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and Artificial Intelligence
Philip Conroy , Simon A. N. van Diepen , Sanneke van Asselen , Gilles Erkens ,

Freek J. van Leijen , Member, IEEE, and Ramon F. Hanssen , Senior Member, IEEE

Abstract— Phase unwrapping, also known as ambiguity resolu-1

tion, is an underdetermined problem in which assumptions must2

be made to obtain a result in SAR interferometry (InSAR) time3

series analysis. This problem is particularly acute for distributed4

scatterer InSAR, in which noise levels can be so large that5

they are comparable in magnitude to the signal of investigation.6

In addition, deformation rates can be highly nonlinear and orders7

of magnitude larger than neighboring point scatterers, which8

may be part of a more stable object. The combination of these9

factors has often proven too challenging for the conventional10

InSAR processing methods to successfully monitor these regions.11

We present a methodology which allows for additional environ-12

mental information to be integrated into the phase unwrapping13

procedure, thereby alleviating the problems described above.14

We show how problematic epochs that cause errors in the tempo-15

ral phase unwrapping process can be anticipated by the machine16

learning algorithms which can create categorical predictions17

about the relative ambiguity level based on the readily available18

meteorological data. These predictions significantly assist in the19

interpretation of large changes in the wrapped interferometric20

phase and enable the monitoring of environments not previously21

possible using standard minimum gradient phase unwrapping22

techniques.23

Index Terms— Artificial intelligence, peatland, phase unwrap-24

ping, recurrent neural network (RNN), SAR interferometry25

(InSAR), subsidence.26

I. INTRODUCTION27

ACTIVELY monitoring ground motion is of paramount28

importance in The Netherlands, a country in which many29

of its regions lie below sea level. There is a strong link30

between soil height and phreatic groundwater level, and indeed31
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the Dutch have actively managed the water tables in the 32

country for centuries using a system of dams and canals 33

through which excess water can be pumped away. Thus, better 34

knowledge of subsidence processes is needed for flood pro- 35

tection, building damage risk assessments, and understanding 36

greenhouse gas emissions caused by peat oxidation [1], [2]. 37

The Dutch government has committed to a 1-Mt (∼25%) 38

reduction in CO2 equivalents per year originating from its 39

peatlands before 2030, a decision with significant impact on 40

future land use, agriculture, and the economy, which requires 41

adequate assessment of subsidence rates [3]. 42

Yet, there is currently a large gap in our monitoring 43

capabilities of these low-lying peatland regions. While SAR 44

interferometry (InSAR) techniques using point scatterers (PS) 45

have been successfully used to monitor subsidence in The 46

Netherlands [4], [5], [6], these PS points are usually founded at 47

greater depths and the movement of the surrounding landscape 48

has had to be indirectly inferred. Direct monitoring of the 49

land has proven to be much more challenging. The soft soils 50

which comprise the majority of the country’s agricultural lands 51

are prone to rapid deformation and are very difficult or even 52

impossible to directly monitor using standard distributed scat- 53

terer (DS) InSAR techniques [7], [8] which use smoothness 54

constraints to perform spatial phase unwrapping [9], [10], [11]. 55

Recently, a significant amount of research has been conducted 56

to improve 2-D phase unwrapping [12], and there is great 57

interest in the applicability of the machine learning techniques 58

in solving the problem [13]; however, this research has largely 59

been limited to the spatial case and does not consider the 60

temporal effects of a rapidly deforming region. Rapid soil 61

motion and nonstationary coherence cause large fluctuations 62

affecting both the functional and stochastic models, which 63

rules out the use of time-domain phase unwrapping techniques 64

such as integer least-squares (ILS) [14], as the stochastic 65

model will become too large reliably to evaluate an assumed 66

deformation model. 67

Using newly available ground-truth measurements, we find 68

that in the case of Sentinel-1 observations, rapid soil uplift 69

due to increases in the ground water level between satellite 70

overpasses can cause phase displacements larger than half a 71

cycle (λ/4) at the C-band. This renders time series analy- 72

sis of the region using Sentinel-1 imagery impossible using 73

standard techniques, because the phase unwrapping algorithms 74
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will typically assume the smaller phase displacement in the75

opposite direction to be the correct solution. This introduces76

a systematic error in all subsequent points of the time series77

corresponding to one 2π ambiguity level. While this problem78

may potentially be avoided using the L-band SAR data, there79

is currently no operational L-band radar mission observing80

The Netherlands at the temporal frequencies required for81

monitoring this environment.82

It is therefore necessary to augment the standard unwrap-83

ping procedure with additional information to prevent errors84

in the unwrapping direction. This is done by considering the85

direction of ground motion (DOGM), and therefore the correct86

phase unwrapping direction, as stated in a hidden Markov87

model (HMM). Using a modification of the widely used88

Viterbi algorithm [15], we can integrate additional contextual89

information about the system into a generalized probabilistic90

framework which can be used to guide the unwrapping of the91

interferometric phase in the time domain. In our case, this92

additional information comes from a recurrent neural network93

(RNN) which takes meteorological data as its input to predict94

the DOGM. This was chosen because meteorological data are95

easily accessible and interpretable for our areas of study, but in96

general, any model which predicts the state of ground motion97

can be used. We show that this framework is able to reliably98

anticipate rapid soil deformation events and correctly unwrap99

the interferometric phases.100

The remaining sections of the article are organized as101

follows: Section II presents the results of the extensometer102

measurements taken in two regions of the Dutch polderlands.103

These data are used to simulate a InSAR phase time series104

which is used to demonstrate that unwrapping errors are105

inevitable in this region when using standard approaches.106

Section III motivates the use of additional contextual infor-107

mation which can be used to aid in this problem. An RNN108

is used to process sequences of meteorological data and109

estimate the DOGM to aid the unwrapping process. Section IV110

describes how the outputs of RNN are used in tandem with111

the wrapped phases to perform phase unwrapping. Section V112

shows the results of this RNN-aided phase unwrapping versus113

a standard minimum gradient algorithm. A general discussion114

is presented in Section VI, and Section VII concludes this115

article.116

II. EXTENSOMETER DATA AND SIGNAL SIMULATION117

A. Extensometer Data118

Extensometers placed in various locations across the Nether-119

lands have been continuously monitoring the vertical move-120

ment of the surface and shallow subsurface of peaty soft soils121

for several years [16]. The longest running of these stations122

is in Rouveen, which has been collecting data since October123

2018 and exhibits relatively modest levels of movement, within124

a range of 4 cm; see Fig. 1(a). On the other hand, some of125

the largest measured soil variations are observed in Zegveld,126

within a range of 9 cm; see Fig. 1(b). Therefore, these127

two locations show a representative range of ground move-128

ments which can be reasonably expected to be encountered129

in Dutch agricultural areas. Inspection of the extensometer130

measurements (blue trace) shows a very high degree of131

Fig. 1. (a) Rouveen and (b) Zegveld daily extensometer soil height
measurements with respect to The Netherlands vertical data (NAP) (blue trace,
left-hand y-axis) and the corresponding height gradient magnitudes computed
over 6-, 11-, and 24-day intervals (red, purple, green bars, right-hand y-axis).
Representative C- and X-band unwrapping thresholds projected from the slant
range to the vertical are indicated by the horizontal dashed and dotted lines,
respectively (right-hand y-axis). Not visible: L-band unwrapping threshold
projected to the vertical (0.0726 m). The gap in data around January 2021 in
Zegveld is caused by uplift which exceeded the range of the extensometer
scale and could not be recorded.

reversible deformation following a strong seasonal trend. The 132

most stable periods are during the winter months, when cold, 133

rainy conditions in The Netherlands keep the soils saturated 134

with moisture. As temperatures rise and precipitation lev- 135

els decrease, the soils dry out and become more unstable. 136

A significant amount of movement over short time scales 137

can also be observed. This creates an additional complication 138

for InSAR observations, as significant movement can occur 139

even between the relatively frequent six-day Sentinel-1 over- 140

pass cycle, which is shown by the six-day height gradient 141

magnitude (red bars). In the case of Zegveld, shifts in soil 142

height can cause strong gradients in the measured signal which 143

exceed the unwrapping threshold (projected from the slant 144

range to the vertical using a typical Sentinel-1 incidence angle 145

of 37◦, and shown by the dashed horizontal line), even in 146

an ideal, noiseless case. We can also infer that we do not 147

need to expect the deformation to exceed multiple ambiguity 148

levels at the C-band within one overpass. For other missions, 149

the outlook is significantly worse. In the case of Radarsat2 150

(corresponding to the 24-day gradient shown by green bars), 151

which also operates at the C-band, the gradients routinely 152
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exceed the unwrapping threshold in both the locations. With153

TerraSAR-X (corresponding to the 11-day gradient shown154

by purple bars, and the dotted line representing the X-band155

unwrapping threshold height projected from the slant range to156

the vertical), the signal shifts are consistently larger than the157

unwrapping threshold, rendering any time series interpretation158

extremely challenging. On a more hopeful note, the future159

Radar Observation System for Europe in L-band (ROSE-L)160

mission operating at the L-band with a six-day revisit time161

should be able to comfortably follow the observed signal162

without significant risk of phase unwrapping errors. (The163

L-band unwrapping threshold is significantly larger than the164

dynamic range of the signals plotted in Fig. 1 and is therefore165

not shown.) While this mission will undoubtedly be a very166

useful asset for subsidence monitoring in The Netherlands,167

it is expected to be launched in the year 2027 and will then168

require an additional several years to build up a dataset of169

observations to allow for the time series analysis. This means170

that scientists and policymakers will need to wait for about171

another ten years before the benefits of the ROSE-L mission172

become truly available to them, and many decisions until173

that time will need to be based on the available Sentinel-1174

data. While other L-band missions have been flown, notably175

advanced land observing satellite (ALOS)-1, ALOS-2, and176

argentine microwaves observation satellite (SAOCOM), there177

have not been enough acquisitions to provide the necessary178

coverage.179

Note that the gap in the data from end December 2020 to180

mid January 2021 in Fig. 1 in Zegveld is caused by the uplift181

which exceeded the range of the extensometer scale and could182

not be recorded. We conservatively do not use the data from183

this time in our subsequent analysis; however, it could be184

interpreted that an additional spike in the observed deformation185

gradients would be present here as well.186

B. Simulated InSAR Signal187

To assess the ability of an algorithm to correctly unwrap the188

observed phase, we simulate an InSAR signal based on the189

ground truth provided by the extensometers. This allows us to190

control the level of noise in the data and reference the obtained191

solutions to a known true value. We produce this simulated192

signal, φsim, by downsampling the extensometer data to one193

observation per six days, converting the vertical displacement194

into phase, projecting from the vertical axis onto the slant195

range direction, adding noise, and wrapping the resultant phase196

on the interval [−π, π). For simplicity, we use the shorthand197

f (t) to denote a time series which has been sampled with a198

period of six days. The simulated signal is given by199

φsim
(
ti , t j

) = W

{
�zext · 4π cos θ

λ
+ n

(
ti , t j

)}
(1)200

where W {·} is the phase wrapping operator [17], �zext is the201

change in the extensometer signal between acquisition epochs202

ti and t j , λ is the radar wavelength of 0.0556 m, corresponding203

to the wavelength of the Sentinel-1 radar, θ is the radar204

incidence angle, and n(ti , t j ) is the additive heteroscedastic205

noise. The variance of n(ti , t j ) differs for each interferogram206

and is governed by the coherence γ (ti , t j ), and equivalent207

Fig. 2. Daisy-chain coherence values used to generate additive noise in
(a) Rouveen and (b) Zegveld. The term “daisy-chain” refers to the off-diagonal
elements of the coherence matrix showing the relative coherence between
consecutive epochs.

number of looks, L [17]. The coherence of a multilooked set of 208

pixels � in an interferogram is estimated from the magnitude 209

of the complex sample coherence given in [17] by 210

γ
(
ti , t j

) =
∣∣∑

n∈� Sin S jn
∗∣∣√(∑

n∈� |Sin |2
)(∑

n∈� |Sjn |2
) (2) 211

where Si, jn is the nth pixel in SAR images acquired at times ti 212

and t j . We focus on the daisy-chain coherence, which refers 213

to the coherence observed in interferograms of consecutive 214

acquisitions ( j = i − 1), i.e., the magnitudes of the first off- 215

diagonal of the full coherence matrix, as shown in Fig. 2. For 216

simplicity, we denote the daisy-chain phase φ(ti , ti−1) as �φ. 217

The additive phase noise is modeled as a random process 218

which follows a circular Gaussian distribution. The prob- 219

ability density function (PDF) of the phase component 220

is [17], [18], [19]: 221

f (φ|γ, L, φ0) = 	(L + 1/2)
(
1 − γ 2

)L
β

2
√

π	(L)
(
1 − β2

)L+1/2 222

+
(
1 − γ 2

)L

2π
· 2 F1

(
L, 1; 1

2
; β2

)
(3) 223

where β = γ cos (φ − φ0), 	(·) is the gamma function, and 224

F(·) is the hypergeometric function. The PDF is evaluated 225

over the interval φ = [−π, π), and the mean, φ0, is taken as 226

0 to center the additive noise around the signal. An equivalent 227

alternative formulation is possible in which one sets φ0 = 228

W {�zext · 4π cos θ/λ}, due to the fact that f (φ|γ, L, φ0) 229

produces random samples of wrapped phases. In this case, the 230

distribution would describe the entire signal, φsim, and not only 231

the noise component, and the phase wrapping would be stated 232
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Fig. 3. Normalized multimodal PDF (greyscale) based on (1) and (3)
from downsampled extensometer soil height measurements (green trace) with
additive noise, corresponding to the Sentinel-1 revisit time for (a) Rouveen and
(b) Zegveld. During times of high coherence, the PDF is clearly defined and
a clear peak is visible at each ambiguity level. During low-coherence epochs,
the PDF becomes “smeared-out” and distinguishing ambiguity levels becomes
challenging. In all, 50 realizations of random noise are generated and a
solution obtained using the standard minimum gradient approach (red traces).

implicitly. We choose to use φ0 = 0 formulation because it233

allows the reader to more clearly see all the steps which are234

taken to produce the simulated phases.235

Thus, every epoch has a different noise variance σ 2
n (γ, L),236

which is based on the coherence value at that epoch and237

determines the shape of the distribution f (γ (ti , t j ), L) which238

is randomly sampled. The simulated coherence values used to239

generate these noise values are shown in Fig. 2, which are the240

representative values for Sentinel-1 observations over Rouveen241

and Zegveld during the periods in which the extensometers242

were active. Epochs with coherences of less than 0.05 can243

occasionally occur, but are omitted from this study because244

this results in almost complete information loss in the inter-245

ferogram, and phase unwrapping becomes redundant because246

only noise remains in the observation. In a fully realized247

InSAR processor, these interferograms must be omitted or248

bridged using some form of assumption or pseudoobservation.249

We use a multilooking factor L = 100, as strong multilooking250

is an important part of a strategy for noise reduction to251

enable InSAR over grasslands on peaty soil. Without such high252

levels of multilooking, noise levels in the summer months of253

low coherence can become so strong that it is impossible to254

interpret the interferometric phase.255

To visualize the effect of noise, Fig. 3 shows 50 unwrapped256

time series (red traces) obtained by 50 realizations of random257

noise generated by the PDF (greyscale). The PDF is mul- 258

timodal, which reflects that the observed phase is wrapped 259

and the true ambiguity level is unknown. The epochs of low 260

coherence widen the PDF such that it is no longer a set of 261

clearly defined peaks, which can cause the observed phase 262

change between epochs to exceed the unwrapping threshold. 263

The divergence of the red traces illustrates how noise 264

can have a significant effect on unwrapping decisions, and 265

therefore on the inferred vertical displacement. Strong noise 266

can either introduce new unwrapping errors, as in the case of 267

Rouveen, or exacerbate the existing problems already present, 268

as in the Zegveld case, cf. Fig. 1(a) and (b), respectively. 269

C. Implications of Rapid Ground Motion and Noise 270

Figs. 1–3 demonstrate the difficulty of directly producing 271

InSAR time series estimates of the Dutch polderlands. First, 272

from a signal perspective, Fig. 1 shows that the ground motion 273

which we attempt to measure is highly rapid and nonlinear. 274

Large shifts can occur even within the six-day Sentinel-1 275

revisit interval, creating problems for phase unwrapping even 276

in a noise-free scenario. The second additional challenge is 277

that of noise, which is related to that of temporal decorrelation, 278

as shown in Figs. 2 and 3. Additive noise can occasionally 279

become very large during periods of low coherence and can 280

cause phase wrapping to occur when there would be none 281

in the hypothetical noise-free scenario. This is of particular 282

importance during the late summer and autumn months, when 283

the soil height gradients are at their largest. The observer, 284

and by extension, the algorithm, needs more information to 285

correctly unwrap the observed phase in this environment. 286

Section III will describe how this may be accomplished using 287

the readily available meteorological data. 288

III. MAKING USE OF CONTEXTUAL INFORMATION 289

A. Motivation for a RNN 290

Studies with the extensometer data [16] demonstrate a very 291

strong relationship between the shallow ground displacements 292

and the phreatic groundwater level. It is therefore critical for 293

us to understand the dynamics of the phreatic groundwater to 294

anticipate large deformation events in the shallow subsurface. 295

The available in situ measurements have shown that the 296

groundwater follows a clear seasonal pattern with short-term 297

dynamics. Modeling the phreatic groundwater of the Dutch 298

peatlands is an ongoing scientific endeavor and has proven 299

challenging in the past, and most models are only able to 300

estimate an approximate annual maximum and minimum [20]. 301

Numerical models that are capable of simulating phreatic 302

groundwater dynamics are also available, but are not accurate 303

or granular enough for our application [21]. 304

Despite not having direct access to the groundwater level, 305

several inferences can still be made. Based on in situ mea- 306

surements, we assert that the critical factors which determine 307

the short-term changes in the phreatic groundwater level, and 308

therefore the surface height, are precipitation and temperature. 309

With three parameters [precipitation, temperature, and day of 310

year (DOY)], we can train a neural network to anticipate shifts 311

in the surface height, which captures both the seasonality and 312



CONROY et al.: PROBABILISTIC ESTIMATION OF InSAR DISPLACEMENT PHASE GUIDED 5234611

Fig. 4. RNN flow diagram with an instance of a training data sequence sm
at epoch m. The feedforward prediction path is shown with solid lines, and
the feedback path used for training the network is shown with dashed lines.

the short time scales we require. Synoptic precipitation and313

temperature values are commonly measured at weather stations314

and are freely available throughout The Netherlands and many315

other parts of the world. Furthermore, we do not need to know316

the exact surface height at any given time; what is important317

for us is simply to know what correct phase unwrapping318

direction is. That is, we only need to predict whether or not319

the ground level will move significantly upward or downward320

with respect to the previous epoch. This allows us to turn the321

time series prediction problem into a classification problem,322

which is conceptually much easier for the machine learning323

algorithms to solve.324

B. RNN Architecture325

An RNN is optimized for the task of processing sequences326

of input data in time and predicting an output classification327

and is therefore a suitable choice for our application [22].328

The RNN comprises an input layer, three long short-term329

memory (LSTM) hidden layers, and a three-node output layer,330

corresponding to the probabilities of the three output labels.331

LSTM layers are chosen because of their ability to use both332

the current and past values of a time series in computation.333

Multiple layers are used to capture the nonlinear relationships334

between the input sequences and the target value. The outputs335

of each layer are renormalized, and a 10% dropout is added336

to help prevent overfitting [23]. The RNN is created using the337

TensorFlow Python library.338

C. Training Data339

The RNN is designed to take in a set of sequential precipita-340

tion and temperature data linked to a target value for training.341

An instance of the training set, pictured in Fig. 4, is a sequence342

of DOY values, and daily precipitation and temperature values343

starting from the day in question (the current epoch, m) going 344

back to the N th previous day. These are coupled with one 345

integer target value. The target value is extracted from the 346

extensometer data by downsampling to one observation every 347

six days to match the Sentinel-1 overpass cycle and assigning 348

an integer label of 0, 1, or 2 corresponding to insignificant, 349

upward, or downward motion, respectively. 350

A set of M training sequences are used to train the network, 351

which takes the precipitation and temperature inputs and 352

attempts to predict the target value at the output. Error in the 353

predictions is quantified through the categorical cross-entropy 354

loss function J , as [24] 355

J (w) = − 1

M

M∑
m=1

C∑
i=1

ym,i · log
[
hw,i (sm)

]
(4) 356

where w is the vector of weights in the neural network model 357

(also known as the model parameters), ym is the one-hot vector 358

representation of the true target at epoch m, and hw(sm) is the 359

estimated target. C is the length of the one-hot vectors, i.e., 360

the number of categories. A one-hot vector is a mapping of an 361

integer category to a vector with a length equal to the number 362

of categories, in which all the elements are zero apart from 363

the element corresponding to the given category. For example, 364

in the set of categories {0, 1, 2}, the category “2” maps to the 365

vector [0, 0, 1]. The model parameters are updated in each 366

training iteration so as to minimize J . The problem statement 367

can then be formulated as finding the optimal set of weights 368

that minimize J 369

wopt = arg min
w

J (w). (5) 370

The training dataset is split between 80% training and 20% 371

validation. The network is trained over many iterations as the 372

algorithm attempts to reduce the training loss. The final model 373

which is saved is the iteration in which the validation loss is 374

minimized, as shown in Fig. 5. The model iteration used is 375

given by the vertical black dashed line. 376

D. RNN Model Testing 377

The RNN is tested using an independent extensometer 378

dataset obtained from a separate location 4.5 km away. The 379

training and testing locations are shown in Fig. 6. This 380

extensometer is installed on a site with a significantly thinner 381

soft soil layer in the shallow subsurface. This site was chosen 382

so that a large variation in the soil uplift and subsidence rates 383

may be observed. What this means for our model test is that 384

the soil properties of this location are substantially different 385

enough to represent the natural variations in soil encountered 386

throughout an observed scene, but are still geographically 387

close enough to encounter the same weather conditions. 388

The model is evaluated using 977 predictions on data gath- 389

ered from October 15, 2018, to July 4, 2021. The performance 390

of the model is determined by creating a confusion matrix 391

of the real versus predicted movement classes, as shown in 392

Table I. It can be seen that the network can very accurately 393

differentiate between significant upward and downward motion 394

(UP versus DOWN) with little to no error (bottom-right 395
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Fig. 5. RNN training curves. The black dashed line indicates the training step
in which the optimum model weights are achieved. Accuracy is defined as the
ratio of the number of correct predictions to the total number of predictions,
and loss is defined by (4).

Fig. 6. Aerial view of extensometer locations used for training and testing
of RNN in Rouveen, NL.

TABLE I

RNN TEST CONFUSION MATRIX

quadrant of Table I. It has greater difficulty in distinguishing396

between UP/DOWN versus STAY. This is due to the fact397

that the choice of threshold which defines what amount of398

movement is considered large enough to be an UP/DOWN399

Fig. 7. HMM used to integrate wrapped phase information with RNN
output. Solid lines represent transition probabilities, and dashed lines represent
emission probabilities.

state versus what is not large enough and is considered a STAY 400

is a somewhat arbitrary distinction. This result is, however, not 401

very concerning, because the important distinction to make 402

is between significant upward and downward motion, i.e., 403

correctly predicting UP versus DOWN. 404

IV. RNN-AIDED PHASE UNWRAPPING 405

A. Introduction 406

The RNN model described in Section III is able to estimate 407

the DOGM; however, these predictions are not 100% accurate 408

(as shown in Table I), and all this information must still be 409

integrated into a phase unwrapping routine. In addition, the 410

wrapped phases and coherences are also important informa- 411

tion which should be used. To integrate all this information 412

together, the problem can be posed as an HMM, which is a 413

general formulation describing how a system may transition 414

between various unobservable “hidden” states (the unwrapped 415

phase transitions) given a set of noisy observations (the RNN 416

estimation). 417

B. Hidden Markov Model 418

The system of wrapped interferometric phase observations 419

and estimated RNN classes is considered to act together as an 420

HMM, as pictured in Fig. 7. For simplicity, we consider three 421

hidden states corresponding to the average ground movement: 422

uplift (UP), subsidence (DOWN), or no significant movement 423

(STAY), which correspond closely to (but are distinct from) 424

the RNN output classes. These states are hidden, because the 425

nature of wrapped phases is such that one cannot discern the 426

DOGM from them directly. The additional observations in this 427

HMM therefore come from the RNN output classes. 428

To complete the model, a set of transition and emission 429

probabilities are required. The transition probabilities repre- 430

sent the probability of moving to a given state from the 431

current state. In our implementation, these are estimated using 432

the wrapped phases, �φ. The probabilities are estimated in 433

two steps: 1) estimating the probability of downward versus 434

upward motion and 2) estimating the significance of the 435
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motion, by comparing the magnitude of the phase change with436

the distribution given in (3). The up/down probabilities are437

determined by considering the two nearest ambiguity levels438

as branches439

b1 = �φ440

b2 = �φ − sign(�φ) · 2π (6)441

where �φ is the observed change in the wrapped phases442

between epochs, which is equal to the equivalent daisy-chain443

phase. These branches correspond to the UP or DOWN state,444

depending on the sign of the observed phase change. The445

initial probabilities of the two complementary branches are446

estimated based on the magnitude of �φ and are given by447

pb1 = 1 − 1

2
[erf(|�φ| − π) + 1]448

pb2 = 1 − pb1 (7)449

where erf(·) denotes the error function. As |�φ| increases,450

the probability of remaining on branch b1 smoothly decreases451

from 1. When |�φ| = π , both the branches are equally452

likely. In this initial estimation, the branch corresponding453

to the minimum phase gradient solution is favored. In the454

absence of any additional information, this branch would455

always be selected by the algorithm, corresponding to the456

standard unwrapping solution. Which branch corresponds to457

UP and which to DOWN depends on the sign of �φ.458

While the probabilities estimated by (7) provide the relative459

likelihoods of transitioning to the UP versus DOWN state,460

to complete the set of transition probabilities, the likelihood of461

the STAY state must also be estimated. This is done using the462

temporal coherence to compare the magnitude of the phase to463

three times the estimated phase noise standard deviation, σφn ,464

of that epoch, which is determined using the circular Gaussian465

distribution given in (3). This provides an estimate as to466

whether or not an observed phase change contains significant467

movement with respect to the estimated level of noise in the468

measurement. This probability of significance is estimated by469

comparing the magnitude of the phase change with the n-sigma470

noise level471

psig = erf

(
1√
2

· |�φ|
nσφn

)
. (8)472

The best value of n is empirically found to be 1.5. Finally,473

to obtain the set of transition probabilities, the probabilities of474

(7) are conditioned on psig475

T (UP) = pb1,2 · psig476

T (DOWN) = pb2,1 · psig477

T (STAY) = 1 − psig (9)478

where the subscript b1,2 refers to the branch corresponding479

to the upward motion, and b2,1 is the opposite branch cor-480

responding to the downward motion depending on the signs481

of the terms in (6). A graphical example of how an observed482

phase change relates to the transition probabilities is shown483

in Fig. 8.484

The emission probabilities describe the likelihood of an485

external observation (in our case the RNN output) while being486

Fig. 8. Example estimation of the transition probabilities based on an
observed phase change �φ = −2π/3. Left: blue indicates the upward branch
and red indicates the downward branch. Right: blue indicates T(UP), red
T(DOWN), and yellow T(STAY). The black dashed lines correspond to the
UP and DOWN probabilities estimated for �φ (not shown: T(STAY) = 0).

in a given state. These probabilities are estimated by taking 487

the values of the appropriate column of the confusion matrix 488

obtained from testing the RNN (Table I). 489

There are two key differences which differentiate our imple- 490

mentation and a typical HMM example: 1) the transition 491

probabilities are usually assumed to be static, but in our case 492

they change with every epoch and 2) in our case, the transition 493

probabilities are independent of the current state, while usually 494

they are not. The effect this has on the calculation is described 495

below. 496

C. Modified Viterbi Algorithm 497

The Viterbi algorithm [15] describes how to predict the most 498

likely sequence of states in an HMM. It does this by predicting 499

the most likely current state and subsequently using that 500

state’s transition probabilities in combination with the external 501

observations to predict the next state. Thus, the sequence of 502

most likely states, called the Viterbi path, is determined. The 503

output of this calculation is a “trellis” of probabilities P which 504

describe the likelihood of being in a given state s at epoch t 505

(corresponding to ti in (1)), which can be written as 506

P(t, s) = P(t − 1, k) · T (k, s) · E(t, s) (10) 507

where k is the most likely state at time t − 1, T is the 508

matrix of state transition probabilities, and E is the matrix 509

of emission probabilities. This calculation is simplified in 510

our implementation by the fact that the next state does not 511

depend on the current state, that is, while the set of state 512

transition probabilities change from epoch to epoch, they are 513

the same for each state. Since P(t −1, k) is the same for each 514

choice of k, it becomes a scalar which no longer affects the 515

outcome and is dropped. We therefore calculate the trellis of 516

probabilities as 517

P(t, s) = T (t, s) · E(t, s) (11) 518

which shows how RNN estimation is combined with the 519

wrapped phases to inform the algorithm how the phase should 520

be unwrapped. T represents the information present in the 521

wrapped phases, and E is the information from the RNN. 522

If one were to imagine the case in which E were not 523

present, that is, P(t, s) = T (t, s), phase unwrapping would be 524

completely informed by the wrapped phases and the algorithm 525
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would behave identically to the standard minimum gradient526

implementations. Inversely, if one were to ignore the wrapped527

phases and take P(t, s) = E(t, s), the phase unwrapping528

would be driven completely by the RNN. Therefore (11) shows529

how the final probabilities are assessed based on the balance530

of the relative levels of confidence in the two sources of531

information at that epoch.532

D. Phase Unwrapping533

The phase unwrapping works by stepping through the trellis534

to find the most likely state at each epoch and integrating the535

corresponding phase. The two branches in (6) are considered536

as the two possible paths the algorithm can take to unwrap537

the phase. The algorithm steps through each epoch and selects538

the appropriate ambiguity level, i.e., −2π , 0, or +2π , to add539

to the phase at that epoch according to the value of the most540

likely state. In the case of an UP state, the upper branch is541

chosen, and in the DOWN state, the lower branch is chosen.542

In the STAY case, the branch corresponding to the smallest543

phase change is selected. This way, the algorithm attempts544

to find the correct ambiguity level without modifying the545

observed phases. When the observed phase change is low,546

or the estimated level of noise is high, the algorithm becomes547

more conservative and the STAY state becomes more likely,548

causing the algorithm to default back to the standard minimum549

gradient solution.550

V. RESULTS551

A. Optimal Path Through Noisy Data552

The RNN-aided algorithm is used to unwrap 50 instances553

of noisy phases originally shown in Fig. 3, shown again with554

the RNN-aided solution in Fig. 9.555

While the RNN-aided algorithm solutions contain signif-556

icantly less error than their standard counterparts, it can557

be observed that noise still has a significant effect on the558

solution. We therefore include the option to retain multiple559

solutions which branch out in the problematic epochs where560

the algorithm cannot confidently choose a certain path. Fig. 10,561

The effect of introducing the RNN-aided algorithm is clearly562

shown, which shows the histograms of the error in the final563

epoch of the unwrapped time series with respect to the true564

value in 1000 realizations of noise. Here, a downward skew565

can be seen in the standard algorithm’s results at both the566

locations, which is particularly pronounced in the Zegveld567

case. This downward skew is strongly mitigated by the RNN-568

aided algorithm, and the correct solution is more consistently569

obtained.570

B. Unwrapping Success Rates Versus Coherence571

The RNN-aided phase unwrapping algorithm is tested572

against a standard minimum gradient unwrapping algorithm to573

test its ability to correctly interpret the simulated deformation574

phase as given in (1). Several values of temporal coherence575

ranging from 0.05 to 0.95 are swept through to generate576

the test cases; see Fig. 11 for Rouveen and Zegveld. For577

each coherence level, 1000 independent noise simulations are578

Fig. 9. Normalized multimodal PDF (greyscale) based on (1) and (3)
from downsampled extensometer soil height measurements (green trace) with
additive noise, corresponding to Sentinel-1 revisit time for (a) Rouveen and
(b) Zegveld. In all, 50 realizations of random noise are generated and solutions
obtained using the standard minimum gradient (red traces) and the RNN-aided
(blue traces) approaches.

generated according to the circular Gaussian distribution in (3). 579

Note that for this particular test, while the noise is random 580

from epoch to epoch, the coherence is held constant for the 581

entire run through the time series. This simplification is made 582

to generate the test statistics and accurately compare the two 583

algorithms in a standardized manner. For each time series 584

run, the integer number of unwrapping errors is tallied and 585

the unwrapping error rate is determined by dividing the total 586

number of errors by the number of unwrapping operations 587

performed for each coherence level (Nerrors/Nepochs · Niterations). 588

The position of the unwrapping error in the time series is not 589

considered in this tally. 590

The RNN-aided unwrapping algorithm consistently out- 591

performs the standard algorithm in both the cases. In the 592

case of Rouveen, both are able to correctly unwrap the time 593

series and retrieve the correct deformation phase in high- 594

coherence scenarios, because the deformation phase gradient 595

never exceeds the unwrapping threshold. But as coherence 596

drops and noise levels increase, errors begin to appear in 597

the solution. The RNN-aided algorithm is more resistant to 598

this noise, as it does not solely rely on the wrapped phases 599

to estimate the correct ambiguity level. In the Zegveld case, 600

the deformation gradients are stronger and do exceed the 601

unwrapping threshold even in a noiseless scenario. Thus, we 602
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Fig. 10. Histograms of the error in the final epoch of the obtained time series
in (a) Rouveen and (b) Zegveld of 1000 instances of simulated noise. (Red)
Standard algorithm. (Blue) RNN-aided algorithm. The nearest ambiguity
levels are indicated by the black dashed lines. The standard algorithm produces
results which are downwardly skewed. This skew is corrected by the RNN-
aided algorithm.

conclude that the standard algorithm will intrinsically never603

be able to estimate the correct ambiguity level. However,604

the RNN-aided algorithm is able to consistently unwrap the605

time series correctly. As coherence decreases, the likelihood606

of making an error increases, as spikes of noise can affect607

the algorithm’s ability to interpret the phase. Nevertheless,608

the RNN-aided algorithm is still able to reject some of the609

effects of noise and perform better, or as well as, the standard610

algorithm.611

VI. DISCUSSION612

Extensometer measurements gathered throughout the Dutch613

polderlands have shown that there is a very close relation-614

ship between the phreatic groundwater level and the soil615

height [16]. While ground water measurements are not directly616

available, we are able to anticipate large shifts in the soil617

height which disrupt standard phase unwrapping by means of a618

motion classifier RNN. This model can very reliably anticipate619

the large changes in the ground motion of nearby independent620

locations, as shown by the lower right quadrant of the con-621

fusion matrix in Table I. The model has greater difficulty in622

differentiating between significant and insignificant levels of623

motion in both the directions, which is a somewhat arbitrary624

distinction. This can be avoided by removing the STAY class625

Fig. 11. Algorithm performance curves of unwrapping SR versus coherence
in (a) Rouveen and (b) Zegveld. (Red) Standard algorithm. (Blue) RNN-aided
algorithm. In the Zegveld case, the standard algorithm cannot exceed an SR
of approx. 98%. This means that at least one phase unwrapping error can
be expected for a time series containing 50 epochs (just under one year of
Sentinel-1 data).

altogether; however, in that case the model predictions can 626

become unstable, as even tiny or zero deformations must be 627

given an UP or DOWN label by the model. We find that 628

including a STAY class corresponding to small deformations 629

(<3 mm) provides more accuracy in making the distinc- 630

tion between large UP/DOWN events, which we choose to 631

prioritize. 632

Previous InSAR studies of the Dutch peatlands which have 633

attempted to directly monitor the ground via DS process- 634

ing [7] have failed to match the observations of other geodetic 635

techniques such as leveling, lidar surveys, and extensometer 636

measurements, and often strongly overestimate the true linear 637

subsidence rate. The reason for this (as discussed in Section I) 638

is due in large part to the conventional phase unwrapping tech- 639

niques being unable to cope with the rapid movements which 640

occur within the shortest temporal baselines, as shown in 641

Fig. 1, which results in estimates skewed downward, as shown 642
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in Fig. 10. By removing this downward skew, we hope to643

enable accurate monitoring of this region with DS InSAR for644

the first time.645

The results of Fig. 11 show that the RNN can provide a646

significant performance gain by supplying the unwrapping pro-647

cedure with more information. The deformation test scenario648

chosen based on the Zegveld extensometer measurements as649

shown in Fig. 1 shows a period of strong uplift in the autumn650

of 2020. When downsampling these measurements to six-day651

intervals corresponding to the Sentinel-1 overpass cycle, there652

is at least one epoch in which the deformation phase exceeds653

half a cycle (λ/4) and the standard unwrapping procedures fail,654

even in the presence of little or no noise. On the other hand,655

the RNN-aided algorithm is able to consistently retrieve the656

correct time series. In the Rouveen case, both the algorithms657

are able to achieve a 100% success rate (SR) given a high658

enough coherence level. However, the RNN-aided algorithm659

is able to achieve 100% SR at lower levels of coherence, which660

shows how integrating more information into the processing661

workflow will enable greater performance. Coherence itself662

can be viewed as a measure of the information content in an663

interferogram (or lack of coherence as a measure of entropy).664

Thus, introducing new information to the algorithm creates665

an increase in the “effective coherence” of the interferogram.666

For example, in the Rouveen case, Fig. 11 shows an effective667

coherence gain of �γ = 0.175 at SR = 100% when moving668

from the standard unwrapping algorithm (γ = 0.4) to the669

RNN-aided algorithm (γ = 0.225).670

One can also observe that the RNN-aided algorithm per-671

forms differently between locations, with better performance672

in Rouveen than in Zegveld. This is likely due to the fact673

that the available dataset in Rouveen is much longer than674

in Zegveld. The Rouveen dataset begins 1.5 years before the675

Zegveld one, which means that the RNN has more than twice676

as much training data available to it. Therefore, one may also677

infer that the potential for improvement as available datasets678

expand is very large, and that the performance of these models679

will continue to improve as more data become available.680

VII. CONCLUSION681

Phase unwrapping is an underdetermined problem which682

is conventionally sidestepped by assuming that the correct683

solution is the one which corresponds to the smallest phase684

change between epochs. While this is often a reasonable685

approach, ground-based measurements have shown that this686

is not a good enough solution in certain regions, such as the687

Dutch peatlands. If InSAR is to be used to monitor ground688

deformation in these regions, a different approach is required.689

This necessitates the integration of additional information to690

help solve the phase unwrapping problem.691

We demonstrated how ground-based measurements can be692

used to create a model that anticipates large shifts in the693

ground level based on the readily available environmental694

information such as precipitation and temperature. Predictions695

from this model are integrated into the phase unwrapping696

process by considering the system of wrapped phases and697

model predictions as an HMM. The relative probabilities of698

which direction the observed phases should be integrated 699

into the time series can then be estimated using the Viterbi 700

algorithm. While in our scenario we chose to focus on a model 701

which can anticipate ground movement caused by changes 702

in precipitation and temperature, this HMM framework can 703

also be used in other cases in which a researcher would 704

wish to integrate additional information into a temporal phase 705

unwrapping application. 706

Our results show that using this technique can alleviate 707

some of the worst effects which rapid soil movements have 708

on DS InSAR estimates when combined with an effective 709

multilooking strategy. For the future, we plan to integrate 710

this phase unwrapping procedure into a processing framework 711

such as the Delft persistent scatterer interferometry (DePSI) 712

processor [25], which will allow for mixed PS-DS monitoring 713

of the Dutch peatlands. 714
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