty indicator among the Cartesian state
elements is shown in Figure 7, subject to pre-mission uncer-
tainties in β, λ and Tast. σ2 and Sp+1 (Equation 14) increase
systematically with propagation time and decrease with orbital
altitude. Longer exposure to the uncertainties makes the disper-
sion build up, adding to the dispersion from the earlier phase.
Similarly, as larger regions of the state-space are encountered,
more non-linear effects in the dynamics emerge. α shows the
same pattern for orbit 2 and 3, meaning that, relative to the time
period considered, the variance grows more rapidly as propaga-
tion time increases. On the contrary, α reduces from 15 to 30
days for orbit 1. Looking at Figure 6a and 6b, though, it is ob-
served that the range of attained x values is similar, while the
spread of the MC ensemble does grow. This is because the en-
semble stretches around the asteroid. Thus, while σ2

x remains
nearly equal, α reduces. It is therefore not possible from these

results to determine whether there is also a relatively larger in-
crease in the dispersion in the final half of the propagation time.
This is partially a result of the dispersion being mainly in an an-
gular direction, rather than in the radial direction. Similarly, it is
observed that the dispersion in the z-coordinate is similar for the
two propagation times. Thus, it does not increase further in the
latter half. However, where in the x-coordinate this is observed
because the maximum range of values was already attained, in
the z-coordinate the dispersion indeed stagnates. As such, to
fully study the dispersion over multiple propagation times, there
is a need to analyse the indicators for all state variables or de-
fine an indicator that takes into account all state variables, rather
than taking the maximum indicator. On the other hand, this mo-
tivates the change to Kepler elements. Analysing any one of
them separately could give meaningful insight in a particular
aspect of the orbital geometry, while this is not the case for the
Cartesian elements.

Before analysing Kepler elements, the relative contributions
of β, λ and Tast on the dispersion of the orbits are analysed.
Figure 8 shows the total order Sobol’ indices for the Cartesian
element with maximum variance for each of the three orbits af-
ter 5 and 30 days. The total order Sobol’ index is defined sim-
ilar to Equation 12, but then by summing the contributions of
all PCE terms containing the parameter of interest, thus of all
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Fig. 7. Maximum value of uncertainty indicators among all Cartesian state variables (β, λ and Tast with pre-mission uncertainties)

Fig. 8. Total order Sobol’ indices for the Cartesian element
with maximum variance

orders. It is observed that β and λ contribute significantly more
than Tast to the orbit dispersion for all three orbits after 5 days.
Similar indices are found for orbit 1 after 30 days as after 5
days, while for orbit 2 and 3 the index of Tast has increased by
several orders of magnitude. It is logical that the contribution
of Tast increases with time, because a change in this parameter
requires time to build up a difference in the asteroid’s orien-
tation. Where a change in β and λ cause an difference in the
asteroid’s orientation at t0, Tast does not. It is not clear whether
this increase is not observed for orbit 1 because it lies closer to
the asteroid or because it is retrograde equatorial, or because of
both.

Figure 9 shows the distances da, de and di as defined in sub-
section 3.3. It is noteworthy that di shows a large increase for
orbit 1 compared to orbit 2 and 3. This is because orbit 1, be-
ing nearly retrograde equatorial, lies within the equatorial plane
with the largest gravitational bulges (C̄20 and C̄22) (Figure 4a).
Changes in the rotation pole orientation cause these planes to
rotate apart. However, the equatorial gravitational bulges pull
them together again, thereby changing the inclination, as shown
in Figure 11. Depending on the change of the rotation pole, the
inclination departs from 180◦, but also approaches it again be-
tween 20 and 25 days for all samples. The time history shows
that the dispersion in i is heavily dependent on the time chosen.

As orbit 2 and 3 lie perpendicular to the equatorial plane, they
do not experience this effect as much.

For da and de it is noteworthy that their values after 30 days
are larger for orbit 2 than for orbit 1. The time histories of ∆a =

a− anom and ∆e = e− enom, with anom and enom being the
semi-major axis and eccentricity of the orbit with the nominal
rotation parameters, respectively, of 500 samples are shown in
Figure 12. They show that for orbit 1 large deviations emerge
already from the early phase of the orbit, while for orbit 2 these
increase over time, especially in the latter 15 days. In addition,
although the magnitude of ∆e after 30 days of orbit 2 is similar
to that of orbit 1, the larger value of the semi-major axis causes
a larger distance de (Equation 17).
da, de and di were expected to generally increase with prop-

agation time. This is not observed for di of orbit 1, which is in
line with the limited dispersion of the z-coordinate (Figure 6)
and the time history of i (Figure 11). It is, again, a result of
the orbital plane nearly coinciding with the asteroid’s equatorial
plane, containing the largest gravitational bulges. The same is
observed in the similar magnitudes for the corresponding non-
linearity index shown in Figure 10. On the contrary, clear in-
creases in Sp+1 are observed for a and e with increasing prop-
agation time and decreasing orbital altitude.

It is concluded that, in general, dispersion and non-linearity
increase with propagation time and decrease with orbital alti-
tude. However, for specific orbital elements, such as the inclina-
tion of equatorial orbits, the effects of rotational state uncertain-
ties can be more unpredictable and can depart from this trend.
Also the orbital geometry affects the degree of dispersion and
non-linearity.

6.2 Singularities in the Kepler elements

Figure 13 shows the distances dω , dΩ and dθ . It is observed
that the contributions in the state dispersion is larger for these
elements, than in a, e and i. This is in line with the foregoing
results in the Cartesian elements, which showed mostly angular
variations and little radial variations. Here, the decrease with or-
bital altitude is more obvious than the increase with propagation
time. The same patterns were obtained for the non-linearity in-
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Fig. 9. Distance between the expected orbit and the orbit at 1σ (β, λ and Tast with pre-mission uncertainties)

Fig. 10. Non-linearity indices for semi-major axis, eccentricity and inclination (β, λ and Tast with pre-mission uncertainties)

Fig. 11. Time history of inclination of 500 samples for orbit 1
(corresponding to Figure 9 and 10)

Fig. 12. Time history of ∆a and ∆e of 500 samples (corre-
sponding to Figure 9 and 10)

dex as for the distance d of these elements. Two aspects of these
patterns stand out.

Firstly, ω and Ω have nearly equal distances for all propaga-
tion times for orbit 1. As shown in Figure 14, both quantities en-
counter a discontinuity, in the following referred to as the ’torn
discontinuity’, because the response looks like a plane with a
tear in it. These are impossible to filter, because both quanti-
ties attain values in the full range from 0◦ to 360◦. It is re-
markable that this torn discontinuity arises where i approaches
180◦. The time histories of ω and Ω of some samples close to
the torn discontinuity were studied and show jumps from 0◦ to
360◦, or vice versa. Other samples do not, or at different times.
Some samples make such jumps just before a certain time, oth-
ers make it just after. This results in the torn discontinuity that
is observed. Moreover, it means that the location of the torn dis-
continuity in the uncertain domain is not fixed, but changes with
time. Although these jumps do not strictly occur when the in-
clination is very close to 180◦, large changes in ω and Ω are
always observed when this is the case. It is therefore the rea-
son that the jumps are encountered eventually. Thus, the torn
discontinuity arises, because the orbit is retrograde equatorial,
thereby approaching the singularity in Ω and yielding large vari-
ation in ω and Ω.

To avoid the torn discontinuities in ω and Ω one can use other
elements sets. The Cartesian elements studied before can be
used, but to reveal information about how the orbital geome-
try changes one must transform them to Kepler elements after
constructing the PCE. The disadvantage here is that none of the
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Fig. 13. Distance between expected orbit and 1σ orbit (β, λ and Tast with pre-mission uncertainties)

Fig. 14. Discontinuities in the MC ensemble of ω and Ω for i approaching 180◦, causing a bad NIPC approximation, for orbit 1
propagated for 15 days (β, λ and Tast with pre-mission uncertainties) (dependence on Tast left out for visualisation purposes)

statistical information contained in the PCE can be used any-
more. Another possibility is to use Mean Equinoctial Elements
(MEE). This set combines multiple Kepler elements in each el-
ement, and one of two variants can be used, depending on the
inclination value, to avoid singularities. This comes at the cost
of a reduction in the ease of interpreting the individual elements.
Figure 15 shows the response surfaces of f = e cos (ω − Ω),
k = cot ( i

2
) sin (Ω) and true longitude L = −Ω + ω + θ,

revealing that no discontinuities are present.
Secondly, ω and θ have large distances for orbit 2 propagated

for 15 days, compared to 30 days (Figure 13). As shown in Fig-
ure 16, this larger variation is due to a non-linearity encountered
near an edge of the uncertain domain, corresponding to very
small e. Here, approaching the singularity of a circular orbit,
for which ω is undefined, causes it to show large variations. Al-
though there is no discontinuity in this case, it could be that one
is present just outside the studied domain. As the eccentricity
increases in the latter 15 days, there is less variation in ω there.

It is noted that this does not mean that the actual size of the
MC ensemble, in Cartesian space, is larger for 15 days than for
30 days. There are strong, mostly negative, correlations between
ω, Ω and θ. As such, a variation in one of the elements, is ac-
companied by a variation in the others, which could (partially)
cancel the corresponding change in position.

The NIPC performance in ω, Ω and θ is thus highly suscepti-
ble to the singularities in the definition of the Kepler elements. It

must be realised that these effects would also appear when other
non-linear uncertainty propagation methods are used. That is,
they originate from the element set definition, rather than from
the non-linear dynamics or the NIPC method. Since equatorial
and circular orbits form a major group of the orbits that are of
scientific interest, there is a limited use of ω, Ω and θ in non-
linear uncertainty propagation. Even if non-equatorial and non-
circular orbits are studied, it is not guaranteed that they will not
approach such cases under uncertainty during longer time peri-
ods, due to the highly non-linear dynamics.

6.3 Comparison to mass uncertainty

The effects of uncertainties in the rotational state parameters
were compared to the effects of mass uncertainties, which was
researched by Feng et al. (2022) and Fodde et al. (2022) and
shows various degrees of dispersion and non-linearity for differ-
ent initial conditions. To this end, the first order Sobol’ indices
s1 (similar to Equation 12) were studied of an analysis includ-
ing a 1% uncertainty in the asteroid’s mass M and pre-mission
uncertainties for β and λ. Tast was left out, as it was found at
the end of subsection 6.1 to have significantly less effect on the
orbit dispersion. The Sobol’ indices are shown for the Cartesian
element with maximum variance, a, e, i and Ω (orbit 2 and 3
only, which do not experience the torn discontinuity) for a prop-
agation time of 5 days in Figure 17. Some aspects are observed
from the Sobol’ indices, as discussed next.
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Fig. 15. NIPC for Mean Equinoctial Elements, orbit 1 propagated for 15 days

(a) After 15 days (b) After 30 days

Fig. 16. ω and e values for orbit 2 (corresponding to Figure 13) (Note that, in addition to β and λ, also Tast is uncertain here, but
is left out for visualisation purposes)

First and foremost, M has clearly the largest contribution on
the Cartesian element for all orbits, with a difference of almost
two orders of magnitude compared to β and λ. Thus, in general,
mass uncertainty affects the orbital motion much more than ro-
tational state uncertainty.

Secondly, for orbit 3 the M index is clearly the largest for
the Kepler elements. The other indices are at least 2 orders of
magnitude smaller for a, and 3 orders of magnitude smaller for
the other elements. For the orbits closer to the asteroid, the β
and λ indices become larger. Still, it is only for e, i and Ω that
the β and λ indices take on values of the same or a higher or-
der of magnitude as the first order M index. This shows that for
low orbital altitudes it is more important to consider the effect
of rotational state uncertainties than for higher orbital altitudes.
Moreover, depending on which orbital elements need to be anal-
ysed, they may be equally, or even more, important as the 1%

mass uncertainty.
Thirdly, the M index is low for i (and to some extent e) of

orbit 1, while the first order β and λ indices are large. This is
not observed for orbit 2 and 3, and is, the same as observed
before for the inclination in Figure 9, because orbit 1 is nearly
retrograde equatorial.

Fourthly, Ω has large first order β and λ indices for orbit 2.
On the contrary, this is not the case for orbit 3, where the first
order M index is largest by far. This shows that dependence of

the location of the ascending node on the asteroid’s rotational
state reduces significantly with orbital altitude for polar orbits.

The Sobol’ indices for the elements not shown in Figure 17
were studied for orbit 2 and 3 as well (for orbit 1 the torn dis-
continuities arose). ω shows relative behaviour very similar to
e. As these orbits approach the circular orbit case in part of the
uncertain domain ω is affected accordingly, as described previ-
ously. θ, though, has a first order M index that is an order of
magnitude larger than the others. This is the same as observed
in a and is because of their strong correlation: as a increases,
the orbital period increases and θ will start to lag behind.

Other than these points, there do not seem to be clearly sys-
tematic relations between the indices. This shows that these
results may very well differ if analysed over different time
spans. Considering that the mass uncertainty of 1% is low for a
pre-mission scenario, although not necessarily for binary aster-
oids, it can be concluded that the relative contribution of rota-
tional state uncertainties is comparatively low in general for pre-
mission uncertainties. Yet, significant contributions may occur
in particular cases, such as i for equatorial orbits and Ω for suf-
ficiently low polar orbits. When significant, the rotational state
uncertainties have their dominant effect mostly in i and Ω and to
some extent in e, while the mass uncertainty has a major effect
on a and θ. Also the second order Sobol’ indices were studied.
In general, these are smaller than the first order indices. In some
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Fig. 17. First order Sobol’ indices for 5 days propagation times, the Cartesian position element with the largest variance is shown (β
and λwith pre-mission uncertainties,M with 1% uncertainty; Ω of orbit 1 is not shown because it encountered the torn discontinuity)

cases, though, they become equal to a first order index, but in
none of the cases were they the largest contributor.

6.4 Sensitivity for different initial orbits

The knowledge gained from the results of the previous subsec-
tions was used within a broader analysis with different orbital
geometries. A grid analysis in terms of i0 and Ω0 was conducted
for the three semi-major axes. The rotational state parameters
were given their post early-characterisation uncertainties, be-
cause these are the actual ones when the spacecraft is going to
orbit at these altitudes. In this analysis, e0 = 0.001, ω0 = 0.001

rad and θ0 = 0 rad, so that the initial state is always nearly the
ascending node of a nearly circular orbit. The lowest considered
inclination is also 0.001 rad. It was found by Feng et al. (2019a)
that having an initial state closer to the asteroid’s polar region
increases the trajectory’s dispersion, thus the following results
are likely only lower bounds for the dispersion of these orbits.

The analysis was conducted only for 5 days, because it re-
sults in substantial differences between the studied cases, while
keeping the computation cost low. The corresponding maxi-
mum variance among the Cartesian position elements is pre-
sented in Figure 18a for an initial semi-major axis of 2500 m.
It should be noted that for some cases these values correspond
to standard deviations in the order of km and thus reaches the
maximum range that such coordinate attains, as also encoun-
tered for x in Figure 6a and 6b. This is against the initial expec-
tations based on the small uncertainties and short propagation
times and it was found that some of the corresponding PCEs are
not accurate. Nonetheless, these results can be used, because
they were verified to be accurate for all the cases that are less
sensitive to the uncertainties. This only limits the relative com-
parison of the most sensitive regions.

It is clear from Figure 18a that the state space contains two
semi-elliptical contours that are much less robust against rota-
tional state uncertainties. These two semi-ellipses seem to be
nearly symmetrical about the Ω = 180◦ line, and each semi-
ellipse seems to be symmetrical about its center line (Ω = 90◦

or Ω = 270◦). The occurrence of these semi-ellipses is there-
fore thought to be a result of the interaction of the rotational
state parameters with one of the largest terms of the SH grav-
ity field, C̄22. Uncertainties in this term were also found to be
more influential than those in C̄20, which is similarly large, by
Feng et al. (2021). Deviations from exact symmetry could then
be caused by the other, smaller, SH terms. However, if indeed
the C̄22 term were the cause, the opposite results should have
been expected. Evaluating the derivatives of the accelerations
(i.e. the second derivatives of the potential U ) caused by C̄22

with respect to the body-fixed longitude and latitude (which
change under the rotational state uncertainties), shows that the
acceleration changes most with changes in the rotational state at
longitudes (and thus Ω0 values) of 0◦ and 180◦. Thus, the most
dispersion should be expected for these initial states, which is
clearly against the results of Figure 18a. The same grid analy-
sis was therefore performed for a duration of only 1 hour, dur-
ing which the CubeSat fulfills less than a quarter of an orbit,
thereby isolating the effect of the initial position. As shown in
Figure 20, these results are more in line with the theoretical pre-
diction just described, thereby verifying the results. It is there-
fore concluded that the large dispersions over 5 days are not
necessarily a direct result of the initial states of the orbits, but
also of which states they go through at later times. Moreover,
as shown in Figure 19 by the time history of the orbital radius
and magnitude of the gravitational acceleration of 500 MC sam-
ples for each of the four numbered cases in Figure 18a, large
dispersions seem to be initialised at different times throughout
the 5 day period, rather than only immediately at t0. This also
explains the fairly erratic behaviour of the variance and indi-
cates that it might be the high non-linearity of the dynamics that
cause such effects. Moreover, it can be difficult to find their root
causes. As an example, consider the occurrence of eclipses. It
could be that for certain initial states, a change in the rotational
state parameters results in an eclipse that occurs after 2 days
starting slightly later, taking slightly longer or just not happen-
ing at all. This can significantly affect the trajectory as SRP is
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(a) Maximum variance of Cartesian position for a0 = 2500 m (b) Maximum variance of Cartesian position for a0 = 5000 m

(c) Variation in semi-major axis for a0 = 2500 m (d) Variation in inclination for a0 = 2500 m

Fig. 18. Variation in trajectory dispersion after 5 days for different initial orbital geometries due to rotational state uncertainty (β,
λ and Tast with post early-characterisation uncertainties)

Fig. 19. Difference in orbital radius and gravitational acceleration dispersion for different initial i and Ω values (legend numbers
correspond to Figure 18a)
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Fig. 20. Variation in trajectory dispersion after 1 hour for
different orbital geometries (β, λ and Tast with post early-
characterisation uncertainties)

a large perturbation. A trajectory that initially undergoes larger
dispersion due to the rotational state uncertainties, but does not
undergo any eclipses within this uncertainty, might turn out to
be more stable over the longer duration.

Retrograde orbits do not show these unstable regions, be-
cause their velocity relative to the asteroid is much bigger.
Therefore, they are only exposed to large changes in the accel-
erations for shorter amounts of time, resulting in less dispersion
in the trajectories overall. Similar to this result, retrograde orbits
were found to be more robust against uncertainties in the irreg-
ular gravity field by Feng et al. (2019a and 2021). Retrograde
orbits were also found most suitable for geodetic parameter es-
timation under uncertainty by Fayolle (2020). Thus, retrograde
orbits are both easier and cheaper to maintain and they max-
imise the mission’s scientific return under all these uncertain-
ties. On the other hand, Feng et al. (2022) showed that polar
orbits, and specifically the Solar Terminator Orbits, are more
robust against mass and SRP uncertainties than equatorial and
inclined orbits. This is not observed for rotational state uncer-
tainties and it shows that different types of uncertainties can
affect distinct orbital geometries in different ways.

Figure 18b shows, for a semi-major axis of 5000 m, that the
results can differ a lot, likely due to the high non-linearity of
the dynamics. Some of the sensitive Ω0 regions have shifted
and fade away for inclinations approaching 90◦. In addition, it
shows less erratic behaviour, which is a result of the lower de-
gree of non-linearity at this larger semi-major axis. Also the
relatively stronger perturbation of SRP can be causing these
differences, as it was found to have significant more effect on
all orbital plane orientations at higher altitudes by Feng et al.
(2021).

Figure 18c and 18d show the distances between the expected
orbit and the orbit at one standard deviation for the semi-major
axis and inclination (da and di). Whereas both show similar pat-
terns as Figure 18a, three clear differences are observed. Firstly,
the maximum value of da is an order of magnitude larger than
that of di. Thus, the dispersion under rotational state uncertainty
occurs more in the semi-major axis than in the inclination. Sec-

ondly, the inclination is least sensitive for polar orbits, which
is in line with the observations made in subsection 6.1 and 6.3,
where i showed more dispersion due to rotational state uncer-
tainty for orbit 1 than for orbit 2 and 3. Thirdly, di shows sig-
nificant differences between the regions inside and outside the
semi-elliptical regions, which are not observed in da and the
maximum Cartesian variance. This indicates that regions that
may not seem better in general, can be beneficial for maintain-
ing a specific orbital element.

Similar plots were studied for e, ω, Ω and θ. Although the
same patterns were found, which suggests that the torn disconti-
nuities were not encountered for at least the least sensitive cases,
one aspect stood out. The stable regions, e.g. retrograde orbits,
show smaller distances for a and e than for the angular Kepler
elements. Stable orbits are thus most stable in a and e.

Finally, the analysis for a 10 km semi-major axis resulted in
errors less than 1 m. The rotational state uncertainties can there-
fore be ignored at this and higher orbital altitudes.

6.5 Interaction between rotation and the irregular
gravity field

The second order Sobol’ indices (Equation 12) from an uncer-
tainty propagation including degree 2 SH coefficient uncertain-
ties with post early-characterisation magnitudes, as well as the
post early-characterisation rotational state uncertainties, were
studied in another attempt to uncover the cause(s) of the semi-
elliptical regions in Figure 18a. This analysis was performed for
two initial states highlighted in Figure 18a: case 1 with low dis-
persion (i0 = 179◦, Ω0 = 52◦) and case 3 with large dispersion
(i0 = 43◦, Ω0 = 144◦). To obtain an accurate NIPC approx-
imation for the latter case, propagation times of 0.5, 0.8 and 1
day were studied. The dispersion difference between case 1 and
3 is then still similar to that found for 5 days.

It is observed in Figure 21 that there is not one SH coefficient
that has the largest indices for all cases. This is also not the case
for case 1 by itself. Whereas the λ-C̄22 index is largest for 0.5
day and 0.8 day, the β-S̄21 index becomes largest for 1 day. For
case 3, however, it is the λ-S̄21 index that is largest and the λ-
C̄20 index that is also large for all propagation times. Nonethe-
less, also for this case, the relative contributions of the other
interactions differ among the different propagation times. Thus,
this analysis does not allow for drawing a conclusion about the
cause(s) of the semi-elliptical regions in Figure 18a. It is ex-
pected that they are caused by the combination of specific grav-
itational bulges that are encountered throughout the trajectories,
which could also affect the occurrence of eclipses and thus the
effects of SRP.

7 Conclusion
In this work the non-linear effects of the uncertainties in an
asteroid’s rotational state on the orbital motion of a CubeSat
were studied using NIPC. Different initial orbital geometries
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Fig. 21. Second order Sobol’ indices of interactions between a rotational state parameter and a degree 2 SH coefficient (Case 1
has i0 = 179◦, Ω0 = 52◦, case 3 has i0 = 43◦, Ω0 = 144◦) (β, λ and Tast with post early-characterisation uncertainties)

were propagated for various time periods to analyse the sensi-
tivities of different orbital regimes and identify robust orbit so-
lutions. Both uncertainties related to pre-mission scenarios and
post early-characterisation phases were studied.

In general, the results show that dispersion and non-linearity
increase with increased propagation time and decreased orbital
altitude. However, an interesting case was encountered which
departs from this trend. Considering a retrograde equatorial or-
bit, it is found that its inclination reaches maximum dispersion
already within 5 days. This is due to the interaction with the
gravitational bulges in the equatorial plane. Also, the uncer-
tainty in β and λ affect the orbital motion more than uncertainty
in Tast over short propagation times, while the contribution by
Tast builds up over time and can become equally effective for
some cases.

Uncertainty in the asteroid’s mass in general affects the or-
bital motion more than those in its rotational state, but excep-
tions have been encountered. Considering a polar orbit at 5 km,
the right ascension of the ascending node is more prone to un-
certainties in the rotation pole orientation than to that in mass.
From this it is concluded that, although the effects of mass are
generally larger, an analysis of a specific orbital element could
require the inclusion of rotational state uncertainties for reliable
results.

A wide initial orbital geometry analysis has revealed that ret-
rograde orbits, which are also most suitable for geodetic param-
eter estimation, are more stable against rotational state uncer-
tainties. However, also stable prograde orbits exist for specific
combinations of the initial inclination and right ascension of the
ascending node. Interestingly, the unstable regions in the initial
state space show symmetry that at first sight seems attributed to
the C̄22 SH term, yet it does not match the theoretical predic-
tion. Thorough future analysis should reveal the cause of this
symmetry, which is expected to be the result of the specific grav-

itational bulges that are encountered throughout the trajectories.
In addition, it is found that polar orbits are more stable against
inclination changes than inclined and equatorial orbits.

These results can guide the mission design process in select-
ing orbital geometries that are more stable against uncertainties,
thereby minimizing the fuel required for trajectory corrections.
Future research could compare these results to those for dif-
ferent propagation times, as well as initial states near the polar
regions.

Finally, this works has thus demonstrated the abilities of
NIPC in its application to the non-linear propagation of uncer-
tainties in the environment of a small solar system body. Both
its effectiveness in terms of efficiency and accuracy, as well as
its limitations have been observed. In this process, this work
has provided insights in the possible orbit deviations due to un-
certainties in the rotational state of an asteroid. Also the need
to study these in detail for actual missions has been discussed.
Hereby it facilitates small body mission designers in making
choices for target orbits that minimise the fuel required for tra-
jectory corrections. Ultimately, this leads to the best observa-
tions and scientific knowledge that can be used to better con-
strain the origins and evolution of the Solar System and to de-
sign and execute planetary defense missions.

References
Armellin, R., Di Lizia, P., Bernelli-Zazzera, F. and Berz, M. (2010).

Asteroid close encounters characterization using differential algebra:
the case of Apophis. Celestial Mechanics and Dynamical Astronomy
107, pp 451-470.

Balmino, G. (1994). Gravitational Potential Harmonics from the Shape
of an Homogeneous Body. Celestial Mechanics & Dynamical As-
tronomy 60 (3), pp 331–364.

Barucci, M. A., Dotto, E. and Levasseur-Regourd, A. C. (2011). Space



22
M. VAN NISTELROOIJ

missions to small bodies: asteroids and cometary nuclei. Astronomy
and Astrophyiscs Review 19 (48).

Benson, C. J., Scheeres, D., Brozovic, M. et al. (2023). Spin state evolu-
tion of (99942) Apophis during its 2029 Earth encounter. Icarus 390
(115324).

Bottke Jr., W. F., Cellino, A., Paolicchi, P. and Binzel, R. P. (2002). An
Overview of the Asteroids: The Asteroids III Perspective. Asteroids
III

Cheng, A. F., Rivkin, A. S., Michel, P. et al. (2018). AIDA DART aster-
oid deflection test: Planetary defense and science objectives. Plane-
tary and Space Science 157, pp 104-115.

DeMeo, F. E. and Carry, B. (2014). Solar System evolution from com-
positional mapping of the asteroid belt. Nature 505, pp 629–634.

Eldred, M. (2009). Recent advances in non-intrusive polynomial chaos
and stochastic collocation methods for uncertainty analysis and de-
sign. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference (2274).

Fayolle, M. (2020). Geodetic parameter estimation for small-satellite
small-body missions: An uncertainty-driven approach. MSc The-
sis TU Delft Repository: http://resolver.tudelft.nl/

uuid:b341defc-1b37-49b4-b14f-6a5a1748931b

Feinberg, J. and Langtangen., H. P. (2015). Chaospy: An open source
tool for designing methods of uncertainty quantification. Journal of
Computational Science 11, pp 46–57.

Feng, J. and Hou, X. (2018). The semi-analytical analysis of orbital evo-
lution around an asteroid under the effects of the C20 term, the solar
radiation pressure and the asteroid’s orbital eccentricity. Advances in
Space Research 62 (9), pp2649–2664.

Feng, J., Armellin, R. and Hou, X. (2019a). Orbit propagation in irreg-
ular and uncertain gravity field using differential algebra. Acta Astro-
nautica 161, pp 338–347.

Feng, J., Hou, X. and Armellin, R. (2019b). Survey on studies
about model uncertainties in small body explorations. Progress in
Aerospace Sciences 110, 100549.

Feng, J., Santeramo, D., Di Lizia, P., Armellin, R. and Hou, X. (2021).
Dynamical structure of the motion around asteroids with uncertain
gravity and solar radiation pressure. Acta Astronautica 186, pp 135–
147.

Feng, J., Hou, X., Di Lizia. P., Armellin, R. and Santeramo, D. A.
(2022). Sensitivity analysis of the orbital motion around 469219
Kamo’oalewa (2016 HO3) to uncertainties on asteroid mass and so-
lar radiation pressure. Advances in Space Research 69 (3), pp 1602-
1618.

Fodde, I., Feng, J. and Vasile, M. (2021). Uncertainty propagation for
orbital motion around an asteroid using Generalized Intrusive Poly-
nomial Algebra: application to the Didymos system. 8th Interna-
tional Conference on Astrodynamics Tools and Techniques.

Fodde, I., Feng, J. and Vasile, M. (2022). Uncertainty maps for motion
around binary asteroids. Celestial Mechanics and Dynamical Astron-
omy 134 (41).

Hestroffer, D., Sánchez, P., Staron, L. et al. (2019). Small Solar System
Bodies as granular media. Astronomy and Astrophysics Review 27
(6).

Hosder, S., Walters, R. W. and Balch, M. (2007). Efficient sampling for
non-intrusive polynomial chaos applications with multiple uncertain
input variables. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference (1939).

Jet Propulsion Laboratory. Solar System Dynamics: Small-Body

Database Lookup. https://ssd.jpl.nasa.gov/tools/

sbdb_lookup.html#/. Accessed throughout July/August 2022.
Julier, S., Uhlmann, J. and Durrant-Whyte, H. F. (2000). A New Method

for the Nonlinear Transformation of Means and Covariances in Fil-
ters and Estimators. IEEE Transactions on Automatic Control 45 (3),
pp477–482.
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APPENDIX A: Spherical Harmonic coefficients

The normalized spherical harmonic coefficients were
retrieved from a constant density shape model of aster-
oid 2000 ET70 using the Global Spherical Harmonic
(GSH) Package available at https://github.com/

bartroot/GSH. The shape model was retrieved from
https://3d-asteroids.space/asteroids/

162421-2000-ET70 and consists of 4000 vertices and
7996 faces. A constant density of 2000 kgm−3 (Naidu et al.,
2013) and the volume averaged radius of 1131.6 m was used as
reference radius R.

Table A1. Nominal normalized spherical harmonic coefficients

n m C̄nm S̄nm

0 0 0.99886223 0

1 0 -0.0013447323 0
1 1 0.0002770569 -0.0013428831

2 0 -0.0243609310 0
2 1 -0.0001971808 -0.0000120438
2 2 0.0267656020 0.0000005117

3 0 -0.0053988986 0
3 1 0.0000491777 -0.0011901703
3 2 0.0015972360 0.0033030442
3 3 -0.0033099975 -0.0045905665

4 0 -0.0003487162 0
4 1 0.0001199528 0.0015916781
4 2 -0.0049342722 0.0017180791
4 3 -0.0013741496 -0.0017141996
4 4 0.0045661298 -0.0017444782

5 0 0.0051683975 0
5 1 0.0007023177 0.0009806907
5 2 -0.0017793191 -0.0000709472
5 3 0.0000407067 0.0000253136
5 4 -0.0004803431 0.0003636395
5 5 -0.0019120774 0.0000737780

The C̄00 value of 0.99886223 effectively means that the
mass, and the gravitational parameter, are 0.1% smaller than
reported. This is likely a discretisation error introduced by the
GSH Package. This has no significant effect on the results as
this margin falls well within the mass uncertainty of the aster-
oid.





3
Conclusions and recommendations

The detailed conclusions based on the results presented and discussed in the journal paper, and partially in
the Appendices of this report, are presented in this chapter. Also recommendations for are given.

3.1. Conclusions
This section provides answers to the research questions posed in chapter 1. The answers to the sub-questions
will be treated first. These answers combined will then lead to an answer to the main research question.

• What are the capabilities of Non-Intrusive Polynomial Chaos and what challenges are encountered
in its application to orbital motion around asteroids?

The performance of NIPC has been tested in an application to orbital motion around an asteroid with
a large variety of settings, as presented and discussed in Appendix C. The process of tweaking and tun-
ing the NIPC settings that efficiently generate a PCE which accurately approximates the true states was
found to become increasingly challenging with an increase in the number of uncertainties. Similarly, a
decrease in the orbital altitude and an increase in the propagation time, both of which can be regarded
as measures for the degree of non-linearity encountered as observed in Section 6 of the journal pa-
per, make this process more demanding. This process, therefore, not only requires a trade off between
accuracy and efficiency of the method, but also between those aspects and the effort put into optimis-
ing them. In all cases must the accuracy be verified, at the very least by a comparison to a small MC
ensemble.

When tuning general settings, such as the polynomial order and the number of samples/quadrature
nodes, does not provide the desired result, using more advanced settings can turn out beneficial. When
the number of uncertainties increase, the performance of PCR improves relative to PCQ and PSP. Sim-
ilarly, the benefits of Smolyak sparse grids becomes apparent only for a larger number of uncertain
variables. The use of cross-truncated and orthonormal polynomials has not improved the NIPC per-
formance in the studied cases.

Another challenge was encountered in this work, besides the inability of finding generally optimal set-
tings. The utility of Kepler elements in studying the orbital motion is limited by the singularities in their
definition. As an orbit approaches one of these singularities, large variations in one or several of the el-
ements are encountered. This may lead to the so-called torn discontinuities that cannot be filtered
properly, as these variables also fully span the range from 0◦ to 360◦. When this is encountered, there
is no use in analysing these elements. In addition to this, it must always be realised that strong nega-
tive correlations can exist between two Kepler elements, such as ω and θ. This means that two aspects
of an orbit can change significantly, while the CubeSat’s three-dimensional position does not. It must
be realised, though, that these effects are not a result of applying NIPC and would be encountered for
any non-linear uncertainty propagation method. They originate from the element set definition, rather
than from the non-linear dynamics or NIPC method.

• What orbital aspects are affected the most by rotational state uncertainties?
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In general, the dispersion and non-linearity due to rotational state uncertainties increase with a de-
crease in the orbital altitude and with an increase in propagation time. Especially when considering
the Cartesian elements this is found to hold in general. However, it was found to be different in some
cases where Kepler elements are studied. For example, the distance and non-linearity in inclination
does not grow significantly with time for orbit 1, due to its equatorial orientation. Thus, where the dis-
persion in inclination can be largest compared to that in other elements over short propagation times,
it will be superseded by those other elements over longer times.

A comparison to mass uncertainties revealed a difference in the orbital aspects most affected by these
different uncertainties for different orbits. Where the semi-major axis and true anomaly are mostly
affected by the mass uncertainty for all three orbits, e and the angular Kepler elements can also undergo
significant contributions by the rotational state uncertainties. Moreover, Ω of a sufficiently low polar
orbit was found to be more susceptible to the rotational state parameters than to mass.

Focusing on one semi-major axis, it was found that retrograde orbits are generally more stable than
prograde orbits against rotational state uncertainties. However, for specific combinations of i0 and
Ω0 also prograde and polar orbits can be stable. These findings were clearly observed for all Kepler
elements, except i . Polar orbits were found to be more robust in i to rotational state uncertainties than
equatorial and inclined orbits.

• Do particular interactions between rotational state parameters and irregular gravity field compo-
nents contribute relatively more to the dispersion of orbits than others?

No clear physical relation was found for the unstable semi-elliptical regions in the initial state grid
analysis. It was observed that these regions can change with orbital altitude and propagation time. This
means that the presence and location of such regions is highly case dependent. Moreover, it means that
large dispersions can be initiated throughout the trajectories, at different instances in time.

As verified by a study of the interactions between the rotational state parameters and the irregular grav-
ity field components, there has not been a consistent set of cases in which a particular interaction
clearly contributed more than the others. Thus, for different orbits and different propagation times,
multiple, possibly different, interactions, can cause the majority of the dispersion. The unstable regions
are therefore not strictly determined only by the location of the initial state with respect to a specific
gravitational bulge, but rather by all the gravitational bulges that are encountered closely throughout
the complete trajectory. Subsequently, this can affect the occurrence of eclipses and thus the effects
of SRP, which can disperse the trajectories further. Of course, these are an indirect result of the initial
state, but it shows that the effects are rather unpredictable based solely on the initial state. It may be the
case as well, though, that a specific interaction clearly contributes the most to a specific case. Then, it is
expected that the corresponding gravitational bulge is approached closely very often in this trajectory.
However, this thus depends on various aspects, such as the initial state, the propagation time and the
magnitude of the uncertainties.

• Should rotational state uncertainties be considered in mission design studies and operational pro-
cedures?

Based on the comparison with the mass uncertainty, it is concluded that the effects due to rotational
state uncertainties are significantly smaller. Thus, if, relative to the rotational state uncertainties, signif-
icant uncertainty in the asteroid’s mass, and possibly also in SRP and the irregular gravity field, remain,
there seems little need to also study the effects of rotational state uncertainties, both during mission
design and operation.

However, it was found that the rotational state uncertainties do contribute more to the dispersion of
Ω for the polar orbit at 5 km. This shows that, in some cases the encountered non-linearity could
result in rotational state uncertainties to more effectively alter a particular aspect of the orbit than mass
uncertainty. This leads to conclude that there could be many more cases where the rotational state
parameter uncertainties change specific orbital aspects more. In addition, the long-term propagation
of rotational state uncertainties show significant dispersion, that may be costly to make up for with
corrective maneuvers. Therefore, it is considered important for mission designers to verify whether
ignoring the rotational state uncertainties is indeed valid for their specific study. If not, they must
perform a detailed analysis of the effects it has on various orbital aspects and check if the orbit design
they found without rotational state uncertainties actually remains optimal when these are present.
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Considering operational procedures, it must be realised that deep space CubeSats are ideally autonomous.
Especially in the highly non-linear and uncertain environment of a small body, the significant light
time delays in communication with the spacecraft ask for self-corrective capabilities. Optical naviga-
tion with respect to the asteroid to facilitate these efforts is a trending research topic with regular ad-
vances being made. Although autonomous CubeSats should have some uncertainty propagator build
into them to optimise their trajectory corrections, the limits on their computational power can restrict
these to just the largest contributors, thereby eliminating the rotational state uncertainties. These ef-
fects should, therefore, have been considered in the mission design phase, which should have resulted
in orbit designs that minimise the trajectory deviations due to these uncertainties. In cases where this
is not (sufficiently) feasible, it should be questioned whether the mission should actually be executed,
as probably better alternatives exist. As such, the CubeSat should undergo only small orbit deviations
from nominal in a real mission. In addition, as the CubeSat approaches the asteroid more closely and
the influence of rotational state uncertainties become larger, the rotational state parameters also be-
come more accurately fixed. Thus, their effect may not actually become significant. As such, there are
both little need and limited capabilities to consider rotational state uncertainties during operational
procedures onboard the autonomous CubeSat and it is therefore considered to be even more important
to consider them in the mission design process. On the other hand, the mission operations team on the
ground should still update the orbit propagations with improved data of the asteroid. This allows them
to better predict the orbit deviations that are to come, beyond the CubeSat’s own capabilities, and pos-
sibly correct for them if deemed necessary. This should be done as a mere backup to the autonomous
functionality of the CubeSat.

What are the non-linear effects of an asteroid’s rotational state uncertainties on the orbital motion of a
CubeSat?

The orbits studied in this work have revealed a wide variety of effects that can be observed when a CubeSat
is exposed to uncertainties in the rotational state of an asteroid. Generally, the dispersion and degree of non-
linearity increase with propagation time and decrease with orbital altitudes. However, this is not strictly the
case for individual Kepler elements, as both have also been observed to stagnate after an initial increase.

It was also found that uncertainties in the rotation pole orientation (β and λ) affect the orbital motion
more than uncertainty in the rotation period (Tast ) for short propagation times. However, as the propagation
time increases, a larger phase lag of the asteroid with its nominal rotational state is established. This can
cause the contribution of Tast to become equal to that of β and λ for some cases.

In general, retrograde orbits are more robust against these uncertainties than prograde orbits. However,
starting out in specific orbital planes, in terms of i0 and Ω0, can also result in stable orbit solutions for pro-
grade orbits. Moreover, the occurrence of large dispersions is dependent on which gravitational bulges are
encountered closely and at which times in the propagation. This high non-linearity is what can cause unex-
pected trajectory deviations. As such, it is always recommended to study rotational state uncertainties during
the design of a real mission, either in full if possible or as a verification step for the suitable orbits obtained
from other analyses. Especially for long propagations close to the asteroid these effects could be significant
and unpredictable. During the mission, however, the need to study these uncertainties diminishes.

The high non-linearity of the dynamical environment of the asteroid can cause a large variation in the
orbital elements over time due to uncertainties. Orbits that start out as nearly circular can attain significant
eccentricity, inclined orbits can become equatorial and vice versa. It is then very likely that, over time, sin-
gularities in the definition of the Kepler elements are approached. In turn, this results in large variations in
some of them, making the construction of a PCE more difficult and less efficient. In the worst case, this re-
sults in the so-called torn discontinuities that can not be filtered, and this leads to the inability to analyse
these elements. An alternative is then to use Mean Equinoctial Elements, which avoid these singularities, but
that comes at the cost of lower interpretability.

3.2. Recommendations for future work
The results presented and conclusions drawn in this work have been used to identify several aspect that are
interesting and useful to be further investigated in future research efforts. These are discussed next.

• Find the cause(s) of the unstable semi-elliptical regions in the initial state space
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In this research the true cause(s) of the unstable semi-elliptical regions in the space i0 and Ω0 was
not found. Although it is thought to be due to the complex interactions with various irregular gravity
field components throughout the complete trajectory, the symmetry suggests that there is a strong
connection to the asteroid’s largest SH components, C̄20 and C̄22. A deeper investigation to the cause(s)
of the dispersion should verify this.

This should include the same analysis using Sobol’ indices as presented in Section 6.5 of the journal
paper, but for many more of the initial orbits considered. Possibly these should be performed with
smaller SH uncertainties, so that the trajectory dispersions are more similar to those studied with only
rotational state uncertainty. Adding the proper correlations between individual degree 2 SH coeffi-
cients is advised as well. Finally, it is advised to perform detailed studies of the time histories of the
trajectories, to find which gravitational bulges, as caused by the different SH coefficients, are flown by
at different times and linking those to the times at which larger dispersions are initiated.

• Automatic NIPC generation guaranteeing accuracy and efficiency

Throughout this research, the settings required for efficiently generating accurate NIPC approxima-
tions were obtained manually by iterative testing. The tuning of settings was found to be highly case
dependent and considerable effort was put into guaranteeing accuracy and optimising efficiency. The
effort put into this part of the process could be alleviated by research efforts that focus on developing
algorithms that automatically, with minimal human interaction, generate PCEs that guarantee a pre-
defined accuracy level. Of course, it is fairly simple to create an algorithm that automatically increases
the polynomial order and/or number of samples when the accuracy is insufficient. However, other set-
tings, such as different quadrature rules, using PCQ with or without sparse grids or using PCR, were
found to have different effects among different cases and the optimal choice is much less intuitive. The
proper implementation, i.e. the order of increments in settings that are applied, that is optimal requires
further research.

Automating the process of finding the right settings can save substantial time and effort by the user. It
is realised, however, that this automation also leads to higher computational cost, as low order polyno-
mials are tested and may turn out to not be useful. This is sub-optimal, but the fact that computational
cost increases exponentially with polynomial order is reason to believe that the ’wasted’ computational
effort is minimal compared to the useful effort. This point of research also leads to the following point
and should ideally be combined.

In this automation, it may seem that some sort of maximum settings must be defined, at which the
algorithm concludes it is not feasible to construct an accurate PCE. This can be avoided, however, by
splitting the uncertain domain into sub-domains when this is encountered. Then, a PCE can be con-
structed for each sub-domain, each of which should show less dispersion and lower non-linearity. The-
oretically there will then always be a proper PCE, as long as enough sub-domains are used, and enough
sub-PCEs are constructed. A downside here is that statistical information is then available for each
individual sub-domain, and not for the complete uncertain domain.

Two aspects that could improve the NIPC performance in this automated process are also proposed.
Currently these aspects are not available within ChaosPy nor have they been encountered to be re-
searched in literature, therefore they are believed to be novel ideas. They are:

* Develop quadrature rules that allow for adding nodes to the set that was used for generating
the previous PCE

Currently, the sets created by many quadrature rules are defined by the quadrature order that is
specified. This means that the set of nodes of a particular size can be completely, or partially,
different from that of another particular size. This is inefficient if systematic increments in NIPC
settings are tested, which asks for different set sizes to be used. The aforementioned automatic
NIPC generation would therefore be benefited by quadrature rules that add nodes to an already
existing set of nodes. The set should be extended, rather than be replaced (partially). This limits
the wasted computational effort to that of generating the PCE, by avoiding wasting computational
effort on propagating samples that are not used in the end. In fact, Smolyak sparse grids already
apply this to their advantage for quadrature rules that have partially overlapping sets for different
orders. However, also the Smolyak sparse grid of a specific order may not contain all the nodes of
the previous one either.
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It is realised, though, that this is a complex mathematical process and it is unsure to what extent
this is possible in reality. That is, quadrature rules approximate integrals by a weighted sum of
function evaluations. Thus, when increasing the number of nodes, the weights should be changed
accordingly. If this breaks down the approximation of the integral, there is no use to it. This
feasibility should therefore be studied first. If not possible, one might resort to quasi-random
sampling sequences such as Sobol sampling, that allow for adding samples to an already existing
set.

* Use variable order PCEs

Similar to the prior item, information from a PCE created with the first settings can be used to de-
termine the next settings. For example, consider a study of five uncertainties, where a polynomial
of order three does not result in sufficient accuracy. This PCE, however, does reveal that two of the
five uncertainties show much less non-linear effects than the others. The new samples required
to generate the next PCE then do not need to vary much in these two variables, but focus must be
led on their variation in the three more effective ones.

This observation asks for the application of variable order PCEs, where the polynomial order in
the two variables is lower than in the other three. Indeed, it is the practical feasibility of imple-
menting these suggestions that must be investigated. Questions such as how can this information
be obtained most efficiently and what measures should be used as thresholds for making these
decisions should be researched.

• Analyse the effects of uncertainties for different rotational states

The current research has focused on analysing the effects of rotational state uncertainties on one as-
teroid that uniformly rotates about its principal axis. However, the large variety of small solar system
bodies shows that rotation pole orientations and rotation periods can differ a lot between small bod-
ies. The dispersion and non-linearity in those cases could be substantially different. In addition, many
asteroids are not uniform rotators, but tumblers. This means that the rotation pole oscillates in time.
Subsequently, several excitations of the small body’s rotation pole could be present, similar to the pre-
cession and nutation of Earth’s rotation pole. It could very well be, in fact, that asteroid 2000 ET70 is
in one of these more complicated rotational states. This is expected to induce even more non-linear
effects on the CubeSats orbital motion that are interesting to investigate.

The uncertainties in the rotation pole orientation that have been used in this research limit the degree
of tumbling that the studied asteroid can exhibit. That is, the 10◦ uncertainty in the orientation param-
eters, means that the asteroid could also be tumbling with a precession magnitude of 10◦. It cannot be
larger, because then it would have been distinguished from the radar observations. Although the tum-
bling magnitude falls within the uncertainty magnitudes that have been analysed, it could very well be
that the effects are quite different when the asteroid is in fact tumbling. As has been observed, the high
non-linearity of the dynamics can cause unpredictable results. It is therefore interesting to analyse if
the motion around a tumbling asteroid is bounded by the motion around the same asteroid in uniform
rotation, or whether this motion around the tumbling asteroid is dispersed more.

It is realised that analysing uncertainties for asteroids in different rotational states is more complex.
They require more rotational state parameters for their definition and more uncertainties are present
accordingly, which make the PCE generation more difficult and costly.

• Use reference frame better suited for mission analysis

In this work, all orbits were analysed in the asteroid-centered reference frame of the initial epoch, with
nominal rotation pole orientation parameters. This was most suitable for this research, as it avoids
kinematic rotation effects in the results. However, for mission design studies, it would be better to
analyse all the states at the times of interest in an asteroid-fixed reference frame, which rotates along
with the asteroid. This would better enable the study of the scientific return of a potential mission,
because it defines the states of interest with respect to the actual orientation of the asteroid at that
time, rather than at the initial epoch. Still, it is argued that the nominal rotation parameters should be
used for this reference frame definition, rather than having this frame vary under uncertainty. That is,
because if the latter were used, the CubeSat’s initial state with respect to the asteroid’s irregular gravity
field’s orientation would not change under uncertainty. Subsequently, this means that the uncertainty
in rotation pole orientation practically becomes an uncertainty in the position of third bodies.





A
Nominal orbit design

The methodology used to find the three orbits that were analysed in the journal paper was shortly described
there, but focus was laid on the choices made. This chapter provides a more detailed discussion of how these
orbits were obtained.

The first steps in this procedure were to do a preliminary analysis on the integrator settings and pertur-
bations that need to be considered, which is described in section A.1 and A.2, respectively. This analysis is
preliminary in the sense that it is only used for the nominal orbit design, which considers shorter propaga-
tion times, of only single orbital revolutions, than the actual uncertainty propagations in the journal paper.
Then, section A.3 elaborates on the Monte Carlo simulations that were performed and section A.4 describes
the differential correction method applied to improve the orbit solutions further.

A.1. Preliminary integrator analysis
To ensure sufficient accuracy in the Monte Carlo simulation, a preliminary analysis of the integrator set-
tings was performed. Initially, the Cowell propagator was selected, because of its general robustness and
non-existent singularities. An error analysis was performed with the Runge-Kutta 4 (RK4) integrator. This
integrator was chosen for generally providing acceptable propagation times for good accuracy and being sta-
ble, thus being a good choice for a varied set of orbits. For this fixed step size integrator a step size had to be
found. This was done by performing propagations, for each semi-major axis that was chosen (2.5, 5 and 10
km) for the duration of one orbit at that orbital altitude, with various step sizes. For this, the gravity field of
the asteroid was set to a spherical harmonics (SH) model with maximum degree and order of 5 and the per-
turbations by the solar radiation pressure (SRP), the Sun’s point mass (PM) and the Earth’s PM were included.
This choice was made based on the order of magnitudes of these accelerations as presented in Figure 1 of the
journal paper. Here it was observed that the Sun’s PM and Earth’s PM accelerations are likely of no influence,
but this will be verified later. For now, they are included anyway.

The initial state was set as the Keplerian elements with respect to the asteroids body-fixed frame of the
initial epoch, Fast . The semi-major axes were set as mentioned and the other elements were all set to 0. It was

(a) Orbit 1 (b) Orbit 2 (c) Orbit 3

Figure A.1: Preliminary benchmark results with RK-4 integrator after one orbital revolution
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Table A.1: Order of magnitude of position errors after one orbit when neglecting various perturbations

Perturbation 2.5 km case 5.0 km case 10.0 km case
Asteroid SH 2, 0 3 ·101 6 ·100 2 ·102

Asteroid SH 2, 2 4 ·102 2 ·101 6 ·100

Asteroid SH 5, 5 4 ·101 6 ·100 2 ·100

Asteroid SH 10, 10 2 ·100 8 ·10−2 1 ·10−3

Cannonball SRP 2 ·100 2 ·102 9 ·101

Sun PM 3 ·10−2 7 ·10−1 2 ·101

Earth PM 1 ·10−8 2 ·10−7 4 ·10−6

found that for all three cases, the orbits following from these initial conditions remained bounded to the as-
teroid for the duration of one orbit and are thus acceptable for this purpose. In subsequent propagations, the
step size was doubled. The error associated with a single propagation was computed as the difference with
respect to the propagation with half the step size, which is more accurate by a factor ∆t 4 and can be consid-
ered the ground truth in this regard. As shown in Figure A.1a, a step size of 200 seconds yields truncation error
dominance and cm-level accuracy for the semi-major axis of 2.5 km, which is deemed sufficient. As shown
in Figure A.1b and A.1c, this step size yields rounding error dominance for the larger semi-major axes. This is
unfavourable, because it makes the error unpredictable, so a larger step size was chosen. A step size of 4000
seconds yields truncation error dominance and position errors of 10−2 and 10−6 m for semi-major axes of 5.0
km and 10.0 km, respectively, and was therefore chosen. These step sizes yielded sufficient computational
efficiency for the current purpose and thus no other integrators or propagators were considered.

A.2. Preliminary perturbation analysis
Similar to the integrator analysis, an analysis was performed to decide which perturbations to include in
these propagations. Here, it is desirable that the model errors dominate the integration error, because that
allows for a physical interpretation of the error, rather than one which is unpredictable. For this purpose,
the same three orbits were propagated, first with only the asteroid’s point mass gravity, and subsequently
with a perturbation added. The perturbations were added considering their order of magnitude as seen in
Figure 1 of the journal paper, the largest perturbation being added first. The error associated with neglecting
a perturbation was found through the difference of the propagation with and without the perturbation. The
results of this analysis are shown in Table A.1. The goal, here, is to obtain meter-level accuracy. This gives
accurate insight into which orbits are close to periodic, because, as will be seen, position deviations will be
significantly larger than 1 m after 1 orbit.

The results show that for the semi-major axis of 2.5 km, asteroid SH of degree and order 5 and Cannon-
ball SRP need to be considered. For the semi-major axis of 5.0 km, asteroid SH of degree and order 2 and
Cannonball SRP should be included. For the semi-major axis of 10.0 km, asteroid SH of degree 2 and order 0,
Cannonball SRP and the Sun’s point mass gravity should be included. From this it can be seen that the cho-
sen orbital altitudes cover different orbital regimes, where different perturbation types have different effects,
which is interesting for the analysis of uncertainties. It is found that the perturbation by Earth is negligible
and therefore is was extrapolated that perturbations by the other planets are negligible too. This analysis was
repeated for a different initial epoch, such that the alignment of the Sun, planets and the asteroid are different
and the magnitude of perturbations will change. Moreover, the first initial time was chosen as midnight 19
February 2031 (982540800.0 sec since 1 January 2000), when the distance between the asteroid and Earth is
near its maximum. The second initial time was chosen as 18 February 2035, when the distance between the
asteroid and Earth is at a minimum( Figure A.2), and the perturbation thus larger. It was found that this did
not alter the results by a significant amount, i.e. the perturbation by Earth’s PM is still negligible. Although
it may be more realistic to consider a mission when the asteroid is closest to Earth, considering the shorter
transfer time required to visit the asteroid, it was opted to use 19 February 2031 from now on as initial time.
The reason is that the distance between the asteroid and the Sun is at a minimum then, making the SRP and
Sun PM perturbations largest and thus the uncertainties therein most pronounced, which might be useful in
a later stage of the uncertainty analysis. This decision was made in an early stage of the research, when it was
still open whether these uncertainties would be analysed. Nonetheless, it is expected that the initial time will
not significantly affect the quality of the results of the uncertainty analysis, as the corresponding changes in
the dynamics are only marginal and an uncertainty analysis is merely about changes in the dynamics under
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Figure A.2: Distances from asteroid 2000 ET70 to Earth, Venus and the Sun

uncertainty, rather than about their absolute accuracy.
To summarise, Table A.2 presents the selected integrator and perturbation settings that will be used for

the design of the nominal orbits.

Table A.2: Preliminary propagation settings

Semi-major axis Integrator Perturbations
2500 m RK4, 200 sec SH D/O=5/5, SRP
5000 m RK4, 4000 sec SH D/O=2/2, SRP

10000 m RK4, 4000 sec SH D/O=2/0, SRP, Sun PM

Note that more detailed integrator and perturbation analyses were performed after the nominal orbit
design phase, which is when orbits will be propagated over longer time spans and different settings will be
needed. This is discussed in Appendix B.

A.3. Monte Carlo simulations
With the previously found settings, Monte-Carlo simulations were performed, for each semi-major axis sep-
arately. Each set of initial conditions was propagated for 1.25 times the duration of the corresponding Kepler
orbit. This makes sure that each propagation fulfils more than a full revolution and the state after exactly
one revolution can be checked against the initial state. This state difference is then used to check to what
extend the orbit is periodic, which is defined in Equation A.1 and the ideal situation that is searched for. More
specifically, for each computed orbit within the Monte Carlo simulations, the minimum position difference
after one orbit with respect to the initial state was found through an 8th order Lagrange interpolation with 1
second time intervals. The velocity difference for the corresponding time instance was computed for com-
parison as well. The interpolation accuracy was verified once with a propagation with an exact termination
condition at the obtained time of this minimum position difference.

x(t +T ) = x(t ) (A.1)

The first Monte Carlo simulations only considered variations in the semi-major axis a (within a range
containing the nominal value being studied), inclination i (0-180°) and right ascensions of the ascending
node Ω (0-360°), as these are expected to alter the orbit’s geometry with respect to the asteroid the most
and thereby have the largest effect on the state differences after one orbit. The eccentricity e, argument
of periapsis ω and true anomaly θ were fixed to zero and the initial time at 16 February 2031. The results
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from the first Monte Carlo runs were used as input for a narrower Monte Carlo search, in a region with small
state differences. In these subsequent Monte Carlo runs, also e, ω and θ were varied. It was found that the
subsequent Monte Carlo runs resulted in only marginal improvements to the original Monte Carlo runs, thus
showing that a, i andΩ are more important in this regard.

Figure A.3 shows the results of the broadest Monte Carlo simulations. It is clear that the combination of i
andΩhas important effects on the state differences, especially for the orbits around 5 and 10 km. Considering
the orbits near 2.5 km (Figure A.3a and A.3b), the general trend is that state differences are smaller for i > 90◦.
Thus, polar and retrograde equatorial orbits are generally closer to periodic than prograde equatorial ones.
However, prograde equatorial orbits that are similarly close to periodic also exist for particular values of Ω,
namely near 60◦ and 250◦.

Considering the orbits at 5 and 10 km, clearer trends are observed, that are similar for both as well. As
presented in Figure A.3c through A.3f, where values of i near 90° yield low position differences in general,
they are only accompanied with small velocity differences near Ω values of 90 and 270°. It is also observed,
that for values ofΩ near 180° yield larger velocity differences than those near 0° for orbits near 10 km, which
is not observed for orbits near 5 km.

A.4. Differential correction
From all Monte Carlo runs, one orbit was taken per semi-major axis to be improved further. Here it was
chosen to keep some diversity in the initial Kepler elements, to have a diverse set of orbits. Here, it was
chosen to continue with a nearly retrograde equatorial orbit at 2.5 km and with polar orbits near 5 and 10 km,
with Ω values near 90◦ and 270◦, respectively. These orbits were propagated once again, now for a period of
one month, to study their long-term behaviour. Also the State Transition Matrix (STM) was propagated, in
order to allow for the application of differential correction to the initial state later, if deemed necessary.

Considering the orbit at a semi-major axis of 10.0 km, a significant drift away from the initial orbit was
observed, which asks to be reduced. It was found though, that this drift mainly occurs in the second half of
the propagation. Although the other two orbits seemed rather good, and definitely remain bounded within a
limited range of orbital altitudes during one month, it was decided to try and improve them as well. This is
done by applying differential corrections to the initial state, possibly multiple times, which works as follows.
Along with the state, the STM is propagated. The STM,Φ(tl , t0), contains the first derivatives of a state at time
tl with respect to an old state, here the initial state at time t0, as given in Equation A.2a and Equation A.2b.
Thereby it approximates a change in a state due to a change in the initial state. This matrix is propagated
through Equation A.2c. Subsequently, Equation A.2d shows how the change in the state at tl due to a change
in the initial state is found. As it is known how a certain state changes due to a change in the initial state, it
can also be computed how the initial state should be changed to obtain a particular change in the later state,
which is the inverse operation, as described by Equation A.2e.

Φ(t0, t0) = I 6·6 (A.2a)

Φ(tl , t0) = ∂x(tl )

∂x(t0)
(A.2b)

Φ̇(tl , t0) =
(
∂ẋ

∂x
(tl )

)
Φ(tl , t0), (A.2c)

∆x(tl ) ≈Φ(tl , t0)∆x(t0) (A.2d)

∆x(t0) ≈Φ(tl , t0)−1∆x(tl ) (A.2e)

The differential correction was applied as follows. The STM was interpolated, again with an 8th order La-
grange interpolator, to the time of the minimum position difference (after one orbit). Again, the interpola-
tion accuracy was verified once with a propagation with exact termination conditions at this time of interest.
This STM, along with the state difference with respect to the initial state was used to compute an update for
the initial state according to Equation A.2e. This initial state was then propagated, as well as the STM, and
if deemed necessary, a new update was computed. This procedure was repeated until the orbit was deemed
good enough. A few observations were made during this process, as discussed now.

The initial state update did not always provide a better solution. Moreover, sometimes the initial state
update resulted in an orbit that was significantly worse than the previous one. This is a result of the high
non-linearity of the dynamics, which causes the validity of the linearised STM to break down for some cases.
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(a) Position difference near a = 2.5 km

(b) Velocity difference near a = 2.5 km

(c) Position difference near a = 5 km

(d) Velocity difference near a = 5 km

Figure A.3: Position and velocity differences after one orbit for different orbital regimes
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(e) Position difference near a = 10 km

(f) Velocity difference near a = 10 km

Figure A.3: Position and velocity differences after one orbit for different orbital regimes

To counter this, the update procedure was extended by computing one more state update, this time through
the state difference with respect to the initial state and the STM of the entry resulting from the propagation
that lies closest to the initial state in terms of position, thus abandoning the interpolation. Both initial state
updates were propagated and the best one was used for the next state iteration. It was found that, of the two
initial state updates, the one with the smallest change in initial state generally yielded the best update. This
can be explained by the fact that the STM assumes the dynamics to be linear, an assumption which is more
valid for smaller state deviations. When this was realised, this was held onto as a rule of thumb, to reduce the
number of required propagations. It was also observed that after a few iterations the state difference after one
orbit did not reduce anymore after an update, at which point updates were computed from state differences
after multiple orbits, which could make the orbit closer to periodic also for a longer period. Here, it was found
that a trial and error approach had to be employed to find an update that would yield a better solution.

The best orbits found for each of the three semi-major axes were not truly periodic after several initial
state updates, as expected. Even though the orbits had not improved as much as initially desired either, it
was decided, for several reasons, that these orbits are acceptable to start the sensitivity analysis. Firstly, the
orbits are bounded and their semi-major axes remain within a small range of the nominal, and initial, values.
Secondly, the largest part of the drift occurs in the second half of the propagations, thus maneuvers can be
applied after two weeks to stabilise the orbit, which is a common time span for such missions. Thirdly, finding
better orbits with additional initial state updates or additional Monte Carlo runs will take significant amount
of time and is considered not worth the effort. The three chosen orbits, corresponding to semi-major axes
of approximately 2.5 km, 5 km and 10 km, respectively, 4 and their initial conditions in Fast , were provided
in Figure 4 and Table 4 of the journal Paper. It is interesting to the note the difference in the orbit drifts
orbit 2, which drifts to positive z-values, and orbit 3, which drifts to negative z-values. Since there are no
significant differences in the applied accelerations, neither in direction nor in magnitude, it is expected that
this behaviour is due to the difference in periapsis location of both orbits. That is, the periapsis of orbit 2 lies
’above’ the asteroid (positive z), whereas the periapsis of orbit 3 lies ’under’ the asteroid (negative z).



B
Propagation settings

The black-box function, EoM 1 in the journal Paper, is solved numerically through integration. To verify the
results, accuracy and efficiency, have to be ensured. This chapter explores the tuning of the propagation
settings to achieve acceptable accuracy.

B.1. Benchmark
To find good propagation settings, benchmark solutions for each of the three orbits were to be generated for
30 day propagations, which is the maximum propagation duration analysed in the Journal paper. For this,
the perturbations as found in section A.2 were used. In this analysis, occultations by the asteroid were not in-
cluded, which was only realised later to be applicable. Benchmarks were generated with the RK-4 integrator,
for its robustness and sufficient efficiency, and the step size was doubled for subsequent propagations. The
error was computed as the largest state difference with the propagation with half the step size throughout
the propagation. The results are shown in Figure B.1 for each orbit. Truncation error dominance is desired,
corresponding to the smooth and regular increase in the maximum position error. From these results the
following step sizes were chosen for the benchmarks: 6.25 seconds, 25.0 seconds and 100.0 seconds for orbits
1, 2 and 3, respectively. Some remarks are made. Firstly, the flattening of the error curve for large step sizes is
a result of the CubeSat flying away from the asteroid in different directions for different step sizes. Secondly,
for a particular step size, the error is greatest for orbit 1, second greatest for orbit 2 and least for orbit 3. Sim-
ilarly, the occurrence of rounding error dominance, where more irregular error behaviour occurs, is delayed
to smaller step sizes for smaller orbital altitudes.

B.2. Integrator analysis
The choice of integrator scheme can affect the propagation efficiency to a large extent. Various Runge-Kutta
(RK) solvers, as well as Bulirsch-Stoer (BS) and Adams-Bashforth-Moulton (ABM) integrators are available in
Tudat(Py). Each has their own (dis)advantages and thus a comparative analysis was performed on these inte-

Orbit 1 Orbit 2 Orbit 3

Figure B.1: Benchmark results with RK-4 integrator

38
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grators. Both fixed and variables step size integrators were analysed, with the aim to achieve cm to dm-level
accuracy, which is then dominated by the dynamical model errors. The error for each propagation was com-
puted as the maximum state difference throughout the propagation with respect to the benchmark solution.
The time history of the state difference was analysed for each case as well, to verify that the maximum state
difference is not an outlier and is well representative of the whole trajectory. For the fixed step size integra-
tors, step sizes were used that are multiples of the benchmark step size, so that direct comparisons between
propagation results is possible. For the variable step size integrators this is not possible and interpolation
of the benchmark solution was required. For the fixed step size integrators, step sizes of 100, 200, 400, 800,
1600, 3200, 6400 and 12800 seconds were analysed for each integrator. For the variables step size integrators,
absolute and relative tolerances were set equal and values of 10−4, 10−6, 10−8, 10−10 and 10−12 were used. In
addition, the initial and minimum step sizes were set to 1 second and the maximum step size was set to the
propagation duration of 30 days.

Overviews of the maximum state differences with respect to the benchmark solutions are provided in Fig-
ure B.2, where the errors are given as a function of the number of function evaluations required to achieve
that result, a direct indication for the CPU time required. Several consistent observations are made. Firstly,
Ralston-3, RK-4 and RKF-5(6) are less efficient than the higher order RK(F)/(DP) and ABM integrators. Sec-
ondly, The fixed step BS, higher order RK(F)/(DP) (in orange) and ABM integrators perform almost equally
well for all three orbits. Thirdly, the variable step ABM integrators, however, perform consistently worse than
its BS and higher order RK(F)/(DP) counterparts. This is most likely due to the way it is implemented in
Tudat(Py). The step size control algorithm for this multi-step predictor-corrector integrator is complicated
and not the most advanced and robust scheme is currently implemented, apparently yielding low efficiency.
Fourthly, it is not necessarily the highest order RKF method that performs most efficiently among the variable
step size integrators. Moreover, the RKDP-8(7) variable step size integrator is most efficient considering orbits
2 and 3. Finally, is seen that the fixed step size integrators can achieve higher accuracy than the variable step
size integrators. Since both achieve accuracies better than cm-level and are almost equally efficient, this is
not so relevant, though.

A fixed step size integrator has an important advantage and therefore it was opted for. This advantage
is that no interpolation is required if the step sizes are chosen adequately and the propagation results can
be compared directly. A variable step size integrator would require interpolation to compare states among
different propagations, which in turn means that extra effort has to be put in ensuring that the interpolation
error is negligible. Since we will be interested in the deviations of the state at various times in the propagation,
and not just the final state, it is beneficial to use a fixed step integrator. From the analysis is seems that, for
fixed step integrators, there is no clearly better integrator. It is therefore decided to go for a stable and robust
algorithm. This was found in the RKDP-8(7) integrator, which was finally chosen for all orbits.

Although the performance of various integrators does not vary much among the different orbits, the re-
quired step size for a particular accuracy does. Moreover, it was found that for cm-level accuracy, Orbit 1
requires a step size between 400 and 800 seconds (follows from Figure B.2a), Orbit 2 requires a step size just
below 3200 seconds (follows from Figure B.2c) and Orbit 3 requires a step size between 6400 and 12800 sec-
onds (follows from Figure B.2e). In order to avoid the need of interpolating results later, it was chosen that
the step sizes used for the different orbits have to be multiples of each other, so that direct comparisons of
propagations results is possible. As such, it was chosen to use step sizes of 600 seconds, 3000 seconds and
9000 seconds for Orbit 1, Orbit 2 and Orbit 3, respectively. Orbit 3 then has the sparsest output, but with 288
state entries over 30 days, this should be more than enough to analyse the deviations of trajectories over this
period and see if there are moments when the deviations become more pronounced than at other times.

As mentioned briefly earlier, occultations by the asteroid were not included in the foregoing analysis. At
this point it was realised that, for a better representation of reality, these had to be included. Including them
resulted in some changes that needed to be made to orbit 1, as it does undergo occultations in its trajectory.
This is not the case for orbit 2 and 3.

It was found that orbit 1 deviates significantly with the inclusion of occultations. In addition, it was re-
alised that, when uncertainties are propagated, these occultations will occur at different instances in time.
Moreover, the transition into and out of an occultation typically requires smaller step sizes to be captured
properly than those well within or out of eclipse. As such, it is argued that a variable step size integrator is
better applicable for orbit 1. Rather than going through the entire process of finding proper integrator set-
tings, it was chosen to use the variable step size RKDP-8(7) integrator, based on its performance shown in
Figure B.2b, B.2d and B.2f. The required tolerance was found through another benchmark procedure. In this
case, propagations were compared to one with a two orders of magnitude stricter tolerance level. As shown in
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(a) Orbit 1- Fixed step size (b) Orbit 1 - Variable step size

(c) Orbit 2 - Fixed step size (d) Orbit 2 - Variable step size

(e) Orbit 3 - Fixed step size (f) Orbit 3 - Variable step size

Figure B.2: Integrator performance comparison for the three nominal orbits



B.3. Perturbation analysis 41

Figure B.3: Variable step size RKDP-8(7) integrator performance for orbit 1

Figure B.3, a tolerance of 10−10 is sufficient for dm-level accuracy. This was chosen over a tolerance of 10−11

for cm-level accuracy, because of the significant computational cost benefit. Especially for orbit 1 at close
distance to the asteroid this should be sufficient, as trajectories will disperse much more than that under
uncertainty.

Subsequently to deciding that a variable step size integrator is required, a need arises to perform inter-
polations on the obtained state history. Although undesired as mentioned before, this is not necessarily a
problem. It does require a verification of the interpolation error, though. For that purpose, interpolations at
5, 10, 15, 20 and 25 days were performed with Lagrange interpolators with 6 and 8 points. The interpolation
results were compared to propagations with exact terminations at these times and with the same tolerance
of 10−10. In addition, the interpolations with 6 and 8 points were cross-compared. All state differences were
found to be of sub-cm-level (and most of sub-mm-level). Thus, the interpolation error is smaller than the
integration error and well within acceptable ranges. The selected integrator settings are summarised in Ta-
ble B.1.

Table B.1: Selected integrator settings per orbit

Orbit Integrator Settings
Orbit 1 Variable-step RKDP-8(7) Tolerances: 10−10

Orbit 2 Fixed-step RKDP-8(7) Step size: 3000 sec
Orbit 3 Fixed-step RKDP-8(7) Step size: 9000 sec

B.3. Perturbation analysis
Finally, a check was made on the accuracy that is achieved with the current choice of integrator settings
and perturbations that were included. As such, propagations with the RKDP-8(7) integrator as selected in
the previous section were performed with the first most effective perturbations, which was left out initially in
Appendix A, now included. These are the spherical harmonics up to degree and order 10 and up to degree and
order 5, for orbit 1 and 2 and 3, respectively. Also the Sun’s point mass gravity was checked for orbit 1 and 2 and
the Earth’s point mass gravity was checked for orbit 3. The corresponding maximum state differences were
checked over a 30 day propagation, rather than over one orbit as was done in section A.2. The corresponding
errors are summarised in Table B.2.

Table B.2: Errors made by neglecting perturbations, after 30 day propagations with the integrators selected in the previous sections

Orbit Perturbation Position error [m]
Orbit 1 Asteroid SH D/O=10/10 60

Sun PM 8
Orbit 2 Asteroid SH D/O=5/5 120

Sun PM 8
Orbit 3 Asteroid SH D/0=5/5 2

Earth PM 0
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The model errors are deemed acceptable for the following reasons. As mentioned earlier, the uncertainty
analysis is merely about deviations between trajectories under uncertainty, than about the true trajectory
under a specific circumstance. As such, perturbations that have the same effect on all trajectories subject to
uncertainty, are not critical to be included. This holds for the third body point masses, which are indepen-
dent of the rotational state parameters. Also the corresponding model errors are small, thus these can safely
be neglected. Considering the SH coefficients, one could argue that higher degree and order ones have to
be included, because they yield significant model errors if not included and they will alter the trajectories
subject to uncertainty in the rotational state parameters. However, the main effects of the uncertainty in the
rotational parameters are expected to occur through the degree 2 SH coefficients. This is because the relative
effects of SH coefficients vanishes with their degree, thus their contribution to the uncertainty analysis of the
rotational state does, too. As such, there is no strict need to include the higher degree SH coefficients. In orbit
1 the degree and order 5 SH coefficients are included, though. This was decided because the corresponding
model error would be much larger even, possible in the order of several hundreds of meters. This is deemed
unacceptable for the representation of the nominal orbit. Finally, and as an additional motivation for the
choices made, the effects due to uncertainties in the model parameters are expected to be significantly larger
than the listed model errors. Therefore it was chosen to use the dynamical models for each of the orbits as
summarised in Table B.3.

Table B.3: Dynamical models selected for inclusion in uncertainty analysis

Orbit 1 Orbit 2 Orbit 3
Asteroid SH D/O=5/5 Asteroid SH D/O=2/2 Asteroid SH D/O=2/2
Cannonball SRP Cannonball SRP Cannonball SRP

Sun PM

Besides the integrator, its settings and the perturbations, also the propagator can be adapted. However,
at this point the Cowell propagator has functioned well and the current integrator settings have made the
propagation efficiency more than acceptable. As such, there is no need to improve it with another propagator.
An advantage of this propagator is that it has no singularities.





C
Non-Intrusive Polynomial Chaos

performance

As described in section 5 of the Journal paper, the performance of NIPC is heavily dependent on the particular
problem case that is considered and the settings that are used. In the Journal paper, proof was given of the
performance of the chosen settings for the cases that were studied there. In contrast, this chapter presents
the performance of NIPC for various cases with different NIPC settings. The results presented here have
been used to gain knowledge of the effects of the various NIPC settings and have functioned as guidelines
throughout the project for selecting the right NIPC settings for the cases that were studied in great detail.

Again, the NIPC performance, which considers a trade-off between accuracy and efficiency, is given as the
RMSE and ϵmax as fraction of the mean distance of a quasi-random ensemble of 500 final states to the mean
final state. These fractions are used, rather than the true RMSE and ϵmax values, because the need for high
accuracy in individual samples diminishes with an increase in the spread in the Monte Carlo ensemble. Both
fractions are given with respect to the number of samples required, which is a direct indicator of efficiency.

This section is structured as follows. First, the performance of the different solution methods with various
polynomial orders are compared for one and three uncertain variables. These results are put into perspective
with a discussion of what level of accuracy should be aimed for. Then, various quadrature rules are com-
pared within the PCQ method and the potential performance improvement by using Smolyak sparse grids,
cross-truncated polynomials and orthonormal polynomials are tested, also for three uncertainties. Similar
comparisons are then performed with five and eight uncertainties, revealing that different settings are opti-
mal among these different cases.

PSP, PCQ, PCR and different polynomial orders
Figure C.1 and C.2 show, for one and three uncertain variables, respectively, the performance of NIPC for
the three methods and three polynomial orders. It is clear that accuracy increases with polynomial order, as
expected. Although all methods converge to similar values for the RMSE and ϵmax values as the number of
samples is increased, two systematic differences can be observed. First, PCQ converges for less samples than
PSP. This could imply that the use of quadrature weights has an adverse effect on the computation of the poly-
nomial coefficients and can be understood as follows. Quadrature weights are typically large in the centre of
the uncertain domain and become smaller and smaller as nodes approach the boundaries of this domain.
This means that the nodes near these boundaries have less control over the computation of the coefficients,
which results in a polynomial that does not approximate the regions near these boundaries well. As more
nodes are used, the weights of the nodes near the centre are reduced and more influence is given to nodes
near the boundaries, yielding a polynomial that better approximates the boundary region as well, yielding a
better overall approximation. This may be the reason that convergence for PSP is delayed to more samples
than PCQ, which does not use the quadrature weights in the least-squares solution. Although in theory PCQ
could also use these weights, this is also expected to delay convergence. The PSP method without using the
quadrature weights was also not tested, because it is not expected to outperform PCQ, which should reach
good accuracy for q = p +1 as also mentioned in section 3.1.1 of the journal paper. Secondly, although PSP
converges to smaller RMSE fractions than PCQ and PCR, its ϵmax fraction converges to larger values. Thus, al-
though the differences are minimal, it is observed that PSP performs generally better in terms of RMSE (after

43



44 C. Non-Intrusive Polynomial Chaos performance

Figure C.1: NIPC performance for PSP and PCQ with Clenshaw-Curtis quadrature and PCR with random samples (seed=4444) and
different polynomial orders: Orbit 2 - 30 days - 1 uncertainty: β ± 10◦)

Figure C.2: NIPC performance for PSP and PCQ with Clenshaw-Curtis quadrature and PCR with random samples (seed=4444) and
different polynomial orders: Orbit 2 - 30 days - 3 uncertainties: β and λ ± 10◦ and Tast ± 0.01 hr

convergence), whereas PCQ is more effective in minimizing the maximum error. With regard to both points
made, the performance of PCR is somewhat unpredictable.

Required accuracy
To select the most efficient NIPC settings for a particular study case, it is crucial to understand the impli-
cations of the various accuracy levels. This subsection elaborates on the desired accuracy level to perform
reliable sensitivity analyses.

One can realistically reason that an RMSE value equal to dmean is too large. It means, that the errors of
the polynomial approximations with respect to the Monte Carlo samples are in the order of magnitude of the
mean distance to the nominal point of this Monte Carlo ensemble. This implies that individual points may be
approximated to lie far outside the actual ensemble and therefor the errors are too large. Similarly, an RMSE
value of 10−4 implies that the errors are in the order of 1000 times smaller than the mean distance to the
nominal point of the ensemble, which suggests that individual points are well approximated with respect to
the spread in the full ensemble. Thus, sufficiently accurate to draw reliable conclusions about the sensitivity
of the dynamics to the uncertainties that are analysed.

To get a better feeling for the implications of various accuracy levels in between the two mentioned, Fig-
ure C.3 shows, for the four cases highlighted in purple in Figure C.2, the 500 Monte Carlo final states and
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(a) q=2:
RMSE

dmean
=0.49,

ϵmax

dmean
=1.0 (b) q=3:

RMSE

dmean
=0.08,

ϵmax

dmean
=0.20

(c) q=4:
RMSE

dmean
=0.01,
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dmean
=0.04 (d) q=6:

RMSE
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Figure C.3: NIPC performance for PCQ with Clenshaw-Curtis quadrature and different quadrature orders. p = 7, orbit 2, 30 days, 3
uncertainties: β and λ ± 10◦ and Tast ± 0.01 hr, dmean =744 m

their NIPC approximations. Clearly, C.3a shows large errors in the individual samples and the ensemble as
a whole. It cannot be used for a proper analysis. Subsequently, C.3b shows significant improvement, where
the ensemble as a whole is quite well represented. Errors in individual samples are still clearly visible, but for
many samples it is clear which NIPC approximation belongs to which Monte Carlo sample. The same is true
for C.3c and C.3d, where the individual errors have become significantly smaller and each NIPC approxima-
tion can be clearly linked to a Monte Carlo sample. As such, it is concluded that RMSE fractions in the order of
0.01 and ϵmax fractions in the order 0.05-0.1 are proper guidelines for NIPC performance levels that will yield
sufficiently accurate sensitivity analysis results. As such, it can be concluded, that for the case of Figure C.2,
PCQ with a polynomial of order 7 and using 125 samples is most efficient to yield sufficiently accurate results.

Quadrature rules
PCQ in ChaosPy can be used with 16 different quadrature rules. Figure C.4 shows, for a subset of these, that
performance can differ by a factor two in RMSE and more in ϵmax among these rules. This can be understood
by the considering a simple example. Considering a case that is well-represented by a univariate quadratic
polynomial, but not perfectly. A good approximation can be made if 3 samples are used of which one is lo-
cated at the extreme value. However, using 4 samples that are all quite far from this extreme point, might
yield a worse approximation considering the full uncertain domain, possibly with a larger error for the ex-
treme point. It is expected that this is case dependent, so it is recommended to consider different quadrature
rules if the accuracy is not yet sufficient.

The sensitivity to pure rotation was analysed with PCQ, polynomial order 5 and the Gaussian quadrature
rule in the Journal paper. It was shown that these settings do not achieve the accuracy as recommended
earlier for orbit 1 and a propagation of 30 days. Still choosing these settings was partly based on the results
presented in Figure C.5. It shows that Gaussian quadrature outperforms Clenshaw-Curtis quadrature and
that significant improvements are only possible with higher polynomial orders and a large increase in the
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Figure C.4: NIPC performance for various quadrature rules and p = 5: Orbit 2 - 30 days - 3 uncertainties: β and λ ± 10◦ and Tast ± 0.01
hr

Figure C.5: NIPC performance for Clenshaw-Curtis and Gausian quadrature with different polynomial orders: orbit 1 - 30 days - 3
uncertainties: β and λ ± 10◦ and Tast ± 0.01 hr

number of samples used, which was deemed undesired.

Sparse, cross-truncation and normal polynomials
Figure C.6 shows that, for this case of three uncertainties, the use of Smolyak sparse grid, normal polynomials
and cross-truncated polynomials is not beneficial in terms of either efficiency or accuracy.

Five uncertainties
As an intermediate step to the case of eight uncertainties as analysed in the Journal paper, five uncertain-
ties were studied as well. The rotation parameters were given their pre-mission uncertain magnitudes and
additionally C̄20 and C̄22 with ±50% uncertainties were studied. This choice was motivated by the following
two considerations. Firstly, these two coefficients have the largest nominal magnitudes (see Appendix A from
the Journal paper) and are therefor have the largest effect on the dynamics. Secondly, spherical harmonic
coefficient uncertainty prior to any mission is typically extremely high, because of both size uncertainty and
interior structure uncertainty. Size is directly related to inertia, which in turn is directly related to the degree 2
coefficients through simple equations [41]. Thus, the pre-mission size uncertainties of 5% [37] in each semi-
axes were transformed to degree 2 coefficient uncertainties, yielding uncertainties up to 50%. This dominates
interior structure uncertainty [42] and thus these uncertain magnitudes were studied here.
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Figure C.6: NIPC performance for different settings with Gaussian quadrature and p = 5 - orbit 2 - 30 days - 3 uncertainties: β and λ ±
10◦ and Tast ± 0.01 hr

Figure C.7: NIPC performance for different quadrature rules and sampling sequences (seed = 4444) and p = 5 - orbit 2 - 15 days - 5
uncertainties: β and λ ± 10◦, Tast ± 0.01 hr and C̄20 and C̄22 ± 50%

As shown by the differences between Figure C.7 and C.8, performance is also heavily dependent on the
propagation time (15 and 30 days, respectively). With longer propagation times, trajectories have more time
to disperse and more non-linearities can be encountered, requiring different NIPC settings to be optimal.
Whereas 252 samples yield sufficient accuracy for the 15 day propagation, not even 1000 samples is enough
for the 30 day propagation. Similarly, it is observed that PCR converges at a sample size of twice the number
of polynomial coefficients (=252), whereas this is not the case for 30 days. Nonetheless, it is observed that
PCR performs generally better than PCQ when the sample size is at least twice the number of polynomial
coefficients, which has also been previously advised [43]. Finally, no significant differences are observed
between the quasi-random sampling sequences for PCR. As such, the antithetic option, which is a variance-
reduction option by mirroring samples [44], was not tested, because no improvements in terms of accuracy
or efficiency are expected from it.

Similar to the previous points, the performance of Smolyak sparse grids can differ among various cases. As
illustrated by Figure C.9 and C.10 (orbit 2, 30 days and orbit 1, 5 days, respectively), although the spread in the
Monte Carlo ensemble is similar as indicated by the dmean values, the sparse-grid approach is significantly
worse than the nominal settings for orbit 2 (30 days), but more efficient for orbit 1 (5 days), considering the
smaller sample sizes. This is likely due to a Smolyak sparse grid using relatively few samples in the uncertain
domain’s centre and more and more towards its edges and corners. When the dynamics are highly non-linear
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Figure C.8: NIPC performance for different quadrature rules and sampling sequences (seed = 4444) and p = 5 - orbit 2 - 30 days - 5
uncertainties: β and λ ± 10◦, Tast ± 0.01 hr and C̄20 and C̄22 ± 50%

Figure C.9: NIPC performance for various settings with Gaussian quadrature and p = 5: orbit 2 - 30 days - 5 uncertainties: β and λ ±
10◦, Tast ± 0.01 hr and C̄20 and C̄22 ± 50%

in the centre of the uncertain domain, as is the case for orbit 2 propagated for 30 days, not enough samples
are used from the uncertain domain’s centre to capture these non-linear dynamics completely in this region.
When the dynamics are less non-linear in the centre of the domain, as is the case for orbit 1 propagated
for only 5 days, these relatively few samples from the uncertain domain’s centre is enough to capture the
dynamics completely in this region. Apparently, this effect due to a difference in propagation time is stronger
than difference in non-linearity because of the orbital altitude difference, which would dictate that orbit 1 is
more non-linear than orbit 2.

For both cases described above, it is observed that using normal or cross-truncated polynomials is not
advantageous, neither in terms of efficiency nor accuracy.

Eight uncertainties
The NIPC performance for two orbits over different propagation times with different polynomial orders is
given in Figure C.11 for the case with eight uncertainties as analysed in the Journal paper. It is clearly observed
that there is a large difference in NIPC performance between these cases. A 5th order polynomial performs
worse for orbit 2 for a 30 days propagation than a 3rd order polynomial for orbit 1 for a propagation of 5
days, while the former’s mean distance value is smaller. This, again, indicates the difference in non-linearity
over different propagation times. In addition, it is observed that PCR outperforms PCQ in accuracy after
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Figure C.10: NIPC performance for various settings with Gaussian quadrature and p = 5: orbit 1 - 5 days - 5 uncertainties: β and λ with
10◦, Tast ± 0.01 hr and C̄20 and C̄22 ± 50%

Figure C.11: NIPC performance for several orbits - 8 uncertainties: β and λ ± 0.25◦, Tast ± 0.00001 hr, C̄20 ± 0.005, C̄22 ± 0.003 and C̄21,
S̄21 and S̄22 ± 0.0015

convergence. This happens for all cases when the number of samples is twice the number of polynomial
coefficients. It is also observed that using Smolyak sparse grids is beneficial in terms of efficiency when using
PCQ, looking at the results for orbit 2. Finally, it is observed that cross-truncated polynomials converge for
less samples when using PCR. This is probably because the number of polynomial coefficients is smaller and
thus fewer samples are required for a sufficiently over-determined system to perform the least-squares fit.
Nonetheless, the achievable accuracy is lower than for non-cross-truncated polynomials.

In summary, the findings of tuning the NIPC settings are:

• RMSE
dmean

≤ 0.01 and ϵmax
dmean

≤ 0.1 yield quantitatively accurate NIPC approximations and statistical informa-
tion

• PCQ converges for less samples than PSP.

• PSP converges to smaller RMSE values than PCQ, but PCQ converges to smaller ϵmax values than PSP,
but differences are minimal.

• The choice of quadrature rule can improve performance by a factor two in RMSE and even more in
ϵmax .
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• The choice of quasi-random sampling sequence has no significant effect on performance.

• Using normal and cross-truncated polynomials does not improve performance for any of the studied
cases.

• The performance increase with polynomial order and the number of samples or nodes is highly case-
dependent. In some cases improvements can be one order of magnitude, whereas in others it may be
negligible.

• PCR can outperform PCQ for five or more uncertain variables.

• Using Smolyak sparse grids can increase efficiency for five or more uncertain variables, but this is highly
case-dependent.

• PCR typically converges when the number of samples is at least twice the number of polynomial coef-
ficients, as also found in and recommended by [43].



D
Discontinuities and singularities

As mentioned in the journal paper, the Kepler elements ω,Ω and θ and the MEE true longitude L are defined
within a limited range of values from 0◦ to 360◦ rad. This is problematic for the construction of the PCE, if
values near these boundaries are encountered. Two types of these occurrences were encountered and the
filtering of those will be elaborated upon in this chapter. The first type, described in section D.1, is when
the variable does not take on particular range of values, somewhere in between 0◦ and 360◦, throughout the
uncertain domain (section D.1). The second type, described in section D.2, is when all values between 0◦
and 360◦ are encountered throughout the uncertain domain and the discontinuity is also present. Finally,
section D.3 elaborates on the analysis of the discontinuities described in the journal paper, which were not
possible to be filtered.

D.1. Discontinuity type I
An example of the first type of discontinuity is provided in Figure D.1. ω takes on values below 100◦, as well
as above 250◦. The PCE is fitted also on the values in between, yielding a bad approximation. By shifting the
values above 250◦ down by 360◦ and then constructing the PCE yields the results in Figure D.1b. Obviously
this yields much better NIPC approximations without losing any information, because the meaning of ω
shifted by 360◦ is exactly the same.

The filter was implemented as follows. A histogram is made of the concerning variable, ω in the above
example. The histogram contains 52 bins and spans from − 2π

50 rad (−7.2◦) to π+ 2π
50 rad (367.2◦), to guarantee

that all values are properly captured. Subsequently, SciPy’s1 peak finding function within the signal module
is used to search for peaks in the histogram that are at least 25 bins apart. If 1 peak is found, there is no
discontinuity and the filter is skipped. If two peaks are found, this corresponds to a discontinuity that must
be filtered. The peak bins and the bins without any values are then used to determine the minimum value of
the concerning variable which should be shifted by 360◦. All values larger than it are shifted. This algorithm
was implemented for ω,Ω, θ and the true longitude L.

D.2. Discontinuity type II
In the case where the variable has a discontinuity of type I, but also covers the full range of values from 0◦
to 360◦, as in Figure D.2a, the algorithm described above will not work. Even if it actually finds two peaks, it
cannot find a minimum value for the values that must be shifted, because there are not bins with no values.
This discontinuity type was therefore filtered differently. This discontinuity type was also only encountered
in θ and L. It arises because, under uncertainty, the CubeSat makes a different number of full revolutions
around the asteroid in the considered time. This causes all values between 0◦ and 360◦ to be encountered.
The location of the jump from 0◦ to 360◦ in the uncertain domain is unpredictable and will occur in different
locations for different cases.

This discontinuity type was filtered when it was encountered as follows, yielding the result shown in Fig-
ure D.2b as an example. Rather than using the converted state variable at the final time, the full time history
of it is considered. When the time history jumps from 360◦ to 0◦, the values should be shifted up by 360◦.

1https://scipy.org/
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(a) Problem (b) Verification of solution

Figure D.1: Type I discontinuity

(a) Problem (b) Verification of solution

Figure D.2: Type II discontinuity

Thus, after 1 full orbit, values above 360◦ should be encountered, after 2 full orbits values above 720◦ should
be encountered, and so on. This was established by first shifting the time histories by their initial values,
so that the time histories start at 0◦. Subsequently, the time history is traversed from the initial to the final
time. Each value is checked against the value before it. When the value is smaller than the one before it, and
when the result of the multiplication of these values is also smaller than 0, this means that it crosses the zero
line from positive to negative values. This indicates that a complete revolution has been fulfilled and 360◦
should be added to all of time history after this point. As such, the final time attains large values, which are a
direct indication of the number of orbits that have been completed. For example, the case in Figure D.2b has
completed between 31400

350 = 87.2 and 31850
350 = 88.5 orbits.

It is realised, that due to the high non-linearity of the dynamics, it could occur that θ and L do not increase
steadily from 0◦ to 360◦, then jump back to 0◦ and repeat that pattern throughout the full propagation time.
It is expected, especially in the case of θ for equatorial and circular orbits (near the Kepler singularities),
the time history could show more erratic behaviour. In those cases the used filter may not yield the desired
result. As elaborated upon extensively in the journal paper, when they are encountered, it is advised to use
MEE in these cases (including L), rather than Kepler elements. Since these cases were not encountered in this
research, it has not been tested whether the described filter would still work for L and this is thus subject for
future research.

D.3. Singularities in the Kepler elements
As described in the journal paper, discontinuities where encountered that could not be filtered. This section
elaborates on the analysis that was performed to find the cause of these discontinuities.

As shown in Figure 13 of the journal paper, the distance dω and dΩ are almost identical among different
propagation times for orbit 1 and their values are large, i.e. larger than the initial semi-major axis of this
orbit. This contradicts the results of Figure 6 of the journal paper. These NIPC approximations were therefore
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Figure D.3: Time history of ω andΩ for four cases near the discontinuities in Figure 14 of the journal paper

analysed closer, as depicted in Figure 14 of the journal paper. Here, the MC ensemble and corresponding
NIPC approximations are shown as a function of two of the three uncertain parameters. Ta st was left for
visualisations purposes and because it was found to have significantly less influence on the orbit than β and
λ. The response-surfaces of both ω and Ω show clear discontinuities in part of the uncertainty domain.
Contrary to the cases of the previous subsections, these discontinuities can not be filtered. The reason is that
here the discontinuities occur only in part of the uncertain domain of one of the uncertain parameters and
both variables attain values in the full range from 0◦ to 360◦. Trying to filter these discontinuities by shifting
parts of the surface by 360◦, will simply shift the discontinuity to another part of the uncertain domain. In the
following, this type of discontinuity will be referred to as the ’torn discontinuity’, because the response looks
like a plane with a tear in it.

It is remarkable that the torn discontinuities seem to arise when the inclination approaches 180◦, which
could be an indication that these discontinuities are observed because the trajectories approach the singular-
ity in the Kepler elements for equatorial orbits, whereΩ is undefined. As shown by the time history of i ,ω and
Ω in Figure D.3, this behaviour occurs because some trajectories jump from 360◦ to 0◦, or vice versa, while
others do not or at different instances in time. Consider ω for the blue and orange cases near t − t0 = 15 days.
The blue case jumps from 360◦ to 0◦ just before, while the orange case jumps just after this 15 day period.
As shown by the red and green cases, the uncertain domain is sufficiently broad to also contain cases which
do not make this jump near 15 days. Now consider Ω. Here it is the green case that makes the jump from
360◦ to 0◦ just before 15 days. While the blue and red cases do not make the jump, the orange case already
makes it very early at around 2 days. Subsequently, itsΩ value grows significantly to approach the blue cases’
value again. Similar characteristics are observed for the 5 days and 30 day points, thereby indicating that in
each of these cases these discontinuities are encountered for the same reasons. It seems that by choosing the
propagation time around 22.5 days, the discontinuities may not be encountered. However, considering a full
MC ensemble, it is expected that they will occur elsewhere in the uncertain domain. This is further supported
by considering the behaviour of the red case below 5 days, where it shows many jumps. This sample is very
close to the edge of the discontinuity for those time instance, for some being one side, for others on the other
side of it. This leads to the conclusion that the location of the discontinuity in the uncertain domain is not
fixed, but changes with time.

While the jumps sometimes happen when the inclination is closest to 180◦, this is not strictly the case.
For example, the inclination is below 175◦ when the blue and orange cases make the jump near 15 days.
More importantly, it is observed that ω and Ω do undergo larger changes when the inclination is closest to



54 D. Discontinuities and singularities

Table D.1: Correlations between ω,Ω and θ for various cases

Orbit 2 Orbit 3
t − t0 ρω,Ω ρω,θ ρω,Ω ρω,θ

5 days -0.85 -0.98 -0.91 -0.97
15 days -0.85 -0.98 -0.98 -1.00
30 days -0.93 0.62 0.97 -0.9

180◦. Where this immediately leads to a jump for the cases where ω or Ω are close to 0◦ or 360◦, it does not
when they lie more towards the middle of their domains. Nonetheless, this is the reason that both ω and Ω
encounter a larger range of values and is therefore also the reason that the jumps are encountered. Thus,
the observed discontinuities are a result of the orbit being retrograde equatorial, thereby approaching the
singularity inΩ and yielding large variations in both ω andΩ.

As also shown in Figure 13 of the journal paper, the distances dω and dθ show unexpectedly large values
for orbit 2 and 3 after 15 days, compared to 30 days. It was explained in the journal paper that this is a result
of the orbits approaching the singularity in the Kepler elements of a circular orbit. It was also explained that,
because of strong correlations between ω,Ω and θ, this does not necessarily mean that the actual size of the
MC ensemble, in Cartesian space, is larger. As summarised in Table D.1, strong, mostly negative, correlations
were indeed encountered. Thus, a variation in one element is then accompanied by a variation in another,
which can (partially) cancel the corresponding change in position. This is also the case for cases where the
eccentricity is not close to zero, such as orbit 2 after 30 days (Figure 13b of the journal paper).



E
Sensitivities for different initial states and

the interaction with the irregular gravity
field

Section 6 of the journal paper elaborated on the stable and unstable regions in the initial state-space against
rotational state uncertainties. The maximum variance among the Cartesian position elements and da and di

were presented for orbits at 2500 m in Figure 18 of the journal paper. The dispersion of these uncertainties
on the other Kepler elements was briefly touched upon as well, but without a detailed presentation of these
results. These results are given here, in Figure E.1. It shows, that the same unstable semi-elliptical regions are
found in all elements. It is also found that the maximum values of dθ are largest. Thus, when unstable, this
most pronounced in θ. The largest values of dω, dΩ and dθ are outliers and may be a result of discontinuities
that were not filtered properly. In addition, these quantities show large values for equatorial orbits, which is
due to the larger variation in them close to the Kepler singularities. These are thus not necessarily to be seen
as more unstable regions.

Considering the stable regions, e.g. retrograde orbits, it is observed that the angular Kepler elements have
larger magnitudes, in the order of 10 m, than a and e, which are in the order of 0.1-1.0 m. Thus, where
unstable orbits are most unstable in θ, stable orbits are most stable in a and e.

The difference in sensitivity for different initial states, as shown in Figures 18 and 19 of the journal paper
and in Figure E.1, showed that the asteroid’s non-linear dynamical environment can cause unexpected re-
sults compared to theory. In an attempt to find the cause(s) for this, an analysis of the second order Sobol’
indices of interactions between rotational state parameters β, λ and Tast and degree 2 SH coefficients was
performed, as presented in section 6.5 of the journal paper. It did not reveal any interaction terms that con-
tributed systematically more than others. The cases 1 and 3 (referring to the highlights in Figure 18a of the
journal paper) were analysed for 0.5, 0.8 and 1 day, rather than 5 days. This reduction in propagation time
was required to obtain sufficient accuracy in the NIPC approximation with a 3rd order polynomial for case 3.
As shown in Table E.1, these periods still show, however, the same difference in dispersion and non-linearity
as in Figure 18a. Some additional remarks on the results of Figure 21 of the journal paper are made.

Firstly, it is clearly observed by the difference in the orders of magnitude, that the interactions are much

Table E.1: Standard deviations and non-linearity indices for case 1 and 3 for different propagation times (Sp+1 is also listed for the
Cartesian element with the largest standard deviation)

Case i0 [◦] Ω0 [◦] t − t0 [days] max( σx , σy , σz ) [m] max(Sp+1,x , Sp+1,y , Sp+1,z ) [-]
1 179 52 0.5 96 0.021

0.8 146 0.054
1.0 194 0.24

3 43 144 0.5 195 4.4
0.8 967 966
1.0 1119 19226
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(a) Variation in eccentricity (b) Variation in argument of periapsis

(c) Variation in right ascension of the ascending node (d) Variation in true anomaly

Figure E.1: The effect of initial orbital geometry on the trajectory dispersion after 5 days due to rotational state uncertainty (β, λ and
Tast with post early-characterisation uncertainties)

more effective for case 3, than for case 1. Similarly, the range of values of the shown Sobol’ indices is larger for
case 1. This shows that for case 3, which undergoes larger dispersions and encounters higher non-linearities,
all interactions have become more influential. Nonetheless, the observed orders of magnitude indicate that
for both cases the first order Sobol indices and also some interactions between two SH coefficients are signif-
icant, thus making the contribution by the shown interactions relatively small.

Secondly, it is noted, that the interactions of Tast with the SH coefficients are low, especially for case 1.
This is in line with results that were obtained in the analysis of section 6.1 (Figure 8) of the journal paper,
which showed that the rotation period Tast has less influence on the trajectories than the rotation pole orien-
tation parameters β and λ. This can be explained by the working principle of the rotation period uncertainty.
This parameter does not alter the initial orientation of the asteroid with respect to the CubeSat, but merely
builds up a phase lag over time. It thus requires some time during the propagation to build up its effect, so
that the asteroid has a significantly different orientation than in the nominal case, which happens only after a
sufficiently long time. As such, its relative contribution increases with time as well. It is remarkable to see that
for case 1 the periods up to 1 day are not sufficient for that, but that for case 3, with the large non-linearity,
these interactions attain similar magnitudes as those for the rotation pole orientation.

Although it cannot be deduced what the true cause(s) of the semi-elliptical regions in Figure 18 of the
journal paper is, it seems that throughout the trajectories, different contributions become significant and can
also become less influential later on. This is most likely to depend on what gravitational ’bulges’, as caused
by the different SH coefficient, the trajectories fly by closely at different times throughout the propagations.
For example, trajectories that fly through the extension of the asteroid’s x-axis regularly, will likely be more
affected by the C̄22 term and its interactions, than those which do not. Moreover, a detailed analysis of the
complete time history of the nominal orbits and the deviations from it due to the uncertainties must be per-
formed to find the gravitational influences that are encountered at all times in the propagation. Linking these
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to the times at which large dispersions in the trajectories are observed can reveal which parameters cause the
semi-elliptical regions in the Figure 18 of the journal paper.

It is finally noted, that the above recommended research can be aided with additional analyses including
smaller uncertainties in the SH uncertainties. Currently there could be differences in the trajectory devia-
tions corresponding to Figure 18 of the journal paper, only including rotational state uncertainties, and those
analysed in this chapter, which also include significant SH coefficient uncertainties. As the trajectory devia-
tions are different, the Sobol’ indices may be, too. Ideally, these Sobol’ indices would be analysed without SH
coefficient uncertainties, but that is not possible, due to the definition of Sobol’ indices. Therefore it could be
required to use smaller uncertain magnitudes so that the trajectory deviations remain sufficiently similar and
the right relative contributions are found. However, here a difficulty lies in finding the right uncertain mag-
nitudes to guarantee this validity, and an analysis of the time history of the trajectories would be required for
verification as well.
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