
Caroline Witstok 

Master Thesis Technical Medicine 

May 2025 



This page was left blank intentionally.



Unravelling Brain Networks in Chronic Pain and Spinal Cord

Stimulation through Magnetoencephalography and Graph Neural

Networks

Caroline Witstok

Student number: 4883586

23 May 2025

Thesis in partial fulfilment of the requirements for the joint degree of Master of Science in

Technical Medicine

Leiden University; Delft University of Technology; Erasmus University Rotterdam

Master thesis project (TM30004; 35 ECTS)

Department of Pain Medicine, Erasmus Medical Center

October 2024 - May 2025

Supervisors:

Dr. ir. Cecile de Vos

Dr. ir. Mark van de Ruit

Dr. Sander Frankema

Drs. Laurien Reinders

Thesis committee members:

Dr. ir. Cecile de Vos (chair)

Dr. ir. Mark van de Ruit

Dr. Robert van den Berg

Dr. ir. Arjan Hillebrand

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/.


This page was left blank intentionally.



Summary

Introduction: Chronic pain is a widespread and complex condition. Spinal Cord Stimulation (SCS) of-

fers effective pain relief in a portion of patients suffering from chronic pain, although its underlying

mechanisms of action remain unclear and may differ between tonic and burst stimulation paradigms.

Brain connectivity analysis can help reveal how chronic pain and SCS affect communication between

brain regions. Magnetoencephalography (MEG) is particularly suited for this due to its high temporal

resolution. Graph theory enables modelling of whole-brain networks, and Graph Neural Networks (GNNs),

a deep learning approach designed for graph-structured data, is well-suited for distinguishing specific

connectivity patterns within complex network structures. While promising, GNNs have not yet been applied

to SCS or chronic pain. Furthermore, beyond classification, explainability approaches allow insights into

which graph substructures drive GNN model’s decisions.

Aim: The overarching aim of my exploratory study was to develop and train a GNN model based on MEG

data from patients with chronic pain with SCS, to identify differences in brain networks during stimulation

ON and OFF.

Methods: Resting-state MEG data were collected from 22 chronic pain patients receiving SCS, recorded in

two institutes. A cyclic stimulation protocol (1 min ON, 1 min OFF) was used. Brain connectivity graphs

were constructed using the phase lag index as functional connectivity metric, and features for each brain

region were derived from the power spectral density. Graph datasets were created per frequency band,

stimulation paradigm (tonic and burst), and recording institute. Separate GNN models were trained to

classify stimulation ON and OFF states, and explainability techniques were implemented to unravel the

key graph substructures driving the model’s classification decisions.

Results: GNN models accurately classified stimulation states, especially using full-band, beta, and gamma

graphs (accuracies: 0.99, 0.97, 0.99). Delta, theta, and alpha bands showed lower performance (accuracies:

0.76, 0.80, 0.77). Model performance was consistent across tonic and burst SCS paradigms and both record-

ing sites (accuracies: 0.97, 0.98, 0.99, 0.97), however, performance across paradigms showed inconsistencies.

Specifically, the model trained on tonic SCS and tested on burst SCS recordings showed a cross-paradigm

accuracy of only 0.69. The GNN model achieved cross-site accuracies of 0.81 and 0.87 across datasets

from the recording institutes, demonstrating consistent performance across patient cohorts. Furthermore,

the explainability analysis outcomes highlighted several pain-related brain regions as key substructures

in the graph for distinguishing stimulation ON and OFF states.

Discussion: This study introduces GNNs as a novel method for decoding brain network dynamics in chronic

pain patients with SCS.The classification results and node-level explainability suggest that pain-processing

regions are modulated by SCS.The cross-paradigm accuracy suggests that burst SCS only partially captures

the features of tonic SCS, possibly indicating that burst SCS engages a more widespread brain network.

However, interpretation of the findings is limited by the small sample size, inter-patient variability, and

the inability to separate chronic pain effects from stimulation effects. Nevertheless, this framework offers

a promising direction for application of GNNs for unravelling complex brain network dynamics in chronic

pain and SCS. Future studies should focus on expanding this framework by utilizing GNN models to classify

SCS treatment effectiveness, potentially providing more insights into the brain regions and connectivity

patterns that are most predictive of treatment success.
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1 Introduction

1.1. Chronic pain

Chronic pain is a pervasive and debilitating condition that affects approximately 20% of the world

population [1]. Chronic pain is defined by the International Association for the Study of Pain as pain

that persists or recurs for more than three months, that is significantly inferring with daily functioning

and often is accompanied by distress [2]. The burden of chronic pain is multifaceted, encompassing

health care costs, lost productivity, and the emotional and psychological toll on individuals. Despite its

widespread impact, chronic pain remains a complex condition to diagnose and treat, largely because pain

is inherently subjective and influenced by emotional, cognitive, and environmental factors, and presents

with large variability in physiological aspects. Furthermore, the underlying brain mechanisms that cause

and maintain chronic pain are still not fully understood. This complicates accurate quantification and

characterization, thereby impeding advancements in the understanding of chronic pain and adequate

treatment.

1.2. Spinal Cord Stimulation

Figure 1.1: Schematic overview of Spinal Cord

Stimulation, with one electrode in the

epidural space, connected to an implanted

pulse generator.

Spinal Cord Stimulation (SCS) is an advanced neuromodula-

tion treatment option for patients suffering from chronic pain

that have exhausted all other options. SCS involves surgically

implanting a system with one or two electrode leads placed

in the epidural space connected to an implanted pulse gener-

ator, which can deliver electrical pulses to the dorsal columns

of the spinal cord to achieve pain reduction. The analgesic

effects of SCS appear to involve both spinal and supraspinal

mechanisms [3, 4]. A schematic overview of SCS is illustrated

in Figure 1.1.

The stimulation can be customized with different parameters,

such as amplitude and frequency, offering various stimulation

paradigms, including tonic and burst modes. Tonic stimulation

delivers pulses with a consistent frequency, pulse width, and

amplitude to the dorsal columns, typically producing pares-

thesias in the regions innervated by the targeted nerve fibres,which creates a feeling of numbness, burning,

or tingling [5, 6]. More recently, paresthesia-free paradigms have been developed, such as burst SCS [7].

This approach uses bursts of five high-frequency pulses delivered at lower amplitudes, mimicking natural

thalamocortical firing patterns [8]. Evidence suggests that burst SCS may act through distinct mechanisms

compared to tonic stimulation [9–11]. While tonic SCS is thought to influence both the ascending lateral

pain pathway and the descending pain inhibitory system, burst SCS may also engage the ascending medial

pain pathway [12–14].

Depending on the pain aetiology, this therapy provides over 50% pain reduction in approximately 65%

1



1.3. Brain Connectivity 2

of the patients [15–17]. However, since the brain mechanisms underlying chronic pain and SCS effects

remain poorly understood, it is challenging to predict treatment success, and additionally, it hinders the

personalization and optimization of chronic pain management.

1.3. Brain Connectivity

In recent years, brain connectivity analysis has been increasingly important within the field of neuroscience

to gain insights into both anatomical and functional organization of the brain [18, 19]. Brain connectivity

refers to the complex network of neural connections within the brain,which are crucial for the brain’s ability

to process information, perform cognitive functions, and regulate behaviour [20–22]. By mapping and

analysing these connections, a comprehensive view of the brain as a complex network and its interactions

can be acquired. Brain connectivity analysis is valuable for understanding neural mechanisms underlying

chronic pain. Unlike neurological diseases where the primary pathology is in the brain, chronic pain

involves peripheral injury or pathology that is thought to lead to an imbalance between pain input and

pain suppression, affecting pain perception and processing [23]. This imbalance can be analysed with

brain connectivity, which has the potential to broaden the understanding of chronic pain as well as the

working mechanisms of treatment, such as SCS.

Brain connectivity can be broadly categorized into three types: anatomical, functional, and effective

connectivity. The different types of connectivity are illustrated in Figure 1.2. Anatomical connectivity

describes the physical wiring of the brain, encompassing the anatomical connections between neurons

and brain regions. Functional and effective connectivity, on the other hand, involve dynamic interactions

between brain regions. Functional connectivity refers to the temporal correlation and synchronization of

neural activity between spatially distant brain regions. Effective connectivity captures the directionality

and causal relationship between brain regions, aiming to understand how activity in one area of the brain

affects activity in another area [24–26].

Figure 1.2: Anatomical, functional, and effective connectivity.

Several studies have employed different connectivity metrics to analyse functional interactions using

neuroimaging data [27–29]. The calculations of these metrics are highly dependent on capturing the

temporal dynamics of neural interactions between different brain regions, making high spatial and tempo-

ral resolution techniques essential for accurate analysis. Therefore, modalities offering millisecond-level

temporal resolution are particularly suitable for calculating connectivity metrics [28]. Magnetoencephalog-

raphy (MEG) captures the oscillatory brain activity in real time with high temporal resolution by detecting

changes in the magnetic field related to neuronal activity in the brain.

While brain connectivity measures offer valuable insights into the relationships and interactions between

specific pairs of brain regions, they lack the ability to capture the complex network of the brain. Single
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connectivity measures only consider pairwise interactions, however, the brain operates as a highly inter-

connected network where interactions are not isolated but part of a dynamic and integrative network

[30]. Similarly, chronic pain is driven by complex mechanisms involving multiple neural pathways across

multiple brain areas, including both ascending nociceptive pathways that transmit pain signals and

descending pathways that modulate these signals. This multifaceted nature underscores the complex

network of neural activity in chronic pain.

Additionally,mechanisms of action of SCS are thought to be based on changing the neural activity in several

spinal and supraspinal pathways, potentially restoring normal connections [31]. Previous studies using

functional Magnetic Resonance Imaging (fMRI) suggest that SCS may reduce the strength of connections

between pain-processing regions in the brain [32]. However, the brain connectivity across various active

networks in chronic pain and in SCS remains underexplored.

1.4. Graph Theory

Analysing brain connectivity using graph theory has been shown to be a powerful approach for analysing

brain networks, due to its ability to depict the functional structure of the brain as an interconnected

complex network [33, 34]. Graph theory offers a mathematical framework for complex network analysis

by representing data as complex networks, referred to as graphs. Graphs are abstract representations of

relationships between objects, facilitating the modelling of the brain as a complex network. This approach

captures not only individual connections but also the emergent structure and organization of the entire

brain network. Graph theory methods are increasingly applied in neuroscience to account for the complex,

high-dimensional interactions between brain regions [35]. Furthermore, graph theory provides meaningful

insights into the organization of human brain networks by quantifying how brain regions are connected

at both global and local levels [36]. By analysing graphs at a global level, the overall structures and

properties of the entire brain network can be researched, providing information on the connectedness

and efficiency of the network. Contrarily, the local level focusses on the properties and connectivity of

individual nodes or small groups of nodes within the brain network. At this level, interactions within

specific brain regions can be examined.

A graph (G) is a collection of nodes (N ) interconnected by edges (E) and a node feature matrix (X), and

can be written as G = {N,E,X}. Graph edges can be weighted or unweighted, as well as directed or

undirected. Weighted edges provide information about the strength of the connections, while unweighted

or binary edges only indicate the presence or absence of connections. Directed graphs represent information

flow in one direction from one node to another node. On the other hand, in an undirected graph, every

edge represents a two-way connection between nodes, so information can flow in both directions along

any edge [37, 38]. The set of edges E is given by the adjacency matrix, which is a square N x N matrix

representing the graph and its connectivity structure, including the weights of each connection for a

weighted graph. The node feature matrix is an N x C matrix, where each row is a feature representation

of a node consisting of a [1, C] feature vector. The node features provide information on the node.

Graph theory can be utilized to model the anatomical, functional, and effective connections in complex

brain networks. When using graph theory to model brain connectivity, nodes commonly represent brain

regions, and edges represent a measure of connectivity between the nodes, consisting of anatomical,

functional, or effective connections [35]. Node features can be structural information of the node’s role

within a graph, such as the degree of the node (the number of connections), or signal-based information

that can be derived from the data, for instance a statistical or frequency-based measure. A visualization

of a weighted undirected graph, with the corresponding adjacency matrix, the graph structures (nodes,

edges, and node features), and the node feature matrix can be seen in Figure 1.3. For simplification, the
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Figure 1.3: Visualization of a graph’s adjacency matrix (A), the graph structure including the nodes, edges, and node

features (B), and the node feature matrix (C).

feature representations of the nodes are composed of three features.

This mathematical network representing brain activity and connections between brain areas is referred to

as connectomics [33, 34]. Using connectomics, the interdependencies and structures of intricate brain

networks can be inferred [30]. By analysing connectomics in chronic pain patients, patterns of connectivity

and their relationship to chronic pain can be explored, as well as effects on connectivity through SCS

therapy. Previous research on chronic pain through graph theory has revealed distinctive brain network

alterations that are crucial for understanding the condition [39, 40]. These changes, which predominantly

occur at a local level with some influence on the global network, indicate that specific brain regions

undergo significant shifts in their roles within the broader network. Identifying these network alterations

is beneficial as it provides insights into the clinical manifestations of chronic pain, including correlations

with pain intensity and duration, and can lead to the development of personalized treatment strategies.

1.5. Graph Neural Networks

The integration of Artificial Intelligence (AI) for enhancing the accuracy and efficiency of diagnostic

processes is rapidly evolving. AI is a broad field encompassing machine learning and deep learning

methods, where machine learning refers to algorithms that learn patterns from data, and deep learning is

a specialized subset that uses neural networks to automatically learn features from large and complex

datasets. AI is particularly effective in analysing complex data, such as Electroencephalography (EEG) or

MEG signals, and is thought to be well-suited for analysing brain connectivity on a network scale due to

its ability to handle complex and high-dimensional data [41, 42].

Traditional machine learning methods require domain knowledge and heavily rely on manual feature

extraction [43–45]. Even though these approaches focus on known clinically relevant features and thereby

offer interpretability of the model, this manual feature selection process can introduce subjectivity and

biases and is cumbersome. Deep learning methods, such as Convolutional Neural Networks and Long

Short-Term Memory networks, have shown promise by automatically extracting spatial and temporal

features in EEG signals [46–48]. Nevertheless, classical deep learning algorithms are not designed to

efficiently analyse brain connectivity networks, since they operate on regular Euclidean data like texts,

images, and single time-series data [49].

Extending the application of deep learning on non-Euclidean domains that encompass graphs has been

an emerging research area [50–52]. Recent advancements have led to the development of Graph Neural

Networks (GNNs), which are deep learning methods designed to operate on graph-structured data. GNNs
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were introduced in Gori et al. [53] and Scarselli et al. [54] as a generalization of neural networks that

can directly operate on graphs. In a GNN model, graphs are used as input and an iterative process of

aggregating and updating information from the graphs enables learning intricate patterns in complex

network data [54, 55]. GNNs uniquely excel in modelling complex, multi-channel time series data and

the interactions between these channels, offering advantages over traditional deep learning methods

[56]. Even though the construction of the input graphs requires a manual step that can heavily influence

model performance, GNNs have the advantage of being able to learn higher-order feature representations

beyond the initially defined inputs, potentially capturing complex relational patterns in the data that are

not explicitly engineered beforehand.

The input of a GNN is a graph in the form G = {N,E,X}, where each node (N ) in the graph has

an initial representation consisting of the node features (X) and the edges between each node are

included in a connectivity matrix (E). By utilizing a convolution mechanism, GNN models facilitate the

exchange of information between neighbouring nodes, including the neighbouring node features and

edges, enabling the model to learn intricate patterns within the graph [57]. The updated node feature

representations are often referred to as updated node embeddings, containing enriched information

from the graph context. This process is incorporated in convolutional layers, which are the main part

of a GNN model. This convolution mechanism is illustrated in Figure 1.4. This iterative updating and

processing of information makes GNNs particularly suitable for brain connectivity analysis, where intricate

patterns in brain networks can be uncovered. These patterns can provide valuable insights into cognitive

processes, neurological disorders, and therapeutic effects, and hence, GNNs have been applied successfully

for research on neurodegenerative diseases [56, 58, 59]. Following the convolutional layers, the GNN

uses the updated node embeddings to learn distinguishing patterns between the input classes, ultimately

enabling the model to perform classification.

Figure 1.4: Illustration of the convolution mechanism inside a GNN model, in which the initial node features

(represented as colours in the left graph) are updated. The node features of the neighbouring nodes are aggregated

(middle graph) and weighted based on the edge weight between this node and its neighbouring node, illustrated as

line thickness. Finally, updated node embeddings are acquired for each node (right graph).

In the context of chronic pain and SCS, GNNs have the possibility to reveal how pain alters brain connec-

tivity, and which brain areas are mostly involved in pain processing and modulation through thereapy.

Identification of specific network disruptions associated with pain processing and therapeutic effects can

lead to a better understanding of chronic pain and SCS. The application of GNNs on chronic pain research

has not been explored yet, but provides a promising new approach, as GNNs can leverage the complex

patterns within the connectome to distinguish between healthy individuals, chronic pain patients, and

the efficacy of SCS treatments. Thereby, GNN models have the potential to effectively distinguish specific

connectivity patterns within the complex connectivity network, which may provide new insights into the



1.6. Aim 6

underlying mechanisms of chronic pain and SCS.

Drawing from my review on GNN-based approaches for investigating brain connectivity as complex

networks, there is a growing interest in leveraging GNNs to unravel intricate brain network patterns. These

models offer a powerful tool for identifying connectivity dynamics that traditional methods may overlook.

However, their application to chronic pain and SCS remains largely unexplored [60]. My literature review

also highlighted significant disparities in analytical approaches across different GNN applications and

provides recommendations for a GNN framework focused on chronic pain research. Given the novelty of

this approach, there is currently no clear consensus on the optimal implementation of GNNs in this domain.

Moreover, similar to other deep learning techniques, GNNs inherent ”black box” nature complicates the

understanding of the model’s classification output, making it crucial to develop strategies that enhance

their interpretability.

To address this, explainability methods can be employed to uncover what features the model bases its

decisions on and which network components are most influential in the classification process. Various

explainability techniques have been proposed for GNN-based models, but their application in neuroscience

remains underdeveloped, with limited published work and scarce availability of source code [61–64]. The

integration of an explainability framework can facilitate the identification of the active brain networks

associated with the effect of SCS in chronic pain. This approach bridges the gap between the abstract

graph-based representations used in the GNN model and their clinical relevance. By identifying the most

relevant brain regions and connectivity patterns for the classification outcomes, this framework enhances

both the scientific understanding of pain-related brain network dynamics and the potential for clinically

meaningful applications of GNN-based models in chronic pain research.

1.6. Aim

The overarching aim of this exploratory study was to develop and train a Graph Neural Network (GNN)

model based on Magnetoencephalography (MEG) data from patients with chronic pain treated with Spinal

Cord Stimulation (SCS), with the ultimate goal of identifying differences in active brain networks during

stimulation on and off.

To achieve this, this study pursued the following objectives:

1. Preprocessing and transforming MEG recordings into graph-structured datasets: This objective

focused on preprocessing MEG data, defining the graph structures, and extracting the necessary

features to construct graph-based representations.

2. Designing and implementing a GNN model to classify brain networks associated with SCS effects

in chronic pain patients: A GNN model architecture was designed and developed with the goal of

learning and distinguishing the brain network patterns associated with SCS.

3. Evaluating model performance across multiple graph input definitions: Multiple graph datasets were

generated with different graph structure definitions. Separate models were trained and compared

to evaluate which graph-based representation best captured the effects of SCS.

4. Applying explainability methods to interpret model decisions and uncover relevant brain regions:

This objective is implemented to uncover which substructures in the input graphs were most influ-

ential in the model’s classification decisions. This step was critical to improve model interpretability

and to allow identification of brain regions potentially involved in chronic pain and modulation

through SCS.



2 Methods

2.1. Data Acquisition

In this study, MEG data acquired from two institutions was utilized: the Montreal Neurological Institute

(MNI) at McGill University in Canada and the Donders Institute of Radboud University in Nijmegen, the

Netherlands. Data was collected by Bart Witjes and Cecile de Vos, researchers at the Erasmus Medical

Center. The recordings took place between July 2018 and May 2019. The study was approved by the

Institutional Review Board of the Montreal Neurological Institute and the Committee for Human-Related

Research (Dutch: Commissie Mensgebonden Onderzoek) region Arnhem-Nijmegen. All patients included

in the study provided written informed consent.

2.1.1. Patients

The data set included recordings from a total of 22 chronic pain patients treated with SCS,with 10 patients

recorded in Montreal and 12 in Nijmegen. All patients reported chronic pain in their lower back and/or

lower extremity. An overview of the patient population and characteristics is provided in Table K.1.

2.1.2. Study Protocol

At the start of each measurement session, the current pain score attributed to the chronic pain condition

was assessed using the Numeric Rating Scale (NRS) from zero to ten, where zero represents no pain and

ten represents the worst pain imaginable. The patients underwent three measuring sessions, during each

of which they were treated with a different SCS paradigm: tonic SCS, burst SCS, or a sham SCS paradigm.

For this thesis, MEG recordings of resting-state neuronal activity measured during tonic and burst SCS

were used. The resting-state recordings varied in length from six to ten minutes. During the recording

session, patients were instructed to remain relaxed and keep their eyes open while fixating on a cross.

The SCS pulse generators of the patients were configured to a cyclic stimulation program for both the

tonic and burst stimulation paradigm. In this cyclic setting, the stimulation alternated between a minute

of stimulation and a minute without stimulation, referred to as stimulation ON and stimulation OFF,

respectively.

When turning the stimulation on, there was a ramp of one to five seconds before the full pulse amplitude

was reached, after which a cycle of stimulation started. The cyclic stimulation protocol settings were

determined by balancing data maximization with patient comfort. Due to their chronic pain, patients

struggled to remain still in the MEG scanner for extended periods. On the other hand, some patients

would fall asleep during longer recordings. One-minute intervals were selected to provide a broad window

for capturing acute changes, as the precise onset timing of effects caused by stimulation highly varies

between patients [65]. Moreover, these one-minute intervals align with intervals used in a previous fMRI

study [32].

7
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2.1.3. Recordings

At both institutions, measurements were performed in the same manner. MEG measurements were

performed using a 275-channel whole-head CTF MEG scanner in a magnetically shielded room [66].

Data acquisition was done using a sampling rate of 2400 Hz, with a hardware anti-aliasing low-pass

filter applied at a cut-off frequency of 600 Hz. The data files were saved with CTF 3rd-order gradient

compensation to ensure reliability and integrity of the recorded data. The position of the head in the MEG

was registered by marking digital head points on the head in relation to the MEG helmet. In addition to

the MEG recording capturing brain activity, other electrodes were used to capture physiological signals,

such as cardiac activity and ocular movements. Moreover, an electrode was placed on the back of the

patients near the implanted SCS electrode to capture the SCS pulses applied to the dorsal column. For

each separate measuring day, a two-minute empty-room recording was performed to capture and assess

the instrument and environmental noise in the recording room.

2.2. Data Processing

The data processing pipeline for creating the graph-based representations of the resting-state MEG

recordings consists of several steps, including data cleaning, data preparation, performing sensor space

and source space analysis, epoching of the data, and finally, constructing the graphs that serve as input for

the GNN model. An overview of the data processing pipeline is provided in Appendix A.

2.2.1. Software

Data preprocessing steps were performed with Brainstorm. Brainstorm is a free, open-source Matlab and

Java application for multimodal electrophysiology data analytics and source imaging [67]. Brainstorm is

documented and freely available for download online under the GNU general public license. Brainstorm

was used with Matlab 2023b. Python was used for further data processing and preparation of input graphs,

as well as developing, training, and evaluating the GNN model. A variety of Python’s scientific libraries,

including MNE-Python, PyTorch Geometric, and Ray were employed [68–70]. All analyses were performed

using Python 3.11.11. To integrate the preprocessed data from Brainstorm with Python, an integration

step was necessary, which is detailed in Appendix B.

2.2.2. Data Cleaning

For data cleaning, a Power Spectral Density (PSD) plot was made for each patient file, using Welch’s method

with a window of four seconds and 50% overlap. Artifacts could easily be detected in the PSD plots,

including power line and stimulation contamination of the signal. Notch filters were used to clean the

data of power line contamination by applying filters at the power line’s frequency and higher harmonics up

to 200 Hz. The power line frequency is country dependent, namely 50 Hz for the Netherlands (the Donders

Institute) and 60 Hz for Canada (the MNI). Additional notch filters were used to remove the artifacts at

the stimulation frequency and its higher harmonics from all recordings. For this step, the stimulation

frequency was assessed for both tonic and burst stimulation in each patient.

Furthermore, the Direct Current (DC) offset is removed from the time series data by applying a Finite

Impulse Response (FIR) high-pass filter with a cut-off frequency at 0.5 Hz. This filter removes drifts and

offset and passes all frequencies above this threshold.

Additionally, based on the PSD plot for each patient file, bad channels were identified and deleted. Bad

channels are characterized by a PSD signal that is significantly deviating from the surrounding sensors

throughout the entire frequency band [71]. These channels were marked as bad, removing them from any
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further analysis steps. Considerations regarding these preprocessing steps have been detailed in Appendix

C.1.

Further data cleaning and filtering steps were omitted, because the removal of artifacts inevitably results in

the loss of valuable information alongside noise [72]. Additional data processing steps were implemented

in later steps to minimize effects of noise and increase the signal-to-noise ratio. A more comprehensive

rationale for omitting further filtering and artifact removal in this step is included in Appendix subsections

C.1.3 and C.1.4.

2.2.3. Sensor Space and Source Space Analysis

In this thesis, two distinct approaches for processing MEG data are explored: sensor space analysis and

source space analysis. Each approach leads to unique data processing steps, after which the preprocessed

data is converted to either sensor-based or source-based graphs.

The sensor space refers to the direct measurements obtained from the MEG sensors, capturing the magnetic

fields generated by neural electric currents. In the sensor space analysis, the time series data from each

MEG channel is extracted. However, a significant challenge arises due to the variability in sensor placement

relative to the patient’s head across different recordings. This variability complicates direct comparisons or

averaging of sensor-level signals across subjects or sessions, as the correspondence between sensors and

specific brain regions is not consistent. Consequently, one sensor does not necessarily correspond to the

same brain region within one recording and across multiple recordings [73, 74]. Despite this, the sensor-

space approach offers a more straightforward and direct way to construct graph-based representations of

MEG data.

To address the sensor space shortcomings, the source space analysis is explored, which provides a more

standardized representation of brain activity. The source space is conceptualized as the underlying neural

currents that generate the magnetic fields detected by the sensors. This analysis requires a forward model

that describes how these neural currents produce the observed magnetic fields, taking into account the

anatomical differences between the brain and the MEG sensor array.

2.2.3.1. Sensor Space Analysis

In sensor space analysis, the filtered time series data collected from the MEG sensors is utilized and

exported for further processing steps. This approach involves processing the time series from each channel

to identify patterns and compute features directly related to the sensor measurements.

2.2.3.2. Source Space Analysis

For the source space analysis of brain activity, a model is needed that explains how the neural electric

currents, called the source space, produce magnetic fields at external sensors (the sensor space), taking

into account the different tissues between the brain and the MEG helmet [75]. This is called forward

modelling and results in a head model that describes an approximation of the head geometry based on

the patient’s anatomy and the locations of the MEG sensors, represented as a set of thousands of vertices.

The subsequent process, the source estimation, estimates the brain activity at these vertices based on

much fewer sensor locations, called an ill-posed inverse problem [73].

Since individual Magnetic Resonance Imaging (MRI) scans could not be obtained for patients in this

study, the template ICBM152 template anatomy was used, and warped (deformed) based on the individual

registered head points. For the head model, I used the overlapping spheres model [75]. I performed

source estimation using the Minimum Norm (MN) imaging approach, which is recommended due to its

computational efficiency and robustness to head model approximations [73]. Consequently, I used the
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unconstrained dipole orientation model, where each vertex in the source space was represented by three

orthogonal dipoles [73]. A more detailed description of the necessary processing steps in Brainstorm is

provided in Appendix C.2.

Regions of Interest

For the source space estimation, brain regions of interest were defined using a brain atlas,which divides the

cortex into anatomically and functionally meaningful areas. In this thesis, groups of vertices representing

specific brain regions, called scouts, were defined and created based on the existing Destrieux atlas [76].

Additionally, custom scouts were created or modified to better match the specific regions of interest.

The included scouts represented brain regions associated with lateral and medial ascending pathways,

and broader cortical areas. These scouts were selected to capture a comprehensive view of whole-brain

network dynamics, including specific areas that are associated with pain perception and pain processing

[77]. An overview of all scouts is provided in Appendix D.

2.2.4. Epoching

Before creating graphs as input for the GNN model, the filtered MEG data is segmented into segments,

called epochs, that are labeled based on whether the stimulation was turned on or off. These segments

were identified based on the stimulation artifact observed in one of the electrodes prior to filtering. For

each recording, I assessed the time points when the stimulation was turned off, thereby retrieving the start

and end times of a full cycle. Since there is a delay in reaching the full pulse amplitude when stimulation

is turned on, the time points for when the stimulation was turned on were determined using the duration

of one stimulation pulse. The recordings were split into 60-second epochs based on the start and end

time of each cycle, and labelled with ’stimulation ON’ and ’stimulation OFF’ consecutively. A ramp time of

five seconds was removed at the start and end of each segment, to account for ramping of the stimulation

effects, resulting in epochs of 50 seconds. Whenever the stimulation artifact was not visible in one of the

electrodes, the patient file was excluded from the dataset, since the timing of the stimulation cycles could

not be determined.

Consequently, the segmented data was split into smaller portions to create windows, called subepochs.

The subepochs were created using a specified duration (in seconds) and an overlap between consecutive

subepochs. An illustration of the epoching process in which the epochs and subepochs are made is shown

in Figure 2.1. A careful balance needs to be made for the subepoch length, ensuring that the subepochs

capture relevant information without introducing too much redundancy. The optimal configuration of

subepoch duration and overlap was found through experimenting with different configurations and

evaluating the GNN model performance. This subanalysis has been reported in Appendix E. Based on

the results from this subanalysis, the subepoch duration was selected to be 30 seconds with 25 seconds

overlap, resulting in 83% overlap between subepochs.

2.2.4.1. Removal of Bad Subepochs

Some subepochs may still contain noisy data due to motion artifacts, or other sources of interference.

To ensure that these segments of data are detected and removed, a method is implemented to detect

these artifacts. This is particularly important, since subepochs with artifacts can distort the results and

reduce the accuracy of the GNN model. The detection of these artifacts is based on statistical metrics.

By calculating the median of the 50-second epoch of the MEG signal and maximum deviation of each

subepoch within this epoch, a deviation score was acquired for each subepoch using Equation F.1. This

deviation score reflects the extent to which the subepoch deviated from the central tendency of the entire

epoch. Subsequently, a threshold was set for this deviation score that determines whether a subepoch

should be removed. This threshold was set at 100 for the sensor-based time series, and 300 for the
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Figure 2.1: The MEG recording with stimulation OFF and ON segments (blue and red segments) is shown at the top.

An illustration of this recording shows the same segments and the time points where stimulation was turned off

(represented as green vertical lines). Based on these time points, the recording is split into epochs of 50 seconds,

excluding a ramping time of 5 seconds at both ends. Consequently, these epochs are split into subepochs with a

length of 30 seconds and 25 seconds overlap.

source-based scout data. Appendix F provides a more detailed explanation of this artifact detection

approach.

2.2.4.2. Downsampling

Before the graphs are created, the subepoch data is downsampled to reduce the necessary computational

power for further analysis steps. The resampling frequency was set to 256 Hz. The Nyquist frequency,

defined as half of the sampling rate, represents the highest frequency that can be accurately represented

when sampling a signal. After resampling, the Nyquist frequency is 128 Hz. An anti-aliasing filter is applied

to prevent aliasing, which can occur when the data is downsampled. Aliasing is the distortion that occurs

when high-frequency components of the signal are folded back as lower frequencies due to insufficient

sampling rates. This anti-aliasing filter is a low-pass FIR filter with a cut-off frequency at the Nyquist

frequency of the resampling rate, in this case 128 Hz, to remove frequencies that may cause aliasing.

2.3. Graph Dataset

The GNN model requires a dataset of graphs as input. These graphs are data objects consisting of a

representation of the nodes, node features, and edges. For this study, undirected weighted graphs were

constructed. Graphs were created for each subepoch of either the sensor space time series data or from

the source space scout data.

2.3.1. Node Selection

The selection of nodes differs for the sensor-based time series data and source-based scout data. For the

sensor-based time series data, the MEG channels are defined as nodes. To ultimately limit the processing

time for creating the graphs, only a selection of MEG channels was utilized. This selection of MEG channels

was made based on which underlying brain areas would potentially be clinically relevant in pain perception

and processing. The selected MEG channels are listed in Appendix G.
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Contrarily, for the source-based scout data, the nodes are represented by the different brain sources, as

defined in the scout atlas (see Appendix D). As previously mentioned, the implemented scouts have been

selected based on existing brain atlases and previous research.

Both sensor- and source-based node definitions have been utilized in previous research on GNN models

for brain connectivity-based graph classification tasks [60, 78, 79]. Since the number of nodes directly

influences graph size, and larger graphs demand greater computational resources, a balance was struck

to ensure the inclusion of relevant brain regions while avoiding excessively large input graphs. For the

sensor-based graphs, 46 MEG channels were selected as nodes. For the source-based graphs, 33 scouts

were used, resulting in 33 nodes.

2.3.2. Node Feature Computation

In this study, the node feature matrix was derived from the PSD,which quantifies neural oscillatory activity

across different frequency bands. For each subepoch, the PSD values at each node were computed across

multiple frequency bins, representing the power of neural activity within a specific frequency range. This

node feature definition has been previously utilized in various studies that developed GNNmodels for brain

connectivity analysis [56, 58, 78, 80]. The choice of this node feature was motivated by its ability to capture

regional neural activity by highlighting the power of distinct oscillatory rhythms, including the delta,

theta, alpha, beta, and gamma bands. These frequency band-based graph features can provide insights

into different aspects of brain functioning, since each band is associated with specific physiological and

cognitive processes [81]. Moreover, compared to using the time series signals as node features, the PSD

offers a computationally efficient alternative that substantially reduces dimensionality while retaining key

spectral characteristics. By leveraging PSD features, the GNN model could focus on meaningful patterns

in neural activity without the added complexity of high-dimensional input data.

The PSD was computed as node feature for each subepoch of MEG data using Welch’s method. A window

size of one second with 50% overlap was applied, resulting in a frequency resolution of 1 Hz. The length

of the subepoch determines the number of windows included in the PSD computation. Since Welch’s

method averages the PSD across all windows, longer subepochs provide a more stable and reliable PSD

estimate due to increased averaging. Additionally, larger subepochs help mitigate the effects of transient

noise and artifacts more effectively than shorter subepochs.

Before computing the PSD for each subepoch and node, a frequency band of interest was defined. For the

initial development, training, and optimization of the GNN model, the 1 - 100 Hz range was used, referred

to as the full band.

Beyond this full frequency range, the model was also trained and evaluated on five distinct frequency

bands to assess performance variations across different oscillatory components of the MEG signal. The

specific frequency bands analysed are the normative frequency bands described by Groppe et al. [82], and

are presented in Table 2.1. Additionally, a frequency band containing both the theta and alpha frequency

ranges (4 - 12 Hz) is included, based on previous research that found significant changes in theta and

alpha activities during the activation of electrical nerve stimulation and SCS [83, 84]. Merging these two

frequency bands offers the advantage of increasing the number of frequency bins in the node feature

matrix, potentially enhancing the model’s ability to capture relevant spectral patterns within this frequency

band.

Since the PSD values differ in magnitude across different patients, a normalization step was necessary to

make the node features more comparable across different subepochs and files. This step ensures that the

model can focus on relative changes in the PSD, rather than the absolute values, which can vary due to
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Table 2.1: Frequency bands used for model training and evaluation.

Frequency Band (Hz) Band Name

1 – 100 Full Band

1 – 4 Delta

4 – 8 Theta

8 – 12 Alpha

4 – 12 Theta & Alpha

12 – 30 Beta

30 – 100 Gamma

different recording conditions or noise. This normalization was based on baseline correction, where the

average PSD values from stimulation OFF epochs for each patient was selected as baseline, as described

in Equation H.1. This node feature normalization is further elaborated in Appendix H. Consequently, for

each frequency band, a node feature matrix is constructed using the normalized PSD values for every node

and subepoch of MEG data, resulting in one node feature matrix per graph. Ultimately, separate graph

datasets are created for all frequency bands, allowing a GNN model with the same architecture to be

trained on each graph dataset independently.

2.3.3. Edge Definition and Edge Weight Computation

The edges of the input graphs were defined using a connectivitymatrix,which was composed by computing

a connectivity metric between each pair of nodes from the sensor-based or source-based signals. An edge

between a pair of nodes exists if the resulting connectivity metric is a non-zero value. The number of

edges for an undirected graph can be retrieved using Equation 2.1, where E is the number of edges, and

N is the number of nodes. Using the sensor-based data, 46 nodes will result in 1035 edges. The 33 nodes

from the source-based data will result in 528 edges.

E =
N ∗ (N − 1)

2
(2.1)

The edge has a weight attribute, assigning a weight to the connection between a pair of nodes, that is

defined as the absolute value of the connectivity metric. Previous research on the application of GNN

models for brain connectivity classification tasks has demonstrated that functional connectivity metrics

tend to outperform anatomical connectivity metrics, such as the Euclidean distance between spatial

positions of EEG channels [58]. This discrepancy may be attributed to the fact that functional connectivity

captures both short- and long-range interdependencies between neural signals, whereas spatial distance

metrics are limited to local, physical relationships and fail to reflect long-range functional interactions

across EEG or MEG channels [85]. As a result, functional connectivity-based graphs may provide a more

comprehensive representation of both local and global brain network dynamics. Additionally, while

effective connectivity offers insights into directional influences between brain regions, it inherently

requires the use of a directed adjacency matrix. This poses a challenge for standard GNN architectures,

which typically assume undirected graphs. To address this, a directed graph convolution operation has

been proposed by Tong et al. [86], enabling the modelling of directed relationships. However, this method

introduces increased computational complexity and may require more extensive training resources.

For this study, I selected a functional connectivity metric for computation of the edge weights, as it offers a

more comprehensive representation of brain network dynamics while avoiding the challenges associated
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with directed graph convolutions. The connectivity metric that was used in this thesis was the Phase Lag

Index (PLI).This measure was introduced by Stam et al. and is computed using a function from MNE-Python

[87, 88]. A more detailed explanation on the PLI as functional connectivity metric and the calculations is

provided in Appendix I.

The PLI was selected due to its ability to capture true neuronal interactions while minimizing the

confounding effects of volume conduction and common sources. Volume conduction is the passive

spread of electrical or magnetic signals through conductive tissues, creating false correlations between

sensors. Since PLI focuses on consistent non-zero phase differences between signals, the zero-phase lag

connections, that are often spurious and attributable to volume conduction, are discounted. This property

ensures that the connectivity measures more accurately reflect true functional interactions between brain

regions. For a phase difference fluctuating around zero, a low PLI value will be calculated. Hence, a PLI

value of zero indicates either no coupling or coupling with a phase difference centred around zero, which

is typically considered to reflect non-true (e.g., volume conducted) connectivity. A high PLI value, on

the other hand, reflects consistent non-zero phase lags between two time signals, suggesting genuine

functional connectivity that is less likely to be explained by volume conduction or common sources.

Furthermore, PLI is applicable across various frequency bands, which is advantageous given that different

oscillatory networks are associated with distinct aspects of pain processing and neuromodulation [84, 89,

90]. Similarly to the PSD computation, the frequency bands in Table 2.1 were applied for PLI computation.

As mentioned previously, separate datasets of input graphs were constructed for each frequency band,

resulting in multiple GNN models with the same model architecture that were trained on these different

graph datasets.

Despite its advantages, the PLI also has certain limitations as a connectivity metric. The PLI evaluates the

asymmetry of the phase difference distribution and, as a result, detailed information about the magnitude

of phase differences is lost, potentially reducing the sensitivity to subtle but meaningful variations [91].

Additionally, the PLI exclusivelymeasures phase synchronization and does not account for amplitude-based

coupling, limiting its ability to capture interactions that involve both phase and amplitude dynamics.

Nevertheless, connectivity matrices were constructed using the PLI for each subepoch of MEG data,

representing functional connectivity between all nodes within that subepoch. While these matrices for

each subepoch served as input to the GNNmodel, an additional matrix representing the difference between

stimulation ON and OFF states was also computed to explore connectivity changes potentially relevant to

SCS effects.

2.4. Graph Neural Network Model

The GNN model used in this thesis is designed to classify MEG data into stimulation ON and OFF states.

Since the input of the GNN model is the dataset consisting of graphs with labels of either stimulation ON

or OFF, this model is created for graph classification.

2.4.1. Model Architecture

The model architecture consists of an input layer, multiple graph convolutional layers, a readout layer,

and a final linear layer for classification. Figure 2.2 provides a visual representation of the GNN model

architecture. The architecture is defined as follows:

1. Input Layer: The input to the model is a graph with node features, edges, and edge weights.
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2. Graph Convolutional Layers: The model includes multiple graph convolutional layers, in which the

node features are iteratively updated to acquire updated node embeddings.

3. Readout Layer: Aglobal mean pooling layer is used to aggregate node embeddings into a graph-level

representation.

4. Output Layer: The final linear layer maps the graph-level representation to probabilities for each of

the output classes (stimulation ON or OFF).

Figure 2.2: Visualization of the GNN model, including the input graph with initial node features (Xn) for each node

n, the convolutional layers, the output graph with updated node embeddings (Zn), a readout layer, and the output

classification, consisting of class probabilities.

2.4.1.1. Input Layer

The input for the GNN model consists of the dataset of created graphs with labels for either stimulation

ON or OFF. From the graphs, the node feature matrix, the edge indices, and the edge weights are retrieved

to serve as input for the model.

2.4.1.2. Graph Convolutional Layer

A core part of the GNN model is the graph convolution layer, in which the model learns the graph

characteristics through iterative updating of the node feature representations. The convolutional layer that

is implemented is the graph convolutional operator proposed by Kipf and Willing [92]. This convolutional

operator belongs to the spectral GNNs, which are designed to perform spectral domain analysis of graph-

structured data. The spectral convolution operation is defined in the Fourier domain by computing the

eigendecomposition of the graph Laplacian matrix [93]. The approach proposed by Kipf and Welling

provided a simplified approach based on the spectral convolution operations and proposed the layer-wise

propagation rule as shown in Equation 2.2, where the node feature matrix is represented as X , and the

updated node feature representation matrix is Z .

Z = σ(ÃXW ) (2.2)

In this equation, the normalized adjacency matrix Ã is a degree-adjusted representation of the graph’s

structure. For an undirected graph, the degree matrixD is a diagonal matrix, where each diagonal element

represents the sum of the number of connections for each node. Through adjusting the adjacency matrix

(A) based on the degree of each node, the normalized adjacency matrix better reflects the connection

strengths between each node, where the amount of connections to other nodes is not influencing the

connection strength [94]. Since the process of updating the node features takes both the information from

neighbouring nodes, as well as the node’s own information, a self-loop is implemented in the adjacency

matrix using the identity matrix IN . The normalized self-looped version of the adjacency matrix is defined

using Equation 2.3.
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Ã = IND−1/2AD−1/2 (2.3)

The trainable weight matrixW in Equation 2.2 is randomly initialized before model training and is updated

during the training process to refine the node representations, ultimately enabling improved classification

performance. Lastly, σ is the non-linear Rectified Linear Unit (ReLU) activation function.

The ReLU function is a commonly used activation function in deep learning models. The activation

function in a neural network is responsible for ensuring that consequent layers learn larger-scale network

interactions inside the graphs by introducing nonlinearity at each propagation. The ReLU function is

defined as ReLU(x) = max(0, x), meaning that negative input values are set to zero, ultimately reducing

the impact of less useful feature contributions. Without the ReLU function, each layer is a linear matrix

multiplication Z = ÃXW ′, where W ′ = W (1)W (2)W (3)...W (L) are the trainable weight matrices for

each layer, with L being the total number of convolutional layers. This is not desired since each layer’s

contribution does not introduce additional expressive power in this matrix multiplication. Hence, the

ReLU function is implemented to force each layer to learn new patterns. Since deeper layers may capture

large-scale network interactions, the ReLU function allows the model to learn more complex relationships

within the graph structure.

After each convolutional layer, batch normalization is implemented in the GNN model to stabilize training

and speed up convergence by normalizing layer inputs. During model training, the model is iteratively

updating its parameters based on a set of graphs that are inputted, called a batch. Batch normalization

computes the mean and variance of all node features across all graphs in the batch, and uses this to

normalize the features. This ensures that the updated node feature distributions stay stable across layers.

Consequently, a dropout layer is implemented with the aim to prevent overfitting. The dropout layer

randomly selects a fraction of the updated node features Z and sets them to zero. This is controlled by

a dropout probability, which describes the fraction of node features that are dropped in each training

iteration. Dropout helps by introducing randomness, preventing the model from relying too much on

specific features or connections.

2.4.1.3. Readout Layer

The readout layer in a GNN transforms the node-level feature representations into a graph-level represen-

tation. In the GNN model, global mean pooling is utilized as readout layer. Global mean pooling computes

the mean of the updated node features for all nodes in a graph, as described in Equation 2.4, where xi
represents the node features of node i, resulting in a graph-level embedding xG.

xG =
1

N

N∑
i=1

xi (2.4)

2.4.1.4. Output Layer

The final layer of the GNN model is a linear layer, which acts as an affine transformation to map the

learned graph-level representation to the desired output space. This layer outputs a vector of class scores

(logits) for each graph, representing the model’s confidence in each class. The classification decision is

then determined by selecting the class with the highest logit value, ensuring that the model assigns the

most probable label based on the learned graph representations.
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2.4.2. Model Training

2.4.2.1. Data Split

After the creation of the graph dataset, the graphs are split into a training and test set. A stratified split is

applied to partition the graphs, ensuring that the distribution of labels is maintained in both the training

and testing sets. This split creates a training set of 80% and a test set of 20% of all patient files that are

used as input.

For the train set, the total number of graphs of both labels is retrieved, called the class counts. Subsequently,

class weights were calculated and included in the model training process to account for any potential

class imbalance. In this study, the risk of class imbalance is increased since the class is dependent on

the epochs (50-second windows) that are segmented in the MEG recording. Since the MEG recording

might not fully capture the epochs at the start and end of the recording, unequal amounts of epochs with

stimulation ON and stimulation OFF may be present. This will ultimately result in a class imbalance.

Before training the model, the training set is split into training and validation subsets, allocating 80% for

training and 20% for validation. Similarly to the train-test split, a stratified split was used to maintain the

original class distribution in both subsets. The validation set is utilized to evaluate the training process.

In this study, I initially focused on training and optimizing model settings using sensor-based data within

the 1 – 30 Hz frequency range, as certain frequencies above 30 Hz were removed via notch filtering,

potentially affecting the model to become less generalizable across patients, as different segments of

the frequency spectrum are removed for each individual. After setting up this initial model, I trained and

further optimized the model using sensor-based data from the full frequency band (1 - 100 Hz).

2.4.2.2. Training Procedure

The model is trained over 100 training iterations. In each training iteration, batches of the training and

validation set are created. Through batching of the data, the graphs inside the set are essentially grouped

together with a certain size, referred to as the batch size, to facilitate efficient data loading.

To train the GNN model for the graph classification task, the cross-entropy loss function was used to

quantify the discrepancy between the outputted class probabilities and the true class labels. For each

graph input, the model outputs a probability distribution over the possible classes, and the cross-entropy

loss penalizes incorrect predictions by assigning a higher loss when the predicted probability for the true

class is low. The cross-entropy loss is computed using Equation 2.5, where pi represents the probability for

class i, yi represents the true class (one for the correct class, zero for the incorrect class), and ωi represents

the class-specific weights. The class weights are implemented as a weighing factor to mitigate the effects

of class imbalance.

L = −
∑
i

ωi ∗ yi log(pi) (2.5)

The loss was minimized using backpropagation in combination with the Adam optimizer, an adaptive

learning rate optimization algorithm [95]. Gradients represent the rate of change of the loss with respect

to each model parameter, indicating how much a small change in a parameter will affect the model’s

error. Backpropagation computes these gradients by propagating the error backward through the network.

The Adam optimizer adjusts each model parameter based on the average direction and size of recent

gradients, helping the model learn more efficiently. By considering both the magnitude of past gradients

(how much the loss changes) and the variability of those changes, the Adam optimizer assists in adapting

the model parameters, thereby improving the model’s convergence and performance.
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Thus,during each training step, the gradients of the cross-entropy loss with respect to themodel parameters

were computed, and the Adam optimizer used these gradients to update the parameters in a direction

that minimizes the loss. The updated parameters were then evaluated using the training and validation

set after each training iteration. The set was inputted to the model in batches of the same batch size.

Over all batches, the training and validation accuracy were computed. Since the training set was directly

used to update the model’s parameters, the training accuracy may be optimistically biased and not fully

reflective of the model’s generalization ability. Therefore, the validation accuracy serves as a more reliable

metric for monitoring the model’s performance over training iterations, providing insight into how well

the model generalizes to unseen data. This iterative optimization process enabled the model to gradually

learn discriminative features. After one training iteration, the gradients are cleared, and the training and

validation loss are set to zero. After all training iterations are completed, the model’s performance on both

the training and validation set is reported.

2.4.2.3. Early Stopping

Overfitting is a large risk in deep learning models, where the model becomes too specific on the training

set by learning noise or specific details that do not generalize well to unseen data. Hence, monitoring the

training and validation loss over the training iterations, referred to as loss curves, is essential. A decreasing

training loss curve iterations is indicative of the model that is learning and updating its parameters

accordingly. The validation loss over the training iterations can provide insights into possible overfitting of

the model. A decreasing validation loss curve indicates that the model is generalizing well and improving

its performance on unseen data. However, if the validation loss curve decreases, but then increases again,

while the training loss curve is still decreasing, this is a sign of an overfitting model. The model is learning

too well on the training set, and failing to generalize to unseen data.

To prevent overfitting, early stopping was implemented in the GNN model [96]. The validation loss was

monitored throughout the training process, and the loss did not decrease for 10 consecutive training

iterations, training was halted. Before the early stopping could be initiated, a minimum of 30 training

iterations had to be passed.

2.4.3. Hyperparameter Optimization

Hyperparameter optimization is a critical step in training machine learning models, as it involves tuning

the model’s hyperparameters to achieve optimal performance on the classification task. In this thesis,

various hyperparameter configurations were explored for the GNN model. To ultimately identify the best

combination of hyperparameters that maximizes themodel’s accuracy on the validation set,hyperparameter

tuning was performed using a grid search for the different parameters. A number of configurations for all

parameters was implemented, and for each configuration of parameters, a trial was created. For each trial,

the data split into training and validation sets was used to train and evaluate the model, with a unique

configuration of parameters. After all configurations finished training, the best-performing hyperparameter

configuration was selected based on the highest validation accuracy.

The hyperparameters that were explored are visualized in Table 2.2. The parameters involve parameters

for edge filtering, as well as model-specific parameters. Hyperparameter values were chosen based on

commonly described values in literature, clinically relevant values, and empirical evidence regarding

computational barriers.

2.4.3.1. Edge Filtering Parameters

Edge filtering is a technique that can be used to refine the graph structure by removing or selecting specific

edges, with the aim of simplifying the graph or focusing on important connections through removing
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Table 2.2: Different hyperparameter settings that were evaluated.

Hyperparameter Settings

Edge Filtering Parameters

Threshold None, 0.01, 0.03, 0.05, 0.07

Top K None, 300, 600, 900

Model-specific Parameters

Layers 2, 3, 4

Hidden Channels 16, 32, 64, 128

Batch Size 2, 4, 8, 16, 32, 64, 128

Learning Rate 0.00001, 0.0001, 0.001, 0.01

Dropout Rate 0.01, 0.1, 0.3, 0.5

spurious connections in the graph. Edge filtering is applied before the graphs are inputted to the GNN

model. This process encompasses two different approaches to edge filtering, threshold filtering and top-K

filtering, which have been utilized in previous research [58, 97]. For these approaches, the assumption is

made that the edge weight, i.e. the connectivity strength, is directly related to the importance of the edge.

Threshold Filtering

Threshold filtering is the first step in refining the graph structure. In this process, a predefined threshold

value is used to remove weak connections between nodes. Specifically, only edges with a weight greater

than the threshold are retained, while all others are discarded.

Top-K Filtering

After this, top-K filtering is applied to further refine the graph structure. In this step, only the top K edges

with the highest weights are retained for the entire graph. This involves sorting the edges by weight and

selecting the K strongest connections. Top-K filtering ensures that the graph remains sparse and focused,

highlighting the most significant relationships while eliminating weaker and potentially redundant edges.

2.4.3.2. Model-specific Parameters

Six model-specific parameters were optimized to determine the best configuration. These parameters

were chosen for their impact on the model’s ability to extract relevant features, avoid overfitting, and

effectively learn from the input graphs.

Figure 2.3 provides an overview of the layers within the GNN model architecture with one layer, along

with several model-specific hyperparameters. The model input consists of a group of graphs, called a

batch, in which each graph is represented by a node feature matrix and an adjacency matrix. In the

graph convolutional layer, the entire batch is processed to update the node features into updated node

embeddings. This transformation maps the original features to a specified number of hidden channels,

which defines the dimensionality of the embeddings. This is followed by batch normalization, a ReLU

activation function to introduce non-linearity, and a dropout layer, which randomly deactivates a fraction

of the node features during training based on a set dropout rate. Multiple convolutional layers can be

stacked, depending on the depth of the GNN model, repeating the same graph convolution process with

as input the updated embeddings from the previous layer. After all graph convolutional layers, a readout

operation aggregates the node embeddings into a single embedding per graph. A final linear layer then

maps these graph-level embeddings to the two output classes, producing a prediction based on the

model’s confidence for each class.
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Figure 2.3: Overview of a GNN model architecture for one layer with several model parameters. Input graphs with

46 nodes (visualized as graphs with four nodes for clarity) and 100 node features (corresponding to 100 frequency

bins) are batched with a batch size of two, resulting in a total input shape of 92x200. After convolution, the updated

node embeddings are transformed to the number of hidden channels. For 128 hidden channels, the node

embeddings have a shape of 92x128. After the convolution mechanism, batch normalization is applied, after which

a ReLU activation function introduces non-linearity, and subsequently, a dropout layer is applied. The output of the

graph convolutional layer has a shape of 92x128. The readout layer transforms the updated node embeddings into

a shape of 2x128, forming one embedding for each graph. The linear layer maps these embeddings to the number

of output classes, resulting in a shape of 2x2 for this batch of two graps and two output classes (ON and OFF).

Layers

The number of layers in the GNN determines the depth of the model by specifying the number of

convolutional layers, indicated as the green coloured block in Figure 2.3. Each layer represents a single

step of node feature aggregation and transformation, as described in Equation 2.2. Therefore, the number

of layers is essential for the depth at which information is propagated across the graph. Increasing the

number of layers allows the model to capture more complex relationships by aggregating information from

farther nodes. However, deeper networks can suffer from over-smoothing, where node representations

become nearly identical. This occurs because,with each additional layer, information is aggregated from an

increasingly larger neighbourhood. Especially in relatively smaller graphs, this can result in features from

all nodes influencing each other, eventually making the node embeddings indistinguishable. Ultimately,

this introduces a larger risk of overfitting, particularly with limited training data.

Hidden Channels

The number of hidden channels is a parameter that defines the number of feature dimensions of the

updated node feature matrix, that is the output of the convolution operation. The number of hidden

channels determines the capacity of the model to learn distinctive features. More hidden channels allow

the model to learn more expressive node embeddings, capturing complex patterns in the data. However,

increasing the number of hidden channels also increases computational cost and the risk of overfitting.

A range of values for the hidden channels was implemented and evaluated to determine an optimal
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trade-off between model expressiveness and efficiency.

Batch Size

The batch size defines the number of graphs processed together during model training. A larger batch

size can lead to more stable gradient updates and faster convergence but requires higher memory

usage. Smaller batch sizes introduce more noise into the gradient updates, which can sometimes help

generalization but may lead to instability during training.

Learning Rate

The learning rate controls the rate at which the model updates its parameters in response to the computed

loss for each training iteration. A smaller learning rate provides more precise convergence but can slow

down training. Conversely, a larger learning rate speeds up training but may lead to divergence if updates

are too large. A range of learning rates was explored to optimize convergence stability while maintaining

efficient training.

Dropout Rate

Dropout is a regularization technique that randomly deactivates a fraction of node features during model

training to prevent overfitting and to improve generalization of the model [98]. Dropout layers work by

randomly selecting a set of node features that are ‘dropped’ by setting these features to zero, which forces

the network to learn on the remaining graph. A dropout rate is assigned that describes the fraction of

node features that is randomly set to zero during training. This ensures that the GNN model does not

rely too heavily on specific node features, thereby preventing overfitting and improving generalization.

A higher dropout rate increases regularization but may lead to underfitting, while a lower rate may not

provide sufficient regularization.

2.4.3.3. Hyperparameter Scheduler

The AsyncHyperBandScheduler was employed to efficiently allocate computational resources to the most

promising hyperparameter configurations [99]. This scheduler implements the asynchronous successive

halving technique to accelerate the tuning process, through asynchronously eliminating underperforming

trials early and allocating resources to promising configurations. Moreover, the asynchronous nature of the

scheduler allows it to handle multiple trials in parallel, making it suitable for large-scale hyperparameter

optimization tasks [100].

As trials are executed, underperforming trials are identified by monitoring the validation accuracy at

each training iteration. After each training iteration, the scheduler prunes the bottom-performing trials,

only retaining the best-performing trials, allowing more computational resources to be allocated to the

better-performing trials. The number of trials that are discarded during model training is variable, as this

is dependent on observed performance, and poorly performing trials are stopped early once sufficient

evidence is collected [101].

2.4.4. Model Evaluation

To evaluate the model outcomes, I implemented various strategies, including monitoring the training

process with accuracy and loss curves, as well as reporting classification metrics after the model had

finished training.

During model training, both training and validation accuracy and loss were tracked to assess the conver-

gence process of the model. Curves for these parameters were plotted to monitor the training process and

identify any potential overfitting. The training loss curve represents how well the model is learning from

the data. Ideally, the training loss should decrease over each training step, indicating that the model is
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learning and outputting better results. The same loss curve was plotted for the validation set, which is a

separate dataset that was not used for model training. A decreasing validation loss curve indicates that

the model is generalizing well and improving its performance on unseen data. However, if the validation

loss curve decreases, but then increases again, while the training loss still decreases, this is indicative

of an overfitting model. An overfitting model is learning too well on the training dataset and failing to

generalize to unseen data. Hence, these loss curves provide insights into the model performance, the

occurrence of overfitting or underfitting, and can be used as a guide to adjust model parameters.

Model performance was evaluated using different input configurations for the GNN,with accuracy, F1-score,

Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC) serving as the primary evaluation

metrics. Accuracy offers a straightforward and intuitive measure of the model’s ability to distinguish

between classes and is calculated using Equation 2.6, where True Positives (TP) and False Positives (FP)

correspond to graphs classified as stimulation ON, and True Negatives (TN) and False Negatives (FN)

correspond to graphs classified as stimulation OFF. To complement this, the F1-score was computed using

Equation 2.7, serving as a harmonic mean of precision (positive predictive value) and recall (sensitivity).

This metric is especially valuable when dealing with potential class imbalance, which may be relevant in

the current study [102].

The ROC analysis is a commonly used tool to evaluate binary classification models by providing insight

into how well a model distinguishes between two classes. The ROC curve is generated by plotting

the True Positive Rate (sensitivity) against the False Positive Rate (1 - specificity) across a range of

classification thresholds. This provides a comprehensive view of the model’s behaviour under different

decision boundaries. The AUC measure summarizes this ROC curve into a single value ranging from 0 to 1,

where an AUC of 1.0 indicates perfect separation between the classes. An AUC of 0.5 suggests the model

performs no better than random guessing and values below 0.5 imply a systematic misclassification [103].

One of the main advantages of ROC AUC is that it is threshold-independent, since it evaluates the model’s

performance across all possible thresholds rather than relying on one arbitrary cut-off. This makes it

particularly useful in early model development and model comparison. Additionally, ROC AUC is robust to

class imbalance.

accuracy =
TP + TN

TP + TN + FP + FN
(2.6)

F1 = 2× Precision×Recall

Precision+Recall
=

2× TP

2× TP + FP + FN
(2.7)

For a comprehensive evaluation, both validation and test accuracy were reported, with validation accuracy

monitored during the training process. The F1-score and AUC based on the test set were also reported

to provide a more robust measure under imbalanced class conditions. Furthermore, ROC curves for the

different GNN model configurations were assessed to compare the models.

Additionally, confusion matrices for the test set were analysed to gain further insight into classification

behaviour, offering an overview of TP, FP, TN, and FN values.

2.4.4.1. Sensor-based GNN model

Model evaluation was conducted by varying the inputs for the GNN model and assessing the model

performance for each scenario. Initially, sensor-based data across different frequency bands were evaluated,

including data from the full frequency band (1 - 100 Hz), as well as the distinct frequency bands (delta,

theta, alpha, and gamma bands). Through analysing individual frequency bands, the spectral features
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that contribute most to classification performance can be identified, providing insight into the neural

oscillations underlying pain processing and SCS effects. Since different frequency bands are associated

with distinct cognitive and sensory functions [104], this approach helps determine whether specific bands

carry more relevant information than others.

Additionally, sensor-based data from different stimulation paradigms were considered. The tonic and

burst stimulation paradigms were each evaluated separately using MEG recordings from the full frequency

band. Tonic and burst stimulation differ in their temporal patterns of electrical pulses, potentially leading

to different effects on brain connectivity and pain modulation [12–14]. By analysing both recordings

separately, it can be assessed whether the GNN model distinguishes specific neural responses unique to

each paradigm. This insight may contribute to a better understanding of the underlying mechanisms of

the SCS paradigms.

Further evaluation was conducted by considering sensor-based data from both recording locations

independently to assess whether any variation in the data is attributable to site-specific conditions. This

approach helps to ensure that the model’s performance is not confounded by location-related factors,

providing a more robust evaluation of the underlying neural dynamics. This included MEG recordings from

the Donders Institute and the MNI, with data from the full frequency band.

To evaluate the model’s generalizability, an external test set was used on a previously trained model.

Specifically, two types of generalization were assessed: cross-paradigm and cross-site performance. For

cross-paradigm evaluation, the sensor-based GNN model trained on tonic stimulation data was tested

on burst stimulation data, and vice versa, to examine how well the model transfers across stimulation

types. For cross-site evaluation, the model trained on data from the MNI was tested on recordings from

the Donders Institute, and vice versa, to assess performance on an unseen patient set.

2.4.4.2. Source-based GNN model

Lastly, source-based data from the full frequency band was also used as input to the GNN, and the model

performance was compared to that of the model trained on sensor-based data from the full frequency band.

Evaluating both approaches allows for determining whether source-based graphs enhance classification

performance and improve the interpretability of the model’s learned representations.

2.4.5. Node Explainability

The goal of this study was to gain insight into the active brain networks in chronic pain patients with SCS

through the GNN model. However, GNNs are inherently complex models with a ”black-box” nature, making

it difficult to interpret how the decisions are made. Understanding which specific brain regions are most

influenced by SCS is crucial for both clinical application and model optimization.

2.4.5.1. SubgraphX

To address this challenge, explainability techniques were explored to increase the interpretability of the

GNN model’s decisions [105]. Specifically, SubgraphX, an explainability framework proposed by Yuan et al.

[62] designed for node and graph-level interpretation, was implemented to identify the most influential

nodes in the graph. By systematically exploring various combinations of nodes and their corresponding

node features, the explainability method identifies the substructures that most significantly influence the

model’s predictions. This process helps highlight the key brain regions that are critical in distinguishing

between different patient states. The methodology of SubgraphX and the implementation in this study

is detailed in Appendix J. For each inputted graph, the explainability method provides an explanation

consisting of a maximum of five nodes forming the identified subgraph and two key metrics: the fidelity

and sparsity scores.
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2.4.5.2. Fidelity and Sparsity Scores

The fidelity score measures the impact of removing the identified subgraph on the model’s performance,

quantifying how much the model’s predictions change without this subgraph. The sparsity score indicates

the proportion of nodes used to explain the model’s prediction relative to the total number of nodes,

providing insight into how much of the graph is necessary for the explanation.

2.4.5.3. Node Explainability Analysis

Through the implementation of SubgraphX, it was possible to identify which nodes (MEG sensors or

cortical sources) significantly influenced the GNN’s decision-making process. This method was applied on

both sensor-based and source-based trained GNN models (using the full frequency band), which were

tested on MEG recordings with both SCS paradigms (tonic and burst) from one patient. Patient PT06 was

selected for this analysis due to the relatively longer recording durations compared to other patients,

which provided a larger set of graphs for the explainability analysis and contributed to more robust results.

Additionally, this patient reported noticeable differences in sensation between the stimulation ON and

OFF states, suggesting that the SCS had immediate effects on pain relief, with pain re-emerging when the

stimulation was turned off.

The sensor-based and source-based GNN models have different input nodes, and therefore, the outcomes

of the node explainability analysis will show each model’s learned representations and decision-making

focus, reflecting the differentiating characteristics of its respective input data. As these models were

tested and analysed using recordings from both SCS paradigms, the explainability analysis can pinpoint

the most important nodes for each stimulation type. This aims to determine whether different nodes play

a key role in classifying stimulation states in tonic versus burst stimulation.

2.4.5.4. Node Explainability Outcomes

Since the explainability method generates an explanation for each graph in one patient file, a comprehen-

sive explanation was obtained by compiling a list of the five most frequently highlighted nodes across all

subgraphs. The counts of how often each of the five nodes were identified were reported relative to the

total number of graphs, reflecting their consistency in contributing to the model’s decisions. Additionally,

the average fidelity score over all identified subgraphs was calculated, along with the sparsity score for

each individual explanation. This approach allows for a broader understanding of which brain regions

consistently contribute to the model’s predictions of this file and how the model’s decision-making process

varies across different graphs.



3 Results

3.1. Patient Population

Twenty-two patients treated with SCS were enrolled in this study. The patient characteristics (Table K.1)

indicate the variety of pain duration, the different locations of pain, as well as the range in NRS pain scores

with both stimulation paradigms. The majority of the patients (18/22) suffered from Persistent Spinal Pain

Syndrome type 2 (PSPS-2), which is chronic pain that persists after spine surgery. Other pain conditions

were diabetic neuropathy and Complex Regional Pain Syndrome (CRPS). All patients suffered from back

pain or pain in the lower extremities. The effectiveness of the SCS was different for each patient.

One patient only completed the MEG recording session with the burst stimulation paradigm. Eight

MEG recordings, originating from six unique patients, were excluded due to the absence of detectable

stimulation artifacts, which prevented the identification of stimulation cycles. A total of 20 patients and

35 individual MEG recordings were included for the analysis. An overview of all recordings, including the

excluded recordings, and the assessed stimulation frequencies is shown in Table K.2.

3.2. Graphs

3.2.1. Sensor Space Analysis

Using the sensor space analysis approach, graph attributes were computed based on MEG sensor data to

construct graph-structured inputs for each frequency band of interest. A total of 950 subepochs across

all files were created. Through the removal of artifacts, 20 subepochs were excluded, resulting in a

total of 930 subepochs that were retained for graph construction. Among the resulting 930 graphs, 416

corresponded to stimulation OFF epochs, and 514 corresponded to stimulation ON epochs. The graph

attributes for the full frequency band are presented in the following sections.

Figure 3.1 displays the average normalized node features for three nodes across all graphs separately for

both stimulation conditions, with shading representing standard deviation. The three nodes represent

sensors that reflect parietal areas, as well as a sensor in the midline that is roughly located around the

central sulcus. The node features for all 46 nodes, averaged over all subepochs for stimulation OFF are

shown in Figures L.3, and all node features averaged over all subepochs for stimulation ON are shown in

Figures L.2.

Figure 3.2 presents the average PLI-based connectivity matrices for both stimulation states. The con-

nectivity matrices show some patterns of connectivity, including some stronger connections within both

left and right temporal lobes (MEG sensors MRT11, MRT23, MRT36, and MLT11, MLT23, MLT36), as well

as connections within the occipital lobes (corresponding to the MEG sensors MLO31, MRO31, MZO02).

Furthermore, increased connectivity was demonstrated by sensor MRP57 with temporal sensors MRT11,

MRT23, MRT36, and MRT24. The difference in connectivity between the stimulation ON and OFF states

is visualized in Figure L.1. This figure reveals an increase in connectivity during stimulation ON within

frontotemporal areas in the left hemisphere (MLT11, MLC21, MLC23, and MLF43), as well as increased

connectivity captured between frontotemporal sensor MLT11 and sensors located over occipital areas

(MLO31, MZO02, and MRO31). Increased connectivity during stimulation OFF was primarily focussed

25



3.2. Graphs 26

Figure 3.1: The average node features for three nodes (sensors corresponding to left and right parietal areas

(MLP57 and MRP57) and a sensor in the midline at the central sulcus (MZO04)), averaged over all stimulation ON

(red) and OFF (blue) subepochs. The standard deviation is shown as shading. AU: Arbitrary Units.

(A) (B) 

Figure 3.2: Connectivity matrices computed using the Phase Lag Index (PLI), representing the edges of the full

frequency (1 - 100 Hz) sensor-based graph, averaged over all subepochs during stimulation OFF (A) and stimulation

ON (B).Appendix G shows an overview of the selected nodes and the node labels.
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between left and right parietal sensors (MLP41, MLP54, MLP57, MRP41, MRP54, and MRP57), and within

parietal and central sensors (MRC53, MRP23, MLC21, MLC53, MZC03, MZC02).

The resulting averaged sensor-based graph is visualized in Figure 3.3, where the relative edge weights

are illustrated through line thickness.
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Figure 3.3: The resulting sensor-based graph visualized on a schematic head model, averaged across all graphs. See

Appendix G for the sensor indices.

3.2.2. Source Space Analysis

Of the 950 subepochs that were created for the source-based dataset with 35MEG recordings,35 subepochs

were removed based on the presence of noise and artifacts, resulting in a total of 915 subepochs for the

construction of the source-based graphs. Of these, 506 graphs had the label stimulation ON, and 409

graphs had the label stimulation OFF.

Figure 3.4 shows the average normalized node features across all subepochs in three nodes, e.g. cortical

brain regions, for both stimulation states separately. These three brain regions represent the secundary

somatosensory cortex (S2) of the left and right hemisphere, and the middle cingulate cortex (MCC). An

overview of the average node features for all brain regions included in the graph is included in Figures

L.5 and L.6, for the subepochs with stimulation OFF and ON, respectively.

The average connectivity matrices across all subepochs for both stimulation states are presented in

Figure 3.5. The connectivity matrices showed some patterns of increased connectivity related to the

left dorsolateral prefrontal cortex, left posterior parietal lobule, bilateral anterior insula, left posterior

insula, and the left primary somatosensory cortex. The difference in connectivity matrices between the

stimulation ON and OFF states is shown in Figure L.4. During stimulation ON, increased connectivity was

observed within the somatosensory cortices (between left and right primary somatosensory cortex (S1) and

left secundary somatosensory cortex (S2)), as well as between the primary motor cortex and the superior

frontal cortex. In contrast, during stimulation OFF, the right parietal cortex exhibited stronger connectivity

with multiple brain regions. Additionally, the occipital cortices demonstrated increased connectivity with

motor cortices during stimulation OFF.
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Figure 3.4: The average node features for three nodes (left and right secundary somatosensory cortex (S2), and

middle cingulate cortex (MCC)), averaged over all stimulation ON (red) and OFF (blue) subepochs. The standard

deviation is shown as shading. AU: Arbitrary Units.

(A) (B) 

Figure 3.5: Connectivity matrices computed using the Phase Lag Index (PLI), representing the edges of the full

frequency (1 - 100 Hz) source-based graph, averaged over all subepochs during stimulation OFF (A) and stimulation

ON (B).Appendix D.1 shows an overview of the acronyms of the nodes in the source-space analysis.
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Figure 3.6: The resulting source-based graph visualized on a schematic head model, averaged across all graphs. See

Appendix D.1 for source indices.

Figure 3.6 shows the average source-based graph, where edge thickness represents relative edge weights

between nodes.

3.3. Model Outcomes

Figure 3.7: Confusion matrix of the test set for

the sensor-based GNN model trained and

tested on the full frequency band.

A graph classification architecture for the GNN model was set

up with the aim of classifying active brain networks associ-

ated with stimulation activation and deactivation. Following

the initialization of the GNN architecture, the model was

trained and optimized on sensor-based graphs using the full

frequency band (1 – 100 Hz). The same architecture was ap-

plied to other frequency bands to assess the differentiating

characteristics of each band. Further experiments explored

the classification performance of the GNN models across stim-

ulation paradigms (tonic and burst) and recording sites (the

MNI and the Donders institutes). Additionally, another GNN

model was trained and evaluated using the source-based

graphs with the full frequency band.

3.3.1. Model Performance

3.3.1.1. Sensor Space

Using the full frequency band, the sensor-based GNN model was able to successfully differentiate between

stimulation ON and OFF graphs, with a validation and test accuracy of 0.99 and 0.98 (Table 3.1). The

confusion matrix for the test set obtained from the GNN model for the full band (Figure 3.7) showed that

almost all stimulation ON graphs were correctly classified (101/103), and all of the stimulation OFF graphs

were correctly classified (79/79). Hence, zero false negatives and two false positives were outputted.

The beta and gamma bands showed validation and test accuracies of 0.97 and 0.98 (beta band) and
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0.99 and 0.98 (gamma band), as shown in Table 3.1. Hence, these frequency bands yielded similar high

performance as the full-band. The delta, theta, and alpha bands showed the lowest performance overall,

with validation and test accuracies ranging from 0.76 to 0.83. Furthermore, the theta and alpha bands

combined reached higher accuracies than the individual bands, resulting in a validation accuracy of 0.90

and a test accuracy of 0.92. Confusion matrices for the GNN models for the different frequency bands are

shown in Appendix N.

An additional analysis was explored for the lower performing frequency bands (delta, theta, and alpha) by

training and testing separate GNN models with an increased frequency resolution of 0.25 Hz. This resulted

in a further decrease in classification performance for all three frequency bands, with test accuracies of

0.63, 0.75, and 0.65 for the delta, theta, and alpha bands, respectively.

Table 3.1: Validation and test accuracy for the sensor-based GNN models across different frequency bands.

Frequency 
band

Validation 
accuracy

Test accuracy F1-score AUC

Full band 0.99 0.99 0.99 0.99
Delta band 0.76 0.81 0.81 0.89
Theta band 0.80 0.78 0.78 0.85
Alpha band 0.77 0.83 0.83 0.89

Theta & alpha 
band

0.90 0.92 0.92 0.98

Beta band 0.97 0.98 0.98 1.00
Gamma band 0.99 0.98 0.98 0.98

AUC: Area Under the Curve.

3.3.1.2. Tonic and Burst Stimulation

The GNN models for both stimulation paradigms revealed similar accuracies, namely validation accuracies

of 0.97 and 0.98 and test accuracies of 0.98 and 0.97 for tonic and burst stimulation, respectively (Table

3.2). Confusion matrices for the GNN models for both stimulation paradigms are shown in Appendix N.

Through testing the GNN model trained on tonic recordings using burst recordings, a cross-paradigm

accuracy of 0.88 was reached (Table 3.3). However, a decreased performance was shown when testing the

tonic recordings on the previously trained GNN model on burst recordings, showing an accuracy of 0.69.

Table 3.2: Validation and test accuracy for sensor-based GNN models trained and tested on MEG recordings from

one stimulation paradigm.

Stimulation 
paradigm

Validation 
accuracy

Test accuracy F1-score AUC

Tonic 0.97 0.98 0.98 0.98
Burst 0.98 0.97 0.97 0.99

AUC: Area Under the Curve.

Table 3.3: Cross-paradigm performance for sensor-based GNN models trained on one stimulation paradigm and

tested on the other stimulation paradigm.

Stimulation 
paradigm

Cross-paradigm 
accuracy

Cross-paradigm 
F1-score

Tonic 0.88 0.88
Burst 0.69 0.69
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3.3.1.3. Recording Institutes

The model trained and tested on data from the MNI performed slightly better than the model trained

and tested on data from the Donders Institute, while both showing high performance (0.99 vs. 0.97

for the validation accuracy and 0.99 vs. 0.98 for the test accuracy, as shown in Table 3.4). Confusion

matrices for the GNN models for both recording institutes are shown in Appendix N. In line with this, the

cross-site performance of the model trained on the MNI recordings was higher compared to the cross-site

performance score for the model trained on Donders Institute data (0.87 vs. 0.81 for the respective test

accuracies, shown in Table 3.5).

Table 3.4: Validation and test accuracy for sensor-based GNN models trained and tested on MEG recordings from

each of the recordings institutes.

Recording 
institute

Validation 
accuracy

Test accuracy F1-score AUC

MNI 0.99 0.99 0.99 1.00
Donders 0.97 0.98 0.98 1.00

Recording 
institute

Cross-site 
accuracy

Cross-site      
F1-score

MNI 0.87 0.87
Donders 0.81 0.81

AUC: Area Under the Curve; MNI: Montreal Neurological Institute.

MNI: Montreal Neurological Institute.

Table 3.5: Cross-site performance for sensor-based GNN models trained on data from one recording institute and

tested on data from the other institute.

Recording 
institute

Validation 
accuracy

Test accuracy F1-score AUC

MNI 0.99 0.99 0.99 1.00
Donders 0.97 0.98 0.98 1.00

Recording 
institute

Cross-site 
accuracy

Cross-site      
F1-score

MNI 0.87 0.87
Donders 0.81 0.81

AUC: Area Under the Curve; MNI: Montreal Neurological Institute.

MNI: Montreal Neurological Institute.

Table 3.6: Validation and test accuracy for the source-based GNN model.

Validation 
accuracy

Test accuracy F1-score AUC

0.99 0.97 0.97 1.00
AUC: Area Under the Curve

3.3.1.4. Source Space

Figure 3.8: Confusion matrix of the test set for

the source-based GNN model trained and

tested on the full frequency band.

The source-based GNN model reached a validation accuracy

of 0.99 and a test accuracy of 0.97, thereby showing similar

performance to the sensor-based GNN model for the full fre-

quency band (Table 3.6). All graphs with the label stimulation

ON were correctly classified by the sensor-based GNN model

(101/101), and a large amount of the stimulation OFF graphs

were correctly classified (77/82), as shown in the confusion

matrix (Figure 3.8). This resulted in five false positives and

zero false negatives.

3.3.2. Receiver Operating Characteristic Curves

Figure 3.9 shows the ROC curves for the sensor-based GNN

models trained on different frequency bands. The ROC curves

indicate the highest performance in the full, gamma, and beta

frequency bands. In contrast, the delta, theta, and alpha bands
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individually show reduced classification accuracy. However, when the theta and alpha bands are combined,

performance improves compared to using either band alone. Figure 3.10 presents a comparison of ROC

curves for the remaining sensor-based model configurations as well as the source-based model. These

ROC curves demonstrate that all full-band GNN model configurations, across both stimulation paradigms,

both recording institutes, and including the source-based GNN model, consistently exhibit similarly high

classification performance.

Figure 3.9: ROC curves for sensor-based GNN models trained on the different frequency bands.

Figure 3.10: ROC curves for sensor-based GNN models trained on the full-frequency band, the sensor-based GNN

models trained on different stimulation paradigms (tonic and burst), different recording institutes (the Montreal

Neurological Institute (MNI) and the Donders Institute), and the source-based GNN model.
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3.3.3. Hyperparemeter Settings

The hyperparameter settings that yielded the highest classification performance for each GNN model

configuration are summarized in Table 3.7. While optimal settings varied across models, several consistent

patterns emerged. A batch size of at least eight was selected in all configurations, and smaller batch sizes

(two or four) were not among the best-performing configurations. The number of hidden channels was

most frequently set to the maximum value of 128. Most models used either three or four convolutional

layers, although two layers were optimal in three configurations. The dropout rate was most often set to

the minimum value of 0.01, with higher dropout rates of 0.3 or 0.5 never selected. A learning rate of 0.001

was the most commonly used, though a few models performed well with 0.01 or 0.0001 as learning rate.

The best-performing model configurations did not include a learning rate of 0.00001. Furthermore, most

models applied some form of edge filtering.

Table 3.7: Outcomes for the hyperparameters for each GNN model.

Sensor-based model Batch size
Hidden 

channels
Dropout rate

Learning 
rate

Layers Threshold Top-K

Full band 64 128 0.01 0.001 2 0.05 None
Delta band 128 128 0.1 0.001 3 None 600
Theta band 16 128 0.1 0.01 3 0.01 600
Alpha band 8 128 0.01 0.001 3 0.07 None
Theta & alpha band 128 128 0.1 0.001 4 None 300
Beta band 8 128 0.01 0.0001 4 None 300
Gamma band 64 32 0.01 0.001 4 0.05 900
Tonic stimulation 16 64 0.01 0.001 4 0.07 600
Burst stimulation 128 16 0.5 0.01 3 None None
MNI 16 64 0.01 0.0001 2 None 300
Donders Institute 8 64 0.01 0.01 4 0.05 300

Source-based model Batch size
Hidden 

channels
Dropout rate

Learning 
rate

Layers Threshold Top-K

Full band 64 128 0.1 0.01 3 0.05 None

3.3.4. Training and Validation Accuracy and Loss

The performance of both the GNN models was evaluated by tracking their training and validation accuracy

and loss over the course of training, using the best-performing hyperparameter configurations. Training

and validation accuracy curves exhibited a rapid improvement early in training in both the sensor-based

GNN (Figure 3.11A) and source-based GNN (Figure 3.12A). After this initial rise, the training and validation

accuracy plateaued with minimal further gains. The close alignment between training and validation

accuracy throughout the training process supports the stability and generalizability of both models.

For the sensor-based GNN model, a brief decline in validation accuracy occurred around iteration 34,

followed by a recovery and continued upward trend. In contrast, the source-based GNN model experienced

a more pronounced drop in both training and validation accuracy at iteration 37. However, this decline

was short-lived and within three additional iterations, the model rebounded and stabilized, achieving high

and sustained accuracy levels in subsequent training iterations.

When examining the loss curves, the sensor-based GNN model demonstrated a clear and steady decrease

in training loss (Figure 3.11B), approaching near-zero values. The validation loss showed a more gradual

decline and more fluctuations throughout model training in the sensor-based GNN model. The source-
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based GNN model, on the other hand, achieved overall lower loss values for both training and validation

compared to the sensor-based model (Figure 3.12B). Nevertheless, the training process began with a sharp

spike in validation loss, followed by a substantial drop that brought validation loss closely in line with the

training loss. Notably, spikes in loss at iterations 29 and 37 coincided with temporary dips in the accuracy

of the source-based GNN model.

(A) (B)

Figure 3.11: Validation and test accuracy (A) and loss (B) over the training iterations for the sensor-based GNN

model for the full frequency band.

(A) (B)

Figure 3.12: Validation and test accuracy (A) and loss (B) over the training iterations for the source-based GNN

model for the full frequency band.

The accuracy and loss curves for all other GNN models that were trained in this study are presented in

Appendix M.

3.4. Node Explainability

Node explainability was implemented using two recordings (tonic and burst stimulation) on both the

sensor and source-based GNN models for the full frequency band. For each recording, the overall most

important nodes were retrieved, along with the average fidelity and sparsity scores across all graphs. The

tonic recording included a total of 50 graphs and the burst recording included a total of 25 graphs.
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3.4.1. Sensor Space

For the sensor-based GNN model, the tonic and burst stimulation recordings were run separately through

the explainability module. The resulting fidelity and sparsity scores are reported in Table 3.8.

The tonic recording showed an average fidelity score of 0.70, with a sparsity score of 0.89. The nodes

that were overall most frequently identified as the subgraph in this recording were the following MEG

channels: MLP54, MLP57, MRC21, MLC53, and MLP23. Of these, MLP54 and MLP57 were included in most

important nodes in 24 and 21 of the total 50 graphs for this tonic recording, respectively. These nodes are

highlighted in Figure 3.13.

Table 3.8: Node explainability results on the sensor-based GNN model using tonic and burst recordings from PT06,
showing the overall most important nodes, the average fidelity scores, and the sparsity scores.

MEG recording Overall most important nodes
Average 

fidelity score
Sparsity score

Tonic MLP54, MLP57,  MRC21, MLC53, MLP23 0.70 0.89

Burst MLP41, MRP57, MLT23, MLC53, MLP23 0.75 0.89

MEG: Magnetoencephalography
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Nodes in subgraph 
Node 34: MLP54 (24/50) 
Node 35: MLP57 (21/50) 
Node 23: MRC21 (18/50) 
Node 29: MLC53 (14/50) 
Node 30: MLP23 (12/50) 

Figure 3.13: Graph-based representation of PT06 (tonic stimulation) showing the identified subgraph, using the

sensor-based GNN. The count of each highlighted node in the subgraph relative to the total number of graphs

inside this recording is included. Appendix G shows an overview of the selected nodes and indices.

An average fidelity score of 0.75 was computed based on the identified subgraph in the burst recording.

The sparsity score of 0.89 was identical to the tonic recording, as the number of nodes in the identified

subgraph relative to the total number of graphs stayed the same. The overall subgraph that was most

frequently identified as the subgraph over all graphs in this recording were the nodes: MLP41, MRP57,

MLT23, MLC53, and MLP23. This subgraph is highlighted in Figure 3.14. The node MLP41 was highlighted

in the majority of the graphs created based on the burst recording (16/25).
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Nodes in subgraph 
Node 33: MLP41 (16/25) 
Node 40: MRP57 (8/25) 
Node 8: MLT23 (7/25) 
Node 29: MLC53 (6/25) 
Node 30: MLP23 (6/25) 

Figure 3.14: Graph-based representation of PT06 (burst stimulation) showing the identified, using the

sensor-based GNN. The count of each highlighted node in the subgraph relative to the total number of graphs

inside this recording is included. Appendix G shows an overview of the selected nodes and indices.

3.4.2. Source Space

In the source-based GNN model, explainability results for both tonic and burst stimulation recordings

were retrieved, as shown in Table 3.9.

Table 3.9: Node explainability results on the source-based GNN model using tonic and burst recordings from PT06,
showing the overall most important nodes, the average fidelity score, and the sparsity score. Appendix D.1 shows an

overview of the nodes included the source-space analysis.

MEG recording Overall most important nodes
Average 

fidelity score
Sparsity score

Tonic
Occipital lobe R, SMA R, M1 R, MCC, posterior 

insula R
0.86 0.85

Burst
Sup. frontal lobe L, occipital lobe L, anterior 

insula R, sup. parietal lobe R, ACC
0.87 0.85

ACC: Anterior Cingulate Cortex; MCC: Middle Cingulate Cortex; M1: primary motor cortex; MEG: 
Magnetoencephalography; R/L: right/left; Sup.: superior.

The tonic recording showed an average fidelity score of 0.86 and a sparsity score of 0.85. From all 40

graphs created for the tonic stimulation recording, the most important nodes that were identified included

the right occipital lobe, right supplementary motor area (SMA), right primary motor cortex (M1), middle

cingulate cortex (MCC), and the right posterior insular cortex. Of these, the right occipital lobe and the

right SMA were identified in over half of the graphs (in 33/50 and 27/50 graphs). The identified subgraph

is highlighted in Figure 3.15.

The average fidelity score and sparsity score found for the burst recording were 0.87 and 0.85, respectively.

The left superior frontal lobe, left occipital lobe, right anterior insular cortex, right superior parietal lobe,

and the anterior cingulate cortex (ACC) were overall most identified as important nodes in the burst

recording. The left superior frontal lobe and the left occipital lobe had the largest count relative to the
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total number of graphs (12/25 and 11/25, respectively). The overall most important nodes are shown in

Figure 3.16.
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Nodes in subgraph 
Node 18: Occipital R (33/50) 
Node 23: SMA R (27/50) 
Node 24: M1 R (14/50) 
Node 26: MCC (13/50) 
Node 39: post. Insula R (13/50) 

Figure 3.15: Graph-based representation of PT06 (tonic stimulation) showing the identified subgraph, using the

source-based GNN. The count of each highlighted node in the subgraph relative to the total number of graphs

inside this recording is included. Appendix D.1 shows an overview of the nodes included in the source-space analysis.

Nodes in subgraph 
Node 9: sup. Frontal L (12/25) 
Node 13: Occipital L (11/25) 
Node 27: ant. Insula R (9/25) 
Node 28: sup. Parietal R (8/25) 
Node 31: ACC (7/25) 
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Figure 3.16: Graph-based representation of PT06 (burst stimulation) showing the identified subgraph, using the

source-based GNN. The count of each highlighted node in the subgraph relative to the total number of graphs

inside this recording is included. Appendix D.1 shows an overview of the nodes included in the source-space analysis.



4 Discussion

In this study, I successfully developed Graph Neural Network (GNN) models to classify MEG recordings

of chronic pain patients treated with Spinal Cord Stimulation (SCS) using cyclic stimulation settings,

providing an analysis framework for further research. More specifically, graph-based representations of

the resting-state Magnetoencephalography (MEG) recordings were created, a model architecture for graph

classification was developed, and the model performance for different inputs was evaluated. Furthermore,

node explainability methods were incorporated to explore how the GNN model decided on a classification,

revealing active brain networks associated with stimulation.

4.1. Graph Dataset

Graph datasets were constructed using either MEG channels or source-reconstructed brain regions as

nodes. Node features were derived from baseline-corrected Power Spectral Density (PSD) values, while

edges represented functional connectivity computed via the Phase Lag Index (PLI) metric. These graphs

were constructed separately for each frequency band, as well as for each stimulation paradigm and

recording institute, providing a structured representation of brain activity and connectivity across these

different configurations.

This graph construction approach aligns with prior neuroimaging-based graph studies [58, 59, 106, 107].

However, the literature does not provide a consensus on optimal graph definitions, including nodes, node

features, and edges, or processing pipelines for brain connectivity analysis. The effectiveness of any specific

method is context-dependent and subject to assumptions embedded in the graph design [30, 108].

4.1.1. Node Features

The use of the PSD as node feature provides a representation of frequency-specific neural activity at every

node. Compared to time-series data or statistical metrics, PSD-based node features are lower-dimensional,

making them more suitable for graph-based representations of MEG recordings.

However, raw PSD magnitudes varied substantially between recordings, likely due to MEG-specific factors

such as sensor offsets and slow ambient field drifts, or anatomical factors such as the thickness of the skull,

or placement of the patient’s head relative to the MEG sensors. To mitigate this, a normalization step was

implemented to align feature magnitudes across recordings. As no true baseline was available, given that

both stimulation ON and OFF states are of interest, the PSD from stimulation OFF subepochs was used as

a pseudo-baseline. This normalization approach involved subtracting the mean PSD from stimulation OFF

subepochs and then dividing by this mean. As a result, node features from stimulation OFF graphs centred

around zero with small variability, while node features from stimulation ON graphs reflected relative

deviations from this baseline. While this normalization strategy reduced variance and facilitated training

across the entire dataset, it limited the interpretability of the node feature values, as the node feature

representations shifted from absolute frequency power to relative changes in frequency power between

stimulation states. While the stimulation OFF condition serves as a pseudo-baseline, it may still reflect

lingering effects from prior stimulation or other dynamic changes that occur due to chronic pain. Given

that the carry-over period of SCS is not completely understood and likely varies considerably between

38
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individuals, obtaining a true baseline remains challenging [65]. An alternative normalization approach

involves calculating the relative power of each frequency band as a proportion of the total power. This

method is particularly useful when differences across stimulation ON and OFF states are concentrated

in specific frequency ranges, as it emphasizes the relative contribution of each band while minimizing

inter-patient amplitude variability.

4.1.2. Edges

Edges in the graphs were defined by computing pairwise PLI values between nodes, resulting in undirected,

weighted graphs. PLI is particularly well-suited for this application, as it reduces the influence of volume

conduction and captures consistent phase relationships between brain regions over time [87]. Even though

the effect of volume conduction in MEG recordings may not be as pronounced as in Electroencephalography

(EEG), spurious zero-lag correlations can still occur due to field spread and signal leakage. By emphasizing

non-zero phase lag interactions, PLI enhances the specificity of the connectivity estimates, thereby

providing a more physiologically meaningful representation of functional brain networks. This makes

PLI an appropriate choice for constructing graphs that aim to reflect true interregional communication

rather than artifacts of signal mixing. However, it is important to note that PLI exclusively reflects phase

coupling and does not account for amplitude-based interactions, potentially limiting the interpretability

of the full spectrum of brain connectivity. Thus, while the PLI-based connectivity offers robustness against

volume conduction, it provides only a partial view of the complex neural interactions underlying chronic

pain and SCS effects [91].

From the sensor space analysis, a few patterns of increased connectivity were found within the temporal

lobes and occipital lobes. Moreover, increased connectivity was observed between temporal brain regions

and the right parietal lobe. Differences in connectivity between stimulation ON and OFF states revealed that

stimulation OFF was associated with enhanced connectivity in central and parietal regions, approximately

corresponding to sensorimotor areas. These changes may reflect alterations in pain perception, as turning

stimulation OFF can lead to the re-emergence of pain, potentially increasing engagement of pain-related

networks. However, the exact onset of pain re-emergence for each patient is not precisely known [65].

During stimulation ON, increased connectivity was found in left frontotemporal areas, potentially capturing

brain activity in the insula. This finding may reflect modulation of the medial pain pathway by SCS [12].

The source space analysis revealed more widespread patterns of connectivity across different brain regions,

likely due to the ability of source reconstruction methods to estimate neural activity directly at the cortical

level. By resolving overlapping signals recorded at spatially distant sensors and projecting them onto

anatomically distinct brain areas, a more precise identification of interactions between distributed brain

regions can be achieved, thereby uncovering more distributed connectivity patterns that may remain

obscured in sensor-level analyses.

In the source space analysis, elevated PLI-based connectivity was observed between the dorsolateral

prefrontal cortex (DLPFC) and the left posterior parietal lobule. Both of these regions also showed strong

connections with the bilateral anterior insula, the left posterior insula, and the left primary somatosensory

cortex (S1). Furthermore, the left primary motor cortex (M1) exhibited increased connectivity with the

somatosensory cortex, particularly in the foot representation area. These patterns are consistent with

activation of the ascending lateral pain pathway, which is implicated in the sensory-discriminative aspect

of pain, potentially indicating the experience of pain [23]. Additionally, the insular cortex is associated with

the affective-motivational processing of pain [109, 110]. Differences in connectivity between stimulation

ON and OFF states highlighted increased connectivity within somatosensory cortices during stimulation

ON, while stimulation OFF states showed increased connectivity in widespread networks including the
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right superior parietal cortex, the left anterior insula, and right secundary somatosensory cortex (S2). While

these findings indicate a potential trend in altered brain connectivity between the ON and OFF conditions,

further research with statistical analysis is required to confirm these effects and to elucidate how SCS

modulates specific functional brain networks.

To date, only a limited number of studies have investigated the effects of SCS on resting-state functional

connectivity [32, 111, 112]. One previous study by Deogaonkar et al. evaluated functional connectivity

using functional Magnetic Resonance Imaging (fMRI) during stimulation ON and OFF conditions, with each

state lasting ten minutes, and reported stronger connectivity between frontal, sensorimotor, and cingulate

cortices during stimulation ON, and increased connectivity between limbic and somatosensory areas during

stimulation OFF [111]. These findings are only partially consistent with the results of the present study.

Several factors may account for this discrepancy. First, the persistent presence of chronic pain in some

patients, even during stimulation ON, may cause variability in stimulation-related connectivity changes. In

contrast, the study by Deogaonkar et al. included only patients who experienced more than 50% pain

reduction following SCS, potentially making these stimulation effects more pronounced. Furthermore, the

potential presence of stimulation carry-over effects, where the neurophysiological impact of stimulation

persists after the stimulation is turned OFF, may obscure acute differences between ON and OFF states

[65]. The study by Deogaonkar et al. attempted to control for this by excluding patients with carry-over

effects exceeding the ten-minute stimulation cycle, and hence, this approach only reflects early responders

and may not generalize to the broader patient population.

These factors highlight the complexity of interpreting functional connectivity changes in the context of SCS.

Therefore, future studies may benefit from more individualized analyses, accounting for patient-specific

stimulation effects and timing these effects, or from study designs that include patient groups that are

matched on their washout periods of SCS to minimize carry-over effects in group-level analysis.

4.1.3. Frequency Band Graphs

Graph construction was performed separately for distinct frequency bands using the sensor space analysis,

allowing the model to learn frequency-specific patterns within the graph attributes. This approach aligns

with prior findings that brain networks display distinct organizational structures across different frequency

bands [80, 81]. By providing a more detailed view of brain dynamics, frequency-specific graphs may help

identify stimulation-related changes and highlight frequency-dependent contributions of individual brain

regions. This supports the implementation of node-level explainability analyses in future studies, aimed

at uncovering which node features, i.e. which frequency bins, are most influential for classification.

4.1.4. Class Imbalance

A class imbalance was present in the graph datasets, with more stimulation ON than stimulation OFF

graphs. This was caused by the cyclic structure of the recordings and the method used to segment

data into subepochs. As most recordings ended mid-cycle, fewer OFF-labelled segments were captured.

Future MEG recordings during cyclic stimulation should include the same amount of cycles for both

stimulation states, since balancing the classes in this research is essential to ensure that the model

learns representative features from both stimulation ON and OFF conditions. This can potentially increase

classification performance and may enable the extraction of clinically meaningful insights by identifying

neural patterns associated with both stimulation ON and OFF states, rather than differentiating between

them.
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4.2. Graph Neural Network Model

A GNN model architecture was developed with the aim of learning and distinguishing the brain network

patterns associated with SCS. Specifically, a graph classification framework was implemented to process

and classify graphs derived from cyclic SCS recordings, where each graph represents features from MEG

data during either stimulation ON or OFF states. The model was initially developed and optimized

using sensor space data, where nodes correspond to MEG sensors and both functional connectivity and

node features were computed across the full frequency range (1–100 Hz). This approach enabled the

model to capture the broad spectrum of neural dynamics associated with SCS. After model training and

optimization, the GNN demonstrated a strong ability to distinguish between stimulation ON and OFF

conditions, indicating that the extracted graph-based features effectively reflect the underlying changes

in brain network activity driven by SCS.

4.3. Model Performance

The developed GNN model architecture was implemented for a variety of different input configurations,

including different frequency bands, different stimulation paradigms, different recording locations, and

additionally, using source-based graphs.

4.3.1. Frequency Bands

Across all frequency bands, the models trained on the full band, as well as the beta and gamma bands,

demonstrated the highest classification performance, suggesting that higher frequency activity carries

critical information for differentiating between stimulation ON and OFF conditions. In contrast, delta,

theta, and alpha bands showed relatively lower performance, possibly due to the presence of less discrimi-

native features within these frequency ranges. These findings are partly supported by literature, since

previous studies described that the alpha and gamma bands are mostly important in pain processing and

neuromodulation [113]. Kim et al. [114] describe that the alpha band is responsible for pain sensitivity

and changes in the pain character, while the gamma band is more focussed on the conscious perception

and attentional processing of pain. Therefore, the results of the current study suggest that pain sensitivity

is less affected through SCS, however, the conscious perception of pain is altered during stimulation

ON states. Furthermore, abnormal beta band power has been reported in chronic pain patients, where

the reduced power in the beta band might be reflective of sensory processing in response to pain [115].

This finding is supported by the outcomes of the current study, indicating that the beta band was highly

discriminative for classification SCS states.

Interestingly, combining theta and alpha bands improved classification performance over either band

alone. This finding may be attributable to the increased frequency range and resolution, enabling the

model to extract more and richer features. However, despite this, an increased frequency resolution of

0.25 Hz, compared to the initial 1 Hz, was explored by training and testing separate GNN models that were

trained and tested using the smallest frequency bands (delta, theta, and alpha), resulting in decreased

classification performance for all three frequency bands. This suggests that the information in the lower

frequency bands might not contain as many discriminative features, compared to the higher frequency

bands, and through an increase in frequency bins, this could not be improved. Another possible explanation

is that the initial GNN architecture was optimized for the full frequency range and therefore, it may not be

well-suited to effectively learn patterns from narrower frequency bands, even when provided with higher

frequency resolution.

Furthermore, because stimulation artifacts were predominantly present within the gamma frequency
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range, and the applied filtering steps may not have completely eliminated these artifacts, it is possible that

residual stimulation-related artifacts contributed to the elevated classification performance observed in

the gamma band, and consequently also in the full band. In contrast, the beta band, where no stimulation-

specific filtering was applied, also showed high performance, suggesting that its discriminative power

is less likely to be driven by artifacts. To better understand the extent of residual artifacts, a follow-up

approach could involve training a GNN model on MEG recordings in which the SCS was set to a fixed

stimulation frequency, ensuring consistent artifact removal through filtering, and subsequently testing this

model on MEG data acquired with different stimulation frequencies. This would help evaluate whether the

model’s performance is influenced by stimulation frequency-specific residual signals rather than genuine

neurophysiological differences.

4.3.2. Stimulation Paradigms

Classification performance differences between tonic and burst stimulation recordings were generally

minimal, indicating that both paradigms contain distinct features associated with the stimulation ON and

OFF states. However, when evaluating across paradigms, more pronounced differences in classification

performance were observed. Specifically, a GNN model trained on tonic SCS recordings showed only a

modest decrease in accuracy when tested on burst SCS data,while a model trained on burst SCS recordings

performed significantly worse when tested on tonic SCS data. This asymmetry suggests that burst SCS

recordings only partially reflect the features present in tonic SCS data, while also capturing additional,

potentially more widespread brain dynamics not seen in tonic stimulation. Importantly, this performance

gap cannot be solely attributed to inter-patient variability, as recordings from the same patients were

included for both stimulation paradigms. One possible explanation is that burst stimulation engages

a broader and more complex brain network reflective of stimulation states, which tonic recordings do

not capture. This aligns with the hypothesis that tonic stimulation primarily affects the lateral pain

pathway, whereas burst stimulation modulates both the medial and lateral pathways [13]. Additionally, the

paraesthesias typically induced by tonic stimulation may further contribute to the performance differences

observed in the models trained on tonic or burst stimulation recordings.

4.3.3. Recording Sites

Recordings from two different research sites (the Montreal Neurological Institute (MNI) and the Donders

Institute) yielded comparable model performance. To further assess generalizability, cross-site evaluation

was performed using entirely separate patient groups, ensuring that the model was tested on recordings

from individuals not included in the training set. While a slight decrease in accuracy was observed, the

GNN models still distinguished between stimulation ON and OFF states. This indicates that the learned

representations are robust and capable of generalizing to unseen patients and independent recording

environments.

4.3.4. Source Space Analysis

The source-based GNN model showed similar performance to the sensor-based GNN model for the full

frequency band. This suggests that the complex transformations involved in source space analysis may

not be essential for the GNN to extract relevant differentiating features. However, the source space

offers a major advantage for interpretation, since node-level explainability results can be mapped onto

anatomically defined brain regions, providing clearer neurophysiological insights. In contrast, sensor-based

nodes lack direct anatomical correspondence, limiting interpretability. A comprehensive comparison of

different graph structure definitions, including variations in node features and edge construction, could

help identify the most effective input representation, whether based on the sensor or source space, from
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which the GNN model can extract the most discriminative features.

4.4. Model Training

4.4.1. Model Hyperparameters

Each input graph configuration resulted in distinct optimal hyperparameter settings, highlighting the

sensitivity of the model to the specific characteristics of the input data. In general, models with a greater

number of hidden layers tended to yield the highest classification performance during model training. This

suggests that higher representational capacity was generally beneficial for learning graph-based patterns

in the MEG data. Since a larger number of hidden channels increases the risk of overfitting, particularly

when working with relatively small datasets, a trade-off between model complexity and regularization

(such as a higher dropout rate) is needed, which is evident in the results of this study. Furthermore, most

model configurations performed best with three or four convolutional layers, suggesting that deeper

architectures provide better performance for the graph dataset used in this study.

In addition to architectural depth, graph complexity also played a notable role in model performance,

particularly the number of retained edges. Edge filtering was applied based on the largest edge weights,

effectively pruning weaker or potentially noisier connections. The majority of the best performing model

configurations applied edge filtering. The choice of how many edges to retain introduced a meaningful

layer of interpretability: retaining more edges increased graph density and potentially allowed the model

to capture richer, but also noisier, network information,while more sparse graphs focused the model on the

strongest connections. This parameter not only influenced classification accuracy, but also suggests which

connections may be most relevant to distinguishing between stimulation states, potentially forming a first

step in edge-level explainability. Future research may focus on edge-level explainability approaches to

ultimately gain more insights into the specific brain network connections that contribute most significantly

to the model’s classification performance. Furthermore, when applying stronger edge filtering approaches,

either through a higher threshold or a smaller top-K value, a lower dropout rate was found in the model

configurations in this study. This suggests that dropout and edge filtering function as complementary

regularization techniques with the aim of reducing overfitting.

Nonetheless, the edge-filtering approach relies on the assumption that edges with the largest weights, i.e.

the strongest connections, carry the most relevant information for distinguishing between stimulation

states. While this may hold true in some cases, it potentially overlooks the importance of more subtle or

distributed patterns. The most informative features may not stem from the absolute strengths of individual

connections, but rather from broader connectivity patterns or temporal dynamics of connectivity. Thus,

focusing solely on the top-weighted edges may obscure the complex brain networks that may characterize

effects of SCS. In this context, attention mechanisms within GNNs offer a promising alternative by learning

to assign importance to edges or nodes based on their contribution to the classification task, rather

than relying solely on predefined metrics such as edge weights. In attention-based GNN architectures,

the convolution operation inherently computes updated node embeddings based on the importance of

neighbouring nodes by weighing the importance of neighbouring nodes, which is learned during the

model learning process [116]. This approach allows the updated embeddings to focus on the most relevant

parts of the graph. Even though these attention mechanisms add complexity to the model, these methods

might be beneficial to implement in future studies, as this implements an inherent explainability approach

to the convolutional layers of the GNN model.

Together, these findings underscore the importance of carefully tuning the parameters for each model

configuration, as a balance between model complexity (e.g., number of layers and hidden channels) and
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graph complexity (e.g., edge filtering) is crucial for adapting to the specific characteristics of each input

configuration.

4.4.2. Model Training

From the training and validation accuracy and loss curves of the sensor- and source-based GNN models, it

is evident that both models rapidly learned distinguishing features from the input graphs, with minimal

signs of overfitting. In the source-based GNN model for the full band, a temporary instability was observed

around iteration 37, likely reflecting a large parameter update or the dropout of a critical subset of features

during that specific training iteration. Notably, model performance recovered in the subsequent iterations,

suggesting overall training stability.

In contrast, the GNN models trained on the delta, theta, and alpha frequency bands, as well as the

combination of theta and alpha bands, exhibited signs of overfitting. This was reflected by a noticeable

gap between training and validation accuracy and by a validation loss curve that remained relatively flat

while the training loss continued to decrease. A possible explanation for this overfitting is that the input

features in these lower frequency bands may lack sufficient discriminative power for the classification

task, causing the model to rely on patterns that do not generalize well to unseen data.

Additionally, models trained on the delta band, the combined theta and alpha bands, and recordings from

the MNI showed delayed performance improvements compared to the other GNN models. While the

delayed performance improvement in the model trained on data from the MNI may be attributed to a

lower learning rate setting, the delay observed in models trained on the delta and combined theta–alpha

bands is more likely due to the presence of less discriminative features in these frequency ranges.

However, these metrics should be interpreted with caution due to the risk of data leakage,where subepochs

from the same patient may be present in both the training and validation sets. This overlap can lead to

overly optimistic validation performance. Hence, for assessing the model’s generalizability on unseen data,

evaluation on an independent external test set is essential.

4.5. Node Explainability

To enhance the interpretability of the GNNmodels, explainability analyses were conducted on sensor-based

as well as source-based graphs. Important nodes were identified in tonic and burst recordings from one

patient to provide a larger insight into which nodes contributed most to classification decisions.

4.5.1. Important Nodes

Using the sensor- and source-based GNN models across the full frequency band, node-level explainability

analyses were conducted on tonic and burst SCS recordings from a single patient. These analyses revealed

distinct patterns in the regions contributing to classification performance under each stimulation condition.

For the sensor-based model, tonic stimulation recordings showed that the most informative nodes were

roughly located over sensorimotor areas. This finding suggests that neural activity in these regions

may be particularly informative for distinguishing stimulation states, with increased pain perception

during stimulation OFF potentially driving these changes. This aligns with previous research implicating

sensorimotor networks in pain perception and modulation [117]. In the burst stimulation condition, the

model exhibited a slightly lower fidelity score, and the most discriminative nodes were more variably

distributed, suggesting a less spatially focused network. Despite this variability, the nodes in the identified

subgraph roughly implicated sensorimotor regions, indicating a potentially shared brain network involved

in burst and tonic stimulation.
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The source-based GNN model achieved higher fidelity scores through explainability analysis, indicating

that the identified subgraphs played a more decisive role in the model’s predictions. In the tonic stimulation

recording, two consistently highlighted regions were observed, potentially forming a localized network

involving the occipital cortex and motor cortex. Contrarily, for the burst stimulation in the source model,

the discriminative subgraph was more spatially distributed, involving the left superior frontal lobe, right

anterior insula, right superior parietal cortex, and the anterior cingulate cortex (ACC). The ACC has been

widely recognized as a key brain area in chronic pain, often exhibiting elevated baseline activity in patients

[118, 119], while the insular cortex is implicated in both sensory and affective aspects of pain processing

[120]. The involvement of these regions in the burst stimulation recording suggests that this stimulation

paradigm may engage a broader or more diverse set of pain-related brain networks. Taken together with

the cross-paradigm performance of the GNN models trained separately on tonic and burst stimulation

recordings, these findings support the hypothesis that tonic stimulation primarily influences the lateral pain

pathway while burst stimulation modulates both the lateral and medial pathways. The medial pathway is

more involved in the affective-emotional dimension of pain, and its engagement during burst stimulation

may explain the broader and more distributed network involvement observed in the explainability results.

This distinction aligns with previous research and provides additional evidence that burst stimulation

engages a more complex and widespread brain network than tonic stimulation [13]. Further research may

focus on applying explainability methods to GNN models focussed on either tonic or burst stimulation

recordings, with the aim of providing further insights into the active brain networks in both stimulation

paradigms.

Interestingly, among the most highlighted nodes, a node that corresponded to the occipital lobe was

identified for both recordings, suggesting an involvement of the occipital cortex in pain processing and

modulation through SCS. Although this is not a commonly reported brain area related to pain, one study

researching the intensity changes of endogenous pain in chronic pain patients found decreased activity

in the occipital cortex with higher pain intensities [121]. From this, the hypothesis could be made that

occipital cortex activity might reflect pain re-emerging after the stimulation has been deactivated. This

hypothesis should be researched in future studies.

Notably, the explainability results from the sensor-based GNN model identified key nodes predominantly

located in the left hemisphere for both tonic and burst recordings. In contrast, the source-based GNN

model highlighted brain areas primarily in the right hemisphere during tonic stimulation. Given that the

patient PT06 experienced chronic pain on both the left and right sides of the body, this hemispheric

discrepancy is unlikely to be solely driven by the lateralization of the pain. Rather, it may result from the

fact that the sensor- and source-based GNN models were trained separately and could have learned to

rely on different discriminative features. Each model may capture distinct aspects of the underlying neural

activity and identify different functional brain networks that contribute to classification performance.

4.5.2. Interpretation

Taken together, the results of the node explainability analysis suggest that the GNN models primarily

rely on regions involved in pain processing. These nodes appear to contribute the most discriminative

features for the classification task, potentially highlighting the modulation of key pain-processing regions

by SCS. Consequently, excluding these nodes and their node features leads to a substantial reduction in

the model’s prediction confidence, highlighting their importance in the decision-making process.

However, it is important to carefully interpret the node-level explainability results from this study. Since the

analysis was conducted on a single patient, only a limited number of graphs were available for evaluation,

possibly containing patient-specific features, which limits the generalizability of the explainability results.
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Moreover, each graph yielded slightly different results, both in terms of which nodes were identified

as most important and the associated fidelity scores. This variability underscores the need for careful

consideration when drawing conclusions from individual graph interpretations. As such, the identified

important nodes may primarily reflect individual neural patterns rather than general brain networks that

are activated during chronic pain and SCS. In contrast, applying explainability techniques across a larger

group of patients in future studies could help identify more consistent and generalizable patterns of

node importance. This would allow for the distinction between individual variability and shared neural

mechanisms underlying SCS effects, providing more robust insights into the brain regions most consistently

involved in pain modulation.

Adding to this, the explainability approach that was implemented using SubgraphX was initially developed

for GNN models with node classification architectures [62]. Therefore, adaptations to the initially pro-

posed explainability method were required to make it applicable to GNN models for graph classification.

Nevertheless, a method specifically designed for explainability in graph classification tasks may be better

suited to fully leverage the underlying graph structure, potentially including both node features and edge

weights, and thereby more accurately identify the most relevant attributes contributing to the model’s

decisions.

Through scaling this approach to a larger cohort could provide valuable insights into the supraspinal

mechanisms of SCS and its role in modulating pain processing in the brain. Beyond interpretability, these

tools also help identify the most informative nodes and graph components, guiding model optimiza-

tion strategies aimed at reducing computational load while preserving or potentially even enhancing

classification performance.

4.6. General Strengths and Limitations

This study introduces a novel approach to investigating chronic pain and SCS by applying GNNs to resting-

state MEG data. To the best of our knowledge, this is the first study to employ GNNs for classifying

stimulation states and identifying pain-related brain connectivity patterns in this context. A key advantage

of GNNs is their ability to move beyond manually defined features, which traditional machine learning

models heavily rely on. While GNNs still require an initial definition of graph topology and node or edge

attributes, they can autonomously learn higher-order representations through the convolutional layers.

This internal feature learning enables GNNs to capture complex relational and spatial patterns, making

them particularly suited for analysing high-dimensional, interconnected data such as brain connectivity

networks. Consequently, GNNs offer a powerful and flexible approach for extracting meaningful patterns

from MEG data in the context of chronic pain and SCS.

4.6.1. Analysis Framework

A major strength of this work lies in the flexibility and modularity of the analysis framework. By incor-

porating both sensor-level and source-level data, and designing the graph dataset and GNN model in a

highly adaptable way, the framework allows for straightforward modification of input types and parameter

settings. This modular design facilitates the exploration of various configurations,making it well-suited for

extending the analysis to different frequency bands and other graph attributes. This enables a thorough

evaluation of model performance across different graph-based representations of the MEG signals. The

model’s performance was evaluated across a range of input configurations, including multiple frequency

bands, stimulation paradigms, and even differences in recording institutes. The external validation through

cross-institute testing further enhances the model’s generalizability by assessing performance on unseen

data from a different patient cohort.
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4.6.2. Design Choices

However, despite these strengths, certain limitations must be considered. Firstly, while a wide range

of input configurations was tested, some design choices were made early in the study and not fully

explored. This limited the ability to assess the impact of various graph attributes (e.g., node features or

edge definitions) on model performance, which could have provided more granular insights into how

specific graph properties influence classification outcomes. Additionally, the temporal resolution used

in the current analysis was not extensively optimized, which may be relevant for capturing the dynamic

fluctuations in functional connectivity that are known to characterize chronic pain states [122]. While the

use of 30-second sliding windows with 25-second overlap provides a balance between temporal sensitivity

and stability of the graph attributes, future work could comprehensive explore the impact of varying

window lengths on different graph attributes to better capture transient but potentially informative neural

dynamics.

Another limitation is that the GNN model architecture was developed and optimized for the full frequency

band, and the same architecture was applied to all subsequent models. For input configurations involving

narrower frequency bands, the current model architecture may not be ideally suited. Re-optimizing the GNN

models for each frequency band could improve classification performance and enable more meaningful

comparisons across bands.

4.6.3. Dataset

Furthermore, the relatively small dataset, which is constrained by the limited number of patient recordings,

reduces the generalizability of the findings. The high inter-patient variability, particularly in chronic pain

populations, also complicates drawing standardized conclusions. The current dataset predominantly

includes patients with Persistent Spinal Pain Syndrome type 2 (PSPS-2), which limits the exploration

of connectivity patterns across other chronic pain conditions. Differences in the anatomical location of

pain among patients result in stimulation being applied at different spinal levels, reflecting variability in

how SCS is implemented across individuals. Additionally, the variation in pain scores in response to the

different SCS paradigms highlights the differences in the effectiveness of SCS treatment between patients.

More personalized approaches may be considered to account for these inter-individual differences in

pain processing and treatment response. Through incorporating patient-specific information, such as

pain condition, pain intensity, pain reduction for each stimulation paradigm, as auxiliary features in the

model, the learning process could better capture individual variability in pain mechanisms and responses

to SCS. Such personalized models may enhance the identification of individualized patterns that are

characteristic of SCS efficacy across different pain conditions, potentially leading to more targeted and

effective treatment strategies.

Additionally, this study did not consider the anatomical location of SCS, which could play a significant

role in shaping both the neural response to stimulation and the observed connectivity patterns. Differ-

ences in the anatomical location of pain among patients result in stimulation being applied at different

spinal levels, reflecting variability in how SCS is implemented. As a result, individual differences in

lead placement and targeted dermatomes could contribute to variability in connectivity-based network

alterations. Future studies should incorporate stimulation site information to better account for these

inter-individual differences. One approach could involve stratifying patients based on the anatomical

location of SCS and analysing each group separately, which may help identify location-specific neural

responses and connectivity patterns. Alternatively, stimulation site could be included as an additional

auxiliary feature, allowing the GNN model to adjust for potential variations. Such approaches may improve

the interpretability of results and support more personalized insights into how stimulation modulates
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brain networks. However, to enable meaningful subgroup analyses across different stimulation locations,

a sufficiently large dataset of MEG recordings, with approximately 20 patients for each stimulation site,

would be necessary.

Building on this, it is important to note that the proposed GNN model architecture does not incorporate

patient-stratified data splits, as it was not explicitly ensured that graphs from the same patient were

excluded from both the training and test sets. This introduces a potential risk of data leakage, which may

have significantly inflated the reported performance metrics. This issue stems from the fact that multiple

graphs were generated per patient, capturing different stimulation states or brain activity patterns. If

graphs from the same patient are present in both the training and test sets, the model may inadvertently

learn patient-specific features rather than generalizable patterns related to the classification task. As a

result, the model’s performance on the test set may not reflect its true ability to generalize to unseen

patients, but rather its familiarity with individual-specific characteristics already encountered during

training.

To address the potential impact of data leakage and better assess the model’s generalizability, I included

evaluation of the cross-paradigm and cross-institute performance metrics. In particular, cross-institute

performance was valuable for testing the model on a completely independent set of patients. This

setup offers a more robust assessment of model performance compared to testing on a single external

patient file or using a test split without stratification on patient level, as it eliminates overlap between

training and testing data and better reflects real-world variability. Consequently, these outcomes provide

stronger evidence for the model’s ability to generalize across different patient populations and recording

environments. Nonetheless, further research should implement stratification in the data split to ensure

that graphs originating from the same patient cannot be present in both training and test sets. However,

ensuring that graphs from the same patient are not present in both the training and test sets becomes

more complex in this study, as MEG recordings from a single patient were included for different stimulation

paradigms (tonic and burst stimulation). These recordings, although representing different stimulation

conditions, are still derived from the same individual, meaning they could share patient-specific neural

characteristics. To fully account for this, future research should consider evaluating tonic and burst

recordings using separate GNN models for each stimulation paradigm. This approach would allow for

paradigm-specific differentiation, reducing the risk of data leakage by ensuring that the model does not

inadvertently learn shared patient-specific characteristics from both stimulation paradigms.

4.6.4. Computational Demands

From a technical standpoint, the computational demands associated with processing and training the

GNN model are substantial, particularly due to the number of nodes and the range of frequencies, both

of which significantly increase the computational load. However, once the initial graph construction is

completed, including the resource-intensive computation of graph attributes, the resulting graphs provide

an efficient and compact way to store MEG-based representations, enabling more streamlined model

training and evaluation. Moreover, the explainability module was especially resource-intensive, requiring

evaluation of each graph individually. As a result, this analysis was limited to data from a single patient,

restricting the generalizability of the interpretability findings. Future work should focus on implementing

a more efficient explainability method for analysis across a larger and more diverse set of patients to

enhance the generalizability and reliability of interpretability findings, potentially identifying consistent

important nodes for the model’s decision-making process. These outcomes could then be leveraged to

further reduce the computational load by focusing solely on the most relevant and distinctive components

of the input graphs.
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4.6.5. Carry-over Effects

A key physiological consideration is the carry-over effect associated with SCS.When stimulation is turned

off, the return of pain perception does not occur immediately. This delay has been reported to last over

two hours in some cases [65], far longer than the one-minute intervals used in this study. Consequently,

segments labelled with stimulation OFF may still reflect residual effects of prior stimulation, complicating

classification and interpretation. The carry-over period is thought to be longer for burst SCS than for tonic

stimulation, which further complicates the analysis. Conversely, a reverse carry-over effect exists, where

pain relief after reactivating the stimulator takes time to re-establish. In addition to these delayed effects

on pain perception, it should be considered that SCS may exert direct neuromodulatory effects on brain

activity, independent of the patient’s experience of pain. This implies that ongoing stimulation could

induce immediate changes in brain connectivity or network dynamics, even before alterations in perceived

pain are reported. As a result, the GNN models may focus on differentiation of both pain-related brain

activity and direct stimulation-related effects, complicating the disentanglement of pain relief mechanisms

from the effects of SCS.

4.7. Recommendations

Since the outcomes of this study cannot completely differentiate between the effects of the underlying

chronic pain condition and the SCS effects, future research should focus on applying GNN models for

classification of active brain networks in chronic pain versus pain-free controls. This would help identify

network-level connectivity alterations distinguishing chronic pain from normal brain function. Additionally,

differentiating between the presence and absence of pain in chronic pain patients undergoing SCS could

provide valuable insights into the effects of SCS on brain networks. To achieve this, patients could

be grouped into responders and non-responders based on their reported pain scores with SCS. A GNN

model could then be trained to classify brain networks into responders and non-responders, helping

to uncover the neural differences between these groups. This approach could provide further insights

into the mechanisms of chronic pain and the functional connectivity patterns that are indicative of the

effectiveness of SCS. Ultimately, this could help personalize and optimize pain management strategies

based on individual brain network characteristics. In the future, this could possibly assist in identifying

patients that will have the most effect of SCS, prior to implantation.

Additionally, future studies should aim to systematically explore and evaluate a broader range of input

configurations, including various graph attributes (e.g., node features and edge definitions), as well as

different graph sizes through varying in the numbers of nodes. A more comprehensive assessment of these

attributes and graph sizes will provide valuable insights into how different graph properties influence

model performance and may lead to better-informed decisions about an optimal model design that allows

interpretation of the outcomes.

For a deeper understanding of the distinct effects of tonic versus burst stimulation, it would be valuable

to analyse separate GNN models for each stimulation paradigm. Additionally, conducting explainability

analyses on these models could help uncover the underlying mechanisms driving the differential effects of

these stimulation paradigms. This could potentially provide insights that help determine which stimulation

paradigm is most effective based on individual patient features, thereby assisting in the optimization of

treatment.

Furthermore, implementation of more extensive explainability analysis, involving the entire graph structure,

is also a topic of large interest for future research. A more extensive explainability analysis might identify

the most important node features, as well as the most important edges that are largely informative for
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the model’s decision-making process. This analysis could indicate the exact brain networks that are

discriminative for classification between stimulation states. Clinically relevant mechanisms of chronic

pain and the treatment targets could be grasped by utilizing these extensive explainability analyses for

GNN models aiming to classify chronic pain and pain-free controls, as well as GNN models differentiating

the presence and absence of pain during SCS.



5 Conclusion

This thesis introduces a novel application of GNNs to classify active brain networks in chronic pain

patients treated with SCS using resting-state MEG data. The study is the first to apply GNNs for classifying

stimulation states associated with brain network patterns in this context, it marks a significant advancement

in the network-level analysis of chronic pain and neuromodulation. By leveraging the flexibility of the GNN

model architecture, various graph representations of brain activity based on MEG data were constructed,

using both sensor space and source space analysis. GNN models trained on these representations achieved

high classification performance in distinguishing between SCS ON and OFF states.

Model performance analysis across different frequency bands revealed that the beta and gamma bands, as

well as the full frequency band (1 - 100 Hz), carried the most discriminative information, reaching test

accuracies of 0.98 for the beta and gamma bands and 0.99 for the full band. Differences between tonic

and burst SCS paradigms were assessed by training and testing separate GNN models. Both paradigms

yielded comparable classification results with test accuracies of 0.98 and 0.97, respectively, however,

cross-paradigm evaluation revealed asymmetry: the GNN model trained on burst SCS data underperformed

when tested on tonic SCS data (cross-paradigm accuracy of 0.69), whereas the GNN model trained on

tonic SCS data generalized better to burst SCS recordings (cross-paradigm accuracy of 0.88). This may

reflect the broader network modulation associated with burst SCS. Furthermore, generalizability of the

GNN model was supported by training and testing GNN models on data from different recording institutes,

showing consistent performance across datasets with cross-site accuracies of 0.81 and 0.87.

Node-level explainability analysis highlighted discriminative nodes in known pain-related brain regions,

supporting the notion that SCS modulates these networks. However, interpretation is limited due to

inconsistencies in node explainability outcomes across sensor- and source-space GNN models, as well as

variability between individual graph inputs. Moreover, given that the analysis was performed on a small

number of patients, it remains difficult to disentangle effects of the underlying chronic pain condition

from the effects induced by turning stimulation ON and OFF. Additionally, variability in patient-specific

carry-over effects of stimulation adds further complexity to these findings.

The results of this thesis represent a significant step in applying GNNs to chronic pain and SCS re-

search, highlighting their potential to unravel complex brain network dynamics and providing an analysis

framework for further refinement and exploration in this research field.
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A Data Processing Pipeline
Figure A.1 shows an overview of the graph dataset construction process, as described in the Methods

section of this thesis.

PREPROCESSING 

Evaluate sensor 
data through PSD  

Remove power 
line frequency 

Remove SCS 
frequency 

Bad channal 
removal 

Remove DC 
offset 

Notch filter Notch filter 
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SENSOR SPACE ANALYSIS 

Export sensor 
time series 
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Figure A.1: Flowchart illustrating an overview of the steps for creating the graph dataset.

DC: Direct Current; MEG: Magnetoencephalography; MN: Minimum Norm; PCA: Principle Component Analysis; PLI: Phase

Lag Index; PSD: Power Spectral Density; SCS: Spinal Cord Stimulation; Stim ON and OFF: Stimulation ON and OFF.
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B Brainstorm and Python
Integration

Since more documentation has been published on creating graphs and developing Graph Neural Network

(GNN) models using Python, I decided to utilize Python for further data processing steps. In order to

make use of the filtered sensor space and source space data from Brainstorm, an integration step was

necessary. This integration step implemented the Fieldtrip toolbox in Matlab and the MNE-Python library in

Python [68, 123]. The MNE-Python library is a toolbox for processing, exploring, visualizing, and analysing

electrophysiological data, such as Magnetoencephalography (MEG), and is largely compatible with data in

a Functional Imaging File (fif-file) format. Furthermore, MNE-Python has functionality to extract channel

time series from FieldTrip structures.

B.1. Sensor Space Data

For the sensor space analysis, I converted the filtered MEG time series into Fieldtrip structures using

Brainstorm functionality. Using MNE-Python, I created fif-files based on these data structures for further

data analysis steps in Python. The fif-files also incorporate an information structure that is compatible

with MNE-Python. This information structure holds the MEG channel names, the sampling frequency, and

the nominal channel positions, which are useful for further analysis steps and data visualization.

B.2. Source Space Data

After source estimation, I exported the source space data from Brainstorm as Matlab structures. I processed

these structures in Python and saved the source space data with the corresponding scouts into a Python-

compatible file format. To facilitate further analysis steps, the name of this file is matched to the

corresponding fif-file, containing the information structure.
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C Preprocessing Steps

C.1. Data Cleaning

The Magnetoencephalography (MEG) data cleaning steps were decided by inspecting the Power Spectral

Density (PSD) plot for each patient file, using Welch’s method with a window of four seconds and 50%

overlap. An example of a PSD plot that is inspected during preprocessing is shown in Figure C.1. This plot

shows the stimulation artifact at 47 Hz, with a harmonic frequency at 94 Hz, and the power line artifact at

60 Hz. Furthermore, this plot shows several bad channels, which were identified and removed.

Figure C.1: A PSD plot used for inspecting the data.

C.1.1. Notch Filters

Since both power line noise and Spinal Cord Stimulation (SCS) signals operate at constant frequencies,

notch filters were applied to remove these sources of contamination. Power line contamination was

removed through a zero-phase lag, second-order Infinite Impulse Response (IIR) notch filter with a 2 dB

notch width. The specific frequencies targeted depended on the recording location: 50 Hz, 100 Hz, 150 Hz,

and 200 Hz for recordings at the Donders Institute (the Netherlands), and 60 Hz, 120 Hz, and 180 Hz for

recordings at the Montreal Neurological Institute (Canada). The stimulation frequency of the spinal cord

stimulator was removed with the same notch filter at the frequency that was assessed in the PSD plot.

Plots of the MEG recordings before and after notch filtering are shown in Figure C.2.

C.1.2. Bad Channel Removal

MEG sensors with poor signal quality were removed. Bad channels were identified through the PSD plot

and the corresponding 2D topography [71]. An example of this is provided in Figure C.1, where five bad

channels were identified in the PSD plot. This step is crucial for further data analysis, as poor signal

quality can ultimately distort the results.
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(A) (B)

Figure C.2: A 40-second section of a MEG recording, showing a subset of MEG channels. (A) Before applying notch

filters, the stimulation artifact is visible in the data. (B) The same section of the recording has been filtered to

remove contaminations.

C.1.3. Additional Artifact Removal

Unlike power line and SCS artifacts, physiological artifacts such as heartbeats, eye blinks, and movement

are naturally present in all recordings. Because the MEG data contains epochs with stimulation ON and

OFF, these artifacts are assumed to be equally distributed across both classes. This means that the Graph

Neural Network (GNN) model is unlikely to learn to differentiate the classes based on these artifacts,

reducing the need for additional artifact removal. Removing these components could risk altering the

neural data in a way that affects the model’s ability to capture meaningful patterns [72].

C.1.4. Exclusion of Bad Segments

Bad segments were not removed in this preprocessing stage because the cyclic SCS settings dictated

the timing for creating epochs. Removing segments at this stage could disrupt the epoching process and

create inconsistencies in data structures. Instead, bad segments were identified and excluded in later

analysis steps, ensuring that the epoching process based on the stimulation cycles remained intact, while

still addressing low-quality data points before inputting in the GNN model.

C.2. Head Model and Source Estimation

C.2.1. Anatomy

Due to the incompatibility of SCS systems with Magnetic Resonance Imaging (MRI) scanners, individual

MRI scans could not be obtained for the patients in this study. Instead, the ICBM152 template MRI anatomy,

available in Brainstorm, was used for all patients.

The head shapes of the patients were digitized using the Polhemus system [124] at the time of the MEG

acquisition. This system captures the positions of head localization coils, three anatomical landmarks

(nasion, left preauricular point, and right preauricular point) for alignment with the default anatomy, and

additional scalp points that define the subject’s head shape. These digitized head points, collected before

MEG acquisition, accurately represent the individual’s head geometry and can be used to scale and deform

the template MRI to match the individual head shape, creating a pseudo-individual anatomy [125].

For a previous study with a different research focus, the template anatomy of each patient was warped
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(deformed) based on the individual digitized head shapes [126]. Since this previous study utilized MEG

recordings for the same patient group during the same recording session, I decided to utilize the existing

warped anatomy for my preprocessing steps to improve anatomical alignment.

C.2.2. Source Space

In MEG recordings, variations in channel files and sensor locations prevent averaging across patients or

sessions, as sensors do not correspond to the same brain regions [73, 74]. To analyse brain activity, a model

is needed to map neural electric currents (source space) to the magnetic fields detected by external sensors

(sensor space), considering the different tissues between the brain and MEG sensors [75]. This process,

called forward modelling or solving the forward problem, produces a head model that approximates head

geometry based on the subject’s anatomy and sensor locations. Source estimation, the inverse problem,

uses this model to estimate brain activity at multiple brain locations from the fewer sensor locations [73].

Given the ill-posed nature of this problem, multiple solutions may explain the data equally well.

C.2.3. Surface Model

For surface modelling, the subject’s cortex is downsampled to approximately 15,000 vertices to balance

anatomical accuracy with computational efficiency. The overlapping spheres model, which simplifies head

geometry as overlapping spheres representing the skull under each sensor, is the recommended model for

MEG data [75]. This model assumes magnetic fields are less sensitive to tissue heterogeneity, enabling

efficient and reliable computation.

C.2.4. Source Estimation

For source estimation, the Minimum Norm (MN) imaging approach is used. This method is recommended

because it is a simple and robust approach that is less sensitive to approximations of the head model

compared to other methods [73]. MN imaging requires a noise covariance matrix to specify the noise

statistics. This is provided by calculating the noise covariance using the empty-room recordings. The

current at each vertex is modelled by the orientation of an equivalent current dipole. For surface source

estimation, the orientation of these dipoles can be set to be normal to the cortex (constrained) or can

consist of three orthogonal dipoles along the Cartesian directions of the coordinate system for each vertex

(unconstrained). The unconstrained option is recommended when using the template anatomy instead of

individual MRI scans, as this may account for some of the model uncertainties [73]. This approach results

in three time series, displaying the activity for each vertex in three orientations.

C.2.5. Scout Time Series

The three time series for each vertex, representing different dipole orientations, were combined into a

single representative time series using Principle Component Analysis (PCA). PCA was applied to reduce

dimensionality while retaining the most relevant signal characteristics. This ensures that the extracted

time series best represents neural activity at each location by minimizing the influence of noise and

redundant information in the orthogonal orientations.

Scout time series extraction was performed following Brainstorm’s recommended workflow [127]. A

predefined atlas was used to define scouts, which correspond to regions of interest listed in Appendix D.

Each scout consists of multiple vertices, and the source activity within each scout is averaged over all

included vertices to produce a representative time series for each region of interest. The extracted scout

time series data were subsequently exported for further analysis in Python.



D Regions of Interest

The scouts were selected to include regions associated with the lateral ascending pathway (sensory-

discriminative component) and the medial ascending pathway (affective-motivational component) of

pain. The brain regions associated with the sensory-discriminative aspect of pain were: the primary

somatosensory cortex (S1) area related to the foot, the S1 related to the hand, the primary motor cortex

(M1), the secundary somatosensory cortex (S2), the supplementary motor area (SMA) and the superior

parietal lobule. All scouts were created for the left and right hemispheres.

The brain regions associated with the affective-motivational component of pain were: the anterior and

posterior insular cortices, anterior cingulate cortex (ACC),middle cingulate cortex (MCC), posterior cingulate

cortex (PCC), dorsolateral prefrontal cortex (DLPFC) and the orbitofrontal cortex (OFC). Similarly, all scouts

were created for both hemispheres. The left and right scouts for the cingulate cortices were combined,

since the left and right cingulate cortices are anatomically very close to each other.

In addition to pain-related regions, scouts were also defined for broader cortical areas, including regions of

the frontal, occipital, and occipito-temporal lobes, to provide a more comprehensive view of whole-brain

network dynamics. This allows for a graph-based analysis that captures connectivity across distributed

neural networks. All scouts are shown in Figure D.1
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Figure D.1: Overview of the scouts defined on the cortical surface.

M1: primary motor cortex; SMA: supplementary motor area; S1: primary somatosensory cortex; S2: secondary

somatosensory cortex.
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D.1. Scout Acronyms

A list of all scout names, as well as the corresponding acronyms and indices that are used in this thesis, is

presented below.

Table D.1: Overview of all scout names and corresponding acronyms and indices.

Scout Name Scout Acronym Index

Primary Somatosensory Cortex, hand area, left S1 Hand L 0

Primary Somatosensory Cortex, hand area, right S1 Hand R 21

Primary Somatosensory Cortex, foot area, left S1 Foot L 1

Primary Somatosensory Cortex, foot area, right S1 Foot R 4

Secondary Somatosensory cortex left S2 L 2

Secondary Somatosensory cortex left S2 R 22

Anterior insular cortex left ant. Insula L 3

Anterior insular cortex right ant. Insula R 27

Posterior insular cortex left Insula post. L 5

Posterior insular cortex right post. Insula R 29

Primary Motor Cortex left M1 L 6

Primary Motor Cortex right M1 R 24

Supplementary Motor Area left SMA L 7

Supplementary Motor Area right SMA R 23

Superior Frontal lobe left sup. Frontal L 9

Superior Frontal lobe right sup. Frontal R 20

Dorsolateral Prefrontal Cortex left DLPFC L 10

Dorsolateral Prefrontal Cortex right DLPFC R 15

Posterior Parietal lobe left post. Parietal L 11

Posterior Parietal lobe right post. Parietal R 19

Superior Occipital lobe left sup. Occipital L 12

Superior Occipital lobe right sup. Occipital R 17

Occipital lobe left Occipital L 13

Occipital lobe right Occipital R 18

Precentral cortex left Precentral L 14

Precentral cortex right Precentral R 16

Orbitofrontal cortex left OFC L 32

Orbitofrontal cortex right OFC R 30

Posterior Cingulate Cortex PCC 25

Middle Cingulate Cortex MCC 26

Anterior Cingulate Cortex ACC 31

Superior Parietal lobe left sup. Parietal L 8

Superior Parietal lobe right sup. Parietal R 28



E Subepoch Duration and Overlap

For finding the optimal subepoch duration and overlap, a subanalysis was performed. Since there is no

existing literature on the optimal subepoch length for Magnetoencephalography (MEG) data for inputting

in a Graph Neural Network (GNN) model, this optimal setting was found empirically and through analysing

the outcomes of different configurations.

In this subanalysis, the filtered sensor-based MEG data was segmented into epochs and, subsequently, these

epochs were split into subepochs with different configurations for duration and overlap. The resulting

subepochs for each configuration were used as input for the GNN model. The model was trained and

tested for each subepoch configuration, and the outcomes were evaluated. Specifically, the accuracy of the

test set was reported to assess the effect of the different subepoch configurations.

Four different configurations of subepoch duration and overlap were evaluated, as provided in Table E.1.

Each configuration of duration and overlap results in a different number of subepochs. For this subanalysis,

all patient files, including both tonic and burst stimulation paradigms, were utilized. The number of

subepochs represents the amount of subepochs used for graph creation, which are subsequently used for

model training and testing. The number of bad subepochs is the amount of subepochs that are labelled

as bad using the bad subepoch detection approach (Appendix F) before the graphs are created.

Table E.1: Different configurations for subepoch duration and overlap, the resulting number of subepochs for

ultimate graph creation, and the number of bad subepochs.

Duration (s) Overlap (s) Number of subepochs Number of bad subepochs

30 5 187 3

10 5 1683 16

30 25 930 20

15 10 1501 19

A shorter subepoch duration increases the number of resulting subepochs, thereby augmenting the graph

dataset. Similarly, applying a large overlap between subepochs further increases the total number of

subepochs. However, a larger overlap also elevates the number of subepochs marked as bad, since

overlapping the segments of MEG data containing noise or artifacts will lead to more segments with noise

or artifacts. Given the relatively small number of patients included in this study, increasing the number of

subepochs through overlapping was advantageous for expanding the graph dataset and improving model

robustness.

Additionally, longer subepochs were preferred, as they produce smoother Power Spectral Density (PSD)

estimates, by increasing the number of windows that can be used for PSD computation. Moreover,

subepochs must be sufficiently long to support Phase Lag Index (PLI) computations, which rely on time-

frequency decomposition using Morlet wavelets [88]. These wavelets extract frequency-specific phase

information, enabling the calculation of phase differences between signals, which is a critical step in

deriving the PLI. The duration of a Morlet wavelet depends on the frequency of interest and the number of

cycles used. With the default setting of seven cycles, the wavelet for 1 Hz spans seven seconds. Therefore,

selecting subepochs shorter than this duration would compromise the reliability of PLI estimates and is

not recommended [128].
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The accuracy of the test set for each subepoch configuration is reported in Table E.2. The accuracies ranged

from 0.81 to 0.98, with the highest performance achieved using 30-second subepochs and a 25-second

overlap.

Table E.2: Test accuracy for the different configurations for subepoch duration and overlap.

Duration (s) Overlap (s) Test accuracy

30 5 0.95

10 5 0.81

30 25 0.98

15 10 0.91

Since a broader analysis was not feasible for this study due to time constraints, I selected one configuration

as the most optimal for this study and used this subepoch configuration in all subsequent steps. This

decision was based on balancing the number of subepochs created, the number of bad subepochs detected,

and the overall test accuracy across configurations. Hence, I chose a subepoch duration of 30 seconds

with a 25-second overlap as the most optimal configuration.



F Bad Subepoch Detection
For detection of noise and artifacts in the subepochs, a method is implemented based on statistical

measures of the time series and a threshold. Since this detection method may be largely affected by the

subepoch length, as the artifacts may be captured in the entirety of the 30-second subepoch, this method

uses statistical measures of an entire epoch (50-second window of Magnetoencephalography (MEG) data),

as well as measures that assess the deviation of the subepoch with respect to the epoch.

First, the median of the time series data within one epoch is computed. The median is used because of

its ability to accurately represent a typical value of the epoch data, as it is less influenced by outliers

compared to the mean or standard deviation. Subsequently, the Median Absolute Difference (MAD) is

calculated for one epoch, which is a robust measure of variability or spread of the data. It is computed

by finding the median of the absolute deviations between each data point in the epoch and the median

value of this epoch. The MAD describes how much data typically varies around the median of the signal.

After this, the maximum deviation of the subepoch is determined, entailing the absolute largest distance

between any data point in the subepoch and the median of the data. From these values, a deviation score

is retrieved using Equation F.1 that highlights how extreme the maximum deviation is compared to the

typical spread of the data, as described by the MAD.

deviation score =
maximum deviation of subepoch

MAD of epoch
(F.1)

A large deviation score suggests that the maximum deviation is much larger than what would be expected

based on the typical data spread, indicating the presence of potential artifacts. A threshold is defined for

this deviation score, and a subepoch is marked as ’bad’ and removed if the deviation score exceeds this

threshold. This threshold is established based on deviation scores from various subepochs, and is set to

100 for the sensor-based time series, and 300 for the source-based scout data. This threshold aims to

effectively remove bad segments, while minimizing the loss of subepoch data. An example of a detected

bad subepoch is shown in Figure F.1.

Figure F.1: Plot of the time series of a bad subepoch with deviation score of 122, showing the Median Absolute

Difference (MAD) of the 50-second epoch and maximum deviation of this subepoch.
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G MEG Channel Selection
Figure G.1 shows an illustration of the selected Magnetoencephalography (MEG) channels for the sensor-

space analysis in this study. A total of 46 MEG channels were selected.

The names of the MEG channels are represented by a combination of letters and numbers. The first and

second letters are ”ML”, ”MR”, or ”MZ”, corresponding to the location of the sensors (ML: left hemisphere,

MR: right hemisphere, or MZ: midline). These letters are omitted in the figure for clarity. The third letter

corresponds to the region of the sensor (F: frontal, C: central, P: parietal, O: occipital, and T: temporal), and

the numbering is done via rows and columns.
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O34 

O23 
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P01 

P41 
P54 
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Figure G.1: The Magnetoencephalography (MEG) channels that are selected for the sensor-space analysis pathway.

The 46 channels are gathered based on clinical relevant brain areas. Each colour in the illustration is representative

of a brain lobule (yellow: frontal, magenta: central, red: parietal, purple: temporal, and green: occipital).
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A list of all MEG channel names, as well as the corresponding indices that are used in this thesis, is

presented below.

Table G.1: Overview of Magnetoencephalography (MEG) channel names and corresponding indices.

MEG Channel Name Index MEG Channel Name Index

MZO02 3 MLT23 8

MZP01 41 MRT23 20

MZC04 45 MLC23 28

MZC03 44 MRC23 24

MZC02 43 MLF55 13

MZC01 42 MRF55 18

MZF03 15 MLT11 7

MZF02 14 MRT11 19

MLO31 0 MLC21 27

MRO31 4 MRC21 23

MLO23 1 MLF43 12

MRO23 5 MRF43 17

MLP41 33 MLF22 11

MRP41 38 MRF22 16

MLP54 34 MLT36 9

MRP54 39 MRT36 21

MLO34 2 MLP57 35

MRO34 6 MRP57 40

MLP33 31 MLT24 10

MRP33 36 MRT24 22

MLP44 32 MLC53 29

MRP44 37 MRC53 25

MLP23 30 MRP23 26



H Node Feature Normalization
The Power Spectral Density (PSD) values were computed for all subepochs across all patient files. However,

substantial variability in PSD values between different patient recordings posed a challenge for the

GNN model, making it difficult to identify consistent patterns across multiple files. This variability likely

stemmed from individual differences in brain activity, sensor placement, and recording conditions. The

variability in PSD values is shown in Figure H.1 and H.2, where the PSD values for two different subepochs

are plotted.

Figure H.1: A plot of the PSD values for one subepoch during stimulation ON. The different lines represent the 46

different nodes in the sensor-space analysis.

Figure H.2: A plot of the PSD values for one subepoch during stimulation ON. The different lines represent the 46

different nodes in the sensor-space analysis.

Furthermore, previous research discourages sensor-space averaging across different runs or subjects due

to the potential for head movements under the Magnetoencephalography (MEG) array during recordings

[129]. Such movements can cause sensors to record activity from different parts of the brain, making

direct comparisons unreliable unless explicit motion compensation techniques are applied [130, 131].

To address these challenges, normalization was performed based on baseline-corrected PSD values for

each patient file. Specifically, each PSD value computed for one patient was adjusted relative to the mean
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PSD of subepochs during stimulation OFF in this patient, following Equation H.1. This normalization step

standardizes spectral power across files, allowing the Graph Neural Network (GNN) model to focus on

meaningful neural activity patterns rather than inter-subject variability or sensor-related noise.

Node featuresnorm =
PSD − PSDOFF,mean

PSDOFF,mean
(H.1)

Where the PSDOFF,mean is the mean of all PSDs computed from subepochs with stimulation OFF from

one file, PSD is the current PSD before normalization, entailing a value for all frequency bins, and

Node featuresnorm refers to the node features after normalization. After normalization, the node feature

matrix, consisting of node features for all nodes, comprised normalized values that highlight the differences

in stimulation ON and OFF, and reduce the variability in data across multiple recordings. The average PSD

values for one file before normalization are plotted in Figure H.3, and Figure H.4 shows the node features

for this file after normalization.

Figure H.3: A plot of the average PSD values for all subepochs from one file before normalization.

Figure H.4: A plot of the average node features for all subepochs from one file after normalization.

AU: Arbitrary Units.



I Phase Lag Index Computation

The Phase Lag Index (PLI) was selected as the functional connectivity metric for defining the edges in the

graph representation of the Magnetoencephalography (MEG) data. The PLI is a widely used measure of

phase synchronization that aims to quantify consistent phase-lead or phase-lag relationships between

pairs of signals, while minimizing the effects of volume conduction and common sources [87].

The PLI was computed using the following formula [88]:

PLI =

∣∣∣∣∣ 1n
n∑

t=1

sign (Im(Sxy(f, t)))

∣∣∣∣∣ (I.1)

In this formula, Sxy(f, t) represents the cross-spectral density between signals x(t) and y(t), at frequency

f and time t. The imaginary part of this quantity, Im(Sxy), reflects the non-zero phase lag components.

The sign(·) function retains the direction of phase difference, and n refers to the number of time windows

or observations over which the average is taken.

The cross-spectral density Sxy(f) was computed using frequency-domain analysis methods implemented

in MNE-Python, with parameters selected to ensure robust estimation across the desired frequency bands.

For each pair of MEG channels, the imaginary component of the cross-spectrum was extracted and passed

through the sign function before averaging across the time window to compute the PLI.

A PLI value close to zero indicates either an absence of consistent phase coupling or a phase relationship

centred around zero, where the signs cancel out. A PLI value approaching one indicates that one signal

consistently leads or lags another with a non-zero phase difference, reflecting a stronger functional

interaction. By discarding zero-phase interactions and amplitude information, the PLI avoids inflated

connectivity values caused by volume conduction, making it well suited for MEG data analysis.

The selection of epoch length is critical for reliable PLI estimation. A study by Fraschini et al. [132] inves-

tigated the influence of epoch duration on the stability of PLI values across subjects. They demonstrated

that epochs of 12 seconds or longer yield more stable and consistent PLI values, improving the reliability

of group-level inferences. In contrast, shorter epochs, particularly those under 8 seconds, introduced

greater inter-subject variability and less distinct connectivity patterns. This instability is likely due to

insufficient frequency resolution and reduced reliability in phase difference estimation.

Taken this into account, and the results of the subanalysis in Appendix E, an epoch length of 30 seconds

was selected in this study to ensure reliable and consistent PLI estimation across all graph instances and

subjects.
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J Node Explainability using
SubgraphX

J.1. SubgraphX explainer

The SubgraphX explainer is an advanced explainability technique specifically designed to reveal how

Graph Neural Network (GNN)s make predictions by identifying and analyzing important subgraphs within

the input graph [62]. Other GNN explainability methods often focus on individual nodes or edges, which

can sometimes miss the larger structural patterns that are crucial for the GNN’s decision-making process

[64, 133]. These larger structural patterns may be responsible for influencing the model’s predictions in

ways that cannot be captured by focusing on individual components. SubgraphX overcomes this limitation

by emphasizing the role of subgraphs, which are locally connected structures within the graph, in shaping

the model’s outputs.

The approach of SubgraphX involves the integration of two powerful techniques: Monte Carlo Tree

Search (MCTS) and Shapley values. These methods work together to systematically explore and evaluate

subgraphs within the input graph to determine which ones are most influential in the model’s prediction.

J.1.1. Monte Carlo Tree Search

MCTS is a heuristic search algorithm widely used in decision-making tasks, particularly in environments

with large and complex decision spaces [134]. The strength of MCTS lies in its ability to balance two

objectives: exploration (trying new, unexplored paths) and exploitation (refining and focusing on promising

paths). In the context of SubgraphX, MCTS is used to explore different subgraphs by generating multiple

branching paths. The algorithm begins by selecting a set of nodes and constructing subgraphs by combining

nodes together. It then systematically removes certain nodes to assess the impact of those removals on

the model’s prediction. This forms one search tree of the MCTS algorithm. MCTS iteratively performs two

key steps:

1. Exploration: Involves creating new subgraphs that have not been tested before, allowing the

algorithm to explore a wide variety of potential subgraphs.

2. Exploitation: Focuses on subgraphs that have already shown promise in improving the GNN model’s

predictions, refining these subgraphs to determine their significance more accurately.

J.1.2. Shapley Values

Shapley values are a well-established method from cooperative game theory, used to fairly allocate a

”payout” among participants based on their individual contributions to the overall outcome [135]. In

the context of SubgraphX, the ”payout” refers to the model’s prediction, and the ”participants” are the

different subgraph structures. For each subgraph that is identified through the MCTS algorithm, Shapley

values are used to measure the marginal contribution of each node outside of the subgraph. The marginal

contribution refers to the difference in the GNN model’s prediction when a node is added to the identified

subgraph (coalition), compared to when it is not. This shows how much this specific node improves or

alters the prediction of the model compared to the prediction based on the subgraph.
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An illustration of the SubgraphX explainer is included in Figure J.1, where the bottom shows one selected

path in the search tree, corresponding to one iteration of MCTS. For each subgraph in this search tree, the

Shapley value is computed based on the marginal contributions of nodes outside of this subgraph. These

marginal contributions are averaged over all coalitions to obtain a Shapley value for each subgraph. The

subgraph from the MCTS search tree with the highest Shapley value is deemed the most influential in

driving the GNN model’s prediction.

Figure J.1: Illustration of the SubgraphX explainer. The bottom represents one iteration of the Monte Carlo Tree

Search. For each constructed subgraph, a Shapley value is computed based on the average marginal contributions

of nodes outside of this subgraph. Source: Yuan et al. [62]

J.2. Fidelity and Sparsity

Fidelity and sparsity are two critical metrics used to evaluate the effectiveness of explainability meth-

ods. These metrics help ensure that the explanations provided by SubgraphX are both accurate and

interpretable.

Fidelity measures the model’s performance before and after the occlusion (removal) of the important

subgraph that is identified through the SubgraphX explainer. Essentially, it gauges how much the GNN

model’s prediction changes when specific subgraphs are altered or removed. The fidelity score quantifies

the difference in the GNN model’s confidence in the predicted class for the normal input graph and the

occluded graph,where the important subgraph is removed. A high fidelity score indicates that the occluded

subgraph is crucial to the model’s decision-making process, as the removal of the subgraph leads to a

significant change in the confidence of the prediction.

Sparsity refers to the number of nodes used to explain a model’s prediction, with respect to the total

number of nodes. An explanation with high sparsity uses fewer nodes, which can make the explanation

easier to understand and more interpretable. However, sparse explanations are typically less accurate

because they omit potentially important nodes. Thus, achieving the right balance between fidelity and

sparsity is essential for effective explainability. An ideal explanation is one that uses a minimal number of

nodes (high sparsity) but still maintains high fidelity, meaning the model’s performance remains similar

even after removing the explained subgraph. SubgraphX is particularly advantageous in this regard, as it

can achieve high fidelity without significantly increasing sparsity, making it both efficient and effective for

explaining GNN predictions [62].
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J.3. Parameters

SubgraphX offers several tunable parameters that can be adjusted based on the needs of the analysis.

• Amount of nodes: The maximum number of nodes included in the subgraph used for analysis.

Increasing the maximum number of nodes can provide a more comprehensive explanation, but it

may also reduce sparsity.

• MCTS iterations: The number of MCTS iterations used to explore different subgraphs. More iterations

generally improve the accuracy of the subgraph identification, however, this will lead to an increase

in computational time.

• Shapley iterations: The number of iterations used to compute the Shapley values. More iterations

lead to more accurate measurements of node contributions, while also increasing the computational

cost.

• Exploration and exploitation weight: This parameter controls the balance between exploring new

subgraphs and exploiting previously found subgraphs. A higher emphasis on exploration may

discover new important subgraphs, while a focus on exploitation helps refine the most promising

ones.

• Classification task: Specifies the type of task that the GNN is performing. In this study, the classifica-

tion task is set to graph classification, which involves classifying entire graphs rather than individual

nodes or edges.

For the implementation of SubgraphX in this study, the parameters were selected through exploration,

aiming to balance a high fidelity score and the available computational resources. The selected parameters

for the SubgraphX implementation are reported in Table J.1.

The number of nodes was set to be relatively small compared to the total number of nodes [105]. Zheng

et al. [136] have reported that smaller subgraphs are generally more stable, though the optimal size is

still uncertain. The number of MCTS iterations is preferably set to a larger value, since this promotes

intensive searching for the optimal subgraph, however, this results in high computational costs. Mahlau

et al. [137] reported that an increased number of Shapley iterations for application on a GNN model

with convolutional layers did not significantly increase the fidelity scores, compared to lower values.

Furthermore, the study by Mahlau et al. [137] explored different exploration and exploitation ratios,

however, little effect on the performance was found.

Table J.1: Parameter settings for the SubgraphX explainability method.

Parameter Value

Number of nodes 5

MCTS iterations 100

Shapley iterations 10

Exp. weight 0.5

Task Graph classificaiton

MCTS: Monte Carlo Tree Search; Exp. weight: Exploration and exploitation weight



K Patient Population

K.1. Patient Characteristics

The patient characteristics are shown in Table K.1. The patient names were assigned for a previous

study. These names were also used for the current study, however, recordings with cyclic stimulation were

not made for all patients in the previous study. Therefore, the numbering of the patient names is not

consistent.

Table K.1: Overview of the patient characteristics.

Patient Sex Age
PD 
(years)

Pain 
condition

Pain location Side
Pain score 
tonic SCS*

Pain score  
burst SCS*

PT01 M 53 32 PSPS-2 Back and left leg L 0 0
PT03 F 42 20 PSPS-2 Right hip and buttock R 4 2
PT04 M 59 6 PSPS-2 Back, left leg and foot L 7 5
PT05 M 52 5 PSPS-2 Right hip, buttock, leg and foot R 6 7
PT06 F 45 16 PSPS-2 Back R, L 1 2
PT07 M 58 31 PSPS-2 Back and left leg L 3 2
PT08 F 42 19 PSPS-2 Back, left hip, buttock, and leg L 4 2
PT09 F 62 12 PSPS-2 Back, neck, right buttock and leg R 6 9
PT10 M 70 15 DNP Both feet R, L 6 4
PT11 F 62 20 PSPS-2 Back, right buttock and leg R 6 6
PTN04 F 43 23 PSPS-2 Back, left leg and foot L 4 3
PTN05 M 64 9 PSPS-2 Back R, L 6 2
PTN06 M 70 21 PSPS-2, DNP Right leg, buttock and foot R 1 1
PTN07 F 56 3 CRPS Back and left foot L 7 7
PTN08 F 40 5 PSPS-2 Right leg and foot R 2 5
PTN09 F 56 35 PSPS-2 Back and right leg R 3 2
PTN10 F 49 13 PSPS-2 Left leg, buttock and foot L 5 5
PTN11 M 63 15 DNP Back and left leg L 2 7
PTN12 M 38 7 NP Left leg, knee, and foot L - -
PTN13 M 53 15 PSPS-2 Back and left leg L 4 -
PTN14 M 68 29 PSPS-2 Right back and buttock R 2 3
PTN15 M 60 40 PSPS-2 Left back, buttock and leg L 7 6

CRPS: Complex Regional Pain Syndrome; DNP: Diabetic Neuropathy; M/F: male/female; NP: neuropathy; PD: Pain Duration; 
PSPS-2: Persistent Spinal Pain Syndrome type 2; R/L: right/left; SCS: Spinal Cord Stimulation.

* The pain scores were assessed  using the Numeric Rating Scale (NRS) from 0 to 10, where 0 was no pain and 10 was the 
worst pain imaginable.
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K.2. Stimulation Parameters

The stimulation parameters for each patient are shown in Table K.2, describing the stimulation frequency

that was selected for tonic and burst Spinal Cord Stimulation (SCS) for each patient. If the stimulation

frequency could not be assessed in the Power Spectral Density (PSD) plot, the time points for the cyclic

stimulation could also not be assessed, and hence, this recording was excluded.

Table K.2: Overview of the stimulation parameters for all patients, and excluded recordings.

Patient Burst SCS (Hz) Tonic SCS (Hz)

PT01 40 -*
PT03 39 59
PT04 39 59
PT05 39 Excl.
PT06 39 41
PT07 51 39
PT08 39 29
PT09 39 60
PT10 39 39
PT11 39 60

PTN04 39 59
PTN05 39 59
PTN06 39 60
PTN07 39 59
PTN08 39 Excl.
PTN09 39 30
PTN10 39 Excl.
PTN11 Excl. Excl.
PTN12 Excl. Excl.
PTN13 Excl. 70
PTN14 39 40
PTN15 39 39

* For this patient, the tonic stimulation recording was missing.
Excl.: excluded measurement; SCS: Spinal Cord Stimulation.



L Connectivity Differences and Node
Features

Figure L.1: The difference in connectivity between stimulation ON and OFF, respectively, shown as a heatmap

where red indicates higher connectivity during stimulation ON, and blue indicates higher connectivity during

stimulation OFF.
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Figure L.2: The averaged node features for all nodes for the stimulation OFF subepochs of the sensor-space

analysis.
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Figure L.3: The averaged node features for all nodes for the stimulation ON subepochs of the sensor-space analysis.
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Figure L.4: The difference in connectivity between stimulation ON and OFF, respectively, shown as a heatmap

where red indicates higher connectivity during stimulation ON, and blue indicates higher connectivity during

stimulation OFF.
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Figure L.5: The averaged node features for all nodes for the stimulation OFF subepochs of the source-space

analysis.
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Figure L.6: The averaged node features for all nodes for the stimulation ON subepochs of the source-space analysis.



M Accuracy and Loss curves

(A) (B)

Figure M.1: Validation and test accuracy (A) and loss (B) over the training iterations for the sensor-based Graph

Neural Network (GNN) model for the delta band.

(A) (B)

Figure M.2: Validation and test accuracy (A) and loss (B) over the training iterations for the sensor-based GNN

model for the theta band.
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(A) (B)

Figure M.3: Validation and test accuracy (A) and loss (B) over the training iterations for the sensor-based GNN

model for the alpha band.

(A) (B)

Figure M.4: Validation and test accuracy (A) and loss (B) over the training iterations for the sensor-based GNN

model for the theta and alpha band.

(A) (B)

Figure M.5: Validation and test accuracy (A) and loss (B) over the training iterations for the sensor-based GNN

model for the beta band.
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(A) (B)

Figure M.6: Validation and test accuracy (A) and loss (B) over the training iterations for the sensor-based GNN

model for the gamma band.

(A) (B)

Figure M.7: Validation and test accuracy (A) and loss (B) over the training iterations for the sensor-based GNN

model on the recordings using tonic Spinal Cord Stimulation (SCS).

(A) (B)

Figure M.8: Validation and test accuracy (A) and loss (B) over the training iterations for the sensor-based GNN

model on the recordings using burst SCS.
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(A) (B)

Figure M.9: Validation and test accuracy (A) and loss (B) over the training iterations for the sensor-based GNN

model on the recordings from the Montreal Neurological Institute (MNI).

(A) (B)

Figure M.10: Validation and test accuracy (A) and loss (B) over the training iterations for the sensor-based GNN

model on the recordings from the Donders Institute.



N Confusion Matrices

(A) (B)

(C) (D)

Figure N.1: Confusion matrix of test sets for sensor-based Graph Neural Network (GNN) models trained and tested

on the different stimulation paradigms, (A) tonic Spinal Cord Stimulation (SCS) and B burst SCS, and on recordings

from the recording institutes (c) Montreal Neurological Institute (MNI) and (D) the Donders Institute.
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(A) (B)

(C) (D)

(E) (F)

Figure N.2: Confusion matrix of test sets for sensor-based GNN models trained and tested on the different frequency

bands; (A) delta band, (B) theta band, (C) alpha band, (D) theta and alpha band, (E) beta band, and (F) gamma band.
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