
Decreasing the number of demonstrations
required for Inverse Reinforcement Learning by

integrating human feedback

Zanyar Ogurlu1

Supervisor(s): Luciano Cavalcante Siebert1, Antonio Mone1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2024

Name of the student: Zanyar Ogurlu
Final project course: CSE3000 Research Project
Thesis committee: Luciano Cavalcante Siebert, Antonio Mone

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

The main concept behind reinforcement learning is that an agent takes certain
actions and is rewarded or punished for these actions. However, the rewards that are
involved when performing a certain task can be quite complicated in real life and the
contribution of different factors in the reward function is often unknown. From this
problem emerges reward learning, which is the process of learning the reward function of
an environment. There are several techniques for performing reward learning. We can
view these different techniques within 2 different high-level categories: Learning from
demonstrations and learning from feedback. IRL (Inverse Reinforcement Learning) is
a way of learning from demonstrations. Meanwhile, RLHF (Reinforcement Learning
from Human Feedback) is a way of learning from feedback.

In this paper, we are proposing the approach of training a reward learning agent,
first with IRL and then with RLHF. IRL provides the benefit of learning a reward
function quite quickly, however, it can suffer from the presence of sub-optimal demon-
strations from the expert. Meanwhile, RLHF is slower at learning the reward function
from scratch. Hence, we are proposing an approach where we integrate RLHF as a way
to fine-tune the initial reward function calculated by IRL. By doing so, we are aiming
to alleviate the negative effect of sub-optimal expert demonstrations on IRL.

We test and evaluate our methodology on the cart pole environment from the seals
library. We compare the results from our approach to reward learning from only expert
demonstrations, without integrating human feedback (i.e. only IRL). The obtained
results suggest that, RLHF might in fact not be a good complement for IRL, specifically
when we have sub-optimal expert demonstrations. In fact, we found that applying
RLHF on top of IRL can even drop the performance of the resulting reward function,
which challenges our initial hypothesis regarding the complementarity between these
two methods.

1 Introduction
Learning by experience is quite a natural and significant phenomenon in humans’ lives.
As an example, let’s take a child who is learning how to walk. The child does not really
have prior information about what it is like to walk. Instead, they try certain movements
and see whether those movements lead to success or failure. In case of success, they are
rewarded by their parents, and in case of failure they fall or wobble. This is indeed a very
simple example of a reinforcement process, and is at the basis of reinforcement learning.
Reinforcement learning is a machine learning paradigm that focuses on teaching an agent
how to optimally make sequential decisions within a certain context [18]. Figure 1 represents
the logic behind a standard reinforcement learning approach. In this figure, we see two main
elements: The agent and the environment. The environment defines the transition function
and reward function (which is known in a standard RL setting), while the agent has a certain
policy, or in other words, a course of action on the environment.
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Figure 1: Intuition behind reinforcement learning, inspired by papers [16] and [9]

In reality, we are often missing a very important piece of the puzzle - the reward func-
tion. Though it might be somewhat easy to build a reward function manually in simple
environments such as board games, often times the reward function can not be hard-coded
so accurately. In these cases, we benefit from having an agent learn the reward function
instead of having it pre-built.

Inverse reinforcement learning (IRL) is a way of learning the reward function from pro-
vided expert demonstrations [1] (or in some cases the expert policy directly). However,
there is one issue in this method, which can simply be described as being overly reliant
on the provided expert demonstrations [5]. Oftentimes IRL algorithms assume that the
expert demonstrations are carried out perfectly and without error, which can be a false
assumption in many cases. Additionally, IRL algorithms can require many demonstrations
in order to yield good results, which can be difficult to gather. Lack of sufficiently optimal,
or sufficiently many expert demonstrations reduces the performance of IRL.

As a way to address this issue, we are proposing to incorporate another learning tech-
nique called Reinforcement Learning from Human Feedback (RLHF) to complement IRL.
In other words, we are proposing an approach where we first perform reward learning via
IRL, and then via RLHF as a way to fine-tune the reward function. We aim to investigate
whether RLHF is a natural complement for IRL and can reduce the over-reliance on expert
demonstrations.

1.1 Related Work
In previous literature, the most similar approach to ours was proposed by Ezzeddine et al.
[5]. In this paper they are using max-entropy IRL to train the agent at the beginning, and
then apply RLHF on top of that. The main difference between our research and theirs is
that they are using RLHF to particularly increase reward learning performance. However,
what we are mainly investigating is whether we can decrease the number of expert demon-
strations needed for IRL by using RLHF.

Another similar approach to ours was proposed by Kunapuli et al. [10]. In this work,
they are improving IRL with expert advice, which includes reducing the number of demon-
strations needed. The advice is being provided in the form of state, action and reward
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preferences. What mainly separates our work from theirs is the algorithms we are choosing
to incorporate. The kind of feedback we are using for the RLHF part is binary feedback
between two trajectories, which is quite different from theirs.

Furthermore, El Asri et al. [4] proposes a similar framework to ours, however instead of
using binary evaluation between two trajectories, they are using a scoring mechanism where
the human expert assigns a score to the trajectories. Their proposed methodology seems
to be good at dealing with sub-optimal expert demonstrations, which is something we are
also aiming to address. However, this paper also does not focus directly on decreasing the
number of demonstrations that IRL needs, so we could say that the goal of this research is
somewhat different from ours.

2 Research Question
The main research question that will be addressed in this paper is:

To what extent can RLHF complement IRL to reduce the number of expert demonstrations
needed for IRL?

While looking into this question, there are some other sub-questions that will also be
addressed, which are:

1. How can expert feedback be incorporated into a system that uses IRL (specifically Ad-
versarial IRL) and what kind of advantages does this approach bring?

2. In which circumstance does adding RLHF to a system that uses IRL not benefit the
performance of the system?

3 Preliminaries
Inverse Reinforcement Learning (IRL) and Reinforcement Learning from Human Feedback
(RLHF) are both relatively recent fields in machine learning. This section provides a back-
ground into the theory of RL, IRL and RLHF, introduces the fundamental concepts within
these fields that are relevant to this research paper.

3.1 Reinforcement Learning (RL)
We can use a Markov Decision Process to model a reinforcement learning problem [13].
A Markov Decision Process can be formalized as a tuple (S,A,R, P, γ). Below is a brief
explanation of these 5 different elements that define a Markov Decision Process [8]:

• S is the set of states that an agent can be in.

• A is the set of actions that an agent can perform.

• R is the reward function, which defines the reward obtained by an agent when it
performs a certain action in a certain state.

• P is the transition function, which describes the probability that the agent will move
from state s to s′ by performing action a.
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• γ is the discount factor, which defines how much the agent prefers earlier rewards to
later ones.

Another important term that is used in reinforcement learning theory is the policy, which
can be defined as a function that models how likely an agent is to perform a particular action
at a given state. Traditional reinforcement learning attempts to obtain an optimal policy,
given a particular Markov Decision Process.

3.2 Inverse Reinforcement Learning (IRL)
The concept of IRL was first proposed in 1998 by Stuart Russell. In his paper [14], Russell
reasons for the significance of IRL via making connections with how learning occurs in
nature. He states that in nature, the reward function is often unknown. For instance, when
a person is running, there are many attributes that might be seen as part of the reward
function, such as the speed, efficiency, etc. It is not very intuitive that all these attributes
are weighted and combined by the person a priori. It seems much more realistic that the
contribution of these different attributes to the reward is learned by the human, which in
a way, is an inverse reinforcement learning problem. This analogy from nature can also
be applied to virtual agents, oftentimes the reward function is not known and has to be
learned. Figure 2 shows the intuition behind the standard IRL setting - inspired by [15].
The essential idea here is that an IRL algorithm aims to calculate a reward function that
explains expert trajectories (demonstrations) and thereby obtain an accurate model for the
actual reward function of the environment.

Figure 2: Intuition behind IRL, inspired by [15]

There are several categories of Inverse Reinforcement Learning techniques. The most
common ones are max-margin methods, Bayesian methods and maximum entropy meth-
ods. The max-margin methods maximize the margin between the optimal policy and all
other possible policies. These methods often allow for only simple kinds of modelling. The
Bayesian methods, on the other hand, maximize the posterior distribution of the reward,
which allows for more complex kinds of modelling.

Often, with max-margin and Bayesian methods, it is hard to obtain the best policy. These
methods focus on finding a policy that matches the provided demonstrations. However, there
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are many possible policies fitting the demonstrations, and the one that is found is likely not
the correct one. This is especially a problem when the provided expert demonstrations are
sub-optimal, because in that case, the agent will basically be over-fitting the reward function
on inaccurate demonstrations. By using maximum entropy IRL algorithms, we are able to
choose the best policy over the alternatives and hence arrive at a single stochastic policy [19].

Even though maximum entropy IRL algorithms are good at choosing the optimal policy
for a given set of demonstrations, they still fall short at finding rewards that best explain
the given policy. One of the algorithms that can be used to address this issue is AIRL (Ad-
versarial Inverse Reinforcement Learning). The AIRL algorithm works similar to Generative
Adversarial Imitation Learning. What makes it different is its emphasis on learning rewards
that are invariant to changing dynamics in the environment [6]. Due to these reasons, we
will be using the AIRL algorithm as the IRL component in our experiment setup.

3.3 Reinforcement Learning from Human Feedback (RLHF)
RLHF is a generalization made from a prior term that was in use, which is PbRL (Preference-
based Reinforcement Learning). While PbRL focuses on finding the objective policy from
the provided evaluative feedback, RLHF has more of an emphasis on reward learning and
is less restricted in terms of the type of feedback that is integrated [9]. In this way, RLHF
can be seen as a very natural complement for IRL, since they both share the objective of
reward learning as opposed to direct policy optimization. Figure 3 shows the general logic
behind RLHF algorithms. Basically, we are using a trainer to give feedback and we use that
feedback to update the reward function, simultaneously performing standard RL to learn
the optimal policy.

Figure 3: Intuition behind RLHF, inspired by [9]

There are several types of feedback that can be used for RLHF (such as numerical, binary
evaluative). However, in this research we will be using preference comparisons RLHF, where
the trainer will provide a comparison between two trajectory segments (i.e. which one is
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better). This is the standard RLHF implementation from the imitation library. It has been
shown to be able to solve complex RL tasks on a variety of environments without access to
the reward function [3], which makes it suitable for our purposes.

4 Methodology
When integrating IRL and RLHF, it is most sensible to first learn an intermediate policy and
reward function via IRL and then apply RLHF to fine-tune. This is because IRL can provide
us with a quicker learning at the beginning while learning from feedback often has a slower
convergence rate when it starts from scratch [5]. Figure 4 shows a high-level visualization
of the methodology we use in our experiments.

Figure 4: Methodology of our experiment with 3 main components

Described below is a more detailed step by step description of the methodology by which
we conduct our experiments. You can also access our implementation of this methodology
via our public GitHub repository.

1. RL

1.1. Loading an environment, which is a representation of the Markov Decision Process
that will be used in the experiment. This environment will have a known and
simple reward function.

1.2. Training an agent using RL on the environment that is loaded. The training will
be made to varying levels of completion. As a result, some trained models will
have optimal behavior, while some other models will have sub-optimal behavior.

2. IRL

2.1. Generating demonstrations based on the RL model that was trained in the pre-
vious step. With some models these demonstrations will be optimal, and with
others sub-optimal. The purpose of this is to see how IRL is affected by the
sub-optimality of the provided demonstrations, and the extent to which we can
complement this via the use of RLHF.

2.2. Initializing an agent that is "blind" or in other words, does not know the reward
function for the environment.
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2.3. Training the agent from the previous step using AIRL to learn an initial reward
function, saving the resulting policy and reward function.

2.4. Performing regular RL on the initial learned reward function, and evaluating it
against the original environment with the actual reward function.

3. RLHF

3.1. Generating trajectories, using the agent from the IRL part. This means the initial
trajectory generation is not random but will be based on the policy trained by
the IRL algorithm.

3.2. Feeding the reward function that was discovered by the agent in the IRL stage
to the RLHF algorithm.

3.3. Training the agent via RLHF, saving the resulting policy and reward function.

3.4. Performing regular RL on the final learned reward function, and evaluating it
against the original environment with the actual reward function.

5 Experimental Setup and Results
The first stage in the experimental setup is loading an environment, or in other words, a
Markov Decision Process. There are quite a few environments readily implemented in the
gymnasium [17] and seals [7] libraries. In this experiment, an environment with a simple
reward function will be used. Given the computational power that is available to us at this
point, we believe this to be a sensible choice, as this experiment will perform RL, IRL and
RLHF training all at once. Also, performing the experiment on a relatively simple envi-
ronment will yield mostly deterministic results, which will increase the reproducibility of
our experiment. Henceforth, in this experiment, we will be using the cart pole environment
from the seals library.

In the cart pole environment, there is a a rigid pole which is hinged to a cart. The cart is
free to move within the bounds of a one-dimensional track. The pole is free to move only
in the vertical plane of the cart and the track. The controller can apply a "left" or "right"
force of fixed magnitude to the cart at discrete time intervals [2]. The observation space
(states) are defined by 4 elements: Cart position, cart velocity, pole angle and pole angular
velocity. Figure 5 shows the visual representation of the cart pole environment.

Figure 5: Cart pole environment from the seals library

The first step in the experiment is to set up the trainer agent that will be generating the
demonstrations for the IRL part, which is the initial RL stage described in our methodology.
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In other words, we need to train the expert. For this, we will be using the Deep Q-Network
(DQN) implementation from the Stable Baselines3 [12] library. This implementation is an
instance of deep reinforcement learning, which is an improvement on standard reinforcement
learning and exceeds it in terms of successfully learning control policies [11].

We will be including both optimal and sub-optimal expert demonstrations during the IRL
training. Hence, we need to train expert models with a varying degree of optimality in their
behavior by the end of the training process. This way, we can also study the effect that the
optimality of the expert demonstrations has on the IRL process.

The graph in figure 6 shows the progression of the mean reward values per episode dur-
ing the policy learning process. In total, we trained 2 different models using DQN. The
first model has an optimal policy at the end of the training, in other words, the policy
consistently receives the highest possible reward on the environment. The second model
has a sub-optimal policy at the end of the training, however, it is still expected to perform
decently. In other words, this second policy receives high rewards on average, but with high
standard deviation as well.

(a) Nearly optimal expert

(b) Sub-optimal expert

Figure 6: Different levels of sub-optimality while training AIRL

5.1 Reward learning via AIRL
We firstly performed reward learning with AIRL alone. For this stage, we use the following
process: Using AIRL for reward learning, and after that, feeding the learned reward function
to the environment and performing regular RL. Then we will evaluate the policy that results
from this process against the actual environment with the original reward function. If the
learned policy does not perform well enough on the actual environment, this will inform us
that AIRL was not very good at learning the true reward function.

We started by running the AIRL algorithm with perfectly optimal expert demonstra-
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tions, without any divergence from the highest reward obtainable per episode. By using such
an expert, the AIRL algorithm was able to learn the reward function perfectly, as expected.
Figure 7 the reinforcement learning process resulting from the learned rewards.

(a) Reinforcement learning using AIRL re-
wards provided optimal expert demonstra-
tions with seeds of 27, 35, 42 and 51

(b) Reinforcement learning using AIRL re-
wards provided optimal expert demonstra-
tions averaged over different seeds

Figure 7: Reinforcement learning using AIRL rewards on the cartpole environment with 2
optimal demonstrations

As we see from figure 7, by using as little as 2 demonstrations, AIRL performs quite
well, given that the demonstrations are optimal. However, as the optimality of the provided
demonstrations drops, we see that the performance of AIRL will also drop. To test this, we
provided the AIRL algorithm demonstrations from an expert that receives 474 reward per
episode with a standard deviation of 64. Afterwards, we performed reinforcement learning
on the learned reward function, which showed a progression as seen in figure 8.

(a) Reinforcement learning using AIRL re-
wards provided sub-optimal demonstrations
with seeds of 27, 35, 42 and 51

(b) Reinforcement learning using AIRL re-
wards provided sub-optimal demonstrations
averaged over different seeds

Figure 8: Reinforcement learning using AIRL rewards on the cartpole environment using 20
and 60 noisy/sub-optimal demonstrations with a 474 reward mean and 64 standard deviation
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Indeed, we see that when the expert demonstrations are sub-optimal, reward learning via
AIRL becomes much less sufficient, especially as we decrease the number of demonstrations
provided to the agent.

5.2 Proposed Approach: Reward learning via AIRL and RLHF
Firstly, we used the same sub-optimal expert demonstrations that we used in the previous
stage, with a reward mean of 474 and standard deviation of 64. As we did with the previous
part in our experiment, we trained the AIRL component of our algorithm with 20 and 60
expert demonstrations. Afterwards, we passed the policy and reward function learned by
the AIRL component to the RLHF component, and performed a preference comparisons
training with respectively 100 and 300 comparisons. Finally, we wrapped the cartpole
environment with the reward function yielded by the RLHF algorithm, and we performed
RL on this environment. Figure 9 shows the mean episode rewards obtained during this
training process.

(a) Reinforcement learning using AIRL and
RLHF rewards provided sub-optimal demon-
strations with seeds of 27, 35, 42 and 51

(b) Reinforcement learning using AIRL and
RLHF rewards provided sub-optimal demon-
strations averaged over different seeds

Figure 9: Reinforcement learning using AIRL and RLHF rewards on the cartpole environ-
ment using 20 and 60 noisy/sub-optimal demonstrations with a 474 reward mean and 64
standard deviation

We see from figure 9 that, even at the end of this RL training process, we obtained
episode rewards of only 160 on average. This informs us that the reward function that
resulted from performing an RLHF training on top of an AIRL training is not an accurate
or effective model on the actual reward function for the environment. In fact, by making
comparisons with the results obtained in the previous stage of our experiments, we see that
AIRL by itself seems to be a relatively better option. Hence, we can conclude that in the
setting which we used, RLHF does not form a good complement with AIRL, and does not
help decrease the required number of expert demonstrations.

6 Responsible Research
Throughout the research process, there has been many measures taken in order to ensure that
the results are reproducible, and can be verified and used by other researchers in the future.
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In order for the experiment to be reproducible, the libraries and environments that are being
used have been explained in detail. Additionally, all the code that has been implemented
while running the experiments are placed in a public repository so that it can be accessed
and easily. By looking at our code, it can be verified that our intended methodology has
been implemented accurately. The code includes proper structure so as to not confuse the
reader, and the purpose of key files and directories are outlined in the README markdown.

Aside from the Python code, we have also made available the expert models that were
generated in preparation for the IRL component. This is because it can be hard to generate
the exact same expert models even if one knows the number of training steps used and other
hyper-parameters. All the models that have been generated are placed in the repository,
and the naming indicates the policy evaluation results that were obtained from these mod-
els. We believe that these models are important for the purpose of making our experiment
completely reproducible.

Our research does not use any human participants, or involve humans at any point dur-
ing its course. All the experiments are performed on a simple virtual environment, and the
actions are all performed by a virtual agent. This way, we are ensuring that no one is being
affected by our experiments, be it something simple like taking people’s time. In addition,
the environment we are using is in no way related to a real-life scenario. Hence, we do not
expect our research to have any sort of relation to issues that may be considered sensitive.

7 Discussion
We started by showing that IRL does not perform well on its own when the expert demon-
strations provided to it are sub-optimal. Furthermore, in that kind of setting, in order to
increase the performance of the IRL model, we need to use more expert demonstrations.
However, this is not always feasible, because in more complicated environments it can be
quite time and effort consuming to collect expert demonstrations. This is where we thought
RLHF could come into play. Our expectation was that we could use RLHF as a means to
fine-tune the reward function obtained by IRL as a basis, and this way we could decrease the
number of demonstrations needed by IRL - especially in the case where we have sub-optimal
demonstrations. For this, we performed experiments on the cart pole environment from the
seals library, to see whether RLHF would complement IRL (specifically Adversarial IRL).

We verified that indeed, IRL works very well if it is provided optimal demonstrations.
Additionally, since the demonstrations are optimal, the algorithm does not require many
of them. This is because more demonstrations does not bring any new information to the
model if they are all optimal, especially in the basic cart pole environment we chose to
use where the goal of the agent and the reward structure are straight-forward. However,
if we were working with a multi-objective model, this would most likely not be the case,
and the number of demonstrations would have more effect on the IRL training, even if the
demonstrations are optimal. This can be considered a limitation of our research.

Furthermore, we performed experiments in the setting with IRL and RLHF together. We
saw that RLHF does not complement IRL meaningfully when the expert demonstrations
provided to IRL are sub-optimal. In fact, when we apply RLHF, the reward function becomes
worse compared to the reward function obtained after applying IRL. The reason for this is
unknown at this point, but we hypothesize that IRL learns a reward function that is far from
the actual reward function for the chosen environment. When we apply RLHF later on, the
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"false" reward function learned by the IRL component misleads the preference comparisons
algorithm. This hypothesis needs to be studied and backed up by further research.

To elaborate further upon the limitations of our research, the experiments were performed
on the basic cart pole environment. This was mostly caused by a lack of time and resources.
Furthermore, our intention with this research was not to prove the complementarity or non-
complementarity between IRL and RLHF, but rather was to investigate whether they can
work together on a simple model. Additionally, we only looked into a certain IRL algorithm,
being AIRL, and a certain RLHF algorithm, being preference comparisons. This can also
be seen as a limitation, since it is likely that different types of IRL and RLHF algorithms
can complement each other better.

8 Conclusions and Future Work
In this paper, we have looked into the complementarity between Inverse Reinforcement
Learning (IRL) and Reinforcement Learning from Human Feedback (RLHF). Specifically,
we attempted to complement these two methods in order to decrease the number of demon-
strations needed for the IRL component. For this, we proposed an approach where we train
an agent (policy) and a reward network, initially via Adversarial IRL, and then preference
comparisons RLHF. At the end, we evaluated the learned reward network by comparing it
to that which is learned by Adversarial IRL alone.

By training an agent via only AIRL, we verified that it indeed performs well in case the
provided expert demonstrations are optimal. We also verified that when the demonstrations
are sub-optimal, AIRL does not perform as well, especially when we provide it with a smaller
number of demonstrations.

We need the complementarity between IRL and RLHF to work specifically when the
expert demonstrations are sub-optimal. However, our experiments showed that, when the
demonstrations are sub-optimal, RLHF does not complement IRL, in fact it results in a
worse reward function at the end. Hence, we were not able to use this approach to decrease
the number of demonstrations needed for IRL.

In the future, we are planning to run our experiment with other environments and
using other types of IRL and RLHF algorithms. One reason why we think RLHF did not
complement IRL that well in our experiment is that, we ran the two algorithms, one after the
other. If we were to instead develop a broader algorithm that combines IRL and RLHF under
the same process more naturally, we could possibly yield better results. Another potential
approach is to revert the ordering of IRL and RLHF, which we theoretically do not expect
to perform better than our approach, but still find to be worth researching further.
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