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Abstract  21 
 22 
Cells owe their internal organization to self-organized protein patterns, which 23 
originate and adapt to growth and external stimuli via a process that is as complex as 24 
it is little understood. Here, we study the emergence, stability, and state transitions of 25 
multistable Min protein oscillation patterns in live Escherichia coli bacteria during 26 
growth up to defined large dimensions. De novo formation of patterns from 27 
homogenous starting conditions is observed and studied both experimentally and in 28 
simulations. A new theoretical approach is developed for probing pattern stability 29 
under perturbations. Quantitative experiments and simulations show that, once 30 
established, Min oscillations tolerate a large degree of intracellular heterogeneity, 31 
allowing distinctly different patterns to persist in different cells with the same 32 
geometry. Min patterns maintain their axes for hours in experiments, despite 33 
imperfections, expansion, and changes in cell shape during continuous cell growth. 34 
Transitions between multistable Min patterns are found to be rare events induced by 35 
strong intracellular perturbations. The instances of multistability studied here are the 36 
combined outcome of boundary growth and strongly nonlinear kinetics, which are 37 
characteristic of the reaction-diffusion patterns that pervade biology at many scales.  38 
  39 
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Introduction 1 
 2 
Many cells have characteristic forms. To guide proper assembly of their subcellular 3 
structures, cells employ machineries that garner and transmit information of cell 4 
shape (Kholodenko & Kolch, 2008; Minc & Piel, 2012; Moseley & Nurse, 2010; 5 
Shapiro et al, 2009). But cells are not static objects: they grow, divide, and react to 6 
stimuli, and these processes are often accompanied by a change of cell shape. Hence, 7 
the means by which a cell gathers spatial information need to be adaptive. One 8 
versatile mechanism that is capable of such spatial adaptation is self-organized pattern 9 
formation (Cross & Hohenberg, 1993; Epstein & Pojman, 1998; Murray, 2003).  10 
 11 
Spontaneous emergence of spatial structures from initially homogeneous conditions is 12 
a major paradigm in biology, and Alan Turing’s reaction-diffusion theory was the first 13 
to show how local chemical interactions could be coupled through diffusion to yield 14 
sustained, non-uniform patterns (Turing, 1952). In this way, the symmetry of the 15 
starting system can be broken. Reaction-diffusion mechanisms have been shown to 16 
account for the generation of many biological patterns (Kondo & Miura, 2010). 17 
However, how patterns change in response to noise and perturbations, be they 18 
chemical or geometrical, is poorly understood. Resolution of such issues is critical for 19 
an understanding of the role of reaction-diffusion systems in the context of the spatial 20 
confines and physiology of a cell (or an organism). To include the effects of geometry, 21 
the mathematical framework for reaction-diffusion theory has been extended to 22 
circular (Levine & Rappel, 2005), spherical (Klünder et al, 2013), and elliptical 23 
geometries (Halatek & Frey, 2012). However, focusing on pattern formation from 24 
homogeneity is not enough, as was noted by Turing himself at the end of his seminal 25 
article in 1952 (Turing, 1952): ‘Most of an organism, most of the time, is developing 26 
from one pattern into another, rather than from homogeneity into a pattern.’  27 
 28 
Min proteins form dynamic spatial patterns that regulate the placement of division 29 
sites in prokaryotic cells and eukaryotic plastids (Colletti et al, 2000; de Boer et al, 30 
1989; Hu & Lutkenhaus, 1999; Leger et al, 2015; Leisch et al, 2012; Makroczyová et 31 
al, 2016; Maple et al, 2002; Ramirez-Arcos et al, 2002; Raskin & de Boer, 1999; 32 
Szeto et al, 2002). In rod-shaped Escherichia coli cells, MinD and MinE form a 33 
reaction-diffusion network that drives pole-to-pole oscillations in their local 34 
concentrations (Hu & Lutkenhaus, 1999; Huang et al, 2003; Raskin & de Boer, 1999). 35 
Membrane-bound MinD binds MinC, which inhibits FtsZ polymerization (Dajkovic 36 
et al, 2008). The dynamic Min oscillation patterns thus result in maximal inhibition of 37 
FtsZ accumulation at the cell poles and minimal inhibition at the cell center which, 38 
together with a nucleoid occlusion mechanism, restricts formation of the division 39 
apparatus to mid-cell (Adams & Errington, 2009). Because it exhibits a multitude of 40 
complex phenomena which can be explored by experimental and theoretical means, 41 
the Min oscillator provides an informative reference system for the quantitative study 42 
of geometry-responsive pattern formation. 43 

The dynamic Min oscillations have been explained by reaction-diffusion models 44 
based on a minimal set of interactions between MinD, MinE, ATP, and the cell 45 
membrane (Fange & Elf, 2006; Halatek & Frey, 2012; Howard et al, 2001; Huang et 46 
al, 2003; Kruse, 2002; Loose et al, 2008; Meinhardt & de Boer, 2001; Touhami et al, 47 
2006). MinD, in its ATP-bound form, cooperatively binds to the cytoplasmic 48 
membrane (Hu et al, 2002; Mileykovskaya et al, 2003). MinE interacts with 49 
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membrane-bound MinD, triggering the hydrolysis of its bound ATP and releasing 1 
MinD from the membrane (Hsieh et al, 2010; Hu et al, 2002; Loose et al, 2011; Park 2 
et al, 2011; Shih et al, 2002). MinD then undergoes a nucleotide exchange cycle in the 3 
cytosol, which was initially incorporated into the modeling framework by Huang et al 4 
(Huang et al, 2003). Further theoretical analysis of the minimal reaction scheme 5 
suggested that the interplay between the rate of cytosolic nucleotide exchange and 6 
strong preference for membrane recruitment of MinD relative to MinE facilitates 7 
transitions from pole-to-pole oscillations in cells of normal size to multi-node 8 
oscillations (striped mode) in filamentous cells (Halatek & Frey, 2012). Such 9 
transitions occur if proteins that have detached from one polar zone have a greater 10 
tendency to re-attach to the membrane in the other half of the cell rather than to the 11 
old polar zone – a process which has been termed canalized transfer. This leads to 12 
synchronized growth and depletion of MinD from spatially separated polar zones, 13 
enabling the simultaneous maintenance of multiple polar zones. Numerical 14 
simulations of a reaction-diffusion model based on this canalized transfer of Min 15 
proteins successfully explain a plethora of experimentally observed Min oscillations 16 
in various geometries (Halatek & Frey, 2012). 17 

Essential for the robust function of Min proteins in ensuring symmetric cell division is 18 
their ability to respond to, and thus encode, information relating to cell shape. Upon 19 
cell-shape manipulation, Min proteins have been found to exhibit a range of 20 
phenotypes under different boundary conditions (Corbin et al, 2002; Männik et al, 21 
2012; Touhami et al, 2006; Varma et al, 2008; Wu et al, 2015b). Recent development 22 
of a cell-sculpting technique allows accurate control of cell shape over a size range 23 
from 2x1x1 μm3 to 11x6x1 μm3, in which Min proteins show diverse oscillation 24 
patterns, including longitudinal, diagonal, rotational, striped, and even transverse 25 
modes (Wu et al, 2015b). These patterns were found to autonomously sense the 26 
symmetry and size of shaped cells. The longitudinal pole-to-pole mode was most 27 
stable in cells with widths of less than 3 μm, and lengths of 3-6 μm. In cells of this  28 
size range, Min proteins form concentration gradients that scale with cell length, 29 
leading to central minima and polar maxima of the average Min concentration. 30 
Increasing cell length to 7 μm and above led to the emergence of striped oscillations. 31 
In cells wider than 3.5 μm, Min oscillations can align with the short axis of the lateral 32 
rectangular shape, yielding a transverse mode (Wu et al, 2015b). The existence of 33 
various oscillation modes has also been reconstituted in vitro with MinD, MinE, ATP, 34 
and lipid bilayers confined to microchambers (Zieske & Schwille, 2014). Numerical 35 
simulations based on an established reaction-diffusion model (Halatek & Frey, 2012) 36 
successfully recaptured the various oscillation modes in the experimentally sampled 37 
cell dimensions (Wu et al, 2015b). This further emphasizes the role of the two above-38 
mentioned factors generic to reaction-diffusion processes in cells: cytosolic nucleotide 39 
exchange and membrane recruitment (Halatek & Frey, 2012; Huang et al, 2003). 40 
These data provided the first evidence that sensing of geometry is enabled by 41 
establishing an adaptive length scale through self-organized pattern formation.  42 

Given that Min proteins in all cells initially adopt the same regime of pole-to-pole 43 
oscillations, it is as yet unclear how diverse oscillation modes emerge during cell 44 
growth to large dimensions, and whether transitions occur between these patterns. 45 
Furthermore, more than one mode of oscillation was often observed in different cells 46 
with the same shape, presenting an intriguing example of the multistability of 47 
different complex patterns (Wu et al, 2015b). These unexplained phenomena provide 48 
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us with the rare opportunity to quantitatively explore the basic principles of the 1 
dynamics of pattern formation in the context of geometric perturbations and cellular 2 
heterogeneities. 3 

In this study, we combine experiments and theory to systematically examine the 4 
emergence and dynamic switching of the distinct oscillatory Min protein patterns 5 
(longitudinal, transverse, and striped oscillations, cf. Fig. 1A) observed in E. coli 6 
bacteria that are physically constrained to adopt defined cell shapes. Our primary aim 7 
was to investigate the origin of multistability (coexistence of stable patterns), and to 8 
further understand its relevance in the context of cell growth (i.e. changing cell shape). 9 
Furthermore, we hoped to identify the kinetic regimes and mechanisms that promote 10 
transitions between patterns and to probe their robustness against spatial variations in 11 
kinetic parameters. One striking discovery is the high degree of robustness of 12 
individual modes of oscillation even in the face of significant changes in geometry.  13 
 14 
 15 
To present our results, we first show experimentally that different patterns can emerge 16 
out of near-homogeneous initial states in living cells with different dimensions, thus 17 
providing further support for an underlying Turing instability. We then use 18 
computational approaches to capture the dependence of pattern selection on geometry. 19 
Using stability analysis, we establish kinetic and geometric parameter regimes that 20 
allow both longitudinal and transverse patterns to coexist. Furthermore, we evaluate 21 
the emergence and stability of these patterns in computer simulations and compare the 22 
results with experimental data. Remarkably, we find that the experimentally observed 23 
multistability is reproduced by the theoretical model in its original parameter regime 24 
characterized by canalized transfer. In experiments, we trace pattern development 25 
during the cell-shape changes that accompany cell growth, and we quantitatively 26 
assess the persistence and transition of patterns in relation to cell shape. These 27 
analyses reveal that Min patterns are remarkably robust against shape imperfections, 28 
size expansion, and even changes in cell axes induced by cell growth. Transitions 29 
between multistable patterns occur (albeit infrequently), driving the system from one 30 
stable oscillatory pattern to another. Altogether, this study provides a comprehensive 31 
framework for understanding pattern formation in the context of spatial perturbations 32 
induced by intracellular fluctuations and cellular growth. 33 
 34 
Results 35 
 36 
1. Symmetry breaking of Min patterns from homogeneity in live E. coli 37 
cells 38 
 39 
One of the most striking examples of the accessibility of multiple stable states 40 
observed in shaped E. coli cells is the emergence of different - transverse and 41 
longitudinal - Min oscillation modes in rectangular cells with identical dimensions 42 
(Wu et al, 2015b). The existence of a transverse mode has also been noted in 43 
reconstituted in vitro systems (Zieske & Schwille, 2014). In live cells, this 44 
phenomenon is most prominent in cells with widths of about 5 μm and lengths of 45 
between 7 and 11 μm (Wu et al, 2015b). To probe the emergence and stability of 46 
these different stable states, we began this study by monitoring the temporal evolution 47 
of Min protein patterns in deformable cells growing in rectangular microchambers. 48 
Improving upon our previous shaping and imaging method (see Materials and 49 
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Methods), we recorded cytosolic eqFP670 (a near-infrared fluorescent protein) and 1 
sfGFP-MinD fluorescence signals over the entire course of cell growth (~ 6 to 8 h). 2 
Owing to the superior brightness and photostability of these two fluorescent probes 3 
(Wu et al, 2015a), we were able to image the cells at 2-min intervals without affecting 4 
cell growth. Given that an oscillation cycle (or period) takes 68±13 sec (mean ± s.d.) 5 
at our experimental temperature (26°C), shorter intervals were subsequently used to 6 
capture the detailed dynamics within one oscillation cycle (see below).  7 
 8 
We first grew cells with the above-mentioned lateral dimensions (7-11x5x1 μm3) in 9 
microchambers of the appropriate form. Of the 126 cells examined, almost all (n=121) 10 
showed clear MinD polar zones in all times prior to cell death or growth beyond the 11 
confines of the chambers, demonstrating the striking persistence of the oscillation 12 
cycles. In some cells, transition states between different patterns were also captured, 13 
which are described below (see Sections 5 and 6). Interestingly, imaging of the 14 
remaining 5 cells captured 1-2 frames in which the sfGFP-MinD fluorescence was 15 
distributed homogeneously (Fig. EV1, Movie EV1). Such a homogeneous state 16 
phenomenologically resembles the initial conditions chosen in the majority of 17 
chemical and theoretical studies on pattern formation. However, in the present case, 18 
Min proteins re-established oscillations exclusively in the transverse mode, 19 
irrespective of their preceding oscillation mode (Fig. EV1). Why the system 20 
should ”revert” to such a homogeneous state in the first place is unknown, although 21 
the rapid recovery of patterns leads us to speculate that it most probably results from a 22 
transient effect, such as a change in membrane potential or a rearrangement of 23 
chromosomes, rather than from a drastic depletion of ATP. Nonetheless, such an 24 
intermittent state provides a unique opportunity to study the emergence of patterns 25 
from a spatially uniform background.  26 
 27 
We therefore explored symmetry breaking by Min proteins over a larger range of cell 28 
sizes, and found that different cell dimensions gave rise to different patterns from an 29 
intermittent homogeneous state. Because homogeneous distributions of MinD are 30 
observed at low frequency, we manually searched for cells in such a state. Once 31 
targeted, such cells were subsequently imaged at short time intervals of between 5 and 32 
20 seconds until an oscillation pattern stabilized. As shown in Fig. 1B-D, the uniform 33 
distribution of sfGFP-MinD seen in cells of different sizes and shapes became 34 
inhomogeneous, and always re-established stable oscillations within a few minutes. In 35 
the 6.5x2x1 μm3 cell shown in Fig. 1B, the homogeneous sfGFP-MinD signal first 36 
became concentrated at the periphery of the cell, indicating a transition from the 37 
cytosolic state to the membrane-bound form. At t=20 sec, a minor degree of 38 
asymmetry was observed. Within the next 30 sec, a clear sfGFP-MinD binding zone 39 
developed on the left-hand side of the top cell half. This zone persisted for 40 sec, 40 
until a new binding zone was established at the top cell pole, which then recruited the 41 
majority of the sfGFP-MinD molecules. This pattern rapidly evolved into longitudinal 42 
pole-to-pole oscillations which lasted for the rest of the time course of our time-lapse 43 
imaging (10 min). In an 8.8x2x1 μm3 cell (Fig. 1C), the initial membrane binding of 44 
sfGFP-MinD was accompanied by formation of several local patches of enhanced 45 
density (see e.g. t=30 sec), which went on to form one large patch that was 46 
asymmetrically positioned in relation to the cell axes (t = 110 sec). This MinD 47 
binding zone further evolved into a few cycles of asymmetric oscillations before 48 
converging into striped oscillations, with sfGFP-MinD oscillating between two polar 49 
caps and a central stripe. In the 8.8x5.2x1 μm3 cell (Fig. 1D) persistent transverse 50 



 6

oscillations emerged within ~2.5 min after clusters of sfGFP-MinD had begun to 1 
emerge as randomly localized, membrane-bound patches from the preceding 2 
homogeneous state.  3 
 4 
To further examine the stability of the transverse mode, we tracked transverse 5 
oscillations in 5-μm wide cells with a time resolution of 20 sec. We found that these 6 
indeed persisted, with a very robust oscillation frequency, for at least 17 cycles (i.e. 7 
the maximum duration of our experiment) under our imaging conditions (Fig. 1E and 8 
1F, Movie EV2). This indicates that, once established, the transverse mode in these 9 
large cells is just as robust as the longitudinal pole-to-pole mode in a regular rod-10 
shaped E. coli cell. 11 
 12 
In order to probe the effect of MinE in the process of symmetry breaking, we 13 
engineered a strain that co-expresses sfGFP-MinD and MinE-mKate2 from the 14 
endogenous minDE genomic locus (see Materials and Methods). In shaped bacteria, 15 
MinE-mKate2 proteins oscillate in concert with MinD (Movie EV3). After the loss of 16 
oscillatory activities of both sfGFP-MinD and MinE-mKate2, no heterogeneous MinE 17 
pattern was observed prior to the emergence of MinD patches that dictate the axis of 18 
symmetry breaking (Movie EV2). This is in agreement with the previous finding that 19 
MinE relies on MinD for its recruitment to the membrane (Hu et al, 2002). 20 
 21 
The observed emergence of Min protein patterns from homogeneous states shows 22 
several striking features. First of all, after the early stage of MinD membrane binding, 23 
which appears to be rather uniform across the cell, the first patch with enhanced 24 
MinD density that forms is neither aligned with the symmetry axes nor does it show a 25 
preference for the highly curved polar regions. Secondly, Min patterns converge into 26 
a stable pattern within a few oscillation cycles. Emerging patterns align with 27 
symmetry axes, and exhibit a preference for the characteristic length range discovered 28 
previously (Wu et al, 2015b), confirming that the geometry-sensing ability of Min 29 
proteins is intrinsic and self-organized. The fast emergence and stabilization of Min 30 
protein patterns indicates an intrinsic robustness of Min oscillations and an ability to 31 
adjust oscillatory patterns dynamically to changes in cell geometry. 32 
 33 
 34 
2. Analytical and computational approach to probe the             35 
geometry-dependent symmetry breaking and pattern selection  36 
 37 
The experimental observations described above showed that symmetry breaking in 38 
spatially almost-homogeneous states can result in stable oscillation patterns of Min 39 
proteins. These spatiotemporal configurations are longitudinal and transverse 40 
oscillation patterns whose detailed features are dependent on the geometry of the 41 
system, in accordance with our previous study (Wu et al, 2015b). We therefore set out 42 
to gain a deeper understanding of the mechanisms underlying the phenomenon of 43 
multistability and the role of cell geometry in determining, regulating, and guiding the 44 
pattern formation process and the ensuing stable spatiotemporal patterns. To this end, 45 
we performed a theoretical analysis, building on previous investigations of symmetry 46 
breaking induced by the oscillatory Turing instability in bounded geometries (Halatek 47 
& Frey, 2012).  48 
 49 
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The results presented in this Section are based on the observation that the selection of 1 
the initial pattern (which does not necessarily coincide with the final pattern) depends 2 
on both the Turing instability and the system’s geometry. While we focus on the latter 3 
aspect in the main text, we review in Box 1 how, more generally, a Turing instability 4 
facilitates symmetry breaking in a planar geometry, which may help the reader to 5 
understand why the interconnection between geometry and the classical Turing 6 
mechanism is crucial. 7 
 8 
 9 
BOX 1: Symmetry breaking by the Turing instability in cellular geometries.  10 
 11 
The initial phase of a “symmetry-breaking” process in a nonlinear, spatially extended 12 
system is determined by a mode-selection mechanism. Consider an initial steady state 13 
of the corresponding well-mixed system that is weakly perturbed spatially, by some 14 
spatially white noise, for instance. For the planar geometry considered in textbooks 15 
and review articles, the initial state is typically a spatially uniform state (Cross & 16 
Hohenberg, 1993; Epstein & Pojman, 1998; Murray, 2003). The spectral 17 
decomposition of this state gives equal weight to all Fourier modes and, therefore, 18 
sets no bias for a particular mode. A system is referred to as being “Turing unstable” 19 
if any spatially non-uniform perturbation of a uniform equilibrium fails to decay (as 20 
expected due to diffusion) but instead grows into a patterned state. The collection of 21 
growth rates plotted as a function of the wavenumber of the corresponding Fourier 22 
modes is called the dispersion relation, and can be computed by a linear stability 23 
analysis. The mode with the fastest growth rate is called the critical mode. It sets the 24 
length scale of the initial pattern if there is no other bias for a different mode. Such a 25 
bias could, for instance, be provided by a specific initial condition that is non-uniform. 26 
 27 
It has been shown recently that, in the context of realistic biological systems, a well 28 
mixed state is generically non-uniform for reaction-diffusion systems based on 29 
membrane-cytosol cycling and an NTPase activity (Thalmeier et al, 2016). Hence, in 30 
this generic case, the symmetry of the stationary state is already broken – in the sense 31 
that it is adapted to the geometry of the cell. Consequently, any downstream 32 
instabilities – such as the Turing instability – will inherit the symmetry of this 33 
spatially non-uniform steady state. In this paper, we discuss how the analysis of the 34 
instability of such a non-uniform steady state differs from that of the traditional 35 
Turing instabilities of uniform states.   36 
 37 
(BOX end) 38 
 39 
The non-uniformity of the well-mixed state in cell geometries (as noted in Box 1) is 40 
not the only salient difference relative to the classical case of a planar geometry. To 41 
perform linear stability analysis on a particular system, a set of Fourier modes must be 42 
derived that is specific for the boundary geometry of the system. Hence, both the well 43 
mixed state and the spectrum of Fourier modes are generically geometry-dependent. 44 
Only a few geometries are amenable to an analytical treatment. A recent advance was 45 
the derivation of eigenfunctions for reaction-diffusion systems with reactive 46 
boundaries (the cell membrane) and diffusive bulks (the cytosol) in an elliptical 47 
geometry (Halatek & Frey, 2012). This geometry, being analytically accessible, 48 
permits broad, systematic parameter studies. At the same time, it shares the 49 
symmetries of interest with rod-shaped, circular, and rectangular cells. The 50 
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eigenfunctions or modes of the ellipse are classified into even and odd functions by 1 
their symmetry with respect to reflections through a plane along the long axis; the 2 
lowest-order modes are shown in Fig. 2A. Even functions are symmetric, and odd 3 
functions are anti-symmetric with respect to long-axis reflection. As such, even 4 
functions correspond to longitudinal modes, and odd functions to transverse modes. 5 
More subtle than the separation into two symmetry classes, but no less significant, is 6 
the strict absence of any homogeneous steady states in elliptical systems undergoing 7 
cytosolic nucleotide exchange (Thalmeier et al, 2016). This can be understood 8 
intuitively from a source-degradation picture: Proteins detach from the membrane and 9 
undergo cytosolic ADP-ATP exchange. The concentration of ADP-bound MinD 10 
drops with increasing distance from the membrane as the diphosphate is replaced by 11 
ATP. This yields cytosolic concentration gradients at the membrane that determine 12 
the densities of membrane-bound proteins. In an equilibrium state confined to an 13 
elliptical geometry, the cytosolic gradients at the membrane cannot be constant, but 14 
will vary along the cell’s circumference. Hence, a uniform density at the membrane 15 
cannot be a steady state of the system, and instead the new basal state of the system is 16 
defined by the elliptical eigenfunction of the lowest order (Fig. 2A). This new steady 17 
state takes maximal and minimal values at the cell poles and at midcell, respectively. 18 
Note that the spatial variation of the density can be very small and may be very 19 
difficult to detect experimentally.   20 
 21 
So what is the relevance of such a spatially non-uniform basal state? The answer lies 22 
in the nonlinear nature of the system. Nonlinearities are known to amplify weak 23 
signals. As discussed in Box 1, the selective amplification of parts of a noise spectrum 24 
is at the origin of symmetry breaking. The non-uniformity of the well-mixed basal 25 
state implies that a spatially uniform initial condition set in a simulation will first 26 
adapt to the symmetry of this basal state, even in the absence of any spatial instability. 27 
Only after the basal state has been reached can the growth of (linearly) unstable 28 
modes begin. In the present case, the geometry of an ellipse imposes a preferred 29 
symmetry on the well-mixed state that resembles the symmetry of a striped oscillation 30 
(compare the 0th and 2nd even mode in Fig. 2A).  Therefore, the initial symmetry 31 
adaptation process creates a bias in favor of the 2nd even mode corresponding to 32 
striped oscillations, which thus dominates the initial growth of patterns. As shown in 33 
Fig. 2B, striped oscillations dominate the early phase of pattern formation in a wide 34 
variety of cell shapes. In a 6.5x2x1.1 μm3 cell, the oscillatory stripe mode persists for 35 
about 3 oscillation cycles before the dynamics switch to pole-to-pole oscillations. By 36 
contrast, the oscillatory stripe mode persists indefinitely in cells with sizes of 9x2x1.1 37 
μm3 and also 9x5x1 μm3. This latter observation differs from our corresponding 38 
experimental results in the same geometry, which had revealed the consistent 39 
emergence of a transverse mode after the system had passed through a homogeneous 40 
phase (Fig. 1D and Fig. EV1) (though striped oscillations were also observed in cells 41 
of this size (Wu et al, 2015b)). Clearly, letting the computational system evolve from 42 
a uniform configuration introduces a bias towards even modes, which should disfavor 43 
the selection of transverse patterns. This difference led us to conclude that we needed 44 
to characterize in detail the physiological relevance of the bias imposed by the non-45 
uniformity of the well mixed basal state, i.e. its robustness against other types of 46 
intracellular heterogeneities. This issue is addressed in the following.  47 
 48 
Realistic cellular systems contain many different factors that induce asymmetries and 49 
heterogeneities: the cytosol and the membrane are crowded, cell shape is never 50 
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perfectly symmetrical, and the lipid distribution (and hence the membrane’s affinity 1 
for MinD) is sensitive to membrane curvature. All these intrinsic perturbations of the 2 
system’s symmetry can have an effect on the process of pattern selection if multiple 3 
stable patterns are possible. Previous studies (Halatek & Frey, 2012) have suggested 4 
that stable Min patterns are not destabilized by spatial heterogeneities in the rate of 5 
attachment of MinD to the membrane, as the dynamics are dominated by the 6 
recruitment process. Here, faced with a multistable system, we asked whether 7 
heterogeneities in MinD membrane attachment might to some extent affect the initial 8 
selection process. To this end, we spatially perturbed the MinD attachment rate by 9 
superimposing a linear gradient. We systematically altered the slope and direction of 10 
this gradient, and investigated the effects on initial MinD dynamics. After a few 11 
oscillation cycles, we turned the perturbation off again and continued the simulation 12 
without any induced bias (i.e. with spatially uniform MinD attachment rates). This 13 
procedure provided us with a versatile means of generating a weak spatial 14 
perturbation that can break symmetry and is applicable to all cell geometries. In 15 
particular, it enabled us to quantify the effects of these intrinsic perturbations on 16 
pattern selection and compare them to the impact of the geometric bias discussed 17 
above.  18 
 19 
Indeed, our simulations showed that an initial MinD attachment gradient with a 20 
spatial peak-to-peak amplitude of the spatial variation of as little as 20% indeed 21 
compensates for the aforementioned geometric bias for striped oscillations (Fig. 2C). 22 
To put this 20% variation in perspective, we note that the affinity of MinD for 23 
different lipids can vary by up to one order of magnitude (Mileykovskaya et al, 2003; 24 
Renner & Weibel, 2012). Figure 2C shows the onset of pattern formation obtained 25 
from computer simulations based on the same geometry as that in Fig. 1B. In contrast 26 
to the simulations in Fig. 2B, the MinD attachment gradient is now initially aligned 27 
diagonally. Two observations stand out: Firstly, we find that the asymmetric template 28 
does not impede the formation of stripes. Hence the template does not dictate the 29 
symmetry of possible patterns. Secondly, in the 5 μm wide cells with the weak initial 30 
gradient, the transverse mode wins the competition against stripe oscillations, which 31 
contrasts with the outcome shown in Fig. 2B. We accordingly conclude that the 32 
geometric bias for striped oscillations is rather weak and is presumably of little 33 
physiological relevance. However, in the absence of any intrinsic heterogeneity, 34 
pattern selection obtained from computer simulations in cellular geometries will 35 
inevitably overemphasize the effect of the geometric bias.  36 
 37 
We therefore sought a solution, discussed in the following sections, which explicitly 38 
incorporates spatial heterogeneities that compensate for the intrinsic bias, thus 39 
effectively restoring unbiased pattern selection based on the Turing instability alone. 40 
 41 
3. Computing pattern stability in multistable regimes  42 
 43 
Now that we have learned how the initial pattern selection process can be affected by 44 
spatial perturbations, we will address how and to what extent the existence and 45 
stability of different patterns is affected by the system’s geometry, and which 46 
molecular processes in the Min reaction circuit control how the system adapts to cell 47 
geometry.  48 
 49 
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Geometry sensing requires the existence of a characteristic length scale. Previous 1 
theoretical analysis of Min oscillations has shown that such a length scale is 2 
accompanied by synchronization of the depletion and initiation of old and new polar 3 
zones, respectively (Halatek & Frey, 2012). A key insight was that a relatively high 4 
rate of MinD recruitment (relative to MinE recruitment) is essential for initiation and 5 
amplification of the collective redistribution of MinD that leads to such 6 
synchronization (Halatek & Frey, 2012). For a broad range of MinD recruitment rates, 7 
we found that oscillatory pole-to-pole and striped oscillations could coexist in cells 8 
whose length exceeds a certain limit (Halatek & Frey, 2012; Wu et al, 2015b). These 9 
earlier studies suggested that the ratio of MinD to MinE recruitment rates is the 10 
parameter that allows for geometry-dependent multistability in rectangular cells in 11 
which longitudinal and transverse patterns can coexist. The experimental observation 12 
of a transverse mode (Wu et al, 2015b) supports the previous theoretical suggestion 13 
that circular and aberrant patterns in nearly spherical cells (Corbin et al, 2002) are 14 
caused by the additional destabilization and persistence of odd (transverse) modes in 15 
an elliptical geometry with increased cell width (Halatek & Frey, 2012). This implies 16 
that the circular and aberrant patterns found experimentally in cells with low aspect 17 
ratios, such as nearly spherically shaped cells (Corbin et al, 2002), and the 18 
observation of transverse patterns in rectangular shapes (Wu et al, 2015b), are 19 
attributable to the same mechanism, namely the additional destabilization of odd 20 
modes. The key difference between the nearly spherical and rectangular cases is that, 21 
in the former, the choice of modes is reversible (i.e. neither mode is definitively 22 
selected), such that the axis of oscillation switches aberrantly, whereas in rectangular 23 
cells the high aspect ratio of the geometry leads to the mutually exclusive selection of 24 
either longitudinal (purely even) or transverse (purely odd) patterns, but both 25 
symmetries of the pattern are initially accessible (i.e. the system exhibits 26 
multistability). 27 
 28 
To gain further insight into pattern selection, we first computed and compared the 29 
growth rates of even and odd modes in a simplified 2D elliptical geometry, and then 30 
proceeded to test the results of this linear stability analysis by computer simulations 31 
that take the full 3D cell geometry into account. In these computer simulations the 32 
pattern stability was then probed by the application of spatial heterogeneities in the 33 
MinD attachment rate. 34 
 35 
As a first step we performed a linear stability analysis in the elliptical geometry. To 36 
characterize the difference between growth rates of even (longitudinal) and odd 37 
(transverse) modes, we introduce a quantity which we term the non-degeneracy. This 38 
is defined as the Euclidian distance between the growth rates of the first three even 39 
and the first three odd modes (cf. Materials and Methods section; note that the notion 40 
‘growth rates of modes’ is not to be associated with the physiological growth rates of 41 
cells). Figure 3A shows how the non-degeneracy depends on cell geometry and on the 42 
MinD recruitment rate. In agreement with our previous analysis, nearly spherical cells 43 
are almost degenerate with respect to even and odd modes (Halatek & Frey, 2012).  44 
The effect of a larger MinD recruitment rate is to extend this region of near 45 
degeneracy towards larger aspect ratios. Hence, when rates of MinD recruitment are 46 
high, we can expect that longitudinal and transverse modes have similar growth rates 47 
even in rectangular cells. These results were then tested in 3D computer simulations. 48 
 49 
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For simulations of realistic 3D cellular geometries, we employ a spatially varying 1 
MinD attachment rate, similar to the approach described in Section 2. This allows us 2 
to probe the stability of patterns against spatial perturbations, and thereby to test the 3 
(nonlinear) stability of the oscillatory pattern. The simulation strategy is schematically 4 
shown in Fig. 3B. First, we align the gradient of the MinD attachment profile with 5 
one symmetry axis and initialize the simulation. After a few oscillation cycles, we 6 
turn the MinD attachment gradient off and allow the simulation to proceed for another 7 
~40 oscillation cycles. If the pattern was stable (i.e. a local attractor of the reaction-8 
diffusion dynamics), it remained aligned with the initially selected axis. In these cases, 9 
we used the final state as the initial configuration and ran the simulation for another 10 
~40 oscillation cycles, now with reactivated perturbation of the MinD attachment rate 11 
and with the gradient inclined at an angle to the initial oscillation axis. This final step 12 
was intended to probe the stability of the pattern against spatial heterogeneities that 13 
could potentially switch pattern symmetry from longitudinal to transverse or vice 14 
versa. We repeated this simulation to cover all possible alignments (i.e. angles from 0 15 
to 90 degrees) and slopes of the MinD attachment perturbation (i.e. spatial variations 16 
from 0 to 100% of the average MinD attachment rate). Together, these simulations 17 
enabled us to quantify the stability of each initialized pattern based on the degree of 18 
perturbation that it can sustain without losing its alignment to the initial axis. We 19 
performed this stability analysis for a broad range of experimentally probed 20 
geometries as well as recruitment rates. Note that we only distinguished transverse 21 
oscillations from longitudinal oscillations, but not between pole-to-pole and stripe 22 
modes within the longitudinal oscillations. In all probed configurations (cell 23 
geometries, spatial heterogeneities), we observed that longitudinal patterns are stable, 24 
independently of the MinD recruitment rate (Fig. 3C). In contrast, the number of cell 25 
geometries that support stable transverse patterns turned out to be strongly dependent 26 
on the relative rate of MinD recruitment (Fig. 3D). In agreement with the above linear 27 
stability analysis in the 2D elliptical geometry, we found that an increasing MinD 28 
recruitment rate extends the domain of stable transverse patterns towards cell 29 
geometries with larger aspect ratios. Furthermore, our simulations show that the 30 
degree of pattern stability is surprisingly high. Almost all configurations were able to 31 
withstand more than 90% of all applied perturbations (slopes and angles) to the MinD 32 
attachment profile (Fig. 3C and D).  33 
 34 
These findings lead to several important conclusions. First, the simulation data show 35 
that stability analysis in the two-dimensional elliptical geometry is able to account 36 
well for the patterns of behavior observed in realistic three-dimensional geometries. 37 
Second, our findings indicate that a gradient in the MinD attachment rate affects the 38 
initial selection of the axis of oscillation by guiding the dynamics into the basin of 39 
attraction of the corresponding pattern. Moreover, spatial gradients of MinD 40 
attachment rate typically cannot drive a system from one pattern into the orthogonal 41 
alternative once the system has settled down into a stable oscillation. This suggests 42 
that the spatiotemporal patterns are in general very robust against spatial 43 
heterogeneities in the MinD attachment rate. The above analysis provides a way to 44 
probe the basins of attraction of different oscillatory patterns systematically, which 45 
will be introduced and discussed in the following. 46 
 47 
4. Basins of patterns are controlled by geometry and recruitment strength 48 
 49 
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In the preceding Section, we demonstrated that highly stable longitudinal and 1 
transverse patterns can be initialized in a broad range of geometric configurations. 2 
Knowing that these patterns exist, we turned to the question of which patterns can be 3 
plausibly reached by the system dynamics, i.e. without having to tune the initial 4 
conditions in any particular fashion. To approach this issue, we began our simulations 5 
with a homogeneous initial configuration. As discussed in Section 2, adaptation to the 6 
non-uniform well-mixed state (adaptation to geometry) introduces a preference for 7 
striped oscillations, and hence a bias for even patterns. To include other potential 8 
effects that weakly break the system’s symmetry (but not the symmetry of the stable 9 
patterns, cf. Section 3) and neutralize the weak bias for stripe selection, we imposed a 10 
fixed, weak spatial gradient on the rate of MinD attachment. The relative magnitude 11 
of the variation was again set to 20%, which, as mentioned above, is well below the 12 
typical range of variation in MinD’s affinity for different lipids in the E. coli 13 
membrane. We examined all alignments of the MinD attachment gradient 14 
interpolating between purely longitudinal and purely transversal states. After ~100 15 
oscillation cycles, we recorded the final pattern, distinguishing between transverse 16 
pole-to-pole, longitudinal pole-to-pole, and longitudinal striped oscillations. 17 
Following this procedure, we separately studied the effects of varying geometry and 18 
MinD recruitment rates on multistability and pattern selection. 19 
 20 
To study the effect of system geometry, we fixed the value of the MinD recruitment 21 
rate to a high value (kdD=0.1) such that the number of coexisting stable longitudinal 22 
and transverse patterns is largest. Sampling over all alignments of the gradient led to 23 
the distributions of the final patterns shown in the histograms in Fig. 4A. Cell length 24 
was varied from 7 µm to 10 µm, cell width from 3 µm to 5 µm. We observed a 25 
critical cell length of between 9 and 10 µm for the selection of striped oscillations. 26 
This coincides with the length scale for which the model parameters were initially 27 
adjusted in the 2D elliptical geometry (Halatek & Frey, 2012). Surprisingly, this 28 
length scale translates directly to realistic 3D cell shapes. We found that the fraction 29 
of oscillatory striped patterns decreased in favor of transverse patterns as the cell 30 
width was increased. Overall, these results show that cell width, and not cell length, is 31 
the main determinant for the onset of transverse modes. All these observations are 32 
remarkably consistent with previous experimental data based on random sampling of 33 
live E. coli cells after they have reached a defined shape (Wu et al, 2015b). Given this 34 
level of agreement, we expected to gain further insight into the molecular origin of the 35 
observed pattern distribution by studying its dependence on the kinetic parameters in 36 
the theoretical model.  37 
 38 
To investigate the effect of MinD recruitment rate, we focused on data from the cell 39 
sizes that show the greatest number of coexisting patterns, as determined by the 40 
previous numerical stability analysis. The corresponding histograms are shown in Fig. 41 
4B. The cell lengths for which the data was collected were 9 and 10 µm, and the cell 42 
width varied from 1.1 to 5 µm. In narrow cells we recovered our previous results on 43 
the onset of striped oscillations: The fraction of stripes increased with the MinD 44 
recruitment rate (Halatek & Frey, 2012). Remarkably, this was no longer the case 45 
when cells reached a width of 5 µm: Here, the fraction of stripes was zero below 46 
some threshold MinD recruitment rate, and took on a constant value above this 47 
threshold. On the other hand, the fraction of transverse patterns did increase with 48 
MinD recruitment rate in these 5 µm wide cells, as does that of the stripe fraction in 49 
narrower cells. Hence, we conclude that multistability is indeed promoted by high 50 
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rates of MinD recruitment. We attribute this feature to the ability of the reaction-1 
diffusion system to operate in the regime in which a characteristic length scale is 2 
established through synchronized growth and depletion of spatially separated polar 3 
zones (“canalized transfer”) (Halatek & Frey, 2012). Notably, the same mechanism 4 
that enables striped oscillations in filamentous cells also facilitates transverse 5 
oscillations in wide cells. 6 
 7 
In all examples discussed so far, the height of the cell was fixed at 1.1 µm, well below 8 
the minimal span required to establish a Min oscillation (Halatek & Frey, 2012). 9 
Therefore, no oscillations occur along the z-axis.  While the present study focuses on 10 
competition between longitudinal and transverse patterns, we also used our 11 
computational model to explore patterns along the z-direction. In a representative 12 
simulation with a 3.1 μm high chamber (cell dimensions 5x4x3.1 μm3) we found 13 
oscillations aligned with the z-axis in addition to oscillations aligned with the x- and 14 
y-axes. This shows that increased headroom in the third dimension extends the 15 
number of accessible stable patterns even further. 16 
 17 
5. Persistent directionality traps Min oscillations in a stable state during 18 
cell growth 19 
 20 
Experiments (Fig. 1B-F) and simulations have shown that both longitudinal and 21 
transverse modes are stable over a range of rectangular shapes once they have been 22 
established. However, it is still unclear how patterns evolve during cell growth, which 23 
can involve an increase in volume of over 10-fold. Particularly intriguing is the fact 24 
that different patterns emerge during the growth of cells that reach the same final 25 
shape. This prompted us to study the development of patterns throughout the growth 26 
history of a cell. We captured around 200 successive MinD binding patterns per cell 27 
at intervals of 2 min during the geometrical changes that accompanied cell growth. 28 
Here, we focused on the cells that reach a final width of between 5 and 5.5 μm and a 29 
final length of 8-10 μm, taking advantage of their very long growth history of 6-8 h 30 
and the previously detected co-existence of two longitudinal modes and a transverse 31 
mode in such cells. The final data set comprised 97 cells. 32 
 33 
Spatially constrained by microchambers, the cells adopted growth patterns that can be 34 
categorized into several types, based on the difference in alignment of the cell axes 35 
with the axes of the chambers (Fig. 5A, D, and G). Under the combined effects of 36 
exposure to A22 and cephalexin, cells are initially elliptical in shape (Fig. 5A and 5D). 37 
When cell widths were small, Min oscillations almost exclusively aligned along the 38 
longest elliptical axis of the cell, with a certain degree of lateral-axis fluctuation (Fig. 39 
5B and E). As a result, with respect to the rectangular chamber axes, the initial Min 40 
patterns were aligned in accordance with the orientations of the cells. Fig. 5A and D, 41 
for example, show two cells whose long axes are initially aligned with the long axis 42 
and short axis of the chambers, respectively. In Fig. 5B, Min oscillations remained 43 
aligned close to the vertical (long) axis for the entire 7.8 h of cell growth, from an 44 
initial size of 2.1x1.5x1 μm3 (at t = 0) to a final size of 9x5x1 μm3 (Fig. 5A; for other 45 
examples see Movie EV4). In contrast, Min oscillations in Fig. 5E aligned close to the 46 
horizontal (short) axis of the chamber over the whole 8 h taken to reach the same 47 
dimensions (Fig. 5D; for more examples see Movie EV4). Note that in the latter 48 
scenario, the long and short axes exchanged identity at t=5.8 h, but this did not affect 49 
the persistence of horizontal Min oscillations (Fig. 5D and E). These observations 50 
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suggest that Min oscillations have a strong tendency to remain faithful to their 1 
existing orientation for as long as the length scale allows. In addition, some pattern 2 
transitions were observed during instances of drastic switching of cell axes that are 3 
associated with a low aspect ratio of the cell shapes (Fig. 5G, Movie EV5), similar to 4 
examples shown previously (Corbin et al, 2002; Männik et al, 2012). This 5 
phenomenon was explained previously by invoking theoretical predictions that low 6 
aspect ratios should lead to a transient coupling between longitudinal and transverse 7 
modes (Halatek & Frey, 2012) and Min patterns in these shapes are more sensitive to 8 
stochastic perturbations (Fange & Elf, 2006; Schulte et al, 2015). The above scenarios 9 
show that pattern multistability can emerge through adaptation of persistent Min 10 
oscillations during different modes of cell growth. 11 
 12 
To quantitatively characterize the evolution of Min patterns during cell growth, we 13 
wrote a data analysis program that automatically quantifies cell shape and Min 14 
patterns (see Materials and Methods, Fig. EV2). We used Feret’s statistical diameters 15 
to parameterize cell shape. Feret’s diameter measures the perpendicular distance 16 
between two parallel tangents touching the opposite sides of the shape (Walton, 1948). 17 
This can be measured along all angles, and the maximum and minimum values are 18 
used here to define the smallest and largest cell dimensions. In general, the minimum 19 
Feret diameter aligns with the short (symmetry) axis of the cell; the maximum Feret 20 
diameter aligns with the long axis of a near-elliptical shape and the diagonal of a near-21 
rectangular shape. We defined the angle of oscillations by connecting the center of the 22 
MinD patch to the cell center. Note that all angles were calculated relative to the 23 
horizontal plane. With these measurements, we can now compare the length scale that 24 
Min oscillations adopt with the lengths of the cell’s dimensions (top panels in Fig. 5C, 25 
F and H). We can also correlate the angle of the Min oscillations with the planes 26 
along which these cell dimensions are measured (bottom panels in Fig. 5C and 5F). 27 
Indeed, Fig. 5C and Fig. 5F show that Min patterns aligned with either the long 28 
(symmetry) axis or the short (symmetry) axis of the cell shapes, albeit with some 29 
degree of fluctuation. In addition, the frequent switching of Min oscillation angles in 30 
cells with low aspect ratios is well captured by the automated analysis (Fig. 5H). 31 
 32 
For statistical analyses of the robustness of Min oscillations against cell-axis 33 
switching, we evaluated Min patterns 20 min before and 20 min after the time point at 34 
which cell width reaches the limit of 5 μm imposed by the width of the chamber 35 
(marked by the black arrows in all plots in Fig. 5C and F). At the beginning of this 36 
period, all Min patterns were in longitudinal pole-to-pole mode. Over the following 37 
40 min, 41 of the 97 cells analyzed showed no large-scale axis shift, with the long 38 
axes remaining above 75° and the short axes below 15°. In all these cells, Min 39 
oscillations were sustained along the vertical (long) axes, as shown in Fig. 5A-C. 40 
Maintenance of the oscillations along the long axis was also observed in 18 cells in 41 
which the long axis did not undergo a drastic switch but the short axis did. In total, 60% 42 
of the cells exhibited continuous alignment with the long axis during adaptation of the 43 
cell to the width of the chamber. The other 40% of the cells showed a switch in the 44 
mode of oscillations, including 28 cells that followed a similar pattern of growth to 45 
those shown in Fig. 5D-F and 10 cells that grew as in Fig. 5G-H.  46 
 47 
These observations reveal several features. First of all, a robust long-axis alignment of 48 
Min patterns in narrow cells determines the initial oscillation direction. Second, the 49 
directions of established oscillations are sustained for as long as the corresponding 50 
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cell dimension along this direction falls within the characteristic symmetry and scale 1 
preferred by the oscillation mode (e.g., a 5-μm horizontal dimension in Fig. 5D). 2 
Third, Min oscillations show a notable degree of tolerance to asymmetries in cell 3 
shape during growth. These properties largely agree with our previous conclusion that 4 
the propensity to adopt a given pattern is set by the length scale and the symmetry of 5 
the cell shape (Wu et al, 2015b). Hence, in a cell shape that allows for multistability, 6 
the selection of Min pattern mode depends largely on (and thus is deducible from) the 7 
growth history of the cell. 8 
 9 
 10 
6. Experimental observations of pattern transitions between multi-stable 11 
states 12 
 13 
In large cells, 5 μm in width, we observed transitions from longitudinal pole-to-pole 14 
modes to transverse modes and vice versa (Fig. 6A and B, Movie EV6). These 15 
transitions occurred after the long and short axes of the cell had aligned with the 16 
respective axes of the chambers due to confinement, and were characteristically 17 
different from the transitions caused by low aspect ratio and shape asymmetry shown 18 
in Fig. 5G. For instance, Fig. 6A shows a transition from the longitudinal to the 19 
transverse mode. This transition initiated with a large and unexpected displacement of 20 
the MinD polar zone from the longitudinal axis of the cell (9x5x1 μm3) after several 21 
hours of persistent longitudinal oscillations. This perturbation gradually shifted the 22 
axis of oscillation towards the short axis of the cell over the course of 10 oscillation 23 
cycles. An example of the inverse transition is shown in Fig. 6B for a 6x5x1 μm3 cell. 24 
We note here that this type of spontaneous rearrangement of the oscillation mode 25 
occurred rather infrequently, considering the 6- to 8-h lifetime of a bacterium on the 26 
chip. To distinguish this type of transition from the previously discussed transitions 27 
induced by small aspect ratio or apparent asymmetry (cf. Fig. 4H), we restricted the 28 
further statistical analysis to data from the growth phase after the point at which the 29 
maximum cell width of 5 μm had been attained. This phase spanned the last 2-3 h of 30 
cell growth, i.e. encompassed 120-180 Min oscillation cycles. We found that the 31 
majority of cells that eventually came to occupy a volume of 9x5x1 μm3 (n=47, 32 
excluding the few cells that went through a transient homogeneous state such as that 33 
shown in Fig. 1B) only exhibited one transition in their Min patterns (Fig. 6C). 34 
Transitions rarely occurred more than once in any given cell. On average, 0.3 35 
transitions occurred per cell per hour during growth from a size of 6x5x1 μm3 to a 36 
size of 9x5x1 μm3, and this observation holds true for cells grown in both nutrient-37 
rich and nutrient-poor media (see Materials and Methods). The average number of 38 
transitions per cell did however increase in nutrient-poor medium (see Fig. 6C, inset), 39 
which correlates well with the fact that it took them longer to fill out the custom-40 
designed shapes. Altogether, the rarity of such transitions again confirms that 41 
different pattern modes are robust against intracellular fluctuations.  42 
 43 
Automatic angle tracking of the sfGFP-MinD clusters reveals that most of the 44 
transitions between longitudinal and transverse modes involve an intermediate state in 45 
which the axis of oscillation deviates from the symmetry axes of the cell shape (Fig. 46 
6D). This suggests that the transitions are due to a strong perturbation of a stable 47 
oscillation that pushes the system into the domain of attraction of another stable 48 
oscillatory mode. Most of these gradual transitions took place on time scales of 4-8 49 
min in both nutrient-rich and nutrient-poor growth medium (Fig. 6E and inset).  50 
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 1 
The types of transitions occurring in these cells are length dependent (Fig. 6F).  In our 2 
data set, transitions from transverse to longitudinal mode were only found in cells 3 
with lengths around 6 and 7 μm, whereas the inverse transition was only observed at 4 
cell lengths of around 8 to 9 μm. In such cells, the longitudinal striped oscillation 5 
mode was observed to evolve from either longitudinal or transverse pole-to-pole 6 
oscillations at lower frequencies. 7 
 8 
To explore the effect of cell width on pattern stability, we carried out long-term time-9 
lapse imaging of cells shaped into rectangles with lengths of 9 to 10 μm and widths of 10 
3 to 6 μm (Fig. 6G). Unlike previous experiments, in which we had randomly 11 
sampled cells that had already attained the desired shape and imaged them at 2-min 12 
intervals (Wu et al, 2015b), here we were able to determine the final pattern before 13 
cell death or before cells grew out of the chamber. In agreement with the trend seen in 14 
previous experiments, increase in cell width resulted in a reduction of the fraction of 15 
cells displaying oscillations in the longitudinal pole-to-pole mode and a 16 
corresponding increase in the proportion of the transverse mode. Strikingly, we find 17 
that the incidence of oscillatory stripe patterns decreases dramatically as cell width 18 
increases from 4 to 5 μm. This feature was also well captured by the simulation data 19 
in Fig. 4A. Hence, while the precise pattern mode in a cell depends on various factors 20 
including growth history and large intracellular perturbations, the statistical trend in 21 
pattern composition with respect to cell size is compatible with the basins of 22 
attractions probed through small spatial perturbations in our simulations (Fig. 4A).  23 
 24 
When cell widths reached more than 5 μm, more complex oscillation modes were 25 
observed, including diagonally striped, zig-zag and other asymmetric patterns. These 26 
modes often appeared to represent transient, intermediate states between two 27 
symmetric modes (Fig. 6H, Movie EV6), but could occasionally persist for several 28 
cycles before cell death or overgrowth, as presented in the statistics in Fig. 6G. Thus 29 
increasing cell width expands the number of intermediary metastable states available 30 
for transitions between stable oscillation modes (Fig. 6H). In addition, a transverse-31 
stripe mode has also been observed (albeit infrequently) in cells with widths of 32 
slightly over 6 μm (Movie EV6), further demonstrating that the 3- to 6-μm adaptive 33 
range dictates mode selection in Min pattern formation. 34 
 35 
Discussion 36 
 37 
Combining experiments and theory to study the time evolution of Min oscillations in 38 
shaped bacteria, this work sheds new light on the origin of multistability in biological 39 
Turing patterns and on transitions between different patterned states. The experiments 40 
described here show how a stable pattern can emerge from a homogeneous state via 41 
direct symmetry breaking. Moreover, these patterns exhibit persistent adaptation 42 
during cell growth, as well as dynamic transitions induced by strong spatial 43 
perturbations. Systematic stability analyses of multistable states in silico revealed that 44 
the underlying Min pattern dynamics is set by (i) the sensitivity of initial pattern 45 
selection to cellular heterogeneity and (ii) the robustness of the established 46 
oscillations in the face of perturbations. Overall, this study establishes a framework 47 
for understanding Turing reaction-diffusion patterns in the context of fluctuating 48 
cellular environments and boundary growth. 49 
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Any study on the emergence of patterns within a cellular boundary must take cellular 1 
heterogeneity into account. Homogeneous initial states have been broadly used to 2 
probe the emergence of spatial patterns in computational simulations. While such an 3 
approach has been shown to capture the symmetry breaking of unbounded reaction-4 
diffusion systems, we demonstrate that computing pattern selection in bounded 5 
systems from such a homogeneous initial state can lead to an intrinsic (but 6 
physiologically irrelevant) bias. For example, in this study, a bias towards striped 7 
modes impedes computer simulations that employ a homogeneous initial state from 8 
reaching a transverse pattern, even if the stability of such a transverse pattern is 9 
comparable to that of a longitudinal pattern. The new theoretical methods outlined in 10 
this study provide a framework for realistically predicting symmetry breaking in 11 
biological systems through linear stability analysis in an elliptical geometry, and 12 
probing the basins of attraction of different stable patterns by numerical simulations. 13 
Our examples demonstrate the importance of taking spatial heterogeneity into account 14 
when studying symmetry breaking within biological boundaries. 15 

Multistability in Min patterns is not determined by either kinetic parameters or cell 16 
geometry alone, but originates from the interdependence between the geometric 17 
properties of the cell’s form and the kinetic regimes of the pattern-forming system. 18 
Some limited examples of multistability in reaction-diffusion systems have previously 19 
been analyzed in very large systems (Ouyang et al, 1992), where the system size 20 
exceeded the length scale of the pattern by two orders of magnitude and the system 21 
geometry was rotationally symmetrical. Here, the various stable states of Min patterns 22 
are defined with reference to the axes of cell shape, and boundary confinement is thus 23 
required by definition, without being a sufficient condition (see below), for the 24 
emergence of the class of multistability phenomenon characterized in this study. For 25 
instance, an increase of cell width beyond 3 μm is required to enable the transverse 26 
mode to be sustained in addition to a longitudinal pole-to-pole oscillation. Most 27 
interestingly, our theoretical analysis of the underlying model shows that increasing 28 
the size of a Turing-unstable system alone does not in itself facilitate the existence of 29 
multiple stable patterns that can be reached from a broad range of initial conditions. In 30 
our previous theoretical work we had found that the emergence of a pole-to-pole 31 
oscillation in a short cell does not generically imply the existence of a stable striped 32 
oscillation with a characteristic wavelength in a long filamentous cell (Halatek & Frey, 33 
2012). Instead, the emergence of a characteristic length scale (which becomes 34 
manifest in striped oscillations) is restricted to a specific regime of kinetic parameters, 35 
where growth and depletion of spatially separated polar zones become synchronized 36 
such that multiple, spatially separated polar zones can be maintained simultaneously. 37 
A key element among the prerequisites that permit this regime to be reached is that 38 
the nonlinear kinetics of the system (MinD cooperativity) must be particularly strong. 39 
Here we find the same restriction on the parameters for the emergence and selection 40 
of stable transverse patterns in addition to longitudinal pole-to-pole and striped 41 
oscillations. For example, weak nonlinear (cooperative) kinetics can readily give rise 42 
to longitudinal Min oscillations in 2-μm-long cells, but cannot sustain a transverse 43 
mode of oscillation in cells as wide as 4 μm. These findings hint at an exciting 44 
connection between multistability, the ability of patterns to sense and adapt to 45 
changes in system geometry, and the existence of an intrinsic length scale in the 46 
underlying reaction-diffusion dynamics. Remarkably – and contrary to the treatments 47 
in the classical literature – the existence of an intrinsic length scale is not generic for a 48 
Turing instability per se. One example is the aforementioned selection of pole-to-pole 49 



 18

patterns in arbitrarily long cells where MinD recruitment is weak. In this case, 1 
irrespective of the critical wavenumber of the Turing instability, the final pattern is 2 
always a single wave traveling from pole to pole. The selection of a single polar zone 3 
is also characteristic in the context of cell polarity (Klünder et al, 2013; Otsuji et al, 4 
2007), where it has been ascribed to the finite protein reservoir and a winner-takes-all 5 
mechanism. It will be an interesting task for further research to elucidate the general 6 
requirements for the emergence of an intrinsic length scale in mass-conserved 7 
reaction-diffusion systems. Here we have defined the requirements for geometry 8 
sensing and multistabilty in the underling model for Min protein dynamics. 9 

The dynamic relationship between multistable states is determined by the robustness 10 
of individual stable states when exposed to large-scale intracellular fluctuations. Our 11 
computer simulations suggest that the Min system can tolerate various degrees of 12 
spatial perturbations imposed by a heterogeneous profile of MinD’s binding affinity 13 
for the membrane. This is consistent with our experimental observation that a Min 14 
oscillation mode can persist in a living cell for tens of oscillation cycles, even within 15 
cell shapes where other stable states exist. Such persistence was also found to tolerate 16 
a large degree of asymmetry in cell shape, except for cases with low aspect ratios. 17 
Multistable states in the Min system are in essence independent stable states that do 18 
not toggle back and forth except under the influence of large spatial perturbations. 19 
This is experimentally verified by our observation that instances of switching between 20 
multistable states are extremely rare in large rectangular cells. These properties show 21 
that biological patterns driven by a reaction-diffusion mechanism can exhibit 22 
behaviors similar to classical bistable systems, in which two states switch from one to 23 
the other upon surmounting an activation energy barrier.  24 

Pattern selection among multistable states can be dependent on cell growth. Turing 25 
patterns have rarely been analyzed in the context of growth, either experimentally or 26 
computationally, largely due to technical challenges. A recent example is the study of 27 
digit formation during embryonic development (Raspopovic et al, 2014), where a 3-28 
node Turing network was simulated in a 2D growing mesh to verify experimental 29 
findings. In the present paper, our study of the Min oscillations throughout the growth 30 
history of the cells revealed a remarkable persistence in in the face of boundary 31 
changes induced by cell growth. This phenomenon could not be deduced from 32 
previous studies on the Min system, which showed various degrees of fluctuations in 33 
cells with certain degrees of asymmetry and enlargement (Corbin et al, 2002; Fange 34 
& Elf, 2006; Hoffmann & Schwarz, 2014; Männik et al, 2012; Schulte et al, 2015; 35 
Varma et al, 2008). Indeed, although Min oscillations do fluctuate in our experimental 36 
settings, they rarely undergo drastic switches even during periods of growth that 37 
increase the cell volume by up to 20 fold. One essential finding of this study is the 38 
persistent directionality of the oscillations in the case where the long axis and short 39 
axis of a cell have switched during adaptation to the chamber boundaries. This 40 
provides strong evidence that the Min patterns do not respond to boundary changes 41 
per se, but are dictated by the history and the scale of the cell dimensions. With such a 42 
strong tolerance for physiological and geometrical fluctuations, the patterns are thus 43 
found to be largely predictable when the growth history of the cell is known, even 44 
without explicit computer simulations involving stochastic effects and boundary 45 
growth.  46 
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Nonlinear kinetics and boundary confinement are general to Turing patterns in cells 1 
and organisms (Goryachev & Pokhilko, 2008; Klünder et al, 2013; Kondo & Miura, 2 
2010; Raspopovic et al, 2014; Vicker, 2002), implying that the multistability 3 
phenomenon can be probed in other reaction-diffusion systems as well. Using the 4 
framework employed in this study to understand the effect of fluctuations and growth 5 
in these other systems may facilitate the discovery of general rules governing the 6 
spatial adaptation of patterns in biology. 7 
 8 
 9 
Materials and Methods 10 
 11 
Bacterial strains 12 
 13 
In this study, all MinD and MinE proteins or their fluorescent fusions were expressed 14 
from the endogenous genomic minDE locus. Bacterial strain BN1590 (W3110 15 
[ΔleuB :: eqFP670 :: frt aph frt, ΔminDE :: sfGFP-minD minE :: frt]), constructed 16 
and characterized previously (Wu et al, 2015a; Wu et al, 2015b), was used for all the 17 
experiments in this study, with the exception of the co-imaging of MinD and MinE.  18 
 19 
The double-labeled minDE strain used in this study, FW1919 (W3110 [ΔminDE :: 20 
exobrs-sfGFP-minD minE-mKate2 :: frt]), was constructed using the λ RED 21 
recombination method (Datsenko & Wanner, 2000) after we had observed that 22 
plasmid-borne MinDE fusions are prone to overexpression in long-term experiments, 23 
and that imaging of CFP rather easily leads to photobleaching and photodamage to the 24 
cells. To obtain this strain, strain FW1554 (W3110 [ΔminDE :: exobrs-sfGFP-minD 25 
minE :: frt]) (Wu et al, 2015a) was transformed with pKD46, and made electro-26 
competent. A linear fragment containing the chloramphenicol gene amplified from 27 
pKD3 was transformed into the resulting strain to replace the frt scar, thus yielding 28 
strain FW1626 (W3110 [ΔminDE :: exobrs-sfGFP-minD minE:: cat]). FW1626 was 29 
then transformed with pKD46, made competent, and transformed with a linear 30 
fragment containing a mKate2::aph frt sequence amplified from plasmid pFWB019 to 31 
produce strain FW1639 (W3110 [ΔminDE :: exobrs-sfGFP-minD minE-mKate2:: aph 32 
frt]). FW1639 was then cured of kanamycin resistance using a pCP20 plasmid as 33 
described previously (Datsenko & Wanner, 2000) to yield the final strain FW1919. 34 
This strain grows in rod shape in both M9 minimal medium and LB rich medium, and 35 
produces no minicells, indicating that MinE-mKate2 is fully functional. However, 36 
both its fluorescence intensity and photostability in the cells are much lower than 37 
those of sfGFP-MinD, and thus less suitable for long-term imaging than the latter. 38 
 39 
Growth conditions 40 
 41 
The M9 rich medium used previously (Wu et al, 2015b) and in the majority of the 42 
experiments in this study (unless specified) contained M9 salts, 0.4% glucose, and 43 
0.25% protein hydrolysate amidase. The M9 poor medium contained M9 salts, 0.4% 44 
glucose, and 0.01% leucine. At 30°C, the doubling time of BN1590 cells during 45 
exponential growth was 104±9 minutes in M9 poor liquid medium, and 69±3 minutes 46 
in M9 rich liquid medium. 47 
 48 
For cell shaping, cells were first inoculated into M9 liquid medium supplemented 49 
with 4 μg/ml A22 and incubated at 30 °C for 3.5 h (rich medium) or 6 h (poor 50 
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medium). The agarose pad used to seal the microchambers contained M9 medium 1 
supplemented with 4 μg/ml A22 and 25 μg/ml cephalexin as described previously. All 2 
cell-shaping experiments were carried out at 26 °C. 3 
 4 
Cell shaping 5 
 6 
The cell sculpting method was used as described previously (Wu & Dekker, 2015; 7 
Wu et al, 2015b), with the following modifications. Prior to inoculation of the cells, 8 
the cover glass with the PDMS structures was treated with O2 plasma for 10 sec to 9 
make the surface hydrophilic, which facilitates wetting of the surface and allows for 10 
more homogeneous inoculation of the cells into the microchambers. After the cells 11 
had settled into the microchambers, these were sealed with a small piece of agarose 12 
pad, as described previously (Wu et al, 2015b). We then poured 1 ml of warm agarose 13 
onto the existing agarose, which prevented the agarose from drying out during the 14 
long time course of the imaging. These two modifications in the cell-sculpting process 15 
increased the throughput of the shaping method, as well as minimizing the movement 16 
of the cells in the chambers due to drag of the drying agarose.  17 
 18 
Fluorescence microscopy 19 
 20 
Fluorescence imaging was carried out with the same set-up as previously described 21 
(Wu et al, 2015b), but the following modifications were introduced to facilitate long-22 
term tracking. We used an upgraded perfect focus system (PFS3) on the Nikon Ti 23 
microscope, which has a larger z-range than the PFS2 system. While PFS3 was 24 
optimized for detecting the glass-water interface, we find that it can be used to locate 25 
the interface between glass and PDMS, which was then used to correct for the drift in 26 
z over time and keep the cells in focus. The PDMS layer with a thickness of 5-10 μm 27 
is within the sampling range for the PFS3, such that we can define the position of the 28 
cell with reference to to the glass-PDMS interface. To track sfGFP-MinD during the 29 
whole course of cell growth, we used a time interval of 2 min. To monitor in detail the 30 
symmetry-breaking process that permits sfGFP-MinD patterns to emerge from 31 
homogeneity, we took fluorescence images sfGFP-MinD at intervals of 5 - 20 sec, 32 
and only imaged the cytosol before and after this acquisition period. To examine the 33 
stability of the transverse oscillations, we used a 20-sec time interval. To sample the 34 
effect of cell width on the final oscillation patterns in cells, we imaged every 5 min to 35 
obtain a larger dataset per experiment. Despite the fact that sfGFP is relatively 36 
resistant to photobleaching, it is critical to use low-intensity light for excitation in 37 
order to avoid photodamage to the cells, which reduces oscillation frequencies and 38 
eventually causes cell lysis.  39 
 40 
Image analysis 41 
 42 
The cytosolic fluorescence images of the cells were processed in Matlab as described 43 
previously for boundary determination (Wu et al, 2015b). The binary image was used 44 
to define the lengths of the Feret diameters along the full 360° angular coordinates. 45 
From these data, the maximum and minimum Feret diameters were determined. The 46 
center of the MinD cluster was determined as described previously using a Matlab 47 
script, and its angle was determined from its location relative to the cell center. The 48 
Feret diameter along this angle was used to compare the oscillation distance with the 49 
Feret diameters. Note that we use the Feret diameter along the oscillation angle as a 50 
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measure of how well oscillations align with long or short axes, but this does imply 1 
that it represents a fair estimate of the distance traversed by each MinD protein. All 2 
the angle values extracted above are folded to between 0° and 90° due to the multifold 3 
symmetry of rectangles. Note that this MinD tracking method is restricted to the 4 
analysis of two-node oscillations and is not suitable for striped oscillations. The 5 
analyses of the final patterns in cells with various widths were carried out manually. 6 
After publication of the manuscript, the Matlab script used in this study will be made 7 
available on the webpage [http://ceesdekkerlab.tudelft.nl/downloads/].  8 
 9 
Analytical and numerical methods 10 
 11 
All simulations were performed using the FEM method as implemented in the 12 
software Comsol Multiphysics 4.4. The linear stability analysis was performed with 13 
Wolfram Mathematica 10 in elliptical geometry as introduced in (Halatek & Frey, 14 
2012). We define the non-degeneracy of even and odd modes as: 15 

= −  

where  and  denote the growth rate of the i-th even and odd mode 16 
respectively. 17 
 18 
The model is based on bulk-boundary coupling through a reactive boundary condition 19 
as introduced in (Halatek & Frey, 2012). For the cytosol, model equations read: 20 
 21 

= −  
= +  
=  

 22 
Here  denotes the density of cytosolic MinD-ADP,  cytosolic MinD-ATP, and 23 

 cytosolic MinE;  the Nabla/Del operator in the cytosol (coordinate-free);  the 24 
diffusion coefficient for cytosolic MinD,  the diffusion coefficient for cytosolic 25 
MinE, and  the cytosolic nucleotide exchange rate.  26 
At the membrane we have 27 
 28 

= + + −  
= + −  

 29 
Here  denotes the density of membrane-bound MinD, and  membrane-bound 30 
MinDE complexes;  the Nabla/Del operator on the membrane (coordinate-free); 31 

 the diffusion coefficient for the membrane,  the MinD attachment rate constant, 32 
 the MinDE detachment rate,  the MinD recruitment rate constant,  the 33 

MinE recruitment rate constant. Membrane and cytosolic dynamics are coupled by a 34 
system of reactive boundary conditions: 35 
 36 

=  
= − +  

= − +  
 37 
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Here  denotes the (outer) normal derivative at the boundary of the cytosol 1 
(membrane). Unless noted otherwise, all system parameters are taken from (Halatek 2 
& Frey, 2012), cf. listing in the Appendix. 3 
 4 
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Figure Legends 1 
 2 
Figure 1. Symmetry breaking of Min protein patterns in vivo.  3 
 4 
A. Schematic showing Min protein patterns in a defined geometry originating from 1) a dynamic 5 

instability arising from an equilibrium state, or 2) dynamic transitions from a pre-existing pattern 6 
associated with cell growth. Green and red particles represent MinD and MinE proteins, 7 
respectively. The green gradient depicts the MinD concentration gradient.  8 

B-D. Examples of Min protein patterns emerging from nearly homogeneous initial conditions in E. coli 9 
cells of different sizes. Lateral dimensions (in µm) from top to bottom: 2x6.5, 2x8.8, and 5.2x8.8 10 
respectively. The gray-scale images show cytosolic near-infrared fluorescence emitted by the 11 
protein eqFP670 at the first (left) and last (right) time points. The color montages show the sfGFP-12 
MinD intensity (indicated by the color scale at the bottom right) over time. The scale bar in panel B 13 
corresponds to 5 μm. Red arrows show the oscillation mode at the respective time point.  14 

E. Two early and two late frames depicting sfGFP-MinD patterns in a cell exhibiting stable transverse 15 
oscillations. The images share the scale bar in B. 16 

F. Difference in sfGFP-MinD intensity between the top half and bottom half of the cell plotted against 17 
time.  18 

 19 
Figure 2 Pattern emergence upon spatial perturbation.  20 
 21 
A. Even and odd Mathieu functions in an elliptical geometry. The 0.even mode shows the symmetry of 22 

the basal state of the system. Here no homogeneous steady state exists. Note the similarity between 23 
the 0th and the 2nd even mode.  24 

B. Simulations of Min pattern formation from an initially homogeneous state. Dimensions of the cells 25 
shown are 6.5x2x1 μm3, 9x2x1 μm3, and 9x5x1 μm3. All cells show an initial striped pattern, which 26 
persists in both cells of 9 μm length throughout the simulation period.  27 

C. Simulations analogous to the experiments shown in Fig. 1B, with the same cell dimensions as in Fig. 28 
2B. The left-hand column depicts the spatially perturbed MinD attachment profile, showing 29 
gradients along the diagonal lines of the rectangles. With these attachment profiles, the Min 30 
distributions in the three cells quickly evolve into longitudinal, striped, and transverse patterns, 31 
respectively.  32 

 33 
Figure 3. Computing stability in multistability regimes.  34 
 35 
A. Two plots that show the non-degeneracy of even and odd modes in an elliptical geometry for 36 

varying cell geometry and MinD recruitment rate. The degeneracy (light blue area) increases with 37 
the MinD recruitment rate.  38 

B. Schematic representation of the simulation process used to probe the stability of longitudinal and 39 
transverse patterns. The system is initialized with a homogeneous configuration and the gradient of 40 
the MinD attachment rate is aligned with the major or minor axis to direct pattern selection. After 41 
initialization the MinD attachment rate is equalized to allow the system to relax into the initialized 42 
state. If the initialized pattern persists in the absence of a stabilizing gradient, the gradient is 43 
reapplied to deflect the pattern from its preset alignment and study its stability vis-a-vis spatial 44 
inhomogeneities that break its symmetry. The stability towards all possible deflections with linear 45 
MinD attachment profiles is probed and the persistence of the initialized pattern is checked.   46 

C-D. Stability diagrams of the simulation procedure outlined in (B) for longitudinal (C) and transverse 47 
(D) patterns. White areas represent configurations where the respective mode was not initialized. 48 
The grey values show the fraction of all simulations (with different attachment templates) in which 49 
the respective pattern mode is sustained.  50 

 51 
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Figure 4. Basins of attraction predicted from systematic perturbations of patterns with shallow 1 
attachment gradients.  2 
 3 
A. Relative distribution of the final patterns (indicated on the right) observed after sampling all 4 

alignment angles of the MinD attachment template from 0 to 90 degrees. The MinD recruitment 5 
rate was set to a constant value kdD = 0.1. The data shows the increase in the incidence of 6 
multistability as the cell size is increased beyond minimal values for cell length and cell width. 7 

  8 
B. Fractions of the final patterns in cells of 9- and 10-µm length after sampling all alignment angles of 9 

the MinD attachment template from 0 to 90 degrees. The data shows that increasing the MinD 10 
recruitment rate facilitates multistability.  11 

 12 
Figure 5. The effect of cell-shape change during growth on the stability of Min protein patterns.   13 
 14 
A. Cytosolic fluorescence during growth of a cell from a small elliptical form into a large rectangular 15 

shape. Numbers in red indicate time in hours. Illustrations show the positions and orientations of 16 
the cell in the first and last time frames. Green and blue lines indicate the maximum and minimum 17 
Feret diameters, respectively.  18 

B. sfGFP-MinD patterns during the growth of the cell shown in A. Illustrations indicate the cell 19 
boundaries and oscillation angles observed in the first and last frames (not to scale).  20 

C. Quantitative data obtained from the cell shown in A and B. The maximum and minimum Feret 21 
diameters (green and blue), and the measured MinD oscillations (red) were expressed in terms of 22 
length (top) and angle (bottom) and plotted against time. The number of cells that fit this category 23 
was 41/97. Arrows indicate the time when cell width reached the chamber width of 5 μm.  24 

D-F. Data are presented as in A-C for another cell that showed persistent oscillations along the 25 
horizontal axis throughout growth. The number of cells that fit this category was 28/97. 26 

G. Time-lapse images of sfGFP-MinD that reveal stochastic switching of patterns in a cell with an 27 
asymmetric shape and a low aspect ratio. White arrows indicate the oscillation axes.  28 

H. The angles of the maximum and minimum Feret diameters (green and blue), and the measured 29 
MinD clusters (red) for the cell shown in panel G plotted against time. The number of cells that fit 30 
this category was 10/97. All scale bars correspond to 5 μm. 31 

 32 
Figure 6. Transitions between various modes of Min protein patterns.  33 
 34 
A. Time-lapse images showing the transition from a longitudinal pole-to-pole mode to the transverse 35 

mode. Scale bar, 5 μm.  36 
B. Time-lapse images showing the transition from a transverse mode to a longitudinal pole-to-pole 37 

mode.  38 
C. Bar plot showing the distribution of the number of transitions. Inset: Data from experiments carried 39 

out under nutrient-poor conditions in which growth rates are reduced. 40 
D. Representative time-course of a change in the mode of sfGFP-MinD oscillation. The black line is a 41 

sigmoidal fit. The dashed black lines indicate 15° and 75° and the dashed red line indicates 45°.  42 
E. Bar plot showing the time scale of the switch in the oscillations. Inset: Data from experiments 43 

carried out in nutrient-poor conditions. 44 
F. Bar plots showing the relative numbers of the indicated transitions that occur at different cell lengths. 45 

All cells have a width of 5 μm.  46 
G. Distribution of final patterns in cells of the indicated widths as indicates, and lengths of 9-10 μm.  47 
H. Time-lapse images of various modes of transitions between patterns. Cell sizes from top to bottom 48 

are respectively 10x2x1, 10x6x1, 9x5x1, 10x4x1 μm3. Note that the cells are scaled differently. On 49 
the right is an illustration showing Min pattern transitions through intermediate states. 50 
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Legends for Extended View Figures and Movies 1 
 2 
Fig. EV1. Disruption and re-emergence of Min patterns in cells of 5 μm in width. Scale bar = 5 μm. 3 
The red boxes show the near homogeneous state. The color scale indicates MinD concentration.  4 
[This figure is to be placed above Fig. 1] 5 
 6 
Fig. EV2. Illustrations of maximum/minimum Feret diameters.  7 

A. From left to right showing the minimum Feret diameter and its angle, the maximum Feret 8 
diameter and its angle, the angle of the MinD polar zone, and the Feret diameter 9 
corresponding to this angle. 10 

B. Two examples of Feret diameters and angles in the cell shown in Fig. 2D-F 11 
[This figure is to placed below Fig. 5] 12 
 13 
Movie EV1. Disruption and re-emergence of Min patterns in cells of 5 μm in width imaged at 2-14 
min intervals.  15 
 16 
Movie EV2. Robust transversal oscillations imaged at 20-sec intervals. 17 
 18 
Movie EV3. Co-imaging of sfGFP-MinD and MinE-mKate2 during a symmetry-breaking process.  19 
 20 
Movie EV4. Time evolution of patterns in cells that adopt different pattern modes due to 21 
different constraints on their growth, imaged at 2-min intervals. 22 
 23 
Movie EV5. An example of stochastically switching Min patterns in cells with low aspect ratios. 24 
 25 
Movie EV6. Various examples of pattern transitions in cells with different dimensions. 26 
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