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Freek J. van Leijen™, Member, IEEE, and Ramon F. Hanssen™, Senior Member, IEEE

Abstract— Phase unwrapping, also known as ambiguity resolu-
tion, is an underdetermined problem in which assumptions must
be made to obtain a result in SAR interferometry (InSAR) time
series analysis. This problem is particularly acute for distributed
scatterer InSAR, in which noise levels can be so large that
they are comparable in magnitude to the signal of investigation.
In addition, deformation rates can be highly nonlinear and orders
of magnitude larger than neighboring point scatterers, which
may be part of a more stable object. The combination of these
factors has often proven too challenging for the conventional
InSAR processing methods to successfully monitor these regions.
We present a methodology which allows for additional environ-
mental information to be integrated into the phase unwrapping
procedure, thereby alleviating the problems described above.
We show how problematic epochs that cause errors in the tempo-
ral phase unwrapping process can be anticipated by the machine
learning algorithms which can create categorical predictions
about the relative ambiguity level based on the readily available
meteorological data. These predictions significantly assist in the
interpretation of large changes in the wrapped interferometric
phase and enable the monitoring of environments not previously
possible using standard minimum gradient phase unwrapping
techniques.

Index Terms— Artificial intelligence, peatland, phase unwrap-
ping, recurrent neural network (RNN), SAR interferometry
(InSAR), subsidence.

I. INTRODUCTION

CTIVELY monitoring ground motion is of paramount
A importance in The Netherlands, a country in which many
of its regions lie below sea level. There is a strong link
between soil height and phreatic groundwater level, and indeed
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the Dutch have actively managed the water tables in the
country for centuries using a system of dams and canals
through which excess water can be pumped away. Thus, better
knowledge of subsidence processes is needed for flood pro-
tection, building damage risk assessments, and understanding
greenhouse gas emissions caused by peat oxidation [1], [2].
The Dutch government has committed to a 1-Mt (~25%)
reduction in CO, equivalents per year originating from its
peatlands before 2030, a decision with significant impact on
future land use, agriculture, and the economy, which requires
adequate assessment of subsidence rates [3].

Yet, there is currently a large gap in our monitoring
capabilities of these low-lying peatland regions. While SAR
interferometry (InSAR) techniques using point scatterers (PS)
have been successfully used to monitor subsidence in The
Netherlands [4], [5], [6], these PS points are usually founded at
greater depths and the movement of the surrounding landscape
has had to be indirectly inferred. Direct monitoring of the
land has proven to be much more challenging. The soft soils
which comprise the majority of the country’s agricultural lands
are prone to rapid deformation and are very difficult or even
impossible to directly monitor using standard distributed scat-
terer (DS) InSAR techniques [7], [8] which use smoothness
constraints to perform spatial phase unwrapping [9], [10], [11].
Recently, a significant amount of research has been conducted
to improve 2-D phase unwrapping [12], and there is great
interest in the applicability of the machine learning techniques
in solving the problem [13]; however, this research has largely
been limited to the spatial case and does not consider the
temporal effects of a rapidly deforming region. Rapid soil
motion and nonstationary coherence cause large fluctuations
affecting both the functional and stochastic models, which
rules out the use of time-domain phase unwrapping techniques
such as integer least-squares (ILS) [14], as the stochastic
model will become too large reliably to evaluate an assumed
deformation model.

Using newly available ground-truth measurements, we find
that in the case of Sentinel-1 observations, rapid soil uplift
due to increases in the ground water level between satellite
overpasses can cause phase displacements larger than half a
cycle (1/4) at the C-band. This renders time series analy-
sis of the region using Sentinel-1 imagery impossible using
standard techniques, because the phase unwrapping algorithms
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will typically assume the smaller phase displacement in the
opposite direction to be the correct solution. This introduces
a systematic error in all subsequent points of the time series
corresponding to one 2z ambiguity level. While this problem
may potentially be avoided using the L-band SAR data, there
is currently no operational L-band radar mission observing
The Netherlands at the temporal frequencies required for
monitoring this environment.

It is therefore necessary to augment the standard unwrap-
ping procedure with additional information to prevent errors
in the unwrapping direction. This is done by considering the
direction of ground motion (DOGM), and therefore the correct
phase unwrapping direction, as stated in a hidden Markov
model (HMM). Using a modification of the widely used
Viterbi algorithm [15], we can integrate additional contextual
information about the system into a generalized probabilistic
framework which can be used to guide the unwrapping of the
interferometric phase in the time domain. In our case, this
additional information comes from a recurrent neural network
(RNN) which takes meteorological data as its input to predict
the DOGM. This was chosen because meteorological data are
easily accessible and interpretable for our areas of study, but in
general, any model which predicts the state of ground motion
can be used. We show that this framework is able to reliably
anticipate rapid soil deformation events and correctly unwrap
the interferometric phases.

The remaining sections of the article are organized as
follows: Section II presents the results of the extensometer
measurements taken in two regions of the Dutch polderlands.
These data are used to simulate a InSAR phase time series
which is used to demonstrate that unwrapping errors are
inevitable in this region when using standard approaches.
Section III motivates the use of additional contextual infor-
mation which can be used to aid in this problem. An RNN
is used to process sequences of meteorological data and
estimate the DOGM to aid the unwrapping process. Section IV
describes how the outputs of RNN are used in tandem with
the wrapped phases to perform phase unwrapping. Section V
shows the results of this RNN-aided phase unwrapping versus
a standard minimum gradient algorithm. A general discussion
is presented in Section VI, and Section VII concludes this
article.

II. EXTENSOMETER DATA AND SIGNAL SIMULATION
A. Extensometer Data

Extensometers placed in various locations across the Nether-
lands have been continuously monitoring the vertical move-
ment of the surface and shallow subsurface of peaty soft soils
for several years [16]. The longest running of these stations
is in Rouveen, which has been collecting data since October
2018 and exhibits relatively modest levels of movement, within
a range of 4 cm; see Fig. 1(a). On the other hand, some of
the largest measured soil variations are observed in Zegveld,
within a range of 9 cm; see Fig. 1(b). Therefore, these
two locations show a representative range of ground move-
ments which can be reasonably expected to be encountered
in Dutch agricultural areas. Inspection of the extensometer
measurements (blue trace) shows a very high degree of
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Fig. 1. (a) Rouveen and (b) Zegveld daily extensometer soil height
measurements with respect to The Netherlands vertical data (NAP) (blue trace,
left-hand y-axis) and the corresponding height gradient magnitudes computed
over 6-, 11-, and 24-day intervals (red, purple, green bars, right-hand y-axis).
Representative C- and X-band unwrapping thresholds projected from the slant
range to the vertical are indicated by the horizontal dashed and dotted lines,
respectively (right-hand y-axis). Not visible: L-band unwrapping threshold
projected to the vertical (0.0726 m). The gap in data around January 2021 in
Zegveld is caused by uplift which exceeded the range of the extensometer
scale and could not be recorded.

reversible deformation following a strong seasonal trend. The
most stable periods are during the winter months, when cold,
rainy conditions in The Netherlands keep the soils saturated
with moisture. As temperatures rise and precipitation lev-
els decrease, the soils dry out and become more unstable.
A significant amount of movement over short time scales
can also be observed. This creates an additional complication
for InNSAR observations, as significant movement can occur
even between the relatively frequent six-day Sentinel-1 over-
pass cycle, which is shown by the six-day height gradient
magnitude (red bars). In the case of Zegveld, shifts in soil
height can cause strong gradients in the measured signal which
exceed the unwrapping threshold (projected from the slant
range to the vertical using a typical Sentinel-1 incidence angle
of 37°, and shown by the dashed horizontal line), even in
an ideal, noiseless case. We can also infer that we do not
need to expect the deformation to exceed multiple ambiguity
levels at the C-band within one overpass. For other missions,
the outlook is significantly worse. In the case of Radarsat2
(corresponding to the 24-day gradient shown by green bars),
which also operates at the C-band, the gradients routinely
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exceed the unwrapping threshold in both the locations. With
TerraSAR-X (corresponding to the 11-day gradient shown
by purple bars, and the dotted line representing the X-band
unwrapping threshold height projected from the slant range to
the vertical), the signal shifts are consistently larger than the
unwrapping threshold, rendering any time series interpretation
extremely challenging. On a more hopeful note, the future
Radar Observation System for Europe in L-band (ROSE-L)
mission operating at the L-band with a six-day revisit time
should be able to comfortably follow the observed signal
without significant risk of phase unwrapping errors. (The
L-band unwrapping threshold is significantly larger than the
dynamic range of the signals plotted in Fig. 1 and is therefore
not shown.) While this mission will undoubtedly be a very
useful asset for subsidence monitoring in The Netherlands,
it is expected to be launched in the year 2027 and will then
require an additional several years to build up a dataset of
observations to allow for the time series analysis. This means
that scientists and policymakers will need to wait for about
another ten years before the benefits of the ROSE-L mission
become truly available to them, and many decisions until
that time will need to be based on the available Sentinel-1
data. While other L-band missions have been flown, notably
advanced land observing satellite (ALOS)-1, ALOS-2, and
argentine microwaves observation satellite (SAOCOM), there
have not been enough acquisitions to provide the necessary
coverage.

Note that the gap in the data from end December 2020 to
mid January 2021 in Fig. 1 in Zegveld is caused by the uplift
which exceeded the range of the extensometer scale and could
not be recorded. We conservatively do not use the data from
this time in our subsequent analysis; however, it could be
interpreted that an additional spike in the observed deformation
gradients would be present here as well.

B. Simulated InSAR Signal

To assess the ability of an algorithm to correctly unwrap the
observed phase, we simulate an InSAR signal based on the
ground truth provided by the extensometers. This allows us to
control the level of noise in the data and reference the obtained
solutions to a known true value. We produce this simulated
signal, @gim, by downsampling the extensometer data to one
observation per six days, converting the vertical displacement
into phase, projecting from the vertical axis onto the slant
range direction, adding noise, and wrapping the resultant phase
on the interval [—z, 7). For simplicity, we use the shorthand
f(t) to denote a time series which has been sampled with a
period of six days. The simulated signal is given by

47 cosO

— +n(t,~,tj)} (1)

where W{-} is the phase wrapping operator [17], Azex is the
change in the extensometer signal between acquisition epochs
t; and t;, A is the radar wavelength of 0.0556 m, corresponding
to the wavelength of the Sentinel-1 radar, 6 is the radar
incidence angle, and n(t, ;) is the additive heteroscedastic
noise. The variance of n(t;, t;) differs for each interferogram
and is governed by the coherence y (1;,¢;), and equivalent

¢sim(ti, tj) = W{AZexl .
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Fig. 2.  Daisy-chain coherence values used to generate additive noise in
(a) Rouveen and (b) Zegveld. The term “daisy-chain” refers to the off-diagonal
elements of the coherence matrix showing the relative coherence between
consecutive epochs.

number of looks, L [17]. The coherence of a multilooked set of
pixels Q in an interferogram is estimated from the magnitude
of the complex sample coherence given in [17] by

N
y (ti,tj) — ‘ZnEQ Jj |
V(a8 (Zoea 155 )

where §; ;, is the nth pixel in SAR images acquired at times #;
and t;. We focus on the daisy-chain coherence, which refers
to the coherence observed in interferograms of consecutive
acquisitions (j = i — 1), i.e., the magnitudes of the first off-
diagonal of the full coherence matrix, as shown in Fig. 2. For
simplicity, we denote the daisy-chain phase ¢ (f;,1,_1) as Ag.

The additive phase noise is modeled as a random process
which follows a circular Gaussian distribution. The prob-
ability density function (PDF) of the phase component
is [17], [18], [19]:

T(L+1/2)(1—92)"p
27T (L) (1 — p2)

1—y2)"

% SR (L, I ﬁ2> 3
where ff = y cos (¢ — ¢o), ['(-) is the gamma function, and
F(-) is the hypergeometric function. The PDF is evaluated
over the interval ¢ = [—x, 7 ), and the mean, ¢, is taken as
0 to center the additive noise around the signal. An equivalent
alternative formulation is possible in which one sets ¢y =
W{AZex - 4m cos@/1}, due to the fact that f(¢p|y, L, do)
produces random samples of wrapped phases. In this case, the
distribution would describe the entire signal, ¢, and not only
the noise component, and the phase wrapping would be stated

2

f(¢|y’ L’ ¢0) =

+
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Fig. 3. Normalized multimodal PDF (greyscale) based on (1) and (3)
from downsampled extensometer soil height measurements (green trace) with
additive noise, corresponding to the Sentinel-1 revisit time for (a) Rouveen and
(b) Zegveld. During times of high coherence, the PDF is clearly defined and
a clear peak is visible at each ambiguity level. During low-coherence epochs,
the PDF becomes “smeared-out” and distinguishing ambiguity levels becomes
challenging. In all, 50 realizations of random noise are generated and a
solution obtained using the standard minimum gradient approach (red traces).

implicitly. We choose to use ¢y = 0 formulation because it
allows the reader to more clearly see all the steps which are
taken to produce the simulated phases.

Thus, every epoch has a different noise variance o2(y, L),
which is based on the coherence value at that epoch and
determines the shape of the distribution f(y (#,¢;), L) which
is randomly sampled. The simulated coherence values used to
generate these noise values are shown in Fig. 2, which are the
representative values for Sentinel-1 observations over Rouveen
and Zegveld during the periods in which the extensometers
were active. Epochs with coherences of less than 0.05 can
occasionally occur, but are omitted from this study because
this results in almost complete information loss in the inter-
ferogram, and phase unwrapping becomes redundant because
only noise remains in the observation. In a fully realized
InSAR processor, these interferograms must be omitted or
bridged using some form of assumption or pseudoobservation.
We use a multilooking factor L = 100, as strong multilooking
is an important part of a strategy for noise reduction to
enable InSAR over grasslands on peaty soil. Without such high
levels of multilooking, noise levels in the summer months of
low coherence can become so strong that it is impossible to
interpret the interferometric phase.

To visualize the effect of noise, Fig. 3 shows 50 unwrapped
time series (red traces) obtained by 50 realizations of random
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noise generated by the PDF (greyscale). The PDF is mul-
timodal, which reflects that the observed phase is wrapped
and the true ambiguity level is unknown. The epochs of low
coherence widen the PDF such that it is no longer a set of
clearly defined peaks, which can cause the observed phase
change between epochs to exceed the unwrapping threshold.

The divergence of the red traces illustrates how noise
can have a significant effect on unwrapping decisions, and
therefore on the inferred vertical displacement. Strong noise
can either introduce new unwrapping errors, as in the case of
Rouveen, or exacerbate the existing problems already present,
as in the Zegveld case, cf. Fig. 1(a) and (b), respectively.

C. Implications of Rapid Ground Motion and Noise

Figs. 1-3 demonstrate the difficulty of directly producing
InSAR time series estimates of the Dutch polderlands. First,
from a signal perspective, Fig. 1 shows that the ground motion
which we attempt to measure is highly rapid and nonlinear.
Large shifts can occur even within the six-day Sentinel-1
revisit interval, creating problems for phase unwrapping even
in a noise-free scenario. The second additional challenge is
that of noise, which is related to that of temporal decorrelation,
as shown in Figs. 2 and 3. Additive noise can occasionally
become very large during periods of low coherence and can
cause phase wrapping to occur when there would be none
in the hypothetical noise-free scenario. This is of particular
importance during the late summer and autumn months, when
the soil height gradients are at their largest. The observer,
and by extension, the algorithm, needs more information to
correctly unwrap the observed phase in this environment.
Section III will describe how this may be accomplished using
the readily available meteorological data.

III. MAKING USE OF CONTEXTUAL INFORMATION
A. Motivation for a RNN

Studies with the extensometer data [16] demonstrate a very
strong relationship between the shallow ground displacements
and the phreatic groundwater level. It is therefore critical for
us to understand the dynamics of the phreatic groundwater to
anticipate large deformation events in the shallow subsurface.
The available in situ measurements have shown that the
groundwater follows a clear seasonal pattern with short-term
dynamics. Modeling the phreatic groundwater of the Dutch
peatlands is an ongoing scientific endeavor and has proven
challenging in the past, and most models are only able to
estimate an approximate annual maximum and minimum [20].
Numerical models that are capable of simulating phreatic
groundwater dynamics are also available, but are not accurate
or granular enough for our application [21].

Despite not having direct access to the groundwater level,
several inferences can still be made. Based on in situ mea-
surements, we assert that the critical factors which determine
the short-term changes in the phreatic groundwater level, and
therefore the surface height, are precipitation and temperature.
With three parameters [precipitation, temperature, and day of
year (DOY)], we can train a neural network to anticipate shifts
in the surface height, which captures both the seasonality and
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Fig. 4. RNN flow diagram with an instance of a training data sequence s,
at epoch m. The feedforward prediction path is shown with solid lines, and
the feedback path used for training the network is shown with dashed lines.

the short time scales we require. Synoptic precipitation and
temperature values are commonly measured at weather stations
and are freely available throughout The Netherlands and many
other parts of the world. Furthermore, we do not need to know
the exact surface height at any given time; what is important
for us is simply to know what correct phase unwrapping
direction is. That is, we only need to predict whether or not
the ground level will move significantly upward or downward
with respect to the previous epoch. This allows us to turn the
time series prediction problem into a classification problem,
which is conceptually much easier for the machine learning
algorithms to solve.

B. RNN Architecture

An RNN is optimized for the task of processing sequences
of input data in time and predicting an output classification
and is therefore a suitable choice for our application [22].
The RNN comprises an input layer, three long short-term
memory (LSTM) hidden layers, and a three-node output layer,
corresponding to the probabilities of the three output labels.
LSTM layers are chosen because of their ability to use both
the current and past values of a time series in computation.
Multiple layers are used to capture the nonlinear relationships
between the input sequences and the target value. The outputs
of each layer are renormalized, and a 10% dropout is added
to help prevent overfitting [23]. The RNN is created using the
TensorFlow Python library.

C. Training Data

The RNN is designed to take in a set of sequential precipita-
tion and temperature data linked to a target value for training.
An instance of the training set, pictured in Fig. 4, is a sequence
of DOY values, and daily precipitation and temperature values

5234611

starting from the day in question (the current epoch, m) going
back to the Nth previous day. These are coupled with one
integer target value. The target value is extracted from the
extensometer data by downsampling to one observation every
six days to match the Sentinel-1 overpass cycle and assigning
an integer label of 0, 1, or 2 corresponding to insignificant,
upward, or downward motion, respectively.

A set of M training sequences are used to train the network,
which takes the precipitation and temperature inputs and
attempts to predict the target value at the output. Error in the
predictions is quantified through the categorical cross-entropy
loss function J, as [24]

1 M C
J(w) = _M Z Z Ym,i * 10g [hu),i (Sm)} (4)

m=1 i=1

where w is the vector of weights in the neural network model
(also known as the model parameters), y,, is the one-hot vector
representation of the true target at epoch m, and £, (s;,) is the
estimated target. C is the length of the one-hot vectors, i.e.,
the number of categories. A one-hot vector is a mapping of an
integer category to a vector with a length equal to the number
of categories, in which all the elements are zero apart from
the element corresponding to the given category. For example,
in the set of categories {0, 1, 2}, the category “2” maps to the
vector [0, 0, 1]. The model parameters are updated in each
training iteration so as to minimize J. The problem statement
can then be formulated as finding the optimal set of weights
that minimize J

Wopr = argmin J (w). ®))
w

The training dataset is split between 80% training and 20%
validation. The network is trained over many iterations as the
algorithm attempts to reduce the training loss. The final model
which is saved is the iteration in which the validation loss is
minimized, as shown in Fig. 5. The model iteration used is
given by the vertical black dashed line.

D. RNN Model Testing

The RNN is tested using an independent extensometer
dataset obtained from a separate location 4.5 km away. The
training and testing locations are shown in Fig. 6. This
extensometer is installed on a site with a significantly thinner
soft soil layer in the shallow subsurface. This site was chosen
so that a large variation in the soil uplift and subsidence rates
may be observed. What this means for our model test is that
the soil properties of this location are substantially different
enough to represent the natural variations in soil encountered
throughout an observed scene, but are still geographically
close enough to encounter the same weather conditions.

The model is evaluated using 977 predictions on data gath-
ered from October 15, 2018, to July 4, 2021. The performance
of the model is determined by creating a confusion matrix
of the real versus predicted movement classes, as shown in
Table I. It can be seen that the network can very accurately
differentiate between significant upward and downward motion
(UP versus DOWN) with little to no error (bottom-right
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Fig. 6. Aerial view of extensometer locations used for training and testing
of RNN in Rouveen, NL.

TABLE I
RNN TEST CONFUSION MATRIX

True | True True

STAY | UP | DOWN
Predicted STAY 0.61 0.12 0.22
Predicted UP 0.14 | 0.88 0.02
Predicted DOWN | 0.24 0 0.76

quadrant of Table I. It has greater difficulty in distinguishing
between UP/DOWN versus STAY. This is due to the fact
that the choice of threshold which defines what amount of
movement is considered large enough to be an UP/DOWN
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Fig. 7.
output. Solid lines represent transition probabilities, and dashed lines represent
emission probabilities.

HMM used to integrate wrapped phase information with RNN

state versus what is not large enough and is considered a STAY
is a somewhat arbitrary distinction. This result is, however, not
very concerning, because the important distinction to make
is between significant upward and downward motion, i.e.,
correctly predicting UP versus DOWN.

IV. RNN-AIDED PHASE UNWRAPPING
A. Introduction

The RNN model described in Section III is able to estimate
the DOGM; however, these predictions are not 100% accurate
(as shown in Table I), and all this information must still be
integrated into a phase unwrapping routine. In addition, the
wrapped phases and coherences are also important informa-
tion which should be used. To integrate all this information
together, the problem can be posed as an HMM, which is a
general formulation describing how a system may transition
between various unobservable “hidden” states (the unwrapped
phase transitions) given a set of noisy observations (the RNN
estimation).

B. Hidden Markov Model

The system of wrapped interferometric phase observations
and estimated RNN classes is considered to act together as an
HMM, as pictured in Fig. 7. For simplicity, we consider three
hidden states corresponding to the average ground movement:
uplift (UP), subsidence (DOWN), or no significant movement
(STAY), which correspond closely to (but are distinct from)
the RNN output classes. These states are hidden, because the
nature of wrapped phases is such that one cannot discern the
DOGM from them directly. The additional observations in this
HMM therefore come from the RNN output classes.

To complete the model, a set of transition and emission
probabilities are required. The transition probabilities repre-
sent the probability of moving to a given state from the
current state. In our implementation, these are estimated using
the wrapped phases, A¢. The probabilities are estimated in
two steps: 1) estimating the probability of downward versus
upward motion and 2) estimating the significance of the
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motion, by comparing the magnitude of the phase change with
the distribution given in (3). The up/down probabilities are
determined by considering the two nearest ambiguity levels
as branches

by = A¢
b, = A¢p —sign(A¢) - 2z 6)

where A¢ is the observed change in the wrapped phases
between epochs, which is equal to the equivalent daisy-chain
phase. These branches correspond to the UP or DOWN state,
depending on the sign of the observed phase change. The
initial probabilities of the two complementary branches are
estimated based on the magnitude of A¢ and are given by

1
Py, =1— E[Cff(|A¢>| —m)+1]
pbz - 1_ pb1 (7)

where erf(-) denotes the error function. As |A¢| increases,
the probability of remaining on branch b; smoothly decreases
from 1. When |A¢| = =, both the branches are equally
likely. In this initial estimation, the branch corresponding
to the minimum phase gradient solution is favored. In the
absence of any additional information, this branch would
always be selected by the algorithm, corresponding to the
standard unwrapping solution. Which branch corresponds to
UP and which to DOWN depends on the sign of A¢.

While the probabilities estimated by (7) provide the relative
likelihoods of transitioning to the UP versus DOWN state,
to complete the set of transition probabilities, the likelihood of
the STAY state must also be estimated. This is done using the
temporal coherence to compare the magnitude of the phase to
three times the estimated phase noise standard deviation, oy,
of that epoch, which is determined using the circular Gaussian
distribution given in (3). This provides an estimate as to
whether or not an observed phase change contains significant
movement with respect to the estimated level of noise in the
measurement. This probability of significance is estimated by
comparing the magnitude of the phase change with the n-sigma

noise level
1 |A¢I>
sie = erf [ — - . 8
e =5 ®

The best value of n is empirically found to be 1.5. Finally,
to obtain the set of transition probabilities, the probabilities of
(7) are conditioned on pgig

T(UP) = Pby, " Psig
T(DOWN) = pj,, - Puie
T(STAY) = 1 — pg, ©)

where the subscript b, refers to the branch corresponding
to the upward motion, and b, is the opposite branch cor-
responding to the downward motion depending on the signs
of the terms in (6). A graphical example of how an observed
phase change relates to the transition probabilities is shown
in Fig. 8.

The emission probabilities describe the likelihood of an
external observation (in our case the RNN output) while being
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Fig. 8. Example estimation of the transition probabilities based on an

observed phase change A¢ = —2x /3. Left: blue indicates the upward branch
and red indicates the downward branch. Right: blue indicates T(UP), red
T(DOWN), and yellow T(STAY). The black dashed lines correspond to the
UP and DOWN probabilities estimated for A¢ (not shown: T(STAY) = 0).

in a given state. These probabilities are estimated by taking
the values of the appropriate column of the confusion matrix
obtained from testing the RNN (Table I).

There are two key differences which differentiate our imple-
mentation and a typical HMM example: 1) the transition
probabilities are usually assumed to be static, but in our case
they change with every epoch and 2) in our case, the transition
probabilities are independent of the current state, while usually
they are not. The effect this has on the calculation is described
below.

C. Modified Viterbi Algorithm

The Viterbi algorithm [15] describes how to predict the most
likely sequence of states in an HMM. It does this by predicting
the most likely current state and subsequently using that
state’s transition probabilities in combination with the external
observations to predict the next state. Thus, the sequence of
most likely states, called the Viterbi path, is determined. The
output of this calculation is a “frellis” of probabilities P which
describe the likelihood of being in a given state s at epoch ¢
(corresponding to #; in (1)), which can be written as

P(t,s)=P(t—1,k)-T(k,s)  E(t,s) (10)

where k is the most likely state at time t — 1, T is the
matrix of state transition probabilities, and E is the matrix
of emission probabilities. This calculation is simplified in
our implementation by the fact that the next state does not
depend on the current state, that is, while the set of state
transition probabilities change from epoch to epoch, they are
the same for each state. Since P(z — 1, k) is the same for each
choice of k, it becomes a scalar which no longer affects the
outcome and is dropped. We therefore calculate the trellis of
probabilities as

P(t,s) =T(ts) E(t,s) (11)

which shows how RNN estimation is combined with the
wrapped phases to inform the algorithm how the phase should
be unwrapped. T represents the information present in the
wrapped phases, and E is the information from the RNN.
If one were to imagine the case in which E were not
present, that is, P(¢,s) = T(t, s), phase unwrapping would be
completely informed by the wrapped phases and the algorithm
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would behave identically to the standard minimum gradient
implementations. Inversely, if one were to ignore the wrapped
phases and take P(f,s) = E(t,s), the phase unwrapping
would be driven completely by the RNN. Therefore (11) shows
how the final probabilities are assessed based on the balance
of the relative levels of confidence in the two sources of
information at that epoch.

D. Phase Unwrapping

The phase unwrapping works by stepping through the trellis
to find the most likely state at each epoch and integrating the
corresponding phase. The two branches in (6) are considered
as the two possible paths the algorithm can take to unwrap
the phase. The algorithm steps through each epoch and selects
the appropriate ambiguity level, i.e., —2z, 0, or 42z, to add
to the phase at that epoch according to the value of the most
likely state. In the case of an UP state, the upper branch is
chosen, and in the DOWN state, the lower branch is chosen.
In the STAY case, the branch corresponding to the smallest
phase change is selected. This way, the algorithm attempts
to find the correct ambiguity level without modifying the
observed phases. When the observed phase change is low,
or the estimated level of noise is high, the algorithm becomes
more conservative and the STAY state becomes more likely,
causing the algorithm to default back to the standard minimum
gradient solution.

V. RESULTS
A. Optimal Path Through Noisy Data

The RNN-aided algorithm is used to unwrap 50 instances
of noisy phases originally shown in Fig. 3, shown again with
the RNN-aided solution in Fig. 9.

While the RNN-aided algorithm solutions contain signif-
icantly less error than their standard counterparts, it can
be observed that noise still has a significant effect on the
solution. We therefore include the option to retain multiple
solutions which branch out in the problematic epochs where
the algorithm cannot confidently choose a certain path. Fig. 10,

The effect of introducing the RNN-aided algorithm is clearly
shown, which shows the histograms of the error in the final
epoch of the unwrapped time series with respect to the true
value in 1000 realizations of noise. Here, a downward skew
can be seen in the standard algorithm’s results at both the
locations, which is particularly pronounced in the Zegveld
case. This downward skew is strongly mitigated by the RNN-
aided algorithm, and the correct solution is more consistently
obtained.

B. Unwrapping Success Rates Versus Coherence

The RNN-aided phase unwrapping algorithm is tested
against a standard minimum gradient unwrapping algorithm to
test its ability to correctly interpret the simulated deformation
phase as given in (1). Several values of temporal coherence
ranging from 0.05 to 0.95 are swept through to generate
the test cases; see Fig. 11 for Rouveen and Zegveld. For
each coherence level, 1000 independent noise simulations are
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Fig. 9. Normalized multimodal PDF (greyscale) based on (1) and (3)

from downsampled extensometer soil height measurements (green trace) with
additive noise, corresponding to Sentinel-1 revisit time for (a) Rouveen and
(b) Zegveld. In all, 50 realizations of random noise are generated and solutions
obtained using the standard minimum gradient (red traces) and the RNN-aided
(blue traces) approaches.

generated according to the circular Gaussian distribution in (3).
Note that for this particular test, while the noise is random
from epoch to epoch, the coherence is held constant for the
entire run through the time series. This simplification is made
to generate the test statistics and accurately compare the two
algorithms in a standardized manner. For each time series
run, the integer number of unwrapping errors is tallied and
the unwrapping error rate is determined by dividing the total
number of errors by the number of unwrapping operations
performed for each coherence level (Nerors / Nepochs * Niterations )-
The position of the unwrapping error in the time series is not
considered in this tally.

The RNN-aided unwrapping algorithm consistently out-
performs the standard algorithm in both the cases. In the
case of Rouveen, both are able to correctly unwrap the time
series and retrieve the correct deformation phase in high-
coherence scenarios, because the deformation phase gradient
never exceeds the unwrapping threshold. But as coherence
drops and noise levels increase, errors begin to appear in
the solution. The RNN-aided algorithm is more resistant to
this noise, as it does not solely rely on the wrapped phases
to estimate the correct ambiguity level. In the Zegveld case,
the deformation gradients are stronger and do exceed the
unwrapping threshold even in a noiseless scenario. Thus, we
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Fig. 10. Histograms of the error in the final epoch of the obtained time series
in (a) Rouveen and (b) Zegveld of 1000 instances of simulated noise. (Red)
Standard algorithm. (Blue) RNN-aided algorithm. The nearest ambiguity
levels are indicated by the black dashed lines. The standard algorithm produces
results which are downwardly skewed. This skew is corrected by the RNN-
aided algorithm.

conclude that the standard algorithm will intrinsically never
be able to estimate the correct ambiguity level. However,
the RNN-aided algorithm is able to consistently unwrap the
time series correctly. As coherence decreases, the likelihood
of making an error increases, as spikes of noise can affect
the algorithm’s ability to interpret the phase. Nevertheless,
the RNN-aided algorithm is still able to reject some of the
effects of noise and perform better, or as well as, the standard
algorithm.

VI. DISCUSSION

Extensometer measurements gathered throughout the Dutch
polderlands have shown that there is a very close relation-
ship between the phreatic groundwater level and the soil
height [16]. While ground water measurements are not directly
available, we are able to anticipate large shifts in the soil
height which disrupt standard phase unwrapping by means of a
motion classifier RNN. This model can very reliably anticipate
the large changes in the ground motion of nearby independent
locations, as shown by the lower right quadrant of the con-
fusion matrix in Table I. The model has greater difficulty in
differentiating between significant and insignificant levels of
motion in both the directions, which is a somewhat arbitrary
distinction. This can be avoided by removing the STAY class
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Fig. 11. Algorithm performance curves of unwrapping SR versus coherence
in (a) Rouveen and (b) Zegveld. (Red) Standard algorithm. (Blue) RNN-aided
algorithm. In the Zegveld case, the standard algorithm cannot exceed an SR
of approx. 98%. This means that at least one phase unwrapping error can
be expected for a time series containing 50 epochs (just under one year of
Sentinel-1 data).

altogether; however, in that case the model predictions can
become unstable, as even tiny or zero deformations must be
given an UP or DOWN label by the model. We find that
including a STAY class corresponding to small deformations
(<3 mm) provides more accuracy in making the distinc-
tion between large UP/DOWN events, which we choose to
prioritize.

Previous InSAR studies of the Dutch peatlands which have
attempted to directly monitor the ground via DS process-
ing [7] have failed to match the observations of other geodetic
techniques such as leveling, lidar surveys, and extensometer
measurements, and often strongly overestimate the true linear
subsidence rate. The reason for this (as discussed in Section I)
is due in large part to the conventional phase unwrapping tech-
niques being unable to cope with the rapid movements which
occur within the shortest temporal baselines, as shown in
Fig. 1, which results in estimates skewed downward, as shown
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in Fig. 10. By removing this downward skew, we hope to
enable accurate monitoring of this region with DS InSAR for
the first time.

The results of Fig. 11 show that the RNN can provide a
significant performance gain by supplying the unwrapping pro-
cedure with more information. The deformation test scenario
chosen based on the Zegveld extensometer measurements as
shown in Fig. 1 shows a period of strong uplift in the autumn
of 2020. When downsampling these measurements to six-day
intervals corresponding to the Sentinel-1 overpass cycle, there
is at least one epoch in which the deformation phase exceeds
half a cycle (1/4) and the standard unwrapping procedures fail,
even in the presence of little or no noise. On the other hand,
the RNN-aided algorithm is able to consistently retrieve the
correct time series. In the Rouveen case, both the algorithms
are able to achieve a 100% success rate (SR) given a high
enough coherence level. However, the RNN-aided algorithm
is able to achieve 100% SR at lower levels of coherence, which
shows how integrating more information into the processing
workflow will enable greater performance. Coherence itself
can be viewed as a measure of the information content in an
interferogram (or lack of coherence as a measure of entropy).
Thus, introducing new information to the algorithm creates
an increase in the “effective coherence” of the interferogram.
For example, in the Rouveen case, Fig. 11 shows an effective
coherence gain of Ay = 0.175 at SR = 100% when moving
from the standard unwrapping algorithm (y = 0.4) to the
RNN-aided algorithm (y = 0.225).

One can also observe that the RNN-aided algorithm per-
forms differently between locations, with better performance
in Rouveen than in Zegveld. This is likely due to the fact
that the available dataset in Rouveen is much longer than
in Zegveld. The Rouveen dataset begins 1.5 years before the
Zegveld one, which means that the RNN has more than twice
as much training data available to it. Therefore, one may also
infer that the potential for improvement as available datasets
expand is very large, and that the performance of these models
will continue to improve as more data become available.

VII. CONCLUSION

Phase unwrapping is an underdetermined problem which
is conventionally sidestepped by assuming that the correct
solution is the one which corresponds to the smallest phase
change between epochs. While this is often a reasonable
approach, ground-based measurements have shown that this
is not a good enough solution in certain regions, such as the
Dutch peatlands. If InSAR is to be used to monitor ground
deformation in these regions, a different approach is required.
This necessitates the integration of additional information to
help solve the phase unwrapping problem.

We demonstrated how ground-based measurements can be
used to create a model that anticipates large shifts in the
ground level based on the readily available environmental
information such as precipitation and temperature. Predictions
from this model are integrated into the phase unwrapping
process by considering the system of wrapped phases and
model predictions as an HMM. The relative probabilities of
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which direction the observed phases should be integrated
into the time series can then be estimated using the Viterbi
algorithm. While in our scenario we chose to focus on a model
which can anticipate ground movement caused by changes
in precipitation and temperature, this HMM framework can
also be used in other cases in which a researcher would
wish to integrate additional information into a temporal phase
unwrapping application.

Our results show that using this technique can alleviate
some of the worst effects which rapid soil movements have
on DS InSAR estimates when combined with an effective
multilooking strategy. For the future, we plan to integrate
this phase unwrapping procedure into a processing framework
such as the Delft persistent scatterer interferometry (DePSI)
processor [25], which will allow for mixed PS-DS monitoring
of the Dutch peatlands.
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