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Combined three-dimensional flow field
measurements and motion tracking of freely
moving spheres in a turbulent boundary layer
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(Received 2 December 2021; revised 19 May 2022; accepted 23 May 2022)

A combination of time-resolved tomographic particle image velocimetry, refractive index
matching technique and machine vision algorithms was used to measure the translational
and rotational motion of freely moving, nearly neutrally buoyant spheres in a fully
developed turbulent boundary layer (TBL). Located in the buffer and logarithmic layers,
the hydrogel spheres (∼70 inner wall units in diameter) were refractive index matched
with the water and tagged by ‘spokes’. Besides translational motion, the spheres exhibited
significant rotation. The spheres were surrounded by typical coherent structures observed
in TBLs, among them hairpin packets and transverse and longitudinal vortices that induced
ejections and sweeps. While the majority of instantaneous sphere Reynolds numbers
did not exceed 100, and vortex shedding was not observed, the results showed that the
spheres may affect the evolution of hairpin packets in TBLs due to their finite size. The
instantaneous rotation-, wall- and shear-induced lift forces, as well as the drag forces,
acting on the spheres were estimated using available correlations for the lift and drag
coefficients. Results hinted at negative shear-induced lift due to flow separation at a smaller
critical Reynolds number than incorporated in the correlations that do not include the
effect of ambient turbulence. The results indicated further that the drag force aided by
the rotation-induced lift force was instrumental in keeping one of the spheres aloft. For
the wall-ward moving spheres, lift forces opposed sphere motion. As a result, the spheres
approached the wall with velocities lower than their quiescent settling velocity.
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1. Introduction

Particle transport plays a key role in many natural and industrial settings, for example
in the advection of deep sea microplastics (Kane & Clare 2019), as well as in
the transport of particulates by pneumatic or hydraulic conveyors used in the food,
chemical and pharmaceutical industries (Woodcock & Mason 1987). Understanding
the physical mechanisms that control particle transport is therefore of the utmost
importance from a basic scientific perspective as well as for developing practical
applications.

In turbulent flows, particle deposition, lift-off and re-entrainment take place in the
vicinity of walls where particles interact with a turbulent boundary layer (TBL) (Mollinger
& Nieuwstadt 1996; Muthanna, Nieuwstadt & Hunt 2005; van Hout 2013). The main forces
that govern particle motion are gravitation, buoyancy, drag and lift forces, the latter acting
perpendicular to the drag. In case strong accelerations are present, inertial forces such as
the added mass force and the Basset (history) force may be of importance (Maxey & Riley
1983), and when particle surface interactions occur, friction and electrostatic forces need
to be considered (Minier & Pozorski 2017).

Traditionally, particle lift-off has been treated as a threshold phenomenon based on
the balance between mean gravitational, buoyancy and drag forces (Bagnold 1951).
However, particle transport, much like momentum and heat transfer, is associated with
intermittent TBL motions due to ejection–sweep cycles (termed ‘turbulent bursts’;
Sutherland 1967). During recent decades, many numerical and experimental investigations
have provided evidence for the importance of ejection–sweep cycles in particle deposition
and re-suspension. Early experiments used cinematography to track particles (Sumer &
Oguz 1978; Sumer & Deigaard 1981; Rashidi, Hetsroni & Banerjee 1990; Niño & Garcia
1996), while in the last decade (combined) particle image velocimetry (PIV) and particle
tracking velocimetry (PTV) studies (van Hout 2011, 2013; Rabencov, Arca & van Hout
2014; Rabencov & van Hout 2015; Ebrahimian, Sanders & Ghaemi 2019; Ahmadi, Sanders
& Ghaemi 2020; Baker & Coletti 2021) have enabled us to resolve the three-dimensional
(3-D) particle–flow interaction at high Reynolds numbers, thereby surpassing current
numerical capabilities. The latter suffer from high computational cost, usually alleviated
by employing modelling assumptions such as the ‘point-particle’ approach (Balachandar
& Eaton 2010). Based on statistical techniques such as quadrant analysis (Niño & Garcia
1996; Soldati & Marchioli 2009; van Hout 2011; Ahmadi et al. 2020; Baker & Coletti
2021) as well as tracking the motion of only a few spheres (Sumer & Oguz 1978; Sumer
& Deigaard 1981; van Hout 2013), it has become clear that spherical particles are lifted
off the wall mainly by intense ejections often in combination with sweeps (van Hout
2013).

Comprehensive measurements by Niño & Garcia (1996) showed that near-wall particle
motion was dominated by quasi-streamwise vortices that generated so-called low-
and high-speed streaks. Particles immersed within the viscous sublayer segregated
preferentially in the low-speed streaks, in contrast to larger particles that did not
segregate preferentially. They showed that particles were lifted off the wall by ejections
at angles between 10◦ and 20◦, in agreement with Sutherland (1967). Rashidi et al.
(1990) investigated size-driven effects further, and showed that small- and large-diameter
polystyrene spheres decreased and increased the number of ejection events, respectively.
In addition, increased particle loading enhanced size-driven effects without changing the
burst frequency and the mean low-speed streak spacing.
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Freely moving spheres in a turbulent boundary layer

During the last decade, increasingly sophisticated experimental techniques have enabled
the simultaneous measurement of bead and fluid velocities (van Hout 2013; Ebrahimian
et al. 2019; Ahmadi et al. 2020; Baker & Coletti 2021). For example, van Hout (2011,
2013) used combined planar PIV-PTV to resolve spatially and temporally the motion of
polystyrene beads as well as the surrounding water velocities in a TBL. He identified
three lift-off trajectories: (i) slow ascent, (ii) steep ascent, and (iii) saltation. The specific
trajectory shape depended on the sequence and type of coherent turbulent structures
encountered by the beads during their ascent. Bead lift-off was synchronized with a
sharp peak in the shear-induced lift force, while the wall-normal drag force opposed
the lift force as the beads gained height. Using the same data processing procedure as
developed by van Hout, Sabban & Cohen (2013), Baker & Coletti (2021) performed
a comprehensive statistical analysis of polystyrene bead interaction with a TBL, and
in particular provided information on bead accelerations. Employing state-of-the-art
time-resolved tomographic PIV-PTV, Ahmadi et al. (2020) and Ebrahimian et al. (2019)
investigated the 3-D particle–flow interaction of polystyrene and glass beads in a turbulent
channel flow. Based on bead acceleration, Ebrahimian et al. (2019) identified an inner layer
(comprising the viscous sublayer and part of the buffer layer) where beads decelerated and
accelerated in the streamwise and wall-normal directions, respectively. In the outer layer,
beads accelerated in the streamwise direction with maximum momentum transfer in the
logarithmic layer. In addition, Ebrahimian et al. (2019) showed that bead–wall interaction
depended on incident angles, and that assuming point-particles and elastic particle–wall
collisions is inadequate to model accurately large inertial beads in turbulent wall-bounded
flows. Bead rotation was not measured in the above-discussed studies.

As mentioned previously, the majority of numerical studies use the point-particle
approach (Balachandar & Eaton 2010) in which finite-size effects and particle rotation
are not accounted for. However, in recent years, particle-resolved simulations (Zhao &
Andersson 2011; Ardekani & Brandt 2019; Peng, Ayala & Wang 2019; Yousefi, Costa
& Brandt 2020) have indicated that particle rotation leads to turbulence modulation and
should not be neglected. The simultaneous measurement of the 3-D flow field and the
motion (translation and rotation) of a freely moving particle is challenging (Bellani et al.
2012; Klein et al. 2012). Recently, using stereoscopic imaging, Tee, Barros & Longmire
(2020) measured the translation as well as rotation of individual finite-sized magnetic
wax spheres released in a TBL. Small markers on the sphere’s surface allowed tracking.
Besides sphere saltation, re-suspension and sliding on the wall, also spanwise sphere
translation was observed, suggesting that spanwise forces are important. Repeated sphere
lift-off events of forward rolling spheres were attributed to the Magnus lift force. They did
not capture simultaneously the instantaneous velocity in the vicinity of the spheres.

The present research is motivated by the lack of detailed quantitative information
on the coupled 3-D rotational and translational dynamics of a freely moving sphere
and the surrounding flow field in a TBL flow. The novelty of the present work lies
in the simultaneous measurement of sphere and flow dynamics using a combination of
time-resolved tomographic particle image velocimetry (tomo-PIV) and refractive index
matched hydrogel spheres. The spheres were tagged by tracer particles such that their
rotational as well as translational motion could be determined. The finite-sized spheres had
diameters of approximately 70 inner wall units, invalidating the point-particle approach.
The experimental set-up and data processing are described in § 2. Results on translational
and rotational sphere dynamics, and their interaction with the coherent structures found
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in TBLs, are presented in § 3, including a discussion of the forces acting on the spheres.
Finally, a short discussion and summary are presented in § 4.

2. Experimental set-up and data processing

2.1. Experimental set-up
The measurements were performed in the closed-loop water flume at the Laboratory
for Aero- and Hydrodynamics at Delft University of Technology. The cross-section of
the water volume that filled the flume at the measurement position was 61.6 × 61 cm2

(width × height). The experiments were performed 4 m downstream of the entrance to the
channel. In order to ensure a fully developed TBL at the measurement position, a zigzag
trip (Elsinga & Westerweel 2011) was placed 500 mm downstream of the test section inlet
to force transition to turbulence. A false bottom (2.5 cm thick) was positioned 16.5 cm
above the actual bottom of the channel, on top of two elongated, rectangular supports, as
depicted in figure 1. The ‘effective’ (open) flow area was Ae = 0.3521 m2. The streamwise,
wall-normal and transverse directions are denoted x1, x2 and x3, respectively (figure 1),
and corresponding instantaneous flow velocities are denoted Ui (i = 1, 2, 3). The origin
of the coordinate system was positioned on the false bottom wall at the start of the volume
of interest (VOI) in the streamwise direction and at the edge of the VOI in the spanwise
direction (see inset in figure 1d). Here and in the following, temporal and spatial averages
are denoted by an overbar and angle brackets, respectively. Normalization by inner wall
parameters – i.e. by the friction velocity uτ and the kinematic water viscosity ν – is denoted
by the superscript ‘+’. Fluctuating velocity components were calculated by Reynolds
decomposition, Ui = Ūi + ui, where ui (i = 1, 2, 3) denote the instantaneous fluctuating
velocity components. Root-mean-square (r.m.s.) values are indicated by a prime.

A frequency-controlled pump was used to circulate the water through the closed-loop
water flume. The bulk flow velocity based on Ae was Ub = 0.174 ± 0.002 m s−1, and the
corresponding bulk Reynolds number was Re = Ubh/ν = 7.3 × 104, where h (= 420 mm)
is the water level measured from the false bottom upwards, and ν was taken at the measured
water temperature (T = 27 ◦C).

The experiments were performed using a tomo-PIV set-up consisting of four high-speed
cameras (Imager Pro HC, 2016 × 2016 pixels), a high-speed laser (Nd:YLF, Darwin
Duo 80M, Quantronix), optics, and acquisition/processing software (LaVision GmbH).
Near-neutrally buoyant hollow glass spheres (∼10 μm, Sphericell, Potter’s Industries)
were used as tracer particles. This set-up allowed us to measure all three instantaneous
flow components in a volumetric domain (Adrian 2011).

The cameras were mounted on a rigid frame that was not connected to the water
channel to minimize vibrations, and their set-up is displayed schematically in figures
1(b–d). Cameras 1 and 2 were level with the false bottom, with viewing angles about
the x1–x3 plane of 24◦ and 29◦, respectively, while cameras 3 and 4 viewed the VOI
from above as depicted schematically in figures 1(c,d). Note that no prisms were used
to reduce refraction, and as a result, the effective solid angle of the camera set-up was less
than depicted. All cameras were equipped with lenses (micro-Nikkor, Nikon) mounted on
Scheimpflug adapters to ensure focus across the cameras’ fields of view. The focal lengths
of the lenses were 105 mm (cameras 1 and 2, f-numbers f# = 16) and 200 mm (cameras
3 and 4, f# = 22). Note that the f-numbers of the lenses were set high enough to ensure
sufficient depth of focus across the illuminated VOI.
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Figure 1. Schematic layout of the experimental set-up: (a) cross-section of the flume at the measurement
position. Tomo-PIV camera set-up: (b) top view, and side views of cameras (c) 1 and 3, (d) 2 and 4. All
dimensions are in mm. Inset in (d) shows the origin of the employed right-handed coordinate system.

The laser beam was expanded and collimated using two cylindrical lenses and passed
through a knife-edge filter to ensure well-defined edges of the VOI in the x3-direction.
It was guided to enter the flume from the top, and a stationary water-filled acrylic
hydrodynamically shaped ‘box’ was used to remove any surface waves. The dimensions
of the VOI were approximately 60 × 60 × 15 mm3 (length × height × width). In order to
ensure sufficient light intensity, a mirror was placed within the false bottom (under a cover
plate) in order to reflect the expanded and collimated laser beam back to the VOI.

To obtain visual access around the freely moving sphere with a limited number of
cameras, refractive index matched hydrogel spheres were used (see also Bellani et al.
2012; Klein et al. 2012). These were bought in dry state (∼2 mm in diameter), and after
they were soaked in water for a few minutes, they attained diameters between 7 and 8 mm.
Despite their large water content, the hydrogel spheres were not neutrally buoyant, and
their material density was determined based on settling velocity measurements in a 1.5 m
high, quiescent water column (diameter 9 cm). The density of the spheres when fully
saturated was ρs = 1002 ± 0.3 kg m−3. In order to determine the spheres’ translational and
rotational movement, tracer particles were injected into the hydrogel spheres, leaving four
to five ‘spokes’ inside them. Figure 2(a) shows an example of a hydrogel sphere imaged
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(a) (b) (c) (d )

‘Spokes’
Hydrogel

sphere

Figure 2. Overview of the sphere detection procedure. Cropped images (single camera) of: (a) raw PIV data
showing the spokes imaged within the hydrogel sphere and the tracer particles in its vicinity; (b) silhouette
enhanced (and ‘holes’ filled) sphere. The sphere’s perimeter was detected using the circular Hough transform
and is indicated by a yellow circle in (b,c). (c) Detected sphere perimeter containing the ‘spokes’. (d) Generated
binary mask.

by one of the cameras during the experiment. Several spheres with ‘spokes’ were prepared
prior to the experiments and placed inside a 5 ml syringe having inner diameter 11 mm. The
syringe was flush-mounted with the top of the false bottom, and positioned 20 cm upstream
of the VOI (figure 1b). It was driven manually by a second syringe that was located outside
the flume. During an experiment, spheres were slowly, one by one, released into the TBL.
One data set (3140 images) was acquired for the undisturbed boundary layer flow (without
spheres), and four additional data sets including freely moving spheres were acquired at
acquisition frequency 250 Hz to ensure time series conditions. Although several spheres
would traverse the VOI during a single set, only one single sphere would be present at a
certain time instant. In addition, in order for the data processing algorithm (discussed in
the next subsection) to work, the spokes had to be well imaged while the spheres had to
reside within the VOI for the most part of their passage through the VOI. In total, four
different spheres that satisfied these requirements were tracked and processed, as will be
discussed below.

2.2. Data processing

2.2.1. Undisturbed boundary layer flow
Data processing was different for the undisturbed boundary layer flow and the data
sets containing the freely moving spheres. The former were processed using ‘standard’
tomo-PIV data processing procedures similar to those described by van Hout et al. (2018).
These comprised image pre-processing, self-calibration, tomographic reconstruction of
the 3-D light intensity field, and direct correlation to obtain the 3-D velocity vector fields
(Elsinga et al. 2006). The 3-D intensity field was reconstructed using the fast multiplicative
algebraic reconstruction technique (fast MART) algorithm as implemented in DaVis 8.2
(LaVision GmbH) using six iterations. The transverse borders of the VOI were based
on the mean reconstructed intensity field and were taken as the locations where the
signal-to-noise ratio exceeded 3. The resulting VOI width was 15 mm, matching the width
set by the knife-edge filter. The position of the wall was determined by the location of a
sharp peak in mean intensity as a result of reflections at the wall.

The 3-D velocity vector fields were determined by direct cross-correlation using a
multi-pass approach (van Hout et al. 2018) having final interrogation volumes 40 ×
40 × 40 voxels at 75 % overlap, leading to a vector spacing of 0.23 mm corresponding
to 2.1 inner wall units. Note that the spatial measurement resolution is dictated by the
interrogation volume size, which corresponds to 8.4 inner wall units. Post-processing
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Freely moving spheres in a turbulent boundary layer

of the vector maps comprised (i) universal outlier detection, (ii) ‘fill’ removed data
by interpolation, and (iii) smoothing. In order to further reduce noise, second-order
polynomial regression (Elsinga et al. 2010) was applied to the vector maps, and velocity
derivatives were based on the least-squares fitted polynomials. Data quality was validated
by evaluating the continuity equation, and typical values of the coefficient of determination
in the centre part of the VOI were R2 ≈ 0.7, i.e. similar to those reported by van Hout et al.
(2018).

Based on the undisturbed boundary layer data, the friction velocity uτ was determined
using the Clauser method (Clauser 1956), taking the von Kármán constant and intercept
value as κ = 0.41 and B = 5.0 (Schlichting & Gersten 2000), respectively.

2.2.2. Data sets containing the sphere
Sequences of raw PIV images were pre-processed to enhance the sphere’s silhouette,
which could be distinguished from the background PIV image despite the refractive
index matching technique that was employed (figure 2). The resulting greyscale images
were binarized, small-scale noise was removed by a two-dimensional (2-D) median filter,
and subsequently ‘holes’ were filled (figure 2b). The enhanced sphere’s silhouette was
detected using the circular Hough transform (figures 2b,c; Pedersen 2007), and a mask
was generated for each camera and image in the sequence (figure 2d). Based on these 2-D
masks, a visual hull of the sphere was reconstructed in space (van Hout et al. 2018) and
converted into a point-cloud. Its geometric centre was calculated and used as an estimate
of the sphere’s position in space, while the diameter of the largest sphere confined within
the boundaries of the visual hull was used as an estimate of the sphere’s diameter. The
uncertainty of the estimated sphere position did not exceed 0.15 mm in each direction, i.e.
less than 2 % of the typical sphere diameter.

The determined diameter and centre position of the sphere were used to separate the
spokes from the surrounding tracer particles so that they could be processed separately.
An example of the 3-D sphere volume containing the spokes as well as single tracer
particles near the sphere’s boundary is shown in figure 3. In order to determine the
sphere’s translation and rotation, several methods were considered based on: (i) direct
cross-correlation, (ii) 3-D line detection using the 3-D Hough transform (Dalitz, Schramke
& Jeltsch 2017); and (iii) the iterative closest point (ICP) algorithm (Smistad et al. 2015).
The first method was too time-consuming, while the second proved unreliable due to the
spokes’ irregular shapes. The employed ICP algorithm (Smistad et al. 2015) determines the
rigid body transformation between two point-clouds (source and target) by approximating
the best-fitted (least-squares) transformation through iteratively matching each point in
the source to its nearest neighbour in the target. In order to apply this method, the masked
reconstructed sphere volumes were converted to ‘sparse’ point-clouds, and as an initial
guess, the sphere centre displacement was based on its estimated centroid positions to
increase accuracy and speed up convergence. Besides the sphere displacement, this method
also provided the sphere’s change in orientation about x1, x2 and x3, i.e. �α1 (roll),
�α2 (pitch) and �α3 (yaw), respectively. Based on the determined change in orientation,
instantaneous angular velocities were determined by α̇i = �αi/�t (i = 1, 2, 3) in rad s−1,
where �t is the time difference between subsequent frames. The quality and accuracy of
point-cloud registration using ICP is given by the r.m.s. error. Typical values of the r.m.s.
error were 2–3 pixels, i.e. 0.06–0.1 mm. Assuming that all errors are purely translational
or rotational, typical uncertainties of the spheres’ displacement and change in orientation
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Figure 3. Example of the binarized reconstructed light intensity field confined within the determined sphere
boundary. Spokes are numbered from 1 to 5. Tracer particles at the perimeter of the sphere are shown as small
black dots (examples within dashed red ellipse).

were smaller than 1.5 pixels (0.05 mm) and 0.01 rad in each direction, respectively.
Note that these are conservative estimates and that the actual uncertainties are expected to
be lower. Instantaneous streamwise, wall-normal and transverse sphere centroid velocities
and sphere angular velocities are denoted by Vi and α̇i (i = 1, 2, 3), respectively. Sphere
centroid positions are indicated by xi,c (i = 1, 2, 3), where the subscript ‘c’ denotes the
sphere centroid position.

Tracks of sphere centroid positions as well as their translational and angular velocities
were smoothed to reduce random noise by applying robust local regression with weighted
linear least-squares and a second-degree polynomial model (Cleveland 1979; ‘rloess’ as
implemented in Matlab). In order to limit filtering of relevant data, the span of the
local regression was based on a four-point stencil preceding and succeeding each data
point, corresponding to �t = 32 ms, i.e. approximately twice the sphere’s response time,
τs = (ρs − ρ)D2/18μ ≈ 15.3 ms, where ρ denotes the water density (at 27 ◦C) and μ

denotes the dynamic water viscosity (at 27 ◦C). Note that this sphere’s response time,
which is used commonly in particle-laden flows (e.g. Ebrahimian et al. 2019; Baker &
Coletti 2021), is derived from a force balance on a sphere settling in a quiescent fluid
assuming Stokes drag. This definition is used commonly when (ρs − ρ) is small, and for
neutrally buoyant small particles would lead to a zero response time (i.e. flow tracers). The
Kolmogorov time scale τk at x+

2 ≈ 100 was estimated to be τk ≈ 79 ms (see § 3.2.1), i.e.
twice the span of the local regression and approximately 5τs, indicating that the sphere
response time and span of the regression are small with respect to the smallest turbulence
scales. Uncertainties in sphere position and time step �t+ were estimated as δx+

i,c = 1 and
δ(�t+) = 0.07, respectively. Based on the smoothed centroid positions, components of
the translational sphere centroid velocity vectors were calculated by two methods: (i) a
central difference scheme using forward and backward differences at the start and end of
the trajectories; and (ii) taking the derivative of a locally least-squares fitted second-order
polynomial.
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Freely moving spheres in a turbulent boundary layer

After determining the 3-D sphere centroid positions, the sphere volumes were masked
in the 3-D reconstructed intensity fields, after which the 3-D flow field around the spheres
was calculated by tomo-PIV data processing similarly as discussed in § 2.2.1. Note that the
spatial resolution of the tomo-PIV (see § 2.2.1) was insufficient to resolve the boundary
layer on the sphere. In studying particle-laden flows, it is important to know the particle’s
motion relative to the flow velocity evaluated at the particle’s position characterized by the
instantaneous relative velocity vector (here, vectors are denoted in bold typeface) between
the sphere and the fluid U r = V − Uc. Here, V is the sphere velocity vector (based on
the derivative of the locally fitted second-order polynomial), and Uc is the ‘undisturbed’
instantaneous water velocity vector at the sphere’s centroid position, as indicated by
the subscript ‘c’. Note that in an experiment, the ‘undisturbed’ fluid velocity cannot be
determined since the presence of the spheres disturbs the flow in its vicinity. Bearing this in
mind, a practical approach was taken and Uc was determined by interpolation techniques
(see also van Hout 2013; Baker & Coletti 2021). Here, water velocity vectors at the sphere’s
centroid position were determined using a robust iterative method for 3-D data gap-filling
(Garcia 2010). The accuracy of this method was tested on a data set without sphere for
which the 3-D velocity field was known. We removed 3-D velocity vectors occupying a
spherical volume the same size as the hydrogel sphere, and the 3-D data gap-filling method
was used iteratively to interpolate the 3-D velocity field. R.m.s. values of the differences
between the interpolated and the original 3-D velocity field were comparable to typical
uncertainties of an instantaneous PIV measurement (0.1–0.2 pixels; Wieneke 2008). The
water velocity vector at the position of the sphere centroid, Uc, was evaluated by two
methods: (i) as the interpolated velocity at the sphere centroid (indicated by the superscript
‘c’); and (ii) as the velocity vector averaged spatially over all interpolated water velocities
confined within the sphere volume (‘volume averaged’, denoted by superscript ‘v’).

3. Results

3.1. Undisturbed turbulent boundary layer
The wall-normal profile of the temporally and spatially averaged, normalized streamwise
velocity 〈Ū1〉+ is depicted in figure 4 together with the ‘theoretical’ velocity profiles in the
viscous sublayer, U+

1 = x+
2 , and in the log layer, U+

1 = (1/κ) ln x+
2 + B (‘log-law’; Pope

2000), where κ (= 0.41) denotes the von Kármán constant, and the intercept is B = 5.0.
The spatial average was taken over the transverse and streamwise directions. In addition to
the present data, laser Doppler velocimetry (LDV) measurements by De Graaff & Eaton
(2000) are also plotted in figure 4. As can be seen, for x+

2 ≥ 8, the wall-normal profile
of 〈Ū1〉+ matches closely the measurements by De Graaff & Eaton (2000) and log-law
behaviour is observed for 30 ≤ x+

2 ≤ 200. Measurements by De Graaff & Eaton (2000)
were performed at higher momentum thickness Reynolds numbers Reθ , and as a result,
the outer layer is shifted to larger x+

2 values. Close to the wall (x+
2 < 8), the tomo-PIV

measurements deviate from the velocity profile in the viscous sublayer due to the finite
size of the interrogation volume (van Hout et al. 2018) and the strong gradients near the
wall.

The mean streamwise velocity at the edge of the boundary layer was estimated
based on the plateau values that were reached farthest away from the wall, i.e. Ue =
0.189 ± 0.001 m s−1 (Ue/Ub = 1.086). The boundary layer thickness δ = 43 ± 3 mm was
determined as the wall-normal position for which 〈Ū1〉 = 0.99Ue. Based on the measured
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〈Ū1〉+

Figure 4. Semi-logarithmic plot of 〈Ū1〉+ as a function of x+
2 . Present data: red squares denote Reθ = 850;

the dash-dot curve denotes the velocity profile in the viscous sublayer; the dashed line denotes the ‘log-law’.
Literature results (De Graaff & Eaton 2000): diamonds denote Reθ = 1430; triangles denote Reθ = 5200.

velocity profile, the displacement and momentum thicknesses were δ∗ = 6.03 ± 0.03 mm
and θ = 4.47 ± 0.05 mm, respectively, giving a shape factor H = δ∗/θ = 1.35 ± 0.01, i.e.
within the range of typical values for TBLs (Schlichting & Gersten 2000). The momentum
thickness Reynolds number was Reθ = Ueθ/ν = 850 ± 10. The friction velocity uτ =
0.009 ± 0.001 m s−1 was determined by the Clauser method (Clauser 1956) assuming
κ = 0.41 and B = 5.0, giving friction Reynolds number Reτ = uτ δ/ν = 390 ± 50.

Wall normal profiles of the normalized and spatially averaged Reynolds stress
components, 〈u1u1〉+, 〈u2u2〉+ and −〈u1u2〉+, are depicted in figure 5 and also compared
to measurements by De Graaff & Eaton (2000) as well as hot-wire measurements by Erm
& Joubert (1991) (Reθ = 697 and 1003). The present results compare well with those of
Erm & Joubert (1991) and De Graaff & Eaton (2000). However, note that in the tomo-PIV
measurements, the 〈u1u1〉+ profile becomes governed by noise for x+

2 ≤ 15 (figure 5(a);
see also van Hout et al. 2018).

The present data sets enable us to visualize the 3-D vortex structures residing in the
TBL using the Q-criterion (Hunt, Wray & Moin 1988; van Hout et al. 2018). An example
of a snapshot depicting vortical structures as Q-criterion iso-surfaces overlaid with the
normalized streamwise and transverse vorticity, ω+

1 and ω+
3 , is shown in figures 6(a) and

6(b), respectively, while a different viewing angle of the same snapshot is depicted in
figure 7. This snapshot shows typical vortical structures residing in the TBL. Note that
close to the wall (x+

2 ≤ 15), the data are noisy due to the limited spatial measurement
resolution. The main vortices prominent in this snapshot are a pair of uplifted, unconnected
counter-rotating vortices (denoted ‘SV1’ and ‘SV2’ in figures 6 and 7). The largest of
the pair (SV2) exhibits a characteristic ‘cane’ shape (Robinson 1991). SV1 and SV2 are
uplifted from the wall at an angle of approximately 40◦–45◦, typical of hairpin structures
(Adrian 2007). Note that due to the limited transverse extent of the VOI (�x+

3 ≈ 150), our
measurements do not reveal the complete structure of SV2, or any connection between SV1
and SV2. In addition, in the present data set, we did not observe fully developed, connected
hairpin structures likely since typically, they have transverse widths of approximately
100–150 inner wall units (Adrian 2007), i.e. comparable to the width of the VOI.
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Freely moving spheres in a turbulent boundary layer
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Figure 5. Semi-logarithmic plots of the wall-normal profiles of the normalized Reynolds stress components:
(a) 〈u1u1〉+, (b) 〈u2u2〉+, and (c) −〈u1u2〉+. Present data: red squares denote Reθ = 850. Literature results:
from De Graaff & Eaton (2000), diamonds denote Reθ = 1430, and triangles denote Reθ = 5200; from Erm &
Joubert (1991), × symbols denote Reθ = 697, and + symbols denote Reθ = 1003.

Based on the proximity and similarity of SV1 and SV2, and the fact that they seem to
comprise the ‘legs’ of a hairpin structure whose induced flow field ‘ejects’ fluid away
from the wall, it is possible that SV1 and SV2 are or were part of a large uplifted hairpin
structure. In addition to the uplifted counter-rotating vortical structures, also transverse
vortices (such as denoted by ‘TV’ in figures 6 and 7) spanning the width of the VOI
were observed. Note that TV is characterized by ω+

3 < 0 and rotates in the clockwise
direction about the x3-axis (as defined for a right-handed Cartesian coordinate system).
Just upstream, it ‘sweeps’ fast-moving fluid towards the wall.

3.2. Sphere dynamics
A total of four spheres, denoted by S1, S2, S3 and S4, were tracked in separate data sets.
Their diameters ranged from 7.3 mm to 8.3 mm, and normalized by inner wall scaling
were D+ = 66 (S1), 73 (S2), 72 (S3) and 75 (S4). Although only a finite number of spheres
were tracked over the entire VOI, their total time trace represents approximately 1000
Kolmogorov time scales.

3.2.1. Sphere translation
The centroid positions of each sphere were tracked in space and time as described in § 2.2,
and the normalized wall-normal and transverse sphere centroid positions, x+

2,c and x+
3,c, as
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Figure 6. Example snapshot of Q-criterion iso-surfaces visualizing the coherent structures detected in the
undisturbed TBL. Iso-surfaces are overlaid by (a) the normalized transverse vorticity ω+

1 , and (b) the
normalized streamwise vorticity ω+

3 . An animation (supplementary movie 1) depicting the snapshot at different
angles is available at https://doi.org/10.1017/jfm.2022.477.
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Figure 7. Same snapshot as depicted in figure 6(b) but at a different viewing angle.

a function of the sphere’s streamwise centroid position x+
1,c, are depicted in figure 8. Both

the raw and the smoothed data are depicted, showing that smoothing (see § 2.2.2) removes
random noise without altering trends. The vertical ‘error’ bar associated with sphere S4
in figure 8(a) indicates its actual size (D+ = 75). The transverse extent of the VOI was in
the range 0 ≤ x+

3 ≤ 150 (the border at x+
3 = 0 is indicated by a horizontal dashed line in

figure 8b), and while in most cases the sphere centroid positions were located within the
confines of the VOI, S1 and S2 were partially outside of it.
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Freely moving spheres in a turbulent boundary layer
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Figure 8. Sphere wall-normal and transverse centroid positions in inner wall units as functions of x+
1,c:

(a) x+
2,c, and (b) x+

3,c. Red diamonds, S1; blue triangles, S2; black circles, S3; green squares, S4. Open symbols,
raw data; filled symbols, smoothed data. Uncertainty is smaller than the marker size. The vertical error bar
in (a) at the start of the trajectory of S4 indicates the sphere diameter. The black dashed horizontal line in
(b) indicates the edge of the VOI.

Spheres S2, S3 and S4 were located closest to the wall (figure 8a) and moved towards
it (all spheres entered the VOI below x+

2 = 130). In contrast, sphere S1 (red markers
in figure 8a) entered the VOI at x+

2 ≈ 150 and remained at almost the same height.
We will see in the following sections that the different sphere motion is the result of
differences in the flow field in the spheres’ vicinity and consequently different forcing on
the spheres. Note that due to their relatively large size, the spheres are mostly immersed
in the logarithmic layer, and none of them comes into contact with the wall. Even S3

(black markers in figure 8a), which comes closest to the wall (x+
2,c = 50 at x+

1,c = 520; see
figure 8a) and almost penetrates the viscous sublayer, is still partially inside the logarithmic
layer. As a result, the finite-sized spheres are exposed to different turbulence characteristics
in the buffer and the logarithmic layers, and varying velocity gradients act on them. In the
transverse direction (figure 8b), S2 and S4 hardly change position (less than 10 wall units)
upon traversing the VOI, while S1 and S3 exhibit considerable transverse displacements
of approximately 40 and 50 wall units (∼ D+), respectively. The latter displacements are
approximately 10 % of the corresponding streamwise distance travelled, in agreement with
the measurements by Tee et al. (2020). Note that spanwise migration implies spanwise
forcing on the sphere, as will be discussed further in § 3.4.

The normalized instantaneous streamwise, wall-normal and transverse sphere centroid
velocities are plotted in figures 9 and 10 as functions of x+

1,c for all tracked spheres.
Both sphere velocities based on the smoothed centroid positions as well as those based
on the derivatives of locally least-squares fitted second-order polynomials are depicted.
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Figure 9. Normalized instantaneous sphere centroid velocity components of S1 (a,c,e) and S2 (b,d, f ), and
the ‘undisturbed’ fluid velocities at the spheres’ centroid positions as functions of x+

1,c in the streamwise (a,b),
wall-normal (c,d), and transverse (e, f ) directions. V+

i is based on: squares, smoothed sphere centroid positions;
solid curves, derivatives of the least-squares fitted second-order polynomial; triangles, Uc+

i,c ; circles, Uv+
i,c .

The dashed horizontal line in (c,d) denotes the sphere’s settling velocity in a quiescent fluid. Uncertainties
of V+

i estimated by the r.m.s. values of the difference between the sphere centroid velocities based on the
raw data and the smoothed (local polynomial fit) data, ±(δV+

1 , δV+
2 , δV+

3 ), are (0.39, 0.25, 0.60) for S1, and
(0.40, 0.99, 0.49) for S2.

For comparison, the calculated quiescent settling velocity, Vs = (ρs − ρ)D2g/(18μ), is
also plotted as a horizontal dashed line in figures 9(c,d) and 10(c,d). As expected,
the curves of sphere velocities determined based on the derivatives of locally fitted
second-order polynomials (solid lines in figures 9 and 10) are smoother than those based
on a central difference scheme. However, the trends are conserved. The uncertainties of
V+

i estimated by the r.m.s. values of the difference between V+
i,c based on the raw data and

based on the local polynomial fit are presented in the captions of figures 9 and 10.
The instantaneous components of the ‘undisturbed’ water velocity vectors Uc, based

on the two methods discussed in § 2.2, are also plotted in figures 9 and 10. It can be
observed that although the two methods lead to slightly different results, overall they
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Figure 10. Normalized instantaneous sphere centroid velocity components of S3 (a,c,e) and S4 (b,d, f ), and
the ‘undisturbed’ fluid velocities at the spheres’ centroid positions as functions of x+

1,c in the streamwise (a,b),
wall-normal (c,d), and transverse (e, f ) directions. V+

i is based on: squares, smoothed sphere centroid positions;
solid curves, derivatives of the least-squares fitted second-order polynomial; triangles, Uc+

i,c ; circles, Uv+
i,c .

The dashed horizontal line in (c,d) denotes the sphere’s settling velocity in a quiescent fluid. Uncertainties
of V+

i estimated by the r.m.s. values of the difference between the sphere centroid velocities based on the
raw data and the smoothed (local polynomial fit) data, ±(δV+

1 , δV+
2 , δV+

3 ), are (0.48, 0.19, 0.72) for S3, and
(0.26, 0.15, 0.42) for S4.

compare well. Only for sphere S3 (U+
1,c in figure 10a) and S2 (U+

1,c and U+
2,c in figures

9b,d) are small differences observed, and volume-averaged values of U+
1,c are lower than

those interpolated onto the sphere centroid position, and vice versa for U+
2,c. This is likely

because S2 and S3 were closest to the wall (figure 8a), where the velocity gradients were
strongest. Note that in all other cases, values of U+

i,c based on both methods nearly collapse.
Looking at the changes in V+

1 (figures 9a,b and 10a,b), it is observed that only for
S3 (figure 10a) does V+

1 decrease upon approaching the wall from about V+
1 ≈ 16.5 at

x+
1,c = 50 (x+

2,c ≈ 94) to V+
1 ≈ 15 at x+

1,c ≈ 500 (x+
2,c ≈ 51). The corresponding values of

the undisturbed average streamwise water velocity (figure 4) are similar and are given by
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(U+
1,r)

′ Ū+
1,r (U+

2,r)
′ Ū+

2,r (U+
3,r)

′ Ū+
3,r

S1 0.43 −0.38 0.72 −0.69 0.93 0.18
S2 0.29 −0.07 0.20 −0.04 0.37 0.12
S3 0.32 −0.29 0.16 0.04 0.38 −0.10
S4 0.16 −0.09 0.14 −0.08 0.50 −0.22

Table 1. Summary of the values of (U+
i,r)

′ and Ū+
1,r for all investigated spheres.

〈Ū1〉+ = 14.6 and 16.1 at x+
2 = 51 and 93, respectively. In contrast, S2 and S4, which also

move towards the wall (figure 8a), have nearly constant V+
1 – i.e. V+

1 ≈ 17.2 and 17.0
for S2 and S4, respectively – and they move faster than the mean water flow at the same
height (figure 4) for most of their trajectory. Only S1, which moves slightly away from the
wall (figure 8(a), x+

2,c ≈ 150), increases its streamwise velocity from V+
1 ≈ 15 to V+

1 ≈ 16
(figure 9a), moving slower than the mean water velocity at this height (〈Ū1〉+ = 17.2 at
x+

2,c = 150; figure 4). Note that S1, which enters the VOI farthest from the wall, has a
streamwise velocity that is lower than those of S2, S3 and S4 (figures 9a,b and 10a,b).
Based on the mean streamwise water velocity profile (see figure 4) and the sphere’s
wall-normal position, one would expect it to be advected at a higher velocity. However,
since −〈u1u2〉+ > 0 (see figure 5c), a negative correlation between u1 and u2 dominates,
and S1 is advected by relatively slow-moving fluid as indicated by the accompanying values
of U+

1,c.
Streamwise velocity components of S1 and S3 (figures 9a and 10a) clearly lag the

interpolated ‘undisturbed’ water velocities along the trajectories, resulting in a drag force
acting on the sphere in the streamwise direction, as will be discussed in § 3.4. Note that
only in the case of S1 (figure 9b) does V+

2 lag U+
2,c along its trajectory, resulting in an

upward-directed drag force (see § 3.4) inhibiting wall-ward motion (figure 8a). In all other
cases, values of V+

i fluctuate around those of U+
i,c. An indication of the differences between

the sphere and fluid velocities at the sphere’s position is provided by the r.m.s. values of
U+

i,r (= V+
i − Uv+

i,c , with V+
i based on the smoothed data) and the averages along the

sphere trajectories, Ū+
i,r, as summarized in table 1 for the different spheres. Values of

Ū+
1,r show that on average, in all cases the spheres lag the fluid, while in the transverse

and wall-normal directions, this is not necessarily the case. Further note that similar
magnitudes of (U+

1,r)
′ and Ū+

1,r indicate that the spheres either lag (Ū+
1,r < 0) or exceed

(Ū+
1,r > 0) the fluid for most of their trajectories.
The instantaneous wall-normal velocities of the spheres (figures 9c,d and 10c,d) are

in accordance with the direction of their wall-normal motion (see figure 8a), i.e. for S1,
V+

2 > 0, and in all other cases, V+
2 < 0. Another interesting point to notice is that for

the spheres that move towards the wall (S2, S3 and S4), |V+
2 | ≈ 0.5|Us|, indicating that

besides the net buoyancy force, additional forces opposing gravity, such as drag and lift
forces, must be important, as will be discussed further in § 3.4. Note that this result is
different from measurements reported by Tee et al. (2020), who found that wax spheres
(D+ = 58 ± 2, ρs/ρ = 1.006 ± 0.003) with characteristics similar to those of the present
hydrogels, suspended in a TBL (Reτ = 680), descended at almost 2|Us|. Physically, this
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Freely moving spheres in a turbulent boundary layer

f1 (Hz) Sr1 f2 (Hz) Sr2 f3 (Hz) Sr3

S1 27.8 52 36.4 41 24.0 21
S2 22.0 68 38.9 174 31.8 77
S3 27.8 77 29.9 165 30.0 70
S4 22.7 130 26.1 171 27.3 50

Table 2. Summary of the estimated frequencies fi and Strouhal numbers Sri = fiD/(Uv
i,r)

′ associated with the
fluctuating sphere velocities.

means that the spheres must be exposed to a significant downward fluid impulse that was
not observed for the spheres investigated here.

The magnitudes of V+
3 (figures 9e, f and 10e, f ) are of the same order of magnitude

as those of V+
2 (figures 9c,d and 10c,d). In accordance with their spanwise displacement

(figure 8b), spheres S1 and S3 exhibited higher values of |V+
3 | (figures 9e and 10e) than

spheres S2 and S4, for which V+
3 ≈ 0 (figures 9f and 10f ). Our results indicate that

spanwise motion may be significant and should not be neglected, in agreement with Tee
et al. (2020).

In all cases, it can be observed in figures 9 and 10 that the sphere velocities exhibit
fluctuations along their tracks with amplitudes exceeding the estimated uncertainties (see
captions of figures 9 and 10). The estimated frequencies fi (i = 1, 2, 3), and Strouhal
numbers based on the r.m.s. values of the components of the relative velocities, Sri =
fiD/(Uv

i,r)
′ (i = 1, 2, 3), are summarized in table 2. Note that Tee et al. (2020) also reported

sphere velocities that fluctuated, which they attributed to vortex shedding (Res > 100). In
the present case, Strouhal numbers are much higher than those associated with vortex
shedding in the wake of a sphere in a uniform flow (0.1 < Sr < 0.2). Note that Tee et al.
(2020) did not measure the instantaneous flow field in the vicinity of the spheres, and their
Strouhal numbers were based on the mean, ‘undisturbed’ streamwise water velocity at the
sphere’s centroid position. This will overestimate Res and result in lower Sr than when the
actual slip velocity is accounted for. In the present measurements, the instantaneous sphere
Reynolds numbers Res = |U r|D/ν, based on the magnitude of the instantaneous relative
velocity vector, is mostly in the range 10 ≤ Res ≤ 80 (see figure 11), while Res = 63,
36, 31 and 35 for S1, S2, S3 and S4, respectively. Since for spheres exposed to a uniform
flow, flow separation occurs at Res ≈ 25 (Taneda 1956), small wake oscillations start
at Res ≈ 130, and unsteady vortex shedding starts at Res ≈ 270 (Sakamoto & Haniu
1990), it is unlikely that vortex shedding played a role here. However, flow separation
may occur, and in conjunction with the unsteady TBL flow might lead to oscillations
in sphere velocities. Furthermore, as a result of the surrounding turbulence, the onset of
flow separation and vortex shedding may occur at a lower Res value. However, we did not
observe any signs of this in the measured 3-D flow field as discussed further in § 3.4.

Another mechanism that may lead to fluctuations in sphere velocities is the forcing
provided by the turbulence in the vicinity of the spheres. The turbulence time scales can
be estimated based on (i) the viscous time scale τv = ν/u2

τ , and (ii) the Kolmogorov
time scale τk = (ν/ε)1/2, where ε is the turbulent kinetic dissipation rate that can be
estimated in the log layer by ε ≈ u1u1(∂Ū1/∂x2)/3 (Pope 2000). Based on the present
data (summarized in table 3), this leads to fv(= 1/τv) = 81 Hz, and fk(= 1/τk) = 22
and 12.7 Hz at x+

2 = 50 and 100, respectively. Although these are crude estimates, the
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Figure 11. Histograms of the instantaneous sphere Reynolds numbers, Res, for all four spheres. Data points
are located at the centres of the bins (bin size 10).

x+
2 ∂〈Ū1〉/∂x2 〈u1u1〉 × 106 ε × 106 ηk fk = 1/τk

(s−1) (m2 s−2) (m2 s−3) (μm) (Hz)

50 3.95 364.5 480 213.6 22
100 2.0 243.0 162 280 12.7

Table 3. Summary of the estimated scales in the log layer.

fi (table 2) are of the same order of magnitude as fv and fk, supporting our hypothesis.
Note further that we validated that these frequencies were not an artefact of the applied
local regression detailed in § 2.2.

3.2.2. Sphere rotation
The angular velocities of the sphere, α̇i, were determined by the ICP algorithm as
described in § 2.2. Based on the interpolated water velocity vector field (see § 2), the
streamwise, wall-normal and transverse components of ωc were calculated and similar
as for Uc, ωc was evaluated as the volume-averaged value at the sphere’s centroid. The
components of the water angular velocities based on ωc and normalized in inner wall
scaling are given by Ω+

i,c = (ωi,cν)/(2u2
τ ), while the normalized angular sphere velocities

are given by α̇+
i = (α̇iν)/u2

τ (i = 1, 2, 3).
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Figure 12. Instantaneous normalized angular velocities of the sphere and the water versus x+
1,c for S1 (a,c,e)

and S2 (b,d, f ). Squares indicate sphere angular velocities α̇+
i based on smoothed data. Water angular velocities

at the sphere position are given for: Ωv+
i,c , circles; and Ωc+

i,c , triangles. Rotation is about: (a,b) x3, (c,d) x2, (e, f )
x1.

The results for α̇+
i (smoothed), Ωv+

i,c and Ωc+
i,c are plotted in figures 12 and 13 as

functions of x+
i,c for spheres S1, S2 and S3, S4, respectively. Average values of α̇+

i and
Ωv+

i,c are summarized in table 4. All four spheres exhibited negative (clockwise) angular

velocities about the x3-axis (α̇+
3 < 0, figures 12a,b and 13a,b, and α̇+

3 < 0 in table 4)
in accordance with the positive mean shear rate near the wall. Water angular velocity
components mostly have the same signs as those of the spheres, and in most cases the
rotational motion of the spheres lags that of the fluid (see table 4). Values of Ωv+

i,c clearly
differ in magnitude from Ωc+

i,c , especially for rotation about x3 (figures 12a,b and 13a,b),
and in most cases, Ωv+

i,c < Ωc+
i,c . This is the result of significant spatial non-uniformity

of the vorticity at the sphere’s position as it is immersed in the buffer and log layer of
the TBL, where turbulence is most active. In the case of high spatial non-uniformity, and
taking the finite size of the spheres into account, one may argue that the volumetric mean
presents a better estimate than the value evaluated at the sphere centroid. Sphere S3, which

is located closest to the wall, has the highest magnitude of α̇+
3 , followed by S1, while S2
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Figure 13. Instantaneous normalized angular velocities of the sphere and the water versus x+
1,c for S3 (a,c,e)

and S4 (b,d, f ). Squares indicate sphere angular velocities α̇+
i , based on smoothed data. Water angular velocities

at the sphere position are given for: Ωv+
i,c , circles; and Ωc+

i,c , triangles. Rotation is about: (a,b) x3, (c,d) x2, (e, f )
x1.

α̇+
3 α̇+

2 α̇+
1 Ωv+

3,c Ωv+
2,c Ωv+

1,c
(×10−3) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3)

S1 −28.9 3.0 −2.7 -22.1 −2.3 −0.26
S2 −20.63 −2.6 −1.7 -21.3 −9.8 −19.3
S3 −35.3 −12.1 −4.5 -48.3 −15.4 −4.4
S4 −18.8 0.63 −0.41 -28.1 3.1 −2.9

Table 4. Summary of angular sphere and water velocities averaged over the spheres’ trajectories.

and S4 rotate the slowest about x3 (see table 4). Note that the importance of the combined
shear-, wall- and rotation-induced lift forces on the wall-normal motion of the spheres is
discussed further in § 3.4.

In all cases, sphere angular velocities about the x1- and x2-axes (α̇+
1 and α̇+

2 in figures 12
and 13) are small, and mean values are substantially smaller than those about the x3-axis
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Ωv+
3,r Ωv+

2,r Ωv+
1,r

(×10−3) (×10−3) (×10−3)

S1 −7.4 ± 17.7 5.1 ± 16.7 −2.2 ± 13.1
S2 0.16 ± 9.7 7.0 ± 12.5 17.1 ± 18.0
S3 13.4 ± 5.1 3.1 ± 6.2 −0.3 ± 5.8
S4 9.5 ± 2.3 −2.5 ± 3.3 2.7 ± 3.1

Table 5. Summary of the average values of the relative angular velocities. Standard deviations are depicted as
uncertainties.

(see table 4). Only for S3 is α̇+
2 significant (≈ 0.3α̇+

3 ; see table 4) and the importance
of the rotation-induced lift force acting in the transverse direction (see figure 8b) will be
discussed in § 3.4. The mean values of the relative angular velocities along the different
sphere tracks, Ωv+

i,r = α̇+
i − Ωv+

i,c (i = 1, 2, 3) including their standard deviations, are

summarized in table 5. Values illustrate that the Ωv+
i,r vary significantly for the different

spheres and display large standard deviations as a result of the different flow field
characteristics in their immediate vicinity that are discussed next.

3.3. Flow field in the vicinity of the spheres
The present measurements allow us to determine simultaneously the instantaneous flow
field in the vicinity of the spheres as well as their motion (see §§ 3.2.2 and 3.2.1). Since
spheres S3 and S4 were fully resolved within the VOI (see figure 8), we will focus on them
in this subsection.

3.3.1. Sphere S3
Two instantaneous snapshots (�t+ = 16.7) of sphere S3, including the instantaneous
vortices overlaid by ω+

1 , are presented in figure 14 (and animations are provided in
supplementary movie 2). As observed, S3 is surrounded by a plethora of vortical structures.
A group of fragmented transverse and inclined vortices within the dashed ellipse in
figure 14(a) can be observed just upstream of S3 upon entering the VOI. The inclination
angle of this group is approximately 40 ◦ from the bottom wall, agreeing well with
typical inclination angles of hairpin packets observed in TBLs (Adrian 2007). However,
no complete connected hairpin structures were observed. As the sphere traverses the
VOI (figure 14b), most transverse vortices associated with the packet leave the VOI, and
mainly streamwise-oriented longitudinal vortices rotating about the x1-axis are observed
(figure 14b). In particular, close to the wall just below and downstream of S3, two
counter-rotating longitudinal vortices denoted by ‘LV1’ (ω+

1 > 0) and ‘LV2’ (ω+
1 < 0)

can be discerned in figure 14. They are located close to the wall inside the buffer layer
(x+

2 < 50) and extend up to x+
1 ≈ 300 in figure 14(a).

A close up of the sphere and parts of LV1 and LV2 are depicted in figure 15 at different
viewing angles, revealing some interesting characteristics. First, LV1 and LV2 are not
connected. Instead, just upstream of S3, a transverse ‘bridging’ vortex located between
x+

1 = 50 and 80 (denoted ‘TV1’ in figure 15) connects to LV1 and extends in the negative
x+

3 -direction up to the edge of the VOI (x+
3 = 0). This suggests that LV1 and TV1 are part

of a hairpin-like structure (Adrian 2007). Note that also LV2 is connected to a transverse
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Figure 14. Two snapshots (�t+ = 16.7) of the instantaneous vortical structures in the vicinity of S3 visualized
by Q-criterion iso-surfaces overlaid by ω+

1 . The sphere’s surface is depicted in yellow, with black markers
to indicate its change in orientation. Values in parentheses denote (x+

1,c, x+
2,c, x+

3,c). Supplementary movie 2
provides animations of the snapshot in (a) at different viewing angles.

vortical structure (denoted ‘TV2’ in figure 15) extending up to the edge of the VOI in
the positive x+

3 direction. The rotation directions of LV1, LV2, TV1 and TV2 that are
indicated by the overlaid streamwise and transverse normalized vorticity components in
figures 15(a) and 15(b), respectively, indicate that they generate downward-moving fluid
just ahead of the sphere. This downward motion is responsible for the relatively strong
wall-ward motion of S3 (see figure 8(a) as well as figures 9 and 10).

This is investigated further by analysing snapshots (�t+ = 5.5) of equatorial wall-normal
(x1–x3) and wall-parallel (x1–x2) planes moving with the sphere that depict the
instantaneous correlations of water fluctuating velocities, (u1u2)

+ (figures 16a,c,e,g
and 17a,c,e,g). Here and in similar plots subsequently, the sphere’s cross-section
is indicated by a white circle, and its rotation in the depicted plane relative to
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Figure 15. Close-up of the snapshot of sphere S3 in figure 14(a) at two different viewing angles. Vortical
structures are visualized by Q-criterion iso-surfaces overlaid by (a) ω+

1 , and (b) ω+
3 . The sphere surface is

depicted in yellow, with black markers indicating its orientation.

its initial orientation (denoted by a dashed line) is indicated by a rotated solid
line extending from the sphere’s centre. Contour plots of (u1u2)

+ (figures 16a,c,e,g
and 17a,c,e,g) clearly show a large, highly coherent area where (u1u2)

+ < 0 just
downstream of the sphere. Negative values of (u1u2)

+ may indicate both sweeps
and ejections, and to determine to which quadrant they belong, contour plots
of u+

1 in the same equatorial planes are depicted in figures 16(b,d, f ,h) and
17(b,d, f ,h). Combining the plots of (u1u2)

+ and u+
1 , it becomes clear that just

downstream of the sphere, the area associated with (u1u2)
+ < 0 correlates with u+

1 > 0,
indicating that sweeps induced by the combined action of the coherent structures
(figures 14 and 15) dictate the flow field just downstream of S3.

Besides the coherent sweep motion just downstream of S3, it can be seen in the
wall-parallel equatorial planes (figures 17b,d, f,h) that S3 is exposed to transverse shear.
This is especially clear in figures 17(d, f ), where patches of positive and negative
streamwise velocity fluctuations on opposite sides of S3 are observed. The resulting
shear-induced lift force will be discussed in § 3.4.

3.3.2. Sphere S4
Similarly as for S3, three snapshots (�t+ = 13.7) of the vortices in the vicinity of S4 are
depicted as Q-criterion iso-surfaces in figure 18, overlaid by ω+

1 and by ω+
3 . Also in this

case, several vortical structures characteristic of TBLs can be discerned. In particular,
downstream of S4, two counter-rotating, uplifted longitudinal vortices (denoted by ‘LV3’
and ‘LV4’ in figure 18) can be seen. LV4 is positioned above LV3 (see supplementary
movies 3 and 4), and both are tilted with respect to the x+

1 -axis towards the x+
3 -axis. As S4

traverses the VOI, downstream of it, a well-defined hairpin packet appears, consisting of
four hairpin heads (denoted by ‘HP1’ to ‘HP4’ in figures 18b,c). Again due to the limited
transverse extent of the VOI, only a part of the packet is resolved. All the hairpin heads
rotate in the clockwise direction (ω+

3 < 0; figure 18c), in agreement with the direction of
the mean shear. Note that the sphere is not overtaken by the hairpin packet as reported by
van Hout (2013), who studied smaller (D+ ≈ 10) polystyrene beads, but instead remains
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Figure 16. For S3, a sequence (�t+ = 5.5) of equatorial wall-normal planes depicting the correlations of
instantaneous water fluctuating velocities (u1u2)

+ (a,c,e,g), and the streamwise water velocity fluctuating
velocities u+

1 (b,d, f,h). The hydrogel sphere is depicted as a filled white circle. Its initial orientation is indicated
by a dashed line, while its changing orientation is indicated by a solid line.

positioned just upstream of the identified hairpin packet. However, it seems that the hairpin
packet’s development is hampered as S4 moves towards the wall. Evidence for this can be
found by looking at a close-up of the vortices in the vicinity of S4 as shown in figure 19.
This close-up shows that a somewhat distorted hairpin vortex is located below S4 (denoted
by ‘HP5’ in figure 19), and it is likely that HP5 is part of the identified hairpin packet
upstream of S4. However, the wall-ward motion of S4 hinders the self-induced upward
motion of HP5, and ‘pushes’ HP5 towards the wall. Note further that the ‘legs’ of HP5
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Figure 17. For S3, a sequence (�t+ = 5.5) of equatorial wall-parallel planes depicting the correlations of the
instantaneous water fluctuating velocities (u1u2)

+ (a,c,e,g), and the streamwise water fluctuating velocities
u+

1 (b,d, f,h). The hydrogel sphere is superposed as a filled white circle. Its initial orientation is indicated by
a dashed line, while its changing orientation is indicated by a solid line. Note that the view is from the wall
upwards.

generate ejection motion that may explain why S4 settles slightly slower than S3 (see
figure 10).

Wall-normal and wall-parallel equatorial planes depicting contour plots of (u1u2)
+ and

u+
1 are presented in figures 20 and 21. Similarly as for S3, also downstream of S4 a distinct

sweep (denoted by ‘SW’ in figure 20) is observed, most likely induced by LV4 (figure 18b).
In addition, below SW and slightly downstream of it close to the wall, a clear ejection
(denoted by ‘EJ’ in figure 20a) is seen. As S4 traverses the VOI, it stays just upstream of
the sweep (located just downstream of the slanted dashed line across figures 20a,c,e,g).
Further note that the ‘signature’ of the hairpin packet (see figure 18c) becomes visible as
a train of uplifted opposite sign patches of u+

1 (dashed ellipse in figure 20l) induced by the
hairpin heads HP1 to HP4 (figure 18c).

3.4. Lift and drag forces acting on the spheres
Sphere motion is dictated ultimately by the forces acting on it, amongst them the lift and
drag forces that we focus on in this subsection. Inertial forces such as the fluid pressure,
the Basset history force, and the added mass forces and their importance will be discussed
at the end of this subsection. For the present range of Res (figure 11), the drag force acting
on the spheres can be calculated by the quadratic drag relation given by (e.g. Yam et al.
2013)

F D = −CD
1
2

ρ
πD2

4
|U r| U r, (3.1)
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Figure 18. Sequence of instantaneous vortical structures (visualized by Q-criterion iso-surfaces) in the vicinity
of sphere S4 (�t+ = 16.7). Iso-surfaces were overlaid by (a,b) ω+

1 , and (c) ω+
3 . The hydrogel sphere is

depicted in yellow with black markers to indicate its change in orientation. The values in parentheses denote
(x+

1,c, x+
2,c, x+

3,c). Supplementary movies 3 and 4 provide animations of the snapshots in (b,c) at different viewing
angles.
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Figure 19. Close-up of vortical structures in the vicinity of S4. Vortical structures were visualized by
Q-criterion iso-surfaces that were overlaid by ω+

1 . Snapshots in (a,b) correspond to figures 18(a,b).

where CD denotes the drag coefficient for spheres. In the present case, due to the
effect of shear and wall proximity, as well as ambient turbulence (Zeng et al. 2009),
CD may be modified from the standard drag relation CDo = (24/Res)(1 + 0.15Re0.687

s )

(Schiller–Naumann correlation, valid for 0.01 < Res < 1000; Clift, Grace & Weber 1978).
Zeng et al. (2009) and Shi et al. (2021) have proposed correlations for the drag and lift
coefficients based on direct numerical simulations (DNS) studies of a stationary sphere in a
wall-bounded linear shear flow and of a rigid sphere translating steadily near a wall, either
in a fluid at rest or in the presence of a uniform shear, respectively. While the DNS by Shi
et al. (2021) may be more relevant to the present study, their correlations are valid within
a narrow range of the relative shear rate, −0.5 ≤ Sr (= (∂U1/∂x2)cD/|U r|) ≤ 0.5. In the
case when |U r| becomes small, such as for nearly neutrally buoyant particles, magnitudes
of Sr exceed this range easily. This is the case in the present study, where |U r| is small, and
values of |Sr| are an order of magnitude higher than the range for which the correlations
proposed by Shi et al. (2021) are valid. Although maximum values in Zeng et al. (2009)
are also bounded by Sr = 2, their correlations do not contain Sr explicitly. We therefore
used the correlations proposed by Zeng et al. (2009) for the calculation of the lift and drag
coefficients. Taking shear and wall proximity into account, Zeng et al. (2009) proposed
the following correction to standard drag for a stationary sphere in a wall-bounded, linear
shear flow:

CD = CDo(1 + α Reβ
s ), (3.2)

where α = 0.15 − 0.046(1 − 0.16δ2) exp(−0.7δ), with the normalized sphere-to-wall gap
given by δ = x2,c/D − 0.5, and β = 0.687 + 0.066(1 − 0.76δ2) exp(−δ0.9). Note that
when δ → ∞, CD = CDo.

Besides the drag, the lift force acting perpendicular to it may be of importance. However,
in contrast to the drag, there is significant uncertainty regarding the validity of lift force
correlations. In the Stokes limit, no lift forces act on the sphere even in the presence of
a wall (Bretherton 1962). However, in the present measurements, Stokes flow cannot be
assumed, and lift forces may play a role (see figure 11). For a rotating sphere in a shear flow
close to a wall (Zeng et al. 2009), shear-induced, rotation-induced (so-called ‘Magnus’
force) and wall-induced lift forces may all be important. Starting with the early studies
by Segre & Silberberg (1962) and Saffman (1965) for low Res and low shear rates, the
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Figure 20. For S4, a sequence (�t+ = 4.9) of equatorial wall-normal planes depicting the correlations of the
instantaneous water fluctuating velocities (u1u2)

+ (a,c,e,g,i,k), and the streamwise water fluctuating velocities
u+

1 (b,d, f,h,j,l). The hydrogel sphere is superposed as a filled white circle. Its initial orientation is indicated by
a dashed line, while its changing orientation is indicated by a solid line. ‘SW’ and ‘EJ’ in (a) denote sweep
and ejection motion, respectively. The slanted dashed line across (a,c,e,g) demarcates the upstream position of
a sweep motion.
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Figure 21. For S4, a sequence (�t+ = 4.9) of equatorial wall-parallel planes depicting the correlations of the
instantaneous water fluctuating velocities (u1u2)

+ (a,c,e,g,i,k), and the streamwise water fluctuating velocities
u+

1 (b,d, f,h,j,l). The hydrogel sphere is superposed as a filled white circle. Its initial orientation is indicated by
a dashed line, while its changing orientation is indicated by a solid line. A progressing sweep motion (SW) can
be seen between the two parallel dashed lines in (a–h). Note that the view is from the wall upwards.

shear-induced lift force has been a topic of investigation for many decades (see Zeng et al.
2009; Shi & Rzehak 2019, 2020). Correlations valid for extended ranges of Res and shear
rate magnitude have been proposed (see recent reviews by Shi & Rzehak 2019, 2020).

In analogy with the drag force (3.1), the shear-induced lift force acting on the sphere can
be determined by

F S
L = CS

Lρ
π

8
D2 |U r|2 e⊥Ω, (3.3)

where CS
L denotes the shear-induced lift coefficient (indicated by the superscript ‘S’), and

e⊥Ω is the unit vector in the direction of (Ω × U r), where ‘×’ denotes the cross product.
An expression similar to (3.3) may be used for the wall-induced lift (superscript ‘W’),
albeit with a different lift coefficient, CW

L (Shi & Rzehak 2020). In addition to the shear
and wall-induced lift forces, the Magnus force (based on inviscid flow analysis) can be
determined by

F R
L = CR

Lρ
π

8
D2 |U r|2 e⊥α̇, (3.4)
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where CR
L denotes the rotation-induced lift coefficient (denoted by the superscript ‘R’),

and e⊥α̇ is the unit vector in the direction of (α̇ × U r).
Care must be taken with regard to the sign of the lift forces since it depends on whether

viscous or inviscid lift mechanisms dominate. The direction of the Magnus force (inviscid
case) is always towards the advancing side of the sphere. However, with viscous effects
taken into account, boundary layer growth and separation may be different along the
advancing and retreating sphere surfaces, thereby reversing the direction of the Magnus
force (the so-called ‘inverse’ Magnus effect; Kim et al. 2014). As outlined by Kim et al.
(2014), the inverse Magnus effect occurs at high Reynolds numbers (∼105) and is not
expected to play a role here.

As seen in (3.3), the direction of F S
L is perpendicular to (Ω × U r), which means that in

a wall-bounded linear shear flow, it depends on the sign of U r (Shi & Rzehak 2020), i.e.
F S

L may be either positive (directed away from the wall when U r < 0) or negative (directed
towards the wall when U r > 0). Also, the wall-induced lift force may be directed towards
or away from the wall depending on the relative dominance of viscous or inviscid lift
mechanisms (see Zeng et al. 2009). Furthermore, DNS studies showed that the sign of
F S

L is a function of Res (Kurose & Komori 1999; Zeng et al. 2009; Shi & Rzehak 2019),
i.e. when Res > 55 flow separation resulted in asymmetrical distributions of pressure and
viscous stresses, and the lift force became negative (see also Kurose & Komori 1999; Zeng
et al. 2009; Shi & Rzehak 2019). Negative lift has also been observed in the vicinity of a
wall and is strongest when the sphere is located about one diameter from it (Zeng et al.
2009).

Based on DNS studies, a correlation for the shear-induced lift coefficient for a stationary
sphere in a wall-bounded linear shear flow has been proposed by Zeng et al. (2009):

CS
L = CS

L,w exp(−0.5δ(Res/250)4/3)
[
exp(αS

LδβS
L ) − λS

L

]
, (3.5)

where αS
L = − exp(−0.3 + 0.025Res), βS

L = 0.8 + 0.01Res, and λS
L = (1 − exp(−δ))

(Res/250)5/2; here, CS
L,w = 3.663/(Re2

s + 0.1173)0.22 denotes the lift coefficient in the
limit of the sphere touching the wall (denoted by the subscript ‘w’). Equation (3.5) is valid
in the range 1 < Res < 200. Note that the correlation for CS

L (3.5) does also include the
effect of wall proximity, which reduces with increasing δ (see Zeng et al. 2009). Therefore,
in the present case, values of CS

L according to (3.5) are enhanced over their unbounded
counterparts. A correlation for the wall-induced lift coefficient on a sphere moving parallel
to a wall in a quiescent fluid is given by (Zeng et al. 2009)

CW
L = f +

[
CW

L,w − fx2,c/D=1/2

]
exp

[
−11(δ/δc)

1.2
]
, (3.6)

where δc = 3 exp(−0.17Re0.7
s ), and f (x2,c/D, Res) = (1 + 0.329Res + 0.00485Re2

s )

CW
L,w(x2,c/D)[−0.9 tanh(0.022Res)]. The wall-induced lift coefficient for a sphere touching

the wall is given by CW
L,w = (9/8 + 5.78 × 10−6(Res x2,c/D)4.58) exp(−0.292Res x2,c/D)

for 0 < Res x2,c/D < 10, and CW
L,w = 8.94(Res x2,c/D)−2.09 for 10 < Res x2,c/D < 300

(Takemura & Magnaudet 2003). Finally, a correlation for the rotation-induced lift
coefficient was adopted from Bagchi & Balachandar (2002):

CR
L,i ≈ −0.55α̇3D/|U r|. (3.7)

Note that only the correlation for CS
L (see (3.5)) takes flow separation into account, and the

sign of CS
L may be reversed (negative lift) depending on Res.
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Freely moving spheres in a turbulent boundary layer

The additive nature of the different contributions to the lift force has been investigated
by Bagchi & Balachandar (2002), Zeng (2007) and Bluemink et al. (2008). Zeng
(2007) showed that linear superposition of wall and shear contributions is incorrect and
underestimates the actual lift coefficient especially when close to the wall (2x2c/D ≤ 2;
Shi et al. 2021) and for low Res (1 ≤ Res ≤ 100; see also Shi et al. 2021). However,
combined wall and shear contributions (superimposed nonlinearly) do superimpose
linearly with the rotational contribution to the total lift coefficient (Shi et al. 2021), in
agreement with Bagchi & Balachandar (2002) and Bluemink et al. (2008), who concluded
that the total lift force on a freely rotating sphere in a shear flow (0 < Res ≤ 200) can
be taken as the superposition of the lift on a stationary sphere in a shear flow (3.3)
and the lift on a sphere forced to spin at the torque-free rotation rate in a uniform
flow. As shown by Bagchi & Balachandar (2003), freestream turbulence did not have a
substantial effect on the time-averaged drag that could be determined accurately by the
standard drag relation. However, accurate prediction of the instantaneous drag deteriorated
with increasing particle size. Once vortex shedding occurred for Res > 270 (Bagchi &
Balachandar 2003), the effect of isotropic freestream turbulence on the lift forces appeared
to be minor. Note that the effect of non-isotropic ambient turbulence such as in a TBL has
not been studied (see Shi & Rzehak 2020), and it is unclear if the available correlations
are valid for spheres immersed in a TBL. Therefore, magnitudes of the drag and lift forces
calculated here must be interpreted with caution.

In the absence of gravitation, the lift and drag forces are expected to be important for
sphere motion in the transverse plane, where especially S1 and S3 exhibit strong transverse
motion in opposite directions (figure 8b). The instantaneous transverse components of
F R

L , F S
L, F W

L and F D calculated by (3.1)–(3.7), and normalized by ρν2, are depicted in
figure 22 for all four spheres. Note that the instantaneous drag forces based on CD (see
(3.2); open symbols in figures 22d and 23d) are compared to those based on the standard
drag relation (filled symbols in figures 22d and 23d). Overall, trends are conserved, and
besides some discrepancies at peak values (figure 22d), differences are relatively small. In
the following, values of CD (see (3.2)) were used. Average and r.m.s. values of the forces
along the spheres’ tracks are summarized in table 6. Comparing figures 22(b,c), it can be
observed that the instantaneous values of FS+

L,3 and FW+
L,3 change in tandem, albeit with

smaller magnitudes for FW+
L,3 (similarly in the wall-normal direction; figures 23b,c). In all

cases, magnitudes of the shear-induced and wall-induced forces are small in comparison
to those of the drag force (see also table 6). In contrast, the magnitudes of the average
rotation-induced lift force (table 6) exceed those of the shear- and wall-induced lift forces

in all cases. Note that in many cases, values of |FR+
L,2| are of the same order of magnitude

as |F+
D,i| (table 6).

Let us now first focus on spheres S1 and S3 that move in opposite transverse directions.
It can be observed that the peak magnitudes of the instantaneous transverse drag
force components acting on S1 and S3 (figure 22d) are much larger than those of the
corresponding lift forces (figures 22a–c) that do not seem to play a role. Although the

instantaneous drag force fluctuates along the S1 trajectory (figure 22d), |F+
D,3| (table 6) is

much larger than the corresponding magnitudes of the average lift forces, and is directed in
the direction of its motion (see figure 8). In contrast to S1, for S3 the average contributions
to the total lift force have higher magnitudes and taken together are of the same order
of magnitude as the average drag force (see table 6). Note that linear superposition of
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Figure 22. The instantaneous normalized transverse components of (a) the Magnus force, (b) the
shear-induced lift force, (c) the wall-induced lift force, and (c) the drag force, acting on the spheres. Solid
symbols in (d) denote values according to the standard drag relation. Note that the y-axis ranges are different.

the wall- and shear-induced lift contribution is expected to underestimate the actual total
lift force (Shi et al. 2021). Surprisingly, the average lift forces oppose the S3 motion (see
figure 8). Similarly, for S2 and S4, on average, the transverse lift force components oppose
the spheres’ motion in the x3-direction. However, in these cases, lift forces are at least one
order of magnitude lower than the drag and do not seem to play a role.

The present results may indicate that the sign of the lift coefficient is incorrect and that
viscous effects play a role. Evidence that negative lift may be important is provided by
looking at the transverse equatorial planes of u+

1 depicted in figures 17b,d, f,h for S3. It is
clear that S3 moves in the positive x3-direction towards the low streamwise velocity side,
hinting that negative lift due to viscous effects such as flow separation might be important.
Note that for S3, most Res values were below 55 (figure 11), and using (3.5) did not result
in negative lift, suggesting that the relation (3.5) for CS

L may need to be modified in the
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Freely moving spheres in a turbulent boundary layer

i FS+
L,i (FS+

L,i )
′ FW+

L,i (FW+
L,i )′ FR+

L,i (FR+
L,i )′ F+

D,i (F+
D,i)

′

S1 1 3.73 3.2 −1.42 0.82 −227.3 167.9 446.4 294.4
2 −4.93 6.4 2.03 1.5 361.0 294.4 1266.6 548.7
3 −1.58 7.3 0.21 1.0 86.6 268.6 −545.2 3206.0

S2 1 −14.4 36.0 −5.6 14.0 −30.8 124.5 94.0 700.8
2 4.8 15.9 1.66 4.8 15.1 104.6 71.6 231.0
3 0.69 31.6 0.86 11.4 4.1 126.0 −193.9 784.9

S3 1 20.2 25.8 6.8 8.6 141.3 202.4 534.2 314.6
2 13.6 21.0 4.9 7.6 82.8 130.2 −70.3 209.5
3 −26.3 36.5 −9.9 16.0 −153.1 206.8 282.1 853.7

S4 1 −2.5 7.0 −0.63 2.0 −26.0 50.7 95.5 194.6
2 2.4 6.2 0.73 1.8 17.6 61.1 77.4 120.7
3 3.4 5.2 1.3 1.6 16.2 91.3 508.8 1267.6

Table 6. Summary of the average and r.m.s. values of the components of the shear-induced, wall-induced and
Magnus lift forces, as well as the drag forces acting on the spheres along their trajectories.

case of a sphere immersed in a TBL. Unfortunately, and despite considerable effort, we
could not validate that flow separation occurred, nor did we observe vortex shedding from
the sphere. However, at these relatively low Res values, it would be difficult to detect flow
separation since the wake length is small (increasing linearly from 0.2D at Res ≈ 30 to
1D at Res ≈ 100; Taneda 1956), and the surrounding turbulence together with the limited
spatial measurement resolution would act to smear any signs of it.

The wall-normal trajectories of the spheres depicted in figure 8(a) show that except for
S1, which remains more or less at the same height, all other spheres move towards the
wall. The normalized instantaneous wall-normal components of F R+

L , F S+
L , F W+

L and F+
D

are plotted in figure 23 for all four spheres, and average values are summarized in table 6.
In the case of S1, the wall-normal shear- and wall-induced lift forces (figures 23b,c) do
not play a role, and the drag force aided by the rotation-induced lift force (figures 23a,d)
acting away from the wall keeps S1 aloft. In most cases, the magnitude of the average
rotation-induced lift force (table 6) that always acts away from the wall is of the same
order of magnitude as the average wall-normal drag force component. Note that only for
S3 does the average drag force aid wall-ward motion, while in all other cases it opposes it.
While the shear- and wall-induced lift forces cannot be superimposed linearly (Shi et al.
2021), their average values are small and they do not seem to be important. While the
instantaneous lift forces fluctuate along the spheres’ trajectories (figures 23a–c), for S3
they are directed consistently away from the wall, i.e. opposing the S3 wall-ward motion.

Moreover, also for S2 and S4, the different contributions to the average lift force and F+
D

(table 6) are directed away from the wall, which would explain why all wall-ward moving
spheres have wall-normal velocity magnitudes lower than |Vs|. Note that of the lift forces,
FR+

L,i cannot be neglected, and magnitudes of FR+
L,i can be of the same order of magnitude

as the drag (table 6).
In the streamwise direction, it can be observed that components of the lift forces in

addition to those of the drag forces play a role (see table 6), either acting in the direction
of the sphere’s motion or opposing it. In all cases, the average drag force is positive
(F+

D,1 > 0; table 6), since on average, all spheres lag the streamwise water velocity
(table 1).
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Figure 23. The instantaneous, normalized wall-normal components of (a) the Magnus lift force, (b) the
shear-induced lift force, (c) the wall-induced lift force, and (d) the drag force, acting on the spheres. The solid
symbols in (d) denote values according to the standard drag relation. Note that the y-axis ranges are different.

Since the instantaneous sphere velocities exhibit fluctuations along their tracks (see
§ 3.2.1), inertial forces may be of importance. However, their accurate evaluation is
non-trivial. The commonly used force balance derived by Maxey & Riley (1983) is strictly
valid only when the ratio between the sphere diameter and the Kolmogorov length scale,
D/ηk, is smaller than unity, which is not the case in the present study. Nevertheless, since
we do not resolve the boundary layer close to the sphere’s surface, the expressions provided
by Maxey & Riley (1983) were used to estimate the order of magnitude of the inertial
forces. Results (not shown) indicated that normalized inertial forces averaged along the
sphere tracks (fluid pressure and added mass forces) mostly had an order of magnitude of
103, i.e. the same order of magnitude as that of the inertial force associated with sphere
acceleration. The inertial forces are expected to ‘cancel’ each other such that their net
effect would be of the same order of magnitude as the other forces acting on the sphere
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(such as drag and lift). However, this could not be validated due to the large uncertainties
associated with the estimates of the inertial terms.

In addition, the Basset history force may play a role (Dorgan & Loth 2007; Calzavarini
et al. 2012). Estimating it based on a force balance similarly as done by Takemura &
Magnaudet (2003) was not deemed feasible since estimates of the inertial forces were
not accurate enough (as outlined above). However, we do not believe that the history
force is significant in the current measurements, for the following reasons. The transport
of the vorticity generated at the sphere’s surface away from it can be characterized by
several time scales. The first is associated with initial viscous diffusion of the vorticity
generated at the sphere’s surface across the Stokes layer (ν/|U r| ≈ 0.1 mm; Zeng et al.
2009) given by ν/|U r|2 ≈ 10 ms, which is comparable to the Kolmogorov time scale of
the surrounding turbulence (see table 3). Beyond the Stokes layer, advection will govern,
which is characterized by a time scale given by D/|U r| ∼ 1 s. This advective time scale is
much larger (more than two orders of magnitude) than the smallest turbulence time scales
(see table 3) in the present study. Therefore, the ‘memory’ effect of the Basset history
force is expected to be quickly ‘smeared out’ by the action of the surrounding turbulence
(turbulent diffusion).

4. Summary and conclusions

The interaction between freely moving, nearly neutrally buoyant spheres (66 ≤ D+ ≤ 75)
and a TBL was investigated by a combination of PIV, refractive index matching and
computer vision algorithms. Experiments were conducted in a turbulent open water
channel flow, and in order to track the rotational and translational motion of refractive
index matched hydrogel spheres, they were ‘tagged’ by tracer particles inserted as
‘spokes’. The 3-D flow field in their vicinity was measured using time-resolved tomo-PIV.

A method for extracting the spheres’ 3-D motion (translation and rotation) and the
surrounding 3-D flow field was developed. First, the sphere’s perimeter was detected
at each time instant in each of the four simultaneously acquired 2-D PIV images using
the circular Hough transform. Subsequently, based on the detected sphere silhouettes, the
sphere’s visual hull was reconstructed at each time instant (Adhikari & Longmire 2012),
and its diameter and instantaneous centroid position were estimated and used to mask
the instantaneous 3-D reconstructed light intensity distributions. The sphere’s motion was
tracked across frames using the iterative closest point (ICP) algorithm. The 3-D flow field
in the vicinity of the sphere was determined using standard tomo-PIV data processing
techniques.

Of the four investigated spheres, three (S2, S3 and S4) moved towards the wall, while one
(S1) remained at approximately the same height. None of the spheres came into contact
with the wall, and due to their finite size, they were positioned within the buffer and
the log layer of the TBL. The wall-ward moving spheres were located just upstream of
strong sweep motions induced by the surrounding coherent structures. In the case of S1,
the wall-normal drag force component was directed consistently away from the wall, and
together with the rotation-induced lift force, it was responsible for keeping the sphere aloft.
Shear- and wall-induced lift forces did not play a role in any of the cases. However, the
magnitude of the mean rotation-induced lift force was in most cases of the same order of
magnitude as that of the drag force.

In the transverse direction, gravity did not play a role, and lift and drag forces were
expected to be of importance. While the (average) transverse drag force component was
always important (both aiding as well as opposing the transverse sphere motion), lift
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forces were small compared to the drag force. The only exception was S3, for which the
transverse lift forces were of the same order of magnitude as the transverse drag force
component. However, in this case the lift forces acting on the spheres were directed towards
the fast-moving fluid, in agreement with inviscid lift mechanisms, while S3 moved in the
opposite direction, i.e. towards the slow-moving fluid. This puzzling result might indicate
that viscous effects (e.g. flow separation) that are not accounted for at these Res values
in the employed correlations ((3.2) and (3.5)–(3.7)) may play a role and lead to negative
lift. Note that the correlations do not account for the effect of non-homogeneous ambient
turbulence as in the case of a TBL. Unfortunately, due to spatial resolution limitations and
the surrounding turbulence, signs of flow separation (such as a recirculating wake) were
not detected.

Estimated orders of magnitude of inertial forces such as the fluid pressure and the added
mass force exceeded those of the drag force. However, their net effect should balance
the other forces acting on the sphere. The Basset history force was not considered of
importance in the present study as its ‘memory’ effect is expected to be quickly ‘erased’
by the ambient turbulence.

The instantaneous vortices in the TBL in the vicinity of two spheres (S3 and S4)
were analysed in detail. In both cases, the spheres moved towards the wall and were
positioned just upstream of strong distinct sweep motions. In addition, upstream of S4,
a large hairpin packet was observed whose development was affected by the downward
motion of the sphere. Evidence for this was provided by the observation that S4 was
positioned on top of a hairpin vortex that looked to be part of the upstream hairpin packet,
which was distorted due to the presence of S4. Note that the finite size of the spheres
(D+ ≈ 70) is approximately half of commonly encountered transverse extents of hairpin
vortices (�x+

2 ≈ 150). Ultimately, at increased volume fractions, these finite-size effects
are expected to affect drastically the structure of the near-wall coherent structures in TBLs,
with implications for wall friction, heat and momentum transfer.

The present measurements have provided novel, detailed information on the coupling
between the instantaneous 3-D flow field and sphere dynamics for finite-sized spheres
in a fully developed TBL. In the coming decades, these advanced measurements are
expected to bridge the existing knowledge gap on the coupling between turbulent flows and
finite-size particles in particle-laden flows. Future research should focus on the acquisition
of increased statistics in order to extend and validate the present findings, as well as on
the development and validation of correlations for lift coefficients that can be applied to
finite-sized particles in TBL flows.

Supplementary movies. Supplementary movies 1–4 are available at https://doi.org/10.1017/jfm.2022.477.
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