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Computer-Aided Detection of Polyps in CT
Colonography Using Logistic Regression
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Abstract—We present a computer-aided detection (CAD) system
for computed tomography colonography that orders the polyps ac-
cording to clinical relevance. The CAD system consists of two steps:
candidate detection and supervised classification. The characteris-
tics of the detection step lead to specific choices for the classification
system. The candidates are ordered by a linear logistic classifier
(logistic regression) based on only three features: the protrusion
of the colon wall, the mean internal intensity, and a feature to dis-
card detections on the rectal enema tube. This classifier can cope
with a small number of polyps available for training, a large imbal-
ance between polyps and non-polyp candidates, a truncated fea-
ture space, unbalanced and unknown misclassification costs, and
an exponential distribution with respect to candidate size in fea-
ture space. Our CAD system was evaluated with data sets from
four different medical centers. For polyps larger than or equal to
6 mm we achieved sensitivities of respectively 95%, 85%, 85%, and
100% with 5, 4, 5, and 6 false positives per scan over 86, 48, 141,
and 32 patients. A cross-center evaluation in which the system is
trained and tested with data from different sources showed that
the trained CAD system generalizes to data from different medical
centers and with different patient preparations. This is essential to
application in large-scale screening for colorectal polyps.

Index Terms—Computed tomography (CT) colonography,
computer aided diagnosis, logistic regression, pattern recognition,
polyp detection.

I. INTRODUCTION

C OLORECTAL cancer is the second leading cause of mor-
tality due to cancer in the western world [1]. Paradoxi-

cally, perhaps, is that it is preventable to a large part or at least
curable, if detected early. Adenomatous colorectal polyps are
considered important precursors to colon cancer [2]–[4]. It has
been shown that screening for such polyps can significantly
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reduce the incidence of colon cancer [5], [6]. Computed to-
mography (CT) colonography (CTC) is a rapidly evolving tech-
nique for screening, but the interpretation of the data sets is still
time-consuming. Computer-aided detection (CAD) of polyps
may enhance the efficiency and also increase the sensitivity.
This is specifically important for large-scale screening. Recent
studies show that the sensitivity of CAD systems is already com-
parable to the sensitivity of optical colonoscopy [7]–[9] and ra-
diologists using CTC [10].

The best indicator of the risk that a polyp is malignant or
turns malignant over time is size [11]. The consensus [12] is
that patients with a polyp of at least 10 mm must be referred
to optical colonoscopy for polypectomy and it is advised that
diminutive polyps ( 5 mm) should not even be reported [13],
[14]. There is still debate over the need for polypectomy for
6–9 mm polyps. Surveillance for growth with CT colonography
has also been suggested.

A. Related Work

CAD algorithms for polyp detection in CT colonography
usually consist of candidate detection followed by supervised
classification. Candidate detection aims at 100% sensitivity for
polyps larger than 6 mm which goes at the expense of hundreds
of false positives (FPs) per scan. The task of supervised classi-
fication is to reduce the number of detections to about a handful
without sacrificing the sensitivity too much.

For the detection of polyp candidates, Summers et al. [19],
[20] proposed to use methods from differential geometry in
which the principal curvatures were computed by fitting a
fourth-order B-spline to local neighborhoods with a 5 mm
radius. Candidates were generated by selecting regions of
elliptic curvature with a positive mean curvature [19]. Yoshida
et al. [21], [22] used the shape index and curvedness to find
candidate objects on the colon wall. The shape index and
curvedness are functions of the principal curvatures of the
surface, which were computed in a Gaussian-shaped window
(aperture). Alternatively, Kiss et al. [23] generated candidates
by searching for convex regions on the colon wall. Their
method fitted a sphere to the surface normal field. The type of
material in which the center of the fitted sphere was found (in
tissue or in air) determined the classification of the surface as
either convex or concave. As a result, roughly 90% of the colon
wall was labeled as concave, that is “normal.” Subsequently,
a generalized Hough transformation using a spherical model
was applied to the convex surface regions. Candidate objects
were generated by searching for local maxima in the parameter
space of the Hough transformation. Kiss et al. characterized the
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candidate’s shape by comparing the spherical harmonics with
those of the polypoid models in a database [24].

Apart from the different candidate detection algorithms,
there is a wide variety in the design of the pattern recognition
system, ranging from low-complex systems like linear dis-
criminant classifiers to classification systems using multiple
neural networks. Yoshida and Näppi used linear and quadratic
discriminant classifiers [21], [22], [25] as well as Jerebko et al.
[26]. Wang et al. [27] used a two-level classifier with a further
unspecified linear discriminant classifier in the second level.
The first level of this classifier consisted of a normalization pro-
cedure, which was specially designed and had four parameters.
Sundaram et al. [28] classified the candidates based on a single
heuristically designed score using curvature information of
the candidate patches. Göktürk et al. [29] employed a support
vector machine for classification, in which it was assumed that
after a transformation by the kernel function, the data were
linearly separable. This implicitly required minimal mixing
between polyps and false detections. Jerebko et al. [30] and
Zheng et al. [31] used a committee of support vector machines.
Neural networks were also used by Jerebko et al. [30] and
Näppi et al. [8], [32] for classification, and by Suzuki et al. [33]
for the reduction of false detections on the rectal enema tube.

To conclude, many different proposals for a classification
system for CAD of polyps have been presented. However, the
motivation for a specific design of the classification system
is often unclear. Moreover, proper comparison between clas-
sification systems is difficult due to the different candidate
detection systems and feature extraction methods. One may
reason that the optimization of complex classification systems
(with large number of parameters or features) may be com-
plicated by the limited availability of training examples. This
could lead to overtraining to a specific patient population or
patient preparation.

A steadily growing number of papers (e.g., [7], [21],
[23]–[27], [29], and [34]–[37]) reported on the performance of
polyp detection algorithms (see Yoshida and Näppi [10] for a
review on CAD systems for CTC). However, the results can
not easily be compared due to large differences in the data sets
used for evaluation (see also Section II-A).

B. Objective

Candidate detection typically renders a lot of candidates to
sustain maximum sensitivity. Hence, the number of objects
from the target class (polyps) is relatively low. This large
imbalance of the prevailing classes typically hampers clas-
sifier design and training. A further complication is that the
misclassification costs for objects from the two classes are
unknown and certainly very different. This paper discusses
the consequences of these characteristics for the design of the
classification system.

We aim to design a novel, low-complex, classification system
that orders the polyps according to clinical relevance. It implic-
itly takes into account that the misclassification costs of polyps
increase with lesion size. In other words, larger polyps are more
important than smaller ones and the problem is not considered
as a mere two-class classification task, but rather as a regression

problem. With this in mind, we distinguish two types of fea-
tures in the design of the classification system. First, there are
features that facilitate an ordering of the candidates. These are
the features that directly relate to the lesion size. Second, there
are features which will be shown to render a Gaussian distribu-
tion. In order to keep the classifier simple and to prevent the use
of complex combination strategies, these features are mapped
into features of the first type by a Mahalanobis distance (MD)
mapping. This strategy is used to discard outliers and mimics the
use of a Gaussian one-class classifier [38]. It will be shown that
this two-level classification system is effective over data from
various sources.

The technical novelty of our paper is to approach the classi-
fication task as a regression problem. Such a strategy requires
that features are ordered according to relevance. A mechanism
is introduced to map features that are not ordered as such into
features that do have the ordering property. It will be demon-
strated that the Mahalanobis distance to the target class mean is
appropriate for the current problem. Imposing the ordering may
be achieved for any other problem provided that the distance to
the most typical representation of the target class can be defined.

II. DATA DESCRIPTION AND FEATURE DESIGN

A CAD system for CTC starts with the acquisition of CT
colonography data. In these data, candidate objects are detected
and segmented. The segmented candidates are typically char-
acterized by features describing, for instance, the candidate’s
shape and its internal intensity distribution. Such data serve as
input for the classification system. All preprocessing steps will
be addressed in this section.

A. CT Colonography Data

Data sets from four different medical centers were used to
evaluate the performance of our system. Data sets from dif-
ferent sources differ in polyp prevalence, the patient prepara-
tion, the scanning protocol, the protocol for determining the
ground truth, and the type of rectal tube used for colon disten-
sion during CT examination. An arbitrary number of patients
were randomly selected from each source, irrespective of the
number of polyps and their shape. The most important charac-
teristics of the data sets are shown in Table I. More details may
be retrieved from the references included in the table. All pa-
tients adhered to an extensive laxative regime. The reference
standard (ground truth) for data sets “A,” “B,” and “C” was
optical colonoscopy. An expert radiologist served as the ref-
erence for data set “D.” Radiologists retrospectively indicated
the location of polyps by annotating a point in the 3-D data set
based on the reference standard. The candidate segmentations
(see below) were labeled by comparison to these annotations.
Data sets “A,” “B,” and “C” consisted of scans in both prone
and supine positions. A polyp was counted as a true positive
CAD detection if it was found in at least one of the two scanned
positions. Only dataset “A” has been used during development
of the system.

B. Candidate Detection

Polyps are often described as objects that protrude from the
colon wall. For that reason, the candidate detection method is
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TABLE I
PROPERTIES OF THE DATA SETS

Information about the patient preparation can be retrieved from the reference. However, the specific data set we used is not described.

Fig. 1. Candidate detection method applies a nonlinear “flattening” operation to the colon wall. The protrusion field is defined as the difference in position of
the colon wall before (a)–(b), (e)–(f) and after (c)–(d), (g)–(h) application of the operation. The coloring (b,d,f,h) indicates the protrusion of the mesh vertices of
detected candidates (blue denotes a large protrusion and red denotes a protrusion of 0.2 mm, i.e., the low hysteresis threshold). Notice that the folds are hardly
affected by the operation (a) before deformation, (b) before deformation, (c) after deformation, (d) after deformation, (e) before deformation, (f) before deformation,
(g) after deformation, and (h) after deformation.

designed to detect all objects that protrude from the colon wall,
irrespective of their shape. Suppose that the points on the convex
parts of a protruding object are iteratively moved inwards. Ef-
fectively, this will “remove” the object. After a certain amount
of deformation, the protrusion is completely removed and the
colon wall appears “normal.” The amount of deformation as a
result of the operation is a measure of “protrudedness.” Fig. 1
illustrates this process by showing images before and after ap-
plication of the nonlinear “flattening” operation.

Practically, the colon wall was represented by a triangle
mesh, which was obtained by thresholding the CT colonog-
raphy data at 750 Hounsfield units (HU). A nonlinear PDE
[35] was solved to remove all protruding structures from the
mesh that displayed a positive second principal curvature. A
similar approach that acts directly on the grey valued image
is presented in [39]. In this procedure, the global shape of the
colon including the folds was retained, since these structures

display a second principal curvature that is smaller than or equal
to zero. The protrusion field was computed by the position
difference of the mesh vertices before and after processing.
Subsequently, hysteresis thresholding was applied to this field
to detect and segment the candidates. The high threshold on
the protrusion was 0.4 mm and determines the sensitivity. The
value of 0.4 mm was selected since it yields 100% sensitivity
per polyp annotation in our training set. All retained regions of
the colon surface were augmented by adding the adjacent mesh
points with a protrusion of at least 0.2 mm (the low threshold).
The regions thus obtained form the segmented candidates.

C. Features

Radiologists that evaluate CTC data primarily use two prop-
erties of a candidate for classification: the shape and the voxel
intensities inside the candidate. There is still debate about the
optimal way to analyze CTC data. Radiologists using the 3-D
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rendering of the colon (virtual colonoscopy) detect polyps based
on shape, but they will often fall back to the 2-D representa-
tion (grey values) before a final decision is made. Using the
2-D representation, both the internal intensities and the shape
are assessed, although shape is often hard to extract from the
grey-value images. The features used in the presented CAD
system are based on the same two properties that are primarily
used by radiologists.

Shape was previously described by the shape index and
curvedness [22], mean curvature, average principal curvatures
and sphericity ratio [19], [20], and spherical harmonics [24].
An alternative method to measure shape, which is based on the
protrusion field, will be introduced (see Section II-C1).

The internal intensity of the candidates has been found be-
fore to be a discriminative feature to discard a large number of
false detections [25]–[27], [34]. It may be expected that due to
the partial volume effect false detections arise that have low in-
ternal intensity. False detections that are stool often have air in-
side, which also lowers the intensity. Such information about the
candidates will be included through statistics on the object’s in-
ternal voxel intensities (see Section II-C2).

At last, it was experimentally found that many false posi-
tives turned out to be detections on the rectal enema tube (RET)
(previously also reported in [33] and [40]). Therefore, a third
feature will be proposed to discard such false detections (see
Section II-C3).

1) Shape Feature From Protrusion Field: Polyps are conven-
tionally characterized by the single largest diameter, excluding
the stalk [11], [41]. However, Fig. 2(a) shows that this measure
does not distinguish polyps from false detections well. It appears
that especially among the less protruding candidates ( 2 mm),
the candidates with the larger diameters are predominantly false
detections. Alternatively, it might be natural to select the max-
imum protrusion of a candidate as a feature, but it appears that
a lot of polyps have only modest protrusion. As an illustration,
Fig. 2(c) and (d) shows two candidates that have approximately
the same maximum protrusion but a completely different ap-
pearance. The first candidate (candidate “c”) has a large diam-
eter, but does not resemble a polyp at all, whereas the second
candidate (candidate “d”) with a small diameter does so. To con-
clude, a large diameter relative to the maximum protrusion in-
dicates a nonpolypoidal shape (candidate “c”) and a small di-
ameter or a relative low protrusion points to a small clinically
unrelevant candidate. A feature that is derived from the thresh-
olded protrusion field should therefore include the size of a can-
didate as well as the ratio between the largest diameter and the
maximum protrusion. Moreover, the feature should characterize
the whole segmented area instead of the extrema (like the largest
diameter or the maximum protrusion).

We designed a feature that takes into account both the pro-
trusion as well as the lateral size of the object. Effectively, it
measures the percentage of the area of the candidate that has a
protrusion larger than a certain threshold . This feature is fur-
ther denoted as . A large circumference as well as shallow
edges lead to relatively large areas with protrusion below and
result in a low response. Thus, this feature favors compact ob-
jects with steep edges. Fig. 2(b) shows that according to
( mm) candidate “d” is indeed favored over candidate

Fig. 2. (a)–(b) Scatter plots of features calculated for data set “A.” Grey dots
denote false detections and black dots indicate polyps �6 mm. Note that each
polyp may appear as two separate dots in the scatter plot, since each patient is
scanned twice. (a) The maximum protrusion versus the single largest diameter of
a candidate. The threshold of the candidate detection can be seen at a maximum
protrusion of 0.4 mm. (b)� (� � ���mm) versus the largest diameter. (c)–(d)
Two candidates with the same maximum protrusion that are ordered differently
according to � .

“c.” Ordering the candidates based on is thus expected to
improve the performance of the CAD system over simply using
the maximum diameter alone.
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2) Intensity Features: Consider all mesh vertices that are
part of the segmentation mask of a candidate object (see
Section II-B). For each vertex, a weighted average of colon
wall intensities was calculated along the line segment from
the vertex under consideration to the center of mass of the
candidate’s vertices. The weight of the intensity of each voxel
depends on the Gaussian scaled squared-distance between the
intensity and the maximum intensity along the line segment.
The tonal scale used for weighting was set to 140 HU. This
value is substantially larger than two times the image noise
(previously measured to be 43.4 HU for data acquired with
50 mAs [42]). Consequently, facilitated that the edges of
the candidate contributed less to the weighted average than the
internal voxels of the candidate. In other words, the candidate’s
true internal intensity was emphasized. The center of mass
falling inside the polyp is supported by the smooth apex of
polyps.

Subsequently, the mean , median ,
maximum , minimum , and standard deviation

were determined from the weighted averages of all ver-
tices. The latter four were only used in the classifier selection
stage (see Section V-A).

3) Feature for Suppressing Candidates on the Rectal Enema
Tube: The rectal enema tube is a prominent source of false pos-
itive classifications [33], [40]. This is because the tube’s atten-
uation in CT is similar to that of tissue. Moreover, the size and
shape (25 mm in diameter) resembles a large polyp. Cross-sec-
tional examples of a rectal enema tube are shown in Fig. 3(a).
To suppress the false detections on the rectal tubes, a feature
has been developed to distinguish these false detections from
the other candidates. For each candidate it was measured how
much field-of-view (FOV) the candidate “blocks” as seen from
the rectal enema tube [Fig. 3(b)]

(1)

in which is the vector from a mesh point of the candidate
to an arbitrary point on the rectal tube, is the vertex normal,
and is the surface area of the one-ring neighborhood
defined as the average area of the cells adjacent to the point of
interest. A positive value means that the candidate is bent away
from the tube and a negative value indicates that the candidate
is bent toward the tube.

Fig. 3(c) shows a scatter plot of false detections (grey) and
true polyps (black) with on the horizontal axis and with
the mean radius of the candidates on the vertical axis. The mean
radius is calculated as a weighted sum of the distances of all
mesh points to the center of gravity of the candidate, ,
weighted by the area of the one-ring neighborhood .
Apparently, four clusters are identifiable in this feature space:
candidates at the end of the tube have negative values for
and a rather small mean radius (dotted line); candidates on the
balloon also yield negative , but come with a large mean
radius (dashed line); candidates inside the tube have positive re-
sponse for (dash–dotted); and candidates that are not re-
lated to the tube have negligible blocking and form an elongated

Fig. 3. (a) Example of a rectal enema tube in data set “A” as seen in different
slices of a CT image. (b) Schematical explanation of the responses of � . (c)
Scatter plot of the mean radius versus � . The grey dots are false detections
and the black dots are polyps. In the text, we identify the four clusters.

cluster centered at (solid line). To conclude, non-zero
values of this feature tend to indicate detections on the rectal
enema tube.

III. CHARACTERISTICS OF THE FEATURE SPACE

A first prerequisite for clinical application is that the system
has high sensitivity for the detection of polyps. To limit the risk
of missing a polyp in the candidate detection step, this step un-
avoidably yields a large number of detections. Consequently,
the number of objects from the two classes is severely unbal-
anced. For instance, only 0.3% of the candidates detected in
data set “A” were polyps mm. Any classifier relies heavily
on the few polyp examples. Complex classifiers may not be ex-
pected to generalize well to other data sets, because they are typ-
ically sensitive to small changes in training data. Furthermore,
the misclassification costs for objects from the two classes are
unbalanced and unknown: a missed polyp is far more trouble-
some than a false positive classification. Finally, it has to be re-
alized that the size of a polyp indicates the risk of it becoming
malignant.

A part of the feature space is presented in Fig. 4(a) and (b)
by two scatter plots. It can be seen that the distribution of the
polyps is rather uniform with respect to , though it appears
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Fig. 4. Scatter plots demonstrating the distribution of the candidates for data
set “A.” The grey dots are false detections and the black dots are polyps. (a)
Mean intensity versus � . (b) Mean intensity versus maximum intensity. (c)
Same feature space as (a) with the output of the negated Mahalanobis distance
mapping on the vertical axis. This mapping is introduced in Section IV.A. (d)
Influence of the mapping on � . Note that candidates with a high and low
mean intensity have a lower mapped feature than the polyps.

truncated at a certain level % . This occurs because
polyps mm are not clinically relevant and were therefore
excluded a priori (i.e., not annotated in the data). The false de-
tections display a different behavior. As our focus is on irregu-
larities on the colon surface (protruding objects), it may be ex-
pected that far more candidates with small protrusion are de-
tected than candidates with large protrusion, e.g., due to natural
fluctuations of the colon wall and noise. This can also be seen in
the distribution of the candidates with respect to the maximum
protrusion in Fig. 5(a) and with respect to in Fig. 5(b) (dotted
curves). An exponential decaying function fitted to the distri-
bution is also shown (solid curves). Thus, one must not only
reckon with many false detections, the false detections are also
unevenly distributed in the feature space. Finally, it can be ob-
served that the classes largely overlap and that the way the candi-
dates were generated imposes abrupt cluster boundaries, which
may hamper density based classifiers. The abrupt cluster bound-
aries can be seen at % and % in Fig. 4(a).

We approach the classification problem not just as a two-class
classification task, but rather as a regression problem. In other
words, the classification system should be designed to facili-
tate a clinically relevant ordering of the candidates. Ideally, this
means that the polyps should be ranked above the false detec-
tions and that the larger polyps are ranked above the smaller
polyps. The classifier that is used in the regression analysis
should be robust to the large class imbalance, the uneven distri-
bution of candidates in the feature space, and the abrupt bound-
aries in the feature space. Moreover, the classification system as
a whole must be low-complex in order to be robust to variations
in the data sets from different sources.

Fig. 5. Distribution of (a) the maximum protrusion and (b) � of the false
detections in data set “A” (dotted curves). Exponential decaying functions were
fitted to the distributions (solid curves).

IV. CLASSIFICATION SYSTEM

This section describes a classification system that fulfills the
demands derived in the previous section. It is schematically de-
picted in Fig. 6. The input feature vector consists of two types of
features, namely those suitable for ordering the candidates
and those allowing for density estimation and outlier rejection

. The features of the first type are directly used in the re-
gression analysis, whereas the other features are mapped first
by a Mahalanobis distance mapping. Subsequently, regression
analysis leads to an ordering. The ordering can then be used to
compute FROC curves to estimate the performance. Three dis-
criminant classifiers will be applied in the regression problem
(see Section V): the normal-based linear discriminant classifier
(LDC) [43], the normal-based quadratic discriminant classifier
(QDC) [43], and the logistic discriminant classifier [43].

We did not opt for support vector machine (SVM) classifiers
due to the large class overlap. Due to this large overlap, it is
not expected that a unique classification boundary can be found
confidently. Moreover, we did not opt for neural networks too
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Fig. 6. Schematic representation of the classification system. The classification
starts with a feature vector consisting of features suitable for ordering �� �
and features suitable for density estimation �� �. The feature sets � and
� are processed through two mappings. An ordering of the candidates is
determined by regression that incorporates both the features � and the outputs
of the mappings,� and� . The ordering may be thresholded for classification
in order to construct FROC curves.

because, obviously, multi-layer neural networks based solutions
may increase complexity. On the other hand, one can think of
low-complex neural networks, like single layer networks with
sigmoidal transfer functions (as used in [8], [30], and [32]).
However, these are known to be closely related to the logistic
classifier.

A. Mahalanobis Distance Mapping

Let us assume that, for a certain subset of features, a Gaussian
properly describes the distribution of the objects from the target
class, i.e., the polyps. One might say that the mean of this distri-
bution corresponds to a typical representation of a polyp (“the
most polyp-like polyp”). Moreover, the Mahalanobis distance to
the mean of the polyp class may act as an efficient feature to re-
ject outliers, i.e., objects not belonging to the target class. This
procedure compares to the operation of a Gaussian one-class
classifier [38].

Instead of comparing this distance to a preset threshold, the
(negated) Mahalanobis distance is used as a feature. The mean
of the polyp class was derived from the train data set. Conse-
quently, this acts as a mapping transforming one or more fea-
tures into a single feature. The output feature is suitable for
ordering the candidates, since zero Mahalanobis distance (the
mean of the Gaussian) is considered most polyp-like. The fea-
ture can thus be used in the regression analysis. In practice, the
mapping was applied to and . Effectively, candi-
dates on the rectal tubes as well as candidates with an abnormal
intensity are rejected. Fig. 4 illustrates the influence of the map-
ping on .

In comparison to Wang et al. [27], our mapping replaces
the normalization procedure of their two-level classifier. This
allows us to use a standard technique from statistical pattern
recognition to determine the parameters of the mapping.

B. Normal-Based Discriminant Classifiers

Let us consider the linear normal-based discriminant classi-
fier (LDC) to represent a common, low-complexity type of clas-
sifier. Such an LDC includes a weighted sum of the covariance
matrices of both classes, in which the weights are the prior prob-
abilities. In the case of a large class imbalance, however, as in
the polyp detection problem, the prior of the minority class is
extremely small. As a consequence, the weighted sum is almost
identical to the covariance matrix of the majority class and the
covariance matrix of the minority class is neglected. In other
words, contrary to common preference, the detection of objects
from the minority (target) class is largely based on information
of the objects from the majority (outlier) class. One might con-
ceive this as the opposite of a one-class classifier, which typi-
cally uses information about the target class only.

One might consider a quadratic normal-based discriminant
classifier (QDC) instead, since it does not weight the covariance
matrices by the prior probabilities. One underlying problem here
is that the classes have non-Gaussian distributions. In order to
capture a polyp inside the tip of the quadratic decision boundary,
simultaneously an exponentially increasing number of false pos-
itives are included (see Fig. 5). The more conservative linear
decision boundary will make a different error to detect such
a polyp, but this error is less pronounced. What is more, the
quadratic classifier depends strongly on the covariance matrix
of the polyp class. This covariance matrix might be somewhat
unstable, however, due to the limited number of polyps.

C. Logistic Discriminant Classifier

It was previously demonstrated that the false detections are
distributed in an exponential fashion with respect to size and

(see Fig. 5). Fig. 4 illustrated that the polyps are somewhat
uniformly distributed. This implies that the ratio of the posterior
probabilities must also follow an exponential function, which is
represented in the next relation

(2)

in which is the linear discriminant function of the feature
vector and and denote the polyp class and the false detec-
tion class, respectively. One can recognize in (2) the assumption
made by a logistic classifier, which corresponds to sigmoidal
posterior probability density functions

(3)

The linear logistic classifier estimates the posterior proba-
bilities instead of the class-dependent distributions

[43]. These posterior distributions are assumed to
be the sigmoidal functions. This is a valid assumption when
e.g., the classes are distributed Gaussian, or, as in this case,
one of the distributions is exponentially decreasing while the
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other is more or less uniform. Then, a maximum likelihood
(ML) estimation is made to find the linear direction in the
data that best fits these assumed sigmoidal posterior functions.
This ML estimator will give the weights of the discriminant
function . Using the posterior probabilities instead of the
class-dependent distribution functions makes this classifier less
sensitive to the large class imbalance.

V. RESULTS

Classifier selection aims at choosing the best method for the
regression analysis in our classification system (see Fig. 6).
Three classifiers will be analyzed: the LDC, the QDC, and the
logistic classifier (see Section IV). The specific choice will be
based on two types of analysis: FROC analysis using a variety
of sets of features in order to select the best classifier for the
problem (instead of the best classifier for a specific feature set),
and stability analysis by bootstrapping the training set.

The feature vector in Fig. 6 consists of three features:
, and . is related to the size of the candi-

dates and is therefore directly used in the regression analysis,
thus . The Mahalanobis distance mapping is ap-
plied to the other two features prior to the regression analysis. It
is applied to to sort all candidates based on
the mean intensity in order of increasing distance to the normal
tissue values of polyps; and to to aid dis-
carding the candidates on the rectal tube. The added value of
these features and the influence of the mappings will be ana-
lyzed in Section V-B.

In practice, the usefulness of a CAD system depends on
whether it will generalize to data sets from different sources.
The robustness of the complete system will be tested in
Section V-C by means of an evaluation using data sets from
four different medical centers (see Section II-A).

A. Classifier Selection: Performance and Stability

The performance of the classifiers was analyzed by means of
FROC analysis. The FROC curves were calculated for a large
pool of different feature sets to secure that the classifier selection
step is not dependent on a certain choice of features. The FROC
curves were calculated from a repeated ten-fold cross-valida-
tion. Only data set “A” was used in this learning phase to remain
completely independent of the other data sets.

The aggregate of the different sets of features employed in
the experiment will be called the feature pool. This pool was not
created in order to select the best features, but merely to study
the performance of the classifiers without choosing a specific
feature set first. If some feature set were chosen first (before
the classifier selection step), one might select the best classi-
fier for the specific set of features and not necessarily the clas-
sifier which is best for the problem at hand. The feature pool
consisted of 29 sets of features chosen from a total of nine dif-
ferent features: three protrusion-based features with various
thresholds and 0.7 mm; the features related to the
intensity (i.e., the mean, maximum, minimum, and median in-
tensity and the standard deviation of the intensity) and
to discard candidates on the rectal tubes. Each set contained at
most five features of which one was chosen from the set of pro-
trusion-based features.

Fig. 7. FROC curves averaged over all feature sets for the LDC, QDC, and
logistic classifiers.

TABLE II
INSTABILITY OF VARIOUS CLASSIFIERS

An FROC curve was computed for each classifier and for
each set of features from the pool. The average FROC curve
for a classifier is shown in Fig. 7. The standard deviation that
was derived from the variation between the FROC curves for
different feature sets was less than 0.03 FPs per scan for sensi-
tivities below 95%. The FROC curves reveal that the logistic
classifier and the QDC do not differ in their performance as
their FROC curves almost completely overlap. The performance
of LDC was significantly worse by approximately 15 times the
standard deviation.

The second criterion used for classifier selection was the sta-
bility of the classifiers. This stability was assessed by means of
bootstrapping the training set. This results in a perturbed orien-
tation of the classifiers, which consequently leads to a number
of differently classified candidates. The average number of dif-
ferent decisions is then used as a measure of instability [44].
Table II lists the instability measures. The table clearly shows
that the logistic classifier and the LDC are the most stable classi-
fiers. The instability has been measured for a sensitivity of 85%,
but the results generalize well to other sensitivity levels, i.e., dif-
ferent locations of the decision boundary.

More specifically, it is noticeable that the LDC is much more
stable than the QDC. This is explained by the covariance matrix
estimated by the LDC being nearly identical to the covariance
matrix of the majority class, which barely changes due to boot-
strapping. On the other hand, the QDC also estimates a covari-
ance matrix for the polyp class. Because of the low number of
polyps, bootstrapping leads to a different covariance matrix for
the polyp class. This is reflected by the poor instability of the
QDC. The logistic classifier is expected to be more stable since
it poses an assumption onto the relative posterior probabilities
of the two classes rather than estimating both (class-dependent)
probability distribution functions.
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Fig. 8. FROC curves that indicate the added value of the feature � and the
use of the Mahalanobis distance mapping. (a) Data set “A” with and without
� . Using the Mahalanobis distance mapping leads to a small increase in
performance. (b) Data set “C” with and without � and with the unmapped
and mapped mean intensity feature. The graph reveals that it is an absolute ne-
cessity to apply the mapping in the case of fecal-tagged data.

To conclude, it is shown that the logistic classifier combines
a good performance in terms of FROC analysis with a good
stability value. Therefore, the logistic classifier will be used as
the regressor in the classification system.

B. Outlier Rejection by Mahalanobis Distance Mapping

Let us now look into the performance of outlier rejection by
the Mahalanobis distance mapping. The starting point of our
analysis is the FROC curve generated by the logistic classifier
using with a threshold of 0.6 mm, and (prior to
mapping). FROC curves are computed for data sets “A” and
“C.” Among other differences, these data sets differ in the type
of rectal tubes used and the administration of a fecal tagging
agent (see also Table I).

Fig. 8(a) shows the FROC curves for data set “A.” In this
data set, no fecal tagging agent was administered to the pa-
tients. As a consequence, only false detections with low mean
intensities were present. This means that this feature is already

suitable for ordering the candidates. Mapping did not
result in a significantly different FROC curve; for this reason
and for the purpose of clarity the curves with the “unmapped”

are not shown. The solid curve is the FROC curve of a
system with only the and . The dotted line is
obtained when the feature is added directly, without prior
Mahalanobis distance mapping; the dash–dotted FROC curve is
the outcome when a mapped version of this feature is used in-
stead. The improvement by adding this feature may be a reduc-
tion up to 25%–50% of the number of false positives depending
on the required sensitivity (see arrows). The error bars denote
two times the standard deviation of the number of false posi-
tives over all scans.

The results for data set “C” are shown in Fig. 8(b). In contrast
to data set “A,” patients from this data set were administered a
fecal tagging agent. As a consequence, it may be expected that
the Mahalanobis distance mapping of has a larger influ-
ence due to the presence of both candidates with a low mean in-
tensity as candidates with a high mean intensity. Here again, the
solid curve corresponds to classification using and .
Similar to the analysis of data set “A,” the feature is added
and the MD-mapping is applied to this feature and to .
In contrast to the rectal tubes in data set “A,” the tubes in this
data set did not have a balloon attached, but included a marker
of high attenuation material. Because of this, less candidates on
the rectal tubes were found and those which were found could
often be easily discarded by means of their intensity. As a con-
sequence, adding the feature may be expected not to im-
prove the performance. This is confirmed by the dotted line, in-
dicating no significant improvement. Again, for the purpose of
clarity, the FROC curves with the “unmapped” are not
shown in this figure, as they do not differ significantly. Observe
that adding does not lead to worse results.

The second step was to compute the same FROC curves with
the mapped mean intensity feature. A striking improvement can
be seen. This result can be explained by the fact that in this case
there are both false detections with lower mean intensity as there
are false detections with higher mean intensity. According to
these results, only the mapped features will be used in further
FROC analyses.

C. Multicenter Evaluation

An important aspect of a CAD system for CT colonography
is its ability to generalize to data sets differing in a variety of
aspects. The generalization power of the presented system will
be investigated by FROC analysis and a cross-center evaluation.

The patients from data sets “A,” “B,” and “C” were scanned
in both prone and supine positions. At the basis of this (con-
ventional) approach is that a polyp is not always visible in both
CT scans, e.g., due to suboptimal distension or remaining fluid
rests. Consequently, a polyp may not be annotated in both scans.
Let us initially focus on the annotated polyp “findings” to assess
the performance of the candidate detection step.

The candidate detection returned 88.8% (436/491) of the an-
notated findings mm in total (see Table III). The prepa-
ration of the patients is at the basis of the differences in the
number of missed findings. The patients of data set “A” had
undergone an extensive preparation. This might explain the fact
that the system detected almost all annotations in this data set
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TABLE III
RESULTS OF THE CANDIDATE DETECTION SYSTEM

(93/94). On the other hand, data set “B” appeared to contain
a large amount of residual fluid (confirmed by [45]). Conse-
quently, many polyps were obscured by fecal remains, reducing
the detection rate to 77.6% (38/49). Data set “C” had less con-
trast-enhanced fluid in the colon, which resulted in a higher de-
tection rate of 87.4% (297/340). The percentage of polyps de-
tected in either scan was 99.0% (269/271) (sensitivity is con-
ventionally measured in this way [46]).

Fig. 9 shows the results of the cross-center evaluation. It is
generally known that a large amount of features decreases the
generalization power of a classifier, especially when the data
sets differ as much as the four data sets of our study. Therefore,
we consciously limited the number of features in this evalua-
tion to the three features described before: with a threshold
0.6 mm, , and . Each graph in Fig. 9
corresponds to one test set; the line styles in the figures indicate
the specific data set on which the classifier was trained. In the
case of testing and training on the data from the same medical
center, a ten-fold, repeated cross-validation was performed. The
standard deviation indicated in the graphs is estimated as the
standard deviation of a binomial distribution [47] and depends
on the number of polyps and the sensitivity. This standard de-
viation characterizes the variation in the FROC curves when a
new subset is drawn from the same distribution.

It can be seen that in all graphs, the FROC curves for classi-
fiers trained on the different data sets are generally within one
standard deviation from each other. In other words, the same
performance is attained no matter on which data set the classi-
fier is trained. Concurrently, there are small differences in the
performance of the CAD system for the four data sets. Despite
this, all yield a sensitivity larger than 85% at the cost of five
false positive detections per scan. Four polyps in data set “B”
remained undetected at 86% (25/29) sensitivity. The missed
polyps were all reviewed by a fellow researcher with a back-
ground in CAD of polyps in CTC. All missed polyps were cov-
ered by contrast-enhanced material in at least one of the two
scans and were annotated in only one position. Consequently
(no electronic cleansing was used), the CAD system did not get a
second chance of finding these polyps. In data set “C,” 14 polyps
remained undetected by the CAD system at 90% sensitivity.
The false negatives consisted of tumors with lobulated shapes,
polyps covered by fecal remains, “nonprotruding” polyps an-
notated as a flat polyp by the radiologists and polyps that were
located between haustral folds. Even though data set “D” con-
tained only one scan per patient, the FROC curves for this data
set compete with the FROC curves for the other data sets.

Fig. 9. Each graph shows the results of classifying a certain data set, using four
different classifiers that are each trained on one of the four data sets. The line
style indicates the data set on which is trained. When the same data set is used
for training and classifying, a ten-fold, repeated cross-validation was used. (a)
Test set “A,” (b) Test set “B,” (c) Test set “C,” and (d) Test set “D.”

In conclusion, the FROC curves for the different data sets
show that the CAD system is independent on the specific data set
used for training. The differences between the curves are a result
of the administration of a fecal tagging agent, the preparation
of the patients and natural fluctuations in the appearance of the
polyps in the data sets.

VI. DISCUSSION/CONCLUSION

We developed a classification system based on logistic regres-
sion for CAD of polyps in CT colonography data. Typically,
there are unbalanced and unknown misclassification costs and a
huge class imbalance. The latter occurs because there are only
a few examples of the abnormality class in a shear endless sea
of normal “healthy” samples. Our classification system can cope
with the aforementioned characteristics by carrying out a regres-
sion analysis instead of classifying the candidates into one of the
two classes. The ordering correlates with the clinical relevance
of the candidates. The exponential distribution of the candidates
and the small number of polyps available for training led to the
use of the logistic classifier for regression. The logistic classifier
is low-complex and proved to be stable.
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Candidates were detected based on their protrudedness from
the colon wall. A feature derived from the protrusion field was
sensitive for candidates that had steep edges and large protru-
sion. Other features used were the internal intensity distribution,
and a feature to discard detections on the rectal tubes.

The features were divided into two types of features, namely
features that allowed directly an ordering of the candidates and
features that were well described by a Gaussian density distribu-
tion. The features of the second type were mapped by a Maha-
lanobis distance mapping to impose an ordering. This mapping
was chosen because it emulates a Gaussian one-class classifier.
In this way, outlier rejection was incorporated into the classifi-
cation system.

After discarding the candidates on the rectal tubes, polyps
and non-polyps could be distinguished using only information
about the protrusion and the internal intensity of the candidates.
The observed sensitivity was comparable to the sensitivity of
radiologists using CTC [7], [15], [16] and competed with other
CAD systems [7]–[9], [26]. It was also shown that the CAD
system generalizes well to data sets from different medical
centers.

To conclude, we introduced a low-complex CAD system
that took into account all the characteristics of the classifica-
tion problem. These characteristics will frequently occur in
medical image processing problems. The Mahalanobis distance
mapping in conjunction with logistic regression is generally
applicable to obtain a clinically relevant ordering of the candi-
dates. For automatic polyp detection, the generalization to data
sets from different medical centers and with different patient
preparations is essential to application in large-scale screening.
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