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Ensuring Fairness in Group Recommendations by Rank-Sensitive Balancing of
Relevance

MESUT KAYA, TU Delft, The Netherlands

DEREK BRIDGE, Insight Centre for Data Analytics, University College Cork, Ireland

NAVA TINTAREV, TU Delft, The Netherlands

For group recommendations, one objective is to recommend an ordered set of items, a top-𝑁 , to a group such that each individual
recommendation is relevant for everyone. A common way to do this is to select items on which the group can agree, using so-called
‘aggregation strategies’. One weakness of these aggregation strategies is that they select items independently of each other. They
therefore cannot guarantee properties such as fairness, that apply to the set of recommendations as a whole.

In this paper, we give a definition of fairness that ‘balances’ the relevance of the recommended items across the group members in
a rank-sensitive way. Informally, an ordered set of recommended items is considered fair to a group if the relevance of the items in the
top-𝑁 is balanced across the group members for each prefix of the top-𝑁 . In other words, the first item in the top-𝑁 should, as far as
possible, balance the interests of all group members; the first two items taken together must do the same; also the first three; and so on
up to 𝑁 . In this paper, we formalize this notion of rank-sensitive balance and provide a greedy algorithm (GFAR) for finding a top-𝑁
set of group recommendations that satisfies our definition.

We compare the performance of GFAR to five approaches from the literature on two datasets, one from each of the movie and
music domains. We evaluate performance for 42 different configurations (two datasets, seven different group sizes, three different
group types) and for ten evaluation metrics. We find that GFAR performs significantly better than all other algorithms around 43% of
the time; in only 10% of cases are there algorithms that are significantly better than GFAR. Furthermore, GFAR performs particularly
well in the most difficult cases, where groups are large and interests within the group diverge. We attribute GFAR’s success both to its
rank-sensitivity and its way of balancing relevance. Current methods do not define fairness in a rank-sensitive way (although some
achieve a degree of rank-sensitivity through the use of greedy algorithms) and none define balance in the way that we do.
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1 INTRODUCTION

There are many scenarios where we want to recommend items to a group of people, rather than to an individual. For
example, we may want to suggest a movie for a group of friends to watch together; or, during a car trip, we may want
to play songs jointly to people who are sharing a ride.
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Table 1. Example predicted relevance scores in the range [0, 5], and aggregated scores for the least misery (LM) and average (AVG)
strategies are given. Users denoted as 𝑢1 −𝑢3 and candidate items as 𝑖1 − 𝑖5.

𝑢1 𝑢2 𝑢3 AVG LM
𝑖1 5.0 5.0 2.5 4.17 2.5
𝑖2 4.5 4.5 2.5 3.83 2.5
𝑖3 4.0 4.0 3.0 3.67 3.0
𝑖4 4.0 1.5 5.0 3.5 1.5
𝑖5 0.5 3.0 1.0 1.5 0.5

Jameson & Smyth present three main approaches to group recommendations [5]. The first is to compute recommen-
dations for each group member and then to merge the recommended items. In their second approach, the preferences
(e.g. predicted ratings or rankings) of each group member for each candidate item are aggregated, often using strategies
inspired by Social Choice Theory [8], to obtain the preferences of the group. The third approach is to build a group
recommender model directly from the (un-aggregated) preferences of the members of the group.

By way of illustration, consider the second approach, which is the one most commonly reported in the literature.
Let’s assume that individual preferences are represented as ratings. The recommender predicts each group member’s
rating for each candidate item and then obtains the preferences of the group for each candidate item by aggregating
these predicted ratings. For instance, in the Average (AVG) strategy, the predicted group rating for an item is the mean of
the predicted ratings of that item by the group members, whereas in the strategy called Least Misery (LM) the predicted
group rating is the minimum of the individual predicted ratings. For both AVG and LM, the 𝑁 items with the highest
aggregated predicted ratings are selected as recommendations to the group. In this paper, we will denote this ordered
set of items as top-𝑁𝐺 , using the 𝐺 to emphasize that these are recommendations to the group.

Our focus is on the fairness of top-𝑁𝐺 ordered sets of recommendations for groups. In this paper, fairness is a
property of the top-𝑁𝐺 and not of any single recommendation within the top-𝑁𝐺 . It might be claimed, for example,
that AVG pursues ‘fairness’ because it considers all group members’ interests equally [9], or that LM pursues ‘fairness’
because it seeks to minimize the unhappiness of the least happy group member. However, aggregation strategies such
as AVG and LM (and most other work on group recommendation) have a limitation: they select the items in a top-𝑁𝐺

independently of each other. Hence, while each item recommendation may be ‘fair’, it may still be the case that, across
a set of 𝑁 recommendations, one or more group members may be treated unfairly [15, 18]. For example, for a given
group member 𝑢 ∈ 𝐺 , if the top-𝑁𝐺 seems consistently to put other group members’ interests ahead of 𝑢’s interests,
then the top-𝑁𝐺 is not fair to 𝑢.

We can illustrate this problem using a simple example. Consider a group 𝐺 with three members, 𝐺 = {𝑢1, 𝑢2, 𝑢3}.
Assume that there are five candidate items and the goal is to recommend a top-3 ordered set to the group. We run a
recommender algorithm (e.g. matrix factorization) to predict relevance scores 𝑠 (𝑢, 𝑖) denoting the relevance of candidate
item 𝑖 to group member 𝑢; see Table 1. We also assume that an item 𝑖 is relevant to a user 𝑢 if the predicted relevance
score is greater than or equal to 4.

The AVG strategy computes themean ratings for each candidate item (see the AVG column in Table 1) and recommends
the three items with the highest mean predicted ratings, {𝑖1, 𝑖2, 𝑖3}. The LM strategy takes the minimum rating (LM
column in the Table). Since 𝑖1 and 𝑖2 both have the same aggregated scores, its top-3 recommendations to the group
are either {𝑖3, 𝑖1, 𝑖2} or {𝑖3, 𝑖2, 𝑖1}, depending on its tie-breaking strategy. Both 𝑢1 and 𝑢2 find items that are relevant to
them (where 𝑠 (𝑢, 𝑖) ≥ 4) in the top-3 group recommendations for both the AVG and LM strategies. However, 𝑢3 cannot
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find any relevant item for her in the top-3 recommendations for the group for either of the AVG or LM strategies. This
is an example of the kind of unfairness that we address in this paper: even if each individual recommendation is found
in a ‘fair’ way, because they are found independently of each other, the top-3 is unfair for user 𝑢3.

Now let’s consider a method that does consider the overall fairness of the top-𝑁𝐺 . In [3], Felfernig et al. present an
algorithm, which they call FAI, that is based on ideas in [7]. FAI Aggregation takes each group member 𝑢 ∈ 𝐺 in turn

and inserts into the top-𝑁𝐺 the candidate item 𝑖 (from those which have not yet been inserted into the top-𝑁𝐺 ) for
which 𝑠 (𝑢, 𝑖) is highest. Then, for each group member, it chooses a second item, starting with the group member who
chose the last item in the previous round. It repeats this until it has chosen 𝑁 items. The idea behind this strategy is
that every group member will find a comparable number of items that they will like within the top-𝑁𝐺 .

For the example (Table 1), let’s assume that users take turns in the order 𝑢1 then 𝑢2 then 𝑢3. For 𝑢1, FAI will select
𝑖1. 𝑢2’s first choice is also 𝑖1, therefore FAI will select her second best choice, 𝑖2. Finally, for 𝑢3, 𝑖4 will be selected. FAI
will recommend the ordered set {𝑖1, 𝑖2, 𝑖4} to the group. This top-𝑁𝐺 contains a relevant item for each user. This is an
improvement compared to the sets generated by the AVG and LM strategies, where there was no relevant item for 𝑢3.
However, the ordered set {𝑖1, 𝑖2, 𝑖4} is still unfair to 𝑢3. While other members receive relevant items in the first two
ranks, 𝑢3 only receives a relevant item in the last rank.

With AVG, LM and FAI in mind, let’s ask what a fair top-𝑁𝐺 might look like. For a start, if possible, there should be
at least one item in the top-𝑁𝐺 that is relevant to each group member. This is why, in the example, recommending
{𝑖1, 𝑖2, 𝑖3} (or a permutation of it) is unfair. This kind of fairness is not achieved, in general, by strategies that consider
items independently, such as AVG and LM. The top-𝑁𝐺 will be even fairer if it seeks to balance, as far as possible, the
relevance or utility of the items in the set across the users. In the example, this is another reason not to recommend set
{𝑖1, 𝑖2, 𝑖3}: the total relevance to 𝑢1 and 𝑢2 (13.5 each) far exceeds the total relevance to 𝑢3 (8.0), whereas recommending
set {𝑖1, 𝑖2, 𝑖4} has better balance (13.5, 11.0 and 10.0 for 𝑢1, 𝑢2 and 𝑢3 respectively) as does {𝑖1, 𝑖3, 𝑖4} (13.0, 10.5, 10.5
respectively). But this still treats the top-𝑁𝐺 as a set, ignoring the fact that it is in reality an ordered set.

To take into account the ordering within the top-𝑁𝐺 , we say that a top-𝑁 is fair to a group if the relevance of the items
is balanced across the group members for each prefix of the top-𝑁𝐺 . In other words, the first item in the top-𝑁 should,
as far as possible, balance the interests of all group members; the first two items taken together must do the same; also
the first three; and so on up to 𝑁 . Suppose we recommend {𝑖1, 𝑖4, 𝑖2}. There is not so much balance at rank 1 since 𝑖1’s
relevance is 5.0, 5.0 and 2.5. An improvement is made for 𝑢3 at rank 2 (at the expense of 𝑢2), since the total relevances
(for 𝑖1 and 𝑖4) are 9.0, 6.5 and 7.5. At rank 3, the total relevances (for 𝑖1, 𝑖4 and 𝑖2) are 13.5, 11.0 and 10. Recommending
{𝑖1, 𝑖4, 𝑖2} is arguably better than recommending {𝑖1, 𝑖2, 𝑖4}, for example: for the latter, the total relevances are 5.0, 5.0,
2.5 at rank 1, then 9.5, 9.5, 5.0 at rank 2, which is still very unfair to 𝑢3, the balance only being restored at rank 3 where
the total relevances are 13.5, 11.0, 10.0. It is this rank-sensitive notion of fairness that we formalize in this paper. The
formal definition is in Section 3. We call our approach Group Fairness-Aware Recommendation (GFAR). The definition
leads naturally to a greedy algorithm for finding top-𝑁 group recommendations.

Note that, for simplicity, in the previous two paragraphs, we assumed that the total relevance of a top-𝑁𝐺 to a group
member 𝑢 is obtained by summing the 𝑠 (𝑢, 𝑖) values for 𝑖 ∈ top-𝑁𝐺 . This simplifies the examples, but it is not what
GFAR actually does. We postpone the details to Section 3.1

The main contributions of this paper are:

1These details also account for the fact that, for the example, GFAR will recommend {𝑖1, 𝑖4, 𝑖2 }, rather than {𝑖1, 𝑖4, 𝑖3 }.
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• We present, GFAR, a new, rank-sensitive definition of fairness for top-𝑁 group recommendations, based on
balancing the relevance of items to group members for each prefix of the top-𝑁 . We give a greedy algorithm for
finding top-𝑁 group recommendations according to the GFAR definition.

• We run experiments to evaluate GFAR. We compare GFAR to five algorithms from the literature. We use two
datasets, one from each of the movie and music domains. We use synthetic group of seven different sizes (from 2
to 8 members) and of three different types depending on the similarity between the group members’ interests
(Similar, Divergent and Random). Performance is measured using 10 fairness metrics that we have adapted from
the literature.

We find that GFAR performs significantly better than all other algorithms around 43% of the time (179/420 cases); in
only 10% of cases (43/420) are there algorithms that are significantly better than GFAR.

Our results also show that it is also more difficult to find fair top-𝑁 recommendations for groups in which the
members’ interests diverge, just as it is more difficult to reach a consensus in divergent groups [2, 14]. Additionally, it
becomes more difficult to find fair recommendations as the group size grows.

In Section 2, we review relevant research on fairness in group recommenders. Section 3 presents our definition and
algorithm, GFAR, in detail. Then, Section 4 describes our datasets, experimental methodology and metrics. Results are
presented and analysed in Section 5. Finally, Section 6 concludes the paper with a discussion and ideas for future work.

2 RELATEDWORK

Most commonly, group recommender research focuses on group satisfaction with each recommended item. Group
recommender algorithms typically select the items in a top-𝑁𝐺 independently of each other and try to make sure that
each item is ‘good’ (i.e. relevant) for everyone (e.g. on average) [2, 3, 5, 8]. But, in addition to FAI that we described in
Section 1 [3], there is a small amount of fairly recent work that investigates fairness, treating it as a property of the
set of items recommended to the group, the top-𝑁𝐺 [11, 12, 15, 18]. Unlike FAI, as we will see, this work does not use
simple turn-taking; rather, it tries to balance the utility of the items in the top-𝑁𝐺 across the users.

Xiao et al. define fairness in terms of the utilities of the top-𝑁𝐺 to each group member [18]. The utility of the top-𝑁𝐺

to a group member 𝑢 is simply the mean predicted relevance to 𝑢 of each item in the top-𝑁𝐺 . Then Xiao et al. offer
several alternative definitions of fairness, including: Least Misery Fairness, which is defined as the utility of the top-𝑁𝐺

to the group member whose utility is lowest; Variance Fairness, which is the complement of the variance of the utilities
of the group members; and Min Max Ratio Fairness, which is the ratio of the lowest and highest utilities within the
group. Xiao et al.’s objective function is a linear combination of mean utility and (one of the definitions of) fairness.
They propose, for example, a greedy algorithm that incrementally inserts into the top-𝑁𝐺 the item that results in the
largest value for the objective function. Let’s use the phrase ‘rank-sensitive’ in the way we use it in GFAR, i.e. there
must be a balance in the relevance or utility of the items across the group members for each prefix of the top-𝑁𝐺 . Then,
we see that Xiao et al.’s definition is not rank-sensitive (since it treats the top-𝑁𝐺 as an unordered set). However, the
use of a greedy algorithm does introduce a kind of rank-sensitivity into their approach.

Sacharidis defines the utility of a top-𝑁𝐺 to a member 𝑢 of 𝐺 as the similarity of the top-𝑁𝐺 to the top-𝑁𝑢 , i.e.
𝑢’s top-𝑁 candidate items [12]. The fairness of a top-𝑁𝐺 he defines as the lowest member utility. He formulates the
problem of finding a top-𝑁𝐺 using Pareto optimality. An item 𝑖 dominates another 𝑖 ′ if, for at least one member of
the group 𝑢 ∈ 𝐺 , 𝑢 ranks item 𝑖 higher than item 𝑖 ′ and, for each remaining member of the group, item 𝑖 has equal or
higher rank than 𝑖 ′. The Pareto Optimal items (PO) are the ones that are not dominated by any others. The 𝑁 -level PO
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items are items that are dominated by at most 𝑁 − 1 other items. The top-𝑁𝐺 will be a subset of the 𝑁 -level PO set. He
presents probabilistic algorithms for finding this top-𝑁𝐺 . This approach to fairness in group recommendations is not
rank-sensitive in the way that we defined it above.

Qi et al. [11] and Serbos et al. [15] address a different problem setting. They consider the recommendation of
‘packages’, such as vacation packages, to groups of users. A package differs from a top-𝑁𝐺 in that the group consumes
all the items in the package, whereas a top-𝑁𝐺 comprises items that the group may choose between. Hence, the
‘position’ of the items within a package might imply, for example, the order of consumption (e.g. the order in which
points-of-interest will be visited) whereas position in a top-𝑁𝐺 is a predicted preference ranking. Although the problem
setting is different, their definitions of fairness are still of interest.

They define two alternative definitions of fairness: 𝑚-proportionality fairness and 𝑚-envy-free fairness [15]. A
package exhibits𝑚-proportionality fairness for group member 𝑢 if 𝑢’s predicted ratings for at least𝑚 (𝑚 ≥ 1) items
in the package are in the top Δ% of all of 𝑢’s ratings. A package exhibits𝑚-envy-free fairness for 𝑢 if 𝑢’s predicted
ratings for at least𝑚 items in the package are in the top Δ% of ratings for that item for all members of the group. They
use greedy algorithms to construct packages, item-by-item, to obtain high levels of either total𝑚-proportionality or
𝑚-envy-free fairness across all members of the group. Note that, although this work focuses on the fairness of packages,
it can be adapted to the fairness of top-𝑁𝐺 recommendations. For instance, for𝑚-proportionality, we could define a
top-𝑁𝐺 to be fair to group member 𝑢 if at least𝑚 (𝑚 ≥ 1) items in the top-𝑁𝐺 are in 𝑢’s top-𝑁𝑢 . However, since a
package is not ordered in the way a top-𝑁𝐺 is ordered, the resulting adaptation is not rank-sensitive in the way we
defined it above. However, as with Xiao et al., the use of a greedy algorithm does introduce a kind of rank-sensitivity.

Illustrative comparison. For comparison we have implemented one algorithm from each of these three pieces
of work: GreedyLM is Xiao et al.’s greedy algorithm using their Least Misery Fairness; XPO is one of the algorithms
described by Sacharidis; and SPGreedy is the algorithm that Serbos et al. call the Single Proportionality Greedy
Algorithm. Without spelling out the details of the calculations, we can show their top-𝑁𝐺 for the example given in
the previous section (Table 1) and compare with what our algorithm, GFAR (which we will describe in Section 3),
recommends, i.e. {𝑖1, 𝑖4, 𝑖2}. The simple example does not help us distinguish between GreedyLM and GFAR: they both
recommend {𝑖1, 𝑖4, 𝑖2}. This is a good recommendation: there are relevant items in earlier ranks of the set for all users.
XPO recommends {𝑖1, 𝑖4, 𝑖3}, and this too is plausible: all group members have at least one relevant item and, although
XPO is not rank-sensitive in the same way as GFAR is rank-sensitive, it so happens that in this example all group
members find a relevant item in the earlier ranks of the recommendation set. SPGreedy recommends {𝑖1, 𝑖2, 𝑖3} (the
same as AVG): it fails to recommend any relevant items to 𝑢3 and the item that is most relevant to 𝑢3 is in the last rank.
The results of our experiments using these algorithms are given in Section 5.

3 OUR APPROACH

In this section, we introduce GFAR, our definition of fairness for group recommendations and we give an algorithm
for finding group recommendations that satisfy this definition. By way of notation, let 𝐼 be the set of all items and
𝑈 the set of all users. Let 𝑅 be a |𝑈 | × |𝐼 | matrix, where 𝑟𝑢𝑖 ∈ 𝑅 is 𝑢’s rating of 𝑖 , or 𝑟𝑢𝑖 = ⊥ if 𝑢 has not rated 𝑖 . We
make no assumptions about the ratings: they can be explicit or implicit; they can be numeric, binary or unary. For
each item 𝑖 for which a user 𝑢 has no rating, i.e. {𝑖 ∈ 𝐼 : 𝑟𝑢𝑖 = ⊥}, we assume we have an underlying recommender
system (e.g. a matrix factorization algorithm) that can predict the relevance of that item to 𝑢, 𝑠 (𝑢, 𝑖). We will write
top-𝑁𝑢 for the ordered set of size 𝑁 that we would recommend to user 𝑢, i.e. the 𝑁 items whose 𝑠 (𝑢, 𝑖) are highest. Let
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𝐺 = {𝑢1, . . . , 𝑢𝑚} be a group consisting of𝑚 users drawn from 𝑈 . The ordered set of items of size 𝑁 that we would
recommend to group 𝐺 is designated top-𝑁𝐺 .

In an ordered set, 𝑂𝑆 , we will write rank(𝑖,𝑂𝑆) for the rank (position) of item 𝑖 in 𝑂𝑆 and 𝑂𝑆 [𝑘] for the item whose
rank in 𝑂𝑆 is 𝑘 , where ranks will start from 1. For example, if top-𝑁𝐺 is {𝑖1, 𝑖4, 𝑖2}, then rank(𝑖2, top-𝑁𝐺 ) is 3, and
top-𝑁𝐺 [3] is 𝑖2.

3.1 GFAR’s definition of fairness

For a group member 𝑢 ∈ 𝐺 , let 𝑝 (rel |𝑢, 𝑖) be the probability that item 𝑖 is relevant to 𝑢. We estimate 𝑝 (rel |𝑢, 𝑖) as:

𝑝 (rel |𝑢, 𝑖) = Borda-rel(𝑢, 𝑖)∑
𝑗 ∈top-𝑁𝑢

Borda-rel(𝑢, 𝑗) (1)

Following Xiao et al. [18], we define Borda-rel(𝑢, 𝑖) = |{ 𝑗 : rank( 𝑗, top-𝑁𝑢 ) > rank(𝑖, top-𝑁𝑢 ),∀𝑗 ∈ top-𝑁𝑢 }|, where,
from above, rank(𝑖, top-𝑁𝑢 ) is the rank of item 𝑖 in 𝑢’s top-𝑁 candidate items, which are obtained using the 𝑠 (𝑢, 𝑖)
scores predicted by the underlying recommender algorithm.2

Let also 𝑝 (¬ rel |𝑢, 𝑆) be the probability that none of the items in set 𝑆 are relevant to user 𝑢. Then, we derive the
probability that at least one item within 𝑆 is relevant to 𝑢, 𝑝 (rel |𝑢, 𝑆), as follows:

𝑝 (rel |𝑢, 𝑆) = 1 − 𝑝 (¬ rel |𝑢, 𝑆)

= 1 −
∏
𝑖∈𝑆

(1 − 𝑝 (rel |𝑢, 𝑖)) (2)

Now, from 𝑝 (rel |𝑢, 𝑆) for each group member 𝑢 ∈ 𝐺 , we define 𝑓 (𝑆) as the sum of each group member’s probability
of finding at least one relevant item within the set 𝑆 :

𝑓 (𝑆) =
∑
𝑢∈𝐺

𝑝 (rel |𝑢, 𝑆) =
∑
𝑢∈𝐺

(
1 −

∏
𝑖∈𝑆

(1 − 𝑝 (rel |𝑢, 𝑖))
)

(3)

Eq. 3 shows how to ‘balance’ relevance across the group members for a set. It is not yet rank-sensitive. To make it
rank-sensitive, we define the marginal gain in function 𝑓 that arises when we add a new item to the set 𝑆 , 𝑓 (𝑖, 𝑆), as:

𝑓 (𝑖, 𝑆) = 𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆) (4)

Using Eq. 3 and Eq. 4, we can obtain the following:

𝑓 (𝑖, 𝑆) =
∑
𝑢∈𝐺

[𝑝 (rel |𝑢, 𝑖)
∏
𝑗 ∈𝑆

(1 − 𝑝 (rel |𝑢, 𝑗))] (5)

Then, we can define an ordered set to be fair if there is balance in each prefix of the set. In other words, the first item
in the set should, as far as possible, balance the interests of all group members; the first two items taken together must
do the same; also the first three; and so on up to 𝑁 :

fair(𝑂𝑆) =
|𝑂𝑆 |∑
𝑘=1

𝑓 (𝑂𝑆 [𝑘], {𝑖 ∈ 𝑂𝑆 : rank(𝑖,𝑂𝑆) < 𝑘}) (6)

Our definitions are, in fact, inspired by work on intent-aware Information Retrieval (IR) and recommendation
[6, 13, 16] — work which aims to diversify a set of search results or recommendations. Faced with an ambiguous query,

2A more obvious definition is 𝑝 (rel |𝑢, 𝑖) = 𝑠 (𝑢, 𝑖)/∑𝑗∈𝐶 𝑠 (𝑢, 𝑗) , where𝐶 ⊆ 𝐼 are the candidate items. Compared to Eq. 1, this did not work well in our
experiments. The probable explanation is that it relies too heavily on the actual 𝑠 (𝑢, 𝑖) values, whereas Eq. 1 uses their ordering.
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𝑝 (rel |𝑢1, 𝑖1) = 2/3, 𝑝 (rel |𝑢1, 𝑖2) = 1/3, 𝑝 (rel |𝑢2, 𝑖1) = 2/3, 𝑝 (rel |𝑢2, 𝑖2) = 1/3, 𝑝 (rel |𝑢3, 𝑖4) = 2/3, 𝑝 (rel |𝑢3, 𝑖3) = 1/3

Iteration 𝑂𝑆 𝑓 (𝑖,𝑂𝑆) values
0 { } 𝑓 (𝑖1, { }) = 4/3, 𝑓 (𝑖2, { }) = 2/3, 𝑓 (𝑖3, { }) = 1/3, 𝑓 (𝑖4, { }) = 2/3
1 {𝑖1 } 𝑓 (𝑖2, {𝑖1 }) = 2/9, 𝑓 (𝑖3, {𝑖1 }) = 1/3, 𝑓 (𝑖4, {𝑖1 }) = 2/3
2 {𝑖1, 𝑖4 } 𝑓 (𝑖2, {𝑖1, 𝑖4 }) = 2/27, 𝑓 (𝑖3, {𝑖1, 𝑖4 }) = 1/27
3 {𝑖1, 𝑖4, 𝑖2 } –

Table 2. GFAR example. 𝑝 (rel |𝑢, 𝑖) are based on Eq. 1. Only non-zero values are shown. At each iteration until |𝑂𝑆 | = 3, we show𝑂𝑆

and the non-zero 𝑓 (𝑖,𝑂𝑆) values based on Eq. 5 for remaining candidate items. Finally, top-𝑁𝐺 = {𝑖1, 𝑖4, 𝑖2 } will be recommended.

such as “apple”, an IR system cannot know the user’s intent, i.e. whether she intends to search for the corporation
or the fruit. Informally, intent-aware methods in IR diversify the search results to ensure that they contain at least
one document for each possible query interpretation. Analogously, in recommender systems, intent-aware methods
diversify a set of recommendations to ensure that they cover each of the user’s interests, as revealed by her profile [6, 16].
In GFAR, we adapted intent-aware diversification so that it can instead be used to generate fair recommendations to a
group. Here, instead of trying to cover the different interpretations of a query or the different interests of an individual
user, we try to cover the different interests of each user in the group.

3.2 GFAR’s algorithm

Given a set of candidate items,𝐶 ⊆ 𝐼 , the ideal top-𝑁𝐺 to recommend to group𝐺 is ordered set𝑂𝑆∗, which is the subset
of the candidates, of size 𝑁 , that has highest fairness, as defined in Eq. 6:

𝑂𝑆∗ = argmax
𝑂𝑆⊆𝐶, |𝑂𝑆 |=𝑁

fair(𝑂𝑆) (7)

Finding 𝑂𝑆∗ is intractable in general, since it requires considering all possible size 𝑁 ordered subsets of the candidates.
A natural alternative is to find an approximation of 𝑂𝑆∗ using a greedy algorithm. The GFAR greedy algorithm

starts with an empty set, 𝑂𝑆 = {}. At each iteration, it inserts into the ordered result set the item 𝑖∗ from the remaining
candidates (i.e. 𝐶 \𝑂𝑆) that gives the highest marginal gain:

𝑖∗ = argmax
𝑖∈𝐶\𝑂𝑆

𝑓 (𝑖,𝑂𝑆) (8)

3.3 GFAR example

We will illustrate GFAR using the example from Section 1. Based on the predicted relevance scores given in Table 1, we
can obtain the top-𝑁𝑢 for each 𝑢 ∈ 𝐺 , i.e. each group member’s top-3. From these, we can compute 𝑝 (rel |𝑢, 𝑖) values
using Eq. 1 (shown in the upper part of Table 2).

The lower part of Table 2 shows values at each iteration. Initially (iteration 0), 𝑂𝑆 = { }. 𝑓 (𝑖, { }) simplifies to∑
𝑢∈𝐺 𝑝 (rel |𝑢, 𝑖), resulting in the selection of item 𝑖1. At this point, 𝑂𝑆 = {𝑖1}, which is unfair to 𝑢3. The algorithm will

seek to ‘redress the balance’ in the next iteration (iteration 1).
In iteration 1, GFAR chooses the item that maximizes: 𝑓 (𝑖, {𝑖1}), which simplifies to

∑
𝑢∈𝐺 𝑝 (rel |𝑢, 𝑖) (1−𝑝 (rel |𝑢, 𝑖1)),

resulting in the selection of item 𝑖4. Note that, the reason 𝑖4 gives higher marginal gain than 𝑖2, which is relevant to
both 𝑢1 and 𝑢2, is that the already-selected item 𝑖1 has a high relevance score to both 𝑢1 and 𝑢2, but has a zero relevance
score to 𝑢3. Now 𝑂𝑆 = {𝑖1, 𝑖4}. The relevance scores of the items are now more balanced between the group members.
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Finally, in iteration 2, the item that maximizes 𝑓 (𝑖, {𝑖1, 𝑖4}) =
∑
𝑢∈𝐺 𝑝 (rel |𝑢, 𝑖) (1 − 𝑝 (rel |𝑢, 𝑖1)) (1 − 𝑝 (rel(𝑢, 𝑖4)) will

be selected. This reduces to 𝑓 (𝑖, {𝑖1, 𝑖4}) =
∑
𝑢∈𝐺 𝑝 (rel |𝑢, 𝑖), since (1 − 𝑝 (rel |𝑢, 𝑖1)) (1 − 𝑝 (rel |𝑢, 𝑖4)) is equal for every

group member. The item that gets selected is 𝑖2. Now that |𝑂𝑆 | = 3, the ordered set {𝑖1, 𝑖4, 𝑖2} is recommended to the
group. In this ordered set, all group members, 𝑢1, 𝑢2 and 𝑢3, find relevant items, which was not the case with the AVG
and LM aggregation strategies (Section 1). Arguably, GFAR’s ordering of these items, {𝑖1, 𝑖4, 𝑖2}, is fairer than FAI’s,
{𝑖1, 𝑖2, 𝑖4}, since 𝑢3 finds a relevant item at the second rank, rather than the third.

4 OFFLINE EXPERIMENTS

4.1 Experimental setup

4.1.1 Datasets. We use two datasets, one from each of the movie and music domains: the MovieLens 1M dataset3

and the KGRec-music dataset4. The MovieLens dataset has ∼1 million explicit, numeric ratings, 𝑟𝑢𝑖 ∈ [1, 5], on ∼3,700
movies by ∼6,000 users. The KGRec-music dataset has ∼750 thousand interactions (song downloads), giving us implicit
unary ratings, on 8,640 songs by ∼5,200 users.

4.1.2 Generation of synthetic group. Neither dataset is a group recommendation dataset. To run our offline experiments,
we must create synthetic groups. We follow previous work on group recommendation [1, 12, 18]. We inquire whether
fairness will be harder for larger groups, and for groups where users have divergent tastes. For this reason, for both
datasets we create groups of sizes from𝑚 = 2 up to𝑚 = 8 inclusive, and we create three different types of group:

• Random: Members of Random groups are selected without replacement from𝑈 with uniform probability. Random
groups loosely correspond to the real-life equivalent of groups that have unrelated members.

• Similar: Members of Similar groups are chosen to have similar tastes. We form these groups using a method
based on previous work [1, 4]. We compute the similarities between pairs of users as the Pearson Correlation
Coefficient (PCC) between their ratings. Since PCC lies between -1.0 and 1.0, it has been suggested [4] that PCC
values of 0.1, 0.3 and 0.5 indicate small, medium and large effect sizes, respectively. To form a synthetic group,
we randomly select a user from 𝑈 and then greedily select at random further users but only drawing them from
those who have a PCC greater than 0.3 (medium effect size in [4]) to any of the already-selected group members.
This type of group is loosely equivalent to a group of people with similar tastes.

• Divergent: Members of Divergent groups are chosen to have less agreement between their tastes than in Similar

groups. We create them in the same way that we create Similar groups but we greedily select users who have a
PCC less than 0.1 (small effect size in [4]) to an already-selected group member.

Note that, while a user cannot appear more than once in a given group, they can be a member of multiple groups.
Seven different sizes of group and three different types of group gives 21 different scenarios. For each scenario, we

create 1000 groups in each dataset. Figure 1 shows the distributions of the mean all-pairs similarity for these groups.
In Figure 1, we make two observations. First, for both datasets, the mean all-pairs similarity for Divergent is similar

to that of Random groups. Second, the KGRec-Music dataset differs from the MovieLens dataset in that its Divergent
and Random groups have lower mean all-pairs similarity than they do in the MovieLens dataset.

4.1.3 Approaches to compare. We compare the performance of GFAR to the following approaches from the literature
that we described in Section 1:5

3http://grouplens.org/datasets/movielens/
4https://www.upf.edu/web/mtg/kgrec
5We also tried the LM Score Aggregation strategy [8]. Since it always performed worse than all other approaches, we do not include these results.
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Fig. 1. Mean all-pairs similarity of the groups used in the experiments.

• AVG Score Aggregation [1, 8].
• FAI Aggregation Strategy [3].

We also compared with the following algorithms, which are drawn from the papers we reviewed in Section 2:6

• GreedyLM, which is Xiao et al.’s greedy algorithm using their Least Misery Fairness [18].
• XPO, as defined by Sacharidis [12].
• SPGreedy, which is the algorithm that Serbos et al. call the Single Proportionality Greedy Algorithm [15].

4.1.4 Underlying recommendation algorithm. All of the approaches to fairness that we compare require that we predict
relevance scores 𝑠 (𝑢, 𝑖) and, in some cases, generate top-𝑁𝑢 recommendations for the individual users in the groups.
For this, we need an underlying recommender algorithm. To enable comparability with previous work, e.g. [12, 18], we
use a form of matrix factorization (MF). We use a fast, accurate ALS-based MF algorithm that works for both explicit
and implicit feedback datasets [10].7

4.1.5 Dataset splits. In our experiments, we randomly partition the ratings into training, validation and test sets such
that 60% of each user’s ratings are in the training set, 20% of them are in the validation set and 20% are in the test set.
Results are averaged over five runs with different random splits.

4.1.6 Setting hyper-parameter values for MF. We find values for the hyper-parameters of the underlying MF algorithm
by training it on the training sets and selecting the hyper-parameter values that optimize nDCG@𝑁 (see Section
4.2.4) on the validation sets. Specifically, for each user 𝑢, for all items 𝑖 which are not rated by 𝑢 in the training set, a
score 𝑠 (𝑢, 𝑖) is computed by MF; we select an ordered set of the top-𝑁𝑢 recommendations, 𝑁 = 20; then the resulting
recommendations are evaluated in terms of nDCG on the validation set. We select hyper-parameter values that give
the highest mean nDCG across the users. Computing nDCG requires that we say which items are relevant to the user.
For MovieLens, items in the validation set are considered relevant if 𝑟𝑢𝑖 ≥ 4; for KGRec-music, all interactions in the
validation set are considered relevant, since it is is an implicit dataset.

6We also tried two other algorithms: GreedyVar and EFGreedy. GreedyVar is Xiao et al.’s greedy algorithm using their Variance Fairness. It always
performed worse than GreedyLM, so we choose not to include its results. EFGreedy is one of Serbos et al.’s algorithms, this time using their envy-freeness
definition of fairness. It performed worse than SPGreedy except in a few configurations (such as some small Similar groups) so, again, we omit its results.
7We use its RankSys implementation: https://github.com/RankSys/RankSys
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Our MF algorithm has two hyper-parameters: 𝑑 , the number of latent factors; and 𝛼 , the confidence level factor. For
MovieLens, we find 𝑑 = 30 and 𝛼 = 1.0. For KGRec-Music, 𝑑 = 230 and 𝛼 = 1.0.

4.1.7 Generating group recommendations. Now, using the hyper-parameter values from above we train the MF on
the union of the training and validation sets, which we will refer to as 𝑅train. Once trained, we can obtain 𝑠 (𝑢, 𝑖) for
all users 𝑢 ∈ 𝑈 and items 𝑖 ∈ 𝐼 . Specifically, if 𝑟𝑢𝑖 ∉ 𝑅train (an unseen item), we use the MF model to predict 𝑠 (𝑢, 𝑖).
But, if 𝑟𝑢𝑖 ∈ 𝑅train (a seen item), then, following [18], we set 𝑠 (𝑢, 𝑖) = 0 to discourage items seen by an individual from
being recommended to that individual again in a group recommendation. Once we have scores, 𝑠 (𝑢, 𝑖), it is possible to
compute individual top-𝑁𝑢 and 𝑝 (𝑟𝑒𝑙 |𝑢, 𝑖) for those algorithms that need them.

Then, for each group, we use each algorithm to generate a top-𝑁𝐺 ordered set of recommendations, with 𝑁 = 20
(the same value used in [12, 18]). Finally, we evaluate the performance of the top-𝑁𝐺 using the metrics given below.

4.2 Evaluation metrics

We compare the top-𝑁𝐺 for each group and each algorithm with the group members’ optimal rankings, top-𝑁𝑢 for
each 𝑢 ∈ 𝐺 , which we obtain from the ratings in the test set [1].

Let 𝐼 test𝑢 be the set of items in the test set of a user 𝑢. We will refer to items in 𝐼 test𝑢 that are relevant for user 𝑢 as 𝑢’s
ground-truth, 𝑔𝑡𝑢 . For MovieLens, 𝑔𝑡𝑢 = {𝑟𝑢𝑖 ≥ 4 : ∀𝑖 ∈ 𝐼 test𝑢 }; for KGRec-Music, 𝑔𝑡𝑢 = {𝑟𝑢𝑖 ≠ ⊥ : ∀𝑖 ∈ 𝐼 test𝑢 }.

Below, we describe and motivate the metrics we use to evaluate the top-𝑁𝐺 recommendations for the group 𝐺 .

4.2.1 Zero-recall (zRecall). zRecall is a fairness metric. It measures the fraction of group members for whom no relevant

item was retrieved in the top-𝑁𝐺 .

zRecall(𝐺) = |{𝑢 ∈ 𝐺 : Recall@𝑁 (𝑢) = 0}|
|𝐺 | (9)

where Recall@𝑁 (𝑢,𝐺) is formally defined below. We expect to see lower scores for better performing algorithms: if
we would like every group member to find at least one relevant item, then fair recommendations would have a zRecall
score close to 0.

This metric is an adaptation of 𝑟𝑒𝑐U0 , which is a metric used in recommending to shared accounts [17]. 𝑟𝑒𝑐U0
measures the fraction of users who share an account who do not get any relevant recommendation. It is also related to
𝑚-proportionality [15]. Since 1-proportionality is the fraction of group members for whom at least one relevant item
appears in the top-𝑁𝐺 , zRecall is the same as (1 - 1-proportionality).

4.2.2 Recall@𝑁 . This metric, Recall@𝑁 , and the others that we describe in the remainder of this section (Discounted
First Hit and Normalized Discounted Cumulative Gain), do not directly give a score for a group. Rather they all give a
score for a member of a group. We will first describe and motivate them, and only in Section 4.2.5 will we explain how
we have converted them into group metrics.

For 𝑢 ∈ 𝐺 , Recall@𝑁 (𝑢,𝐺) measures the proportion of 𝑢’s relevant test set items that are in the top-𝑁𝐺 :

Recall@𝑁 (𝑢,𝐺) = |top-𝑁𝐺 ∩ 𝑔𝑡𝑢 |
|𝑔𝑡𝑢 |

(10)

4.2.3 Discounted First Hit (DFH@𝑁 ). This metric measures whether a group member finds an item that is relevant in

the earlier ranks of the top-𝑁𝐺 . Hence, unlike Recall@𝑁 , this metric is rank-sensitive. For a given user 𝑢 ∈ 𝐺 , DFH is
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Fig. 2. MovieLens dataset: zRecall@20 against group size, for different group types.

defined as:
DFH@𝑁 (𝑢,𝐺) = 1

𝑙𝑜𝑔2 (fhr+1) (11)

where fhr is the rank of the first hit in the top-𝑁𝐺 , i.e. the rank in top-𝑁𝐺 of the first item that is in 𝑔𝑡𝑢 . If there is no
such hit, then DFH is zero for user 𝑢.

4.2.4 Normalized Discounted Cumulative Gain (nDCG@𝑁 ). This metric measures the extent to which a group member

finds relevant items in the earlier ranks of the top-𝑁𝐺 . It is defined as:

nDCG@𝑁 (𝑢,𝐺) = DCG@𝑁 (𝑢,𝐺)
IDCG@𝑁 (𝑢,𝐺) (12)

where DCG@𝑁 (𝑢,𝐺) = ∑𝑁
𝑘=1

| {top-𝑁𝐺 [𝑘 ] }∩𝑔𝑡𝑢 |
log(𝑘+1) , and IDCG@𝑁 is the maximum possible 𝐷𝐶𝐺@𝑁 .

Like DFH, nDCG is sensitive to the rank of items. Unlike DFH, it takes into account all of the items in top-𝑁𝐺 that
are relevant to the user.

4.2.5 Aggregated Recall,DFH and nDCGmetrics. Aswe have seen,Recall@𝑁 (𝑢,𝐺),DFH@𝑁 (𝑢,𝐺) and nDCG@𝑁 (𝑢,𝐺)
are specific to a given user 𝑢 in a group 𝐺 . We need to aggregate these metrics across all members of a group. We
aggregate these user-specific metrics to give group-level metrics in three different ways:

• Mean (mean): The mean value of the metric over the group members, e.g. Recall@𝑁 (𝐺) (mean) =∑
𝑢∈𝐺 𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 (𝑢,𝐺)/|𝐺 |.

• Minimum (min): The minimum value of the metric over the group members, which is inspired by [12, 18].
• Min-Max Ratio (minmax): The ratio of the minimum value to the maximum value of the metric over the group
members, inspired by [18].

5 RESULTS

The results are reported as the mean of each metric (e.g., zRecall) over all groups 𝐺 .

5.1 Results for zRecall

Figures 2 and 3 show zRecall results for MovieLens and KGRec-Music respectively. Note that smaller values of zRecall
are better.
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Fig. 3. KGRec-Music dataset: zRecall@20 against group size, for different group types.

Comparing algorithms. For both datasets and for all three group types (Random, Similar and Divergent), all of the
fairness-aware algorithms perform better than the AVG system. For both datasets, the worst performing fairness-aware
algorithms are SPGreedy and GreedyLM. Of these two algorithms, for larger groups, |𝐺 | ≥ 6, SPGreedy performs better
than GreedyLM but, for smaller groups, it is GreedyLM that performs better. The best-performing algorithms are GFAR
and FAI, and sometimes XPO. In the 42 configurations (two datasets, seven group sizes, three group types), mostly
GFAR is the top-performing algorithm (34 out of 42 configurations).

Comparing group types. For both datasets and all three types of groups, as group size grows zRecallworsens (increases).
This is because, as the group size grows, it becomes more difficult to generate fair and good recommendations to the
groups. For both datasets and across the group sizes, Divergent groups have worse zRecall than do Random groups,
which are in turn worse than Similar groups. These results suggest that ensuring fairness is likely to be more difficult
in groups where preferences differ.

Comparing datasets. Compared to MovieLens, zRecall values are better (lower) for KGRec-Music for all configurations.
It appears to be easier to generate fairer recommendations for the music dataset. This may be because KGRec-Music
has a higher mean number of relevant test items per user (28.9), compared to MovieLens (19.1). This may be due to its
use of implicit ratings. This needs to be confirmed by comparing more datasets.

5.2 Results for the other metrics

Due to space limitations, we only show the results for the other metrics for group size𝑚 = 8. We choose this because it
is an extreme case for which it is more difficult to generate fair group recommendations. These results are in Tables 3
and 4. Note that larger values of these metrics can be interpreted as ‘more fair’. Although we do not show the results
for other group sizes, the results tend to follow similar trends.8

Comparing algorithms. For MovieLens, there are no metrics for which another method significantly outperforms
GFAR. GFAR has the highest Recall(mean), nDCG(mean), nDCG(min), DFH(mean) and DFH(min). In these cases, with
the exception of DFH(min) for the Similar groups, the differences are statistically significantly better than the most
competitive other approaches. For Recall(min), Recall(minmax), nDCG(minmax) and DFH(minmax), mostly it is again
GFAR that performs the best; however, these differences are not statistically significantly better than those for the other
algorithms, with the exception of Recall(min) and Recall(minmax) for Random groups, which are significant.
8Omitted results and the code used to run all of the experiments are publicly available: https://github.com/mesutkaya/recsys2020
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Table 3. MovieLens dataset: Results when𝑚 = 8. For each group type, the best result for each metric is highlighted in bold. If the
best result is achieved by GFAR, the second best is marked with★; otherwise GFAR is marked with★. The metrics for the best result
are also marked with 𝜄 if the results are statistically significant with respect to the approach marked with ★. (Paired t-test with
𝑝 < 0.05, with Bonferroni correction)

zRecall Recall nDCG DFH
mean min minmax mean min minmax mean min minmax

Random groups
AVG 0.2791 0.1186 0.0032 0.01 0.1269 0.0023 0.0067 0.3896 0.0144 0.0157
FAI 0.2274 0.1282 0.0056 0.0163 0.1174 0.0051 0.0171★ 0.3598 0.0288★ 0.0342★
XPO 0.2265★ 0.1346★ 0.0057★ 0.0166★ 0.1274 0.0052★ 0.0161 0.3783 0.0277 0.0323

GreedyLM 0.2528 0.1222 0.0049 0.0153 0.127 0.0038 0.0115 0.3974 0.0212 0.0235
SPGreedy 0.237 0.1283 0.0056 0.017 0.1314★ 0.0045 0.0132 0.3993★ 0.0257 0.0275
GFAR 0.2158𝜄 0.138𝜄 0.0065𝜄 0.0187𝜄 0.1369𝜄 0.0061𝜄 0.0175 0.4059𝜄 0.0328𝜄 0.0361

Similar groups
AVG 0.1455 0.134 0.0179 0.0776 0.1524 0.0166 0.0494 0.485 0.0978 0.1043
FAI 0.0841 0.1606 0.029 0.1046 0.167 0.0318 0.1003 0.4763 0.1553 0.1708
XPO 0.0797★ 0.1716★ 0.0318 0.1062 0.1808★ 0.0347★ 0.0972 0.5057 0.1612★ 0.1716

GreedyLM 0.1112 0.1472 0.0269 0.1087 0.1623 0.0255 0.0764 0.4995 0.1307 0.1393
SPGreedy 0.106 0.1487 0.0256 0.1024 0.1717 0.027 0.0788 0.5142★ 0.138 0.143
GFAR 0.0775 0.1742𝜄 0.0315★ 0.1042★ 0.1908𝜄 0.0362𝜄 0.0962★ 0.5317𝜄 0.1649 0.1711★

Divergent groups
AVG 0.3006 0.118 0.0025 0.0074 0.1217 0.0019 0.0058 0.3716 0.0113 0.0129
FAI 0.2526 0.127 0.0046 0.0125 0.1127 0.004 0.0133★ 0.3456 0.023★ 0.0283★
XPO 0.2482★ 0.1336★ 0.0051★ 0.0136★ 0.1215 0.0041★ 0.0126 0.3616 0.0226 0.0266

GreedyLM 0.2745 0.1214 0.004 0.012 0.1217 0.0031 0.0093 0.3794 0.0178 0.0199
SPGreedy 0.2593 0.1283 0.0047 0.0131 0.1263★ 0.0037 0.0113 0.3804★ 0.021 0.023
GFAR 0.2411𝜄 0.1362𝜄 0.0056 0.0148 0.1299𝜄 0.0047𝜄 0.0136 0.3848𝜄 0.0258𝜄 0.0288

On KGRec-Music, the GFAR results for Recall(mean), Recall(min), nDCG(mean), and DFH(mean) are statistically
significantly better than the most competitive other approaches. However, FAI achieves significantly higher values for
nDCG(minmax). FAI also achieves significantly better results for Recall(minmax) for Similar groups (only).

Comparing group types. For both datasets, Divergent groups have the worst (smallest) values for the mean, min and
min-max versions of Recall, nDCG and DFH; Similar groups have the largest values. This supports what we found with
zRecall: ensuring fairness is more difficult in groups where preferences differ.

Comparing datasets. Across these metrics, results for KGRec-Music are generally higher than those for MovieLens
(the exceptions are Recall(mean) and nDCG(mean)). Again, for the same reason given earlier, we find that it seems
easier to generate fair recommendations in the dataset that has a higher mean number of relevant items per user.

We can summarize the results that we have shown in Sections 5.1 and 5.2, and also the results that we did not show
(for group sizes𝑚 = 2 . . . 7), as follows. Overall, GFAR performs significantly better than all other algorithms for ∼43%
of the cases (179/420); in ∼29% of cases (122/420), GFAR has the highest value for the metric but the difference between it
and its closest competitor is not statistically significant; in ∼18% of cases (76/420), another algorithm has a higher value
for the metric than GFAR but the difference is not statistically significant; in only ∼10% of the cases (43/420) are there
algorithms that are significantly better than GFAR. We attribute GFAR’s success to both its notion of rank-sensitivity
and its way of balancing relevance. Other definitions of fairness are not rank-sensitive in the same way (although some
approaches do achieve a degree of rank-sensitivity through the use of greedy algorithms) and none define balance in
the way that we do.
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Table 4. KGRec-Music dataset: Results when𝑚 = 8. For each group type, the best result for each metric is highlighted in bold. If
the best result is achieved by GFAR, the second best is marked with★; otherwise GFAR is marked with★. The metrics for the best
result are also marked with 𝜄 if the results are statistically significant with respect to the approach marked with★. (Paired t-test
with 𝑝 < 0.05, with Bonferroni correction)

zRecall Recall nDCG DFH
mean min minmax mean min minmax mean min minmax

Random groups
AVG 0.2531 0.0561 0.0025 0.0195 0.0919 0.0032 0.014 0.375 0.0207 0.0236
FAI 0.0837★ 0.0713 0.0177★ 0.1364★ 0.102 0.0231★ 0.1164𝜄 0.4296 0.1361★ 0.1522
XPO 0.098 0.0726★ 0.0147 0.1058 0.1064★ 0.0176 0.078 0.4203 0.1087 0.1248

GreedyLM 0.2047 0.0579 0.0057 0.0454 0.0933 0.007 0.0308 0.3884 0.045 0.0504
SPGreedy 0.1235 0.0644 0.0107 0.0822 0.1011 0.0151 0.0706 0.4435★ 0.0945 0.1
GFAR 0.0809𝜄 0.0743𝜄 0.0189𝜄 0.1387 0.1133𝜄 0.0234 0.1016★ 0.4615𝜄 0.1383 0.15★

Similar groups
AVG 0.0334 0.1093 0.0353 0.1791 0.1979 0.0544 0.1473 0.5951 0.227 0.2365
FAI 0.0083 0.1088 0.049 0.278𝜄 0.1776 0.0758 0.2537𝜄 0.5447 0.2892 0.3011
XPO 0.0096 0.1268★ 0.052★ 0.2472 0.2185★ 0.0823★ 0.2223 0.6074 0.2847 0.2933

GreedyLM 0.0137 0.1158 0.0505 0.265 0.2054 0.0786 0.2215 0.6083★ 0.2865 0.2995
SPGreedy 0.0118 0.1125 0.0451 0.2337 0.1967 0.0735 0.2156 0.6078 0.2898★ 0.2942
GFAR 0.0086★ 0.1277𝜄 0.0546𝜄 0.2615★ 0.2255𝜄 0.0873𝜄 0.2317★ 0.6358𝜄 0.2936 0.2976★

Divergent groups
AVG 0.2598 0.0553 0.0022 0.0167 0.0901 0.0027 0.0118 0.3695 0.0178 0.02
FAI 0.0882★ 0.0701 0.0164★ 0.1279★ 0.1004 0.0213★ 0.1071𝜄 0.4257 0.1282★ 0.1424
XPO 0.1003 0.0717★ 0.0142 0.1031 0.1052★ 0.017 0.0773 0.4182 0.1056 0.1228

GreedyLM 0.2096 0.0571 0.0058 0.0465 0.0914 0.007 0.0313 0.3832 0.0459 0.0524
SPGreedy 0.1287 0.0632 0.01 0.0774 0.0994 0.0141 0.0671 0.4398★ 0.0895 0.0954
GFAR 0.0854 0.073𝜄 0.0173𝜄 0.129 0.1117𝜄 0.0217 0.0951★ 0.4591𝜄 0.13 0.142★

6 CONCLUSIONS AND FUTUREWORK

We present a novel definition of fairness for group recommendations, inspired by intent-aware recommender systems,
called Group Fairness Aware Recommendations (GFAR). GFAR is rank-sensitive in the sense that it defines a top-𝑁 as
fair if the relevance of the items to the group members is ‘balanced’ across the group members for each prefix of the
top-𝑁 . A greedy algorithm for finding the top-𝑁 group recommendations follows naturally from the GFAR definition
of fairness. We have compared GFAR against five other group recommendation approaches from the literature. In
experiments using synthetic groups generated for two datasets, across a variety of metrics, the results show that GFAR
performs best (significantly better) in ∼43% (179 out of 420) of cases.

In the future, we would like to apply GFAR to new domains, especially to better understand its relative performance
on explicit and implicit ratings. We are also planning to conduct user trials to test GFAR’s effectiveness for real groups.
Besides this, we are interested in further investigating variants of the GFAR definition such as allowing user-specific
weights. These weights can be used to achieve a form of positive discrimination to favour certain group members.
For example, when recommending to families it may be useful if the children have greater weight than the parents.
Alternatively, weights might be learned to improve GFAR’s performance on goal-specific metrics.
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