

Richard Degenhardt¹, Felipe Franzoni¹, Saullo G. P. Castro²

¹ DLR, Institute of Composite Structures and Adaptive Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany

²Delft University of Technology, Aerospace Structures and Computational Mechanics, Faculty of Aerospace Engineering, Kluyverweg Street No. 1, 2629 HS, Delft, The Netherlands

32nd Congress of the International Council of the Aeronautical Sciences

September 6-10, 2021 Pudong Shangri-La, Shanghai, China

PRESENTATION CONTENT

- Motivation
- Vibration Correlation Technique (VCT)
 - Example 1
 - Example 2
 - Example 3
 - Example 4
- Fast Design Method by Ritz-approach
 - Example 5
 - Example 6

32nd Congress of the International Council of the Aeronautical Sciences

eptember 6-10, 2021 udong Shangri-La, Shanghai, China

Motivation

- Space industry strives for significantly reduced development and operating costs.
- Possibility 1: Reduction of structural weight by higher content on composites.
- Possibility 2: The use reliable simulation methods to minimize expensive and time-consuming experimental design studies.

32nd Congress of the International Council of the Aeronautical Sciences

long Shangri-La, Shanghai, China

Motivation

- For most structural parts of real launcher structures buckling is the critical design criterion.
- Due to the high imperfection sensitivity of unstiffened cylindrical shells it is still today a challenge to predict a reliable buckling load.

Vibration Correlation Technique (VCT)

- Allows a non-destructive prediction of the buckling load in the experiment.
- It is based on the relation that the eigenfrequency becomes smaller under the increase of the axial compression and in the case of the bucking the eigenfrequency is zero.
- For beams the relationship is linear.
- For shells the relation is due to the imperfection sensitivity nonlinear.

32nd Congress of the International Council of the Aeronautical Sciences

Vibration Correlation Technique (VCT)

- In 2014, Arbelo developed an improved empirical VCT formulation of cylindrical shells.
- The buckling load is calculated using $P_{VCT} = P_{CR} (1-\xi)$.
- In 2019, Franzoni verified analytically this approach.

- *f* is the ratio between the natural frequency of the loaded structure and the natural frequency of the unloaded structure.
- *p* is the ratio between the axial load and the critical buckling load P_{CR}.

Example 1 - Metallic cylinder axially loaded with internal pressure

- Simplified downscaled model of a launcher propellant tank.
- The VCT estimations presented a good correlation when compared to their respective experimental result for the buckling load.
- The deviations are within 4.0% and 10.0% on the conservative side.

Example 2 - Buckling tests with VCT measurement with the same samples at different test facilities

- A composite cylindrical shell was tested at DLR and afterwards at TU Delft.
- There was 22% deviation among the buckling loads

Example 3 - Composite lattice sandwich cylinder under axial compression

- 4 axially loaded composite lattice sandwich cylinders were tested verifying the VCT approach.
- The maximum difference between the VCT estimated buckling load and the experimental buckling load is less than 5%.

Example 4 - VCT test for the Ariane 6 LH2 section under combined loading

- The structure was loaded by axial compression and bending.
- During the buckling test a VCT measurement was performed in parallel.
- It was the first time, that VCT was applied to a real space structure.
- The VCT prediction was very good.

Fast Design Method by Ritz-approach

- A fast semi-analytical method based on the Ritz-approach.
- Predicts the static and the instability of the non-linear buckling.
- Unstiffened and stiffened laminated composite cones and cylinders.
- Various loads and boundary conditions is used.
- Considers geometric and load imperfections.

32nd Congress of the International Council of the Aeronautical Sciences

Example 5 - Fast simulation of conical composite structures

- Imperfect composite conical structure under axial compression, torsion and pressure.
- Comparison of the deformations obtained by the semi-analytical Ritz-approach and FEM (Abaqus).
 Ritz
 Ritz
 Ritz

Example 6 - Fast simulation of stiffened shells

- The approach assembles cylindrical shell and plate domains modeling skin and stringers.
- Combines efficiency of analytical integration with flexibility of multidomain approaches.
- Accurate calculation of strain, stresses, modal behaviour and buckling loads.

Multi-domain model

